1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "opto/valuetypenode.hpp"
  48 #include "utilities/align.hpp"
  49 #include "utilities/copy.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "utilities/vmError.hpp"
  52 #if INCLUDE_ZGC
  53 #include "gc/z/c2/zBarrierSetC2.hpp"
  54 #endif
  55 
  56 // Portions of code courtesy of Clifford Click
  57 
  58 // Optimization - Graph Style
  59 
  60 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  61 
  62 //=============================================================================
  63 uint MemNode::size_of() const { return sizeof(*this); }
  64 
  65 const TypePtr *MemNode::adr_type() const {
  66   Node* adr = in(Address);
  67   if (adr == NULL)  return NULL; // node is dead
  68   const TypePtr* cross_check = NULL;
  69   DEBUG_ONLY(cross_check = _adr_type);
  70   return calculate_adr_type(adr->bottom_type(), cross_check);
  71 }
  72 
  73 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  74   if (adr != NULL) {
  75     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  76       return true;
  77     }
  78   }
  79   return false;
  80 }
  81 
  82 #ifndef PRODUCT
  83 void MemNode::dump_spec(outputStream *st) const {
  84   if (in(Address) == NULL)  return; // node is dead
  85 #ifndef ASSERT
  86   // fake the missing field
  87   const TypePtr* _adr_type = NULL;
  88   if (in(Address) != NULL)
  89     _adr_type = in(Address)->bottom_type()->isa_ptr();
  90 #endif
  91   dump_adr_type(this, _adr_type, st);
  92 
  93   Compile* C = Compile::current();
  94   if (C->alias_type(_adr_type)->is_volatile()) {
  95     st->print(" Volatile!");
  96   }
  97   if (_unaligned_access) {
  98     st->print(" unaligned");
  99   }
 100   if (_mismatched_access) {
 101     st->print(" mismatched");
 102   }
 103 }
 104 
 105 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 106   st->print(" @");
 107   if (adr_type == NULL) {
 108     st->print("NULL");
 109   } else {
 110     adr_type->dump_on(st);
 111     Compile* C = Compile::current();
 112     Compile::AliasType* atp = NULL;
 113     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 114     if (atp == NULL)
 115       st->print(", idx=?\?;");
 116     else if (atp->index() == Compile::AliasIdxBot)
 117       st->print(", idx=Bot;");
 118     else if (atp->index() == Compile::AliasIdxTop)
 119       st->print(", idx=Top;");
 120     else if (atp->index() == Compile::AliasIdxRaw)
 121       st->print(", idx=Raw;");
 122     else {
 123       ciField* field = atp->field();
 124       if (field) {
 125         st->print(", name=");
 126         field->print_name_on(st);
 127       }
 128       st->print(", idx=%d;", atp->index());
 129     }
 130   }
 131 }
 132 
 133 extern void print_alias_types();
 134 
 135 #endif
 136 
 137 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 138   assert((t_oop != NULL), "sanity");
 139   bool is_instance = t_oop->is_known_instance_field();
 140   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 141                              (load != NULL) && load->is_Load() &&
 142                              (phase->is_IterGVN() != NULL);
 143   if (!(is_instance || is_boxed_value_load))
 144     return mchain;  // don't try to optimize non-instance types
 145   uint instance_id = t_oop->instance_id();
 146   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 147   Node *prev = NULL;
 148   Node *result = mchain;
 149   while (prev != result) {
 150     prev = result;
 151     if (result == start_mem)
 152       break;  // hit one of our sentinels
 153     // skip over a call which does not affect this memory slice
 154     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 155       Node *proj_in = result->in(0);
 156       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 157         break;  // hit one of our sentinels
 158       } else if (proj_in->is_Call()) {
 159         // ArrayCopyNodes processed here as well
 160         CallNode *call = proj_in->as_Call();
 161         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 162           result = call->in(TypeFunc::Memory);
 163         }
 164       } else if (proj_in->is_Initialize()) {
 165         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 166         // Stop if this is the initialization for the object instance which
 167         // contains this memory slice, otherwise skip over it.
 168         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 169           break;
 170         }
 171         if (is_instance) {
 172           result = proj_in->in(TypeFunc::Memory);
 173         } else if (is_boxed_value_load) {
 174           Node* klass = alloc->in(AllocateNode::KlassNode);
 175           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 176           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 177             result = proj_in->in(TypeFunc::Memory); // not related allocation
 178           }
 179         }
 180       } else if (proj_in->is_MemBar()) {
 181         ArrayCopyNode* ac = NULL;
 182         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 183           break;
 184         }
 185         result = proj_in->in(TypeFunc::Memory);
 186       } else {
 187         assert(false, "unexpected projection");
 188       }
 189     } else if (result->is_ClearArray()) {
 190       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 191         // Can not bypass initialization of the instance
 192         // we are looking for.
 193         break;
 194       }
 195       // Otherwise skip it (the call updated 'result' value).
