1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  45   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  46   _in_worklist(C->comp_arena()),
  47   _next_pidx(0),
  48   _collecting(true),
  49   _verify(false),
  50   _compile(C),
  51   _igvn(igvn),
  52   _node_map(C->comp_arena()) {
  53   // Add unknown java object.
  54   add_java_object(C->top(), PointsToNode::GlobalEscape);
  55   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  56   // Add ConP(#NULL) and ConN(#NULL) nodes.
  57   Node* oop_null = igvn->zerocon(T_OBJECT);
  58   assert(oop_null->_idx < nodes_size(), "should be created already");
  59   add_java_object(oop_null, PointsToNode::NoEscape);
  60   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  61   if (UseCompressedOops) {
  62     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  63     assert(noop_null->_idx < nodes_size(), "should be created already");
  64     map_ideal_node(noop_null, null_obj);
  65   }
  66   _pcmp_neq = NULL; // Should be initialized
  67   _pcmp_eq  = NULL;
  68 }
  69 
  70 bool ConnectionGraph::has_candidates(Compile *C) {
  71   // EA brings benefits only when the code has allocations and/or locks which
  72   // are represented by ideal Macro nodes.
  73   int cnt = C->macro_count();
  74   for (int i = 0; i < cnt; i++) {
  75     Node *n = C->macro_node(i);
  76     if (n->is_Allocate())
  77       return true;
  78     if (n->is_Lock()) {
  79       Node* obj = n->as_Lock()->obj_node()->uncast();
  80       if (!(obj->is_Parm() || obj->is_Con()))
  81         return true;
  82     }
  83     if (n->is_CallStaticJava() &&
  84         n->as_CallStaticJava()->is_boxing_method()) {
  85       return true;
  86     }
  87   }
  88   return false;
  89 }
  90 
  91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  92   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  93   ResourceMark rm;
  94 
  95   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  96   // to create space for them in ConnectionGraph::_nodes[].
  97   Node* oop_null = igvn->zerocon(T_OBJECT);
  98   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  99   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 100   // Perform escape analysis
 101   if (congraph->compute_escape()) {
 102     // There are non escaping objects.
 103     C->set_congraph(congraph);
 104   }
 105   // Cleanup.
 106   if (oop_null->outcnt() == 0)
 107     igvn->hash_delete(oop_null);
 108   if (noop_null->outcnt() == 0)
 109     igvn->hash_delete(noop_null);
 110 }
 111 
 112 bool ConnectionGraph::compute_escape() {
 113   Compile* C = _compile;
 114   PhaseGVN* igvn = _igvn;
 115 
 116   // Worklists used by EA.
 117   Unique_Node_List delayed_worklist;
 118   GrowableArray<Node*> alloc_worklist;
 119   GrowableArray<Node*> ptr_cmp_worklist;
 120   GrowableArray<Node*> storestore_worklist;
 121   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 122   GrowableArray<PointsToNode*>   ptnodes_worklist;
 123   GrowableArray<JavaObjectNode*> java_objects_worklist;
 124   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 125   GrowableArray<FieldNode*>      oop_fields_worklist;
 126   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 127 
 128   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 129 
 130   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 131   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 132   // Initialize worklist
 133   if (C->root() != NULL) {
 134     ideal_nodes.push(C->root());
 135   }
 136   // Processed ideal nodes are unique on ideal_nodes list
 137   // but several ideal nodes are mapped to the phantom_obj.
 138   // To avoid duplicated entries on the following worklists
 139   // add the phantom_obj only once to them.
 140   ptnodes_worklist.append(phantom_obj);
 141   java_objects_worklist.append(phantom_obj);
 142   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 143     Node* n = ideal_nodes.at(next);
 144     // Create PointsTo nodes and add them to Connection Graph. Called
 145     // only once per ideal node since ideal_nodes is Unique_Node list.
 146     add_node_to_connection_graph(n, &delayed_worklist);
 147     PointsToNode* ptn = ptnode_adr(n->_idx);
 148     if (ptn != NULL && ptn != phantom_obj) {
 149       ptnodes_worklist.append(ptn);
 150       if (ptn->is_JavaObject()) {
 151         java_objects_worklist.append(ptn->as_JavaObject());
 152         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 153             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 154           // Only allocations and java static calls results are interesting.
 155           non_escaped_worklist.append(ptn->as_JavaObject());
 156         }
 157       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 158         oop_fields_worklist.append(ptn->as_Field());
 159       }
 160     }
 161     if (n->is_MergeMem()) {
 162       // Collect all MergeMem nodes to add memory slices for
 163       // scalar replaceable objects in split_unique_types().
 164       _mergemem_worklist.append(n->as_MergeMem());
 165     } else if (OptimizePtrCompare && n->is_Cmp() &&
 166                ((n->Opcode() == Op_CmpP && !(((CmpPNode*)n)->has_perturbed_operand() != NULL)) ||
 167                  n->Opcode() == Op_CmpN)) {
 168       // Collect compare pointers nodes.
 169       ptr_cmp_worklist.append(n);
 170     } else if (n->is_MemBarStoreStore()) {
 171       // Collect all MemBarStoreStore nodes so that depending on the
 172       // escape status of the associated Allocate node some of them
 173       // may be eliminated.
 174       storestore_worklist.append(n);
 175     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 176                (n->req() > MemBarNode::Precedent)) {
 177       record_for_optimizer(n);
 178 #ifdef ASSERT
 179     } else if (n->is_AddP()) {
 180       // Collect address nodes for graph verification.
 181       addp_worklist.append(n);
 182 #endif
 183     } else if (n->is_ArrayCopy()) {
 184       // Keep a list of ArrayCopy nodes so if one of its input is non
 185       // escaping, we can record a unique type
 186       arraycopy_worklist.append(n->as_ArrayCopy());
 187     }
 188     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 189       Node* m = n->fast_out(i);   // Get user
 190       ideal_nodes.push(m);
 191     }
 192   }
 193   if (non_escaped_worklist.length() == 0) {
 194     _collecting = false;
 195     return false; // Nothing to do.
 196   }
 197   // Add final simple edges to graph.
 198   while(delayed_worklist.size() > 0) {
 199     Node* n = delayed_worklist.pop();
 200     add_final_edges(n);
 201   }
 202   int ptnodes_length = ptnodes_worklist.length();
 203 
 204 #ifdef ASSERT
 205   if (VerifyConnectionGraph) {
 206     // Verify that no new simple edges could be created and all
 207     // local vars has edges.
 208     _verify = true;
 209     for (int next = 0; next < ptnodes_length; ++next) {
 210       PointsToNode* ptn = ptnodes_worklist.at(next);
 211       add_final_edges(ptn->ideal_node());
 212       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 213         ptn->dump();
 214         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 215       }
 216     }
 217     _verify = false;
 218   }
 219 #endif
 220   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 221   // processing, calls to CI to resolve symbols (types, fields, methods)
 222   // referenced in bytecode. During symbol resolution VM may throw
 223   // an exception which CI cleans and converts to compilation failure.
 224   if (C->failing())  return false;
 225 
 226   // 2. Finish Graph construction by propagating references to all
 227   //    java objects through graph.
 228   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 229                                  java_objects_worklist, oop_fields_worklist)) {
 230     // All objects escaped or hit time or iterations limits.
 231     _collecting = false;
 232     return false;
 233   }
 234 
 235   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 236   //    scalar replaceable allocations on alloc_worklist for processing
 237   //    in split_unique_types().
 238   int non_escaped_length = non_escaped_worklist.length();
 239   for (int next = 0; next < non_escaped_length; next++) {
 240     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 241     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 242     Node* n = ptn->ideal_node();
 243     if (n->is_Allocate()) {
 244       n->as_Allocate()->_is_non_escaping = noescape;
 245     }
 246     if (n->is_CallStaticJava()) {
 247       n->as_CallStaticJava()->_is_non_escaping = noescape;
 248     }
 249     if (noescape && ptn->scalar_replaceable()) {
 250       adjust_scalar_replaceable_state(ptn);
 251       if (ptn->scalar_replaceable()) {
 252         alloc_worklist.append(ptn->ideal_node());
 253       }
 254     }
 255   }
 256 
 257 #ifdef ASSERT
 258   if (VerifyConnectionGraph) {
 259     // Verify that graph is complete - no new edges could be added or needed.
 260     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 261                             java_objects_worklist, addp_worklist);
 262   }
 263   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 264   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 265          null_obj->edge_count() == 0 &&
 266          !null_obj->arraycopy_src() &&
 267          !null_obj->arraycopy_dst(), "sanity");
 268 #endif
 269 
 270   _collecting = false;
 271 
 272   } // TracePhase t3("connectionGraph")
 273 
 274   // 4. Optimize ideal graph based on EA information.
 275   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 276   if (has_non_escaping_obj) {
 277     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 278   }
 279 
 280 #ifndef PRODUCT
 281   if (PrintEscapeAnalysis) {
 282     dump(ptnodes_worklist); // Dump ConnectionGraph
 283   }
 284 #endif
 285 
 286   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 287 #ifdef ASSERT
 288   if (VerifyConnectionGraph) {
 289     int alloc_length = alloc_worklist.length();
 290     for (int next = 0; next < alloc_length; ++next) {
 291       Node* n = alloc_worklist.at(next);
 292       PointsToNode* ptn = ptnode_adr(n->_idx);
 293       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 294     }
 295   }
 296 #endif
 297 
 298   // 5. Separate memory graph for scalar replaceable allcations.
 299   if (has_scalar_replaceable_candidates &&
 300       C->AliasLevel() >= 3 && EliminateAllocations) {
 301     // Now use the escape information to create unique types for
 302     // scalar replaceable objects.
 303     split_unique_types(alloc_worklist, arraycopy_worklist);
 304     if (C->failing())  return false;
 305     C->print_method(PHASE_AFTER_EA, 2);
 306 
 307 #ifdef ASSERT
 308   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 309     tty->print("=== No allocations eliminated for ");
 310     C->method()->print_short_name();
 311     if(!EliminateAllocations) {
 312       tty->print(" since EliminateAllocations is off ===");
 313     } else if(!has_scalar_replaceable_candidates) {
 314       tty->print(" since there are no scalar replaceable candidates ===");
 315     } else if(C->AliasLevel() < 3) {
 316       tty->print(" since AliasLevel < 3 ===");
 317     }
 318     tty->cr();
 319 #endif
 320   }
 321   return has_non_escaping_obj;
 322 }
 323 
 324 // Utility function for nodes that load an object
 325 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 326   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 327   // ThreadLocal has RawPtr type.
 328   const Type* t = _igvn->type(n);
 329   if (t->make_ptr() != NULL) {
 330     Node* adr = n->in(MemNode::Address);
 331 #ifdef ASSERT
 332     if (!adr->is_AddP()) {
 333       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 334     } else {
 335       assert((ptnode_adr(adr->_idx) == NULL ||
 336               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 337     }
 338 #endif
 339     add_local_var_and_edge(n, PointsToNode::NoEscape,
 340                            adr, delayed_worklist);
 341   }
 342 }
 343 
 344 // Populate Connection Graph with PointsTo nodes and create simple
 345 // connection graph edges.
 346 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 347   assert(!_verify, "this method should not be called for verification");
 348   PhaseGVN* igvn = _igvn;
 349   uint n_idx = n->_idx;
 350   PointsToNode* n_ptn = ptnode_adr(n_idx);
 351   if (n_ptn != NULL)
 352     return; // No need to redefine PointsTo node during first iteration.
 353 
 354   if (n->is_Call()) {
 355     // Arguments to allocation and locking don't escape.
 356     if (n->is_AbstractLock()) {
 357       // Put Lock and Unlock nodes on IGVN worklist to process them during
 358       // first IGVN optimization when escape information is still available.
 359       record_for_optimizer(n);
 360     } else if (n->is_Allocate()) {
 361       add_call_node(n->as_Call());
 362       record_for_optimizer(n);
 363     } else {
 364       if (n->is_CallStaticJava()) {
 365         const char* name = n->as_CallStaticJava()->_name;
 366         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 367           return; // Skip uncommon traps
 368       }
 369       // Don't mark as processed since call's arguments have to be processed.
 370       delayed_worklist->push(n);
 371       // Check if a call returns an object.
 372       if ((n->as_Call()->returns_pointer() &&
 373            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 374           (n->is_CallStaticJava() &&
 375            n->as_CallStaticJava()->is_boxing_method())) {
 376         add_call_node(n->as_Call());
 377       } else if (n->as_Call()->tf()->returns_value_type_as_fields()) {
 378         bool returns_oop = false;
 379         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) {
 380           ProjNode* pn = n->fast_out(i)->as_Proj();
 381           if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_ptr()) {
 382             returns_oop = true;
 383           }
 384         }
 385         if (returns_oop) {
 386           add_call_node(n->as_Call());
 387         }
 388       }
 389     }
 390     return;
 391   }
 392   // Put this check here to process call arguments since some call nodes
 393   // point to phantom_obj.
 394   if (n_ptn == phantom_obj || n_ptn == null_obj)
 395     return; // Skip predefined nodes.
 396 
 397   int opcode = n->Opcode();
 398   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
 399   if (gc_handled) {
 400     return; // Ignore node if already handled by GC.
 401   }
 402   switch (opcode) {
 403     case Op_AddP: {
 404       Node* base = get_addp_base(n);
 405       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 406       // Field nodes are created for all field types. They are used in
 407       // adjust_scalar_replaceable_state() and split_unique_types().
 408       // Note, non-oop fields will have only base edges in Connection
 409       // Graph because such fields are not used for oop loads and stores.
 410       int offset = address_offset(n, igvn);
 411       add_field(n, PointsToNode::NoEscape, offset);
 412       if (ptn_base == NULL) {
 413         delayed_worklist->push(n); // Process it later.
 414       } else {
 415         n_ptn = ptnode_adr(n_idx);
 416         add_base(n_ptn->as_Field(), ptn_base);
 417       }
 418       break;
 419     }
 420     case Op_CastX2P: {
 421       map_ideal_node(n, phantom_obj);
 422       break;
 423     }
 424     case Op_CastPP:
 425     case Op_CheckCastPP:
 426     case Op_EncodeP:
 427     case Op_DecodeN:
 428     case Op_EncodePKlass:
 429     case Op_DecodeNKlass: {
 430       add_local_var_and_edge(n, PointsToNode::NoEscape,
 431                              n->in(1), delayed_worklist);
 432       break;
 433     }
 434     case Op_CMoveP: {
 435       add_local_var(n, PointsToNode::NoEscape);
 436       // Do not add edges during first iteration because some could be
 437       // not defined yet.
 438       delayed_worklist->push(n);
 439       break;
 440     }
 441     case Op_ConP:
 442     case Op_ConN:
 443     case Op_ConNKlass: {
 444       // assume all oop constants globally escape except for null
 445       PointsToNode::EscapeState es;
 446       const Type* t = igvn->type(n);
 447       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 448         es = PointsToNode::NoEscape;
 449       } else {
 450         es = PointsToNode::GlobalEscape;
 451       }
 452       add_java_object(n, es);
 453       break;
 454     }
 455     case Op_CreateEx: {
 456       // assume that all exception objects globally escape
 457       map_ideal_node(n, phantom_obj);
 458       break;
 459     }
 460     case Op_LoadKlass:
 461     case Op_LoadNKlass: {
 462       // Unknown class is loaded
 463       map_ideal_node(n, phantom_obj);
 464       break;
 465     }
 466     case Op_LoadP:
 467     case Op_LoadN:
 468     case Op_LoadPLocked: {
 469       add_objload_to_connection_graph(n, delayed_worklist);
 470       break;
 471     }
 472     case Op_Parm: {
 473       map_ideal_node(n, phantom_obj);
 474       break;
 475     }
 476     case Op_PartialSubtypeCheck: {
 477       // Produces Null or notNull and is used in only in CmpP so
 478       // phantom_obj could be used.
