1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/collectedHeap.inline.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/arraycopynode.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/graphKit.hpp"
  37 #include "opto/locknode.hpp"
  38 #include "opto/loopnode.hpp"
  39 #include "opto/macro.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/narrowptrnode.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opaquenode.hpp"
  44 #include "opto/phaseX.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subnode.hpp"
  48 #include "opto/type.hpp"
  49 #include "opto/valuetypenode.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "utilities/macros.hpp"
  52 #if INCLUDE_G1GC
  53 #include "gc/g1/g1ThreadLocalData.hpp"
  54 #endif // INCLUDE_G1GC
  55 #if INCLUDE_SHENANDOAHGC
  56 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  57 #endif
  58 
  59 
  60 //
  61 // Replace any references to "oldref" in inputs to "use" with "newref".
  62 // Returns the number of replacements made.
  63 //
  64 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  65   int nreplacements = 0;
  66   uint req = use->req();
  67   for (uint j = 0; j < use->len(); j++) {
  68     Node *uin = use->in(j);
  69     if (uin == oldref) {
  70       if (j < req)
  71         use->set_req(j, newref);
  72       else
  73         use->set_prec(j, newref);
  74       nreplacements++;
  75     } else if (j >= req && uin == NULL) {
  76       break;
  77     }
  78   }
  79   return nreplacements;
  80 }
  81 
  82 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  83   // Copy debug information and adjust JVMState information
  84   uint old_dbg_start = oldcall->tf()->domain_sig()->cnt();
  85   uint new_dbg_start = newcall->tf()->domain_sig()->cnt();
  86   int jvms_adj  = new_dbg_start - old_dbg_start;
  87   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  88 
  89   // SafePointScalarObject node could be referenced several times in debug info.
  90   // Use Dict to record cloned nodes.
  91   Dict* sosn_map = new Dict(cmpkey,hashkey);
  92   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  93     Node* old_in = oldcall->in(i);
  94     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  95     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  96       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  97       uint old_unique = C->unique();
  98       Node* new_in = old_sosn->clone(sosn_map);
  99       if (old_unique != C->unique()) { // New node?
 100         new_in->set_req(0, C->root()); // reset control edge
 101         new_in = transform_later(new_in); // Register new node.
 102       }
 103       old_in = new_in;
 104     }
 105     newcall->add_req(old_in);
 106   }
 107 
 108   // JVMS may be shared so clone it before we modify it
 109   newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
 110   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
 111     jvms->set_map(newcall);
 112     jvms->set_locoff(jvms->locoff()+jvms_adj);
 113     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
 114     jvms->set_monoff(jvms->monoff()+jvms_adj);
 115     jvms->set_scloff(jvms->scloff()+jvms_adj);
 116     jvms->set_endoff(jvms->endoff()+jvms_adj);
 117   }
 118 }
 119 
 120 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 121   Node* cmp;
 122   if (mask != 0) {
 123     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
 124     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
 125   } else {
 126     cmp = word;
 127   }
 128   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
 129   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 130   transform_later(iff);
 131 
 132   // Fast path taken.
 133   Node *fast_taken = transform_later(new IfFalseNode(iff));
 134 
 135   // Fast path not-taken, i.e. slow path
 136   Node *slow_taken = transform_later(new IfTrueNode(iff));
 137 
 138   if (return_fast_path) {
 139     region->init_req(edge, slow_taken); // Capture slow-control
 140     return fast_taken;
 141   } else {
 142     region->init_req(edge, fast_taken); // Capture fast-control
 143     return slow_taken;
 144   }
 145 }
 146 
 147 //--------------------copy_predefined_input_for_runtime_call--------------------
 148 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 149   // Set fixed predefined input arguments
 150   call->init_req( TypeFunc::Control, ctrl );
 151   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 152   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 153   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 154   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 155 }
 156 
 157 //------------------------------make_slow_call---------------------------------
 158 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 159                                            address slow_call, const char* leaf_name, Node* slow_path,
 160                                            Node* parm0, Node* parm1, Node* parm2) {
 161 
 162   // Slow-path call
 163  CallNode *call = leaf_name
 164    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 165    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 166 
 167   // Slow path call has no side-effects, uses few values
 168   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 169   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 170   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 171   if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
 172   copy_call_debug_info(oldcall, call);
 173   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 174   _igvn.replace_node(oldcall, call);
 175   transform_later(call);
 176 
 177   return call;
 178 }
 179 
 180 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 181   _fallthroughproj = NULL;
 182   _fallthroughcatchproj = NULL;
 183   _ioproj_fallthrough = NULL;
 184   _ioproj_catchall = NULL;
 185   _catchallcatchproj = NULL;
 186   _memproj_fallthrough = NULL;
 187   _memproj_catchall = NULL;
 188   _resproj = NULL;
 189   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 190     ProjNode *pn = call->fast_out(i)->as_Proj();
 191     switch (pn->_con) {
 192       case TypeFunc::Control:
 193       {
 194         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 195         _fallthroughproj = pn;
 196         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 197         const Node *cn = pn->fast_out(j);
 198         if (cn->is_Catch()) {
 199           ProjNode *cpn = NULL;
 200           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 201             cpn = cn->fast_out(k)->as_Proj();
 202             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 203             if (cpn->_con == CatchProjNode::fall_through_index)
 204               _fallthroughcatchproj = cpn;
 205             else {
 206               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 207               _catchallcatchproj = cpn;
 208             }
 209           }
 210         }
 211         break;
 212       }
 213       case TypeFunc::I_O:
 214         if (pn->_is_io_use)
 215           _ioproj_catchall = pn;
 216         else
 217           _ioproj_fallthrough = pn;
 218         break;
 219       case TypeFunc::Memory:
 220         if (pn->_is_io_use)
 221           _memproj_catchall = pn;
 222         else
 223           _memproj_fallthrough = pn;
 224         break;
 225       case TypeFunc::Parms:
 226         _resproj = pn;
 227         break;
 228       default:
 229         assert(false, "unexpected projection from allocation node.");
 230     }
 231   }
 232 
 233 }
 234 
 235 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
 236   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 237   bs->eliminate_gc_barrier(this, p2x);
 238 }
 239 
 240 // Search for a memory operation for the specified memory slice.
 241 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 242   Node *orig_mem = mem;
 243   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 244   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 245   while (true) {
 246     if (mem == alloc_mem || mem == start_mem ) {
 247       return mem;  // hit one of our sentinels
 248     } else if (mem->is_MergeMem()) {
 249       mem = mem->as_MergeMem()->memory_at(alias_idx);
 250     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 251       Node *in = mem->in(0);
 252       // we can safely skip over safepoints, calls, locks and membars because we
 253       // already know that the object is safe to eliminate.
 254       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 255         return in;
 256       } else if (in->is_Call()) {
 257         CallNode *call = in->as_Call();
 258         if (call->may_modify(tinst, phase)) {
 259           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 260           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 261             return in;
 262           }
 263         }
 264         mem = in->in(TypeFunc::Memory);
 265       } else if (in->is_MemBar()) {
 266         ArrayCopyNode* ac = NULL;
 267         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 268           assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 269           return ac;
 270         }
 271         mem = in->in(TypeFunc::Memory);
 272       } else {
 273         assert(false, "unexpected projection");
 274       }
 275     } else if (mem->is_Store()) {
 276       const TypePtr* atype = mem->as_Store()->adr_type();
 277       int adr_idx = phase->C->get_alias_index(atype);
 278       if (adr_idx == alias_idx) {
 279         assert(atype->isa_oopptr(), "address type must be oopptr");
 280         int adr_offset = atype->flattened_offset();
 281         uint adr_iid = atype->is_oopptr()->instance_id();
 282         // Array elements references have the same alias_idx
 283         // but different offset and different instance_id.
 284         if (adr_offset == offset && adr_iid == alloc->_idx)
 285           return mem;
 286       } else {
 287         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 288       }
 289       mem = mem->in(MemNode::Memory);
 290     } else if (mem->is_ClearArray()) {
 291       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 292         // Can not bypass initialization of the instance
 293         // we are looking.
 294         debug_only(intptr_t offset;)
 295         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 296         InitializeNode* init = alloc->as_Allocate()->initialization();
 297         // We are looking for stored value, return Initialize node
 298         // or memory edge from Allocate node.
 299         if (init != NULL)
 300           return init;
 301         else
 302           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 303       }
 304       // Otherwise skip it (the call updated 'mem' value).
 305     } else if (mem->Opcode() == Op_SCMemProj) {
 306       mem = mem->in(0);
 307       Node* adr = NULL;
 308       if (mem->is_LoadStore()) {
 309         adr = mem->in(MemNode::Address);
 310       } else {
 311         assert(mem->Opcode() == Op_EncodeISOArray ||
 312                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 313         adr = mem->in(3); // Destination array
 314       }
 315       const TypePtr* atype = adr->bottom_type()->is_ptr();
 316       int adr_idx = phase->C->get_alias_index(atype);
 317       if (adr_idx == alias_idx) {
 318         DEBUG_ONLY(mem->dump();)
 319         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 320         return NULL;
 321       }
 322       mem = mem->in(MemNode::Memory);
 323     } else if (mem->Opcode() == Op_StrInflatedCopy) {
 324       Node* adr = mem->in(3); // Destination array
 325       const TypePtr* atype = adr->bottom_type()->is_ptr();
 326       int adr_idx = phase->C->get_alias_index(atype);
 327       if (adr_idx == alias_idx) {
 328         DEBUG_ONLY(mem->dump();)
 329         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 330         return NULL;
 331       }
 332       mem = mem->in(MemNode::Memory);
 333     } else {
 334       return mem;
 335     }
 336     assert(mem != orig_mem, "dead memory loop");
 337   }
 338 }
 339 
 340 // Generate loads from source of the arraycopy for fields of
 341 // destination needed at a deoptimization point
 342 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 343   BasicType bt = ft;
 344   const Type *type = ftype;
 345   if (ft == T_NARROWOOP) {
 346     bt = T_OBJECT;
 347     type = ftype->make_oopptr();
 348   }
 349   Node* res = NULL;
 350   if (ac->is_clonebasic()) {
 351     Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base);
 352     Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
 353     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 354     res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 355   } else {
 356     if (ac->modifies(offset, offset, &_igvn, true)) {
 357       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 358       uint shift  = exact_log2(type2aelembytes(bt));
 359       Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 360 #ifdef _LP64
 361       diff = _igvn.transform(new ConvI2LNode(diff));
 362 #endif
 363       diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
 364 
 365       Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
 366       Node* base = ac->in(ArrayCopyNode::Src);
 367       Node* adr = _igvn.transform(new AddPNode(base, base, off));
 368       const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 369       res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 370     }
 371   }
 372   if (res != NULL) {
 373     res = _igvn.transform(res);
 374     if (ftype->isa_narrowoop()) {
 375       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 376       res = _igvn.transform(new EncodePNode(res, ftype));
 377     }
 378     return res;
 379   }
 380   return NULL;
 381 }
 382 
 383 //
 384 // Given a Memory Phi, compute a value Phi containing the values from stores
 385 // on the input paths.
 386 // Note: this function is recursive, its depth is limited by the "level" argument
 387 // Returns the computed Phi, or NULL if it cannot compute it.
 388 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 389   assert(mem->is_Phi(), "sanity");
 390   int alias_idx = C->get_alias_index(adr_t);
 391   int offset = adr_t->flattened_offset();
 392   int instance_id = adr_t->instance_id();
 393 
 394   // Check if an appropriate value phi already exists.
 395   Node* region = mem->in(0);
 396   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 397     Node* phi = region->fast_out(k);
 398     if (phi->is_Phi() && phi != mem &&
 399         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 400       return phi;
 401     }
 402   }
 403   // Check if an appropriate new value phi already exists.