 196     } else if (result->is_MergeMem()) {
 197       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 198     }
 199   }
 200   return result;
 201 }
 202 
 203 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 204   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 205   if (t_oop == NULL)
 206     return mchain;  // don't try to optimize non-oop types
 207   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 208   bool is_instance = t_oop->is_known_instance_field();
 209   PhaseIterGVN *igvn = phase->is_IterGVN();
 210   if (is_instance && igvn != NULL  && result->is_Phi()) {
 211     PhiNode *mphi = result->as_Phi();
 212     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 213     const TypePtr *t = mphi->adr_type();
 214     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 215         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 216          t->is_oopptr()->cast_to_exactness(true)
 217            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 218             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 219       // clone the Phi with our address type
 220       result = mphi->split_out_instance(t_adr, igvn);
 221     } else {
 222       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 223     }
 224   }
 225   return result;
 226 }
 227 
 228 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 229   uint alias_idx = phase->C->get_alias_index(tp);
 230   Node *mem = mmem;
 231 #ifdef ASSERT
 232   {
 233     // Check that current type is consistent with the alias index used during graph construction
 234     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 235     bool consistent =  adr_check == NULL || adr_check->empty() ||
 236                        phase->C->must_alias(adr_check, alias_idx );
 237     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 238     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 239         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 240         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 241         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 242           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 243           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 244       // don't assert if it is dead code.
 245       consistent = true;
 246     }
 247     if( !consistent ) {
 248       st->print("alias_idx==%d, adr_check==", alias_idx);
 249       if( adr_check == NULL ) {
 250         st->print("NULL");
 251       } else {
 252         adr_check->dump();
 253       }
 254       st->cr();
 255       print_alias_types();
 256       assert(consistent, "adr_check must match alias idx");
 257     }
 258   }
 259 #endif
 260   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 261   // means an array I have not precisely typed yet.  Do not do any
 262   // alias stuff with it any time soon.
 263   const TypeOopPtr *toop = tp->isa_oopptr();
 264   if( tp->base() != Type::AnyPtr &&
 265       !(toop &&
 266         toop->klass() != NULL &&
 267         toop->klass()->is_java_lang_Object() &&
 268         toop->offset() == Type::OffsetBot) ) {
 269     // compress paths and change unreachable cycles to TOP
 270     // If not, we can update the input infinitely along a MergeMem cycle
 271     // Equivalent code in PhiNode::Ideal
 272     Node* m  = phase->transform(mmem);
 273     // If transformed to a MergeMem, get the desired slice
 274     // Otherwise the returned node represents memory for every slice
 275     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 276     // Update input if it is progress over what we have now
 277   }
 278   return mem;
 279 }
 280 
 281 //--------------------------Ideal_common---------------------------------------
 282 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 283 // Unhook non-raw memories from complete (macro-expanded) initializations.
 284 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 285   // If our control input is a dead region, kill all below the region
 286   Node *ctl = in(MemNode::Control);
 287   if (ctl && remove_dead_region(phase, can_reshape))
 288     return this;
 289   ctl = in(MemNode::Control);
 290   // Don't bother trying to transform a dead node
 291   if (ctl && ctl->is_top())  return NodeSentinel;
 292 
 293   PhaseIterGVN *igvn = phase->is_IterGVN();
 294   // Wait if control on the worklist.
 295   if (ctl && can_reshape && igvn != NULL) {
 296     Node* bol = NULL;
 297     Node* cmp = NULL;
 298     if (ctl->in(0)->is_If()) {
 299       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 300       bol = ctl->in(0)->in(1);
 301       if (bol->is_Bool())
 302         cmp = ctl->in(0)->in(1)->in(1);
 303     }
 304     if (igvn->_worklist.member(ctl) ||
 305         (bol != NULL && igvn->_worklist.member(bol)) ||
 306         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 307       // This control path may be dead.
 308       // Delay this memory node transformation until the control is processed.
 309       phase->is_IterGVN()->_worklist.push(this);
 310       return NodeSentinel; // caller will return NULL
 311     }
 312   }
 313   // Ignore if memory is dead, or self-loop
 314   Node *mem = in(MemNode::Memory);
 315   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 316   assert(mem != this, "dead loop in MemNode::Ideal");
 317 
 318   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 319     // This memory slice may be dead.
 320     // Delay this mem node transformation until the memory is processed.
 321     phase->is_IterGVN()->_worklist.push(this);
 322     return NodeSentinel; // caller will return NULL
 323   }
 324 
 325   Node *address = in(MemNode::Address);
 326   const Type *t_adr = phase->type(address);
 327   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 328 
 329   if (can_reshape && igvn != NULL &&
 330       (igvn->_worklist.member(address) ||
 331        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 332     // The address's base and type may change when the address is processed.
 333     // Delay this mem node transformation until the address is processed.
 334     phase->is_IterGVN()->_worklist.push(this);
 335     return NodeSentinel; // caller will return NULL
 336   }
 337 
 338   // Do NOT remove or optimize the next lines: ensure a new alias index
 339   // is allocated for an oop pointer type before Escape Analysis.
 340   // Note: C++ will not remove it since the call has side effect.
 341   if (t_adr->isa_oopptr()) {
 342     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 343   }
 344 
 345   Node* base = NULL;
 346   if (address->is_AddP()) {
 347     base = address->in(AddPNode::Base);
 348   }
 349   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 350       !t_adr->isa_rawptr()) {
 351     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 352     // Skip this node optimization if its address has TOP base.
