1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciUtilities.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "ci/ciValueKlass.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/c2/barrierSetC2.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/graphKit.hpp"
  37 #include "opto/idealKit.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/narrowptrnode.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/valuetypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 
  50 //----------------------------GraphKit-----------------------------------------
  51 // Main utility constructor.
  52 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  53   : Phase(Phase::Parser),
  54     _env(C->env()),
  55     _gvn((gvn != NULL) ? *gvn : *C->initial_gvn()),
  56     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  57 {
  58   assert(gvn == NULL || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  59   _exceptions = jvms->map()->next_exception();
  60   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  61   set_jvms(jvms);
  62 #ifdef ASSERT
  63   if (_gvn.is_IterGVN() != NULL) {
  64     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  65     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  66     _worklist_size = _gvn.C->for_igvn()->size();
  67   }
  68 #endif
  69 }
  70 
  71 // Private constructor for parser.
  72 GraphKit::GraphKit()
  73   : Phase(Phase::Parser),
  74     _env(C->env()),
  75     _gvn(*C->initial_gvn()),
  76     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  77 {
  78   _exceptions = NULL;
  79   set_map(NULL);
  80   debug_only(_sp = -99);
  81   debug_only(set_bci(-99));
  82 }
  83 
  84 
  85 
  86 //---------------------------clean_stack---------------------------------------
  87 // Clear away rubbish from the stack area of the JVM state.
  88 // This destroys any arguments that may be waiting on the stack.
  89 void GraphKit::clean_stack(int from_sp) {
  90   SafePointNode* map      = this->map();
  91   JVMState*      jvms     = this->jvms();
  92   int            stk_size = jvms->stk_size();
  93   int            stkoff   = jvms->stkoff();
  94   Node*          top      = this->top();
  95   for (int i = from_sp; i < stk_size; i++) {
  96     if (map->in(stkoff + i) != top) {
  97       map->set_req(stkoff + i, top);
  98     }
  99   }
 100 }
 101 
 102 
 103 //--------------------------------sync_jvms-----------------------------------
 104 // Make sure our current jvms agrees with our parse state.
 105 JVMState* GraphKit::sync_jvms() const {
 106   JVMState* jvms = this->jvms();
 107   jvms->set_bci(bci());       // Record the new bci in the JVMState
 108   jvms->set_sp(sp());         // Record the new sp in the JVMState
 109   assert(jvms_in_sync(), "jvms is now in sync");
 110   return jvms;
 111 }
 112 
 113 //--------------------------------sync_jvms_for_reexecute---------------------
 114 // Make sure our current jvms agrees with our parse state.  This version
 115 // uses the reexecute_sp for reexecuting bytecodes.
 116 JVMState* GraphKit::sync_jvms_for_reexecute() {
 117   JVMState* jvms = this->jvms();
 118   jvms->set_bci(bci());          // Record the new bci in the JVMState
 119   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 120   return jvms;
 121 }
 122 
 123 #ifdef ASSERT
 124 bool GraphKit::jvms_in_sync() const {
 125   Parse* parse = is_Parse();
 126   if (parse == NULL) {
 127     if (bci() !=      jvms()->bci())          return false;
 128     if (sp()  != (int)jvms()->sp())           return false;
 129     return true;
 130   }
 131   if (jvms()->method() != parse->method())    return false;
 132   if (jvms()->bci()    != parse->bci())       return false;
 133   int jvms_sp = jvms()->sp();
 134   if (jvms_sp          != parse->sp())        return false;
 135   int jvms_depth = jvms()->depth();
 136   if (jvms_depth       != parse->depth())     return false;
 137   return true;
 138 }
 139 
 140 // Local helper checks for special internal merge points
 141 // used to accumulate and merge exception states.
 142 // They are marked by the region's in(0) edge being the map itself.
 143 // Such merge points must never "escape" into the parser at large,
 144 // until they have been handed to gvn.transform.
 145 static bool is_hidden_merge(Node* reg) {
 146   if (reg == NULL)  return false;
 147   if (reg->is_Phi()) {
 148     reg = reg->in(0);
 149     if (reg == NULL)  return false;
 150   }
 151   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 152 }
 153 
 154 void GraphKit::verify_map() const {
 155   if (map() == NULL)  return;  // null map is OK
 156   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 157   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 158   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 159 }
 160 
 161 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 162   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 163   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 164 }
 165 #endif
 166 
 167 //---------------------------stop_and_kill_map---------------------------------
 168 // Set _map to NULL, signalling a stop to further bytecode execution.
 169 // First smash the current map's control to a constant, to mark it dead.
 170 void GraphKit::stop_and_kill_map() {
 171   SafePointNode* dead_map = stop();
 172   if (dead_map != NULL) {
 173     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 174     assert(dead_map->is_killed(), "must be so marked");
 175   }
 176 }
 177 
 178 
 179 //--------------------------------stopped--------------------------------------
 180 // Tell if _map is NULL, or control is top.
 181 bool GraphKit::stopped() {
 182   if (map() == NULL)           return true;
 183   else if (control() == top()) return true;
 184   else                         return false;
 185 }
 186 
 187 
 188 //-----------------------------has_ex_handler----------------------------------
 189 // Tell if this method or any caller method has exception handlers.
 190 bool GraphKit::has_ex_handler() {
 191   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 192     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 193       return true;
 194     }
 195   }
 196   return false;
 197 }
 198 
 199 //------------------------------save_ex_oop------------------------------------
 200 // Save an exception without blowing stack contents or other JVM state.
 201 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 202   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 203   ex_map->add_req(ex_oop);
 204   debug_only(verify_exception_state(ex_map));
 205 }
 206 
 207 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 208   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 209   Node* ex_oop = ex_map->in(ex_map->req()-1);
 210   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 211   return ex_oop;
 212 }
 213 
 214 //-----------------------------saved_ex_oop------------------------------------
 215 // Recover a saved exception from its map.
 216 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 217   return common_saved_ex_oop(ex_map, false);
 218 }
 219 
 220 //--------------------------clear_saved_ex_oop---------------------------------
 221 // Erase a previously saved exception from its map.
 222 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 223   return common_saved_ex_oop(ex_map, true);
 224 }
 225 
 226 #ifdef ASSERT
 227 //---------------------------has_saved_ex_oop----------------------------------
 228 // Erase a previously saved exception from its map.
 229 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 230   return ex_map->req() == ex_map->jvms()->endoff()+1;
 231 }
 232 #endif
 233 
 234 //-------------------------make_exception_state--------------------------------
 235 // Turn the current JVM state into an exception state, appending the ex_oop.
 236 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 237   sync_jvms();
 238   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 239   set_saved_ex_oop(ex_map, ex_oop);
 240   return ex_map;
 241 }
 242 
 243 
 244 //--------------------------add_exception_state--------------------------------
 245 // Add an exception to my list of exceptions.
 246 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 247   if (ex_map == NULL || ex_map->control() == top()) {
 248     return;
 249   }
 250 #ifdef ASSERT
 251   verify_exception_state(ex_map);
 252   if (has_exceptions()) {
 253     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 254   }
 255 #endif
 256 
 257   // If there is already an exception of exactly this type, merge with it.
 258   // In particular, null-checks and other low-level exceptions common up here.
 259   Node*       ex_oop  = saved_ex_oop(ex_map);
 260   const Type* ex_type = _gvn.type(ex_oop);
 261   if (ex_oop == top()) {
 262     // No action needed.
 263     return;
 264   }
 265   assert(ex_type->isa_instptr(), "exception must be an instance");
 266   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 267     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 268     // We check sp also because call bytecodes can generate exceptions
 269     // both before and after arguments are popped!
 270     if (ex_type2 == ex_type
 271         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 272       combine_exception_states(ex_map, e2);
 273       return;
 274     }
 275   }
 276 
 277   // No pre-existing exception of the same type.  Chain it on the list.
 278   push_exception_state(ex_map);
 279 }
 280 
 281 //-----------------------add_exception_states_from-----------------------------
 282 void GraphKit::add_exception_states_from(JVMState* jvms) {
 283   SafePointNode* ex_map = jvms->map()->next_exception();
 284   if (ex_map != NULL) {
 285     jvms->map()->set_next_exception(NULL);
 286     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 287       next_map = ex_map->next_exception();
 288       ex_map->set_next_exception(NULL);
 289       add_exception_state(ex_map);
 290     }
 291   }
 292 }
 293 
 294 //-----------------------transfer_exceptions_into_jvms-------------------------
 295 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 296   if (map() == NULL) {
 297     // We need a JVMS to carry the exceptions, but the map has gone away.
 298     // Create a scratch JVMS, cloned from any of the exception states...
 299     if (has_exceptions()) {
 300       _map = _exceptions;
 301       _map = clone_map();
 302       _map->set_next_exception(NULL);
 303       clear_saved_ex_oop(_map);
 304       debug_only(verify_map());
 305     } else {
 306       // ...or created from scratch
 307       JVMState* jvms = new (C) JVMState(_method, NULL);
 308       jvms->set_bci(_bci);
 309       jvms->set_sp(_sp);
 310       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 311       set_jvms(jvms);
 312       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 313       set_all_memory(top());
 314       while (map()->req() < jvms->endoff())  map()->add_req(top());
 315     }
 316     // (This is a kludge, in case you didn't notice.)
 317     set_control(top());
 318   }
 319   JVMState* jvms = sync_jvms();
 320   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 321   jvms->map()->set_next_exception(_exceptions);
 322   _exceptions = NULL;   // done with this set of exceptions
 323   return jvms;
 324 }
 325 
 326 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 327   assert(is_hidden_merge(dstphi), "must be a special merge node");
 328   assert(is_hidden_merge(srcphi), "must be a special merge node");
 329   uint limit = srcphi->req();
 330   for (uint i = PhiNode::Input; i < limit; i++) {
 331     dstphi->add_req(srcphi->in(i));
 332   }
 333 }
 334 static inline void add_one_req(Node* dstphi, Node* src) {
 335   assert(is_hidden_merge(dstphi), "must be a special merge node");
 336   assert(!is_hidden_merge(src), "must not be a special merge node");
 337   dstphi->add_req(src);
 338 }
 339 
 340 //-----------------------combine_exception_states------------------------------
 341 // This helper function combines exception states by building phis on a
 342 // specially marked state-merging region.  These regions and phis are
 343 // untransformed, and can build up gradually.  The region is marked by
 344 // having a control input of its exception map, rather than NULL.  Such
 345 // regions do not appear except in this function, and in use_exception_state.
 346 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 347   if (failing())  return;  // dying anyway...
 348   JVMState* ex_jvms = ex_map->_jvms;
 349   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 350   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 351   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 352   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 353   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 354   assert(ex_map->req() == phi_map->req(), "matching maps");
 355   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 356   Node*         hidden_merge_mark = root();
 357   Node*         region  = phi_map->control();
 358   MergeMemNode* phi_mem = phi_map->merged_memory();
 359   MergeMemNode* ex_mem  = ex_map->merged_memory();
 360   if (region->in(0) != hidden_merge_mark) {
 361     // The control input is not (yet) a specially-marked region in phi_map.
 362     // Make it so, and build some phis.
 363     region = new RegionNode(2);
 364     _gvn.set_type(region, Type::CONTROL);
 365     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 366     region->init_req(1, phi_map->control());
 367     phi_map->set_control(region);
 368     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 369     record_for_igvn(io_phi);
 370     _gvn.set_type(io_phi, Type::ABIO);
 371     phi_map->set_i_o(io_phi);
 372     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 373       Node* m = mms.memory();
 374       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 375       record_for_igvn(m_phi);
 376       _gvn.set_type(m_phi, Type::MEMORY);
 377       mms.set_memory(m_phi);
 378     }
 379   }
 380 
 381   // Either or both of phi_map and ex_map might already be converted into phis.
 382   Node* ex_control = ex_map->control();
 383   // if there is special marking on ex_map also, we add multiple edges from src
 384   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 385   // how wide was the destination phi_map, originally?
 386   uint orig_width = region->req();
 387 
 388   if (add_multiple) {
 389     add_n_reqs(region, ex_control);
 390     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 391   } else {
 392     // ex_map has no merges, so we just add single edges everywhere
 393     add_one_req(region, ex_control);
 394     add_one_req(phi_map->i_o(), ex_map->i_o());
 395   }
 396   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 397     if (mms.is_empty()) {
 398       // get a copy of the base memory, and patch some inputs into it
 399       const TypePtr* adr_type = mms.adr_type(C);
 400       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 401       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 402       mms.set_memory(phi);
 403       // Prepare to append interesting stuff onto the newly sliced phi:
 404       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 405     }
 406     // Append stuff from ex_map:
 407     if (add_multiple) {
 408       add_n_reqs(mms.memory(), mms.memory2());
 409     } else {
 410       add_one_req(mms.memory(), mms.memory2());
 411     }
 412   }
 413   uint limit = ex_map->req();
 414   for (uint i = TypeFunc::Parms; i < limit; i++) {
 415     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 416     if (i == tos)  i = ex_jvms->monoff();
 417     Node* src = ex_map->in(i);
 418     Node* dst = phi_map->in(i);
 419     if (src != dst) {
 420       PhiNode* phi;
 421       if (dst->in(0) != region) {
 422         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 423         record_for_igvn(phi);
 424         _gvn.set_type(phi, phi->type());
 425         phi_map->set_req(i, dst);
 426         // Prepare to append interesting stuff onto the new phi:
 427         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 428       } else {
 429         assert(dst->is_Phi(), "nobody else uses a hidden region");
 430         phi = dst->as_Phi();
 431       }
 432       if (add_multiple && src->in(0) == ex_control) {
 433         // Both are phis.
 434         add_n_reqs(dst, src);
 435       } else {
 436         while (dst->req() < region->req())  add_one_req(dst, src);
 437       }
 438       const Type* srctype = _gvn.type(src);
 439       if (phi->type() != srctype) {
 440         const Type* dsttype = phi->type()->meet_speculative(srctype);
 441         if (phi->type() != dsttype) {
 442           phi->set_type(dsttype);
 443           _gvn.set_type(phi, dsttype);
 444         }
 445       }
 446     }
 447   }
 448   phi_map->merge_replaced_nodes_with(ex_map);
 449 }
 450 
 451 //--------------------------use_exception_state--------------------------------
 452 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 453   if (failing()) { stop(); return top(); }
 454   Node* region = phi_map->control();
 455   Node* hidden_merge_mark = root();
 456   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 457   Node* ex_oop = clear_saved_ex_oop(phi_map);
 458   if (region->in(0) == hidden_merge_mark) {
 459     // Special marking for internal ex-states.  Process the phis now.
 460     region->set_req(0, region);  // now it's an ordinary region
 461     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 462     // Note: Setting the jvms also sets the bci and sp.
 463     set_control(_gvn.transform(region));
 464     uint tos = jvms()->stkoff() + sp();
 465     for (uint i = 1; i < tos; i++) {
 466       Node* x = phi_map->in(i);
 467       if (x->in(0) == region) {
 468         assert(x->is_Phi(), "expected a special phi");
 469         phi_map->set_req(i, _gvn.transform(x));
 470       }
 471     }
 472     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 473       Node* x = mms.memory();
 474       if (x->in(0) == region) {
 475         assert(x->is_Phi(), "nobody else uses a hidden region");
 476         mms.set_memory(_gvn.transform(x));
 477       }
 478     }
 479     if (ex_oop->in(0) == region) {
 480       assert(ex_oop->is_Phi(), "expected a special phi");
 481       ex_oop = _gvn.transform(ex_oop);
 482     }
 483   } else {
 484     set_jvms(phi_map->jvms());
 485   }
 486 
 487   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 488   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 489   return ex_oop;
 490 }
 491 
 492 //---------------------------------java_bc-------------------------------------
 493 Bytecodes::Code GraphKit::java_bc() const {
 494   ciMethod* method = this->method();
 495   int       bci    = this->bci();
 496   if (method != NULL && bci != InvocationEntryBci)
 497     return method->java_code_at_bci(bci);
 498   else
 499     return Bytecodes::_illegal;
 500 }
 501 
 502 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 503                                                           bool must_throw) {
 504     // if the exception capability is set, then we will generate code
 505     // to check the JavaThread.should_post_on_exceptions flag to see
 506     // if we actually need to report exception events (for this
 507     // thread).  If we don't need to report exception events, we will
 508     // take the normal fast path provided by add_exception_events.  If
 509     // exception event reporting is enabled for this thread, we will
 510     // take the uncommon_trap in the BuildCutout below.
 511 
 512     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 513     Node* jthread = _gvn.transform(new ThreadLocalNode());
 514     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 515     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 516 
 517     // Test the should_post_on_exceptions_flag vs. 0
 518     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 519     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 520 
 521     // Branch to slow_path if should_post_on_exceptions_flag was true
 522     { BuildCutout unless(this, tst, PROB_MAX);
 523       // Do not try anything fancy if we're notifying the VM on every throw.
 524       // Cf. case Bytecodes::_athrow in parse2.cpp.
 525       uncommon_trap(reason, Deoptimization::Action_none,
 526                     (ciKlass*)NULL, (char*)NULL, must_throw);
 527     }
 528 
 529 }
 530 
 531 //------------------------------builtin_throw----------------------------------
 532 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 533   bool must_throw = true;
 534 
 535   if (env()->jvmti_can_post_on_exceptions()) {
 536     // check if we must post exception events, take uncommon trap if so
 537     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 538     // here if should_post_on_exceptions is false
 539     // continue on with the normal codegen
 540   }
 541 
 542   // If this particular condition has not yet happened at this
 543   // bytecode, then use the uncommon trap mechanism, and allow for
 544   // a future recompilation if several traps occur here.
 545   // If the throw is hot, try to use a more complicated inline mechanism
 546   // which keeps execution inside the compiled code.
 547   bool treat_throw_as_hot = false;
 548   ciMethodData* md = method()->method_data();
 549 
 550   if (ProfileTraps) {
 551     if (too_many_traps(reason)) {
 552       treat_throw_as_hot = true;
 553     }
 554     // (If there is no MDO at all, assume it is early in
 555     // execution, and that any deopts are part of the
 556     // startup transient, and don't need to be remembered.)
 557 
 558     // Also, if there is a local exception handler, treat all throws
 559     // as hot if there has been at least one in this method.
 560     if (C->trap_count(reason) != 0
 561         && method()->method_data()->trap_count(reason) != 0
 562         && has_ex_handler()) {
 563         treat_throw_as_hot = true;
 564     }
 565   }
 566 
 567   // If this throw happens frequently, an uncommon trap might cause
 568   // a performance pothole.  If there is a local exception handler,
 569   // and if this particular bytecode appears to be deoptimizing often,
 570   // let us handle the throw inline, with a preconstructed instance.
 571   // Note:   If the deopt count has blown up, the uncommon trap
 572   // runtime is going to flush this nmethod, not matter what.
 573   if (treat_throw_as_hot
 574       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 575     // If the throw is local, we use a pre-existing instance and
 576     // punt on the backtrace.  This would lead to a missing backtrace
 577     // (a repeat of 4292742) if the backtrace object is ever asked
 578     // for its backtrace.
 579     // Fixing this remaining case of 4292742 requires some flavor of
 580     // escape analysis.  Leave that for the future.