 479       map_ideal_node(n, phantom_obj); // Result is unknown
 480       break;
 481     }
 482     case Op_Phi: {
 483       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 484       // ThreadLocal has RawPtr type.
 485       const Type* t = n->as_Phi()->type();
 486       if (t->make_ptr() != NULL) {
 487         add_local_var(n, PointsToNode::NoEscape);
 488         // Do not add edges during first iteration because some could be
 489         // not defined yet.
 490         delayed_worklist->push(n);
 491       }
 492       break;
 493     }
 494     case Op_Proj: {
 495       // we are only interested in the oop result projection from a call
 496       if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
 497           (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_ptr())) {
 498         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
 499                n->in(0)->as_Call()->tf()->returns_value_type_as_fields(), "what kind of oop return is it?");
 500         add_local_var_and_edge(n, PointsToNode::NoEscape,
 501                                n->in(0), delayed_worklist);
 502       }
 503       break;
 504     }
 505     case Op_Rethrow: // Exception object escapes
 506     case Op_Return: {
 507       if (n->req() > TypeFunc::Parms &&
 508           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 509         // Treat Return value as LocalVar with GlobalEscape escape state.
 510         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 511                                n->in(TypeFunc::Parms), delayed_worklist);
 512       }
 513       break;
 514     }
 515     case Op_CompareAndExchangeP:
 516     case Op_CompareAndExchangeN:
 517     case Op_GetAndSetP:
 518     case Op_GetAndSetN: {
 519       add_objload_to_connection_graph(n, delayed_worklist);
 520       // fallthrough
 521     }
 522     case Op_StoreP:
 523     case Op_StoreN:
 524     case Op_StoreNKlass:
 525     case Op_StorePConditional:
 526     case Op_WeakCompareAndSwapP:
 527     case Op_WeakCompareAndSwapN:
 528     case Op_CompareAndSwapP:
 529     case Op_CompareAndSwapN: {
 530       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
 531       break;
 532     }
 533     case Op_AryEq:
 534     case Op_HasNegatives:
 535     case Op_StrComp:
 536     case Op_StrEquals:
 537     case Op_StrIndexOf:
 538     case Op_StrIndexOfChar:
 539     case Op_StrInflatedCopy:
 540     case Op_StrCompressedCopy:
 541     case Op_EncodeISOArray: {
 542       add_local_var(n, PointsToNode::ArgEscape);
 543       delayed_worklist->push(n); // Process it later.
 544       break;
 545     }
 546     case Op_ThreadLocal: {
 547       add_java_object(n, PointsToNode::ArgEscape);
 548       break;
 549     }
 550     default:
 551       ; // Do nothing for nodes not related to EA.
 552   }
 553   return;
 554 }
 555 
 556 #ifdef ASSERT
 557 #define ELSE_FAIL(name)                               \
 558       /* Should not be called for not pointer type. */  \
 559       n->dump(1);                                       \
 560       assert(false, name);                              \
 561       break;
 562 #else
 563 #define ELSE_FAIL(name) \
 564       break;
 565 #endif
 566 
 567 // Add final simple edges to graph.
 568 void ConnectionGraph::add_final_edges(Node *n) {
 569   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 570 #ifdef ASSERT
 571   if (_verify && n_ptn->is_JavaObject())
 572     return; // This method does not change graph for JavaObject.
 573 #endif
 574 
 575   if (n->is_Call()) {
 576     process_call_arguments(n->as_Call());
 577     return;
 578   }
 579   assert(n->is_Store() || n->is_LoadStore() ||
 580          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 581          "node should be registered already");
 582   int opcode = n->Opcode();
 583   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
 584   if (gc_handled) {
 585     return; // Ignore node if already handled by GC.
 586   }
 587   switch (opcode) {
 588     case Op_AddP: {
 589       Node* base = get_addp_base(n);
 590       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 591       assert(ptn_base != NULL, "field's base should be registered");
 592       add_base(n_ptn->as_Field(), ptn_base);
 593       break;
 594     }
 595     case Op_CastPP:
 596     case Op_CheckCastPP:
 597     case Op_EncodeP:
 598     case Op_DecodeN:
 599     case Op_EncodePKlass:
 600     case Op_DecodeNKlass: {
 601       add_local_var_and_edge(n, PointsToNode::NoEscape,
 602                              n->in(1), NULL);
 603       break;
 604     }
 605     case Op_CMoveP: {
 606       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 607         Node* in = n->in(i);
 608         if (in == NULL)
 609           continue;  // ignore NULL
 610         Node* uncast_in = in->uncast();
 611         if (uncast_in->is_top() || uncast_in == n)
 612           continue;  // ignore top or inputs which go back this node
 613         PointsToNode* ptn = ptnode_adr(in->_idx);
 614         assert(ptn != NULL, "node should be registered");
 615         add_edge(n_ptn, ptn);
 616       }
 617       break;
 618     }
 619     case Op_LoadP:
 620     case Op_LoadN:
 621     case Op_LoadPLocked: {
 622       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 623       // ThreadLocal has RawPtr type.
 624       const Type* t = _igvn->type(n);
 625       if (t->make_ptr() != NULL) {
 626         Node* adr = n->in(MemNode::Address);
 627         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 628         break;
 629       }
 630       ELSE_FAIL("Op_LoadP");
 631     }
 632     case Op_Phi: {
 633       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 634       // ThreadLocal has RawPtr type.
 635       const Type* t = n->as_Phi()->type();
 636       if (t->make_ptr() != NULL) {
 637         for (uint i = 1; i < n->req(); i++) {
 638           Node* in = n->in(i);
 639           if (in == NULL)
 640             continue;  // ignore NULL
 641           Node* uncast_in = in->uncast();
 642           if (uncast_in->is_top() || uncast_in == n)
 643             continue;  // ignore top or inputs which go back this node
 644           PointsToNode* ptn = ptnode_adr(in->_idx);
 645           assert(ptn != NULL, "node should be registered");
 646           add_edge(n_ptn, ptn);
 647         }
 648         break;
 649       }
 650       ELSE_FAIL("Op_Phi");
 651     }
 652     case Op_Proj: {
 653       // we are only interested in the oop result projection from a call
 654       if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
 655           (n->in(0)->as_Call()->returns_pointer()|| n->bottom_type()->isa_ptr())) {
 656         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
 657                n->in(0)->as_Call()->tf()->returns_value_type_as_fields(), "what kind of oop return is it?");
 658         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 659         break;
 660       }
 661       ELSE_FAIL("Op_Proj");
 662     }
 663     case Op_Rethrow: // Exception object escapes
 664     case Op_Return: {
 665       if (n->req() > TypeFunc::Parms &&
 666           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 667         // Treat Return value as LocalVar with GlobalEscape escape state.
 668         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 669                                n->in(TypeFunc::Parms), NULL);
 670         break;
 671       }
 672       ELSE_FAIL("Op_Return");
 673     }
 674     case Op_StoreP:
 675     case Op_StoreN:
 676     case Op_StoreNKlass:
 677     case Op_StorePConditional:
 678     case Op_CompareAndExchangeP:
 679     case Op_CompareAndExchangeN:
 680     case Op_CompareAndSwapP:
 681     case Op_CompareAndSwapN:
 682     case Op_WeakCompareAndSwapP:
 683     case Op_WeakCompareAndSwapN:
 684     case Op_GetAndSetP:
 685     case Op_GetAndSetN: {
 686       if (add_final_edges_unsafe_access(n, opcode)) {
 687         break;
 688       }
 689       ELSE_FAIL("Op_StoreP");
 690     }
 691     case Op_AryEq:
 692     case Op_HasNegatives:
 693     case Op_StrComp:
 694     case Op_StrEquals:
 695     case Op_StrIndexOf:
 696     case Op_StrIndexOfChar:
 697     case Op_StrInflatedCopy:
 698     case Op_StrCompressedCopy:
 699     case Op_EncodeISOArray: {
 700       // char[]/byte[] arrays passed to string intrinsic do not escape but
 701       // they are not scalar replaceable. Adjust escape state for them.
 702       // Start from in(2) edge since in(1) is memory edge.
 703       for (uint i = 2; i < n->req(); i++) {
 704         Node* adr = n->in(i);
 705         const Type* at = _igvn->type(adr);
 706         if (!adr->is_top() && at->isa_ptr()) {
 707           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 708                  at->isa_ptr() != NULL, "expecting a pointer");
 709           if (adr->is_AddP()) {
 710             adr = get_addp_base(adr);
 711           }
 712           PointsToNode* ptn = ptnode_adr(adr->_idx);
 713           assert(ptn != NULL, "node should be registered");
 714           add_edge(n_ptn, ptn);
 715         }
 716       }
 717       break;
 718     }
 719     default: {
 720       // This method should be called only for EA specific nodes which may
 721       // miss some edges when they were created.
 722 #ifdef ASSERT
 723       n->dump(1);
 724 #endif
 725       guarantee(false, "unknown node");
 726     }
 727   }
 728   return;
 729 }
 730 
 731 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
 732   Node* adr = n->in(MemNode::Address);
 733   const Type* adr_type = _igvn->type(adr);
 734   adr_type = adr_type->make_ptr();
 735   if (adr_type == NULL) {
 736     return; // skip dead nodes
 737   }
 738   if (adr_type->isa_oopptr()
 739       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 740           && adr_type == TypeRawPtr::NOTNULL
 741           && adr->in(AddPNode::Address)->is_Proj()
 742           && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 743     delayed_worklist->push(n); // Process it later.
 744 #ifdef ASSERT
 745     assert (adr->is_AddP(), "expecting an AddP");
 746     if (adr_type == TypeRawPtr::NOTNULL) {
 747       // Verify a raw address for a store captured by Initialize node.
 748       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 749       assert(offs != Type::OffsetBot, "offset must be a constant");
 750     }
 751 #endif
 752   } else {
 753     // Ignore copy the displaced header to the BoxNode (OSR compilation).
 754     if (adr->is_BoxLock()) {
 755       return;
 756     }
 757     // Stored value escapes in unsafe access.
 758     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 759       delayed_worklist->push(n); // Process unsafe access later.
 760       return;
 761     }
 762 #ifdef ASSERT
 763     n->dump(1);
 764     assert(false, "not unsafe");
 765 #endif
 766   }
 767 }
 768 
 769 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
 770   Node* adr = n->in(MemNode::Address);
 771   const Type *adr_type = _igvn->type(adr);
 772   adr_type = adr_type->make_ptr();
 773 #ifdef ASSERT
 774   if (adr_type == NULL) {
 775     n->dump(1);
 776     assert(adr_type != NULL, "dead node should not be on list");
 777     return true;
 778   }
 779 #endif
 780 
 781   if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 782       opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 783     add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 784   }
 785 
 786   if (adr_type->isa_oopptr()
 787       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 788            && adr_type == TypeRawPtr::NOTNULL
 789            && adr->in(AddPNode::Address)->is_Proj()
 790            && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 791     // Point Address to Value
 792     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 793     assert(adr_ptn != NULL &&
 794            adr_ptn->as_Field()->is_oop(), "node should be registered");
 795     Node* val = n->in(MemNode::ValueIn);
 796     PointsToNode* ptn = ptnode_adr(val->_idx);
 797     assert(ptn != NULL, "node should be registered");
 798     add_edge(adr_ptn, ptn);
 799     return true;
 800   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 801     // Stored value escapes in unsafe access.
 802     Node* val = n->in(MemNode::ValueIn);
 803     PointsToNode* ptn = ptnode_adr(val->_idx);
 804     assert(ptn != NULL, "node should be registered");
 805     set_escape_state(ptn, PointsToNode::GlobalEscape);
 806     // Add edge to object for unsafe access with offset.
 807     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 808     assert(adr_ptn != NULL, "node should be registered");
 809     if (adr_ptn->is_Field()) {
 810       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 811       add_edge(adr_ptn, ptn);
 812     }
 813     return true;
 814   }
 815   return false;
 816 }
 817 
 818 void ConnectionGraph::add_call_node(CallNode* call) {
 819   assert(call->returns_pointer() || call->tf()->returns_value_type_as_fields(), "only for call which returns pointer");
 820   uint call_idx = call->_idx;
 821   if (call->is_Allocate()) {
 822     Node* k = call->in(AllocateNode::KlassNode);
 823     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 824     assert(kt != NULL, "TypeKlassPtr  required.");
 825     ciKlass* cik = kt->klass();
 826     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 827     bool scalar_replaceable = true;
 828     if (call->is_AllocateArray()) {
 829       if (!cik->is_array_klass()) { // StressReflectiveCode
 830         es = PointsToNode::GlobalEscape;
 831       } else {
 832         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 833         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 834           // Not scalar replaceable if the length is not constant or too big.
 835           scalar_replaceable = false;
 836         }
 837       }
 838     } else {  // Allocate instance
 839       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 840           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 841          !cik->is_instance_klass() || // StressReflectiveCode
 842          !cik->as_instance_klass()->can_be_instantiated() ||
 843           cik->as_instance_klass()->has_finalizer()) {
 844         es = PointsToNode::GlobalEscape;
 845       }
 846     }
 847     add_java_object(call, es);
 848     PointsToNode* ptn = ptnode_adr(call_idx);
 849     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 850       ptn->set_scalar_replaceable(false);
 851     }
 852   } else if (call->is_CallStaticJava()) {
 853     // Call nodes could be different types:
 854     //
 855     // 1. CallDynamicJavaNode (what happened during call is unknown):
 856     //
 857     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 858     //
 859     //    - all oop arguments are escaping globally;
 860     //
 861     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 862     //
 863     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 864     //
 865     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 866     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 867     //      during call is returned;
 868     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 869     //      which are returned and does not escape during call;
 870     //
 871     //    - oop arguments escaping status is defined by bytecode analysis;
 872     //
 873     // For a static call, we know exactly what method is being called.
 874     // Use bytecode estimator to record whether the call's return value escapes.
 875     ciMethod* meth = call->as_CallJava()->method();
 876     if (meth == NULL) {
 877       const char* name = call->as_CallStaticJava()->_name;
 878       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 879       // Returns a newly allocated unescaped object.
 880       add_java_object(call, PointsToNode::NoEscape);
 881       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 882     } else if (meth->is_boxing_method()) {
 883       // Returns boxing object
 884       PointsToNode::EscapeState es;
 885       vmIntrinsics::ID intr = meth->intrinsic_id();
 886       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 887         // It does not escape if object is always allocated.
 888         es = PointsToNode::NoEscape;
 889       } else {
 890         // It escapes globally if object could be loaded from cache.
 891         es = PointsToNode::GlobalEscape;
 892       }
 893       add_java_object(call, es);
 894     } else {
 895       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 896       call_analyzer->copy_dependencies(_compile->dependencies());
 897       if (call_analyzer->is_return_allocated()) {
 898         // Returns a newly allocated unescaped object, simply
 899         // update dependency information.
 900         // Mark it as NoEscape so that objects referenced by
 901         // it's fields will be marked as NoEscape at least.
 902         add_java_object(call, PointsToNode::NoEscape);
 903         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 904       } else {
 905         // Determine whether any arguments are returned.