 404   Node* new_phi = value_phis->find(mem->_idx);
 405   if (new_phi != NULL)
 406     return new_phi;
 407 
 408   if (level <= 0) {
 409     return NULL; // Give up: phi tree too deep
 410   }
 411   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 412   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 413 
 414   uint length = mem->req();
 415   GrowableArray <Node *> values(length, length, NULL, false);
 416 
 417   // create a new Phi for the value
 418   PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
 419   transform_later(phi);
 420   value_phis->push(phi, mem->_idx);
 421 
 422   for (uint j = 1; j < length; j++) {
 423     Node *in = mem->in(j);
 424     if (in == NULL || in->is_top()) {
 425       values.at_put(j, in);
 426     } else  {
 427       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 428       if (val == start_mem || val == alloc_mem) {
 429         // hit a sentinel, return appropriate 0 value
 430         values.at_put(j, _igvn.zerocon(ft));
 431         continue;
 432       }
 433       if (val->is_Initialize()) {
 434         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 435       }
 436       if (val == NULL) {
 437         return NULL;  // can't find a value on this path
 438       }
 439       if (val == mem) {
 440         values.at_put(j, mem);
 441       } else if (val->is_Store()) {
 442         Node* n = val->in(MemNode::ValueIn);
 443         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 444         n = bs->step_over_gc_barrier(n);
 445         values.at_put(j, n);
 446       } else if(val->is_Proj() && val->in(0) == alloc) {
 447         values.at_put(j, _igvn.zerocon(ft));
 448       } else if (val->is_Phi()) {
 449         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 450         if (val == NULL) {
 451           return NULL;
 452         }
 453         values.at_put(j, val);
 454       } else if (val->Opcode() == Op_SCMemProj) {
 455         assert(val->in(0)->is_LoadStore() ||
 456                val->in(0)->Opcode() == Op_EncodeISOArray ||
 457                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 458         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 459         return NULL;
 460       } else if (val->is_ArrayCopy()) {
 461         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 462         if (res == NULL) {
 463           return NULL;
 464         }
 465         values.at_put(j, res);
 466       } else {
 467 #ifdef ASSERT
 468         val->dump();
 469         assert(false, "unknown node on this path");
 470 #endif
 471         return NULL;  // unknown node on this path
 472       }
 473     }
 474   }
 475   // Set Phi's inputs
 476   for (uint j = 1; j < length; j++) {
 477     if (values.at(j) == mem) {
 478       phi->init_req(j, phi);
 479     } else {
 480       phi->init_req(j, values.at(j));
 481     }
 482   }
 483   return phi;
 484 }
 485 
 486 // Search the last value stored into the object's field.
 487 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 488   assert(adr_t->is_known_instance_field(), "instance required");
 489   int instance_id = adr_t->instance_id();
 490   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 491 
 492   int alias_idx = C->get_alias_index(adr_t);
 493   int offset = adr_t->flattened_offset();
 494   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 495   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 496   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 497   Arena *a = Thread::current()->resource_area();
 498   VectorSet visited(a);
 499 
 500   bool done = sfpt_mem == alloc_mem;
 501   Node *mem = sfpt_mem;
 502   while (!done) {
 503     if (visited.test_set(mem->_idx)) {
 504       return NULL;  // found a loop, give up
 505     }
 506     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 507     if (mem == start_mem || mem == alloc_mem) {
 508       done = true;  // hit a sentinel, return appropriate 0 value
 509     } else if (mem->is_Initialize()) {
 510       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 511       if (mem == NULL) {
 512         done = true; // Something went wrong.
 513       } else if (mem->is_Store()) {
 514         const TypePtr* atype = mem->as_Store()->adr_type();
 515         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 516         done = true;
 517       }
 518     } else if (mem->is_Store()) {
 519       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 520       assert(atype != NULL, "address type must be oopptr");
 521       assert(C->get_alias_index(atype) == alias_idx &&
 522              atype->is_known_instance_field() && atype->flattened_offset() == offset &&
 523              atype->instance_id() == instance_id, "store is correct memory slice");
 524       done = true;
 525     } else if (mem->is_Phi()) {
 526       // try to find a phi's unique input
 527       Node *unique_input = NULL;
 528       Node *top = C->top();
 529       for (uint i = 1; i < mem->req(); i++) {
 530         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 531         if (n == NULL || n == top || n == mem) {
 532           continue;
 533         } else if (unique_input == NULL) {
 534           unique_input = n;
 535         } else if (unique_input != n) {
 536           unique_input = top;
 537           break;
 538         }
 539       }
 540       if (unique_input != NULL && unique_input != top) {
 541         mem = unique_input;
 542       } else {
 543         done = true;
 544       }
 545     } else if (mem->is_ArrayCopy()) {
 546       done = true;
 547     } else {
 548       assert(false, "unexpected node");
 549     }
 550   }
 551   if (mem != NULL) {
 552     if (mem == start_mem || mem == alloc_mem) {
 553       // hit a sentinel, return appropriate 0 value
 554       Node* default_value = alloc->in(AllocateNode::DefaultValue);
 555       if (default_value != NULL) {
 556         return default_value;
 557       }
 558       assert(alloc->in(AllocateNode::RawDefaultValue) == NULL, "default value may not be null");
 559       return _igvn.zerocon(ft);
 560     } else if (mem->is_Store()) {
 561       Node* n = mem->in(MemNode::ValueIn);
 562       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 563       n = bs->step_over_gc_barrier(n);
 564       return n;
 565     } else if (mem->is_Phi()) {
 566       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 567       Node_Stack value_phis(a, 8);
 568       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 569       if (phi != NULL) {
 570         return phi;
 571       } else {
 572         // Kill all new Phis
 573         while(value_phis.is_nonempty()) {
 574           Node* n = value_phis.node();
 575           _igvn.replace_node(n, C->top());
 576           value_phis.pop();
 577         }
 578       }
 579     } else if (mem->is_ArrayCopy()) {
 580       Node* ctl = mem->in(0);
 581       Node* m = mem->in(TypeFunc::Memory);
 582       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
 583         // pin the loads in the uncommon trap path
 584         ctl = sfpt_ctl;
 585         m = sfpt_mem;
 586       }
 587       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 588     }
 589   }
 590   // Something went wrong.
 591   return NULL;
 592 }
 593 
 594 // Search the last value stored into the value type's fields.
 595 Node* PhaseMacroExpand::value_type_from_mem(Node* mem, Node* ctl, ciValueKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) {
 596   // Subtract the offset of the first field to account for the missing oop header
 597   offset -= vk->first_field_offset();
 598   // Create a new ValueTypeNode and retrieve the field values from memory
 599   ValueTypeNode* vt = ValueTypeNode::make_uninitialized(_igvn, vk)->as_ValueType();
 600   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) {
 601     ciType* field_type = vt->field_type(i);
 602     int field_offset = offset + vt->field_offset(i);
 603     // Each value type field has its own memory slice
 604     adr_type = adr_type->with_field_offset(field_offset);
 605     Node* value = NULL;
 606     if (vt->field_is_flattened(i)) {
 607       value = value_type_from_mem(mem, ctl, field_type->as_value_klass(), adr_type, field_offset, alloc);
 608     } else {
 609       const Type* ft = Type::get_const_type(field_type);
 610       BasicType bt = field_type->basic_type();
 611       if (UseCompressedOops && !is_java_primitive(bt)) {
 612         ft = ft->make_narrowoop();
 613         bt = T_NARROWOOP;
 614       }
 615       value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc);
 616       if (value != NULL && ft->isa_narrowoop()) {
 617         assert(UseCompressedOops, "unexpected narrow oop");
 618         value = transform_later(new DecodeNNode(value, value->get_ptr_type()));
 619       }
 620       /*
 621       // TODO attempt scalarization here?
 622       if (vt->field_is_flattenable(i)) {
 623         // Loading a non-flattened but flattenable value type from memory
 624         if (field_type->as_value_klass()->is_scalarizable()) {
 625           value = ValueTypeNode::make_from_oop(kit, value, ft->as_value_klass());
 626         } else {
 627           value = kit->filter_null(value, true, ft->as_value_klass());
 628         }
 629       }
 630       */
 631     }
 632     if (value != NULL) {
 633       vt->set_field_value(i, value);
 634     } else {
 635       // We might have reached the TrackedInitializationLimit
 636       return NULL;
 637     }
 638   }
 639   return vt;
 640 }
 641 
 642 // Check the possibility of scalar replacement.
 643 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 644   //  Scan the uses of the allocation to check for anything that would
 645   //  prevent us from eliminating it.
 646   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 647   DEBUG_ONLY( Node* disq_node = NULL; )
 648   bool  can_eliminate = true;
 649 
 650   Node* res = alloc->result_cast();
 651   const TypeOopPtr* res_type = NULL;
 652   if (res == NULL) {
 653     // All users were eliminated.
 654   } else if (!res->is_CheckCastPP()) {
 655     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 656     can_eliminate = false;
 657   } else {
 658     res_type = _igvn.type(res)->isa_oopptr();
 659     if (res_type == NULL) {
 660       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 661       can_eliminate = false;
 662     } else if (res_type->isa_aryptr()) {
 663       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 664       if (length < 0) {
 665         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 666         can_eliminate = false;
 667       }
 668     }
 669   }
 670 
 671   if (can_eliminate && res != NULL) {
 672     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 673                                j < jmax && can_eliminate; j++) {
 674       Node* use = res->fast_out(j);
 675 
 676       if (use->is_AddP()) {
 677         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 678         int offset = addp_type->offset();
 679 
 680         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 681           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 682           can_eliminate = false;
 683           break;
 684         }
 685         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 686                                    k < kmax && can_eliminate; k++) {
 687           Node* n = use->fast_out(k);
 688           if (!n->is_Store() && n->Opcode() != Op_CastP2X &&
 689               SHENANDOAHGC_ONLY((!UseShenandoahGC || !ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(n)) &&)
 690               !(n->is_ArrayCopy() &&
 691                 n->as_ArrayCopy()->is_clonebasic() &&
 692                 n->in(ArrayCopyNode::Dest) == use)) {
 693             DEBUG_ONLY(disq_node = n;)
 694             if (n->is_Load() || n->is_LoadStore()) {
 695               NOT_PRODUCT(fail_eliminate = "Field load";)
 696             } else {
 697               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 698             }
 699             can_eliminate = false;
 700           }
 701         }
 702       } else if (use->is_ArrayCopy() &&
 703                  (use->as_ArrayCopy()->is_arraycopy_validated() ||
 704                   use->as_ArrayCopy()->is_copyof_validated() ||
 705                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 706                  use->in(ArrayCopyNode::Dest) == res) {
 707         // ok to eliminate
 708       } else if (use->is_SafePoint()) {
 709         SafePointNode* sfpt = use->as_SafePoint();
 710         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 711           // Object is passed as argument.
 712           DEBUG_ONLY(disq_node = use;)
 713           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 714           can_eliminate = false;
 715         }
 716         Node* sfptMem = sfpt->memory();
 717         if (sfptMem == NULL || sfptMem->is_top()) {
 718           DEBUG_ONLY(disq_node = use;)
 719           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 720           can_eliminate = false;
 721         } else {
 722           safepoints.append_if_missing(sfpt);
 723         }
 724       } else if (use->is_ValueType() && use->isa_ValueType()->get_oop() == res) {
 725         // ok to eliminate
 726       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 727         if (use->is_Phi()) {
 728           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 729             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 730           } else {
 731             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 732           }
 733           DEBUG_ONLY(disq_node = use;)
 734         } else {
 735           if (use->Opcode() == Op_Return) {
 736             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 737           } else {
 738             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 739           }
 740           DEBUG_ONLY(disq_node = use;)
 741         }
 742         can_eliminate = false;
 743       } else {
 744         assert(use->Opcode() == Op_CastP2X, "should be");
 745         assert(!use->has_out_with(Op_OrL), "should have been removed because oop is never null");
 746       }
 747     }
 748   }
 749 
 750 #ifndef PRODUCT
 751   if (PrintEliminateAllocations) {
 752     if (can_eliminate) {
 753       tty->print("Scalar ");
 754       if (res == NULL)
 755         alloc->dump();
 756       else
 757         res->dump();
 758     } else if (alloc->_is_scalar_replaceable) {
 759       tty->print("NotScalar (%s)", fail_eliminate);
 760       if (res == NULL)
 761         alloc->dump();
 762       else
 763         res->dump();
 764 #ifdef ASSERT
 765       if (disq_node != NULL) {
 766           tty->print("  >>>> ");
 767           disq_node->dump();
 768       }
 769 #endif /*ASSERT*/
 770     }
 771   }
 772 #endif
 773   return can_eliminate;
 774 }
 775 
 776 // Do scalar replacement.