 581     ciInstance* ex_obj = NULL;
 582     switch (reason) {
 583     case Deoptimization::Reason_null_check:
 584       ex_obj = env()->NullPointerException_instance();
 585       break;
 586     case Deoptimization::Reason_div0_check:
 587       ex_obj = env()->ArithmeticException_instance();
 588       break;
 589     case Deoptimization::Reason_range_check:
 590       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 591       break;
 592     case Deoptimization::Reason_class_check:
 593       if (java_bc() == Bytecodes::_aastore) {
 594         ex_obj = env()->ArrayStoreException_instance();
 595       } else {
 596         ex_obj = env()->ClassCastException_instance();
 597       }
 598       break;
 599     default:
 600       break;
 601     }
 602     if (failing()) { stop(); return; }  // exception allocation might fail
 603     if (ex_obj != NULL) {
 604       // Cheat with a preallocated exception object.
 605       if (C->log() != NULL)
 606         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 607                        Deoptimization::trap_reason_name(reason));
 608       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 609       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 610 
 611       // Clear the detail message of the preallocated exception object.
 612       // Weblogic sometimes mutates the detail message of exceptions
 613       // using reflection.
 614       int offset = java_lang_Throwable::get_detailMessage_offset();
 615       const TypePtr* adr_typ = ex_con->add_offset(offset);
 616 
 617       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 618       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 619       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 620 
 621       add_exception_state(make_exception_state(ex_node));
 622       return;
 623     }
 624   }
 625 
 626   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 627   // It won't be much cheaper than bailing to the interp., since we'll
 628   // have to pass up all the debug-info, and the runtime will have to
 629   // create the stack trace.
 630 
 631   // Usual case:  Bail to interpreter.
 632   // Reserve the right to recompile if we haven't seen anything yet.
 633 
 634   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 635   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 636   if (treat_throw_as_hot
 637       && (method()->method_data()->trap_recompiled_at(bci(), m)
 638           || C->too_many_traps(reason))) {
 639     // We cannot afford to take more traps here.  Suffer in the interpreter.
 640     if (C->log() != NULL)
 641       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 642                      Deoptimization::trap_reason_name(reason),
 643                      C->trap_count(reason));
 644     action = Deoptimization::Action_none;
 645   }
 646 
 647   // "must_throw" prunes the JVM state to include only the stack, if there
 648   // are no local exception handlers.  This should cut down on register
 649   // allocation time and code size, by drastically reducing the number
 650   // of in-edges on the call to the uncommon trap.
 651 
 652   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 653 }
 654 
 655 
 656 //----------------------------PreserveJVMState---------------------------------
 657 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 658   debug_only(kit->verify_map());
 659   _kit    = kit;
 660   _map    = kit->map();   // preserve the map
 661   _sp     = kit->sp();
 662   kit->set_map(clone_map ? kit->clone_map() : NULL);
 663 #ifdef ASSERT
 664   _bci    = kit->bci();
 665   Parse* parser = kit->is_Parse();
 666   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 667   _block  = block;
 668 #endif
 669 }
 670 PreserveJVMState::~PreserveJVMState() {
 671   GraphKit* kit = _kit;
 672 #ifdef ASSERT
 673   assert(kit->bci() == _bci, "bci must not shift");
 674   Parse* parser = kit->is_Parse();
 675   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 676   assert(block == _block,    "block must not shift");
 677 #endif
 678   kit->set_map(_map);
 679   kit->set_sp(_sp);
 680 }
 681 
 682 
 683 //-----------------------------BuildCutout-------------------------------------
 684 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 685   : PreserveJVMState(kit)
 686 {
 687   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 688   SafePointNode* outer_map = _map;   // preserved map is caller's
 689   SafePointNode* inner_map = kit->map();
 690   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 691   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 692   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 693 }
 694 BuildCutout::~BuildCutout() {
 695   GraphKit* kit = _kit;
 696   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 697 }
 698 
 699 //---------------------------PreserveReexecuteState----------------------------
 700 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 701   assert(!kit->stopped(), "must call stopped() before");
 702   _kit    =    kit;
 703   _sp     =    kit->sp();
 704   _reexecute = kit->jvms()->_reexecute;
 705 }
 706 PreserveReexecuteState::~PreserveReexecuteState() {
 707   if (_kit->stopped()) return;
 708   _kit->jvms()->_reexecute = _reexecute;
 709   _kit->set_sp(_sp);
 710 }
 711 
 712 //------------------------------clone_map--------------------------------------
 713 // Implementation of PreserveJVMState
 714 //
 715 // Only clone_map(...) here. If this function is only used in the
 716 // PreserveJVMState class we may want to get rid of this extra
 717 // function eventually and do it all there.
 718 
 719 SafePointNode* GraphKit::clone_map() {
 720   if (map() == NULL)  return NULL;
 721 
 722   // Clone the memory edge first
 723   Node* mem = MergeMemNode::make(map()->memory());
 724   gvn().set_type_bottom(mem);
 725 
 726   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 727   JVMState* jvms = this->jvms();
 728   JVMState* clonejvms = jvms->clone_shallow(C);
 729   clonemap->set_memory(mem);
 730   clonemap->set_jvms(clonejvms);
 731   clonejvms->set_map(clonemap);
 732   record_for_igvn(clonemap);
 733   gvn().set_type_bottom(clonemap);
 734   return clonemap;
 735 }
 736 
 737 
 738 //-----------------------------set_map_clone-----------------------------------
 739 void GraphKit::set_map_clone(SafePointNode* m) {
 740   _map = m;
 741   _map = clone_map();
 742   _map->set_next_exception(NULL);
 743   debug_only(verify_map());
 744 }
 745 
 746 
 747 //----------------------------kill_dead_locals---------------------------------
 748 // Detect any locals which are known to be dead, and force them to top.
 749 void GraphKit::kill_dead_locals() {
 750   // Consult the liveness information for the locals.  If any
 751   // of them are unused, then they can be replaced by top().  This
 752   // should help register allocation time and cut down on the size
 753   // of the deoptimization information.
 754 
 755   // This call is made from many of the bytecode handling
 756   // subroutines called from the Big Switch in do_one_bytecode.
 757   // Every bytecode which might include a slow path is responsible
 758   // for killing its dead locals.  The more consistent we
 759   // are about killing deads, the fewer useless phis will be
 760   // constructed for them at various merge points.
 761 
 762   // bci can be -1 (InvocationEntryBci).  We return the entry
 763   // liveness for the method.
 764 
 765   if (method() == NULL || method()->code_size() == 0) {
 766     // We are building a graph for a call to a native method.
 767     // All locals are live.
 768     return;
 769   }
 770 
 771   ResourceMark rm;
 772 
 773   // Consult the liveness information for the locals.  If any
 774   // of them are unused, then they can be replaced by top().  This
 775   // should help register allocation time and cut down on the size
 776   // of the deoptimization information.
 777   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 778 
 779   int len = (int)live_locals.size();
 780   assert(len <= jvms()->loc_size(), "too many live locals");
 781   for (int local = 0; local < len; local++) {
 782     if (!live_locals.at(local)) {
 783       set_local(local, top());
 784     }
 785   }
 786 }
 787 
 788 #ifdef ASSERT
 789 //-------------------------dead_locals_are_killed------------------------------
 790 // Return true if all dead locals are set to top in the map.
 791 // Used to assert "clean" debug info at various points.
 792 bool GraphKit::dead_locals_are_killed() {
 793   if (method() == NULL || method()->code_size() == 0) {
 794     // No locals need to be dead, so all is as it should be.
 795     return true;
 796   }
 797 
 798   // Make sure somebody called kill_dead_locals upstream.
 799   ResourceMark rm;
 800   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 801     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 802     SafePointNode* map = jvms->map();
 803     ciMethod* method = jvms->method();
 804     int       bci    = jvms->bci();
 805     if (jvms == this->jvms()) {
 806       bci = this->bci();  // it might not yet be synched
 807     }
 808     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 809     int len = (int)live_locals.size();
 810     if (!live_locals.is_valid() || len == 0)
 811       // This method is trivial, or is poisoned by a breakpoint.
 812       return true;
 813     assert(len == jvms->loc_size(), "live map consistent with locals map");
 814     for (int local = 0; local < len; local++) {
 815       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 816         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 817           tty->print_cr("Zombie local %d: ", local);
 818           jvms->dump();
 819         }
 820         return false;
 821       }
 822     }
 823   }
 824   return true;
 825 }
 826 
 827 #endif //ASSERT
 828 
 829 // Helper function for enforcing certain bytecodes to reexecute if
 830 // deoptimization happens
 831 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 832   ciMethod* cur_method = jvms->method();
 833   int       cur_bci   = jvms->bci();
 834   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 835     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 836     return Interpreter::bytecode_should_reexecute(code) ||
 837            (is_anewarray && (code == Bytecodes::_multianewarray));
 838     // Reexecute _multianewarray bytecode which was replaced with
 839     // sequence of [a]newarray. See Parse::do_multianewarray().
 840     //
 841     // Note: interpreter should not have it set since this optimization
 842     // is limited by dimensions and guarded by flag so in some cases
 843     // multianewarray() runtime calls will be generated and
 844     // the bytecode should not be reexecutes (stack will not be reset).
 845   } else {
 846     return false;
 847   }
 848 }
 849 
 850 // Helper function for adding JVMState and debug information to node
 851 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 852   // Add the safepoint edges to the call (or other safepoint).
 853 
 854   // Make sure dead locals are set to top.  This
 855   // should help register allocation time and cut down on the size
 856   // of the deoptimization information.
 857   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 858 
 859   // Walk the inline list to fill in the correct set of JVMState's
 860   // Also fill in the associated edges for each JVMState.
 861 
 862   // If the bytecode needs to be reexecuted we need to put
 863   // the arguments back on the stack.
 864   const bool should_reexecute = jvms()->should_reexecute();
 865   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 866 
 867   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 868   // undefined if the bci is different.  This is normal for Parse but it
 869   // should not happen for LibraryCallKit because only one bci is processed.
 870   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 871          "in LibraryCallKit the reexecute bit should not change");
 872 
 873   // If we are guaranteed to throw, we can prune everything but the
 874   // input to the current bytecode.
 875   bool can_prune_locals = false;
 876   uint stack_slots_not_pruned = 0;
 877   int inputs = 0, depth = 0;
 878   if (must_throw) {
 879     assert(method() == youngest_jvms->method(), "sanity");
 880     if (compute_stack_effects(inputs, depth)) {
 881       can_prune_locals = true;
 882       stack_slots_not_pruned = inputs;
 883     }
 884   }
 885 
 886   if (env()->should_retain_local_variables()) {
 887     // At any safepoint, this method can get breakpointed, which would
 888     // then require an immediate deoptimization.
 889     can_prune_locals = false;  // do not prune locals
 890     stack_slots_not_pruned = 0;
 891   }
 892 
 893   // do not scribble on the input jvms
 894   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 895   call->set_jvms(out_jvms); // Start jvms list for call node
 896 
 897   // For a known set of bytecodes, the interpreter should reexecute them if
 898   // deoptimization happens. We set the reexecute state for them here
 899   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 900       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 901     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 902   }
 903 
 904   // Presize the call:
 905   DEBUG_ONLY(uint non_debug_edges = call->req());
 906   call->add_req_batch(top(), youngest_jvms->debug_depth());
 907   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 908 
 909   // Set up edges so that the call looks like this:
 910   //  Call [state:] ctl io mem fptr retadr
 911   //       [parms:] parm0 ... parmN
 912   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 913   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 914   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 915   // Note that caller debug info precedes callee debug info.
 916 
 917   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 918   uint debug_ptr = call->req();
 919 
 920   // Loop over the map input edges associated with jvms, add them
 921   // to the call node, & reset all offsets to match call node array.
 922   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 923     uint debug_end   = debug_ptr;
 924     uint debug_start = debug_ptr - in_jvms->debug_size();
 925     debug_ptr = debug_start;  // back up the ptr
 926 
 927     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 928     uint j, k, l;
 929     SafePointNode* in_map = in_jvms->map();
 930     out_jvms->set_map(call);
 931 
 932     if (can_prune_locals) {
 933       assert(in_jvms->method() == out_jvms->method(), "sanity");
 934       // If the current throw can reach an exception handler in this JVMS,
 935       // then we must keep everything live that can reach that handler.
 936       // As a quick and dirty approximation, we look for any handlers at all.
 937       if (in_jvms->method()->has_exception_handlers()) {
 938         can_prune_locals = false;
 939       }
 940     }
 941 
 942     // Add the Locals
 943     k = in_jvms->locoff();
 944     l = in_jvms->loc_size();
 945     out_jvms->set_locoff(p);
 946     if (!can_prune_locals) {
 947       for (j = 0; j < l; j++)
 948         call->set_req(p++, in_map->in(k+j));
 949     } else {
 950       p += l;  // already set to top above by add_req_batch
 951     }
 952 
 953     // Add the Expression Stack
 954     k = in_jvms->stkoff();
 955     l = in_jvms->sp();
 956     out_jvms->set_stkoff(p);
 957     if (!can_prune_locals) {
 958       for (j = 0; j < l; j++)
 959         call->set_req(p++, in_map->in(k+j));
 960     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 961       // Divide stack into {S0,...,S1}, where S0 is set to top.
 962       uint s1 = stack_slots_not_pruned;
 963       stack_slots_not_pruned = 0;  // for next iteration
 964       if (s1 > l)  s1 = l;
 965       uint s0 = l - s1;
 966       p += s0;  // skip the tops preinstalled by add_req_batch
 967       for (j = s0; j < l; j++)
 968         call->set_req(p++, in_map->in(k+j));
 969     } else {
 970       p += l;  // already set to top above by add_req_batch
 971     }
 972 
 973     // Add the Monitors
 974     k = in_jvms->monoff();
 975     l = in_jvms->mon_size();
 976     out_jvms->set_monoff(p);
 977     for (j = 0; j < l; j++)
 978       call->set_req(p++, in_map->in(k+j));
 979 
 980     // Copy any scalar object fields.
 981     k = in_jvms->scloff();
 982     l = in_jvms->scl_size();
 983     out_jvms->set_scloff(p);
 984     for (j = 0; j < l; j++)
 985       call->set_req(p++, in_map->in(k+j));
 986 
 987     // Finish the new jvms.
 988     out_jvms->set_endoff(p);
 989 
 990     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 991     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 992     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 993     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 994     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 995     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 996 
 997     // Update the two tail pointers in parallel.
 998     out_jvms = out_jvms->caller();
 999     in_jvms  = in_jvms->caller();
1000   }
1001 
1002   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1003 
1004   // Test the correctness of JVMState::debug_xxx accessors:
1005   assert(call->jvms()->debug_start() == non_debug_edges, "");
1006   assert(call->jvms()->debug_end()   == call->req(), "");
1007   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1008 }
1009 
1010 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1011   Bytecodes::Code code = java_bc();
1012   if (code == Bytecodes::_wide) {
1013     code = method()->java_code_at_bci(bci() + 1);
1014   }
1015 
1016   BasicType rtype = T_ILLEGAL;
1017   int       rsize = 0;
1018 
1019   if (code != Bytecodes::_illegal) {
1020     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1021     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1022     if (rtype < T_CONFLICT)
1023       rsize = type2size[rtype];
1024   }
1025 
1026   switch (code) {
1027   case Bytecodes::_illegal:
1028     return false;
1029 
1030   case Bytecodes::_ldc:
1031   case Bytecodes::_ldc_w:
1032   case Bytecodes::_ldc2_w:
1033     inputs = 0;
1034     break;
1035 
1036   case Bytecodes::_dup:         inputs = 1;  break;
1037   case Bytecodes::_dup_x1:      inputs = 2;  break;
1038   case Bytecodes::_dup_x2:      inputs = 3;  break;
1039   case Bytecodes::_dup2:        inputs = 2;  break;
1040   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1041   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1042   case Bytecodes::_swap:        inputs = 2;  break;
1043   case Bytecodes::_arraylength: inputs = 1;  break;
1044 
1045   case Bytecodes::_getstatic:
1046   case Bytecodes::_putstatic:
1047   case Bytecodes::_getfield:
1048   case Bytecodes::_putfield:
1049     {
1050       bool ignored_will_link;
1051       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1052       int      size  = field->type()->size();
1053       bool is_get = (depth >= 0), is_static = (depth & 1);
1054       inputs = (is_static ? 0 : 1);
1055       if (is_get) {
1056         depth = size - inputs;
1057       } else {
1058         inputs += size;        // putxxx pops the value from the stack
1059         depth = - inputs;
1060       }
1061     }
1062     break;
1063 
1064   case Bytecodes::_invokevirtual:
1065   case Bytecodes::_invokespecial:
1066   case Bytecodes::_invokestatic:
1067   case Bytecodes::_invokedynamic:
1068   case Bytecodes::_invokeinterface:
1069     {
1070       bool ignored_will_link;
1071       ciSignature* declared_signature = NULL;
1072       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1073       assert(declared_signature != NULL, "cannot be null");
1074       inputs   = declared_signature->arg_size_for_bc(code);
1075       int size = declared_signature->return_type()->size();
1076       depth = size - inputs;
1077     }
1078     break;
1079 
1080   case Bytecodes::_multianewarray:
1081     {
1082       ciBytecodeStream iter(method());
1083       iter.reset_to_bci(bci());
1084       iter.next();
1085       inputs = iter.get_dimensions();
1086       assert(rsize == 1, "");
1087       depth = rsize - inputs;
1088     }
1089     break;
1090 
1091   case Bytecodes::_withfield: {
1092     bool ignored_will_link;
1093     ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1094     int      size  = field->type()->size();
1095     inputs = size+1;
1096     depth = rsize - inputs;
1097     break;
1098   }
1099 
1100   case Bytecodes::_ireturn:
1101   case Bytecodes::_lreturn:
1102   case Bytecodes::_freturn:
1103   case Bytecodes::_dreturn:
1104   case Bytecodes::_areturn:
1105     assert(rsize == -depth, "");
1106     inputs = rsize;
1107     break;
1108 
1109   case Bytecodes::_jsr:
1110   case Bytecodes::_jsr_w:
1111     inputs = 0;
1112     depth  = 1;                  // S.B. depth=1, not zero
1113     break;
1114 
1115   default:
1116     // bytecode produces a typed result
1117     inputs = rsize - depth;
1118     assert(inputs >= 0, "");
1119     break;
1120   }
1121 
1122 #ifdef ASSERT
1123   // spot check
1124   int outputs = depth + inputs;
1125   assert(outputs >= 0, "sanity");
1126   switch (code) {
1127   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1128   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1129   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1130   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1131   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1132   default:                    break;
1133   }
1134 #endif //ASSERT
1135 
1136   return true;
1137 }
1138 
1139 
1140 
1141 //------------------------------basic_plus_adr---------------------------------
1142 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1143   // short-circuit a common case
1144   if (offset == intcon(0))  return ptr;
1145   return _gvn.transform( new AddPNode(base, ptr, offset) );
1146 }
1147 
1148 Node* GraphKit::ConvI2L(Node* offset) {
1149   // short-circuit a common case
1150   jint offset_con = find_int_con(offset, Type::OffsetBot);
1151   if (offset_con != Type::OffsetBot) {
1152     return longcon((jlong) offset_con);
1153   }
1154   return _gvn.transform( new ConvI2LNode(offset));
1155 }
1156 
1157 Node* GraphKit::ConvI2UL(Node* offset) {
1158   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1159   if (offset_con != (juint) Type::OffsetBot) {
1160     return longcon((julong) offset_con);
1161   }
1162   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1163   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1164   return _gvn.transform( new AndLNode(conv, mask) );
1165 }
1166 
1167 Node* GraphKit::ConvL2I(Node* offset) {
1168   // short-circuit a common case
1169   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1170   if (offset_con != (jlong)Type::OffsetBot) {
1171     return intcon((int) offset_con);
1172   }
1173   return _gvn.transform( new ConvL2INode(offset));
1174 }
1175 
1176 //-------------------------load_object_klass-----------------------------------
1177 Node* GraphKit::load_object_klass(Node* obj) {
1178   // Special-case a fresh allocation to avoid building nodes:
1179   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1180   if (akls != NULL)  return akls;
1181   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1182   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1183 }
1184 
1185 //-------------------------load_array_length-----------------------------------
1186 Node* GraphKit::load_array_length(Node* array) {
1187   // Special-case a fresh allocation to avoid building nodes:
1188   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1189   Node *alen;
1190   if (alloc == NULL) {
1191     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1192     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1193   } else {
1194     alen = alloc->Ideal_length();
1195     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1196     if (ccast != alen) {
1197       alen = _gvn.transform(ccast);
1198     }
1199   }
1200   return alen;
1201 }
1202 
1203 //------------------------------do_null_check----------------------------------
1204 // Helper function to do a NULL pointer check.  Returned value is
1205 // the incoming address with NULL casted away.  You are allowed to use the
1206 // not-null value only if you are control dependent on the test.