 906         const TypeTuple* d = call->tf()->domain_cc();
 907         bool ret_arg = false;
 908         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 909           if (d->field_at(i)->isa_ptr() != NULL &&
 910               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 911             ret_arg = true;
 912             break;
 913           }
 914         }
 915         if (ret_arg) {
 916           add_local_var(call, PointsToNode::ArgEscape);
 917         } else {
 918           // Returns unknown object.
 919           map_ideal_node(call, phantom_obj);
 920         }
 921       }
 922     }
 923   } else {
 924     // An other type of call, assume the worst case:
 925     // returned value is unknown and globally escapes.
 926     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 927     map_ideal_node(call, phantom_obj);
 928   }
 929 }
 930 
 931 void ConnectionGraph::process_call_arguments(CallNode *call) {
 932     bool is_arraycopy = false;
 933     switch (call->Opcode()) {
 934 #ifdef ASSERT
 935     case Op_Allocate:
 936     case Op_AllocateArray:
 937     case Op_Lock:
 938     case Op_Unlock:
 939       assert(false, "should be done already");
 940       break;
 941 #endif
 942     case Op_ArrayCopy:
 943     case Op_CallLeafNoFP:
 944       // Most array copies are ArrayCopy nodes at this point but there
 945       // are still a few direct calls to the copy subroutines (See
 946       // PhaseStringOpts::copy_string())
 947       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 948         call->as_CallLeaf()->is_call_to_arraycopystub();
 949       // fall through
 950     case Op_CallLeaf: {
 951       // Stub calls, objects do not escape but they are not scale replaceable.
 952       // Adjust escape state for outgoing arguments.
 953       const TypeTuple * d = call->tf()->domain_sig();
 954       bool src_has_oops = false;
 955       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 956         const Type* at = d->field_at(i);
 957         Node *arg = call->in(i);
 958         if (arg == NULL) {
 959           continue;
 960         }
 961         const Type *aat = _igvn->type(arg);
 962         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 963           continue;
 964         if (arg->is_AddP()) {
 965           //
 966           // The inline_native_clone() case when the arraycopy stub is called
 967           // after the allocation before Initialize and CheckCastPP nodes.
 968           // Or normal arraycopy for object arrays case.
 969           //
 970           // Set AddP's base (Allocate) as not scalar replaceable since
 971           // pointer to the base (with offset) is passed as argument.
 972           //
 973           arg = get_addp_base(arg);
 974         }
 975         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 976         assert(arg_ptn != NULL, "should be registered");
 977         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 978         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 979           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 980                  aat->isa_ptr() != NULL, "expecting an Ptr");
 981           bool arg_has_oops = aat->isa_oopptr() &&
 982                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 983                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()) ||
 984                                (aat->isa_aryptr() && aat->isa_aryptr()->elem() != NULL &&
 985                                 aat->isa_aryptr()->elem()->isa_valuetype() &&
 986                                 aat->isa_aryptr()->elem()->isa_valuetype()->value_klass()->contains_oops()));
 987           if (i == TypeFunc::Parms) {
 988             src_has_oops = arg_has_oops;
 989           }
 990           //
 991           // src or dst could be j.l.Object when other is basic type array:
 992           //
 993           //   arraycopy(char[],0,Object*,0,size);
 994           //   arraycopy(Object*,0,char[],0,size);
 995           //
 996           // Don't add edges in such cases.
 997           //
 998           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 999                                        arg_has_oops && (i > TypeFunc::Parms);
1000 #ifdef ASSERT
1001           if (!(is_arraycopy ||
1002                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
1003                 (call->as_CallLeaf()->_name != NULL &&
1004                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
1007                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
1008                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
1009                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
1010                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
1011                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
1012                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
1013                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
1014                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
1015                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1016                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1017                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1018                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1019                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1020                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1021                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1022                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1023                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1024                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1025                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
1026                   strcmp(call->as_CallLeaf()->_name, "load_unknown_value") == 0 ||
1027                   strcmp(call->as_CallLeaf()->_name, "store_unknown_value") == 0)
1028                  ))) {
1029             call->dump();
1030             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1031           }
1032 #endif
1033           // Always process arraycopy's destination object since
1034           // we need to add all possible edges to references in
1035           // source object.
1036           if (arg_esc >= PointsToNode::ArgEscape &&
1037               !arg_is_arraycopy_dest) {
1038             continue;
1039           }
1040           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1041           if (call->is_ArrayCopy()) {
1042             ArrayCopyNode* ac = call->as_ArrayCopy();
1043             if (ac->is_clonebasic() ||
1044                 ac->is_arraycopy_validated() ||
1045                 ac->is_copyof_validated() ||
1046                 ac->is_copyofrange_validated()) {
1047               es = PointsToNode::NoEscape;
1048             }
1049           }
1050           set_escape_state(arg_ptn, es);
1051           if (arg_is_arraycopy_dest) {
1052             Node* src = call->in(TypeFunc::Parms);
1053             if (src->is_AddP()) {
1054               src = get_addp_base(src);
1055             }
1056             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1057             assert(src_ptn != NULL, "should be registered");
1058             if (arg_ptn != src_ptn) {
1059               // Special arraycopy edge:
1060               // A destination object's field can't have the source object
1061               // as base since objects escape states are not related.
1062               // Only escape state of destination object's fields affects
1063               // escape state of fields in source object.
1064               add_arraycopy(call, es, src_ptn, arg_ptn);
1065             }
1066           }
1067         }
1068       }
1069       break;
1070     }
1071     case Op_CallStaticJava: {
1072       // For a static call, we know exactly what method is being called.
1073       // Use bytecode estimator to record the call's escape affects
1074 #ifdef ASSERT
1075       const char* name = call->as_CallStaticJava()->_name;
1076       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1077 #endif
1078       ciMethod* meth = call->as_CallJava()->method();
1079       if ((meth != NULL) && meth->is_boxing_method()) {
1080         break; // Boxing methods do not modify any oops.
1081       }
1082       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1083       // fall-through if not a Java method or no analyzer information
1084       if (call_analyzer != NULL) {
1085         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1086         const TypeTuple* d = call->tf()->domain_cc();
1087         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1088           const Type* at = d->field_at(i);
1089           int k = i - TypeFunc::Parms;
1090           Node* arg = call->in(i);
1091           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1092           if (at->isa_ptr() != NULL &&
1093               call_analyzer->is_arg_returned(k)) {
1094             // The call returns arguments.
1095             if (call_ptn != NULL) { // Is call's result used?
1096               assert(call_ptn->is_LocalVar(), "node should be registered");
1097               assert(arg_ptn != NULL, "node should be registered");
1098               add_edge(call_ptn, arg_ptn);
1099             }
1100           }
1101           if (at->isa_oopptr() != NULL &&
1102               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1103             if (!call_analyzer->is_arg_stack(k)) {
1104               // The argument global escapes
1105               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1106             } else {
1107               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1108               if (!call_analyzer->is_arg_local(k)) {
1109                 // The argument itself doesn't escape, but any fields might
1110                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1111               }
1112             }
1113           }
1114         }
1115         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1116           // The call returns arguments.
1117           assert(call_ptn->edge_count() > 0, "sanity");
1118           if (!call_analyzer->is_return_local()) {
1119             // Returns also unknown object.
1120             add_edge(call_ptn, phantom_obj);
1121           }
1122         }
1123         break;
1124       }
1125     }
1126     default: {
1127       // Fall-through here if not a Java method or no analyzer information
1128       // or some other type of call, assume the worst case: all arguments
1129       // globally escape.
1130       const TypeTuple* d = call->tf()->domain_cc();
1131       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1132         const Type* at = d->field_at(i);
1133         if (at->isa_oopptr() != NULL) {
1134           Node* arg = call->in(i);
1135           if (arg->is_AddP()) {
1136             arg = get_addp_base(arg);
1137           }
1138           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1139           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1140         }
1141       }
1142     }
1143   }
1144 }
1145 
1146 
1147 // Finish Graph construction.
1148 bool ConnectionGraph::complete_connection_graph(
1149                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1150                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1151                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1152                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1153   // Normally only 1-3 passes needed to build Connection Graph depending
1154   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1155   // Set limit to 20 to catch situation when something did go wrong and
1156   // bailout Escape Analysis.
1157   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1158 #define CG_BUILD_ITER_LIMIT 20
1159 
1160   // Propagate GlobalEscape and ArgEscape escape states and check that
1161   // we still have non-escaping objects. The method pushs on _worklist
1162   // Field nodes which reference phantom_object.
1163   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1164     return false; // Nothing to do.
1165   }
1166   // Now propagate references to all JavaObject nodes.
1167   int java_objects_length = java_objects_worklist.length();
1168   elapsedTimer time;
1169   bool timeout = false;
1170   int new_edges = 1;
1171   int iterations = 0;
1172   do {
1173     while ((new_edges > 0) &&
1174            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1175       double start_time = time.seconds();
1176       time.start();
1177       new_edges = 0;
1178       // Propagate references to phantom_object for nodes pushed on _worklist
1179       // by find_non_escaped_objects() and find_field_value().
1180       new_edges += add_java_object_edges(phantom_obj, false);
1181       for (int next = 0; next < java_objects_length; ++next) {
1182         JavaObjectNode* ptn = java_objects_worklist.at(next);
1183         new_edges += add_java_object_edges(ptn, true);
1184 
1185 #define SAMPLE_SIZE 4
1186         if ((next % SAMPLE_SIZE) == 0) {
1187           // Each 4 iterations calculate how much time it will take
1188           // to complete graph construction.
1189           time.stop();
1190           // Poll for requests from shutdown mechanism to quiesce compiler
1191           // because Connection graph construction may take long time.
1192           CompileBroker::maybe_block();
1193           double stop_time = time.seconds();
1194           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1195           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1196           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1197             timeout = true;
1198             break; // Timeout
1199           }
1200           start_time = stop_time;
1201           time.start();
1202         }
1203 #undef SAMPLE_SIZE
1204 
1205       }
1206       if (timeout) break;
1207       if (new_edges > 0) {
1208         // Update escape states on each iteration if graph was updated.
1209         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1210           return false; // Nothing to do.
1211         }
1212       }
1213       time.stop();
1214       if (time.seconds() >= EscapeAnalysisTimeout) {
1215         timeout = true;
1216         break;
1217       }
1218     }
1219     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1220       time.start();
1221       // Find fields which have unknown value.
1222       int fields_length = oop_fields_worklist.length();
1223       for (int next = 0; next < fields_length; next++) {
1224         FieldNode* field = oop_fields_worklist.at(next);
1225         if (field->edge_count() == 0) {
1226           new_edges += find_field_value(field);
1227           // This code may added new edges to phantom_object.
1228           // Need an other cycle to propagate references to phantom_object.
1229         }
1230       }
1231       time.stop();
1232       if (time.seconds() >= EscapeAnalysisTimeout) {
1233         timeout = true;
1234         break;
1235       }
1236     } else {
1237       new_edges = 0; // Bailout
1238     }
1239   } while (new_edges > 0);
1240 
1241   // Bailout if passed limits.
1242   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1243     Compile* C = _compile;
1244     if (C->log() != NULL) {
1245       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1246       C->log()->text("%s", timeout ? "time" : "iterations");
1247       C->log()->end_elem(" limit'");
1248     }
1249     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1250            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1251     // Possible infinite build_connection_graph loop,
1252     // bailout (no changes to ideal graph were made).
1253     return false;
1254   }
1255 #ifdef ASSERT
1256   if (Verbose && PrintEscapeAnalysis) {
1257     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1258                   iterations, nodes_size(), ptnodes_worklist.length());
1259   }
1260 #endif
1261 
1262 #undef CG_BUILD_ITER_LIMIT
1263 
1264   // Find fields initialized by NULL for non-escaping Allocations.
1265   int non_escaped_length = non_escaped_worklist.length();
1266   for (int next = 0; next < non_escaped_length; next++) {
1267     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1268     PointsToNode::EscapeState es = ptn->escape_state();
1269     assert(es <= PointsToNode::ArgEscape, "sanity");
1270     if (es == PointsToNode::NoEscape) {
1271       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1272         // Adding references to NULL object does not change escape states
1273         // since it does not escape. Also no fields are added to NULL object.
1274         add_java_object_edges(null_obj, false);
1275       }
1276     }
1277     Node* n = ptn->ideal_node();
1278     if (n->is_Allocate()) {
1279       // The object allocated by this Allocate node will never be
1280       // seen by an other thread. Mark it so that when it is
1281       // expanded no MemBarStoreStore is added.
1282       InitializeNode* ini = n->as_Allocate()->initialization();
1283       if (ini != NULL)
1284         ini->set_does_not_escape();
1285     }
1286   }
1287   return true; // Finished graph construction.
1288 }
1289 
1290 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1291 // and check that we still have non-escaping java objects.
1292 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1293                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1294   GrowableArray<PointsToNode*> escape_worklist;
1295   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1296   int ptnodes_length = ptnodes_worklist.length();
1297   for (int next = 0; next < ptnodes_length; ++next) {
1298     PointsToNode* ptn = ptnodes_worklist.at(next);
1299     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1300         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1301       escape_worklist.push(ptn);
1302     }
1303   }
1304   // Set escape states to referenced nodes (edges list).
1305   while (escape_worklist.length() > 0) {
1306     PointsToNode* ptn = escape_worklist.pop();
1307     PointsToNode::EscapeState es  = ptn->escape_state();
1308     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1309     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1310         es >= PointsToNode::ArgEscape) {
1311       // GlobalEscape or ArgEscape state of field means it has unknown value.
1312       if (add_edge(ptn, phantom_obj)) {
1313         // New edge was added
1314         add_field_uses_to_worklist(ptn->as_Field());
1315       }
1316     }
1317     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1318       PointsToNode* e = i.get();
1319       if (e->is_Arraycopy()) {
1320         assert(ptn->arraycopy_dst(), "sanity");
1321         // Propagate only fields escape state through arraycopy edge.
1322         if (e->fields_escape_state() < field_es) {
1323           set_fields_escape_state(e, field_es);
1324           escape_worklist.push(e);
1325         }
1326       } else if (es >= field_es) {
1327         // fields_escape_state is also set to 'es' if it is less than 'es'.
1328         if (e->escape_state() < es) {
1329           set_escape_state(e, es);
1330           escape_worklist.push(e);
1331         }
1332       } else {
1333         // Propagate field escape state.
1334         bool es_changed = false;
1335         if (e->fields_escape_state() < field_es) {
1336           set_fields_escape_state(e, field_es);
1337           es_changed = true;
1338         }
1339         if ((e->escape_state() < field_es) &&
1340             e->is_Field() && ptn->is_JavaObject() &&
1341             e->as_Field()->is_oop()) {
1342           // Change escape state of referenced fields.
1343           set_escape_state(e, field_es);
1344           es_changed = true;
1345         } else if (e->escape_state() < es) {
1346           set_escape_state(e, es);
1347           es_changed = true;
1348         }
1349         if (es_changed) {
1350           escape_worklist.push(e);
1351         }
1352       }
1353     }
1354   }
1355   // Remove escaped objects from non_escaped list.
1356   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1357     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1358     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1359       non_escaped_worklist.delete_at(next);
1360     }
1361     if (ptn->escape_state() == PointsToNode::NoEscape) {
1362       // Find fields in non-escaped allocations which have unknown value.
1363       find_init_values(ptn, phantom_obj, NULL);
1364     }
1365   }
1366   return (non_escaped_worklist.length() > 0);
1367 }
1368 
1369 // Add all references to JavaObject node by walking over all uses.
1370 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1371   int new_edges = 0;
1372   if (populate_worklist) {
1373     // Populate _worklist by uses of jobj's uses.