 353     return NodeSentinel; // caller will return NULL
 354   }
 355 
 356   // Avoid independent memory operations
 357   Node* old_mem = mem;
 358 
 359   // The code which unhooks non-raw memories from complete (macro-expanded)
 360   // initializations was removed. After macro-expansion all stores catched
 361   // by Initialize node became raw stores and there is no information
 362   // which memory slices they modify. So it is unsafe to move any memory
 363   // operation above these stores. Also in most cases hooked non-raw memories
 364   // were already unhooked by using information from detect_ptr_independence()
 365   // and find_previous_store().
 366 
 367   if (mem->is_MergeMem()) {
 368     MergeMemNode* mmem = mem->as_MergeMem();
 369     const TypePtr *tp = t_adr->is_ptr();
 370 
 371     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 372   }
 373 
 374   if (mem != old_mem) {
 375     set_req(MemNode::Memory, mem);
 376     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 377       igvn->_worklist.push(old_mem);
 378     }
 379     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 380     return this;
 381   }
 382 
 383   // let the subclass continue analyzing...
 384   return NULL;
 385 }
 386 
 387 // Helper function for proving some simple control dominations.
 388 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 389 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 390 // is not a constant (dominated by the method's StartNode).
 391 // Used by MemNode::find_previous_store to prove that the
 392 // control input of a memory operation predates (dominates)
 393 // an allocation it wants to look past.
 394 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 395   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 396     return false; // Conservative answer for dead code
 397 
 398   // Check 'dom'. Skip Proj and CatchProj nodes.
 399   dom = dom->find_exact_control(dom);
 400   if (dom == NULL || dom->is_top())
 401     return false; // Conservative answer for dead code
 402 
 403   if (dom == sub) {
 404     // For the case when, for example, 'sub' is Initialize and the original
 405     // 'dom' is Proj node of the 'sub'.
 406     return false;
 407   }
 408 
 409   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 410     return true;
 411 
 412   // 'dom' dominates 'sub' if its control edge and control edges
 413   // of all its inputs dominate or equal to sub's control edge.
 414 
 415   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 416   // Or Region for the check in LoadNode::Ideal();
 417   // 'sub' should have sub->in(0) != NULL.
 418   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 419          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 420 
 421   // Get control edge of 'sub'.
 422   Node* orig_sub = sub;
 423   sub = sub->find_exact_control(sub->in(0));
 424   if (sub == NULL || sub->is_top())
 425     return false; // Conservative answer for dead code
 426 
 427   assert(sub->is_CFG(), "expecting control");
 428 
 429   if (sub == dom)
 430     return true;
 431 
 432   if (sub->is_Start() || sub->is_Root())
 433     return false;
 434 
 435   {
 436     // Check all control edges of 'dom'.
 437 
 438     ResourceMark rm;
 439     Arena* arena = Thread::current()->resource_area();
 440     Node_List nlist(arena);
 441     Unique_Node_List dom_list(arena);
 442 
 443     dom_list.push(dom);
 444     bool only_dominating_controls = false;
 445 
 446     for (uint next = 0; next < dom_list.size(); next++) {
 447       Node* n = dom_list.at(next);
 448       if (n == orig_sub)
 449         return false; // One of dom's inputs dominated by sub.
 450       if (!n->is_CFG() && n->pinned()) {
 451         // Check only own control edge for pinned non-control nodes.
 452         n = n->find_exact_control(n->in(0));
 453         if (n == NULL || n->is_top())
 454           return false; // Conservative answer for dead code
 455         assert(n->is_CFG(), "expecting control");
 456         dom_list.push(n);
 457       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 458         only_dominating_controls = true;
 459       } else if (n->is_CFG()) {
 460         if (n->dominates(sub, nlist))
 461           only_dominating_controls = true;
 462         else
 463           return false;
 464       } else {
 465         // First, own control edge.
 466         Node* m = n->find_exact_control(n->in(0));
 467         if (m != NULL) {
 468           if (m->is_top())
 469             return false; // Conservative answer for dead code
 470           dom_list.push(m);
 471         }
 472         // Now, the rest of edges.
 473         uint cnt = n->req();
 474         for (uint i = 1; i < cnt; i++) {
 475           m = n->find_exact_control(n->in(i));
 476           if (m == NULL || m->is_top())
 477             continue;
 478           dom_list.push(m);
 479         }
 480       }
 481     }
 482     return only_dominating_controls;
 483   }
 484 }
 485 
 486 //---------------------detect_ptr_independence---------------------------------
 487 // Used by MemNode::find_previous_store to prove that two base
 488 // pointers are never equal.
 489 // The pointers are accompanied by their associated allocations,
 490 // if any, which have been previously discovered by the caller.
 491 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 492                                       Node* p2, AllocateNode* a2,
 493                                       PhaseTransform* phase) {
 494   // Attempt to prove that these two pointers cannot be aliased.
 495   // They may both manifestly be allocations, and they should differ.
 496   // Or, if they are not both allocations, they can be distinct constants.
 497   // Otherwise, one is an allocation and the other a pre-existing value.