1207 #ifndef PRODUCT
1208 extern int explicit_null_checks_inserted,
1209            explicit_null_checks_elided;
1210 #endif
1211 Node* GraphKit::null_check_common(Node* value, BasicType type,
1212                                   // optional arguments for variations:
1213                                   bool assert_null,
1214                                   Node* *null_control,
1215                                   bool speculative) {
1216   assert(!assert_null || null_control == NULL, "not both at once");
1217   if (stopped())  return top();
1218   NOT_PRODUCT(explicit_null_checks_inserted++);
1219 
1220   // Construct NULL check
1221   Node *chk = NULL;
1222   switch(type) {
1223     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1224     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1225     case T_VALUETYPE : // fall through
1226     case T_ARRAY  : // fall through
1227       type = T_OBJECT;  // simplify further tests
1228     case T_OBJECT : {
1229       const Type *t = _gvn.type( value );
1230 
1231       const TypeOopPtr* tp = t->isa_oopptr();
1232       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1233           // Only for do_null_check, not any of its siblings:
1234           && !assert_null && null_control == NULL) {
1235         // Usually, any field access or invocation on an unloaded oop type
1236         // will simply fail to link, since the statically linked class is
1237         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1238         // the static class is loaded but the sharper oop type is not.
1239         // Rather than checking for this obscure case in lots of places,
1240         // we simply observe that a null check on an unloaded class
1241         // will always be followed by a nonsense operation, so we
1242         // can just issue the uncommon trap here.
1243         // Our access to the unloaded class will only be correct
1244         // after it has been loaded and initialized, which requires
1245         // a trip through the interpreter.
1246 #ifndef PRODUCT
1247         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1248 #endif
1249         uncommon_trap(Deoptimization::Reason_unloaded,
1250                       Deoptimization::Action_reinterpret,
1251                       tp->klass(), "!loaded");
1252         return top();
1253       }
1254 
1255       if (assert_null) {
1256         // See if the type is contained in NULL_PTR.
1257         // If so, then the value is already null.
1258         if (t->higher_equal(TypePtr::NULL_PTR)) {
1259           NOT_PRODUCT(explicit_null_checks_elided++);
1260           return value;           // Elided null assert quickly!
1261         }
1262       } else {
1263         // See if mixing in the NULL pointer changes type.
1264         // If so, then the NULL pointer was not allowed in the original
1265         // type.  In other words, "value" was not-null.
1266         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1267           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1268           NOT_PRODUCT(explicit_null_checks_elided++);
1269           return value;           // Elided null check quickly!
1270         }
1271       }
1272       chk = new CmpPNode( value, null() );
1273       break;
1274     }
1275 
1276     default:
1277       fatal("unexpected type: %s", type2name(type));
1278   }
1279   assert(chk != NULL, "sanity check");
1280   chk = _gvn.transform(chk);
1281 
1282   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1283   BoolNode *btst = new BoolNode( chk, btest);
1284   Node   *tst = _gvn.transform( btst );
1285 
1286   //-----------
1287   // if peephole optimizations occurred, a prior test existed.
1288   // If a prior test existed, maybe it dominates as we can avoid this test.
1289   if (tst != btst && type == T_OBJECT) {
1290     // At this point we want to scan up the CFG to see if we can
1291     // find an identical test (and so avoid this test altogether).
1292     Node *cfg = control();
1293     int depth = 0;
1294     while( depth < 16 ) {       // Limit search depth for speed
1295       if( cfg->Opcode() == Op_IfTrue &&
1296           cfg->in(0)->in(1) == tst ) {
1297         // Found prior test.  Use "cast_not_null" to construct an identical
1298         // CastPP (and hence hash to) as already exists for the prior test.
1299         // Return that casted value.
1300         if (assert_null) {
1301           replace_in_map(value, null());
1302           return null();  // do not issue the redundant test
1303         }
1304         Node *oldcontrol = control();
1305         set_control(cfg);
1306         Node *res = cast_not_null(value);
1307         set_control(oldcontrol);
1308         NOT_PRODUCT(explicit_null_checks_elided++);
1309         return res;
1310       }
1311       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1312       if (cfg == NULL)  break;  // Quit at region nodes
1313       depth++;
1314     }
1315   }
1316 
1317   //-----------
1318   // Branch to failure if null
1319   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1320   Deoptimization::DeoptReason reason;
1321   if (assert_null) {
1322     reason = Deoptimization::reason_null_assert(speculative);
1323   } else if (type == T_OBJECT) {
1324     reason = Deoptimization::reason_null_check(speculative);
1325   } else {
1326     reason = Deoptimization::Reason_div0_check;
1327   }
1328   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1329   // ciMethodData::has_trap_at will return a conservative -1 if any
1330   // must-be-null assertion has failed.  This could cause performance
1331   // problems for a method after its first do_null_assert failure.
1332   // Consider using 'Reason_class_check' instead?
1333 
1334   // To cause an implicit null check, we set the not-null probability
1335   // to the maximum (PROB_MAX).  For an explicit check the probability
1336   // is set to a smaller value.
1337   if (null_control != NULL || too_many_traps(reason)) {
1338     // probability is less likely
1339     ok_prob =  PROB_LIKELY_MAG(3);
1340   } else if (!assert_null &&
1341              (ImplicitNullCheckThreshold > 0) &&
1342              method() != NULL &&
1343              (method()->method_data()->trap_count(reason)
1344               >= (uint)ImplicitNullCheckThreshold)) {
1345     ok_prob =  PROB_LIKELY_MAG(3);
1346   }
1347 
1348   if (null_control != NULL) {
1349     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1350     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1351     set_control(      _gvn.transform( new IfTrueNode(iff)));
1352 #ifndef PRODUCT
1353     if (null_true == top()) {
1354       explicit_null_checks_elided++;
1355     }
1356 #endif
1357     (*null_control) = null_true;
1358   } else {
1359     BuildCutout unless(this, tst, ok_prob);
1360     // Check for optimizer eliding test at parse time
1361     if (stopped()) {
1362       // Failure not possible; do not bother making uncommon trap.
1363       NOT_PRODUCT(explicit_null_checks_elided++);
1364     } else if (assert_null) {
1365       uncommon_trap(reason,
1366                     Deoptimization::Action_make_not_entrant,
1367                     NULL, "assert_null");
1368     } else {
1369       replace_in_map(value, zerocon(type));
1370       builtin_throw(reason);
1371     }
1372   }
1373 
1374   // Must throw exception, fall-thru not possible?
1375   if (stopped()) {
1376     return top();               // No result
1377   }
1378 
1379   if (assert_null) {
1380     // Cast obj to null on this path.
1381     replace_in_map(value, zerocon(type));
1382     return zerocon(type);
1383   }
1384 
1385   // Cast obj to not-null on this path, if there is no null_control.
1386   // (If there is a null_control, a non-null value may come back to haunt us.)
1387   if (type == T_OBJECT) {
1388     Node* cast = cast_not_null(value, false);
1389     if (null_control == NULL || (*null_control) == top())
1390       replace_in_map(value, cast);
1391     value = cast;
1392   }
1393 
1394   return value;
1395 }
1396 
1397 Node* GraphKit::null2default(Node* value, ciValueKlass* vk) {
1398   Node* null_ctl = top();
1399   value = null_check_oop(value, &null_ctl);
1400   if (!null_ctl->is_top()) {
1401     // Return default value if oop is null
1402     Node* region = new RegionNode(3);
1403     region->init_req(1, control());
1404     region->init_req(2, null_ctl);
1405     value = PhiNode::make(region, value, TypeInstPtr::make(TypePtr::BotPTR, vk));
1406     value->set_req(2, ValueTypeNode::default_oop(gvn(), vk));
1407     set_control(gvn().transform(region));
1408     value = gvn().transform(value);
1409   }
1410   return value;
1411 }
1412 
1413 //------------------------------cast_not_null----------------------------------
1414 // Cast obj to not-null on this path
1415 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1416   if (obj->is_ValueType()) {
1417     return obj;
1418   }
1419   const Type *t = _gvn.type(obj);
1420   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1421   // Object is already not-null?
1422   if( t == t_not_null ) return obj;
1423 
1424   Node *cast = new CastPPNode(obj,t_not_null);
1425   cast->init_req(0, control());
1426   cast = _gvn.transform( cast );
1427 
1428   // Scan for instances of 'obj' in the current JVM mapping.
1429   // These instances are known to be not-null after the test.
1430   if (do_replace_in_map)
1431     replace_in_map(obj, cast);
1432 
1433   return cast;                  // Return casted value
1434 }
1435 
1436 // Sometimes in intrinsics, we implicitly know an object is not null
1437 // (there's no actual null check) so we can cast it to not null. In
1438 // the course of optimizations, the input to the cast can become null.
1439 // In that case that data path will die and we need the control path
1440 // to become dead as well to keep the graph consistent. So we have to
1441 // add a check for null for which one branch can't be taken. It uses
1442 // an Opaque4 node that will cause the check to be removed after loop
1443 // opts so the test goes away and the compiled code doesn't execute a
1444 // useless check.
1445 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1446   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1447   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1448   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1449   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1450   _gvn.set_type(iff, iff->Value(&_gvn));
1451   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1452   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1453   Node *halt = _gvn.transform(new HaltNode(if_f, frame));
1454   C->root()->add_req(halt);
1455   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1456   set_control(if_t);
1457   return cast_not_null(value, do_replace_in_map);
1458 }
1459 
1460 
1461 //--------------------------replace_in_map-------------------------------------
1462 void GraphKit::replace_in_map(Node* old, Node* neww) {
1463   if (old == neww) {
1464     return;
1465   }
1466 
1467   map()->replace_edge(old, neww);
1468 
1469   // Note: This operation potentially replaces any edge
1470   // on the map.  This includes locals, stack, and monitors
1471   // of the current (innermost) JVM state.
1472 
1473   // don't let inconsistent types from profiling escape this
1474   // method
1475 
1476   const Type* told = _gvn.type(old);
1477   const Type* tnew = _gvn.type(neww);
1478 
1479   if (!tnew->higher_equal(told)) {
1480     return;
1481   }
1482 
1483   map()->record_replaced_node(old, neww);
1484 }
1485 
1486 
1487 //=============================================================================
1488 //--------------------------------memory---------------------------------------
1489 Node* GraphKit::memory(uint alias_idx) {
1490   MergeMemNode* mem = merged_memory();
1491   Node* p = mem->memory_at(alias_idx);
1492   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1493   return p;
1494 }
1495 
1496 //-----------------------------reset_memory------------------------------------
1497 Node* GraphKit::reset_memory() {
1498   Node* mem = map()->memory();
1499   // do not use this node for any more parsing!
1500   debug_only( map()->set_memory((Node*)NULL) );
1501   return _gvn.transform( mem );
1502 }
1503 
1504 //------------------------------set_all_memory---------------------------------
1505 void GraphKit::set_all_memory(Node* newmem) {
1506   Node* mergemem = MergeMemNode::make(newmem);
1507   gvn().set_type_bottom(mergemem);
1508   map()->set_memory(mergemem);
1509 }
1510 
1511 //------------------------------set_all_memory_call----------------------------
1512 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1513   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1514   set_all_memory(newmem);
1515 }
1516 
1517 //=============================================================================
1518 //
1519 // parser factory methods for MemNodes
1520 //
1521 // These are layered on top of the factory methods in LoadNode and StoreNode,
1522 // and integrate with the parser's memory state and _gvn engine.
1523 //
1524 
1525 // factory methods in "int adr_idx"
1526 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1527                           int adr_idx,
1528                           MemNode::MemOrd mo,
1529                           LoadNode::ControlDependency control_dependency,
1530                           bool require_atomic_access,
1531                           bool unaligned,
1532                           bool mismatched) {
1533   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1534   const TypePtr* adr_type = NULL; // debug-mode-only argument
1535   debug_only(adr_type = C->get_adr_type(adr_idx));
1536   Node* mem = memory(adr_idx);
1537   Node* ld;
1538   if (require_atomic_access && bt == T_LONG) {
1539     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1540   } else if (require_atomic_access && bt == T_DOUBLE) {
1541     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1542   } else {
1543     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1544   }
1545   ld = _gvn.transform(ld);
1546 
1547   if (((bt == T_OBJECT || bt == T_VALUETYPE) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1548     // Improve graph before escape analysis and boxing elimination.
1549     record_for_igvn(ld);
1550   }
1551   return ld;
1552 }
1553 
1554 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1555                                 int adr_idx,
1556                                 MemNode::MemOrd mo,
1557                                 bool require_atomic_access,
1558                                 bool unaligned,
1559                                 bool mismatched) {
1560   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1561   const TypePtr* adr_type = NULL;
1562   debug_only(adr_type = C->get_adr_type(adr_idx));
1563   Node *mem = memory(adr_idx);
1564   Node* st;
1565   if (require_atomic_access && bt == T_LONG) {
1566     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1567   } else if (require_atomic_access && bt == T_DOUBLE) {
1568     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1569   } else {
1570     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1571   }
1572   if (unaligned) {
1573     st->as_Store()->set_unaligned_access();
1574   }
1575   if (mismatched) {
1576     st->as_Store()->set_mismatched_access();
1577   }
1578   st = _gvn.transform(st);
1579   set_memory(st, adr_idx);
1580   // Back-to-back stores can only remove intermediate store with DU info
1581   // so push on worklist for optimizer.
1582   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1583     record_for_igvn(st);
1584 
1585   return st;
1586 }
1587 
1588 Node* GraphKit::access_store_at(Node* obj,
1589                                 Node* adr,
1590                                 const TypePtr* adr_type,
1591                                 Node* val,
1592                                 const Type* val_type,
1593                                 BasicType bt,
1594                                 DecoratorSet decorators,
1595                                 bool deoptimize_on_exception) {
1596   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1597   // could be delayed during Parse (for example, in adjust_map_after_if()).
1598   // Execute transformation here to avoid barrier generation in such case.
1599   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1600     val = _gvn.makecon(TypePtr::NULL_PTR);
1601   }
1602 
1603   if (stopped()) {
1604     return top(); // Dead path ?
1605   }
1606 
1607   assert(val != NULL, "not dead path");
1608   if (val->is_ValueType()) {
1609     // Allocate value type and get oop
1610     val = val->as_ValueType()->allocate(this, deoptimize_on_exception)->get_oop();
1611   }
1612 
1613   C2AccessValuePtr addr(adr, adr_type);
1614   C2AccessValue value(val, val_type);
1615   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1616   if (access.is_raw()) {
1617     return _barrier_set->BarrierSetC2::store_at(access, value);
1618   } else {
1619     return _barrier_set->store_at(access, value);
1620   }
1621 }
1622 
1623 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1624                                Node* adr,   // actual adress to store val at
1625                                const TypePtr* adr_type,
1626                                const Type* val_type,
1627                                BasicType bt,
1628                                DecoratorSet decorators) {
1629   if (stopped()) {
1630     return top(); // Dead path ?
1631   }
1632 
1633   C2AccessValuePtr addr(adr, adr_type);
1634   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1635   if (access.is_raw()) {
1636     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1637   } else {
1638     return _barrier_set->load_at(access, val_type);
1639   }
1640 }
1641 
1642 Node* GraphKit::access_load(Node* adr,   // actual adress to load val at
1643                             const Type* val_type,
1644                             BasicType bt,
1645                             DecoratorSet decorators) {
1646   if (stopped()) {
1647     return top(); // Dead path ?