1374     for (UseIterator i(jobj); i.has_next(); i.next()) {
1375       PointsToNode* use = i.get();
1376       if (use->is_Arraycopy())
1377         continue;
1378       add_uses_to_worklist(use);
1379       if (use->is_Field() && use->as_Field()->is_oop()) {
1380         // Put on worklist all field's uses (loads) and
1381         // related field nodes (same base and offset).
1382         add_field_uses_to_worklist(use->as_Field());
1383       }
1384     }
1385   }
1386   for (int l = 0; l < _worklist.length(); l++) {
1387     PointsToNode* use = _worklist.at(l);
1388     if (PointsToNode::is_base_use(use)) {
1389       // Add reference from jobj to field and from field to jobj (field's base).
1390       use = PointsToNode::get_use_node(use)->as_Field();
1391       if (add_base(use->as_Field(), jobj)) {
1392         new_edges++;
1393       }
1394       continue;
1395     }
1396     assert(!use->is_JavaObject(), "sanity");
1397     if (use->is_Arraycopy()) {
1398       if (jobj == null_obj) // NULL object does not have field edges
1399         continue;
1400       // Added edge from Arraycopy node to arraycopy's source java object
1401       if (add_edge(use, jobj)) {
1402         jobj->set_arraycopy_src();
1403         new_edges++;
1404       }
1405       // and stop here.
1406       continue;
1407     }
1408     if (!add_edge(use, jobj))
1409       continue; // No new edge added, there was such edge already.
1410     new_edges++;
1411     if (use->is_LocalVar()) {
1412       add_uses_to_worklist(use);
1413       if (use->arraycopy_dst()) {
1414         for (EdgeIterator i(use); i.has_next(); i.next()) {
1415           PointsToNode* e = i.get();
1416           if (e->is_Arraycopy()) {
1417             if (jobj == null_obj) // NULL object does not have field edges
1418               continue;
1419             // Add edge from arraycopy's destination java object to Arraycopy node.
1420             if (add_edge(jobj, e)) {
1421               new_edges++;
1422               jobj->set_arraycopy_dst();
1423             }
1424           }
1425         }
1426       }
1427     } else {
1428       // Added new edge to stored in field values.
1429       // Put on worklist all field's uses (loads) and
1430       // related field nodes (same base and offset).
1431       add_field_uses_to_worklist(use->as_Field());
1432     }
1433   }
1434   _worklist.clear();
1435   _in_worklist.Reset();
1436   return new_edges;
1437 }
1438 
1439 // Put on worklist all related field nodes.
1440 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1441   assert(field->is_oop(), "sanity");
1442   int offset = field->offset();
1443   add_uses_to_worklist(field);
1444   // Loop over all bases of this field and push on worklist Field nodes
1445   // with the same offset and base (since they may reference the same field).
1446   for (BaseIterator i(field); i.has_next(); i.next()) {
1447     PointsToNode* base = i.get();
1448     add_fields_to_worklist(field, base);
1449     // Check if the base was source object of arraycopy and go over arraycopy's
1450     // destination objects since values stored to a field of source object are
1451     // accessable by uses (loads) of fields of destination objects.
1452     if (base->arraycopy_src()) {
1453       for (UseIterator j(base); j.has_next(); j.next()) {
1454         PointsToNode* arycp = j.get();
1455         if (arycp->is_Arraycopy()) {
1456           for (UseIterator k(arycp); k.has_next(); k.next()) {
1457             PointsToNode* abase = k.get();
1458             if (abase->arraycopy_dst() && abase != base) {
1459               // Look for the same arraycopy reference.
1460               add_fields_to_worklist(field, abase);
1461             }
1462           }
1463         }
1464       }
1465     }
1466   }
1467 }
1468 
1469 // Put on worklist all related field nodes.
1470 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1471   int offset = field->offset();
1472   if (base->is_LocalVar()) {
1473     for (UseIterator j(base); j.has_next(); j.next()) {
1474       PointsToNode* f = j.get();
1475       if (PointsToNode::is_base_use(f)) { // Field
1476         f = PointsToNode::get_use_node(f);
1477         if (f == field || !f->as_Field()->is_oop())
1478           continue;
1479         int offs = f->as_Field()->offset();
1480         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1481           add_to_worklist(f);
1482         }
1483       }
1484     }
1485   } else {
1486     assert(base->is_JavaObject(), "sanity");
1487     if (// Skip phantom_object since it is only used to indicate that
1488         // this field's content globally escapes.
1489         (base != phantom_obj) &&
1490         // NULL object node does not have fields.
1491         (base != null_obj)) {
1492       for (EdgeIterator i(base); i.has_next(); i.next()) {
1493         PointsToNode* f = i.get();
1494         // Skip arraycopy edge since store to destination object field
1495         // does not update value in source object field.
1496         if (f->is_Arraycopy()) {
1497           assert(base->arraycopy_dst(), "sanity");
1498           continue;
1499         }
1500         if (f == field || !f->as_Field()->is_oop())
1501           continue;
1502         int offs = f->as_Field()->offset();
1503         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1504           add_to_worklist(f);
1505         }
1506       }
1507     }
1508   }
1509 }
1510 
1511 // Find fields which have unknown value.
1512 int ConnectionGraph::find_field_value(FieldNode* field) {
1513   // Escaped fields should have init value already.
1514   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1515   int new_edges = 0;
1516   for (BaseIterator i(field); i.has_next(); i.next()) {
1517     PointsToNode* base = i.get();
1518     if (base->is_JavaObject()) {
1519       // Skip Allocate's fields which will be processed later.
1520       if (base->ideal_node()->is_Allocate())
1521         return 0;
1522       assert(base == null_obj, "only NULL ptr base expected here");
1523     }
1524   }
1525   if (add_edge(field, phantom_obj)) {
1526     // New edge was added
1527     new_edges++;
1528     add_field_uses_to_worklist(field);
1529   }
1530   return new_edges;
1531 }
1532 
1533 // Find fields initializing values for allocations.
1534 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1535   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1536   int new_edges = 0;
1537   Node* alloc = pta->ideal_node();
1538   if (init_val == phantom_obj) {
1539     // Do nothing for Allocate nodes since its fields values are
1540     // "known" unless they are initialized by arraycopy/clone.
1541     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1542       return 0;
1543     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1544 #ifdef ASSERT
1545     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1546       const char* name = alloc->as_CallStaticJava()->_name;
1547       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1548     }
1549 #endif
1550     // Non-escaped allocation returned from Java or runtime call have
1551     // unknown values in fields.
1552     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1553       PointsToNode* field = i.get();
1554       if (field->is_Field() && field->as_Field()->is_oop()) {
1555         if (add_edge(field, phantom_obj)) {
1556           // New edge was added
1557           new_edges++;
1558           add_field_uses_to_worklist(field->as_Field());
1559         }
1560       }
1561     }
1562     return new_edges;
1563   }
1564   assert(init_val == null_obj, "sanity");
1565   // Do nothing for Call nodes since its fields values are unknown.
1566   if (!alloc->is_Allocate())
1567     return 0;
1568 
1569   InitializeNode* ini = alloc->as_Allocate()->initialization();
1570   bool visited_bottom_offset = false;
1571   GrowableArray<int> offsets_worklist;
1572 
1573   // Check if an oop field's initializing value is recorded and add
1574   // a corresponding NULL if field's value if it is not recorded.
1575   // Connection Graph does not record a default initialization by NULL
1576   // captured by Initialize node.
1577   //
1578   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1579     PointsToNode* field = i.get(); // Field (AddP)
1580     if (!field->is_Field() || !field->as_Field()->is_oop())
1581       continue; // Not oop field
1582     int offset = field->as_Field()->offset();
1583     if (offset == Type::OffsetBot) {
1584       if (!visited_bottom_offset) {
1585         // OffsetBot is used to reference array's element,
1586         // always add reference to NULL to all Field nodes since we don't
1587         // known which element is referenced.
1588         if (add_edge(field, null_obj)) {
1589           // New edge was added
1590           new_edges++;
1591           add_field_uses_to_worklist(field->as_Field());
1592           visited_bottom_offset = true;
1593         }
1594       }
1595     } else {
1596       // Check only oop fields.
1597       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1598       if (adr_type->isa_rawptr()) {
1599 #ifdef ASSERT
1600         // Raw pointers are used for initializing stores so skip it
1601         // since it should be recorded already
1602         Node* base = get_addp_base(field->ideal_node());
1603         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1604                (base->in(0) == alloc),"unexpected pointer type");
1605 #endif
1606         continue;
1607       }
1608       if (!offsets_worklist.contains(offset)) {
1609         offsets_worklist.append(offset);
1610         Node* value = NULL;
1611         if (ini != NULL) {
1612           // StoreP::memory_type() == T_ADDRESS
1613           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1614           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1615           // Make sure initializing store has the same type as this AddP.
1616           // This AddP may reference non existing field because it is on a
1617           // dead branch of bimorphic call which is not eliminated yet.
1618           if (store != NULL && store->is_Store() &&
1619               store->as_Store()->memory_type() == ft) {
1620             value = store->in(MemNode::ValueIn);
1621 #ifdef ASSERT
1622             if (VerifyConnectionGraph) {
1623               // Verify that AddP already points to all objects the value points to.
1624               PointsToNode* val = ptnode_adr(value->_idx);
1625               assert((val != NULL), "should be processed already");
1626               PointsToNode* missed_obj = NULL;
1627               if (val->is_JavaObject()) {
1628                 if (!field->points_to(val->as_JavaObject())) {
1629                   missed_obj = val;
1630                 }
1631               } else {
1632                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1633                   tty->print_cr("----------init store has invalid value -----");
1634                   store->dump();
1635                   val->dump();
1636                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1637                 }
1638                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1639                   PointsToNode* obj = j.get();
1640                   if (obj->is_JavaObject()) {
1641                     if (!field->points_to(obj->as_JavaObject())) {
1642                       missed_obj = obj;
1643                       break;
1644                     }
1645                   }
1646                 }
1647               }
1648               if (missed_obj != NULL) {
1649                 tty->print_cr("----------field---------------------------------");
1650                 field->dump();
1651                 tty->print_cr("----------missed reference to object------------");
1652                 missed_obj->dump();
1653                 tty->print_cr("----------object referenced by init store-------");
1654                 store->dump();
1655                 val->dump();
1656                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1657               }
1658             }
1659 #endif
1660           } else {
1661             // There could be initializing stores which follow allocation.
1662             // For example, a volatile field store is not collected
1663             // by Initialize node.
1664             //
1665             // Need to check for dependent loads to separate such stores from
1666             // stores which follow loads. For now, add initial value NULL so
1667             // that compare pointers optimization works correctly.
1668           }
1669         }
1670         if (value == NULL) {
1671           // A field's initializing value was not recorded. Add NULL.
1672           if (add_edge(field, null_obj)) {
1673             // New edge was added
1674             new_edges++;
1675             add_field_uses_to_worklist(field->as_Field());
1676           }
1677         }
1678       }
1679     }
1680   }
1681   return new_edges;
1682 }
1683 
1684 // Adjust scalar_replaceable state after Connection Graph is built.
1685 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1686   // Search for non-escaping objects which are not scalar replaceable
1687   // and mark them to propagate the state to referenced objects.
1688 
1689   // 1. An object is not scalar replaceable if the field into which it is
1690   // stored has unknown offset (stored into unknown element of an array).
1691   //
1692   for (UseIterator i(jobj); i.has_next(); i.next()) {
1693     PointsToNode* use = i.get();
1694     if (use->is_Arraycopy()) {
1695       continue;
1696     }
1697     if (use->is_Field()) {
1698       FieldNode* field = use->as_Field();
1699       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1700       if (field->offset() == Type::OffsetBot) {
1701         jobj->set_scalar_replaceable(false);
1702         return;
1703       }
1704       // 2. An object is not scalar replaceable if the field into which it is
1705       // stored has multiple bases one of which is null.
1706       if (field->base_count() > 1) {
1707         for (BaseIterator i(field); i.has_next(); i.next()) {
1708           PointsToNode* base = i.get();
1709           if (base == null_obj) {
1710             jobj->set_scalar_replaceable(false);
1711             return;
1712           }
1713         }
1714       }
1715     }
1716     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1717     // 3. An object is not scalar replaceable if it is merged with other objects.
1718     for (EdgeIterator j(use); j.has_next(); j.next()) {
1719       PointsToNode* ptn = j.get();
1720       if (ptn->is_JavaObject() && ptn != jobj) {
1721         // Mark all objects.
1722         jobj->set_scalar_replaceable(false);
1723          ptn->set_scalar_replaceable(false);
1724       }
1725     }
1726     if (!jobj->scalar_replaceable()) {
1727       return;
1728     }
1729   }
1730 
1731   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1732     if (j.get()->is_Arraycopy()) {
1733       continue;
1734     }
1735 
1736     // Non-escaping object node should point only to field nodes.
1737     FieldNode* field = j.get()->as_Field();
1738     int offset = field->as_Field()->offset();
1739 
1740     // 4. An object is not scalar replaceable if it has a field with unknown
1741     // offset (array's element is accessed in loop).
1742     if (offset == Type::OffsetBot) {
1743       jobj->set_scalar_replaceable(false);
1744       return;
1745     }
1746     // 5. Currently an object is not scalar replaceable if a LoadStore node
1747     // access its field since the field value is unknown after it.
1748     //
1749     Node* n = field->ideal_node();
1750     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1751       Node* u = n->fast_out(i);
1752       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
1753         jobj->set_scalar_replaceable(false);
1754         return;
1755       }
1756     }
1757 
1758     // 6. Or the address may point to more then one object. This may produce
1759     // the false positive result (set not scalar replaceable)
1760     // since the flow-insensitive escape analysis can't separate
1761     // the case when stores overwrite the field's value from the case
1762     // when stores happened on different control branches.
1763     //
1764     // Note: it will disable scalar replacement in some cases:
1765     //
1766     //    Point p[] = new Point[1];
1767     //    p[0] = new Point(); // Will be not scalar replaced
1768     //
1769     // but it will save us from incorrect optimizations in next cases:
1770     //
1771     //    Point p[] = new Point[1];
1772     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1773     //
1774     if (field->base_count() > 1) {
1775       for (BaseIterator i(field); i.has_next(); i.next()) {
1776         PointsToNode* base = i.get();
1777         // Don't take into account LocalVar nodes which
1778         // may point to only one object which should be also
1779         // this field's base by now.
1780         if (base->is_JavaObject() && base != jobj) {
1781           // Mark all bases.
1782           jobj->set_scalar_replaceable(false);
1783           base->set_scalar_replaceable(false);
1784         }
1785       }
1786     }
1787   }
1788 }
1789 
1790 #ifdef ASSERT
1791 void ConnectionGraph::verify_connection_graph(
1792                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1793                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1794                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1795                          GrowableArray<Node*>& addp_worklist) {
1796   // Verify that graph is complete - no new edges could be added.
1797   int java_objects_length = java_objects_worklist.length();
1798   int non_escaped_length  = non_escaped_worklist.length();
1799   int new_edges = 0;
1800   for (int next = 0; next < java_objects_length; ++next) {
1801     JavaObjectNode* ptn = java_objects_worklist.at(next);
1802     new_edges += add_java_object_edges(ptn, true);
1803   }
1804   assert(new_edges == 0, "graph was not complete");
1805   // Verify that escape state is final.
1806   int length = non_escaped_worklist.length();
1807   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1808   assert((non_escaped_length == non_escaped_worklist.length()) &&
1809          (non_escaped_length == length) &&
1810          (_worklist.length() == 0), "escape state was not final");
1811 
1812   // Verify fields information.