 777 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 778   GrowableArray <SafePointNode *> safepoints_done;
 779 
 780   ciKlass* klass = NULL;
 781   ciInstanceKlass* iklass = NULL;
 782   int nfields = 0;
 783   int array_base = 0;
 784   int element_size = 0;
 785   BasicType basic_elem_type = T_ILLEGAL;
 786   ciType* elem_type = NULL;
 787 
 788   Node* res = alloc->result_cast();
 789   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
 790   const TypeOopPtr* res_type = NULL;
 791   if (res != NULL) { // Could be NULL when there are no users
 792     res_type = _igvn.type(res)->isa_oopptr();
 793   }
 794 
 795   if (res != NULL) {
 796     klass = res_type->klass();
 797     if (res_type->isa_instptr()) {
 798       // find the fields of the class which will be needed for safepoint debug information
 799       assert(klass->is_instance_klass(), "must be an instance klass.");
 800       iklass = klass->as_instance_klass();
 801       nfields = iklass->nof_nonstatic_fields();
 802     } else {
 803       // find the array's elements which will be needed for safepoint debug information
 804       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 805       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 806       elem_type = klass->as_array_klass()->element_type();
 807       basic_elem_type = elem_type->basic_type();
 808       if (elem_type->is_valuetype()) {
 809         ciValueKlass* vk = elem_type->as_value_klass();
 810         if (!vk->flatten_array()) {
 811           assert(basic_elem_type == T_VALUETYPE, "unexpected element basic type");
 812           basic_elem_type = T_OBJECT;
 813         }
 814       }
 815       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 816       element_size = type2aelembytes(basic_elem_type);
 817       if (klass->is_value_array_klass()) {
 818         // Flattened value type array
 819         element_size = klass->as_value_array_klass()->element_byte_size();
 820       }
 821     }
 822   }
 823   //
 824   // Process the safepoint uses
 825   //
 826   Unique_Node_List value_worklist;
 827   while (safepoints.length() > 0) {
 828     SafePointNode* sfpt = safepoints.pop();
 829     Node* mem = sfpt->memory();
 830     Node* ctl = sfpt->control();
 831     assert(sfpt->jvms() != NULL, "missed JVMS");
 832     // Fields of scalar objs are referenced only at the end
 833     // of regular debuginfo at the last (youngest) JVMS.
 834     // Record relative start index.
 835     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
 836     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 837 #ifdef ASSERT
 838                                                  alloc,
 839 #endif
 840                                                  first_ind, nfields);
 841     sobj->init_req(0, C->root());
 842     transform_later(sobj);
 843 
 844     // Scan object's fields adding an input to the safepoint for each field.
 845     for (int j = 0; j < nfields; j++) {
 846       intptr_t offset;
 847       ciField* field = NULL;
 848       if (iklass != NULL) {
 849         field = iklass->nonstatic_field_at(j);
 850         offset = field->offset();
 851         elem_type = field->type();
 852         basic_elem_type = field->layout_type();
 853         assert(!field->is_flattened(), "flattened value type fields should not have safepoint uses");
 854       } else {
 855         offset = array_base + j * (intptr_t)element_size;
 856       }
 857 
 858       const Type *field_type;
 859       // The next code is taken from Parse::do_get_xxx().
 860       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 861         if (!elem_type->is_loaded()) {
 862           field_type = TypeInstPtr::BOTTOM;
 863         } else if (field != NULL && field->is_static_constant()) {
 864           // This can happen if the constant oop is non-perm.
 865           ciObject* con = field->constant_value().as_object();
 866           // Do not "join" in the previous type; it doesn't add value,
 867           // and may yield a vacuous result if the field is of interface type.
 868           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 869           assert(field_type != NULL, "field singleton type must be consistent");
 870         } else {
 871           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 872         }
 873         if (UseCompressedOops) {
 874           field_type = field_type->make_narrowoop();
 875           basic_elem_type = T_NARROWOOP;
 876         }
 877       } else {
 878         field_type = Type::get_const_basic_type(basic_elem_type);
 879       }
 880 
 881       Node* field_val = NULL;
 882       const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 883       if (klass->is_value_array_klass()) {
 884         ciValueKlass* vk = elem_type->as_value_klass();
 885         assert(vk->flatten_array(), "must be flattened");
 886         field_val = value_type_from_mem(mem, ctl, vk, field_addr_type->isa_aryptr(), 0, alloc);
 887       } else {
 888         field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
 889       }
 890       if (field_val == NULL) {
 891         // We weren't able to find a value for this field,
 892         // give up on eliminating this allocation.
 893 
 894         // Remove any extra entries we added to the safepoint.
 895         uint last = sfpt->req() - 1;
 896         for (int k = 0;  k < j; k++) {
 897           sfpt->del_req(last--);
 898         }
 899         _igvn._worklist.push(sfpt);
 900         // rollback processed safepoints
 901         while (safepoints_done.length() > 0) {
 902           SafePointNode* sfpt_done = safepoints_done.pop();
 903           // remove any extra entries we added to the safepoint
 904           last = sfpt_done->req() - 1;
 905           for (int k = 0;  k < nfields; k++) {
 906             sfpt_done->del_req(last--);
 907           }
 908           JVMState *jvms = sfpt_done->jvms();
 909           jvms->set_endoff(sfpt_done->req());
 910           // Now make a pass over the debug information replacing any references
 911           // to SafePointScalarObjectNode with the allocated object.
 912           int start = jvms->debug_start();
 913           int end   = jvms->debug_end();
 914           for (int i = start; i < end; i++) {
 915             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 916               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 917               if (scobj->first_index(jvms) == sfpt_done->req() &&
 918                   scobj->n_fields() == (uint)nfields) {
 919                 assert(scobj->alloc() == alloc, "sanity");
 920                 sfpt_done->set_req(i, res);
 921               }
 922             }
 923           }
 924           _igvn._worklist.push(sfpt_done);
 925         }
 926 #ifndef PRODUCT
 927         if (PrintEliminateAllocations) {
 928           if (field != NULL) {
 929             tty->print("=== At SafePoint node %d can't find value of Field: ",
 930                        sfpt->_idx);
 931             field->print();
 932             int field_idx = C->get_alias_index(field_addr_type);
 933             tty->print(" (alias_idx=%d)", field_idx);
 934           } else { // Array's element
 935             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 936                        sfpt->_idx, j);
 937           }
 938           tty->print(", which prevents elimination of: ");
 939           if (res == NULL)
 940             alloc->dump();
 941           else
 942             res->dump();
 943         }
 944 #endif
 945         return false;
 946       }
 947       if (UseCompressedOops && field_type->isa_narrowoop()) {
 948         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 949         // to be able scalar replace the allocation.
 950         if (field_val->is_EncodeP()) {
 951           field_val = field_val->in(1);
 952         } else {
 953           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 954         }
 955       } else if (field_val->is_ValueType()) {
 956         // Keep track of value types to scalarize them later
 957         value_worklist.push(field_val);
 958       }
 959       sfpt->add_req(field_val);
 960     }
 961     JVMState *jvms = sfpt->jvms();
 962     jvms->set_endoff(sfpt->req());
 963     // Now make a pass over the debug information replacing any references
 964     // to the allocated object with "sobj"
 965     int start = jvms->debug_start();
 966     int end   = jvms->debug_end();
 967     sfpt->replace_edges_in_range(res, sobj, start, end);
 968     _igvn._worklist.push(sfpt);
 969     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 970   }
 971   // Scalarize value types that were added to the safepoint
 972   for (uint i = 0; i < value_worklist.size(); ++i) {
 973     Node* vt = value_worklist.at(i);
 974     vt->as_ValueType()->make_scalar_in_safepoints(&_igvn);
 975   }
 976   return true;
 977 }
 978 
 979 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
 980   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
 981   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
 982   if (ctl_proj != NULL) {
 983     igvn.replace_node(ctl_proj, n->in(0));
 984   }
 985   if (mem_proj != NULL) {
 986     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
 987   }
 988 }
 989 
 990 // Process users of eliminated allocation.
 991 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
 992   Node* res = alloc->result_cast();
 993   if (res != NULL) {
 994     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 995       Node *use = res->last_out(j);
 996       uint oc1 = res->outcnt();
 997 
 998       if (use->is_AddP()) {
 999         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
1000           Node *n = use->last_out(k);
1001           uint oc2 = use->outcnt();
1002           if (n->is_Store()) {
1003 #ifdef ASSERT
1004             // Verify that there is no dependent MemBarVolatile nodes,
1005             // they should be removed during IGVN, see MemBarNode::Ideal().
1006             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
1007                                        p < pmax; p++) {
1008               Node* mb = n->fast_out(p);
1009               assert(mb->is_Initialize() || !mb->is_MemBar() ||
1010                      mb->req() <= MemBarNode::Precedent ||
1011                      mb->in(MemBarNode::Precedent) != n,
1012                      "MemBarVolatile should be eliminated for non-escaping object");
1013             }
1014 #endif
1015             _igvn.replace_node(n, n->in(MemNode::Memory));
1016           } else if (n->is_ArrayCopy()) {
1017             // Disconnect ArrayCopy node
1018             ArrayCopyNode* ac = n->as_ArrayCopy();
1019             assert(ac->is_clonebasic(), "unexpected array copy kind");
1020             Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
1021             disconnect_projections(ac, _igvn);
1022             assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
1023             Node* membar_before = alloc->in(0)->in(0);
1024             disconnect_projections(membar_before->as_MemBar(), _igvn);
1025             if (membar_after->is_MemBar()) {
1026               disconnect_projections(membar_after->as_MemBar(), _igvn);
1027             }
1028           } else {
1029             eliminate_gc_barrier(n);
1030           }
1031           k -= (oc2 - use->outcnt());
1032         }
1033         _igvn.remove_dead_node(use);
1034       } else if (use->is_ArrayCopy()) {
1035         // Disconnect ArrayCopy node
1036         ArrayCopyNode* ac = use->as_ArrayCopy();
1037         assert(ac->is_arraycopy_validated() ||
1038                ac->is_copyof_validated() ||
1039                ac->is_copyofrange_validated(), "unsupported");
1040         CallProjections* callprojs = ac->extract_projections(true);
1041 
1042         _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O));
1043         _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory));
1044         _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control));
1045 
1046         // Set control to top. IGVN will remove the remaining projections
1047         ac->set_req(0, top());
1048         ac->replace_edge(res, top());
1049 
1050         // Disconnect src right away: it can help find new
1051         // opportunities for allocation elimination
1052         Node* src = ac->in(ArrayCopyNode::Src);
1053         ac->replace_edge(src, top());
1054         // src can be top at this point if src and dest of the
1055         // arraycopy were the same
1056         if (src->outcnt() == 0 && !src->is_top()) {
1057           _igvn.remove_dead_node(src);
1058         }
1059 
1060         _igvn._worklist.push(ac);
1061       } else if (use->is_ValueType()) {
1062         assert(use->isa_ValueType()->get_oop() == res, "unexpected value type use");
1063          _igvn.rehash_node_delayed(use);
1064         use->isa_ValueType()->set_oop(_igvn.zerocon(T_VALUETYPE));
1065       } else {
1066         eliminate_gc_barrier(use);
1067       }
1068       j -= (oc1 - res->outcnt());
1069     }
1070     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1071     _igvn.remove_dead_node(res);
1072   }
1073 
1074   //
1075   // Process other users of allocation's projections
1076   //
1077   if (_resproj != NULL && _resproj->outcnt() != 0) {
1078     // First disconnect stores captured by Initialize node.
1079     // If Initialize node is eliminated first in the following code,
1080     // it will kill such stores and DUIterator_Last will assert.
1081     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
1082       Node *use = _resproj->fast_out(j);
1083       if (use->is_AddP()) {
1084         // raw memory addresses used only by the initialization
1085         _igvn.replace_node(use, C->top());
1086         --j; --jmax;
1087       }
1088     }
1089     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
1090       Node *use = _resproj->last_out(j);
1091       uint oc1 = _resproj->outcnt();
1092       if (use->is_Initialize()) {
1093         // Eliminate Initialize node.
1094         InitializeNode *init = use->as_Initialize();
1095         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1096         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1097         if (ctrl_proj != NULL) {
1098            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
1099           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
1100         }
1101         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1102         if (mem_proj != NULL) {
1103           Node *mem = init->in(TypeFunc::Memory);
1104 #ifdef ASSERT
1105           if (mem->is_MergeMem()) {
1106             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
1107           } else {
1108             assert(mem == _memproj_fallthrough, "allocation memory projection");
1109           }
1110 #endif
1111           _igvn.replace_node(mem_proj, mem);
1112         }
1113       } else  {
1114         assert(false, "only Initialize or AddP expected");
1115       }
1116       j -= (oc1 - _resproj->outcnt());
1117     }
1118   }
1119   if (_fallthroughcatchproj != NULL) {
1120     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
1121   }
1122   if (_memproj_fallthrough != NULL) {
1123     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
1124   }
1125   if (_memproj_catchall != NULL) {
1126     _igvn.replace_node(_memproj_catchall, C->top());
1127   }
1128   if (_ioproj_fallthrough != NULL) {
1129     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
1130   }
1131   if (_ioproj_catchall != NULL) {
1132     _igvn.replace_node(_ioproj_catchall, C->top());
1133   }
1134   if (_catchallcatchproj != NULL) {
1135     _igvn.replace_node(_catchallcatchproj, C->top());
1136   }
1137 }
1138 
1139 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1140   // Don't do scalar replacement if the frame can be popped by JVMTI:
1141   // if reallocation fails during deoptimization we'll pop all
1142   // interpreter frames for this compiled frame and that won't play
1143   // nice with JVMTI popframe.