1648   }
1649 
1650   C2AccessValuePtr addr(adr, NULL);
1651   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, NULL, addr);
1652   if (access.is_raw()) {
1653     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1654   } else {
1655     return _barrier_set->load_at(access, val_type);
1656   }
1657 }
1658 
1659 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1660                                              Node* adr,
1661                                              const TypePtr* adr_type,
1662                                              int alias_idx,
1663                                              Node* expected_val,
1664                                              Node* new_val,
1665                                              const Type* value_type,
1666                                              BasicType bt,
1667                                              DecoratorSet decorators) {
1668   C2AccessValuePtr addr(adr, adr_type);
1669   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1670                         bt, obj, addr, alias_idx);
1671   if (access.is_raw()) {
1672     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1673   } else {
1674     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1675   }
1676 }
1677 
1678 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1679                                               Node* adr,
1680                                               const TypePtr* adr_type,
1681                                               int alias_idx,
1682                                               Node* expected_val,
1683                                               Node* new_val,
1684                                               const Type* value_type,
1685                                               BasicType bt,
1686                                               DecoratorSet decorators) {
1687   C2AccessValuePtr addr(adr, adr_type);
1688   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1689                         bt, obj, addr, alias_idx);
1690   if (access.is_raw()) {
1691     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1692   } else {
1693     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1694   }
1695 }
1696 
1697 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1698                                       Node* adr,
1699                                       const TypePtr* adr_type,
1700                                       int alias_idx,
1701                                       Node* new_val,
1702                                       const Type* value_type,
1703                                       BasicType bt,
1704                                       DecoratorSet decorators) {
1705   C2AccessValuePtr addr(adr, adr_type);
1706   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1707                         bt, obj, addr, alias_idx);
1708   if (access.is_raw()) {
1709     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1710   } else {
1711     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1712   }
1713 }
1714 
1715 Node* GraphKit::access_atomic_add_at(Node* obj,
1716                                      Node* adr,
1717                                      const TypePtr* adr_type,
1718                                      int alias_idx,
1719                                      Node* new_val,
1720                                      const Type* value_type,
1721                                      BasicType bt,
1722                                      DecoratorSet decorators) {
1723   C2AccessValuePtr addr(adr, adr_type);
1724   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1725   if (access.is_raw()) {
1726     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1727   } else {
1728     return _barrier_set->atomic_add_at(access, new_val, value_type);
1729   }
1730 }
1731 
1732 void GraphKit::access_clone(Node* src_base, Node* dst_base, Node* countx, bool is_array) {
1733   return _barrier_set->clone(this, src_base, dst_base, countx, is_array);
1734 }
1735 
1736 Node* GraphKit::access_resolve(Node* n, DecoratorSet decorators) {
1737   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1738   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1739     decorators |= ACCESS_READ | ACCESS_WRITE;
1740   }
1741   return _barrier_set->resolve(this, n, decorators);
1742 }
1743 
1744 //-------------------------array_element_address-------------------------
1745 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1746                                       const TypeInt* sizetype, Node* ctrl) {
1747   uint shift  = exact_log2(type2aelembytes(elembt));
1748   ciKlass* arytype_klass = _gvn.type(ary)->is_aryptr()->klass();
1749   if (arytype_klass->is_value_array_klass()) {
1750     ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
1751     shift = vak->log2_element_size();
1752   }
1753   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1754 
1755   // short-circuit a common case (saves lots of confusing waste motion)
1756   jint idx_con = find_int_con(idx, -1);
1757   if (idx_con >= 0) {
1758     intptr_t offset = header + ((intptr_t)idx_con << shift);
1759     return basic_plus_adr(ary, offset);
1760   }
1761 
1762   // must be correct type for alignment purposes
1763   Node* base  = basic_plus_adr(ary, header);
1764   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1765   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1766   return basic_plus_adr(ary, base, scale);
1767 }
1768 
1769 //-------------------------load_array_element-------------------------
1770 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1771   const Type* elemtype = arytype->elem();
1772   BasicType elembt = elemtype->array_element_basic_type();
1773   assert(elembt != T_VALUETYPE, "value types are not supported by this method");
1774   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1775   if (elembt == T_NARROWOOP) {
1776     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1777   }
1778   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1779   return ld;
1780 }
1781 
1782 //-------------------------set_arguments_for_java_call-------------------------
1783 // Arguments (pre-popped from the stack) are taken from the JVMS.
1784 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1785   // Add the call arguments:
1786   const TypeTuple* domain = call->tf()->domain_sig();
1787   uint nargs = domain->cnt();
1788   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1789     Node* arg = argument(i-TypeFunc::Parms);
1790     const Type* t = domain->field_at(i);
1791     if (arg->is_ValueType()) {
1792       assert(t->is_oopptr()->can_be_value_type(), "wrong argument type");
1793       ValueTypeNode* vt = arg->as_ValueType();
1794       // TODO for now, don't scalarize value type receivers because of interface calls
1795       if (call->method()->get_Method()->has_scalarized_args() && t->is_valuetypeptr() && !t->maybe_null() && (call->method()->is_static() || i != TypeFunc::Parms)) {
1796         // We don't pass value type arguments by reference but instead
1797         // pass each field of the value type
1798         idx += vt->pass_fields(call, idx, *this);
1799         // If a value type argument is passed as fields, attach the Method* to the call site
1800         // to be able to access the extended signature later via attached_method_before_pc().
1801         // For example, see CompiledMethod::preserve_callee_argument_oops().
1802         call->set_override_symbolic_info(true);
1803         continue;
1804       } else {
1805         // Pass value type argument via oop to callee
1806         arg = vt->allocate(this)->get_oop();
1807       }
1808     }
1809     call->init_req(idx++, arg);
1810 
1811     SigEntry res_entry = call->method()->get_Method()->get_res_entry();
1812     if ((int)(idx - TypeFunc::Parms) == res_entry._offset) {
1813       // Skip reserved entry
1814       call->init_req(idx++, top());
1815       if (res_entry._bt == T_DOUBLE || res_entry._bt == T_LONG) {
1816         call->init_req(idx++, top());
1817       }
1818     }
1819   }
1820 }
1821 
1822 //---------------------------set_edges_for_java_call---------------------------
1823 // Connect a newly created call into the current JVMS.
1824 // A return value node (if any) is returned from set_edges_for_java_call.
1825 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1826 
1827   // Add the predefined inputs:
1828   call->init_req( TypeFunc::Control, control() );
1829   call->init_req( TypeFunc::I_O    , i_o() );
1830   call->init_req( TypeFunc::Memory , reset_memory() );
1831   call->init_req( TypeFunc::FramePtr, frameptr() );
1832   call->init_req( TypeFunc::ReturnAdr, top() );
1833 
1834   add_safepoint_edges(call, must_throw);
1835 
1836   Node* xcall = _gvn.transform(call);
1837 
1838   if (xcall == top()) {
1839     set_control(top());
1840     return;
1841   }
1842   assert(xcall == call, "call identity is stable");
1843 
1844   // Re-use the current map to produce the result.
1845 
1846   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1847   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1848   set_all_memory_call(xcall, separate_io_proj);
1849 
1850   //return xcall;   // no need, caller already has it
1851 }
1852 
1853 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1854   if (stopped())  return top();  // maybe the call folded up?
1855 
1856   // Note:  Since any out-of-line call can produce an exception,
1857   // we always insert an I_O projection from the call into the result.
1858 
1859   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1860 
1861   if (separate_io_proj) {
1862     // The caller requested separate projections be used by the fall
1863     // through and exceptional paths, so replace the projections for
1864     // the fall through path.
1865     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1866     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1867   }
1868 
1869   // Capture the return value, if any.
1870   Node* ret;
1871   if (call->method() == NULL ||
1872       call->method()->return_type()->basic_type() == T_VOID) {
1873     ret = top();
1874   } else if (call->tf()->returns_value_type_as_fields()) {
1875     // Return of multiple values (value type fields): we create a
1876     // ValueType node, each field is a projection from the call.
1877     const TypeTuple* range_sig = call->tf()->range_sig();
1878     const Type* t = range_sig->field_at(TypeFunc::Parms);
1879     uint base_input = TypeFunc::Parms + 1;
1880     ret = ValueTypeNode::make_from_multi(this, call, t->value_klass(), base_input, false);
1881   } else {
1882     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1883   }
1884 
1885   return ret;
1886 }
1887 
1888 //--------------------set_predefined_input_for_runtime_call--------------------
1889 // Reading and setting the memory state is way conservative here.
1890 // The real problem is that I am not doing real Type analysis on memory,
1891 // so I cannot distinguish card mark stores from other stores.  Across a GC
1892 // point the Store Barrier and the card mark memory has to agree.  I cannot
1893 // have a card mark store and its barrier split across the GC point from
1894 // either above or below.  Here I get that to happen by reading ALL of memory.
1895 // A better answer would be to separate out card marks from other memory.
1896 // For now, return the input memory state, so that it can be reused
1897 // after the call, if this call has restricted memory effects.
1898 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1899   // Set fixed predefined input arguments
1900   Node* memory = reset_memory();
1901   Node* m = narrow_mem == NULL ? memory : narrow_mem;
1902   call->init_req( TypeFunc::Control,   control()  );
1903   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1904   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
1905   call->init_req( TypeFunc::FramePtr,  frameptr() );
1906   call->init_req( TypeFunc::ReturnAdr, top()      );
1907   return memory;
1908 }
1909 
1910 //-------------------set_predefined_output_for_runtime_call--------------------
1911 // Set control and memory (not i_o) from the call.
1912 // If keep_mem is not NULL, use it for the output state,
1913 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1914 // If hook_mem is NULL, this call produces no memory effects at all.
1915 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1916 // then only that memory slice is taken from the call.
1917 // In the last case, we must put an appropriate memory barrier before
1918 // the call, so as to create the correct anti-dependencies on loads
1919 // preceding the call.
1920 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1921                                                       Node* keep_mem,
1922                                                       const TypePtr* hook_mem) {
1923   // no i/o
1924   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1925   if (keep_mem) {
1926     // First clone the existing memory state
1927     set_all_memory(keep_mem);
1928     if (hook_mem != NULL) {
1929       // Make memory for the call
1930       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1931       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1932       // We also use hook_mem to extract specific effects from arraycopy stubs.
1933       set_memory(mem, hook_mem);
1934     }
1935     // ...else the call has NO memory effects.
1936 
1937     // Make sure the call advertises its memory effects precisely.
1938     // This lets us build accurate anti-dependences in gcm.cpp.
1939     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1940            "call node must be constructed correctly");
1941   } else {
1942     assert(hook_mem == NULL, "");
1943     // This is not a "slow path" call; all memory comes from the call.
1944     set_all_memory_call(call);
1945   }
1946 }
1947 
1948 
1949 // Replace the call with the current state of the kit.
1950 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1951   JVMState* ejvms = NULL;
1952   if (has_exceptions()) {
1953     ejvms = transfer_exceptions_into_jvms();
1954   }
1955 
1956   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1957   ReplacedNodes replaced_nodes_exception;
1958   Node* ex_ctl = top();
1959 
1960   SafePointNode* final_state = stop();
1961 
1962   // Find all the needed outputs of this call
1963   CallProjections* callprojs = call->extract_projections(true);
1964 
1965   Node* init_mem = call->in(TypeFunc::Memory);
1966   Node* final_mem = final_state->in(TypeFunc::Memory);
1967   Node* final_ctl = final_state->in(TypeFunc::Control);
1968   Node* final_io = final_state->in(TypeFunc::I_O);
1969 
1970   // Replace all the old call edges with the edges from the inlining result
1971   if (callprojs->fallthrough_catchproj != NULL) {
1972     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
1973   }
1974   if (callprojs->fallthrough_memproj != NULL) {
1975     if (final_mem->is_MergeMem()) {
1976       // Parser's exits MergeMem was not transformed but may be optimized
1977       final_mem = _gvn.transform(final_mem);
1978     }
1979     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
1980   }
1981   if (callprojs->fallthrough_ioproj != NULL) {
1982     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
1983   }
1984 
1985   // Replace the result with the new result if it exists and is used
1986   if (callprojs->resproj[0] != NULL && result != NULL) {
1987     assert(callprojs->nb_resproj == 1, "unexpected number of results");
1988     C->gvn_replace_by(callprojs->resproj[0], result);
1989   }
1990 
1991   if (ejvms == NULL) {
1992     // No exception edges to simply kill off those paths
1993     if (callprojs->catchall_catchproj != NULL) {
1994       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
1995     }
1996     if (callprojs->catchall_memproj != NULL) {
1997       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
1998     }
1999     if (callprojs->catchall_ioproj != NULL) {
2000       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2001     }
2002     // Replace the old exception object with top
2003     if (callprojs->exobj != NULL) {
2004       C->gvn_replace_by(callprojs->exobj, C->top());
2005     }
2006   } else {
2007     GraphKit ekit(ejvms);
2008 
2009     // Load my combined exception state into the kit, with all phis transformed:
2010     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2011     replaced_nodes_exception = ex_map->replaced_nodes();
2012 
2013     Node* ex_oop = ekit.use_exception_state(ex_map);
2014 
2015     if (callprojs->catchall_catchproj != NULL) {
2016       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2017       ex_ctl = ekit.control();
2018     }
2019     if (callprojs->catchall_memproj != NULL) {
2020       C->gvn_replace_by(callprojs->catchall_memproj,   ekit.reset_memory());
2021     }
2022     if (callprojs->catchall_ioproj != NULL) {
2023       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2024     }
2025 
2026     // Replace the old exception object with the newly created one
2027     if (callprojs->exobj != NULL) {
2028       C->gvn_replace_by(callprojs->exobj, ex_oop);
2029     }
2030   }
2031 
2032   // Disconnect the call from the graph
2033   call->disconnect_inputs(NULL, C);
2034   C->gvn_replace_by(call, C->top());
2035 
2036   // Clean up any MergeMems that feed other MergeMems since the
2037   // optimizer doesn't like that.
2038   if (final_mem->is_MergeMem()) {
2039     Node_List wl;
2040     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
2041       Node* m = i.get();
2042       if (m->is_MergeMem() && !wl.contains(m)) {
2043         wl.push(m);
2044       }
2045     }
2046     while (wl.size()  > 0) {
2047       _gvn.transform(wl.pop());
2048     }
2049   }
2050 
2051   if (callprojs->fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
2052     replaced_nodes.apply(C, final_ctl);
2053   }
2054   if (!ex_ctl->is_top() && do_replaced_nodes) {
2055     replaced_nodes_exception.apply(C, ex_ctl);
2056   }
2057 }
2058 
2059 
2060 //------------------------------increment_counter------------------------------
2061 // for statistics: increment a VM counter by 1
2062 
2063 void GraphKit::increment_counter(address counter_addr) {
2064   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2065   increment_counter(adr1);
2066 }
2067 
2068 void GraphKit::increment_counter(Node* counter_addr) {
2069   int adr_type = Compile::AliasIdxRaw;
2070   Node* ctrl = control();
2071   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2072   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
2073   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
2074 }
2075 
2076 
2077 //------------------------------uncommon_trap----------------------------------
2078 // Bail out to the interpreter in mid-method.  Implemented by calling the
2079 // uncommon_trap blob.  This helper function inserts a runtime call with the
2080 // right debug info.
2081 void GraphKit::uncommon_trap(int trap_request,
2082                              ciKlass* klass, const char* comment,
2083                              bool must_throw,
2084                              bool keep_exact_action) {
2085   if (failing())  stop();
2086   if (stopped())  return; // trap reachable?
2087 
2088   // Note:  If ProfileTraps is true, and if a deopt. actually
2089   // occurs here, the runtime will make sure an MDO exists.  There is
2090   // no need to call method()->ensure_method_data() at this point.
2091 
2092   // Set the stack pointer to the right value for reexecution:
2093   set_sp(reexecute_sp());
2094 
2095 #ifdef ASSERT
2096   if (!must_throw) {
2097     // Make sure the stack has at least enough depth to execute
2098     // the current bytecode.
2099     int inputs, ignored_depth;
2100     if (compute_stack_effects(inputs, ignored_depth)) {
2101       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2102              Bytecodes::name(java_bc()), sp(), inputs);
2103     }
2104   }
2105 #endif
2106 
2107   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2108   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2109 
2110   switch (action) {
2111   case Deoptimization::Action_maybe_recompile:
2112   case Deoptimization::Action_reinterpret:
2113     // Temporary fix for 6529811 to allow virtual calls to be sure they
2114     // get the chance to go from mono->bi->mega
2115     if (!keep_exact_action &&
2116         Deoptimization::trap_request_index(trap_request) < 0 &&
2117         too_many_recompiles(reason)) {
2118       // This BCI is causing too many recompilations.
2119       if (C->log() != NULL) {
2120         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2121                 Deoptimization::trap_reason_name(reason),
2122                 Deoptimization::trap_action_name(action));
2123       }
2124       action = Deoptimization::Action_none;
2125       trap_request = Deoptimization::make_trap_request(reason, action);
2126     } else {
2127       C->set_trap_can_recompile(true);
2128     }
2129     break;
2130   case Deoptimization::Action_make_not_entrant:
2131     C->set_trap_can_recompile(true);
2132     break;
2133   case Deoptimization::Action_none:
2134   case Deoptimization::Action_make_not_compilable:
2135     break;
2136   default:
2137 #ifdef ASSERT
2138     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2139 #endif
2140     break;
2141   }
2142 
2143   if (TraceOptoParse) {
2144     char buf[100];
2145     tty->print_cr("Uncommon trap %s at bci:%d",
2146                   Deoptimization::format_trap_request(buf, sizeof(buf),
2147                                                       trap_request), bci());
2148   }
2149 
2150   CompileLog* log = C->log();
2151   if (log != NULL) {
2152     int kid = (klass == NULL)? -1: log->identify(klass);
2153     log->begin_elem("uncommon_trap bci='%d'", bci());
2154     char buf[100];
2155     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2156                                                           trap_request));
2157     if (kid >= 0)         log->print(" klass='%d'", kid);
2158     if (comment != NULL)  log->print(" comment='%s'", comment);
2159     log->end_elem();
2160   }
2161 
2162   // Make sure any guarding test views this path as very unlikely
2163   Node *i0 = control()->in(0);
2164   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2165     IfNode *iff = i0->as_If();
2166     float f = iff->_prob;   // Get prob
2167     if (control()->Opcode() == Op_IfTrue) {
2168       if (f > PROB_UNLIKELY_MAG(4))
2169         iff->_prob = PROB_MIN;
2170     } else {
2171       if (f < PROB_LIKELY_MAG(4))
2172         iff->_prob = PROB_MAX;
2173     }
2174   }
2175 
2176   // Clear out dead values from the debug info.
2177   kill_dead_locals();
2178 
2179   // Now insert the uncommon trap subroutine call
2180   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2181   const TypePtr* no_memory_effects = NULL;
2182   // Pass the index of the class to be loaded
2183   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2184                                  (must_throw ? RC_MUST_THROW : 0),
2185                                  OptoRuntime::uncommon_trap_Type(),
2186                                  call_addr, "uncommon_trap", no_memory_effects,
2187                                  intcon(trap_request));
2188   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2189          "must extract request correctly from the graph");
2190   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2191 
2192   call->set_req(TypeFunc::ReturnAdr, returnadr());
2193   // The debug info is the only real input to this call.
2194 
2195   // Halt-and-catch fire here.  The above call should never return!
2196   HaltNode* halt = new HaltNode(control(), frameptr());
2197   _gvn.set_type_bottom(halt);
2198   root()->add_req(halt);
2199 
2200   stop_and_kill_map();
2201 }
2202 
2203 
2204 //--------------------------just_allocated_object------------------------------
2205 // Report the object that was just allocated.
2206 // It must be the case that there are no intervening safepoints.
2207 // We use this to determine if an object is so "fresh" that
2208 // it does not require card marks.
2209 Node* GraphKit::just_allocated_object(Node* current_control) {
2210   Node* ctrl = current_control;
2211   // Object::<init> is invoked after allocation, most of invoke nodes
2212   // will be reduced, but a region node is kept in parse time, we check
2213   // the pattern and skip the region node if it degraded to a copy.
2214   if (ctrl != NULL && ctrl->is_Region() && ctrl->req() == 2 &&
2215       ctrl->as_Region()->is_copy()) {
2216     ctrl = ctrl->as_Region()->is_copy();
2217   }
2218   if (C->recent_alloc_ctl() == ctrl) {
2219    return C->recent_alloc_obj();
2220   }
2221   return NULL;
2222 }
2223 
2224 
2225 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2226   // (Note:  TypeFunc::make has a cache that makes this fast.)
2227   const TypeFunc* tf    = TypeFunc::make(dest_method);
2228   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2229   for (int j = 0; j < nargs; j++) {
2230     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2231     if( targ->basic_type() == T_DOUBLE ) {
2232       // If any parameters are doubles, they must be rounded before
2233       // the call, dstore_rounding does gvn.transform
2234       Node *arg = argument(j);
2235       arg = dstore_rounding(arg);
2236       set_argument(j, arg);
2237     }
2238   }
2239 }
2240 
2241 /**
2242  * Record profiling data exact_kls for Node n with the type system so
2243  * that it can propagate it (speculation)
2244  *
2245  * @param n          node that the type applies to
2246  * @param exact_kls  type from profiling
2247  * @param maybe_null did profiling see null?