1813   int addp_length = addp_worklist.length();
1814   for (int next = 0; next < addp_length; ++next ) {
1815     Node* n = addp_worklist.at(next);
1816     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1817     if (field->is_oop()) {
1818       // Verify that field has all bases
1819       Node* base = get_addp_base(n);
1820       PointsToNode* ptn = ptnode_adr(base->_idx);
1821       if (ptn->is_JavaObject()) {
1822         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1823       } else {
1824         assert(ptn->is_LocalVar(), "sanity");
1825         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1826           PointsToNode* e = i.get();
1827           if (e->is_JavaObject()) {
1828             assert(field->has_base(e->as_JavaObject()), "sanity");
1829           }
1830         }
1831       }
1832       // Verify that all fields have initializing values.
1833       if (field->edge_count() == 0) {
1834         tty->print_cr("----------field does not have references----------");
1835         field->dump();
1836         for (BaseIterator i(field); i.has_next(); i.next()) {
1837           PointsToNode* base = i.get();
1838           tty->print_cr("----------field has next base---------------------");
1839           base->dump();
1840           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1841             tty->print_cr("----------base has fields-------------------------");
1842             for (EdgeIterator j(base); j.has_next(); j.next()) {
1843               j.get()->dump();
1844             }
1845             tty->print_cr("----------base has references---------------------");
1846             for (UseIterator j(base); j.has_next(); j.next()) {
1847               j.get()->dump();
1848             }
1849           }
1850         }
1851         for (UseIterator i(field); i.has_next(); i.next()) {
1852           i.get()->dump();
1853         }
1854         assert(field->edge_count() > 0, "sanity");
1855       }
1856     }
1857   }
1858 }
1859 #endif
1860 
1861 // Optimize ideal graph.
1862 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1863                                            GrowableArray<Node*>& storestore_worklist) {
1864   Compile* C = _compile;
1865   PhaseIterGVN* igvn = _igvn;
1866   if (EliminateLocks) {
1867     // Mark locks before changing ideal graph.
1868     int cnt = C->macro_count();
1869     for( int i=0; i < cnt; i++ ) {
1870       Node *n = C->macro_node(i);
1871       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1872         AbstractLockNode* alock = n->as_AbstractLock();
1873         if (!alock->is_non_esc_obj()) {
1874           if (not_global_escape(alock->obj_node())) {
1875             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1876             // The lock could be marked eliminated by lock coarsening
1877             // code during first IGVN before EA. Replace coarsened flag
1878             // to eliminate all associated locks/unlocks.
1879 #ifdef ASSERT
1880             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1881 #endif
1882             alock->set_non_esc_obj();
1883           }
1884         }
1885       }
1886     }
1887   }
1888 
1889   if (OptimizePtrCompare) {
1890     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1891     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1892     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1893     // Optimize objects compare.
1894     while (ptr_cmp_worklist.length() != 0) {
1895       Node *n = ptr_cmp_worklist.pop();
1896       Node *res = optimize_ptr_compare(n);
1897       if (res != NULL) {
1898 #ifndef PRODUCT
1899         if (PrintOptimizePtrCompare) {
1900           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1901           if (Verbose) {
1902             n->dump(1);
1903           }
1904         }
1905 #endif
1906         igvn->replace_node(n, res);
1907       }
1908     }
1909     // cleanup
1910     if (_pcmp_neq->outcnt() == 0)
1911       igvn->hash_delete(_pcmp_neq);
1912     if (_pcmp_eq->outcnt()  == 0)
1913       igvn->hash_delete(_pcmp_eq);
1914   }
1915 
1916   // For MemBarStoreStore nodes added in library_call.cpp, check
1917   // escape status of associated AllocateNode and optimize out
1918   // MemBarStoreStore node if the allocated object never escapes.
1919   while (storestore_worklist.length() != 0) {
1920     Node *n = storestore_worklist.pop();
1921     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1922     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1923     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1924     if (not_global_escape(alloc)) {
1925       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1926       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1927       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1928       igvn->register_new_node_with_optimizer(mb);
1929       igvn->replace_node(storestore, mb);
1930     }
1931   }
1932 }
1933 
1934 // Optimize objects compare.
1935 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1936   assert(OptimizePtrCompare, "sanity");
1937   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1938   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1939   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1940   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1941   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1942   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1943 
1944   // Check simple cases first.
1945   if (jobj1 != NULL) {
1946     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1947       if (jobj1 == jobj2) {
1948         // Comparing the same not escaping object.
1949         return _pcmp_eq;
1950       }
1951       Node* obj = jobj1->ideal_node();
1952       // Comparing not escaping allocation.
1953       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1954           !ptn2->points_to(jobj1)) {
1955         return _pcmp_neq; // This includes nullness check.
1956       }
1957     }
1958   }
1959   if (jobj2 != NULL) {
1960     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1961       Node* obj = jobj2->ideal_node();
1962       // Comparing not escaping allocation.
1963       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1964           !ptn1->points_to(jobj2)) {
1965         return _pcmp_neq; // This includes nullness check.
1966       }
1967     }
1968   }
1969   if (jobj1 != NULL && jobj1 != phantom_obj &&
1970       jobj2 != NULL && jobj2 != phantom_obj &&
1971       jobj1->ideal_node()->is_Con() &&
1972       jobj2->ideal_node()->is_Con()) {
1973     // Klass or String constants compare. Need to be careful with
1974     // compressed pointers - compare types of ConN and ConP instead of nodes.
1975     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1976     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1977     if (t1->make_ptr() == t2->make_ptr()) {
1978       return _pcmp_eq;
1979     } else {
1980       return _pcmp_neq;
1981     }
1982   }
1983   if (ptn1->meet(ptn2)) {
1984     return NULL; // Sets are not disjoint
1985   }
1986 
1987   // Sets are disjoint.
1988   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1989   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1990   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1991   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1992   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1993       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1994     // Check nullness of unknown object.
1995     return NULL;
1996   }
1997 
1998   // Disjointness by itself is not sufficient since
1999   // alias analysis is not complete for escaped objects.
2000   // Disjoint sets are definitely unrelated only when
2001   // at least one set has only not escaping allocations.
2002   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
2003     if (ptn1->non_escaping_allocation()) {
2004       return _pcmp_neq;
2005     }
2006   }
2007   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2008     if (ptn2->non_escaping_allocation()) {
2009       return _pcmp_neq;
2010     }
2011   }
2012   return NULL;
2013 }
2014 
2015 // Connection Graph constuction functions.
2016 
2017 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2018   PointsToNode* ptadr = _nodes.at(n->_idx);
2019   if (ptadr != NULL) {
2020     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2021     return;
2022   }
2023   Compile* C = _compile;
2024   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2025   _nodes.at_put(n->_idx, ptadr);
2026 }
2027 
2028 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2029   PointsToNode* ptadr = _nodes.at(n->_idx);
2030   if (ptadr != NULL) {
2031     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2032     return;
2033   }
2034   Compile* C = _compile;
2035   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2036   _nodes.at_put(n->_idx, ptadr);
2037 }
2038 
2039 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2040   PointsToNode* ptadr = _nodes.at(n->_idx);
2041   if (ptadr != NULL) {
2042     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2043     return;
2044   }
2045   bool unsafe = false;
2046   bool is_oop = is_oop_field(n, offset, &unsafe);
2047   if (unsafe) {
2048     es = PointsToNode::GlobalEscape;
2049   }
2050   Compile* C = _compile;
2051   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2052   _nodes.at_put(n->_idx, field);
2053 }
2054 
2055 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2056                                     PointsToNode* src, PointsToNode* dst) {
2057   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2058   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2059   PointsToNode* ptadr = _nodes.at(n->_idx);
2060   if (ptadr != NULL) {
2061     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2062     return;
2063   }
2064   Compile* C = _compile;
2065   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2066   _nodes.at_put(n->_idx, ptadr);
2067   // Add edge from arraycopy node to source object.
2068   (void)add_edge(ptadr, src);
2069   src->set_arraycopy_src();
2070   // Add edge from destination object to arraycopy node.
2071   (void)add_edge(dst, ptadr);
2072   dst->set_arraycopy_dst();
2073 }
2074 
2075 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2076   const Type* adr_type = n->as_AddP()->bottom_type();
2077   int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot;
2078   BasicType bt = T_INT;
2079   if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) {
2080     // Check only oop fields.
2081     if (!adr_type->isa_aryptr() ||
2082         (adr_type->isa_aryptr()->klass() == NULL) ||
2083          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2084       // OffsetBot is used to reference array's element. Ignore first AddP.
2085       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2086         bt = T_OBJECT;
2087       }
2088     }
2089   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2090     if (adr_type->isa_instptr()) {
2091       ciField* field = _compile->alias_type(adr_type->is_ptr())->field();
2092       if (field != NULL) {
2093         bt = field->layout_type();
2094       } else {
2095         // Check for unsafe oop field access
2096         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2097             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2098             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2099             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2100           bt = T_OBJECT;
2101           (*unsafe) = true;
2102         }
2103       }
2104     } else if (adr_type->isa_aryptr()) {
2105       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2106         // Ignore array length load.
2107       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2108         // Ignore first AddP.
2109       } else {
2110         const Type* elemtype = adr_type->isa_aryptr()->elem();
2111         if (elemtype->isa_valuetype() && field_offset != Type::OffsetBot) {
2112           ciValueKlass* vk = elemtype->is_valuetype()->value_klass();
2113           field_offset += vk->first_field_offset();
2114           bt = vk->get_field_by_offset(field_offset, false)->layout_type();
2115         } else {
2116           bt = elemtype->array_element_basic_type();
2117         }
2118       }
2119     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2120       // Allocation initialization, ThreadLocal field access, unsafe access
2121       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2122           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2123           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2124           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2125         bt = T_OBJECT;
2126       }
2127     }
2128   }
2129   return (bt == T_OBJECT || bt == T_VALUETYPE || bt == T_NARROWOOP || bt == T_ARRAY);
2130 }
2131 
2132 // Returns unique pointed java object or NULL.
2133 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2134   assert(!_collecting, "should not call when constructed graph");
2135   // If the node was created after the escape computation we can't answer.
2136   uint idx = n->_idx;
2137   if (idx >= nodes_size()) {
2138     return NULL;
2139   }
2140   PointsToNode* ptn = ptnode_adr(idx);
2141   if (ptn->is_JavaObject()) {
2142     return ptn->as_JavaObject();
2143   }
2144   assert(ptn->is_LocalVar(), "sanity");
2145   // Check all java objects it points to.
2146   JavaObjectNode* jobj = NULL;
2147   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2148     PointsToNode* e = i.get();
2149     if (e->is_JavaObject()) {
2150       if (jobj == NULL) {
2151         jobj = e->as_JavaObject();
2152       } else if (jobj != e) {
2153         return NULL;
2154       }
2155     }
2156   }
2157   return jobj;
2158 }
2159 
2160 // Return true if this node points only to non-escaping allocations.
2161 bool PointsToNode::non_escaping_allocation() {
2162   if (is_JavaObject()) {
2163     Node* n = ideal_node();
2164     if (n->is_Allocate() || n->is_CallStaticJava()) {
2165       return (escape_state() == PointsToNode::NoEscape);
2166     } else {
2167       return false;
2168     }
2169   }
2170   assert(is_LocalVar(), "sanity");
2171   // Check all java objects it points to.
2172   for (EdgeIterator i(this); i.has_next(); i.next()) {
2173     PointsToNode* e = i.get();
2174     if (e->is_JavaObject()) {
2175       Node* n = e->ideal_node();
2176       if ((e->escape_state() != PointsToNode::NoEscape) ||
2177           !(n->is_Allocate() || n->is_CallStaticJava())) {
2178         return false;
2179       }
2180     }
2181   }
2182   return true;
2183 }
2184 
2185 // Return true if we know the node does not escape globally.
2186 bool ConnectionGraph::not_global_escape(Node *n) {
2187   assert(!_collecting, "should not call during graph construction");
2188   // If the node was created after the escape computation we can't answer.
2189   uint idx = n->_idx;
2190   if (idx >= nodes_size()) {
2191     return false;
2192   }
2193   PointsToNode* ptn = ptnode_adr(idx);
2194   PointsToNode::EscapeState es = ptn->escape_state();
2195   // If we have already computed a value, return it.
2196   if (es >= PointsToNode::GlobalEscape)
2197     return false;
2198   if (ptn->is_JavaObject()) {
2199     return true; // (es < PointsToNode::GlobalEscape);
2200   }
2201   assert(ptn->is_LocalVar(), "sanity");
2202   // Check all java objects it points to.
2203   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2204     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2205       return false;
2206   }
2207   return true;
2208 }
2209 
2210 
2211 // Helper functions
2212 
2213 // Return true if this node points to specified node or nodes it points to.
2214 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2215   if (is_JavaObject()) {
2216     return (this == ptn);
2217   }
2218   assert(is_LocalVar() || is_Field(), "sanity");
2219   for (EdgeIterator i(this); i.has_next(); i.next()) {
2220     if (i.get() == ptn)
2221       return true;
2222   }
2223   return false;
2224 }
2225 
2226 // Return true if one node points to an other.
2227 bool PointsToNode::meet(PointsToNode* ptn) {
2228   if (this == ptn) {
2229     return true;
2230   } else if (ptn->is_JavaObject()) {
2231     return this->points_to(ptn->as_JavaObject());
2232   } else if (this->is_JavaObject()) {
2233     return ptn->points_to(this->as_JavaObject());
2234   }
2235   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2236   int ptn_count =  ptn->edge_count();
2237   for (EdgeIterator i(this); i.has_next(); i.next()) {
2238     PointsToNode* this_e = i.get();
2239     for (int j = 0; j < ptn_count; j++) {
2240       if (this_e == ptn->edge(j))
2241         return true;
2242     }
2243   }
2244   return false;
2245 }
2246 
2247 #ifdef ASSERT
2248 // Return true if bases point to this java object.
2249 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2250   for (BaseIterator i(this); i.has_next(); i.next()) {
2251     if (i.get() == jobj)
2252       return true;
2253   }
2254   return false;
2255 }
2256 #endif
2257 
2258 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2259   const Type *adr_type = phase->type(adr);
2260   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2261       adr->in(AddPNode::Address)->is_Proj() &&
2262       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2263     // We are computing a raw address for a store captured by an Initialize
2264     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2265     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2266     assert(offs != Type::OffsetBot ||
2267            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2268            "offset must be a constant or it is initialization of array");
2269     return offs;
2270   }
2271   return adr_type->is_ptr()->flattened_offset();
2272 }
2273 
2274 Node* ConnectionGraph::get_addp_base(Node *addp) {
2275   assert(addp->is_AddP(), "must be AddP");
2276   //
2277   // AddP cases for Base and Address inputs:
2278   // case #1. Direct object's field reference:
2279   //     Allocate
2280   //       |
2281   //     Proj #5 ( oop result )
2282   //       |
2283   //     CheckCastPP (cast to instance type)
2284   //      | |
2285   //     AddP  ( base == address )
2286   //
2287   // case #2. Indirect object's field reference:
2288   //      Phi
2289   //       |
2290   //     CastPP (cast to instance type)
2291   //      | |
2292   //     AddP  ( base == address )
2293   //
2294   // case #3. Raw object's field reference for Initialize node:
2295   //      Allocate
2296   //        |
2297   //      Proj #5 ( oop result )
2298   //  top   |
2299   //     \  |
2300   //     AddP  ( base == top )
2301   //
2302   // case #4. Array's element reference:
2303   //   {CheckCastPP | CastPP}
2304   //     |  | |
2305   //     |  AddP ( array's element offset )
2306   //     |  |
2307   //     AddP ( array's offset )
2308   //
2309   // case #5. Raw object's field reference for arraycopy stub call:
2310   //          The inline_native_clone() case when the arraycopy stub is called
2311   //          after the allocation before Initialize and CheckCastPP nodes.