1144   if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
1145     return false;
1146   }
1147   Node* klass = alloc->in(AllocateNode::KlassNode);
1148   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1149   Node* res = alloc->result_cast();
1150   // Eliminate boxing allocations which are not used
1151   // regardless scalar replacable status.
1152   bool boxing_alloc = C->eliminate_boxing() &&
1153                       tklass->klass()->is_instance_klass()  &&
1154                       tklass->klass()->as_instance_klass()->is_box_klass();
1155   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
1156     return false;
1157   }
1158 
1159   extract_call_projections(alloc);
1160 
1161   GrowableArray <SafePointNode *> safepoints;
1162   if (!can_eliminate_allocation(alloc, safepoints)) {
1163     return false;
1164   }
1165 
1166   if (!alloc->_is_scalar_replaceable) {
1167     assert(res == NULL, "sanity");
1168     // We can only eliminate allocation if all debug info references
1169     // are already replaced with SafePointScalarObject because
1170     // we can't search for a fields value without instance_id.
1171     if (safepoints.length() > 0) {
1172       return false;
1173     }
1174   }
1175 
1176   if (!scalar_replacement(alloc, safepoints)) {
1177     return false;
1178   }
1179 
1180   CompileLog* log = C->log();
1181   if (log != NULL) {
1182     log->head("eliminate_allocation type='%d'",
1183               log->identify(tklass->klass()));
1184     JVMState* p = alloc->jvms();
1185     while (p != NULL) {
1186       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1187       p = p->caller();
1188     }
1189     log->tail("eliminate_allocation");
1190   }
1191 
1192   process_users_of_allocation(alloc);
1193 
1194 #ifndef PRODUCT
1195   if (PrintEliminateAllocations) {
1196     if (alloc->is_AllocateArray())
1197       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1198     else
1199       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1200   }
1201 #endif
1202 
1203   return true;
1204 }
1205 
1206 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1207   // EA should remove all uses of non-escaping boxing node.
1208   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) {
1209     return false;
1210   }
1211 
1212   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1213 
1214   extract_call_projections(boxing);
1215 
1216   const TypeTuple* r = boxing->tf()->range_sig();
1217   assert(r->cnt() > TypeFunc::Parms, "sanity");
1218   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1219   assert(t != NULL, "sanity");
1220 
1221   CompileLog* log = C->log();
1222   if (log != NULL) {
1223     log->head("eliminate_boxing type='%d'",
1224               log->identify(t->klass()));
1225     JVMState* p = boxing->jvms();
1226     while (p != NULL) {
1227       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1228       p = p->caller();
1229     }
1230     log->tail("eliminate_boxing");
1231   }
1232 
1233   process_users_of_allocation(boxing);
1234 
1235 #ifndef PRODUCT
1236   if (PrintEliminateAllocations) {
1237     tty->print("++++ Eliminated: %d ", boxing->_idx);
1238     boxing->method()->print_short_name(tty);
1239     tty->cr();
1240   }
1241 #endif
1242 
1243   return true;
1244 }
1245 
1246 //---------------------------set_eden_pointers-------------------------
1247 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1248   if (UseTLAB) {                // Private allocation: load from TLS
1249     Node* thread = transform_later(new ThreadLocalNode());
1250     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1251     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1252     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1253     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1254   } else {                      // Shared allocation: load from globals
1255     CollectedHeap* ch = Universe::heap();
1256     address top_adr = (address)ch->top_addr();
1257     address end_adr = (address)ch->end_addr();
1258     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1259     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1260   }
1261 }
1262 
1263 
1264 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1265   Node* adr = basic_plus_adr(base, offset);
1266   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1267   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1268   transform_later(value);
1269   return value;
1270 }
1271 
1272 
1273 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1274   Node* adr = basic_plus_adr(base, offset);
1275   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1276   transform_later(mem);
1277   return mem;
1278 }
1279 
1280 //=============================================================================
1281 //
1282 //                              A L L O C A T I O N
1283 //
1284 // Allocation attempts to be fast in the case of frequent small objects.
1285 // It breaks down like this:
1286 //
1287 // 1) Size in doublewords is computed.  This is a constant for objects and
1288 // variable for most arrays.  Doubleword units are used to avoid size
1289 // overflow of huge doubleword arrays.  We need doublewords in the end for
1290 // rounding.
1291 //
1292 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1293 // the slow path into the VM.  The slow path can throw any required
1294 // exceptions, and does all the special checks for very large arrays.  The
1295 // size test can constant-fold away for objects.  For objects with
1296 // finalizers it constant-folds the otherway: you always go slow with
1297 // finalizers.
1298 //
1299 // 3) If NOT using TLABs, this is the contended loop-back point.
1300 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1301 //
1302 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1303 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1304 // "size*8" we always enter the VM, where "largish" is a constant picked small
1305 // enough that there's always space between the eden max and 4Gig (old space is
1306 // there so it's quite large) and large enough that the cost of entering the VM
1307 // is dwarfed by the cost to initialize the space.
1308 //
1309 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1310 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1311 // adjusted heap top back down; there is no contention.
1312 //
1313 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1314 // fields.
1315 //
1316 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1317 // oop flavor.
1318 //
1319 //=============================================================================
1320 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1321 // Allocations bigger than this always go the slow route.
1322 // This value must be small enough that allocation attempts that need to
1323 // trigger exceptions go the slow route.  Also, it must be small enough so
1324 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1325 //=============================================================================j//
1326 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1327 // The allocator will coalesce int->oop copies away.  See comment in
1328 // coalesce.cpp about how this works.  It depends critically on the exact
1329 // code shape produced here, so if you are changing this code shape
1330 // make sure the GC info for the heap-top is correct in and around the
1331 // slow-path call.
1332 //
1333 
1334 void PhaseMacroExpand::expand_allocate_common(
1335             AllocateNode* alloc, // allocation node to be expanded
1336             Node* length,  // array length for an array allocation
1337             const TypeFunc* slow_call_type, // Type of slow call
1338             address slow_call_address  // Address of slow call
1339     )
1340 {
1341 
1342   Node* ctrl = alloc->in(TypeFunc::Control);
1343   Node* mem  = alloc->in(TypeFunc::Memory);
1344   Node* i_o  = alloc->in(TypeFunc::I_O);
1345   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1346   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1347   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1348 
1349   assert(ctrl != NULL, "must have control");
1350   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1351   // they will not be used if "always_slow" is set
1352   enum { slow_result_path = 1, fast_result_path = 2 };
1353   Node *result_region = NULL;
1354   Node *result_phi_rawmem = NULL;
1355   Node *result_phi_rawoop = NULL;
1356   Node *result_phi_i_o = NULL;
1357 
1358   // The initial slow comparison is a size check, the comparison
1359   // we want to do is a BoolTest::gt
1360   bool always_slow = false;
1361   int tv = _igvn.find_int_con(initial_slow_test, -1);
1362   if (tv >= 0) {
1363     always_slow = (tv == 1);
1364     initial_slow_test = NULL;
1365   } else {
1366     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1367   }
1368 
1369   if (C->env()->dtrace_alloc_probes() ||
1370       (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
1371     // Force slow-path allocation
1372     always_slow = true;
1373     initial_slow_test = NULL;
1374   }
1375 
1376   Node *slow_region = NULL;
1377   Node *toobig_false = ctrl;
1378 
1379   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1380   // generate the initial test if necessary
1381   if (initial_slow_test != NULL ) {
1382     if (slow_region == NULL) {
1383       slow_region = new RegionNode(1);
1384     }
1385     // Now make the initial failure test.  Usually a too-big test but
1386     // might be a TRUE for finalizers or a fancy class check for
1387     // newInstance0.
1388     IfNode* toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1389     transform_later(toobig_iff);
1390     // Plug the failing-too-big test into the slow-path region
1391     Node* toobig_true = new IfTrueNode(toobig_iff);
1392     transform_later(toobig_true);
1393     slow_region    ->add_req(toobig_true);
1394     toobig_false = new IfFalseNode(toobig_iff);
1395     transform_later(toobig_false);
1396   } else {         // No initial test, just fall into next case
1397     toobig_false = ctrl;
1398   }
1399 
1400   Node *slow_mem = mem;  // save the current memory state for slow path
1401   // generate the fast allocation code unless we know that the initial test will always go slow
1402   if (!always_slow) {
1403     // Fast path modifies only raw memory.
1404     if (mem->is_MergeMem()) {
1405       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1406     }
1407 
1408     // allocate the Region and Phi nodes for the result
1409     result_region = new RegionNode(3);
1410     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1411     result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1412     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1413 
1414     // Grab regular I/O before optional prefetch may change it.
1415     // Slow-path does no I/O so just set it to the original I/O.
1416     result_phi_i_o->init_req(slow_result_path, i_o);
1417 
1418     Node* needgc_ctrl = NULL;
1419     // Name successful fast-path variables
1420     Node* fast_oop_ctrl;
1421     Node* fast_oop_rawmem;
1422 
1423     intx prefetch_lines = length != NULL ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1424 
1425     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1426     Node* fast_oop = bs->obj_allocate(this, ctrl, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1427                                       fast_oop_ctrl, fast_oop_rawmem,
1428                                       prefetch_lines);
1429 
1430     if (slow_region != NULL) {
1431       slow_region->add_req(needgc_ctrl);
1432       // This completes all paths into the slow merge point
1433       transform_later(slow_region);
1434     } else {
1435       // Just fall from the need-GC path straight into the VM call.
1436       slow_region = needgc_ctrl;
1437     }
1438 
1439     InitializeNode* init = alloc->initialization();
1440     fast_oop_rawmem = initialize_object(alloc,
1441                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1442                                         klass_node, length, size_in_bytes);
1443 
1444     // If initialization is performed by an array copy, any required
1445     // MemBarStoreStore was already added. If the object does not
1446     // escape no need for a MemBarStoreStore. If the object does not
1447     // escape in its initializer and memory barrier (MemBarStoreStore or
1448     // stronger) is already added at exit of initializer, also no need
1449     // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1450     // so that stores that initialize this object can't be reordered
1451     // with a subsequent store that makes this object accessible by
1452     // other threads.
1453     // Other threads include java threads and JVM internal threads
1454     // (for example concurrent GC threads). Current concurrent GC
1455     // implementation: CMS and G1 will not scan newly created object,
1456     // so it's safe to skip storestore barrier when allocation does
1457     // not escape.
1458     if (!alloc->does_not_escape_thread() &&
1459         !alloc->is_allocation_MemBar_redundant() &&
1460         (init == NULL || !init->is_complete_with_arraycopy())) {
1461       if (init == NULL || init->req() < InitializeNode::RawStores) {
1462         // No InitializeNode or no stores captured by zeroing
1463         // elimination. Simply add the MemBarStoreStore after object
1464         // initialization.
1465         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1466         transform_later(mb);
1467 
1468         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1469         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1470         fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control);
1471         transform_later(fast_oop_ctrl);
1472         fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory);
1473         transform_later(fast_oop_rawmem);
1474       } else {
1475         // Add the MemBarStoreStore after the InitializeNode so that
1476         // all stores performing the initialization that were moved
1477         // before the InitializeNode happen before the storestore
1478         // barrier.