2248  *
2249  * @return           node with improved type
2250  */
2251 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2252   const Type* current_type = _gvn.type(n);
2253   assert(UseTypeSpeculation, "type speculation must be on");
2254 
2255   const TypePtr* speculative = current_type->speculative();
2256 
2257   // Should the klass from the profile be recorded in the speculative type?
2258   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2259     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2260     const TypeOopPtr* xtype = tklass->as_instance_type();
2261     assert(xtype->klass_is_exact(), "Should be exact");
2262     // Any reason to believe n is not null (from this profiling or a previous one)?
2263     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2264     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2265     // record the new speculative type's depth
2266     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2267     speculative = speculative->with_inline_depth(jvms()->depth());
2268   } else if (current_type->would_improve_ptr(ptr_kind)) {
2269     // Profiling report that null was never seen so we can change the
2270     // speculative type to non null ptr.
2271     if (ptr_kind == ProfileAlwaysNull) {
2272       speculative = TypePtr::NULL_PTR;
2273     } else {
2274       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2275       const TypePtr* ptr = TypePtr::NOTNULL;
2276       if (speculative != NULL) {
2277         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2278       } else {
2279         speculative = ptr;
2280       }
2281     }
2282   }
2283 
2284   if (speculative != current_type->speculative()) {
2285     // Build a type with a speculative type (what we think we know
2286     // about the type but will need a guard when we use it)
2287     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2288     // We're changing the type, we need a new CheckCast node to carry
2289     // the new type. The new type depends on the control: what
2290     // profiling tells us is only valid from here as far as we can
2291     // tell.
2292     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2293     cast = _gvn.transform(cast);
2294     replace_in_map(n, cast);
2295     n = cast;
2296   }
2297 
2298   return n;
2299 }
2300 
2301 /**
2302  * Record profiling data from receiver profiling at an invoke with the
2303  * type system so that it can propagate it (speculation)
2304  *
2305  * @param n  receiver node
2306  *
2307  * @return   node with improved type
2308  */
2309 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2310   if (!UseTypeSpeculation) {
2311     return n;
2312   }
2313   ciKlass* exact_kls = profile_has_unique_klass();
2314   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2315   if ((java_bc() == Bytecodes::_checkcast ||
2316        java_bc() == Bytecodes::_instanceof ||
2317        java_bc() == Bytecodes::_aastore) &&
2318       method()->method_data()->is_mature()) {
2319     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2320     if (data != NULL) {
2321       if (!data->as_BitData()->null_seen()) {
2322         ptr_kind = ProfileNeverNull;
2323       } else {
2324         assert(data->is_ReceiverTypeData(), "bad profile data type");
2325         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2326         uint i = 0;
2327         for (; i < call->row_limit(); i++) {
2328           ciKlass* receiver = call->receiver(i);
2329           if (receiver != NULL) {
2330             break;
2331           }
2332         }
2333         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2334       }
2335     }
2336   }
2337   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2338 }
2339 
2340 /**
2341  * Record profiling data from argument profiling at an invoke with the
2342  * type system so that it can propagate it (speculation)
2343  *
2344  * @param dest_method  target method for the call
2345  * @param bc           what invoke bytecode is this?
2346  */
2347 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2348   if (!UseTypeSpeculation) {
2349     return;
2350   }
2351   const TypeFunc* tf    = TypeFunc::make(dest_method);
2352   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2353   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2354   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2355     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2356     if (targ->isa_oopptr()) {
2357       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2358       ciKlass* better_type = NULL;
2359       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2360         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2361       }
2362       i++;
2363     }
2364   }
2365 }
2366 
2367 /**
2368  * Record profiling data from parameter profiling at an invoke with
2369  * the type system so that it can propagate it (speculation)
2370  */
2371 void GraphKit::record_profiled_parameters_for_speculation() {
2372   if (!UseTypeSpeculation) {
2373     return;
2374   }
2375   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2376     if (_gvn.type(local(i))->isa_oopptr()) {
2377       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2378       ciKlass* better_type = NULL;
2379       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2380         record_profile_for_speculation(local(i), better_type, ptr_kind);
2381       }
2382       j++;
2383     }
2384   }
2385 }
2386 
2387 /**
2388  * Record profiling data from return value profiling at an invoke with
2389  * the type system so that it can propagate it (speculation)
2390  */
2391 void GraphKit::record_profiled_return_for_speculation() {
2392   if (!UseTypeSpeculation) {
2393     return;
2394   }
2395   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2396   ciKlass* better_type = NULL;
2397   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2398     // If profiling reports a single type for the return value,
2399     // feed it to the type system so it can propagate it as a
2400     // speculative type
2401     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2402   }
2403 }
2404 
2405 void GraphKit::round_double_result(ciMethod* dest_method) {
2406   // A non-strict method may return a double value which has an extended
2407   // exponent, but this must not be visible in a caller which is 'strict'
2408   // If a strict caller invokes a non-strict callee, round a double result
2409 
2410   BasicType result_type = dest_method->return_type()->basic_type();
2411   assert( method() != NULL, "must have caller context");
2412   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2413     // Destination method's return value is on top of stack
2414     // dstore_rounding() does gvn.transform
2415     Node *result = pop_pair();
2416     result = dstore_rounding(result);
2417     push_pair(result);
2418   }
2419 }
2420 
2421 // rounding for strict float precision conformance
2422 Node* GraphKit::precision_rounding(Node* n) {
2423   return UseStrictFP && _method->flags().is_strict()
2424     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2425     ? _gvn.transform( new RoundFloatNode(0, n) )
2426     : n;
2427 }
2428 
2429 // rounding for strict double precision conformance
2430 Node* GraphKit::dprecision_rounding(Node *n) {
2431   return UseStrictFP && _method->flags().is_strict()
2432     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2433     ? _gvn.transform( new RoundDoubleNode(0, n) )
2434     : n;
2435 }
2436 
2437 // rounding for non-strict double stores
2438 Node* GraphKit::dstore_rounding(Node* n) {
2439   return Matcher::strict_fp_requires_explicit_rounding
2440     && UseSSE <= 1
2441     ? _gvn.transform( new RoundDoubleNode(0, n) )
2442     : n;
2443 }
2444 
2445 //=============================================================================
2446 // Generate a fast path/slow path idiom.  Graph looks like:
2447 // [foo] indicates that 'foo' is a parameter
2448 //
2449 //              [in]     NULL
2450 //                 \    /
2451 //                  CmpP
2452 //                  Bool ne
2453 //                   If
2454 //                  /  \
2455 //              True    False-<2>
2456 //              / |
2457 //             /  cast_not_null
2458 //           Load  |    |   ^
2459 //        [fast_test]   |   |
2460 // gvn to   opt_test    |   |
2461 //          /    \      |  <1>
2462 //      True     False  |
2463 //        |         \\  |
2464 //   [slow_call]     \[fast_result]
2465 //    Ctl   Val       \      \
2466 //     |               \      \
2467 //    Catch       <1>   \      \
2468 //   /    \        ^     \      \
2469 //  Ex    No_Ex    |      \      \
2470 //  |       \   \  |       \ <2>  \
2471 //  ...      \  [slow_res] |  |    \   [null_result]
2472 //            \         \--+--+---  |  |
2473 //             \           | /    \ | /
2474 //              --------Region     Phi
2475 //
2476 //=============================================================================
2477 // Code is structured as a series of driver functions all called 'do_XXX' that
2478 // call a set of helper functions.  Helper functions first, then drivers.
2479 
2480 //------------------------------null_check_oop---------------------------------
2481 // Null check oop.  Set null-path control into Region in slot 3.
2482 // Make a cast-not-nullness use the other not-null control.  Return cast.
2483 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2484                                bool never_see_null,
2485                                bool safe_for_replace,
2486                                bool speculative) {
2487   // Initial NULL check taken path
2488   (*null_control) = top();
2489   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2490 
2491   // Generate uncommon_trap:
2492   if (never_see_null && (*null_control) != top()) {
2493     // If we see an unexpected null at a check-cast we record it and force a
2494     // recompile; the offending check-cast will be compiled to handle NULLs.
2495     // If we see more than one offending BCI, then all checkcasts in the
2496     // method will be compiled to handle NULLs.
2497     PreserveJVMState pjvms(this);
2498     set_control(*null_control);
2499     replace_in_map(value, null());
2500     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2501     uncommon_trap(reason,
2502                   Deoptimization::Action_make_not_entrant);
2503     (*null_control) = top();    // NULL path is dead
2504   }
2505   if ((*null_control) == top() && safe_for_replace) {
2506     replace_in_map(value, cast);
2507   }
2508 
2509   // Cast away null-ness on the result
2510   return cast;
2511 }
2512 
2513 //------------------------------opt_iff----------------------------------------
2514 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2515 // Return slow-path control.
2516 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2517   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2518 
2519   // Fast path taken; set region slot 2
2520   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2521   region->init_req(2,fast_taken); // Capture fast-control
2522 
2523   // Fast path not-taken, i.e. slow path
2524   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2525   return slow_taken;
2526 }
2527 
2528 //-----------------------------make_runtime_call-------------------------------
2529 Node* GraphKit::make_runtime_call(int flags,
2530                                   const TypeFunc* call_type, address call_addr,
2531                                   const char* call_name,
2532                                   const TypePtr* adr_type,
2533                                   // The following parms are all optional.
2534                                   // The first NULL ends the list.
2535                                   Node* parm0, Node* parm1,
2536                                   Node* parm2, Node* parm3,
2537                                   Node* parm4, Node* parm5,
2538                                   Node* parm6, Node* parm7) {
2539   // Slow-path call
2540   bool is_leaf = !(flags & RC_NO_LEAF);
2541   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2542   if (call_name == NULL) {
2543     assert(!is_leaf, "must supply name for leaf");
2544     call_name = OptoRuntime::stub_name(call_addr);
2545   }
2546   CallNode* call;
2547   if (!is_leaf) {
2548     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2549                                            bci(), adr_type);
2550   } else if (flags & RC_NO_FP) {
2551     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2552   } else {
2553     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2554   }
2555 
2556   // The following is similar to set_edges_for_java_call,
2557   // except that the memory effects of the call are restricted to AliasIdxRaw.
2558 
2559   // Slow path call has no side-effects, uses few values
2560   bool wide_in  = !(flags & RC_NARROW_MEM);
2561   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2562 
2563   Node* prev_mem = NULL;
2564   if (wide_in) {
2565     prev_mem = set_predefined_input_for_runtime_call(call);
2566   } else {
2567     assert(!wide_out, "narrow in => narrow out");
2568     Node* narrow_mem = memory(adr_type);
2569     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2570   }
2571 
2572   // Hook each parm in order.  Stop looking at the first NULL.
2573   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2574   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2575   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2576   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2577   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2578   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2579   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2580   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2581     /* close each nested if ===> */  } } } } } } } }
2582   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2583 
2584   if (!is_leaf) {
2585     // Non-leaves can block and take safepoints:
2586     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2587   }
2588   // Non-leaves can throw exceptions:
2589   if (has_io) {
2590     call->set_req(TypeFunc::I_O, i_o());
2591   }
2592 
2593   if (flags & RC_UNCOMMON) {
2594     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2595     // (An "if" probability corresponds roughly to an unconditional count.
2596     // Sort of.)
2597     call->set_cnt(PROB_UNLIKELY_MAG(4));
2598   }
2599 
2600   Node* c = _gvn.transform(call);
2601   assert(c == call, "cannot disappear");
2602 
2603   if (wide_out) {
2604     // Slow path call has full side-effects.
2605     set_predefined_output_for_runtime_call(call);
2606   } else {
2607     // Slow path call has few side-effects, and/or sets few values.
2608     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2609   }
2610 
2611   if (has_io) {
2612     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2613   }
2614   return call;
2615 
2616 }
2617 
2618 //------------------------------merge_memory-----------------------------------
2619 // Merge memory from one path into the current memory state.
2620 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2621   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2622     Node* old_slice = mms.force_memory();
2623     Node* new_slice = mms.memory2();
2624     if (old_slice != new_slice) {
2625       PhiNode* phi;
2626       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2627         if (mms.is_empty()) {
2628           // clone base memory Phi's inputs for this memory slice
2629           assert(old_slice == mms.base_memory(), "sanity");
2630           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2631           _gvn.set_type(phi, Type::MEMORY);
2632           for (uint i = 1; i < phi->req(); i++) {
2633             phi->init_req(i, old_slice->in(i));
2634           }
2635         } else {
2636           phi = old_slice->as_Phi(); // Phi was generated already
2637         }
2638       } else {
2639         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2640         _gvn.set_type(phi, Type::MEMORY);
2641       }
2642       phi->set_req(new_path, new_slice);
2643       mms.set_memory(phi);
2644     }
2645   }
2646 }
2647 
2648 //------------------------------make_slow_call_ex------------------------------
2649 // Make the exception handler hookups for the slow call
2650 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2651   if (stopped())  return;
2652 
2653   // Make a catch node with just two handlers:  fall-through and catch-all
2654   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2655   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2656   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2657   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2658 
2659   { PreserveJVMState pjvms(this);
2660     set_control(excp);
2661     set_i_o(i_o);
2662 
2663     if (excp != top()) {
2664       if (deoptimize) {
2665         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2666         uncommon_trap(Deoptimization::Reason_unhandled,
2667                       Deoptimization::Action_none);
2668       } else {
2669         // Create an exception state also.
2670         // Use an exact type if the caller has a specific exception.
2671         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2672         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2673         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2674       }
2675     }
2676   }
2677 
2678   // Get the no-exception control from the CatchNode.
2679   set_control(norm);
2680 }
2681 
2682 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2683   Node* cmp = NULL;
2684   switch(bt) {
2685   case T_INT: cmp = new CmpINode(in1, in2); break;
2686   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2687   default: fatal("unexpected comparison type %s", type2name(bt));
2688   }
2689   gvn->transform(cmp);
2690   Node* bol = gvn->transform(new BoolNode(cmp, test));
2691   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2692   gvn->transform(iff);
2693   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2694   return iff;
2695 }
2696 
2697 
2698 //-------------------------------gen_subtype_check-----------------------------
2699 // Generate a subtyping check.  Takes as input the subtype and supertype.
2700 // Returns 2 values: sets the default control() to the true path and returns
2701 // the false path.  Only reads invariant memory; sets no (visible) memory.
2702 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2703 // but that's not exposed to the optimizer.  This call also doesn't take in an
2704 // Object; if you wish to check an Object you need to load the Object's class
2705 // prior to coming here.
2706 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2707   Compile* C = gvn->C;
2708 
2709   if ((*ctrl)->is_top()) {
2710     return C->top();
2711   }
2712 
2713   // Fast check for identical types, perhaps identical constants.
2714   // The types can even be identical non-constants, in cases
2715   // involving Array.newInstance, Object.clone, etc.
2716   if (subklass == superklass)
2717     return C->top();             // false path is dead; no test needed.
2718 
2719   if (gvn->type(superklass)->singleton()) {
2720     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2721     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2722 
2723     // In the common case of an exact superklass, try to fold up the
2724     // test before generating code.  You may ask, why not just generate
2725     // the code and then let it fold up?  The answer is that the generated
2726     // code will necessarily include null checks, which do not always
2727     // completely fold away.  If they are also needless, then they turn
2728     // into a performance loss.  Example:
2729     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2730     // Here, the type of 'fa' is often exact, so the store check
2731     // of fa[1]=x will fold up, without testing the nullness of x.
2732     switch (C->static_subtype_check(superk, subk)) {
2733     case Compile::SSC_always_false:
2734       {
2735         Node* always_fail = *ctrl;
2736         *ctrl = gvn->C->top();
2737         return always_fail;
2738       }
2739     case Compile::SSC_always_true:
2740       return C->top();
2741     case Compile::SSC_easy_test:
2742       {
2743         // Just do a direct pointer compare and be done.
2744         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2745         *ctrl = gvn->transform(new IfTrueNode(iff));
2746         return gvn->transform(new IfFalseNode(iff));
2747       }
2748     case Compile::SSC_full_test:
2749       break;
2750     default:
2751       ShouldNotReachHere();
2752     }
2753   }
2754 
2755   // %%% Possible further optimization:  Even if the superklass is not exact,
2756   // if the subklass is the unique subtype of the superklass, the check
2757   // will always succeed.  We could leave a dependency behind to ensure this.
2758 
2759   // First load the super-klass's check-offset
2760   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2761   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2762   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2763   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2764   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2765 
2766   // Load from the sub-klass's super-class display list, or a 1-word cache of
2767   // the secondary superclass list, or a failing value with a sentinel offset
2768   // if the super-klass is an interface or exceptionally deep in the Java
2769   // hierarchy and we have to scan the secondary superclass list the hard way.
2770   // Worst-case type is a little odd: NULL is allowed as a result (usually
2771   // klass loads can never produce a NULL).
2772   Node *chk_off_X = chk_off;
2773 #ifdef _LP64
2774   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2775 #endif
2776   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2777   // For some types like interfaces the following loadKlass is from a 1-word
2778   // cache which is mutable so can't use immutable memory.  Other
2779   // types load from the super-class display table which is immutable.
2780   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2781   Node *kmem = might_be_cache ? m : C->immutable_memory();
2782   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2783 
2784   // Compile speed common case: ARE a subtype and we canNOT fail
2785   if( superklass == nkls )
2786     return C->top();             // false path is dead; no test needed.
2787 
2788   // See if we get an immediate positive hit.  Happens roughly 83% of the
2789   // time.  Test to see if the value loaded just previously from the subklass
2790   // is exactly the superklass.
2791   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2792   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2793   *ctrl = gvn->transform(new IfFalseNode(iff1));
2794 
2795   // Compile speed common case: Check for being deterministic right now.  If
2796   // chk_off is a constant and not equal to cacheoff then we are NOT a
2797   // subklass.  In this case we need exactly the 1 test above and we can
2798   // return those results immediately.
2799   if (!might_be_cache) {
2800     Node* not_subtype_ctrl = *ctrl;
2801     *ctrl = iftrue1; // We need exactly the 1 test above
2802     return not_subtype_ctrl;
2803   }
2804 
2805   // Gather the various success & failures here
2806   RegionNode *r_ok_subtype = new RegionNode(4);
2807   gvn->record_for_igvn(r_ok_subtype);
2808   RegionNode *r_not_subtype = new RegionNode(3);
2809   gvn->record_for_igvn(r_not_subtype);
2810 
2811   r_ok_subtype->init_req(1, iftrue1);
2812 
2813   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2814   // is roughly 63% of the remaining cases).  Test to see if the loaded
2815   // check-offset points into the subklass display list or the 1-element
2816   // cache.  If it points to the display (and NOT the cache) and the display
2817   // missed then it's not a subtype.
2818   Node *cacheoff = gvn->intcon(cacheoff_con);
2819   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2820   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2821   *ctrl = gvn->transform(new IfFalseNode(iff2));
2822 
2823   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2824   // No performance impact (too rare) but allows sharing of secondary arrays
2825   // which has some footprint reduction.