 498   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 499     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 500   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 501     return (a1 != a2);
 502   } else if (a1 != NULL) {                  // one allocation a1
 503     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 504     return all_controls_dominate(p2, a1);
 505   } else { //(a2 != NULL)                   // one allocation a2
 506     return all_controls_dominate(p1, a2);
 507   }
 508   return false;
 509 }
 510 
 511 
 512 // Find an arraycopy that must have set (can_see_stored_value=true) or
 513 // could have set (can_see_stored_value=false) the value for this load
 514 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 515   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 516                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 517     Node* mb = mem->in(0);
 518     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 519         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 520       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 521       if (ac->is_clonebasic()) {
 522         intptr_t offset;
 523         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 524         if (alloc != NULL && alloc == ld_alloc) {
 525           return ac;
 526         }
 527       }
 528     }
 529   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 530     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 531 
 532     if (ac->is_arraycopy_validated() ||
 533         ac->is_copyof_validated() ||
 534         ac->is_copyofrange_validated()) {
 535       Node* ld_addp = in(MemNode::Address);
 536       if (ld_addp->is_AddP()) {
 537         Node* ld_base = ld_addp->in(AddPNode::Address);
 538         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 539 
 540         Node* dest = ac->in(ArrayCopyNode::Dest);
 541 
 542         if (dest == ld_base) {
 543           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 544           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 545             return ac;
 546           }
 547           if (!can_see_stored_value) {
 548             mem = ac->in(TypeFunc::Memory);
 549           }
 550         }
 551       }
 552     }
 553   }
 554   return NULL;
 555 }
 556 
 557 // The logic for reordering loads and stores uses four steps:
 558 // (a) Walk carefully past stores and initializations which we
 559 //     can prove are independent of this load.
 560 // (b) Observe that the next memory state makes an exact match
 561 //     with self (load or store), and locate the relevant store.
 562 // (c) Ensure that, if we were to wire self directly to the store,
 563 //     the optimizer would fold it up somehow.
 564 // (d) Do the rewiring, and return, depending on some other part of
 565 //     the optimizer to fold up the load.
 566 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 567 // specific to loads and stores, so they are handled by the callers.
 568 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 569 //
 570 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 571   Node*         ctrl   = in(MemNode::Control);
 572   Node*         adr    = in(MemNode::Address);
 573   intptr_t      offset = 0;
 574   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 575   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 576 
 577   if (offset == Type::OffsetBot)
 578     return NULL;            // cannot unalias unless there are precise offsets
 579 
 580   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 581   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 582 
 583   intptr_t size_in_bytes = memory_size();
 584 
 585   Node* mem = in(MemNode::Memory);   // start searching here...
 586 
 587   int cnt = 50;             // Cycle limiter
 588   for (;;) {                // While we can dance past unrelated stores...
 589     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 590 
 591     Node* prev = mem;
 592     if (mem->is_Store()) {
 593       Node* st_adr = mem->in(MemNode::Address);
 594       intptr_t st_offset = 0;
 595       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 596       if (st_base == NULL)
 597         break;              // inscrutable pointer
 598 
 599       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 600       // We need the bases to be the equal in order for the offset check to make sense.
 601       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 602         break;
 603       }
 604 
 605       if (st_offset != offset && st_offset != Type::OffsetBot) {
 606         const int MAX_STORE = BytesPerLong;
 607         if (st_offset >= offset + size_in_bytes ||
 608             st_offset <= offset - MAX_STORE ||
 609             st_offset <= offset - mem->as_Store()->memory_size()) {
 610           // Success:  The offsets are provably independent.
 611           // (You may ask, why not just test st_offset != offset and be done?
 612           // The answer is that stores of different sizes can co-exist
 613           // in the same sequence of RawMem effects.  We sometimes initialize
 614           // a whole 'tile' of array elements with a single jint or jlong.)
 615           mem = mem->in(MemNode::Memory);
 616           continue;           // (a) advance through independent store memory
 617         }
 618       }
 619       if (st_base != base &&
 620           detect_ptr_independence(base, alloc,
 621                                   st_base,
 622                                   AllocateNode::Ideal_allocation(st_base, phase),
 623                                   phase)) {
 624         // Success:  The bases are provably independent.
 625         mem = mem->in(MemNode::Memory);
 626         continue;           // (a) advance through independent store memory
 627       }
 628 
 629       // (b) At this point, if the bases or offsets do not agree, we lose,
 630       // since we have not managed to prove 'this' and 'mem' independent.
 631       if (st_base == base && st_offset == offset) {
 632         return mem;         // let caller handle steps (c), (d)
 633       }
 634 
 635     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 636       InitializeNode* st_init = mem->in(0)->as_Initialize();
 637       AllocateNode*  st_alloc = st_init->allocation();
 638       if (st_alloc == NULL)
 639         break;              // something degenerated
 640       bool known_identical = false;
 641       bool known_independent = false;
 642       if (alloc == st_alloc)
 643         known_identical = true;
 644       else if (alloc != NULL)
 645         known_independent = true;
 646       else if (all_controls_dominate(this, st_alloc))
 647         known_independent = true;
 648 
 649       if (known_independent) {
 650         // The bases are provably independent: Either they are
 651         // manifestly distinct allocations, or else the control
 652         // of this load dominates the store's allocation.