2312   //      Allocate
2313   //        |
2314   //      Proj #5 ( oop result )
2315   //       | |
2316   //       AddP  ( base == address )
2317   //
2318   // case #6. Constant Pool, ThreadLocal, CastX2P or
2319   //          Raw object's field reference:
2320   //      {ConP, ThreadLocal, CastX2P, raw Load}
2321   //  top   |
2322   //     \  |
2323   //     AddP  ( base == top )
2324   //
2325   // case #7. Klass's field reference.
2326   //      LoadKlass
2327   //       | |
2328   //       AddP  ( base == address )
2329   //
2330   // case #8. narrow Klass's field reference.
2331   //      LoadNKlass
2332   //       |
2333   //      DecodeN
2334   //       | |
2335   //       AddP  ( base == address )
2336   //
2337   // case #9. Mixed unsafe access
2338   //    {instance}
2339   //        |
2340   //      CheckCastPP (raw)
2341   //  top   |
2342   //     \  |
2343   //     AddP  ( base == top )
2344   //
2345   Node *base = addp->in(AddPNode::Base);
2346   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2347     base = addp->in(AddPNode::Address);
2348     while (base->is_AddP()) {
2349       // Case #6 (unsafe access) may have several chained AddP nodes.
2350       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2351       base = base->in(AddPNode::Address);
2352     }
2353     if (base->Opcode() == Op_CheckCastPP &&
2354         base->bottom_type()->isa_rawptr() &&
2355         _igvn->type(base->in(1))->isa_oopptr()) {
2356       base = base->in(1); // Case #9
2357     } else {
2358       Node* uncast_base = base->uncast();
2359       int opcode = uncast_base->Opcode();
2360       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2361              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2362              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2363              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()) ||
2364              BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(uncast_base), "sanity");
2365     }
2366   }
2367   return base;
2368 }
2369 
2370 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2371   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2372   Node* addp2 = addp->raw_out(0);
2373   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2374       addp2->in(AddPNode::Base) == n &&
2375       addp2->in(AddPNode::Address) == addp) {
2376     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2377     //
2378     // Find array's offset to push it on worklist first and
2379     // as result process an array's element offset first (pushed second)
2380     // to avoid CastPP for the array's offset.
2381     // Otherwise the inserted CastPP (LocalVar) will point to what
2382     // the AddP (Field) points to. Which would be wrong since
2383     // the algorithm expects the CastPP has the same point as
2384     // as AddP's base CheckCastPP (LocalVar).
2385     //
2386     //    ArrayAllocation
2387     //     |
2388     //    CheckCastPP
2389     //     |
2390     //    memProj (from ArrayAllocation CheckCastPP)
2391     //     |  ||
2392     //     |  ||   Int (element index)
2393     //     |  ||    |   ConI (log(element size))
2394     //     |  ||    |   /
2395     //     |  ||   LShift
2396     //     |  ||  /
2397     //     |  AddP (array's element offset)
2398     //     |  |
2399     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2400     //     | / /
2401     //     AddP (array's offset)
2402     //      |
2403     //     Load/Store (memory operation on array's element)
2404     //
2405     return addp2;
2406   }
2407   return NULL;
2408 }
2409 
2410 //
2411 // Adjust the type and inputs of an AddP which computes the
2412 // address of a field of an instance
2413 //
2414 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2415   PhaseGVN* igvn = _igvn;
2416   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2417   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2418   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2419   if (t == NULL) {
2420     // We are computing a raw address for a store captured by an Initialize
2421     // compute an appropriate address type (cases #3 and #5).
2422     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2423     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2424     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2425     assert(offs != Type::OffsetBot, "offset must be a constant");
2426     if (base_t->isa_aryptr() != NULL) {
2427       // In the case of a flattened value type array, each field has its
2428       // own slice so we need to extract the field being accessed from
2429       // the address computation
2430       t = base_t->isa_aryptr()->add_field_offset_and_offset(offs)->is_oopptr();
2431     } else {
2432       t = base_t->add_offset(offs)->is_oopptr();
2433     }
2434   }
2435   int inst_id = base_t->instance_id();
2436   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2437                              "old type must be non-instance or match new type");
2438 
2439   // The type 't' could be subclass of 'base_t'.
2440   // As result t->offset() could be large then base_t's size and it will
2441   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2442   // constructor verifies correctness of the offset.
2443   //
2444   // It could happened on subclass's branch (from the type profiling
2445   // inlining) which was not eliminated during parsing since the exactness
2446   // of the allocation type was not propagated to the subclass type check.
2447   //
2448   // Or the type 't' could be not related to 'base_t' at all.
2449   // It could happen when CHA type is different from MDO type on a dead path
2450   // (for example, from instanceof check) which is not collapsed during parsing.
2451   //
2452   // Do nothing for such AddP node and don't process its users since
2453   // this code branch will go away.
2454   //
2455   if (!t->is_known_instance() &&
2456       !base_t->klass()->is_subtype_of(t->klass())) {
2457      return false; // bail out
2458   }
2459   const TypePtr* tinst = base_t->add_offset(t->offset());
2460   if (tinst->isa_aryptr() && t->isa_aryptr()) {
2461     // In the case of a flattened value type array, each field has its
2462     // own slice so we need to keep track of the field being accessed.
2463     tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get());
2464   }
2465 
2466   // Do NOT remove the next line: ensure a new alias index is allocated
2467   // for the instance type. Note: C++ will not remove it since the call
2468   // has side effect.
2469   int alias_idx = _compile->get_alias_index(tinst);
2470   igvn->set_type(addp, tinst);
2471   // record the allocation in the node map
2472   set_map(addp, get_map(base->_idx));
2473   // Set addp's Base and Address to 'base'.
2474   Node *abase = addp->in(AddPNode::Base);
2475   Node *adr   = addp->in(AddPNode::Address);
2476   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2477       adr->in(0)->_idx == (uint)inst_id) {
2478     // Skip AddP cases #3 and #5.
2479   } else {
2480     assert(!abase->is_top(), "sanity"); // AddP case #3
2481     if (abase != base) {
2482       igvn->hash_delete(addp);
2483       addp->set_req(AddPNode::Base, base);
2484       if (abase == adr) {
2485         addp->set_req(AddPNode::Address, base);
2486       } else {
2487         // AddP case #4 (adr is array's element offset AddP node)
2488 #ifdef ASSERT
2489         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2490         assert(adr->is_AddP() && atype != NULL &&
2491                atype->instance_id() == inst_id, "array's element offset should be processed first");
2492 #endif
2493       }
2494       igvn->hash_insert(addp);
2495     }
2496   }
2497   // Put on IGVN worklist since at least addp's type was changed above.
2498   record_for_optimizer(addp);
2499   return true;
2500 }
2501 
2502 //
2503 // Create a new version of orig_phi if necessary. Returns either the newly
2504 // created phi or an existing phi.  Sets create_new to indicate whether a new
2505 // phi was created.  Cache the last newly created phi in the node map.
2506 //
2507 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2508   Compile *C = _compile;
2509   PhaseGVN* igvn = _igvn;
2510   new_created = false;
2511   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2512   // nothing to do if orig_phi is bottom memory or matches alias_idx
2513   if (phi_alias_idx == alias_idx) {
2514     return orig_phi;
2515   }
2516   // Have we recently created a Phi for this alias index?
2517   PhiNode *result = get_map_phi(orig_phi->_idx);
2518   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2519     return result;
2520   }
2521   // Previous check may fail when the same wide memory Phi was split into Phis
2522   // for different memory slices. Search all Phis for this region.
2523   if (result != NULL) {
2524     Node* region = orig_phi->in(0);
2525     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2526       Node* phi = region->fast_out(i);
2527       if (phi->is_Phi() &&
2528           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2529         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2530         return phi->as_Phi();
2531       }
2532     }
2533   }
2534   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2535     if (C->do_escape_analysis() == true && !C->failing()) {
2536       // Retry compilation without escape analysis.
2537       // If this is the first failure, the sentinel string will "stick"
2538       // to the Compile object, and the C2Compiler will see it and retry.
2539       C->record_failure(C2Compiler::retry_no_escape_analysis());
2540     }
2541     return NULL;
2542   }
2543   orig_phi_worklist.append_if_missing(orig_phi);
2544   const TypePtr *atype = C->get_adr_type(alias_idx);
2545   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2546   C->copy_node_notes_to(result, orig_phi);
2547   igvn->set_type(result, result->bottom_type());
2548   record_for_optimizer(result);
2549   set_map(orig_phi, result);
2550   new_created = true;
2551   return result;
2552 }
2553 
2554 //
2555 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2556 // specified alias index.
2557 //
2558 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2559   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2560   Compile *C = _compile;
2561   PhaseGVN* igvn = _igvn;
2562   bool new_phi_created;
2563   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2564   if (!new_phi_created) {
2565     return result;
2566   }
2567   GrowableArray<PhiNode *>  phi_list;
2568   GrowableArray<uint>  cur_input;
2569   PhiNode *phi = orig_phi;
2570   uint idx = 1;
2571   bool finished = false;
2572   while(!finished) {
2573     while (idx < phi->req()) {
2574       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2575       if (mem != NULL && mem->is_Phi()) {
2576         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2577         if (new_phi_created) {
2578           // found an phi for which we created a new split, push current one on worklist and begin
2579           // processing new one
2580           phi_list.push(phi);
2581           cur_input.push(idx);
2582           phi = mem->as_Phi();
2583           result = newphi;
2584           idx = 1;
2585           continue;
2586         } else {
2587           mem = newphi;
2588         }
2589       }
2590       if (C->failing()) {
2591         return NULL;
2592       }
2593       result->set_req(idx++, mem);
2594     }
2595 #ifdef ASSERT
2596     // verify that the new Phi has an input for each input of the original
2597     assert( phi->req() == result->req(), "must have same number of inputs.");
2598     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2599 #endif
2600     // Check if all new phi's inputs have specified alias index.
2601     // Otherwise use old phi.
2602     for (uint i = 1; i < phi->req(); i++) {
2603       Node* in = result->in(i);
2604       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2605     }
2606     // we have finished processing a Phi, see if there are any more to do
2607     finished = (phi_list.length() == 0 );
2608     if (!finished) {
2609       phi = phi_list.pop();
2610       idx = cur_input.pop();
2611       PhiNode *prev_result = get_map_phi(phi->_idx);
2612       prev_result->set_req(idx++, result);
2613       result = prev_result;
2614     }
2615   }
2616   return result;
2617 }
2618 
2619 //
2620 // The next methods are derived from methods in MemNode.
2621 //
2622 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2623   Node *mem = mmem;
2624   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2625   // means an array I have not precisely typed yet.  Do not do any
2626   // alias stuff with it any time soon.
2627   if (toop->base() != Type::AnyPtr &&
2628       !(toop->klass() != NULL &&
2629         toop->klass()->is_java_lang_Object() &&
2630         toop->offset() == Type::OffsetBot)) {
2631     mem = mmem->memory_at(alias_idx);
2632     // Update input if it is progress over what we have now
2633   }
2634   return mem;
2635 }
2636 
2637 //
2638 // Move memory users to their memory slices.
2639 //
2640 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2641   Compile* C = _compile;
2642   PhaseGVN* igvn = _igvn;
2643   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2644   assert(tp != NULL, "ptr type");
2645   int alias_idx = C->get_alias_index(tp);
2646   int general_idx = C->get_general_index(alias_idx);
2647 
2648   // Move users first
2649   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2650     Node* use = n->fast_out(i);
2651     if (use->is_MergeMem()) {
2652       MergeMemNode* mmem = use->as_MergeMem();
2653       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2654       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2655         continue; // Nothing to do
2656       }
2657       // Replace previous general reference to mem node.
2658       uint orig_uniq = C->unique();
2659       Node* m = find_inst_mem(n, general_idx, orig_phis);
2660       assert(orig_uniq == C->unique(), "no new nodes");
2661       mmem->set_memory_at(general_idx, m);
2662       --imax;
2663       --i;
2664     } else if (use->is_MemBar()) {
2665       assert(!use->is_Initialize(), "initializing stores should not be moved");
2666       if (use->req() > MemBarNode::Precedent &&
2667           use->in(MemBarNode::Precedent) == n) {
2668         // Don't move related membars.
2669         record_for_optimizer(use);
2670         continue;
2671       }
2672       tp = use->as_MemBar()->adr_type()->isa_ptr();
2673       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2674           alias_idx == general_idx) {
2675         continue; // Nothing to do
2676       }
2677       // Move to general memory slice.
2678       uint orig_uniq = C->unique();
2679       Node* m = find_inst_mem(n, general_idx, orig_phis);
2680       assert(orig_uniq == C->unique(), "no new nodes");
2681       igvn->hash_delete(use);
2682       imax -= use->replace_edge(n, m);
2683       igvn->hash_insert(use);
2684       record_for_optimizer(use);
2685       --i;
2686 #ifdef ASSERT
2687     } else if (use->is_Mem()) {
2688       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2689         // Don't move related cardmark.
2690         continue;
2691       }
2692       // Memory nodes should have new memory input.
2693       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2694       assert(tp != NULL, "ptr type");
2695       int idx = C->get_alias_index(tp);
2696       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2697              "Following memory nodes should have new memory input or be on the same memory slice");
2698     } else if (use->is_Phi()) {
2699       // Phi nodes should be split and moved already.
2700       tp = use->as_Phi()->adr_type()->isa_ptr();
2701       assert(tp != NULL, "ptr type");
2702       int idx = C->get_alias_index(tp);
2703       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2704     } else {
2705       use->dump();
2706       assert(false, "should not be here");
2707 #endif
2708     }
2709   }
2710 }
2711 
2712 //
2713 // Search memory chain of "mem" to find a MemNode whose address
2714 // is the specified alias index.
2715 //
2716 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2717   if (orig_mem == NULL)
2718     return orig_mem;
2719   Compile* C = _compile;
2720   PhaseGVN* igvn = _igvn;
2721   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2722   bool is_instance = (toop != NULL) && toop->is_known_instance();
2723   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2724   Node *prev = NULL;
2725   Node *result = orig_mem;
2726   while (prev != result) {
2727     prev = result;
2728     if (result == start_mem)
2729       break;  // hit one of our sentinels
2730     if (result->is_Mem()) {
2731       const Type *at = igvn->type(result->in(MemNode::Address));
2732       if (at == Type::TOP)
2733         break; // Dead
2734       assert (at->isa_ptr() != NULL, "pointer type required.");
2735       int idx = C->get_alias_index(at->is_ptr());
2736       if (idx == alias_idx)
2737         break; // Found
2738       if (!is_instance && (at->isa_oopptr() == NULL ||
2739                            !at->is_oopptr()->is_known_instance())) {
2740         break; // Do not skip store to general memory slice.
2741       }
2742       result = result->in(MemNode::Memory);
2743     }
2744     if (!is_instance)
2745       continue;  // don't search further for non-instance types
2746     // skip over a call which does not affect this memory slice
2747     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2748       Node *proj_in = result->in(0);
2749       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2750         break;  // hit one of our sentinels
2751       } else if (proj_in->is_Call()) {
2752         // ArrayCopy node processed here as well
2753         CallNode *call = proj_in->as_Call();
2754         if (!call->may_modify(toop, igvn)) {
2755           result = call->in(TypeFunc::Memory);
2756         }
2757       } else if (proj_in->is_Initialize()) {
2758         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2759         // Stop if this is the initialization for the object instance which
2760         // which contains this memory slice, otherwise skip over it.