2826   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2827   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2828   *ctrl = gvn->transform(new IfFalseNode(iff3));
2829 
2830   // -- Roads not taken here: --
2831   // We could also have chosen to perform the self-check at the beginning
2832   // of this code sequence, as the assembler does.  This would not pay off
2833   // the same way, since the optimizer, unlike the assembler, can perform
2834   // static type analysis to fold away many successful self-checks.
2835   // Non-foldable self checks work better here in second position, because
2836   // the initial primary superclass check subsumes a self-check for most
2837   // types.  An exception would be a secondary type like array-of-interface,
2838   // which does not appear in its own primary supertype display.
2839   // Finally, we could have chosen to move the self-check into the
2840   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2841   // dependent manner.  But it is worthwhile to have the check here,
2842   // where it can be perhaps be optimized.  The cost in code space is
2843   // small (register compare, branch).
2844 
2845   // Now do a linear scan of the secondary super-klass array.  Again, no real
2846   // performance impact (too rare) but it's gotta be done.
2847   // Since the code is rarely used, there is no penalty for moving it
2848   // out of line, and it can only improve I-cache density.
2849   // The decision to inline or out-of-line this final check is platform
2850   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2851   Node* psc = gvn->transform(
2852     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2853 
2854   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2855   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2856   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2857 
2858   // Return false path; set default control to true path.
2859   *ctrl = gvn->transform(r_ok_subtype);
2860   return gvn->transform(r_not_subtype);
2861 }
2862 
2863 // Profile-driven exact type check:
2864 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2865                                     float prob,
2866                                     Node* *casted_receiver) {
2867   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2868   Node* recv_klass = load_object_klass(receiver);
2869   Node* fail = type_check(recv_klass, tklass, prob);
2870   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2871   assert(recv_xtype->klass_is_exact(), "");
2872 
2873   // Subsume downstream occurrences of receiver with a cast to
2874   // recv_xtype, since now we know what the type will be.
2875   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2876   Node* res = _gvn.transform(cast);
2877   if (recv_xtype->is_valuetypeptr() && recv_xtype->value_klass()->is_scalarizable()) {
2878     assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
2879     res = ValueTypeNode::make_from_oop(this, res, recv_xtype->value_klass());
2880   }
2881 
2882   (*casted_receiver) = res;
2883   // (User must make the replace_in_map call.)
2884 
2885   return fail;
2886 }
2887 
2888 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
2889                            float prob) {
2890   Node* want_klass = makecon(tklass);
2891   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass));
2892   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2893   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2894   set_control(  _gvn.transform( new IfTrueNode (iff)));
2895   Node* fail = _gvn.transform( new IfFalseNode(iff));
2896   return fail;
2897 }
2898 
2899 
2900 //------------------------------seems_never_null-------------------------------
2901 // Use null_seen information if it is available from the profile.
2902 // If we see an unexpected null at a type check we record it and force a
2903 // recompile; the offending check will be recompiled to handle NULLs.
2904 // If we see several offending BCIs, then all checks in the
2905 // method will be recompiled.
2906 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2907   speculating = !_gvn.type(obj)->speculative_maybe_null();
2908   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2909   if (UncommonNullCast               // Cutout for this technique
2910       && obj != null()               // And not the -Xcomp stupid case?
2911       && !too_many_traps(reason)
2912       ) {
2913     if (speculating) {
2914       return true;
2915     }
2916     if (data == NULL)
2917       // Edge case:  no mature data.  Be optimistic here.
2918       return true;
2919     // If the profile has not seen a null, assume it won't happen.
2920     assert(java_bc() == Bytecodes::_checkcast ||
2921            java_bc() == Bytecodes::_instanceof ||
2922            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2923     return !data->as_BitData()->null_seen();
2924   }
2925   speculating = false;
2926   return false;
2927 }
2928 
2929 //------------------------maybe_cast_profiled_receiver-------------------------
2930 // If the profile has seen exactly one type, narrow to exactly that type.
2931 // Subsequent type checks will always fold up.
2932 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2933                                              ciKlass* require_klass,
2934                                              ciKlass* spec_klass,
2935                                              bool safe_for_replace) {
2936   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2937 
2938   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2939 
2940   // Make sure we haven't already deoptimized from this tactic.
2941   if (too_many_traps(reason) || too_many_recompiles(reason))
2942     return NULL;
2943 
2944   // (No, this isn't a call, but it's enough like a virtual call
2945   // to use the same ciMethod accessor to get the profile info...)
2946   // If we have a speculative type use it instead of profiling (which
2947   // may not help us)
2948   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2949   if (exact_kls != NULL) {// no cast failures here
2950     if (require_klass == NULL ||
2951         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2952       // If we narrow the type to match what the type profile sees or
2953       // the speculative type, we can then remove the rest of the
2954       // cast.
2955       // This is a win, even if the exact_kls is very specific,
2956       // because downstream operations, such as method calls,
2957       // will often benefit from the sharper type.
2958       Node* exact_obj = not_null_obj; // will get updated in place...
2959       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2960                                             &exact_obj);
2961       { PreserveJVMState pjvms(this);
2962         set_control(slow_ctl);
2963         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2964       }
2965       if (safe_for_replace) {
2966         replace_in_map(not_null_obj, exact_obj);
2967       }
2968       return exact_obj;
2969     }
2970     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2971   }
2972 
2973   return NULL;
2974 }
2975 
2976 /**
2977  * Cast obj to type and emit guard unless we had too many traps here
2978  * already
2979  *
2980  * @param obj       node being casted
2981  * @param type      type to cast the node to
2982  * @param not_null  true if we know node cannot be null
2983  */
2984 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2985                                         ciKlass* type,
2986                                         bool not_null) {
2987   if (stopped()) {
2988     return obj;
2989   }
2990 
2991   // type == NULL if profiling tells us this object is always null
2992   if (type != NULL) {
2993     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2994     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2995 
2996     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2997         !too_many_traps(class_reason) &&
2998         !too_many_recompiles(class_reason)) {
2999       Node* not_null_obj = NULL;
3000       // not_null is true if we know the object is not null and
3001       // there's no need for a null check
3002       if (!not_null) {
3003         Node* null_ctl = top();
3004         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
3005         assert(null_ctl->is_top(), "no null control here");
3006       } else {
3007         not_null_obj = obj;
3008       }
3009 
3010       Node* exact_obj = not_null_obj;
3011       ciKlass* exact_kls = type;
3012       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3013                                             &exact_obj);
3014       {
3015         PreserveJVMState pjvms(this);
3016         set_control(slow_ctl);
3017         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
3018       }
3019       replace_in_map(not_null_obj, exact_obj);
3020       obj = exact_obj;
3021     }
3022   } else {
3023     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
3024         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
3025       Node* exact_obj = null_assert(obj);
3026       replace_in_map(obj, exact_obj);
3027       obj = exact_obj;
3028     }
3029   }
3030   return obj;
3031 }
3032 
3033 //-------------------------------gen_instanceof--------------------------------
3034 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3035 // and the reflective instance-of call.
3036 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3037   kill_dead_locals();           // Benefit all the uncommon traps
3038   assert( !stopped(), "dead parse path should be checked in callers" );
3039   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3040          "must check for not-null not-dead klass in callers");
3041 
3042   // Make the merge point
3043   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3044   RegionNode* region = new RegionNode(PATH_LIMIT);
3045   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3046   C->set_has_split_ifs(true); // Has chance for split-if optimization
3047 
3048   ciProfileData* data = NULL;
3049   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3050     data = method()->method_data()->bci_to_data(bci());
3051   }
3052   bool speculative_not_null = false;
3053   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3054                          && seems_never_null(obj, data, speculative_not_null));
3055   bool is_value = obj->is_ValueType();
3056 
3057   // Null check; get casted pointer; set region slot 3
3058   Node* null_ctl = top();
3059   Node* not_null_obj = is_value ? obj : null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3060 
3061   // If not_null_obj is dead, only null-path is taken
3062   if (stopped()) {              // Doing instance-of on a NULL?
3063     set_control(null_ctl);
3064     return intcon(0);
3065   }
3066   region->init_req(_null_path, null_ctl);
3067   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3068   if (null_ctl == top()) {
3069     // Do this eagerly, so that pattern matches like is_diamond_phi
3070     // will work even during parsing.
3071     assert(_null_path == PATH_LIMIT-1, "delete last");
3072     region->del_req(_null_path);
3073     phi   ->del_req(_null_path);
3074   }
3075 
3076   // Do we know the type check always succeed?
3077   if (!is_value) {
3078     bool known_statically = false;
3079     if (_gvn.type(superklass)->singleton()) {
3080       ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
3081       ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
3082       if (subk != NULL && subk->is_loaded()) {
3083         int static_res = C->static_subtype_check(superk, subk);
3084         known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3085       }
3086     }
3087 
3088     if (!known_statically) {
3089       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3090       // We may not have profiling here or it may not help us. If we
3091       // have a speculative type use it to perform an exact cast.
3092       ciKlass* spec_obj_type = obj_type->speculative_type();
3093       if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
3094         Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
3095         if (stopped()) {            // Profile disagrees with this path.
3096           set_control(null_ctl);    // Null is the only remaining possibility.
3097           return intcon(0);
3098         }
3099         if (cast_obj != NULL &&
3100             // A value that's sometimes null is not something we can optimize well
3101             !(cast_obj->is_ValueType() && null_ctl != top())) {
3102           not_null_obj = cast_obj;
3103           is_value = not_null_obj->is_ValueType();
3104         }
3105       }
3106     }
3107   }
3108 
3109   // Load the object's klass
3110   Node* obj_klass = NULL;
3111   if (is_value) {
3112     obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->is_valuetype()->value_klass()));
3113   } else {
3114     obj_klass = load_object_klass(not_null_obj);
3115   }
3116 
3117   // Generate the subtype check
3118   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
3119 
3120   // Plug in the success path to the general merge in slot 1.
3121   region->init_req(_obj_path, control());
3122   phi   ->init_req(_obj_path, intcon(1));
3123 
3124   // Plug in the failing path to the general merge in slot 2.
3125   region->init_req(_fail_path, not_subtype_ctrl);
3126   phi   ->init_req(_fail_path, intcon(0));
3127 
3128   // Return final merged results
3129   set_control( _gvn.transform(region) );
3130   record_for_igvn(region);
3131 
3132   // If we know the type check always succeeds then we don't use the
3133   // profiling data at this bytecode. Don't lose it, feed it to the
3134   // type system as a speculative type.
3135   if (safe_for_replace && !is_value) {
3136     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3137     replace_in_map(obj, casted_obj);
3138   }
3139 
3140   return _gvn.transform(phi);
3141 }
3142 
3143 //-------------------------------gen_checkcast---------------------------------
3144 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3145 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3146 // uncommon-trap paths work.  Adjust stack after this call.
3147 // If failure_control is supplied and not null, it is filled in with
3148 // the control edge for the cast failure.  Otherwise, an appropriate
3149 // uncommon trap or exception is thrown.
3150 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool never_null) {
3151   kill_dead_locals();           // Benefit all the uncommon traps
3152   const TypeKlassPtr* tk = _gvn.type(superklass)->is_klassptr();
3153   const TypeOopPtr* toop = TypeOopPtr::make_from_klass(tk->klass());
3154   assert(!never_null || toop->is_valuetypeptr(), "must be a value type pointer");
3155   bool is_value = obj->is_ValueType();
3156 
3157   // Fast cutout:  Check the case that the cast is vacuously true.
3158   // This detects the common cases where the test will short-circuit
3159   // away completely.  We do this before we perform the null check,
3160   // because if the test is going to turn into zero code, we don't
3161   // want a residual null check left around.  (Causes a slowdown,
3162   // for example, in some objArray manipulations, such as a[i]=a[j].)
3163   if (tk->singleton()) {
3164     ciKlass* klass = NULL;
3165     if (is_value) {
3166       klass = _gvn.type(obj)->is_valuetype()->value_klass();
3167     } else {
3168       const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3169       if (objtp != NULL) {
3170         klass = objtp->klass();
3171       }
3172     }
3173     if (klass != NULL) {
3174       switch (C->static_subtype_check(tk->klass(), klass)) {
3175       case Compile::SSC_always_true:
3176         // If we know the type check always succeed then we don't use
3177         // the profiling data at this bytecode. Don't lose it, feed it
3178         // to the type system as a speculative type.
3179         if (!is_value) {
3180           obj = record_profiled_receiver_for_speculation(obj);
3181           if (never_null) {
3182             obj = null_check(obj);
3183           }
3184           if (toop->is_valuetypeptr() && toop->value_klass()->is_scalarizable() && !gvn().type(obj)->maybe_null()) {
3185             obj = ValueTypeNode::make_from_oop(this, obj, toop->value_klass());
3186           }
3187         }
3188         return obj;
3189       case Compile::SSC_always_false:
3190         if (is_value || never_null) {
3191           if (!is_value) {
3192             null_check(obj);
3193           }
3194           // Value type is never null. Always throw an exception.
3195           builtin_throw(Deoptimization::Reason_class_check, makecon(TypeKlassPtr::make(klass)));
3196           return top();
3197         } else {
3198           // It needs a null check because a null will *pass* the cast check.
3199           return null_assert(obj);
3200         }
3201       }
3202     }
3203   }
3204 
3205   ciProfileData* data = NULL;
3206   bool safe_for_replace = false;
3207   if (failure_control == NULL) {        // use MDO in regular case only
3208     assert(java_bc() == Bytecodes::_aastore ||
3209            java_bc() == Bytecodes::_checkcast,
3210            "interpreter profiles type checks only for these BCs");
3211     data = method()->method_data()->bci_to_data(bci());
3212     safe_for_replace = true;
3213   }
3214 
3215   // Make the merge point
3216   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3217   RegionNode* region = new RegionNode(PATH_LIMIT);
3218   Node*       phi    = new PhiNode(region, toop);
3219   C->set_has_split_ifs(true); // Has chance for split-if optimization
3220 
3221   // Use null-cast information if it is available
3222   bool speculative_not_null = false;
3223   bool never_see_null = ((failure_control == NULL)  // regular case only
3224                          && seems_never_null(obj, data, speculative_not_null));
3225 
3226   // Null check; get casted pointer; set region slot 3
3227   Node* null_ctl = top();
3228   Node* not_null_obj = NULL;
3229   if (is_value) {
3230     not_null_obj = obj;
3231   } else if (never_null) {
3232     not_null_obj = null_check(obj);
3233   } else {
3234     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3235   }
3236 
3237   // If not_null_obj is dead, only null-path is taken
3238   if (stopped()) {              // Doing instance-of on a NULL?
3239     set_control(null_ctl);
3240     return null();
3241   }
3242   region->init_req(_null_path, null_ctl);
3243   phi   ->init_req(_null_path, null());  // Set null path value
3244   if (null_ctl == top()) {
3245     // Do this eagerly, so that pattern matches like is_diamond_phi
3246     // will work even during parsing.
3247     assert(_null_path == PATH_LIMIT-1, "delete last");
3248     region->del_req(_null_path);
3249     phi   ->del_req(_null_path);
3250   }
3251 
3252   Node* cast_obj = NULL;
3253   if (!is_value && tk->klass_is_exact()) {
3254     // The following optimization tries to statically cast the speculative type of the object
3255     // (for example obtained during profiling) to the type of the superklass and then do a
3256     // dynamic check that the type of the object is what we expect. To work correctly
3257     // for checkcast and aastore the type of superklass should be exact.
3258     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3259     // We may not have profiling here or it may not help us. If we have
3260     // a speculative type use it to perform an exact cast.
3261     ciKlass* spec_obj_type = obj_type->speculative_type();
3262     if (spec_obj_type != NULL || data != NULL) {
3263       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3264       if (cast_obj != NULL && cast_obj->is_ValueType()) {
3265         if (null_ctl != top()) {
3266           cast_obj = NULL; // A value that's sometimes null is not something we can optimize well
3267         } else {
3268           return cast_obj;
3269         }
3270       }
3271       if (cast_obj != NULL) {
3272         if (failure_control != NULL) // failure is now impossible
3273           (*failure_control) = top();
3274         // adjust the type of the phi to the exact klass:
3275         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3276       }
3277     }
3278   }
3279 
3280   if (cast_obj == NULL) {
3281     // Load the object's klass
3282     Node* obj_klass = NULL;
3283     if (is_value) {
3284       obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->is_valuetype()->value_klass()));
3285     } else {
3286       obj_klass = load_object_klass(not_null_obj);
3287     }
3288 
3289     // Generate the subtype check
3290     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3291 
3292     // Plug in success path into the merge
3293     cast_obj = is_value ? not_null_obj : _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3294     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3295     if (failure_control == NULL) {
3296       if (not_subtype_ctrl != top()) { // If failure is possible
3297         PreserveJVMState pjvms(this);
3298         set_control(not_subtype_ctrl);
3299         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3300       }
3301     } else {
3302       (*failure_control) = not_subtype_ctrl;
3303     }
3304   }
3305 
3306   region->init_req(_obj_path, control());
3307   phi   ->init_req(_obj_path, cast_obj);
3308 
3309   // A merge of NULL or Casted-NotNull obj
3310   Node* res = _gvn.transform(phi);
3311 
3312   // Note I do NOT always 'replace_in_map(obj,result)' here.
3313   //  if( tk->klass()->can_be_primary_super()  )
3314     // This means that if I successfully store an Object into an array-of-String
3315     // I 'forget' that the Object is really now known to be a String.  I have to
3316     // do this because we don't have true union types for interfaces - if I store
3317     // a Baz into an array-of-Interface and then tell the optimizer it's an
3318     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3319     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3320   //  replace_in_map( obj, res );
3321 
3322   // Return final merged results
3323   set_control( _gvn.transform(region) );
3324   record_for_igvn(region);
3325 
3326   if (!is_value) {
3327     res = record_profiled_receiver_for_speculation(res);
3328     if (toop->is_valuetypeptr() && toop->value_klass()->is_scalarizable() && !gvn().type(res)->maybe_null()) {
3329       res = ValueTypeNode::make_from_oop(this, res, toop->value_klass());
3330     }
3331   }
3332   return res;
3333 }
3334 
3335 Node* GraphKit::is_always_locked(Node* obj) {
3336   Node* mark_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3337   Node* mark = make_load(NULL, mark_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3338   Node* value_mask = _gvn.MakeConX(markOopDesc::always_locked_pattern);
3339   return _gvn.transform(new AndXNode(mark, value_mask));
3340 }
3341 
3342 Node* GraphKit::gen_value_type_test(Node* kls) {
3343   Node* flags_addr = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3344   Node* flags = make_load(NULL, flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
3345   Node* is_value = _gvn.transform(new AndINode(flags, intcon(JVM_ACC_VALUE)));
3346   Node* cmp = _gvn.transform(new CmpINode(is_value, intcon(0)));
3347   return cmp;
3348 }
3349 
3350 // Deoptimize if 'obj' is a value type
3351 void GraphKit::gen_value_type_guard(Node* obj, int nargs) {
3352   assert(EnableValhalla, "should only be used if value types are enabled");
3353   Node* bol = NULL;
3354   if (obj->is_ValueTypeBase()) {
3355     bol = intcon(0);
3356   } else {
3357     Node* is_value = is_always_locked(obj);
3358     Node* value_mask = _gvn.MakeConX(markOopDesc::always_locked_pattern);
3359     Node* cmp = _gvn.transform(new CmpXNode(is_value, value_mask));
3360     bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3361   }
3362   { BuildCutout unless(this, bol, PROB_MAX);
3363     inc_sp(nargs);
3364     uncommon_trap(Deoptimization::Reason_class_check,
3365                   Deoptimization::Action_none);
3366   }
3367 }
3368 
3369 // Deoptimize if 'ary' is flattened or if 'obj' is null and 'ary' is a value type array
3370 void GraphKit::gen_value_type_array_guard(Node* ary, Node* obj, int nargs) {
3371   assert(EnableValhalla, "should only be used if value types are enabled");
3372   // Load array element klass
3373   Node* kls = load_object_klass(ary);
3374   Node* k_adr = basic_plus_adr(kls, in_bytes(ArrayKlass::element_klass_offset()));
3375   Node* elem_klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
3376   // Check if element is a value type
3377   Node* flags_addr = basic_plus_adr(elem_klass, in_bytes(Klass::access_flags_offset()));
3378   Node* flags = make_load(NULL, flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
3379   Node* is_value_elem = _gvn.transform(new AndINode(flags, intcon(JVM_ACC_VALUE)));
3380 
3381   const Type* objtype = _gvn.type(obj);
3382   if (objtype == TypePtr::NULL_PTR) {
3383     // Object is always null, check if array is a value type array
3384     Node* cmp = _gvn.transform(new CmpINode(is_value_elem, intcon(0)));
3385     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3386     { BuildCutout unless(this, bol, PROB_MAX);
3387       // TODO just deoptimize for now if we store null to a value type array
3388       inc_sp(nargs);
3389       uncommon_trap(Deoptimization::Reason_array_check,
3390                     Deoptimization::Action_none);
3391     }
3392   } else {
3393     // Check if (is_value_elem && obj_is_null) <=> (!is_value_elem | !obj_is_null == 0)
3394     // TODO what if we later figure out that obj is never null?