 653         int alias_idx = phase->C->get_alias_index(adr_type());
 654         if (alias_idx == Compile::AliasIdxRaw) {
 655           mem = st_alloc->in(TypeFunc::Memory);
 656         } else {
 657           mem = st_init->memory(alias_idx);
 658         }
 659         continue;           // (a) advance through independent store memory
 660       }
 661 
 662       // (b) at this point, if we are not looking at a store initializing
 663       // the same allocation we are loading from, we lose.
 664       if (known_identical) {
 665         // From caller, can_see_stored_value will consult find_captured_store.
 666         return mem;         // let caller handle steps (c), (d)
 667       }
 668 
 669     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 670       if (prev != mem) {
 671         // Found an arraycopy but it doesn't affect that load
 672         continue;
 673       }
 674       // Found an arraycopy that may affect that load
 675       return mem;
 676     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 677       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 678       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 679         // ArrayCopyNodes processed here as well.
 680         CallNode *call = mem->in(0)->as_Call();
 681         if (!call->may_modify(addr_t, phase)) {
 682           mem = call->in(TypeFunc::Memory);
 683           continue;         // (a) advance through independent call memory
 684         }
 685       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 686         ArrayCopyNode* ac = NULL;
 687         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 688           break;
 689         }
 690         mem = mem->in(0)->in(TypeFunc::Memory);
 691         continue;           // (a) advance through independent MemBar memory
 692       } else if (mem->is_ClearArray()) {
 693         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 694           // (the call updated 'mem' value)
 695           continue;         // (a) advance through independent allocation memory
 696         } else {
 697           // Can not bypass initialization of the instance
 698           // we are looking for.
 699           return mem;
 700         }
 701       } else if (mem->is_MergeMem()) {
 702         int alias_idx = phase->C->get_alias_index(adr_type());
 703         mem = mem->as_MergeMem()->memory_at(alias_idx);
 704         continue;           // (a) advance through independent MergeMem memory
 705       }
 706     }
 707 
 708     // Unless there is an explicit 'continue', we must bail out here,
 709     // because 'mem' is an inscrutable memory state (e.g., a call).
 710     break;
 711   }
 712 
 713   return NULL;              // bail out
 714 }
 715 
 716 //----------------------calculate_adr_type-------------------------------------
 717 // Helper function.  Notices when the given type of address hits top or bottom.
 718 // Also, asserts a cross-check of the type against the expected address type.
 719 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 720   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 721   #ifdef PRODUCT
 722   cross_check = NULL;
 723   #else
 724   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 725   #endif
 726   const TypePtr* tp = t->isa_ptr();
 727   if (tp == NULL) {
 728     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 729     return TypePtr::BOTTOM;           // touches lots of memory
 730   } else {
 731     #ifdef ASSERT
 732     // %%%% [phh] We don't check the alias index if cross_check is
 733     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 734     if (cross_check != NULL &&
 735         cross_check != TypePtr::BOTTOM &&
 736         cross_check != TypeRawPtr::BOTTOM) {
 737       // Recheck the alias index, to see if it has changed (due to a bug).
 738       Compile* C = Compile::current();
 739       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 740              "must stay in the original alias category");
 741       // The type of the address must be contained in the adr_type,
 742       // disregarding "null"-ness.
 743       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 744       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 745       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 746              "real address must not escape from expected memory type");
 747     }
 748     #endif
 749     return tp;
 750   }
 751 }
 752 
 753 //=============================================================================
 754 // Should LoadNode::Ideal() attempt to remove control edges?
 755 bool LoadNode::can_remove_control() const {
 756   return true;
 757 }
 758 uint LoadNode::size_of() const { return sizeof(*this); }
 759 uint LoadNode::cmp( const Node &n ) const
 760 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 761 const Type *LoadNode::bottom_type() const { return _type; }
 762 uint LoadNode::ideal_reg() const {
 763   return _type->ideal_reg();
 764 }
 765 
 766 #ifndef PRODUCT
 767 void LoadNode::dump_spec(outputStream *st) const {
 768   MemNode::dump_spec(st);
 769   if( !Verbose && !WizardMode ) {
 770     // standard dump does this in Verbose and WizardMode
 771     st->print(" #"); _type->dump_on(st);
 772   }
 773   if (!depends_only_on_test()) {
 774     st->print(" (does not depend only on test)");
 775   }
 776 }
 777 #endif
 778 
 779 #ifdef ASSERT
 780 //----------------------------is_immutable_value-------------------------------
 781 // Helper function to allow a raw load without control edge for some cases
 782 bool LoadNode::is_immutable_value(Node* adr) {
 783   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 784           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 785           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 786            in_bytes(JavaThread::osthread_offset())));
 787 }
 788 #endif
 789 
 790 //----------------------------LoadNode::make-----------------------------------
 791 // Polymorphic factory method:
 792 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 793                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 794   Compile* C = gvn.C;
 795 
 796   // sanity check the alias category against the created node type
 797   assert(!(adr_type->isa_oopptr() &&
 798            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 799          "use LoadKlassNode instead");
 800   assert(!(adr_type->isa_aryptr() &&
 801            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 802          "use LoadRangeNode instead");
 803   // Check control edge of raw loads
 804   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 805           // oop will be recorded in oop map if load crosses safepoint
 806           rt->isa_oopptr() || is_immutable_value(adr),
 807           "raw memory operations should have control edge");
 808   LoadNode* load = NULL;
 809   switch (bt) {