2761         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2762           result = proj_in->in(TypeFunc::Memory);
2763         }
2764       } else if (proj_in->is_MemBar()) {
2765         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2766             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2767             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2768           // clone
2769           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2770           if (ac->may_modify(toop, igvn)) {
2771             break;
2772           }
2773         }
2774         result = proj_in->in(TypeFunc::Memory);
2775       }
2776     } else if (result->is_MergeMem()) {
2777       MergeMemNode *mmem = result->as_MergeMem();
2778       result = step_through_mergemem(mmem, alias_idx, toop);
2779       if (result == mmem->base_memory()) {
2780         // Didn't find instance memory, search through general slice recursively.
2781         result = mmem->memory_at(C->get_general_index(alias_idx));
2782         result = find_inst_mem(result, alias_idx, orig_phis);
2783         if (C->failing()) {
2784           return NULL;
2785         }
2786         mmem->set_memory_at(alias_idx, result);
2787       }
2788     } else if (result->is_Phi() &&
2789                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2790       Node *un = result->as_Phi()->unique_input(igvn);
2791       if (un != NULL) {
2792         orig_phis.append_if_missing(result->as_Phi());
2793         result = un;
2794       } else {
2795         break;
2796       }
2797     } else if (result->is_ClearArray()) {
2798       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2799         // Can not bypass initialization of the instance
2800         // we are looking for.
2801         break;
2802       }
2803       // Otherwise skip it (the call updated 'result' value).
2804     } else if (result->Opcode() == Op_SCMemProj) {
2805       Node* mem = result->in(0);
2806       Node* adr = NULL;
2807       if (mem->is_LoadStore()) {
2808         adr = mem->in(MemNode::Address);
2809       } else {
2810         assert(mem->Opcode() == Op_EncodeISOArray ||
2811                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2812         adr = mem->in(3); // Memory edge corresponds to destination array
2813       }
2814       const Type *at = igvn->type(adr);
2815       if (at != Type::TOP) {
2816         assert(at->isa_ptr() != NULL, "pointer type required.");
2817         int idx = C->get_alias_index(at->is_ptr());
2818         if (idx == alias_idx) {
2819           // Assert in debug mode
2820           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2821           break; // In product mode return SCMemProj node
2822         }
2823       }
2824       result = mem->in(MemNode::Memory);
2825     } else if (result->Opcode() == Op_StrInflatedCopy) {
2826       Node* adr = result->in(3); // Memory edge corresponds to destination array
2827       const Type *at = igvn->type(adr);
2828       if (at != Type::TOP) {
2829         assert(at->isa_ptr() != NULL, "pointer type required.");
2830         int idx = C->get_alias_index(at->is_ptr());
2831         if (idx == alias_idx) {
2832           // Assert in debug mode
2833           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2834           break; // In product mode return SCMemProj node
2835         }
2836       }
2837       result = result->in(MemNode::Memory);
2838     }
2839   }
2840   if (result->is_Phi()) {
2841     PhiNode *mphi = result->as_Phi();
2842     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2843     const TypePtr *t = mphi->adr_type();
2844     if (!is_instance) {
2845       // Push all non-instance Phis on the orig_phis worklist to update inputs
2846       // during Phase 4 if needed.
2847       orig_phis.append_if_missing(mphi);
2848     } else if (C->get_alias_index(t) != alias_idx) {
2849       // Create a new Phi with the specified alias index type.
2850       result = split_memory_phi(mphi, alias_idx, orig_phis);
2851     }
2852   }
2853   // the result is either MemNode, PhiNode, InitializeNode.
2854   return result;
2855 }
2856 
2857 //
2858 //  Convert the types of unescaped object to instance types where possible,
2859 //  propagate the new type information through the graph, and update memory
2860 //  edges and MergeMem inputs to reflect the new type.
2861 //
2862 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2863 //  The processing is done in 4 phases:
2864 //
2865 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2866 //            types for the CheckCastPP for allocations where possible.
2867 //            Propagate the new types through users as follows:
2868 //               casts and Phi:  push users on alloc_worklist
2869 //               AddP:  cast Base and Address inputs to the instance type
2870 //                      push any AddP users on alloc_worklist and push any memnode
2871 //                      users onto memnode_worklist.
2872 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2873 //            search the Memory chain for a store with the appropriate type
2874 //            address type.  If a Phi is found, create a new version with
2875 //            the appropriate memory slices from each of the Phi inputs.
2876 //            For stores, process the users as follows:
2877 //               MemNode:  push on memnode_worklist
2878 //               MergeMem: push on mergemem_worklist
2879 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2880 //            moving the first node encountered of each  instance type to the
2881 //            the input corresponding to its alias index.
2882 //            appropriate memory slice.
2883 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2884 //
2885 // In the following example, the CheckCastPP nodes are the cast of allocation
2886 // results and the allocation of node 29 is unescaped and eligible to be an
2887 // instance type.
2888 //
2889 // We start with:
2890 //
2891 //     7 Parm #memory
2892 //    10  ConI  "12"
2893 //    19  CheckCastPP   "Foo"
2894 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2895 //    29  CheckCastPP   "Foo"
2896 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2897 //
2898 //    40  StoreP  25   7  20   ... alias_index=4
2899 //    50  StoreP  35  40  30   ... alias_index=4
2900 //    60  StoreP  45  50  20   ... alias_index=4
2901 //    70  LoadP    _  60  30   ... alias_index=4
2902 //    80  Phi     75  50  60   Memory alias_index=4
2903 //    90  LoadP    _  80  30   ... alias_index=4
2904 //   100  LoadP    _  80  20   ... alias_index=4
2905 //
2906 //
2907 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2908 // and creating a new alias index for node 30.  This gives:
2909 //
2910 //     7 Parm #memory
2911 //    10  ConI  "12"
2912 //    19  CheckCastPP   "Foo"
2913 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2914 //    29  CheckCastPP   "Foo"  iid=24
2915 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2916 //
2917 //    40  StoreP  25   7  20   ... alias_index=4
2918 //    50  StoreP  35  40  30   ... alias_index=6
2919 //    60  StoreP  45  50  20   ... alias_index=4
2920 //    70  LoadP    _  60  30   ... alias_index=6
2921 //    80  Phi     75  50  60   Memory alias_index=4
2922 //    90  LoadP    _  80  30   ... alias_index=6
2923 //   100  LoadP    _  80  20   ... alias_index=4
2924 //
2925 // In phase 2, new memory inputs are computed for the loads and stores,
2926 // And a new version of the phi is created.  In phase 4, the inputs to
2927 // node 80 are updated and then the memory nodes are updated with the
2928 // values computed in phase 2.  This results in:
2929 //
2930 //     7 Parm #memory
2931 //    10  ConI  "12"
2932 //    19  CheckCastPP   "Foo"
2933 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2934 //    29  CheckCastPP   "Foo"  iid=24
2935 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2936 //
2937 //    40  StoreP  25  7   20   ... alias_index=4
2938 //    50  StoreP  35  7   30   ... alias_index=6
2939 //    60  StoreP  45  40  20   ... alias_index=4
2940 //    70  LoadP    _  50  30   ... alias_index=6
2941 //    80  Phi     75  40  60   Memory alias_index=4
2942 //   120  Phi     75  50  50   Memory alias_index=6
2943 //    90  LoadP    _ 120  30   ... alias_index=6
2944 //   100  LoadP    _  80  20   ... alias_index=4
2945 //
2946 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2947   GrowableArray<Node *>  memnode_worklist;
2948   GrowableArray<PhiNode *>  orig_phis;
2949   PhaseIterGVN  *igvn = _igvn;
2950   uint new_index_start = (uint) _compile->num_alias_types();
2951   Arena* arena = Thread::current()->resource_area();
2952   VectorSet visited(arena);
2953   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2954   uint unique_old = _compile->unique();
2955 
2956   //  Phase 1:  Process possible allocations from alloc_worklist.
2957   //  Create instance types for the CheckCastPP for allocations where possible.
2958   //
2959   // (Note: don't forget to change the order of the second AddP node on
2960   //  the alloc_worklist if the order of the worklist processing is changed,
2961   //  see the comment in find_second_addp().)
2962   //
2963   while (alloc_worklist.length() != 0) {
2964     Node *n = alloc_worklist.pop();
2965     uint ni = n->_idx;
2966     if (n->is_Call()) {
2967       CallNode *alloc = n->as_Call();
2968       // copy escape information to call node
2969       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2970       PointsToNode::EscapeState es = ptn->escape_state();
2971       // We have an allocation or call which returns a Java object,
2972       // see if it is unescaped.
2973       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2974         continue;
2975       // Find CheckCastPP for the allocate or for the return value of a call
2976       n = alloc->result_cast();
2977       if (n == NULL) {            // No uses except Initialize node
2978         if (alloc->is_Allocate()) {
2979           // Set the scalar_replaceable flag for allocation
2980           // so it could be eliminated if it has no uses.
2981           alloc->as_Allocate()->_is_scalar_replaceable = true;
2982         }
2983         if (alloc->is_CallStaticJava()) {
2984           // Set the scalar_replaceable flag for boxing method
2985           // so it could be eliminated if it has no uses.
2986           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2987         }
2988         continue;
2989       }
2990       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2991         assert(!alloc->is_Allocate(), "allocation should have unique type");
2992         continue;
2993       }
2994 
2995       // The inline code for Object.clone() casts the allocation result to
2996       // java.lang.Object and then to the actual type of the allocated
2997       // object. Detect this case and use the second cast.
2998       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2999       // the allocation result is cast to java.lang.Object and then
3000       // to the actual Array type.
3001       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
3002           && (alloc->is_AllocateArray() ||
3003               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
3004         Node *cast2 = NULL;
3005         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3006           Node *use = n->fast_out(i);
3007           if (use->is_CheckCastPP()) {
3008             cast2 = use;
3009             break;
3010           }
3011         }
3012         if (cast2 != NULL) {
3013           n = cast2;
3014         } else {
3015           // Non-scalar replaceable if the allocation type is unknown statically
3016           // (reflection allocation), the object can't be restored during
3017           // deoptimization without precise type.
3018           continue;
3019         }
3020       }
3021 
3022       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
3023       if (t == NULL)
3024         continue;  // not a TypeOopPtr
3025       if (!t->klass_is_exact())
3026         continue; // not an unique type
3027 
3028       if (alloc->is_Allocate()) {
3029         // Set the scalar_replaceable flag for allocation
3030         // so it could be eliminated.
3031         alloc->as_Allocate()->_is_scalar_replaceable = true;
3032       }
3033       if (alloc->is_CallStaticJava()) {
3034         // Set the scalar_replaceable flag for boxing method
3035         // so it could be eliminated.
3036         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3037       }
3038       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3039       // in order for an object to be scalar-replaceable, it must be:
3040       //   - a direct allocation (not a call returning an object)
3041       //   - non-escaping
3042       //   - eligible to be a unique type
3043       //   - not determined to be ineligible by escape analysis
3044       set_map(alloc, n);
3045       set_map(n, alloc);
3046       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3047       igvn->hash_delete(n);
3048       igvn->set_type(n,  tinst);
3049       n->raise_bottom_type(tinst);
3050       igvn->hash_insert(n);
3051       record_for_optimizer(n);
3052       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3053 
3054         // First, put on the worklist all Field edges from Connection Graph
3055         // which is more accurate than putting immediate users from Ideal Graph.
3056         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3057           PointsToNode* tgt = e.get();
3058           if (tgt->is_Arraycopy()) {
3059             continue;
3060           }
3061           Node* use = tgt->ideal_node();
3062           assert(tgt->is_Field() && use->is_AddP(),
3063                  "only AddP nodes are Field edges in CG");
3064           if (use->outcnt() > 0) { // Don't process dead nodes
3065             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3066             if (addp2 != NULL) {
3067               assert(alloc->is_AllocateArray(),"array allocation was expected");
3068               alloc_worklist.append_if_missing(addp2);
3069             }
3070             alloc_worklist.append_if_missing(use);
3071           }
3072         }
3073 
3074         // An allocation may have an Initialize which has raw stores. Scan
3075         // the users of the raw allocation result and push AddP users
3076         // on alloc_worklist.
3077         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3078         assert (raw_result != NULL, "must have an allocation result");
3079         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3080           Node *use = raw_result->fast_out(i);
3081           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3082             Node* addp2 = find_second_addp(use, raw_result);
3083             if (addp2 != NULL) {
3084               assert(alloc->is_AllocateArray(),"array allocation was expected");
3085               alloc_worklist.append_if_missing(addp2);
3086             }
3087             alloc_worklist.append_if_missing(use);
3088           } else if (use->is_MemBar()) {
3089             memnode_worklist.append_if_missing(use);
3090           }
3091         }
3092       }
3093     } else if (n->is_AddP()) {
3094       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3095       if (jobj == NULL || jobj == phantom_obj) {
3096 #ifdef ASSERT
3097         ptnode_adr(get_addp_base(n)->_idx)->dump();
3098         ptnode_adr(n->_idx)->dump();
3099         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3100 #endif
3101         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3102         return;
3103       }
3104       Node *base = get_map(jobj->idx());  // CheckCastPP node
3105       if (!split_AddP(n, base)) continue; // wrong type from dead path
3106     } else if (n->is_Phi() ||
3107                n->is_CheckCastPP() ||
3108                n->is_EncodeP() ||
3109                n->is_DecodeN() ||
3110                BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(n) ||
3111                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3112       if (visited.test_set(n->_idx)) {
3113         assert(n->is_Phi(), "loops only through Phi's");
3114         continue;  // already processed
3115       }
3116       JavaObjectNode* jobj = unique_java_object(n);
3117       if (jobj == NULL || jobj == phantom_obj) {
3118 #ifdef ASSERT
3119         ptnode_adr(n->_idx)->dump();
3120         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3121 #endif
3122         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3123         return;
3124       } else {
3125         Node *val = get_map(jobj->idx());   // CheckCastPP node
3126         TypeNode *tn = n->as_Type();
3127         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3128         assert(tinst != NULL && tinst->is_known_instance() &&
3129                tinst->instance_id() == jobj->idx() , "instance type expected.");
3130 
3131         const Type *tn_type = igvn->type(tn);
3132         const TypeOopPtr *tn_t;
3133         if (tn_type->isa_narrowoop()) {
3134           tn_t = tn_type->make_ptr()->isa_oopptr();
3135         } else {
3136           tn_t = tn_type->isa_oopptr();
3137         }
3138         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3139           if (tn_type->isa_narrowoop()) {
3140             tn_type = tinst->make_narrowoop();
3141           } else {
3142             tn_type = tinst;
3143           }
3144           igvn->hash_delete(tn);
3145           igvn->set_type(tn, tn_type);
3146           tn->set_type(tn_type);
3147           igvn->hash_insert(tn);
3148           record_for_optimizer(n);
3149         } else {
3150           assert(tn_type == TypePtr::NULL_PTR ||
3151                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3152                  "unexpected type");
3153           continue; // Skip dead path with different type
3154         }
3155       }
3156     } else {
3157       debug_only(n->dump();)
3158       assert(false, "EA: unexpected node");
3159       continue;
3160     }
3161     // push allocation's users on appropriate worklist
3162     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3163       Node *use = n->fast_out(i);
3164       if (use->is_Mem() && use->in(MemNode::Address) == n) {
3165         // Load/store to instance's field
3166         memnode_worklist.append_if_missing(use);
3167       } else if (use->is_MemBar()) {
3168         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3169           memnode_worklist.append_if_missing(use);
3170         }
3171       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3172         Node* addp2 = find_second_addp(use, n);
3173         if (addp2 != NULL) {
3174           alloc_worklist.append_if_missing(addp2);
3175         }
3176         alloc_worklist.append_if_missing(use);
3177       } else if (use->is_Phi() ||
3178                  use->is_CheckCastPP() ||
3179                  use->is_EncodeNarrowPtr() ||
3180                  use->is_DecodeNarrowPtr() ||
3181                  BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(use) ||
3182                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3183         alloc_worklist.append_if_missing(use);
3184 #ifdef ASSERT
3185       } else if (use->is_Mem()) {
3186         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3187       } else if (use->is_MergeMem()) {
3188         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3189       } else if (use->is_SafePoint()) {
3190         // Look for MergeMem nodes for calls which reference unique allocation
3191         // (through CheckCastPP nodes) even for debug info.