3395     Node* not_value = _gvn.transform(new XorINode(is_value_elem, intcon(JVM_ACC_VALUE)));
3396     not_value = _gvn.transform(new ConvI2LNode(not_value));
3397     Node* not_null = _gvn.transform(new CastP2XNode(NULL, obj));
3398     Node* both = _gvn.transform(new OrLNode(not_null, not_value));
3399     Node* cmp  = _gvn.transform(new CmpLNode(both, longcon(0)));
3400     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3401     { BuildCutout unless(this, bol, PROB_MAX);
3402       // TODO just deoptimize for now if we store null to a value type array
3403       inc_sp(nargs);
3404       uncommon_trap(Deoptimization::Reason_array_check,
3405                     Deoptimization::Action_none);
3406     }
3407   }
3408 }
3409 
3410 Node* GraphKit::load_lh_array_tag(Node* kls) {
3411   Node* lhp = basic_plus_adr(kls, in_bytes(Klass::layout_helper_offset()));
3412   Node* layout_val = make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3413   return _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
3414 }
3415 
3416 
3417 Node* GraphKit::gen_lh_array_test(Node* kls, unsigned int lh_value) {
3418   Node* layout_val = load_lh_array_tag(kls);
3419   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(lh_value)));
3420   return cmp;
3421 }
3422 
3423 
3424 //------------------------------next_monitor-----------------------------------
3425 // What number should be given to the next monitor?
3426 int GraphKit::next_monitor() {
3427   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3428   int next = current + C->sync_stack_slots();
3429   // Keep the toplevel high water mark current:
3430   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3431   return current;
3432 }
3433 
3434 //------------------------------insert_mem_bar---------------------------------
3435 // Memory barrier to avoid floating things around
3436 // The membar serves as a pinch point between both control and all memory slices.
3437 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3438   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3439   mb->init_req(TypeFunc::Control, control());
3440   mb->init_req(TypeFunc::Memory,  reset_memory());
3441   Node* membar = _gvn.transform(mb);
3442   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3443   set_all_memory_call(membar);
3444   return membar;
3445 }
3446 
3447 //-------------------------insert_mem_bar_volatile----------------------------
3448 // Memory barrier to avoid floating things around
3449 // The membar serves as a pinch point between both control and memory(alias_idx).
3450 // If you want to make a pinch point on all memory slices, do not use this
3451 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3452 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3453   // When Parse::do_put_xxx updates a volatile field, it appends a series
3454   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3455   // The first membar is on the same memory slice as the field store opcode.
3456   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3457   // All the other membars (for other volatile slices, including AliasIdxBot,
3458   // which stands for all unknown volatile slices) are control-dependent
3459   // on the first membar.  This prevents later volatile loads or stores
3460   // from sliding up past the just-emitted store.
3461 
3462   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3463   mb->set_req(TypeFunc::Control,control());
3464   if (alias_idx == Compile::AliasIdxBot) {
3465     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3466   } else {
3467     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3468     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3469   }
3470   Node* membar = _gvn.transform(mb);
3471   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3472   if (alias_idx == Compile::AliasIdxBot) {
3473     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3474   } else {
3475     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3476   }
3477   return membar;
3478 }
3479 
3480 //------------------------------shared_lock------------------------------------
3481 // Emit locking code.
3482 FastLockNode* GraphKit::shared_lock(Node* obj) {
3483   // bci is either a monitorenter bc or InvocationEntryBci
3484   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3485   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3486 
3487   if( !GenerateSynchronizationCode )
3488     return NULL;                // Not locking things?
3489 
3490   // We cannot lock on a value type
3491   const TypeOopPtr* objptr = _gvn.type(obj)->make_oopptr();
3492   if (objptr->can_be_value_type()) {
3493     gen_value_type_guard(obj, 1);
3494   }
3495 
3496   if (stopped())                // Dead monitor?
3497     return NULL;
3498 
3499   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3500 
3501   obj = access_resolve(obj, ACCESS_READ | ACCESS_WRITE);
3502 
3503   // Box the stack location
3504   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3505   Node* mem = reset_memory();
3506 
3507   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3508   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3509     // Create the counters for this fast lock.
3510     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3511   }
3512 
3513   // Create the rtm counters for this fast lock if needed.
3514   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3515 
3516   // Add monitor to debug info for the slow path.  If we block inside the
3517   // slow path and de-opt, we need the monitor hanging around
3518   map()->push_monitor( flock );
3519 
3520   const TypeFunc *tf = LockNode::lock_type();
3521   LockNode *lock = new LockNode(C, tf);
3522 
3523   lock->init_req( TypeFunc::Control, control() );
3524   lock->init_req( TypeFunc::Memory , mem );
3525   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3526   lock->init_req( TypeFunc::FramePtr, frameptr() );
3527   lock->init_req( TypeFunc::ReturnAdr, top() );
3528 
3529   lock->init_req(TypeFunc::Parms + 0, obj);
3530   lock->init_req(TypeFunc::Parms + 1, box);
3531   lock->init_req(TypeFunc::Parms + 2, flock);
3532   add_safepoint_edges(lock);
3533 
3534   lock = _gvn.transform( lock )->as_Lock();
3535 
3536   // lock has no side-effects, sets few values
3537   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3538 
3539   insert_mem_bar(Op_MemBarAcquireLock);
3540 
3541   // Add this to the worklist so that the lock can be eliminated
3542   record_for_igvn(lock);
3543 
3544 #ifndef PRODUCT
3545   if (PrintLockStatistics) {
3546     // Update the counter for this lock.  Don't bother using an atomic
3547     // operation since we don't require absolute accuracy.
3548     lock->create_lock_counter(map()->jvms());
3549     increment_counter(lock->counter()->addr());
3550   }
3551 #endif
3552 
3553   return flock;
3554 }
3555 
3556 
3557 //------------------------------shared_unlock----------------------------------
3558 // Emit unlocking code.
3559 void GraphKit::shared_unlock(Node* box, Node* obj) {
3560   // bci is either a monitorenter bc or InvocationEntryBci
3561   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3562   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3563 
3564   if( !GenerateSynchronizationCode )
3565     return;
3566   if (stopped()) {               // Dead monitor?
3567     map()->pop_monitor();        // Kill monitor from debug info
3568     return;
3569   }
3570   assert(!obj->is_ValueTypeBase(), "should not unlock on value type");
3571 
3572   // Memory barrier to avoid floating things down past the locked region
3573   insert_mem_bar(Op_MemBarReleaseLock);
3574 
3575   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3576   UnlockNode *unlock = new UnlockNode(C, tf);
3577 #ifdef ASSERT
3578   unlock->set_dbg_jvms(sync_jvms());
3579 #endif
3580   uint raw_idx = Compile::AliasIdxRaw;
3581   unlock->init_req( TypeFunc::Control, control() );
3582   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3583   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3584   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3585   unlock->init_req( TypeFunc::ReturnAdr, top() );
3586 
3587   unlock->init_req(TypeFunc::Parms + 0, obj);
3588   unlock->init_req(TypeFunc::Parms + 1, box);
3589   unlock = _gvn.transform(unlock)->as_Unlock();
3590 
3591   Node* mem = reset_memory();
3592 
3593   // unlock has no side-effects, sets few values
3594   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3595 
3596   // Kill monitor from debug info
3597   map()->pop_monitor( );
3598 }
3599 
3600 //-------------------------------get_layout_helper-----------------------------
3601 // If the given klass is a constant or known to be an array,
3602 // fetch the constant layout helper value into constant_value
3603 // and return (Node*)NULL.  Otherwise, load the non-constant
3604 // layout helper value, and return the node which represents it.
3605 // This two-faced routine is useful because allocation sites
3606 // almost always feature constant types.
3607 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3608   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3609   if (!StressReflectiveCode && inst_klass != NULL) {
3610     ciKlass* klass = inst_klass->klass();
3611     assert(klass != NULL, "klass should not be NULL");
3612     bool    xklass = inst_klass->klass_is_exact();
3613     bool can_be_value_array = false;
3614     if (klass->is_array_klass() && EnableValhalla && ValueArrayFlatten) {
3615       ciKlass* elem = klass->as_array_klass()->element_klass();
3616       can_be_value_array = elem != NULL && (elem->is_java_lang_Object() || elem->is_interface());
3617     }
3618     if (xklass || (klass->is_array_klass() && !can_be_value_array)) {
3619       jint lhelper = klass->layout_helper();
3620       if (lhelper != Klass::_lh_neutral_value) {
3621         constant_value = lhelper;
3622         return (Node*) NULL;
3623       }
3624     }
3625   }
3626   constant_value = Klass::_lh_neutral_value;  // put in a known value
3627   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3628   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3629 }
3630 
3631 // We just put in an allocate/initialize with a big raw-memory effect.
3632 // Hook selected additional alias categories on the initialization.
3633 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3634                                 MergeMemNode* init_in_merge,
3635                                 Node* init_out_raw) {
3636   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3637   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3638 
3639   Node* prevmem = kit.memory(alias_idx);
3640   init_in_merge->set_memory_at(alias_idx, prevmem);
3641   kit.set_memory(init_out_raw, alias_idx);
3642 }
3643 
3644 //---------------------------set_output_for_allocation-------------------------
3645 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3646                                           const TypeOopPtr* oop_type,
3647                                           bool deoptimize_on_exception) {
3648   int rawidx = Compile::AliasIdxRaw;
3649   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3650   add_safepoint_edges(alloc);
3651   Node* allocx = _gvn.transform(alloc);
3652   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3653   // create memory projection for i_o
3654   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3655   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3656 
3657   // create a memory projection as for the normal control path
3658   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3659   set_memory(malloc, rawidx);
3660 
3661   // a normal slow-call doesn't change i_o, but an allocation does
3662   // we create a separate i_o projection for the normal control path
3663   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3664   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3665 
3666   // put in an initialization barrier
3667   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3668                                                  rawoop)->as_Initialize();
3669   assert(alloc->initialization() == init,  "2-way macro link must work");
3670   assert(init ->allocation()     == alloc, "2-way macro link must work");
3671   {
3672     // Extract memory strands which may participate in the new object's
3673     // initialization, and source them from the new InitializeNode.
3674     // This will allow us to observe initializations when they occur,
3675     // and link them properly (as a group) to the InitializeNode.
3676     assert(init->in(InitializeNode::Memory) == malloc, "");
3677     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3678     init->set_req(InitializeNode::Memory, minit_in);
3679     record_for_igvn(minit_in); // fold it up later, if possible
3680     Node* minit_out = memory(rawidx);
3681     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3682     if (oop_type->isa_aryptr()) {
3683       const TypeAryPtr* arytype = oop_type->is_aryptr();
3684       if (arytype->klass()->is_value_array_klass()) {
3685         ciValueArrayKlass* vak = arytype->klass()->as_value_array_klass();
3686         ciValueKlass* vk = vak->element_klass()->as_value_klass();
3687         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
3688           ciField* field = vk->nonstatic_field_at(i);
3689           if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3690             continue;  // do not bother to track really large numbers of fields
3691           int off_in_vt = field->offset() - vk->first_field_offset();
3692           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
3693           int fieldidx = C->get_alias_index(adr_type);
3694           hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3695         }
3696       } else {
3697         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3698         int            elemidx  = C->get_alias_index(telemref);
3699         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3700       }
3701     } else if (oop_type->isa_instptr()) {
3702       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3703       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3704         ciField* field = ik->nonstatic_field_at(i);
3705         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3706           continue;  // do not bother to track really large numbers of fields
3707         // Find (or create) the alias category for this field:
3708         int fieldidx = C->alias_type(field)->index();
3709         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3710       }
3711     }
3712   }
3713 
3714   // Cast raw oop to the real thing...
3715   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3716   javaoop = _gvn.transform(javaoop);
3717   C->set_recent_alloc(control(), javaoop);
3718   assert(just_allocated_object(control()) == javaoop, "just allocated");
3719 
3720 #ifdef ASSERT
3721   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3722     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3723            "Ideal_allocation works");
3724     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3725            "Ideal_allocation works");
3726     if (alloc->is_AllocateArray()) {
3727       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3728              "Ideal_allocation works");
3729       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3730              "Ideal_allocation works");
3731     } else {
3732       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3733     }
3734   }
3735 #endif //ASSERT
3736 
3737   return javaoop;
3738 }
3739 
3740 //---------------------------new_instance--------------------------------------
3741 // This routine takes a klass_node which may be constant (for a static type)
3742 // or may be non-constant (for reflective code).  It will work equally well
3743 // for either, and the graph will fold nicely if the optimizer later reduces
3744 // the type to a constant.
3745 // The optional arguments are for specialized use by intrinsics:
3746 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3747 //  - If 'return_size_val', report the the total object size to the caller.
3748 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3749 Node* GraphKit::new_instance(Node* klass_node,
3750                              Node* extra_slow_test,
3751                              Node* *return_size_val,
3752                              bool deoptimize_on_exception,
3753                              ValueTypeBaseNode* value_node) {
3754   // Compute size in doublewords
3755   // The size is always an integral number of doublewords, represented
3756   // as a positive bytewise size stored in the klass's layout_helper.
3757   // The layout_helper also encodes (in a low bit) the need for a slow path.
3758   jint  layout_con = Klass::_lh_neutral_value;
3759   Node* layout_val = get_layout_helper(klass_node, layout_con);
3760   bool  layout_is_con = (layout_val == NULL);
3761 
3762   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3763   // Generate the initial go-slow test.  It's either ALWAYS (return a
3764   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3765   // case) a computed value derived from the layout_helper.
3766   Node* initial_slow_test = NULL;
3767   if (layout_is_con) {
3768     assert(!StressReflectiveCode, "stress mode does not use these paths");
3769     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3770     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3771   } else {   // reflective case
3772     // This reflective path is used by Unsafe.allocateInstance.
3773     // (It may be stress-tested by specifying StressReflectiveCode.)
3774     // Basically, we want to get into the VM is there's an illegal argument.
3775     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3776     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3777     if (extra_slow_test != intcon(0)) {
3778       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3779     }
3780     // (Macro-expander will further convert this to a Bool, if necessary.)
3781   }
3782 
3783   // Find the size in bytes.  This is easy; it's the layout_helper.
3784   // The size value must be valid even if the slow path is taken.
3785   Node* size = NULL;
3786   if (layout_is_con) {
3787     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3788   } else {   // reflective case
3789     // This reflective path is used by clone and Unsafe.allocateInstance.
3790     size = ConvI2X(layout_val);
3791 
3792     // Clear the low bits to extract layout_helper_size_in_bytes:
3793     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3794     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3795     size = _gvn.transform( new AndXNode(size, mask) );
3796   }
3797   if (return_size_val != NULL) {
3798     (*return_size_val) = size;
3799   }
3800 
3801   // This is a precise notnull oop of the klass.
3802   // (Actually, it need not be precise if this is a reflective allocation.)
3803   // It's what we cast the result to.
3804   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3805   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3806   const TypeOopPtr* oop_type = tklass->as_instance_type();
3807 
3808   // Now generate allocation code
3809 
3810   // The entire memory state is needed for slow path of the allocation
3811   // since GC and deoptimization can happen.
3812   Node *mem = reset_memory();
3813   set_all_memory(mem); // Create new memory state
3814 
3815   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3816                                          control(), mem, i_o(),
3817                                          size, klass_node,
3818                                          initial_slow_test, value_node);
3819 
3820   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3821 }
3822 
3823 // With compressed oops, the 64 bit init value for non flattened value
3824 // arrays is built from 2 32 bit compressed oops
3825 static Node* raw_default_for_coops(Node* default_value, GraphKit& kit) {
3826   Node* lower = kit.gvn().transform(new CastP2XNode(kit.control(), default_value));
3827   Node* upper = kit.gvn().transform(new LShiftLNode(lower, kit.intcon(32)));
3828   return kit.gvn().transform(new OrLNode(lower, upper));
3829 }
3830 
3831 //-------------------------------new_array-------------------------------------
3832 // helper for newarray and anewarray
3833 // The 'length' parameter is (obviously) the length of the array.
3834 // See comments on new_instance for the meaning of the other arguments.
3835 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3836                           Node* length,         // number of array elements
3837                           int   nargs,          // number of arguments to push back for uncommon trap
3838                           Node* *return_size_val,
3839                           bool deoptimize_on_exception) {
3840   jint  layout_con = Klass::_lh_neutral_value;
3841   Node* layout_val = get_layout_helper(klass_node, layout_con);
3842   bool  layout_is_con = (layout_val == NULL);
3843 
3844   if (!layout_is_con && !StressReflectiveCode &&
3845       !too_many_traps(Deoptimization::Reason_class_check)) {
3846     // This is a reflective array creation site.
3847     // Optimistically assume that it is a subtype of Object[],
3848     // so that we can fold up all the address arithmetic.
3849     layout_con = Klass::array_layout_helper(T_OBJECT);
3850     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3851     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3852     { BuildCutout unless(this, bol_lh, PROB_MAX);
3853       inc_sp(nargs);
3854       uncommon_trap(Deoptimization::Reason_class_check,
3855                     Deoptimization::Action_maybe_recompile);
3856     }
3857     layout_val = NULL;
3858     layout_is_con = true;
3859   }
3860 
3861   // Generate the initial go-slow test.  Make sure we do not overflow
3862   // if length is huge (near 2Gig) or negative!  We do not need
3863   // exact double-words here, just a close approximation of needed
3864   // double-words.  We can't add any offset or rounding bits, lest we
3865   // take a size -1 of bytes and make it positive.  Use an unsigned
3866   // compare, so negative sizes look hugely positive.