1479 
1480         Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1481         Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1482 
1483         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1484         transform_later(mb);
1485 
1486         Node* ctrl = new ProjNode(init,TypeFunc::Control);
1487         transform_later(ctrl);
1488         Node* mem = new ProjNode(init,TypeFunc::Memory);
1489         transform_later(mem);
1490 
1491         // The MemBarStoreStore depends on control and memory coming
1492         // from the InitializeNode
1493         mb->init_req(TypeFunc::Memory, mem);
1494         mb->init_req(TypeFunc::Control, ctrl);
1495 
1496         ctrl = new ProjNode(mb,TypeFunc::Control);
1497         transform_later(ctrl);
1498         mem = new ProjNode(mb,TypeFunc::Memory);
1499         transform_later(mem);
1500 
1501         // All nodes that depended on the InitializeNode for control
1502         // and memory must now depend on the MemBarNode that itself
1503         // depends on the InitializeNode
1504         if (init_ctrl != NULL) {
1505           _igvn.replace_node(init_ctrl, ctrl);
1506         }
1507         if (init_mem != NULL) {
1508           _igvn.replace_node(init_mem, mem);
1509         }
1510       }
1511     }
1512 
1513     if (C->env()->dtrace_extended_probes()) {
1514       // Slow-path call
1515       int size = TypeFunc::Parms + 2;
1516       CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1517                                             CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1518                                             "dtrace_object_alloc",
1519                                             TypeRawPtr::BOTTOM);
1520 
1521       // Get base of thread-local storage area
1522       Node* thread = new ThreadLocalNode();
1523       transform_later(thread);
1524 
1525       call->init_req(TypeFunc::Parms+0, thread);
1526       call->init_req(TypeFunc::Parms+1, fast_oop);
1527       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1528       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1529       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1530       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1531       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1532       transform_later(call);
1533       fast_oop_ctrl = new ProjNode(call,TypeFunc::Control);
1534       transform_later(fast_oop_ctrl);
1535       fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory);
1536       transform_later(fast_oop_rawmem);
1537     }
1538 
1539     // Plug in the successful fast-path into the result merge point
1540     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1541     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1542     result_phi_i_o   ->init_req(fast_result_path, i_o);
1543     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1544   } else {
1545     slow_region = ctrl;
1546     result_phi_i_o = i_o; // Rename it to use in the following code.
1547   }
1548 
1549   // Generate slow-path call
1550   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1551                                OptoRuntime::stub_name(slow_call_address),
1552                                alloc->jvms()->bci(),
1553                                TypePtr::BOTTOM);
1554   call->init_req( TypeFunc::Control, slow_region );
1555   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1556   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1557   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1558   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1559 
1560   call->init_req(TypeFunc::Parms+0, klass_node);
1561   if (length != NULL) {
1562     call->init_req(TypeFunc::Parms+1, length);
1563   }
1564 
1565   // Copy debug information and adjust JVMState information, then replace
1566   // allocate node with the call
1567   copy_call_debug_info((CallNode *) alloc,  call);
1568   if (!always_slow) {
1569     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1570   } else {
1571     // Hook i_o projection to avoid its elimination during allocation
1572     // replacement (when only a slow call is generated).
1573     call->set_req(TypeFunc::I_O, result_phi_i_o);
1574   }
1575   _igvn.replace_node(alloc, call);
1576   transform_later(call);
1577 
1578   // Identify the output projections from the allocate node and
1579   // adjust any references to them.
1580   // The control and io projections look like:
1581   //
1582   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1583   //  Allocate                   Catch
1584   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1585   //
1586   //  We are interested in the CatchProj nodes.
1587   //
1588   extract_call_projections(call);
1589 
1590   // An allocate node has separate memory projections for the uses on
1591   // the control and i_o paths. Replace the control memory projection with
1592   // result_phi_rawmem (unless we are only generating a slow call when
1593   // both memory projections are combined)
1594   if (!always_slow && _memproj_fallthrough != NULL) {
1595     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1596       Node *use = _memproj_fallthrough->fast_out(i);
1597       _igvn.rehash_node_delayed(use);
1598       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1599       // back up iterator
1600       --i;
1601     }
1602   }
1603   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1604   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1605   if (_memproj_catchall != NULL ) {
1606     if (_memproj_fallthrough == NULL) {
1607       _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1608       transform_later(_memproj_fallthrough);
1609     }
1610     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1611       Node *use = _memproj_catchall->fast_out(i);
1612       _igvn.rehash_node_delayed(use);
1613       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1614       // back up iterator
1615       --i;
1616     }
1617     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1618     _igvn.remove_dead_node(_memproj_catchall);
1619   }
1620 
1621   // An allocate node has separate i_o projections for the uses on the control
1622   // and i_o paths. Always replace the control i_o projection with result i_o
1623   // otherwise incoming i_o become dead when only a slow call is generated
1624   // (it is different from memory projections where both projections are
1625   // combined in such case).
1626   if (_ioproj_fallthrough != NULL) {
1627     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1628       Node *use = _ioproj_fallthrough->fast_out(i);
1629       _igvn.rehash_node_delayed(use);
1630       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1631       // back up iterator
1632       --i;
1633     }
1634   }
1635   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1636   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1637   if (_ioproj_catchall != NULL ) {
1638     if (_ioproj_fallthrough == NULL) {
1639       _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1640       transform_later(_ioproj_fallthrough);
1641     }
1642     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1643       Node *use = _ioproj_catchall->fast_out(i);
1644       _igvn.rehash_node_delayed(use);
1645       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1646       // back up iterator
1647       --i;
1648     }
1649     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1650     _igvn.remove_dead_node(_ioproj_catchall);
1651   }
1652 
1653   // if we generated only a slow call, we are done
1654   if (always_slow) {
1655     // Now we can unhook i_o.
1656     if (result_phi_i_o->outcnt() > 1) {
1657       call->set_req(TypeFunc::I_O, top());
1658     } else {
1659       assert(result_phi_i_o->unique_ctrl_out() == call, "");
1660       // Case of new array with negative size known during compilation.
1661       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1662       // following code since call to runtime will throw exception.
1663       // As result there will be no users of i_o after the call.
1664       // Leave i_o attached to this call to avoid problems in preceding graph.
1665     }
1666     return;
1667   }
1668 
1669 
1670   if (_fallthroughcatchproj != NULL) {
1671     ctrl = _fallthroughcatchproj->clone();
1672     transform_later(ctrl);
1673     _igvn.replace_node(_fallthroughcatchproj, result_region);
1674   } else {
1675     ctrl = top();
1676   }
1677   Node *slow_result;
1678   if (_resproj == NULL) {
1679     // no uses of the allocation result
1680     slow_result = top();
1681   } else {
1682     slow_result = _resproj->clone();
1683     transform_later(slow_result);
1684     _igvn.replace_node(_resproj, result_phi_rawoop);
1685   }
1686 
1687   // Plug slow-path into result merge point
1688   result_region    ->init_req( slow_result_path, ctrl );
1689   result_phi_rawoop->init_req( slow_result_path, slow_result);
1690   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1691   transform_later(result_region);
1692   transform_later(result_phi_rawoop);
1693   transform_later(result_phi_rawmem);
1694   transform_later(result_phi_i_o);
1695   // This completes all paths into the result merge point
1696 }
1697 
1698 
1699 // Helper for PhaseMacroExpand::expand_allocate_common.
1700 // Initializes the newly-allocated storage.
1701 Node* PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1702                                           Node* control, Node* rawmem, Node* object,
1703                                           Node* klass_node, Node* length,
1704                                           Node* size_in_bytes) {
1705   InitializeNode* init = alloc->initialization();
1706   // Store the klass & mark bits
1707   Node* mark_node = NULL;
1708   // For now only enable fast locking for non-array types
1709   if ((EnableValhalla || UseBiasedLocking) && length == NULL) {
1710     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1711   } else {
1712     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1713   }
1714   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1715 
1716   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1717   int header_size = alloc->minimum_header_size();  // conservatively small
1718 
1719   // Array length
1720   if (length != NULL) {         // Arrays need length field
1721     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1722     // conservatively small header size:
1723     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1724     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1725     if (k->is_array_klass())    // we know the exact header size in most cases:
1726       header_size = Klass::layout_helper_header_size(k->layout_helper());
1727   }
1728 
1729   // Clear the object body, if necessary.
1730   if (init == NULL) {
1731     // The init has somehow disappeared; be cautious and clear everything.
1732     //
1733     // This can happen if a node is allocated but an uncommon trap occurs
1734     // immediately.  In this case, the Initialize gets associated with the
1735     // trap, and may be placed in a different (outer) loop, if the Allocate
1736     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1737     // there can be two Allocates to one Initialize.  The answer in all these
1738     // edge cases is safety first.  It is always safe to clear immediately
1739     // within an Allocate, and then (maybe or maybe not) clear some more later.
1740     if (!(UseTLAB && ZeroTLAB)) {
1741       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1742                                             alloc->in(AllocateNode::DefaultValue),
1743                                             alloc->in(AllocateNode::RawDefaultValue),
1744                                             header_size, size_in_bytes,
1745                                             &_igvn);
1746     }
1747   } else {
1748     if (!init->is_complete()) {
1749       // Try to win by zeroing only what the init does not store.
1750       // We can also try to do some peephole optimizations,
1751       // such as combining some adjacent subword stores.
1752       rawmem = init->complete_stores(control, rawmem, object,
1753                                      header_size, size_in_bytes, &_igvn);
1754     }
1755     // We have no more use for this link, since the AllocateNode goes away:
1756     init->set_req(InitializeNode::RawAddress, top());
1757     // (If we keep the link, it just confuses the register allocator,
1758     // who thinks he sees a real use of the address by the membar.)
1759   }
1760 
1761   return rawmem;
1762 }
1763 
1764 // Generate prefetch instructions for next allocations.
1765 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1766                                         Node*& contended_phi_rawmem,
1767                                         Node* old_eden_top, Node* new_eden_top,
1768                                         intx lines) {
1769    enum { fall_in_path = 1, pf_path = 2 };
1770    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1771       // Generate prefetch allocation with watermark check.
1772       // As an allocation hits the watermark, we will prefetch starting
1773       // at a "distance" away from watermark.
1774 
1775       Node *pf_region = new RegionNode(3);
1776       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1777                                                 TypeRawPtr::BOTTOM );
1778       // I/O is used for Prefetch
1779       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1780 
1781       Node *thread = new ThreadLocalNode();
1782       transform_later(thread);
1783 
1784       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1785                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1786       transform_later(eden_pf_adr);
1787 
1788       Node *old_pf_wm = new LoadPNode(needgc_false,
1789                                    contended_phi_rawmem, eden_pf_adr,
1790                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1791                                    MemNode::unordered);
1792       transform_later(old_pf_wm);
1793 
1794       // check against new_eden_top
1795       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1796       transform_later(need_pf_cmp);
1797       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1798       transform_later(need_pf_bol);
1799       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1800                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1801       transform_later(need_pf_iff);
1802 
1803       // true node, add prefetchdistance
1804       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1805       transform_later(need_pf_true);
1806 
1807       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1808       transform_later(need_pf_false);
1809 
1810       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1811                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1812       transform_later(new_pf_wmt );
1813       new_pf_wmt->set_req(0, need_pf_true);
1814 
1815       Node *store_new_wmt = new StorePNode(need_pf_true,
1816                                        contended_phi_rawmem, eden_pf_adr,
1817                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1818                                        MemNode::unordered);
1819       transform_later(store_new_wmt);
1820 
1821       // adding prefetches
1822       pf_phi_abio->init_req( fall_in_path, i_o );
1823 
1824       Node *prefetch_adr;
1825       Node *prefetch;
1826       uint step_size = AllocatePrefetchStepSize;
1827       uint distance = 0;
1828 
1829       for ( intx i = 0; i < lines; i++ ) {
1830         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1831                                             _igvn.MakeConX(distance) );
1832         transform_later(prefetch_adr);
1833         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1834         transform_later(prefetch);
1835         distance += step_size;
1836         i_o = prefetch;
1837       }
1838       pf_phi_abio->set_req( pf_path, i_o );
1839 
1840       pf_region->init_req( fall_in_path, need_pf_false );
1841       pf_region->init_req( pf_path, need_pf_true );
1842 
1843       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1844       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1845 
1846       transform_later(pf_region);
1847       transform_later(pf_phi_rawmem);
1848       transform_later(pf_phi_abio);
1849 
1850       needgc_false = pf_region;
1851       contended_phi_rawmem = pf_phi_rawmem;
1852       i_o = pf_phi_abio;
1853    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1854       // Insert a prefetch instruction for each allocation.
1855       // This code is used to generate 1 prefetch instruction per cache line.
1856 
1857       // Generate several prefetch instructions.
1858       uint step_size = AllocatePrefetchStepSize;
1859       uint distance = AllocatePrefetchDistance;
1860 
1861       // Next cache address.
1862       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1863                                      _igvn.MakeConX(step_size + distance));
1864       transform_later(cache_adr);
1865       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1866       transform_later(cache_adr);
1867       // Address is aligned to execute prefetch to the beginning of cache line size
1868       // (it is important when BIS instruction is used on SPARC as prefetch).