 810   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 811   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 812   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 813   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 814   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 815   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 816   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 817   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 818   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 819   case T_VALUETYPE:
 820   case T_OBJECT:
 821 #ifdef _LP64
 822     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 823       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 824     } else
 825 #endif
 826     {
 827       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 828       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 829     }
 830     break;
 831   default:
 832     ShouldNotReachHere();
 833     break;
 834   }
 835   assert(load != NULL, "LoadNode should have been created");
 836   if (unaligned) {
 837     load->set_unaligned_access();
 838   }
 839   if (mismatched) {
 840     load->set_mismatched_access();
 841   }
 842   if (load->Opcode() == Op_LoadN) {
 843     Node* ld = gvn.transform(load);
 844     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 845   }
 846 
 847   return load;
 848 }
 849 
 850 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 851                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 852   bool require_atomic = true;
 853   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 854   if (unaligned) {
 855     load->set_unaligned_access();
 856   }
 857   if (mismatched) {
 858     load->set_mismatched_access();
 859   }
 860   return load;
 861 }
 862 
 863 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 864                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 865   bool require_atomic = true;
 866   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 867   if (unaligned) {
 868     load->set_unaligned_access();
 869   }
 870   if (mismatched) {
 871     load->set_mismatched_access();
 872   }
 873   return load;
 874 }
 875 
 876 
 877 
 878 //------------------------------hash-------------------------------------------
 879 uint LoadNode::hash() const {
 880   // unroll addition of interesting fields
 881   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 882 }
 883 
 884 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 885   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 886     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 887     bool is_stable_ary = FoldStableValues &&
 888                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 889                          tp->isa_aryptr()->is_stable();
 890 
 891     return (eliminate_boxing && non_volatile) || is_stable_ary;
 892   }
 893 
 894   return false;
 895 }
 896 
 897 // Is the value loaded previously stored by an arraycopy? If so return
 898 // a load node that reads from the source array so we may be able to
 899 // optimize out the ArrayCopy node later.
 900 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 901 #if INCLUDE_ZGC
 902   if (UseZGC) {
 903     if (bottom_type()->make_oopptr() != NULL) {
 904       return NULL;
 905     }
 906   }
 907 #endif
 908 
 909   Node* ld_adr = in(MemNode::Address);
 910   intptr_t ld_off = 0;
 911   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 912   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 913   if (ac != NULL) {
 914     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 915 
 916     Node* mem = ac->in(TypeFunc::Memory);
 917     Node* ctl = ac->in(0);
 918     Node* src = ac->in(ArrayCopyNode::Src);
 919 
 920     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 921       return NULL;
 922     }
 923 
 924     LoadNode* ld = clone()->as_Load();
 925     Node* addp = in(MemNode::Address)->clone();
 926     if (ac->as_ArrayCopy()->is_clonebasic()) {
 927       assert(ld_alloc != NULL, "need an alloc");
 928       assert(addp->is_AddP(), "address must be addp");
 929       assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address");
 930       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 931       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern");
 932       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern");
 933       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 934       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 935     } else {
 936       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 937              ac->as_ArrayCopy()->is_copyof_validated() ||
 938              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 939       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 940       addp->set_req(AddPNode::Base, src);
 941       addp->set_req(AddPNode::Address, src);
 942 
 943       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 944       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 945       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 946       uint shift  = exact_log2(type2aelembytes(ary_elem));
 947 
 948       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 949 #ifdef _LP64
 950       diff = phase->transform(new ConvI2LNode(diff));
 951 #endif
 952       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 953 
 954       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 955       addp->set_req(AddPNode::Offset, offset);
 956     }
 957     addp = phase->transform(addp);
 958 #ifdef ASSERT
 959     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 960     ld->_adr_type = adr_type;
 961 #endif
 962     ld->set_req(MemNode::Address, addp);
 963     ld->set_req(0, ctl);
 964     ld->set_req(MemNode::Memory, mem);
 965     // load depends on the tests that validate the arraycopy
 966     ld->_control_dependency = Pinned;
 967     return ld;
 968   }
 969   return NULL;
 970 }
 971 
 972 
 973 //---------------------------can_see_stored_value------------------------------
 974 // This routine exists to make sure this set of tests is done the same
 975 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 976 // will change the graph shape in a way which makes memory alive twice at the
 977 // same time (uses the Oracle model of aliasing), then some
 978 // LoadXNode::Identity will fold things back to the equivalence-class model
 979 // of aliasing.
 980 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 981   Node* ld_adr = in(MemNode::Address);
 982   intptr_t ld_off = 0;
 983   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 984   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 985   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 986   // This is more general than load from boxing objects.
 987   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 988     uint alias_idx = atp->index();
 989     bool final = !atp->is_rewritable();
 990     Node* result = NULL;
 991     Node* current = st;
 992     // Skip through chains of MemBarNodes checking the MergeMems for
 993     // new states for the slice of this load.  Stop once any other
 994     // kind of node is encountered.  Loads from final memory can skip
 995     // through any kind of MemBar but normal loads shouldn't skip
 996     // through MemBarAcquire since the could allow them to move out of
 997     // a synchronized region.