3867   int fast_size_limit = FastAllocateSizeLimit;
3868   if (layout_is_con) {
3869     assert(!StressReflectiveCode, "stress mode does not use these paths");
3870     // Increase the size limit if we have exact knowledge of array type.
3871     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3872     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
3873   }
3874 
3875   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3876   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3877 
3878   // --- Size Computation ---
3879   // array_size = round_to_heap(array_header + (length << elem_shift));
3880   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3881   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3882   // The rounding mask is strength-reduced, if possible.
3883   int round_mask = MinObjAlignmentInBytes - 1;
3884   Node* header_size = NULL;
3885   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3886   // (T_BYTE has the weakest alignment and size restrictions...)
3887   if (layout_is_con) {
3888     int       hsize  = Klass::layout_helper_header_size(layout_con);
3889     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3890     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3891     bool is_value_array = Klass::layout_helper_is_valueArray(layout_con);
3892     if ((round_mask & ~right_n_bits(eshift)) == 0)
3893       round_mask = 0;  // strength-reduce it if it goes away completely
3894     assert(is_value_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3895     assert(header_size_min <= hsize, "generic minimum is smallest");
3896     header_size_min = hsize;
3897     header_size = intcon(hsize + round_mask);
3898   } else {
3899     Node* hss   = intcon(Klass::_lh_header_size_shift);
3900     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3901     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3902     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3903     Node* mask  = intcon(round_mask);
3904     header_size = _gvn.transform( new AddINode(hsize, mask) );
3905   }
3906 
3907   Node* elem_shift = NULL;
3908   if (layout_is_con) {
3909     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3910     if (eshift != 0)
3911       elem_shift = intcon(eshift);
3912   } else {
3913     // There is no need to mask or shift this value.
3914     // The semantics of LShiftINode include an implicit mask to 0x1F.
3915     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3916     elem_shift = layout_val;
3917   }
3918 
3919   // Transition to native address size for all offset calculations:
3920   Node* lengthx = ConvI2X(length);
3921   Node* headerx = ConvI2X(header_size);
3922 #ifdef _LP64
3923   { const TypeInt* tilen = _gvn.find_int_type(length);
3924     if (tilen != NULL && tilen->_lo < 0) {
3925       // Add a manual constraint to a positive range.  Cf. array_element_address.
3926       jint size_max = fast_size_limit;
3927       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3928       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3929 
3930       // Only do a narrow I2L conversion if the range check passed.
3931       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3932       _gvn.transform(iff);
3933       RegionNode* region = new RegionNode(3);
3934       _gvn.set_type(region, Type::CONTROL);
3935       lengthx = new PhiNode(region, TypeLong::LONG);
3936       _gvn.set_type(lengthx, TypeLong::LONG);
3937 
3938       // Range check passed. Use ConvI2L node with narrow type.
3939       Node* passed = IfFalse(iff);
3940       region->init_req(1, passed);
3941       // Make I2L conversion control dependent to prevent it from
3942       // floating above the range check during loop optimizations.
3943       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3944 
3945       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3946       region->init_req(2, IfTrue(iff));
3947       lengthx->init_req(2, ConvI2X(length));
3948 
3949       set_control(region);
3950       record_for_igvn(region);
3951       record_for_igvn(lengthx);
3952     }
3953   }
3954 #endif
3955 
3956   // Combine header size (plus rounding) and body size.  Then round down.
3957   // This computation cannot overflow, because it is used only in two
3958   // places, one where the length is sharply limited, and the other
3959   // after a successful allocation.
3960   Node* abody = lengthx;
3961   if (elem_shift != NULL)
3962     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3963   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3964   if (round_mask != 0) {
3965     Node* mask = MakeConX(~round_mask);
3966     size       = _gvn.transform( new AndXNode(size, mask) );
3967   }
3968   // else if round_mask == 0, the size computation is self-rounding
3969 
3970   if (return_size_val != NULL) {
3971     // This is the size
3972     (*return_size_val) = size;
3973   }
3974 
3975   // Now generate allocation code
3976 
3977   // The entire memory state is needed for slow path of the allocation
3978   // since GC and deoptimization can happen.
3979   Node *mem = reset_memory();
3980   set_all_memory(mem); // Create new memory state
3981 
3982   if (initial_slow_test->is_Bool()) {
3983     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3984     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3985   }
3986 
3987   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3988   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
3989   const Type* elem = NULL;
3990   ciKlass* elem_klass = NULL;
3991   if (ary_ptr != NULL) {
3992     elem = ary_ptr->elem();
3993     elem_klass = ary_ptr->klass()->as_array_klass()->element_klass();
3994   }
3995   Node* default_value = NULL;
3996   Node* raw_default_value = NULL;
3997   if (elem != NULL && elem->make_ptr()) {
3998     if (elem_klass != NULL && elem_klass->is_valuetype()) {
3999       ciValueKlass* vk = elem_klass->as_value_klass();
4000       if (!vk->flatten_array()) {
4001         default_value = ValueTypeNode::default_oop(gvn(), vk);
4002         if (elem->isa_narrowoop()) {
4003           default_value = _gvn.transform(new EncodePNode(default_value, elem));
4004           raw_default_value = raw_default_for_coops(default_value, *this);
4005         } else {
4006           raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4007         }
4008       }
4009     }
4010   }
4011 
4012   if (EnableValhalla && (elem == NULL || (elem_klass != NULL && elem_klass->is_java_lang_Object() && !ary_type->klass_is_exact()))) {
4013     assert(raw_default_value == NULL, "shouldn't be set yet");
4014 
4015     // unkown array type, could be a non flattened value array that's
4016     // initialize to a non zero default value
4017 
4018     Node* r = new RegionNode(4);
4019     Node* phi = new PhiNode(r, TypeX_X);
4020 
4021     Node* cmp = gen_lh_array_test(klass_node, Klass::_lh_array_tag_obj_value);
4022     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
4023     IfNode* iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4024     r->init_req(1, _gvn.transform(new IfFalseNode(iff)));
4025     phi->init_req(1, MakeConX(0));
4026     set_control(_gvn.transform(new IfTrueNode(iff)));
4027     Node* k_adr = basic_plus_adr(klass_node, in_bytes(ArrayKlass::element_klass_offset()));
4028     Node* elem_klass = _gvn.transform(LoadKlassNode::make(_gvn, control(), immutable_memory(), k_adr, TypeInstPtr::KLASS));
4029     cmp = gen_value_type_test(elem_klass);
4030     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
4031     iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4032     r->init_req(2, _gvn.transform(new IfTrueNode(iff)));
4033     phi->init_req(2, MakeConX(0));
4034     set_control(_gvn.transform(new IfFalseNode(iff)));
4035 
4036     Node* adr_fixed_block_addr = basic_plus_adr(elem_klass, in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset()));
4037     Node* adr_fixed_block = make_load(control(), adr_fixed_block_addr, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4038 
4039     Node* default_value_offset_addr = basic_plus_adr(adr_fixed_block, in_bytes(ValueKlass::default_value_offset_offset()));
4040     Node* default_value_offset = make_load(control(), default_value_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
4041 
4042     Node* elem_mirror = load_mirror_from_klass(elem_klass);
4043 
4044     Node* default_value_addr = basic_plus_adr(elem_mirror, ConvI2X(default_value_offset));
4045     const TypePtr* adr_type = _gvn.type(default_value_addr)->is_ptr();
4046     Node* val = access_load_at(elem_mirror, default_value_addr, adr_type, TypeInstPtr::BOTTOM, T_OBJECT, IN_HEAP);
4047 
4048     if (UseCompressedOops) {
4049       val = _gvn.transform(new EncodePNode(val, elem));
4050       val = raw_default_for_coops(val, *this);
4051     } else {
4052       val = _gvn.transform(new CastP2XNode(control(), val));
4053     }
4054     r->init_req(3, control());
4055     phi->init_req(3, val);
4056     set_control(_gvn.transform(r));
4057     raw_default_value = _gvn.transform(phi);
4058   }
4059 
4060   // Create the AllocateArrayNode and its result projections
4061   AllocateArrayNode* alloc
4062     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4063                             control(), mem, i_o(),
4064                             size, klass_node,
4065                             initial_slow_test,
4066                             length, default_value,
4067                             raw_default_value);
4068 
4069   // Cast to correct type.  Note that the klass_node may be constant or not,
4070   // and in the latter case the actual array type will be inexact also.
4071   // (This happens via a non-constant argument to inline_native_newArray.)
4072   // In any case, the value of klass_node provides the desired array type.
4073   const TypeInt* length_type = _gvn.find_int_type(length);
4074   if (ary_type->isa_aryptr() && length_type != NULL) {
4075     // Try to get a better type than POS for the size
4076     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4077   }
4078 
4079   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4080 
4081   // Cast length on remaining path to be as narrow as possible
4082   if (map()->find_edge(length) >= 0) {
4083     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
4084     if (ccast != length) {
4085       _gvn.set_type_bottom(ccast);
4086       record_for_igvn(ccast);
4087       replace_in_map(length, ccast);
4088     }
4089   }
4090 
4091   return javaoop;
4092 }
4093 
4094 // The following "Ideal_foo" functions are placed here because they recognize
4095 // the graph shapes created by the functions immediately above.
4096 
4097 //---------------------------Ideal_allocation----------------------------------
4098 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
4099 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
4100   if (ptr == NULL) {     // reduce dumb test in callers
4101     return NULL;
4102   }
4103 
4104   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4105   ptr = bs->step_over_gc_barrier(ptr);
4106 
4107   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
4108     ptr = ptr->in(1);
4109     if (ptr == NULL) return NULL;
4110   }
4111   // Return NULL for allocations with several casts:
4112   //   j.l.reflect.Array.newInstance(jobject, jint)
4113   //   Object.clone()
4114   // to keep more precise type from last cast.
4115   if (ptr->is_Proj()) {
4116     Node* allo = ptr->in(0);
4117     if (allo != NULL && allo->is_Allocate()) {
4118       return allo->as_Allocate();
4119     }
4120   }
4121   // Report failure to match.
4122   return NULL;
4123 }
4124 
4125 // Fancy version which also strips off an offset (and reports it to caller).
4126 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
4127                                              intptr_t& offset) {
4128   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
4129   if (base == NULL)  return NULL;
4130   return Ideal_allocation(base, phase);
4131 }
4132 
4133 // Trace Initialize <- Proj[Parm] <- Allocate
4134 AllocateNode* InitializeNode::allocation() {
4135   Node* rawoop = in(InitializeNode::RawAddress);
4136   if (rawoop->is_Proj()) {
4137     Node* alloc = rawoop->in(0);
4138     if (alloc->is_Allocate()) {
4139       return alloc->as_Allocate();
4140     }
4141   }
4142   return NULL;
4143 }
4144 
4145 // Trace Allocate -> Proj[Parm] -> Initialize
4146 InitializeNode* AllocateNode::initialization() {
4147   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
4148   if (rawoop == NULL)  return NULL;
4149   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
4150     Node* init = rawoop->fast_out(i);
4151     if (init->is_Initialize()) {
4152       assert(init->as_Initialize()->allocation() == this, "2-way link");
4153       return init->as_Initialize();
4154     }
4155   }
4156   return NULL;
4157 }
4158 
4159 //----------------------------- loop predicates ---------------------------
4160 
4161 //------------------------------add_predicate_impl----------------------------
4162 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
4163   // Too many traps seen?
4164   if (too_many_traps(reason)) {
4165 #ifdef ASSERT
4166     if (TraceLoopPredicate) {
4167       int tc = C->trap_count(reason);
4168       tty->print("too many traps=%s tcount=%d in ",
4169                     Deoptimization::trap_reason_name(reason), tc);
4170       method()->print(); // which method has too many predicate traps
4171       tty->cr();
4172     }
4173 #endif
4174     // We cannot afford to take more traps here,
4175     // do not generate predicate.
4176     return;
4177   }
4178 
4179   Node *cont    = _gvn.intcon(1);
4180   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
4181   Node *bol     = _gvn.transform(new Conv2BNode(opq));
4182   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4183   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
4184   C->add_predicate_opaq(opq);
4185   {
4186     PreserveJVMState pjvms(this);
4187     set_control(iffalse);
4188     inc_sp(nargs);
4189     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
4190   }
4191   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
4192   set_control(iftrue);
4193 }
4194 
4195 //------------------------------add_predicate---------------------------------
4196 void GraphKit::add_predicate(int nargs) {
4197   if (UseLoopPredicate) {
4198     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
4199   }
4200   if (UseProfiledLoopPredicate) {
4201     add_predicate_impl(Deoptimization::Reason_profile_predicate, nargs);
4202   }
4203   // loop's limit check predicate should be near the loop.
4204   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
4205 }
4206 
4207 void GraphKit::sync_kit(IdealKit& ideal) {
4208   set_all_memory(ideal.merged_memory());
4209   set_i_o(ideal.i_o());
4210   set_control(ideal.ctrl());
4211 }
4212 
4213 void GraphKit::final_sync(IdealKit& ideal) {
4214   // Final sync IdealKit and graphKit.
4215   sync_kit(ideal);
4216 }
4217 
4218 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4219   Node* len = load_array_length(load_String_value(str, set_ctrl));
4220   Node* coder = load_String_coder(str, set_ctrl);
4221   // Divide length by 2 if coder is UTF16
4222   return _gvn.transform(new RShiftINode(len, coder));
4223 }
4224 
4225 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4226   int value_offset = java_lang_String::value_offset_in_bytes();
4227   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4228                                                      false, NULL, Type::Offset(0));
4229   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4230   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4231                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4232                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4233   Node* p = basic_plus_adr(str, str, value_offset);
4234   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4235                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4236   // String.value field is known to be @Stable.
4237   if (UseImplicitStableValues) {
4238     load = cast_array_to_stable(load, value_type);
4239   }
4240   return load;
4241 }
4242 
4243 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4244   if (!CompactStrings) {
4245     return intcon(java_lang_String::CODER_UTF16);
4246   }
4247   int coder_offset = java_lang_String::coder_offset_in_bytes();
4248   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4249                                                      false, NULL, Type::Offset(0));
4250   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4251   int coder_field_idx = C->get_alias_index(coder_field_type);
4252 
4253   Node* p = basic_plus_adr(str, str, coder_offset);
4254   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4255                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4256   return load;
4257 }
4258 
4259 void GraphKit::store_String_value(Node* str, Node* value) {
4260   int value_offset = java_lang_String::value_offset_in_bytes();
4261   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4262                                                      false, NULL, Type::Offset(0));
4263   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4264 
4265   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4266                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4267 }
4268 
4269 void GraphKit::store_String_coder(Node* str, Node* value) {
4270   int coder_offset = java_lang_String::coder_offset_in_bytes();
4271   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4272                                                      false, NULL, Type::Offset(0));
4273   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4274 
4275   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4276                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4277 }
4278 
4279 // Capture src and dst memory state with a MergeMemNode
4280 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4281   if (src_type == dst_type) {
4282     // Types are equal, we don't need a MergeMemNode
4283     return memory(src_type);
4284   }
4285   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4286   record_for_igvn(merge); // fold it up later, if possible
4287   int src_idx = C->get_alias_index(src_type);
4288   int dst_idx = C->get_alias_index(dst_type);
4289   merge->set_memory_at(src_idx, memory(src_idx));
4290   merge->set_memory_at(dst_idx, memory(dst_idx));
4291   return merge;
4292 }
4293 
4294 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4295   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4296   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4297   // If input and output memory types differ, capture both states to preserve
4298   // the dependency between preceding and subsequent loads/stores.
4299   // For example, the following program:
4300   //  StoreB
4301   //  compress_string
4302   //  LoadB
4303   // has this memory graph (use->def):
4304   //  LoadB -> compress_string -> CharMem
4305   //             ... -> StoreB -> ByteMem
4306   // The intrinsic hides the dependency between LoadB and StoreB, causing
4307   // the load to read from memory not containing the result of the StoreB.
4308   // The correct memory graph should look like this:
4309   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4310   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4311   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4312   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4313   set_memory(res_mem, TypeAryPtr::BYTES);
4314   return str;
4315 }
4316 
4317 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4318   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4319   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4320   // Capture src and dst memory (see comment in 'compress_string').
4321   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4322   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4323   set_memory(_gvn.transform(str), dst_type);
4324 }
4325 
4326 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4327   /**
4328    * int i_char = start;
4329    * for (int i_byte = 0; i_byte < count; i_byte++) {
4330    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4331    * }
4332    */
4333   src = access_resolve(src, ACCESS_READ);
4334   dst = access_resolve(dst, ACCESS_WRITE);
4335   add_predicate();
4336   RegionNode* head = new RegionNode(3);
4337   head->init_req(1, control());
4338   gvn().set_type(head, Type::CONTROL);
4339   record_for_igvn(head);
4340 
4341   Node* i_byte = new PhiNode(head, TypeInt::INT);
4342   i_byte->init_req(1, intcon(0));
4343   gvn().set_type(i_byte, TypeInt::INT);
4344   record_for_igvn(i_byte);
4345 
4346   Node* i_char = new PhiNode(head, TypeInt::INT);
4347   i_char->init_req(1, start);
4348   gvn().set_type(i_char, TypeInt::INT);
4349   record_for_igvn(i_char);
4350 
4351   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4352   gvn().set_type(mem, Type::MEMORY);
4353   record_for_igvn(mem);
4354   set_control(head);
4355   set_memory(mem, TypeAryPtr::BYTES);
4356   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4357   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4358                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4359                              false, false, true /* mismatched */);
4360 
4361   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4362   head->init_req(2, IfTrue(iff));
4363   mem->init_req(2, st);
4364   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4365   i_char->init_req(2, AddI(i_char, intcon(2)));
4366 
4367   set_control(IfFalse(iff));
4368   set_memory(st, TypeAryPtr::BYTES);
4369 }
4370 
4371 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4372   if (!field->is_constant()) {
4373     return NULL; // Field not marked as constant.
4374   }
4375   ciInstance* holder = NULL;
4376   if (!field->is_static()) {
4377     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4378     if (const_oop != NULL && const_oop->is_instance()) {
4379       holder = const_oop->as_instance();
4380     }
4381   }
4382   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4383                                                         /*is_unsigned_load=*/false);
4384   if (con_type != NULL) {
4385     Node* con = makecon(con_type);
4386     if (field->layout_type() == T_VALUETYPE && field->type()->as_value_klass()->is_scalarizable()) {
4387       // Load value type from constant oop
4388       assert(!con_type->maybe_null(), "should never be null");
4389       con = ValueTypeNode::make_from_oop(this, con, field->type()->as_value_klass());
4390     }
4391     return con;
4392   }
4393   return NULL;
4394 }
4395 
4396 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4397   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4398   // assumption of CCP analysis.
4399   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
4400 }
4401 
4402 //---------------------------load_mirror_from_klass----------------------------
4403 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4404 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4405   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4406   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4407   // mirror = ((OopHandle)mirror)->resolve();
4408   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4409 }