1869       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1870       cache_adr = new AndXNode(cache_adr, mask);
1871       transform_later(cache_adr);
1872       cache_adr = new CastX2PNode(cache_adr);
1873       transform_later(cache_adr);
1874 
1875       // Prefetch
1876       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1877       prefetch->set_req(0, needgc_false);
1878       transform_later(prefetch);
1879       contended_phi_rawmem = prefetch;
1880       Node *prefetch_adr;
1881       distance = step_size;
1882       for ( intx i = 1; i < lines; i++ ) {
1883         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1884                                             _igvn.MakeConX(distance) );
1885         transform_later(prefetch_adr);
1886         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1887         transform_later(prefetch);
1888         distance += step_size;
1889         contended_phi_rawmem = prefetch;
1890       }
1891    } else if( AllocatePrefetchStyle > 0 ) {
1892       // Insert a prefetch for each allocation only on the fast-path
1893       Node *prefetch_adr;
1894       Node *prefetch;
1895       // Generate several prefetch instructions.
1896       uint step_size = AllocatePrefetchStepSize;
1897       uint distance = AllocatePrefetchDistance;
1898       for ( intx i = 0; i < lines; i++ ) {
1899         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1900                                             _igvn.MakeConX(distance) );
1901         transform_later(prefetch_adr);
1902         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1903         // Do not let it float too high, since if eden_top == eden_end,
1904         // both might be null.
1905         if( i == 0 ) { // Set control for first prefetch, next follows it
1906           prefetch->init_req(0, needgc_false);
1907         }
1908         transform_later(prefetch);
1909         distance += step_size;
1910         i_o = prefetch;
1911       }
1912    }
1913    return i_o;
1914 }
1915 
1916 
1917 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1918   expand_allocate_common(alloc, NULL,
1919                          OptoRuntime::new_instance_Type(),
1920                          OptoRuntime::new_instance_Java());
1921 }
1922 
1923 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1924   Node* length = alloc->in(AllocateNode::ALength);
1925   InitializeNode* init = alloc->initialization();
1926   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1927   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1928   address slow_call_address;  // Address of slow call
1929   if (init != NULL && init->is_complete_with_arraycopy() &&
1930       k->is_type_array_klass()) {
1931     // Don't zero type array during slow allocation in VM since
1932     // it will be initialized later by arraycopy in compiled code.
1933     slow_call_address = OptoRuntime::new_array_nozero_Java();
1934   } else {
1935     slow_call_address = OptoRuntime::new_array_Java();
1936   }
1937   expand_allocate_common(alloc, length,
1938                          OptoRuntime::new_array_Type(),
1939                          slow_call_address);
1940 }
1941 
1942 //-------------------mark_eliminated_box----------------------------------
1943 //
1944 // During EA obj may point to several objects but after few ideal graph
1945 // transformations (CCP) it may point to only one non escaping object
1946 // (but still using phi), corresponding locks and unlocks will be marked
1947 // for elimination. Later obj could be replaced with a new node (new phi)
1948 // and which does not have escape information. And later after some graph
1949 // reshape other locks and unlocks (which were not marked for elimination
1950 // before) are connected to this new obj (phi) but they still will not be
1951 // marked for elimination since new obj has no escape information.
1952 // Mark all associated (same box and obj) lock and unlock nodes for
1953 // elimination if some of them marked already.
1954 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1955   if (oldbox->as_BoxLock()->is_eliminated())
1956     return; // This BoxLock node was processed already.
1957 
1958   // New implementation (EliminateNestedLocks) has separate BoxLock
1959   // node for each locked region so mark all associated locks/unlocks as
1960   // eliminated even if different objects are referenced in one locked region
1961   // (for example, OSR compilation of nested loop inside locked scope).
1962   if (EliminateNestedLocks ||
1963       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
1964     // Box is used only in one lock region. Mark this box as eliminated.
1965     _igvn.hash_delete(oldbox);
1966     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
1967      _igvn.hash_insert(oldbox);
1968 
1969     for (uint i = 0; i < oldbox->outcnt(); i++) {
1970       Node* u = oldbox->raw_out(i);
1971       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1972         AbstractLockNode* alock = u->as_AbstractLock();
1973         // Check lock's box since box could be referenced by Lock's debug info.
1974         if (alock->box_node() == oldbox) {
1975           // Mark eliminated all related locks and unlocks.
1976 #ifdef ASSERT
1977           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
1978 #endif
1979           alock->set_non_esc_obj();
1980         }
1981       }
1982     }
1983     return;
1984   }
1985 
1986   // Create new "eliminated" BoxLock node and use it in monitor debug info
1987   // instead of oldbox for the same object.
1988   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1989 
1990   // Note: BoxLock node is marked eliminated only here and it is used
1991   // to indicate that all associated lock and unlock nodes are marked
1992   // for elimination.
1993   newbox->set_eliminated();
1994   transform_later(newbox);
1995 
1996   // Replace old box node with new box for all users of the same object.
1997   for (uint i = 0; i < oldbox->outcnt();) {
1998     bool next_edge = true;
1999 
2000     Node* u = oldbox->raw_out(i);
2001     if (u->is_AbstractLock()) {
2002       AbstractLockNode* alock = u->as_AbstractLock();
2003       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2004         // Replace Box and mark eliminated all related locks and unlocks.
2005 #ifdef ASSERT
2006         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2007 #endif
2008         alock->set_non_esc_obj();
2009         _igvn.rehash_node_delayed(alock);
2010         alock->set_box_node(newbox);
2011         next_edge = false;
2012       }
2013     }
2014     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2015       FastLockNode* flock = u->as_FastLock();
2016       assert(flock->box_node() == oldbox, "sanity");
2017       _igvn.rehash_node_delayed(flock);
2018       flock->set_box_node(newbox);
2019       next_edge = false;
2020     }
2021 
2022     // Replace old box in monitor debug info.
2023     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2024       SafePointNode* sfn = u->as_SafePoint();
2025       JVMState* youngest_jvms = sfn->jvms();
2026       int max_depth = youngest_jvms->depth();
2027       for (int depth = 1; depth <= max_depth; depth++) {
2028         JVMState* jvms = youngest_jvms->of_depth(depth);
2029         int num_mon  = jvms->nof_monitors();
2030         // Loop over monitors
2031         for (int idx = 0; idx < num_mon; idx++) {
2032           Node* obj_node = sfn->monitor_obj(jvms, idx);
2033           Node* box_node = sfn->monitor_box(jvms, idx);
2034           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2035             int j = jvms->monitor_box_offset(idx);
2036             _igvn.replace_input_of(u, j, newbox);
2037             next_edge = false;
2038           }
2039         }
2040       }
2041     }
2042     if (next_edge) i++;
2043   }
2044 }
2045 
2046 //-----------------------mark_eliminated_locking_nodes-----------------------
2047 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2048   if (EliminateNestedLocks) {
2049     if (alock->is_nested()) {
2050        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2051        return;
2052     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2053       // Only Lock node has JVMState needed here.
2054       // Not that preceding claim is documented anywhere else.
2055       if (alock->jvms() != NULL) {
2056         if (alock->as_Lock()->is_nested_lock_region()) {
2057           // Mark eliminated related nested locks and unlocks.
2058           Node* obj = alock->obj_node();
2059           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2060           assert(!box_node->is_eliminated(), "should not be marked yet");
2061           // Note: BoxLock node is marked eliminated only here
2062           // and it is used to indicate that all associated lock
2063           // and unlock nodes are marked for elimination.
2064           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2065           for (uint i = 0; i < box_node->outcnt(); i++) {
2066             Node* u = box_node->raw_out(i);
2067             if (u->is_AbstractLock()) {
2068               alock = u->as_AbstractLock();
2069               if (alock->box_node() == box_node) {
2070                 // Verify that this Box is referenced only by related locks.
2071                 assert(alock->obj_node()->eqv_uncast(obj), "");
2072                 // Mark all related locks and unlocks.
2073 #ifdef ASSERT
2074                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2075 #endif
2076                 alock->set_nested();
2077               }
2078             }
2079           }
2080         } else {
2081 #ifdef ASSERT
2082           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2083           if (C->log() != NULL)
2084             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2085 #endif
2086         }
2087       }
2088       return;
2089     }
2090     // Process locks for non escaping object
2091     assert(alock->is_non_esc_obj(), "");
2092   } // EliminateNestedLocks
2093 
2094   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2095     // Look for all locks of this object and mark them and
2096     // corresponding BoxLock nodes as eliminated.
2097     Node* obj = alock->obj_node();
2098     for (uint j = 0; j < obj->outcnt(); j++) {
2099       Node* o = obj->raw_out(j);
2100       if (o->is_AbstractLock() &&
2101           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2102         alock = o->as_AbstractLock();
2103         Node* box = alock->box_node();
2104         // Replace old box node with new eliminated box for all users
2105         // of the same object and mark related locks as eliminated.
2106         mark_eliminated_box(box, obj);
2107       }
2108     }
2109   }
2110 }
2111 
2112 // we have determined that this lock/unlock can be eliminated, we simply
2113 // eliminate the node without expanding it.
2114 //
2115 // Note:  The membar's associated with the lock/unlock are currently not
2116 //        eliminated.  This should be investigated as a future enhancement.
2117 //
2118 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2119 
2120   if (!alock->is_eliminated()) {
2121     return false;
2122   }
2123 #ifdef ASSERT
2124   if (!alock->is_coarsened()) {
2125     // Check that new "eliminated" BoxLock node is created.
2126     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2127     assert(oldbox->is_eliminated(), "should be done already");
2128   }
2129 #endif
2130 
2131   alock->log_lock_optimization(C, "eliminate_lock");
2132 
2133 #ifndef PRODUCT
2134   if (PrintEliminateLocks) {
2135     if (alock->is_Lock()) {
2136       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2137     } else {
2138       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2139     }
2140   }
2141 #endif
2142 
2143   Node* mem  = alock->in(TypeFunc::Memory);
2144   Node* ctrl = alock->in(TypeFunc::Control);
2145   guarantee(ctrl != NULL, "missing control projection, cannot replace_node() with NULL");
2146 
2147   extract_call_projections(alock);
2148   // There are 2 projections from the lock.  The lock node will
2149   // be deleted when its last use is subsumed below.
2150   assert(alock->outcnt() == 2 &&
2151          _fallthroughproj != NULL &&
2152          _memproj_fallthrough != NULL,
2153          "Unexpected projections from Lock/Unlock");
2154 
2155   Node* fallthroughproj = _fallthroughproj;
2156   Node* memproj_fallthrough = _memproj_fallthrough;
2157 
2158   // The memory projection from a lock/unlock is RawMem
2159   // The input to a Lock is merged memory, so extract its RawMem input
2160   // (unless the MergeMem has been optimized away.)
2161   if (alock->is_Lock()) {
2162     // Seach for MemBarAcquireLock node and delete it also.
2163     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2164     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2165     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2166     Node* memproj = membar->proj_out(TypeFunc::Memory);
2167     _igvn.replace_node(ctrlproj, fallthroughproj);
2168     _igvn.replace_node(memproj, memproj_fallthrough);
2169 
2170     // Delete FastLock node also if this Lock node is unique user
2171     // (a loop peeling may clone a Lock node).
2172     Node* flock = alock->as_Lock()->fastlock_node();
2173     if (flock->outcnt() == 1) {
2174       assert(flock->unique_out() == alock, "sanity");
2175       _igvn.replace_node(flock, top());
2176     }
2177   }
2178 
2179   // Seach for MemBarReleaseLock node and delete it also.
2180   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2181     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2182     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2183            mem->is_Proj() && membar == mem->in(0), "");
2184     _igvn.replace_node(fallthroughproj, ctrl);
2185     _igvn.replace_node(memproj_fallthrough, mem);
2186     fallthroughproj = ctrl;
2187     memproj_fallthrough = mem;
2188     ctrl = membar->in(TypeFunc::Control);
2189     mem  = membar->in(TypeFunc::Memory);
2190   }
2191 
2192   _igvn.replace_node(fallthroughproj, ctrl);
2193   _igvn.replace_node(memproj_fallthrough, mem);
2194   return true;
2195 }
2196 
2197 
2198 //------------------------------expand_lock_node----------------------
2199 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2200 
2201   Node* ctrl = lock->in(TypeFunc::Control);
2202   Node* mem = lock->in(TypeFunc::Memory);
2203   Node* obj = lock->obj_node();
2204   Node* box = lock->box_node();
2205   Node* flock = lock->fastlock_node();
2206 
2207   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2208 
2209   // Make the merge point
2210   Node *region;
2211   Node *mem_phi;
2212   Node *slow_path;
2213 
2214   if (UseOptoBiasInlining) {
2215     /*
2216      *  See the full description in MacroAssembler::biased_locking_enter().
2217      *
2218      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2219      *    // The object is biased.
2220      *    proto_node = klass->prototype_header;
2221      *    o_node = thread | proto_node;
2222      *    x_node = o_node ^ mark_word;
2223      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2224      *      // Done.