 998     while (current->is_Proj()) {
 999       int opc = current->in(0)->Opcode();
1000       if ((final && (opc == Op_MemBarAcquire ||
1001                      opc == Op_MemBarAcquireLock ||
1002                      opc == Op_LoadFence)) ||
1003           opc == Op_MemBarRelease ||
1004           opc == Op_StoreFence ||
1005           opc == Op_MemBarReleaseLock ||
1006           opc == Op_MemBarStoreStore ||
1007           opc == Op_MemBarCPUOrder) {
1008         Node* mem = current->in(0)->in(TypeFunc::Memory);
1009         if (mem->is_MergeMem()) {
1010           MergeMemNode* merge = mem->as_MergeMem();
1011           Node* new_st = merge->memory_at(alias_idx);
1012           if (new_st == merge->base_memory()) {
1013             // Keep searching
1014             current = new_st;
1015             continue;
1016           }
1017           // Save the new memory state for the slice and fall through
1018           // to exit.
1019           result = new_st;
1020         }
1021       }
1022       break;
1023     }
1024     if (result != NULL) {
1025       st = result;
1026     }
1027   }
1028 
1029   // Loop around twice in the case Load -> Initialize -> Store.
1030   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1031   for (int trip = 0; trip <= 1; trip++) {
1032 
1033     if (st->is_Store()) {
1034       Node* st_adr = st->in(MemNode::Address);
1035       if (!phase->eqv(st_adr, ld_adr)) {
1036         // Try harder before giving up...  Match raw and non-raw pointers.
1037         intptr_t st_off = 0;
1038         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1039         if (alloc == NULL)       return NULL;
1040         if (alloc != ld_alloc)   return NULL;
1041         if (ld_off != st_off)    return NULL;
1042         // At this point we have proven something like this setup:
1043         //  A = Allocate(...)
1044         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1045         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1046         // (Actually, we haven't yet proven the Q's are the same.)
1047         // In other words, we are loading from a casted version of
1048         // the same pointer-and-offset that we stored to.
1049         // Thus, we are able to replace L by V.
1050       }
1051       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1052       if (store_Opcode() != st->Opcode())
1053         return NULL;
1054       return st->in(MemNode::ValueIn);
1055     }
1056 
1057     // A load from a freshly-created object always returns zero.
1058     // (This can happen after LoadNode::Ideal resets the load's memory input
1059     // to find_captured_store, which returned InitializeNode::zero_memory.)
1060     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1061         (st->in(0) == ld_alloc) &&
1062         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1063       // return a zero value for the load's basic type
1064       // (This is one of the few places where a generic PhaseTransform
1065       // can create new nodes.  Think of it as lazily manifesting
1066       // virtually pre-existing constants.)
1067       assert(memory_type() != T_VALUETYPE, "should not be used for value types");
1068       Node* default_value = ld_alloc->in(AllocateNode::DefaultValue);
1069       if (default_value != NULL) {
1070         return default_value;
1071       }
1072       assert(ld_alloc->in(AllocateNode::RawDefaultValue) == NULL, "default value may not be null");
1073       return phase->zerocon(memory_type());
1074     }
1075 
1076     // A load from an initialization barrier can match a captured store.
1077     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1078       InitializeNode* init = st->in(0)->as_Initialize();
1079       AllocateNode* alloc = init->allocation();
1080       if ((alloc != NULL) && (alloc == ld_alloc)) {
1081         // examine a captured store value
1082         st = init->find_captured_store(ld_off, memory_size(), phase);
1083         if (st != NULL) {
1084           continue;             // take one more trip around
1085         }
1086       }
1087     }
1088 
1089     // Load boxed value from result of valueOf() call is input parameter.
1090     if (this->is_Load() && ld_adr->is_AddP() &&
1091         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1092       intptr_t ignore = 0;
1093       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1094       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1095       base = bs->step_over_gc_barrier(base);
1096       if (base != NULL && base->is_Proj() &&
1097           base->as_Proj()->_con == TypeFunc::Parms &&
1098           base->in(0)->is_CallStaticJava() &&
1099           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1100         return base->in(0)->in(TypeFunc::Parms);
1101       }
1102     }
1103 
1104     break;
1105   }
1106 
1107   return NULL;
1108 }
1109 
1110 //----------------------is_instance_field_load_with_local_phi------------------
1111 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1112   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1113       in(Address)->is_AddP() ) {
1114     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1115     // Only instances and boxed values.
1116     if( t_oop != NULL &&
1117         (t_oop->is_ptr_to_boxed_value() ||
1118          t_oop->is_known_instance_field()) &&
1119         t_oop->offset() != Type::OffsetBot &&
1120         t_oop->offset() != Type::OffsetTop) {
1121       return true;
1122     }
1123   }
1124   return false;
1125 }
1126 
1127 //------------------------------Identity---------------------------------------
1128 // Loads are identity if previous store is to same address
1129 Node* LoadNode::Identity(PhaseGVN* phase) {
1130   // Loading from a ValueTypePtr? The ValueTypePtr has the values of
1131   // all fields as input. Look for the field with matching offset.