3192         Node* m = use->in(TypeFunc::Memory);
3193         if (m->is_MergeMem()) {
3194           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3195         }
3196       } else if (use->Opcode() == Op_EncodeISOArray) {
3197         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3198           // EncodeISOArray overwrites destination array
3199           memnode_worklist.append_if_missing(use);
3200         }
3201       } else if (use->Opcode() == Op_Return) {
3202         assert(_compile->tf()->returns_value_type_as_fields(), "must return a value type");
3203         // Get ValueKlass by removing the tag bit from the metadata pointer
3204         Node* klass = use->in(TypeFunc::Parms);
3205         intptr_t ptr = igvn->type(klass)->isa_rawptr()->get_con();
3206         clear_nth_bit(ptr, 0);
3207         assert(Metaspace::contains((void*)ptr), "should be klass");
3208         assert(((ValueKlass*)ptr)->contains_oops(), "returned value type must contain a reference field");
3209       } else {
3210         uint op = use->Opcode();
3211         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3212             (use->in(MemNode::Memory) == n)) {
3213           // They overwrite memory edge corresponding to destination array,
3214           memnode_worklist.append_if_missing(use);
3215         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3216               op == Op_CastP2X || op == Op_StoreCM ||
3217               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3218               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3219               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3220               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3221               op == Op_ValueType)) {
3222           n->dump();
3223           use->dump();
3224           assert(false, "EA: missing allocation reference path");
3225         }
3226 #endif
3227       }
3228     }
3229 
3230   }
3231 
3232   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3233   // type, record it in the ArrayCopy node so we know what memory this
3234   // node uses/modified.
3235   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3236     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3237     Node* dest = ac->in(ArrayCopyNode::Dest);
3238     if (dest->is_AddP()) {
3239       dest = get_addp_base(dest);
3240     }
3241     JavaObjectNode* jobj = unique_java_object(dest);
3242     if (jobj != NULL) {
3243       Node *base = get_map(jobj->idx());
3244       if (base != NULL) {
3245         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3246         ac->_dest_type = base_t;
3247       }
3248     }
3249     Node* src = ac->in(ArrayCopyNode::Src);
3250     if (src->is_AddP()) {
3251       src = get_addp_base(src);
3252     }
3253     jobj = unique_java_object(src);
3254     if (jobj != NULL) {
3255       Node* base = get_map(jobj->idx());
3256       if (base != NULL) {
3257         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3258         ac->_src_type = base_t;
3259       }
3260     }
3261   }
3262 
3263   // New alias types were created in split_AddP().
3264   uint new_index_end = (uint) _compile->num_alias_types();
3265   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3266 
3267   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3268   //            compute new values for Memory inputs  (the Memory inputs are not
3269   //            actually updated until phase 4.)
3270   if (memnode_worklist.length() == 0)
3271     return;  // nothing to do
3272   while (memnode_worklist.length() != 0) {
3273     Node *n = memnode_worklist.pop();
3274     if (visited.test_set(n->_idx))
3275       continue;
3276     if (n->is_Phi() || n->is_ClearArray()) {
3277       // we don't need to do anything, but the users must be pushed
3278     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3279       // we don't need to do anything, but the users must be pushed
3280       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3281       if (n == NULL)
3282         continue;
3283     } else if (n->Opcode() == Op_StrCompressedCopy ||
3284                n->Opcode() == Op_EncodeISOArray) {
3285       // get the memory projection
3286       n = n->find_out_with(Op_SCMemProj);
3287       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3288     } else if (n->is_CallLeaf() && n->as_CallLeaf()->_name != NULL &&
3289                strcmp(n->as_CallLeaf()->_name, "store_unknown_value") == 0) {
3290       n = n->as_CallLeaf()->proj_out(TypeFunc::Memory);
3291     } else {
3292       assert(n->is_Mem(), "memory node required.");
3293       Node *addr = n->in(MemNode::Address);
3294       const Type *addr_t = igvn->type(addr);
3295       if (addr_t == Type::TOP)
3296         continue;
3297       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3298       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3299       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3300       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3301       if (_compile->failing()) {
3302         return;
3303       }
3304       if (mem != n->in(MemNode::Memory)) {
3305         // We delay the memory edge update since we need old one in
3306         // MergeMem code below when instances memory slices are separated.
3307         set_map(n, mem);
3308       }
3309       if (n->is_Load()) {
3310         continue;  // don't push users
3311       } else if (n->is_LoadStore()) {
3312         // get the memory projection
3313         n = n->find_out_with(Op_SCMemProj);
3314         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3315       }
3316     }
3317     // push user on appropriate worklist
3318     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3319       Node *use = n->fast_out(i);
3320       if (use->is_Phi() || use->is_ClearArray()) {
3321         memnode_worklist.append_if_missing(use);
3322       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3323         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3324           continue;
3325         memnode_worklist.append_if_missing(use);
3326       } else if (use->is_MemBar()) {
3327         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3328           memnode_worklist.append_if_missing(use);
3329         }
3330 #ifdef ASSERT
3331       } else if (use->is_Mem()) {
3332         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3333       } else if (use->is_MergeMem()) {
3334         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3335       } else if (use->Opcode() == Op_EncodeISOArray) {
3336         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3337           // EncodeISOArray overwrites destination array
3338           memnode_worklist.append_if_missing(use);
3339         }
3340       } else if (use->is_CallLeaf() && use->as_CallLeaf()->_name != NULL &&
3341                  strcmp(use->as_CallLeaf()->_name, "store_unknown_value") == 0) {
3342         // store_unknown_value overwrites destination array
3343         memnode_worklist.append_if_missing(use);
3344       } else {
3345         uint op = use->Opcode();
3346         if ((use->in(MemNode::Memory) == n) &&
3347             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3348           // They overwrite memory edge corresponding to destination array,
3349           memnode_worklist.append_if_missing(use);
3350         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3351               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3352               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3353               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3354           n->dump();
3355           use->dump();
3356           assert(false, "EA: missing memory path");
3357         }
3358 #endif
3359       }
3360     }
3361   }
3362 
3363   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3364   //            Walk each memory slice moving the first node encountered of each
3365   //            instance type to the input corresponding to its alias index.
3366   uint length = _mergemem_worklist.length();
3367   for( uint next = 0; next < length; ++next ) {
3368     MergeMemNode* nmm = _mergemem_worklist.at(next);
3369     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3370     // Note: we don't want to use MergeMemStream here because we only want to
3371     // scan inputs which exist at the start, not ones we add during processing.
3372     // Note 2: MergeMem may already contains instance memory slices added
3373     // during find_inst_mem() call when memory nodes were processed above.
3374     igvn->hash_delete(nmm);
3375     uint nslices = MIN2(nmm->req(), new_index_start);
3376     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3377       Node* mem = nmm->in(i);
3378       Node* cur = NULL;
3379       if (mem == NULL || mem->is_top())
3380         continue;
3381       // First, update mergemem by moving memory nodes to corresponding slices
3382       // if their type became more precise since this mergemem was created.
3383       while (mem->is_Mem()) {
3384         const Type *at = igvn->type(mem->in(MemNode::Address));
3385         if (at != Type::TOP) {
3386           assert (at->isa_ptr() != NULL, "pointer type required.");
3387           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3388           if (idx == i) {
3389             if (cur == NULL)
3390               cur = mem;
3391           } else {
3392             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3393               nmm->set_memory_at(idx, mem);
3394             }
3395           }
3396         }
3397         mem = mem->in(MemNode::Memory);
3398       }
3399       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3400       // Find any instance of the current type if we haven't encountered
3401       // already a memory slice of the instance along the memory chain.
3402       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3403         if((uint)_compile->get_general_index(ni) == i) {
3404           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3405           if (nmm->is_empty_memory(m)) {
3406             Node* result = find_inst_mem(mem, ni, orig_phis);
3407             if (_compile->failing()) {
3408               return;
3409             }
3410             nmm->set_memory_at(ni, result);
3411           }
3412         }
3413       }
3414     }
3415     // Find the rest of instances values
3416     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3417       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3418       Node* result = step_through_mergemem(nmm, ni, tinst);
3419       if (result == nmm->base_memory()) {
3420         // Didn't find instance memory, search through general slice recursively.
3421         result = nmm->memory_at(_compile->get_general_index(ni));
3422         result = find_inst_mem(result, ni, orig_phis);
3423         if (_compile->failing()) {
3424           return;
3425         }
3426         nmm->set_memory_at(ni, result);
3427       }
3428     }
3429     igvn->hash_insert(nmm);
3430     record_for_optimizer(nmm);
3431   }
3432 
3433   //  Phase 4:  Update the inputs of non-instance memory Phis and
3434   //            the Memory input of memnodes
3435   // First update the inputs of any non-instance Phi's from
3436   // which we split out an instance Phi.  Note we don't have
3437   // to recursively process Phi's encountered on the input memory
3438   // chains as is done in split_memory_phi() since they will
3439   // also be processed here.
3440   for (int j = 0; j < orig_phis.length(); j++) {
3441     PhiNode *phi = orig_phis.at(j);
3442     int alias_idx = _compile->get_alias_index(phi->adr_type());
3443     igvn->hash_delete(phi);
3444     for (uint i = 1; i < phi->req(); i++) {
3445       Node *mem = phi->in(i);
3446       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3447       if (_compile->failing()) {
3448         return;
3449       }
3450       if (mem != new_mem) {
3451         phi->set_req(i, new_mem);
3452       }
3453     }
3454     igvn->hash_insert(phi);
3455     record_for_optimizer(phi);
3456   }
3457 
3458   // Update the memory inputs of MemNodes with the value we computed
3459   // in Phase 2 and move stores memory users to corresponding memory slices.
3460   // Disable memory split verification code until the fix for 6984348.
3461   // Currently it produces false negative results since it does not cover all cases.
3462 #if 0 // ifdef ASSERT
3463   visited.Reset();
3464   Node_Stack old_mems(arena, _compile->unique() >> 2);
3465 #endif
3466   for (uint i = 0; i < ideal_nodes.size(); i++) {
3467     Node*    n = ideal_nodes.at(i);
3468     Node* nmem = get_map(n->_idx);
3469     assert(nmem != NULL, "sanity");
3470     if (n->is_Mem()) {
3471 #if 0 // ifdef ASSERT
3472       Node* old_mem = n->in(MemNode::Memory);
3473       if (!visited.test_set(old_mem->_idx)) {
3474         old_mems.push(old_mem, old_mem->outcnt());
3475       }
3476 #endif
3477       assert(n->in(MemNode::Memory) != nmem, "sanity");
3478       if (!n->is_Load()) {
3479         // Move memory users of a store first.
3480         move_inst_mem(n, orig_phis);
3481       }
3482       // Now update memory input
3483       igvn->hash_delete(n);
3484       n->set_req(MemNode::Memory, nmem);
3485       igvn->hash_insert(n);
3486       record_for_optimizer(n);
3487     } else {
3488       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3489              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3490     }
3491   }
3492 #if 0 // ifdef ASSERT
3493   // Verify that memory was split correctly
3494   while (old_mems.is_nonempty()) {
3495     Node* old_mem = old_mems.node();
3496     uint  old_cnt = old_mems.index();
3497     old_mems.pop();
3498     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3499   }
3500 #endif
3501 }
3502 
3503 #ifndef PRODUCT
3504 static const char *node_type_names[] = {
3505   "UnknownType",
3506   "JavaObject",
3507   "LocalVar",
3508   "Field",
3509   "Arraycopy"
3510 };
3511 
3512 static const char *esc_names[] = {
3513   "UnknownEscape",
3514   "NoEscape",
3515   "ArgEscape",
3516   "GlobalEscape"
3517 };
3518 
3519 void PointsToNode::dump(bool print_state) const {
3520   NodeType nt = node_type();
3521   tty->print("%s ", node_type_names[(int) nt]);
3522   if (print_state) {
3523     EscapeState es = escape_state();
3524     EscapeState fields_es = fields_escape_state();
3525     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3526     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3527       tty->print("NSR ");
3528   }
3529   if (is_Field()) {
3530     FieldNode* f = (FieldNode*)this;
3531     if (f->is_oop())
3532       tty->print("oop ");
3533     if (f->offset() > 0)
3534       tty->print("+%d ", f->offset());
3535     tty->print("(");
3536     for (BaseIterator i(f); i.has_next(); i.next()) {
3537       PointsToNode* b = i.get();
3538       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3539     }
3540     tty->print(" )");
3541   }
3542   tty->print("[");
3543   for (EdgeIterator i(this); i.has_next(); i.next()) {
3544     PointsToNode* e = i.get();
3545     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3546   }
3547   tty->print(" [");
3548   for (UseIterator i(this); i.has_next(); i.next()) {
3549     PointsToNode* u = i.get();
3550     bool is_base = false;
3551     if (PointsToNode::is_base_use(u)) {
3552       is_base = true;
3553       u = PointsToNode::get_use_node(u)->as_Field();
3554     }
3555     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3556   }
3557   tty->print(" ]]  ");
3558   if (_node == NULL)
3559     tty->print_cr("<null>");
3560   else
3561     _node->dump();
3562 }
3563 
3564 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3565   bool first = true;
3566   int ptnodes_length = ptnodes_worklist.length();
3567   for (int i = 0; i < ptnodes_length; i++) {
3568     PointsToNode *ptn = ptnodes_worklist.at(i);
3569     if (ptn == NULL || !ptn->is_JavaObject())
3570       continue;
3571     PointsToNode::EscapeState es = ptn->escape_state();
3572     if ((es != PointsToNode::NoEscape) && !Verbose) {
3573       continue;
3574     }
3575     Node* n = ptn->ideal_node();
3576     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3577                              n->as_CallStaticJava()->is_boxing_method())) {
3578       if (first) {
3579         tty->cr();
3580         tty->print("======== Connection graph for ");
3581         _compile->method()->print_short_name();
3582         tty->cr();
3583         first = false;
3584       }
3585       ptn->dump();
3586       // Print all locals and fields which reference this allocation
3587       for (UseIterator j(ptn); j.has_next(); j.next()) {
3588         PointsToNode* use = j.get();
3589         if (use->is_LocalVar()) {
3590           use->dump(Verbose);
3591         } else if (Verbose) {
3592           use->dump();
3593         }
3594       }
3595       tty->cr();
3596     }
3597   }
3598 }
3599 #endif
3600 
3601 void ConnectionGraph::record_for_optimizer(Node *n) {
3602   _igvn->_worklist.push(n);
3603   _igvn->add_users_to_worklist(n);
3604 }