2225      *    } else {
2226      *      if( (x_node & biased_lock_mask) != 0 ) {
2227      *        // The klass's prototype header is no longer biased.
2228      *        cas(&mark_word, mark_word, proto_node)
2229      *        goto cas_lock;
2230      *      } else {
2231      *        // The klass's prototype header is still biased.
2232      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2233      *          old = mark_word;
2234      *          new = o_node;
2235      *        } else {
2236      *          // Different thread or anonymous biased.
2237      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2238      *          new = thread | old;
2239      *        }
2240      *        // Try to rebias.
2241      *        if( cas(&mark_word, old, new) == 0 ) {
2242      *          // Done.
2243      *        } else {
2244      *          goto slow_path; // Failed.
2245      *        }
2246      *      }
2247      *    }
2248      *  } else {
2249      *    // The object is not biased.
2250      *    cas_lock:
2251      *    if( FastLock(obj) == 0 ) {
2252      *      // Done.
2253      *    } else {
2254      *      slow_path:
2255      *      OptoRuntime::complete_monitor_locking_Java(obj);
2256      *    }
2257      *  }
2258      */
2259 
2260     region  = new RegionNode(5);
2261     // create a Phi for the memory state
2262     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2263 
2264     Node* fast_lock_region  = new RegionNode(3);
2265     Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2266 
2267     // First, check mark word for the biased lock pattern.
2268     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2269 
2270     // Get fast path - mark word has the biased lock pattern.
2271     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2272                          markOopDesc::biased_lock_mask_in_place,
2273                          markOopDesc::biased_lock_pattern, true);
2274     // fast_lock_region->in(1) is set to slow path.
2275     fast_lock_mem_phi->init_req(1, mem);
2276 
2277     // Now check that the lock is biased to the current thread and has
2278     // the same epoch and bias as Klass::_prototype_header.
2279 
2280     // Special-case a fresh allocation to avoid building nodes:
2281     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2282     if (klass_node == NULL) {
2283       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2284       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2285 #ifdef _LP64
2286       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2287         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2288         klass_node->in(1)->init_req(0, ctrl);
2289       } else
2290 #endif
2291       klass_node->init_req(0, ctrl);
2292     }
2293     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2294 
2295     Node* thread = transform_later(new ThreadLocalNode());
2296     Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2297     Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2298     Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2299 
2300     // Get slow path - mark word does NOT match the value.
2301     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2302                                       (~markOopDesc::age_mask_in_place), 0);
2303     // region->in(3) is set to fast path - the object is biased to the current thread.
2304     mem_phi->init_req(3, mem);
2305 
2306 
2307     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2308 
2309 
2310     // First, check biased pattern.
2311     // Get fast path - _prototype_header has the same biased lock pattern.
2312     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2313                           markOopDesc::biased_lock_mask_in_place, 0, true);
2314 
2315     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2316     // fast_lock_region->in(2) - the prototype header is no longer biased
2317     // and we have to revoke the bias on this object.
2318     // We are going to try to reset the mark of this object to the prototype
2319     // value and fall through to the CAS-based locking scheme.
2320     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2321     Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2322                                           proto_node, mark_node);
2323     transform_later(cas);
2324     Node* proj = transform_later(new SCMemProjNode(cas));
2325     fast_lock_mem_phi->init_req(2, proj);
2326 
2327 
2328     // Second, check epoch bits.
2329     Node* rebiased_region  = new RegionNode(3);
2330     Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2331     Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2332 
2333     // Get slow path - mark word does NOT match epoch bits.
2334     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2335                                       markOopDesc::epoch_mask_in_place, 0);
2336     // The epoch of the current bias is not valid, attempt to rebias the object
2337     // toward the current thread.
2338     rebiased_region->init_req(2, epoch_ctrl);
2339     old_phi->init_req(2, mark_node);
2340     new_phi->init_req(2, o_node);
2341 
2342     // rebiased_region->in(1) is set to fast path.
2343     // The epoch of the current bias is still valid but we know
2344     // nothing about the owner; it might be set or it might be clear.
2345     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2346                              markOopDesc::age_mask_in_place |
2347                              markOopDesc::epoch_mask_in_place);
2348     Node* old = transform_later(new AndXNode(mark_node, cmask));
2349     cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2350     Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2351     old_phi->init_req(1, old);
2352     new_phi->init_req(1, new_mark);
2353 
2354     transform_later(rebiased_region);
2355     transform_later(old_phi);
2356     transform_later(new_phi);
2357 
2358     // Try to acquire the bias of the object using an atomic operation.
2359     // If this fails we will go in to the runtime to revoke the object's bias.
2360     cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2361     transform_later(cas);
2362     proj = transform_later(new SCMemProjNode(cas));
2363 
2364     // Get slow path - Failed to CAS.
2365     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2366     mem_phi->init_req(4, proj);
2367     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2368 
2369     // Failed to CAS.
2370     slow_path  = new RegionNode(3);
2371     Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2372 
2373     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2374     slow_mem->init_req(1, proj);
2375 
2376     // Call CAS-based locking scheme (FastLock node).
2377 
2378     transform_later(fast_lock_region);
2379     transform_later(fast_lock_mem_phi);
2380 
2381     // Get slow path - FastLock failed to lock the object.
2382     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2383     mem_phi->init_req(2, fast_lock_mem_phi);
2384     // region->in(2) is set to fast path - the object is locked to the current thread.
2385 
2386     slow_path->init_req(2, ctrl); // Capture slow-control
2387     slow_mem->init_req(2, fast_lock_mem_phi);
2388 
2389     transform_later(slow_path);
2390     transform_later(slow_mem);
2391     // Reset lock's memory edge.
2392     lock->set_req(TypeFunc::Memory, slow_mem);
2393 
2394   } else {
2395     region  = new RegionNode(3);
2396     // create a Phi for the memory state
2397     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2398 
2399     // Optimize test; set region slot 2
2400     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2401     mem_phi->init_req(2, mem);
2402   }
2403 
2404   // Make slow path call
2405   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2406                                   OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2407                                   obj, box, NULL);
2408 
2409   extract_call_projections(call);
2410 
2411   // Slow path can only throw asynchronous exceptions, which are always
2412   // de-opted.  So the compiler thinks the slow-call can never throw an
2413   // exception.  If it DOES throw an exception we would need the debug
2414   // info removed first (since if it throws there is no monitor).
2415   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2416            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2417 
2418   // Capture slow path
2419   // disconnect fall-through projection from call and create a new one
2420   // hook up users of fall-through projection to region
2421   Node *slow_ctrl = _fallthroughproj->clone();
2422   transform_later(slow_ctrl);
2423   _igvn.hash_delete(_fallthroughproj);
2424   _fallthroughproj->disconnect_inputs(NULL, C);
2425   region->init_req(1, slow_ctrl);
2426   // region inputs are now complete
2427   transform_later(region);
2428   _igvn.replace_node(_fallthroughproj, region);
2429 
2430   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2431   mem_phi->init_req(1, memproj );
2432   transform_later(mem_phi);
2433   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2434 }
2435 
2436 //------------------------------expand_unlock_node----------------------
2437 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2438 
2439   Node* ctrl = unlock->in(TypeFunc::Control);
2440   Node* mem = unlock->in(TypeFunc::Memory);
2441   Node* obj = unlock->obj_node();
2442   Node* box = unlock->box_node();
2443 
2444   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2445 
2446   // No need for a null check on unlock
2447 
2448   // Make the merge point
2449   Node *region;
2450   Node *mem_phi;
2451 
2452   if (UseOptoBiasInlining) {
2453     // Check for biased locking unlock case, which is a no-op.
2454     // See the full description in MacroAssembler::biased_locking_exit().
2455     region  = new RegionNode(4);
2456     // create a Phi for the memory state
2457     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2458     mem_phi->init_req(3, mem);
2459 
2460     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2461     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2462                          markOopDesc::biased_lock_mask_in_place,
2463                          markOopDesc::biased_lock_pattern);
2464   } else {
2465     region  = new RegionNode(3);
2466     // create a Phi for the memory state
2467     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2468   }
2469 
2470   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2471   funlock = transform_later( funlock )->as_FastUnlock();
2472   // Optimize test; set region slot 2
2473   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2474   Node *thread = transform_later(new ThreadLocalNode());
2475 
2476   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2477                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2478                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2479 
2480   extract_call_projections(call);
2481 
2482   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2483            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2484 
2485   // No exceptions for unlocking
2486   // Capture slow path
2487   // disconnect fall-through projection from call and create a new one
2488   // hook up users of fall-through projection to region
2489   Node *slow_ctrl = _fallthroughproj->clone();
2490   transform_later(slow_ctrl);
2491   _igvn.hash_delete(_fallthroughproj);
2492   _fallthroughproj->disconnect_inputs(NULL, C);
2493   region->init_req(1, slow_ctrl);
2494   // region inputs are now complete
2495   transform_later(region);
2496   _igvn.replace_node(_fallthroughproj, region);
2497 
2498   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2499   mem_phi->init_req(1, memproj );
2500   mem_phi->init_req(2, mem);
2501   transform_later(mem_phi);
2502   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2503 }
2504 
2505 // A value type might be returned from the call but we don't know its
2506 // type. Either we get a buffered value (and nothing needs to be done)
2507 // or one of the values being returned is the klass of the value type
2508 // and we need to allocate a value type instance of that type and
2509 // initialize it with other values being returned. In that case, we
2510 // first try a fast path allocation and initialize the value with the
2511 // value klass's pack handler or we fall back to a runtime call.
2512 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) {
2513   assert(call->method()->is_method_handle_intrinsic(), "must be a method handle intrinsic call");
2514   Node* ret = call->proj_out_or_null(TypeFunc::Parms);
2515   if (ret == NULL) {
2516     return;
2517   }
2518   const TypeFunc* tf = call->_tf;
2519   const TypeTuple* domain = OptoRuntime::store_value_type_fields_Type()->domain_cc();
2520   const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2521   call->_tf = new_tf;
2522   // Make sure the change of type is applied before projections are processed by igvn
2523   _igvn.set_type(call, call->Value(&_igvn));
2524   _igvn.set_type(ret, ret->Value(&_igvn));
2525 
2526   // Before any new projection is added:
2527   CallProjections* projs = call->extract_projections(true, true);
2528 
2529   Node* ctl = new Node(1);
2530   Node* mem = new Node(1);
2531   Node* io = new Node(1);
2532   Node* ex_ctl = new Node(1);
2533   Node* ex_mem = new Node(1);
2534   Node* ex_io = new Node(1);
2535   Node* res = new Node(1);
2536 
2537   Node* cast = transform_later(new CastP2XNode(ctl, res));
2538   Node* mask = MakeConX(0x1);
2539   Node* masked = transform_later(new AndXNode(cast, mask));
2540   Node* cmp = transform_later(new CmpXNode(masked, mask));
2541   Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
2542   IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN);
2543   transform_later(allocation_iff);
2544   Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff));
2545   Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff));
2546 
2547   Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeInstPtr::BOTTOM));
2548 
2549   Node* mask2 = MakeConX(-2);
2550   Node* masked2 = transform_later(new AndXNode(cast, mask2));
2551   Node* rawklassptr = transform_later(new CastX2PNode(masked2));
2552   Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeKlassPtr::OBJECT_OR_NULL));
2553 
2554   Node* slowpath_bol = NULL;
2555   Node* top_adr = NULL;
2556   Node* old_top = NULL;
2557   Node* new_top = NULL;
2558   if (UseTLAB) {
2559     Node* end_adr = NULL;
2560     set_eden_pointers(top_adr, end_adr);
2561     Node* end = make_load(ctl, mem, end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
2562     old_top = new LoadPNode(ctl, mem, top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered);
2563     transform_later(old_top);
2564     Node* layout_val = make_load(NULL, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT);
2565     Node* size_in_bytes = ConvI2X(layout_val);
2566     new_top = new AddPNode(top(), old_top, size_in_bytes);
2567     transform_later(new_top);
2568     Node* slowpath_cmp = new CmpPNode(new_top, end);
2569     transform_later(slowpath_cmp);
2570     slowpath_bol = new BoolNode(slowpath_cmp, BoolTest::ge);
2571     transform_later(slowpath_bol);
2572   } else {
2573     slowpath_bol = intcon(1);
2574     top_adr = top();
2575     old_top = top();
2576     new_top = top();
2577   }
2578   IfNode* slowpath_iff = new IfNode(allocation_ctl, slowpath_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
2579   transform_later(slowpath_iff);
2580 
2581   Node* slowpath_true = new IfTrueNode(slowpath_iff);
2582   transform_later(slowpath_true);
2583 
2584   CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_value_type_fields_Type(),
2585                                                          StubRoutines::store_value_type_fields_to_buf(),
2586                                                          "store_value_type_fields",
2587                                                          call->jvms()->bci(),
2588                                                          TypePtr::BOTTOM);
2589   slow_call->init_req(TypeFunc::Control, slowpath_true);
2590   slow_call->init_req(TypeFunc::Memory, mem);
2591   slow_call->init_req(TypeFunc::I_O, io);
2592   slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2593   slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
2594   slow_call->init_req(TypeFunc::Parms, res);
2595 
2596   Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control));
2597   Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory));
2598   Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O));
2599   Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms));
2600   Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2));
2601   Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci));
2602   Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci));
2603 
2604   Node* ex_r = new RegionNode(3);
2605   Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM);
2606   Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO);
2607   ex_r->init_req(1, slow_excp);
2608   ex_mem_phi->init_req(1, slow_mem);
2609   ex_io_phi->init_req(1, slow_io);
2610   ex_r->init_req(2, ex_ctl);
2611   ex_mem_phi->init_req(2, ex_mem);
2612   ex_io_phi->init_req(2, ex_io);
2613 
2614   transform_later(ex_r);
2615   transform_later(ex_mem_phi);
2616   transform_later(ex_io_phi);
2617 
2618   Node* slowpath_false = new IfFalseNode(slowpath_iff);
2619   transform_later(slowpath_false);
2620   Node* rawmem = new StorePNode(slowpath_false, mem, top_adr, TypeRawPtr::BOTTOM, new_top, MemNode::unordered);
2621   transform_later(rawmem);
2622   Node* mark_node = makecon(TypeRawPtr::make((address)markOopDesc::always_locked_prototype()));
2623   rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
2624   rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
2625   if (UseCompressedClassPointers) {
2626     rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT);
2627   }
2628   Node* fixed_block  = make_load(slowpath_false, rawmem, klass_node, in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2629   Node* pack_handler = make_load(slowpath_false, rawmem, fixed_block, in_bytes(ValueKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2630 
2631   CallLeafNoFPNode* handler_call = new CallLeafNoFPNode(OptoRuntime::pack_value_type_Type(),
2632                                                         NULL,
2633                                                         "pack handler",
2634                                                         TypeRawPtr::BOTTOM);
2635   handler_call->init_req(TypeFunc::Control, slowpath_false);
2636   handler_call->init_req(TypeFunc::Memory, rawmem);
2637   handler_call->init_req(TypeFunc::I_O, top());
2638   handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2639   handler_call->init_req(TypeFunc::ReturnAdr, top());
2640   handler_call->init_req(TypeFunc::Parms, pack_handler);
2641   handler_call->init_req(TypeFunc::Parms+1, old_top);
2642 
2643   // We don't know how many values are returned. This assumes the
2644   // worst case, that all available registers are used.
2645   for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2646     if (domain->field_at(i) == Type::HALF) {
2647       slow_call->init_req(i, top());
2648       handler_call->init_req(i+1, top());
2649       continue;
2650     }
2651     Node* proj = transform_later(new ProjNode(call, i));
2652     slow_call->init_req(i, proj);
2653     handler_call->init_req(i+1, proj);
2654   }
2655 
2656   // We can safepoint at that new call
2657   copy_call_debug_info(call, slow_call);
2658   transform_later(slow_call);
2659   transform_later(handler_call);
2660 
2661   Node* handler_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control));
2662   rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory));
2663   Node* slowpath_false_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms));
2664 
2665   MergeMemNode* slowpath_false_mem = MergeMemNode::make(mem);
2666   slowpath_false_mem->set_memory_at(Compile::AliasIdxRaw, rawmem);
2667   transform_later(slowpath_false_mem);
2668 
2669   Node* r = new RegionNode(4);
2670   Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2671   Node* io_phi = new PhiNode(r, Type::ABIO);
2672   Node* res_phi = new PhiNode(r, TypeInstPtr::BOTTOM);
2673 
2674   r->init_req(1, no_allocation_ctl);
2675   mem_phi->init_req(1, mem);
2676   io_phi->init_req(1, io);
2677   res_phi->init_req(1, no_allocation_res);
2678   r->init_req(2, slow_norm);
2679   mem_phi->init_req(2, slow_mem);
2680   io_phi->init_req(2, slow_io);
2681   res_phi->init_req(2, slow_res);
2682   r->init_req(3, handler_ctl);
2683   mem_phi->init_req(3, slowpath_false_mem);
2684   io_phi->init_req(3, io);
2685   res_phi->init_req(3, slowpath_false_res);
2686 
2687   transform_later(r);
2688   transform_later(mem_phi);
2689   transform_later(io_phi);
2690   transform_later(res_phi);
2691 
2692   assert(projs->nb_resproj == 1, "unexpected number of results");
2693   _igvn.replace_in_uses(projs->fallthrough_catchproj, r);
2694   _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi);
2695   _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi);
2696   _igvn.replace_in_uses(projs->resproj[0], res_phi);
2697   _igvn.replace_in_uses(projs->catchall_catchproj, ex_r);
2698   _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi);
2699   _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi);
2700 
2701   _igvn.replace_node(ctl, projs->fallthrough_catchproj);
2702   _igvn.replace_node(mem, projs->fallthrough_memproj);
2703   _igvn.replace_node(io, projs->fallthrough_ioproj);
2704   _igvn.replace_node(res, projs->resproj[0]);
2705   _igvn.replace_node(ex_ctl, projs->catchall_catchproj);
2706   _igvn.replace_node(ex_mem, projs->catchall_memproj);
2707   _igvn.replace_node(ex_io, projs->catchall_ioproj);
2708  }
2709 
2710 //---------------------------eliminate_macro_nodes----------------------
2711 // Eliminate scalar replaced allocations and associated locks.
2712 void PhaseMacroExpand::eliminate_macro_nodes() {
2713   if (C->macro_count() == 0)
2714     return;
2715 
2716   // First, attempt to eliminate locks
2717   int cnt = C->macro_count();
2718   for (int i=0; i < cnt; i++) {
2719     Node *n = C->macro_node(i);
2720     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2721       // Before elimination mark all associated (same box and obj)
2722       // lock and unlock nodes.
2723       mark_eliminated_locking_nodes(n->as_AbstractLock());
2724     }
2725   }
2726   bool progress = true;
2727   while (progress) {
2728     progress = false;
2729     for (int i = C->macro_count(); i > 0; i--) {
2730       Node * n = C->macro_node(i-1);
2731       bool success = false;
2732       debug_only(int old_macro_count = C->macro_count(););
2733       if (n->is_AbstractLock()) {
2734         success = eliminate_locking_node(n->as_AbstractLock());
2735       }
2736       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2737       progress = progress || success;
2738     }
2739   }
2740   // Next, attempt to eliminate allocations
2741   _has_locks = false;
2742   progress = true;
2743   while (progress) {
2744     progress = false;
2745     for (int i = C->macro_count(); i > 0; i--) {
2746       Node * n = C->macro_node(i-1);
2747       bool success = false;
2748       debug_only(int old_macro_count = C->macro_count(););
2749       switch (n->class_id()) {
2750       case Node::Class_Allocate:
2751       case Node::Class_AllocateArray:
2752         success = eliminate_allocate_node(n->as_Allocate());
2753         break;
2754       case Node::Class_CallStaticJava: {
2755         CallStaticJavaNode* call = n->as_CallStaticJava();
2756         if (!call->method()->is_method_handle_intrinsic()) {
2757           success = eliminate_boxing_node(n->as_CallStaticJava());
2758         }
2759         break;
2760       }
2761       case Node::Class_Lock:
2762       case Node::Class_Unlock:
2763         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2764         _has_locks = true;
2765         break;
2766       case Node::Class_ArrayCopy:
2767         break;
2768       case Node::Class_OuterStripMinedLoop:
2769         break;
2770       default:
2771         assert(n->Opcode() == Op_LoopLimit ||
2772                n->Opcode() == Op_Opaque1   ||
2773                n->Opcode() == Op_Opaque2   ||
2774                n->Opcode() == Op_Opaque3   ||
2775                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2776                "unknown node type in macro list");
2777       }
2778       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2779       progress = progress || success;
2780     }
2781   }
2782 }
2783 
2784 //------------------------------expand_macro_nodes----------------------
2785 //  Returns true if a failure occurred.
2786 bool PhaseMacroExpand::expand_macro_nodes() {
2787   // Last attempt to eliminate macro nodes.
2788   eliminate_macro_nodes();
2789 
2790   // Make sure expansion will not cause node limit to be exceeded.
2791   // Worst case is a macro node gets expanded into about 200 nodes.
2792   // Allow 50% more for optimization.
2793   if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) )
2794     return true;
2795 
2796   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2797   bool progress = true;
2798   while (progress) {
2799     progress = false;
2800     for (int i = C->macro_count(); i > 0; i--) {
2801       Node * n = C->macro_node(i-1);
2802       bool success = false;
2803       debug_only(int old_macro_count = C->macro_count(););
2804       if (n->Opcode() == Op_LoopLimit) {
2805         // Remove it from macro list and put on IGVN worklist to optimize.
2806         C->remove_macro_node(n);
2807         _igvn._worklist.push(n);
2808         success = true;
2809       } else if (n->Opcode() == Op_CallStaticJava) {
2810         CallStaticJavaNode* call = n->as_CallStaticJava();
2811         if (!call->method()->is_method_handle_intrinsic()) {
2812           // Remove it from macro list and put on IGVN worklist to optimize.
2813           C->remove_macro_node(n);
2814           _igvn._worklist.push(n);
2815           success = true;
2816         }
2817       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2818         _igvn.replace_node(n, n->in(1));
2819         success = true;
2820 #if INCLUDE_RTM_OPT
2821       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2822         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2823         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2824         Node* cmp = n->unique_out();
2825 #ifdef ASSERT
2826         // Validate graph.
2827         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2828         BoolNode* bol = cmp->unique_out()->as_Bool();
2829         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2830                (bol->_test._test == BoolTest::ne), "");
2831         IfNode* ifn = bol->unique_out()->as_If();
2832         assert((ifn->outcnt() == 2) &&
2833                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
2834 #endif
2835         Node* repl = n->in(1);
2836         if (!_has_locks) {
2837           // Remove RTM state check if there are no locks in the code.
2838           // Replace input to compare the same value.
2839           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
2840         }
2841         _igvn.replace_node(n, repl);
2842         success = true;
2843 #endif
2844       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2845         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2846         C->remove_macro_node(n);
2847         success = true;
2848       }
2849       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2850       progress = progress || success;
2851     }
2852   }
2853 
2854   // expand arraycopy "macro" nodes first
2855   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2856   // before the allocate nodes are expanded.
2857   int macro_idx = C->macro_count() - 1;
2858   while (macro_idx >= 0) {
2859     Node * n = C->macro_node(macro_idx);
2860     assert(n->is_macro(), "only macro nodes expected here");
2861     if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
2862       // node is unreachable, so don't try to expand it
2863       C->remove_macro_node(n);
2864     } else if (n->is_ArrayCopy()){
2865       int macro_count = C->macro_count();
2866       expand_arraycopy_node(n->as_ArrayCopy());
2867       assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2868     }
2869     if (C->failing())  return true;
2870     macro_idx --;
2871   }
2872 
2873   // expand "macro" nodes
2874   // nodes are removed from the macro list as they are processed
2875   while (C->macro_count() > 0) {
2876     int macro_count = C->macro_count();
2877     Node * n = C->macro_node(macro_count-1);
2878     assert(n->is_macro(), "only macro nodes expected here");
2879     if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
2880       // node is unreachable, so don't try to expand it
2881       C->remove_macro_node(n);
2882       continue;
2883     }
2884     switch (n->class_id()) {
2885     case Node::Class_Allocate:
2886       expand_allocate(n->as_Allocate());
2887       break;
2888     case Node::Class_AllocateArray:
2889       expand_allocate_array(n->as_AllocateArray());
2890       break;
2891     case Node::Class_Lock:
2892       expand_lock_node(n->as_Lock());
2893       break;
2894     case Node::Class_Unlock:
2895       expand_unlock_node(n->as_Unlock());
2896       break;
2897     case Node::Class_CallStaticJava:
2898       expand_mh_intrinsic_return(n->as_CallStaticJava());
2899       C->remove_macro_node(n);
2900       break;
2901     default:
2902       assert(false, "unknown node type in macro list");
2903     }
2904     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2905     if (C->failing())  return true;
2906   }
2907 
2908   _igvn.set_delay_transform(false);
2909   _igvn.optimize();
2910   if (C->failing())  return true;
2911   return false;
2912 }