1132   Node* addr = in(Address);
1133   intptr_t offset;
1134   Node* base = AddPNode::Ideal_base_and_offset(addr, phase, offset);
1135   if (base != NULL && base->is_ValueTypePtr() && offset > oopDesc::klass_offset_in_bytes()) {
1136     Node* value = base->as_ValueTypePtr()->field_value_by_offset((int)offset, true);
1137     if (value->is_ValueType()) {
1138       // Non-flattened value type field
1139       ValueTypeNode* vt = value->as_ValueType();
1140       if (vt->is_allocated(phase)) {
1141         value = vt->get_oop();
1142       } else {
1143         // Not yet allocated, bail out
1144         value = NULL;
1145       }
1146     }
1147     if (value != NULL) {
1148       if (Opcode() == Op_LoadN) {
1149         // Encode oop value if we are loading a narrow oop
1150         assert(!phase->type(value)->isa_narrowoop(), "should already be decoded");
1151         value = phase->transform(new EncodePNode(value, bottom_type()));
1152       }
1153       return value;
1154     }
1155   }
1156 
1157   // If the previous store-maker is the right kind of Store, and the store is
1158   // to the same address, then we are equal to the value stored.
1159   Node* mem = in(Memory);
1160   Node* value = can_see_stored_value(mem, phase);
1161   if( value ) {
1162     // byte, short & char stores truncate naturally.
1163     // A load has to load the truncated value which requires
1164     // some sort of masking operation and that requires an
1165     // Ideal call instead of an Identity call.
1166     if (memory_size() < BytesPerInt) {
1167       // If the input to the store does not fit with the load's result type,
1168       // it must be truncated via an Ideal call.
1169       if (!phase->type(value)->higher_equal(phase->type(this)))
1170         return this;
1171     }
1172     // (This works even when value is a Con, but LoadNode::Value
1173     // usually runs first, producing the singleton type of the Con.)
1174     return value;
1175   }
1176 
1177   // Search for an existing data phi which was generated before for the same
1178   // instance's field to avoid infinite generation of phis in a loop.
1179   Node *region = mem->in(0);
1180   if (is_instance_field_load_with_local_phi(region)) {
1181     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1182     int this_index  = phase->C->get_alias_index(addr_t);
1183     int this_offset = addr_t->offset();
1184     int this_iid    = addr_t->instance_id();
1185     if (!addr_t->is_known_instance() &&
1186          addr_t->is_ptr_to_boxed_value()) {
1187       // Use _idx of address base (could be Phi node) for boxed values.
1188       intptr_t   ignore = 0;
1189       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1190       if (base == NULL) {
1191         return this;
1192       }
1193       this_iid = base->_idx;
1194     }
1195     const Type* this_type = bottom_type();
1196     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1197       Node* phi = region->fast_out(i);
1198       if (phi->is_Phi() && phi != mem &&
1199           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1200         return phi;
1201       }
1202     }
1203   }
1204 
1205   return this;
1206 }
1207 
1208 // Construct an equivalent unsigned load.
1209 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1210   BasicType bt = T_ILLEGAL;
1211   const Type* rt = NULL;
1212   switch (Opcode()) {
1213     case Op_LoadUB: return this;
1214     case Op_LoadUS: return this;
1215     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1216     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1217     default:
1218       assert(false, "no unsigned variant: %s", Name());
1219       return NULL;
1220   }
1221   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1222                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1223                         is_unaligned_access(), is_mismatched_access());
1224 }
1225 
1226 // Construct an equivalent signed load.
1227 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1228   BasicType bt = T_ILLEGAL;
1229   const Type* rt = NULL;
1230   switch (Opcode()) {
1231     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1232     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1233     case Op_LoadB: // fall through
1234     case Op_LoadS: // fall through
1235     case Op_LoadI: // fall through
1236     case Op_LoadL: return this;
1237     default:
1238       assert(false, "no signed variant: %s", Name());
1239       return NULL;
1240   }
1241   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1242                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1243                         is_unaligned_access(), is_mismatched_access());
1244 }
1245 
1246 // We're loading from an object which has autobox behaviour.
1247 // If this object is result of a valueOf call we'll have a phi
1248 // merging a newly allocated object and a load from the cache.
1249 // We want to replace this load with the original incoming
1250 // argument to the valueOf call.
1251 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1252   assert(phase->C->eliminate_boxing(), "sanity");
1253   intptr_t ignore = 0;
1254   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1255   if ((base == NULL) || base->is_Phi()) {
1256     // Push the loads from the phi that comes from valueOf up
1257     // through it to allow elimination of the loads and the recovery
1258     // of the original value. It is done in split_through_phi().
1259     return NULL;
1260   } else if (base->is_Load() ||
1261              (base->is_DecodeN() && base->in(1)->is_Load())) {
1262     // Eliminate the load of boxed value for integer types from the cache
1263     // array by deriving the value from the index into the array.
1264     // Capture the offset of the load and then reverse the computation.
1265 
1266     // Get LoadN node which loads a boxing object from 'cache' array.
1267     if (base->is_DecodeN()) {
1268       base = base->in(1);
1269     }
1270     if (!base->in(Address)->is_AddP()) {
1271       return NULL; // Complex address
1272     }
1273     AddPNode* address = base->in(Address)->as_AddP();
1274     Node* cache_base = address->in(AddPNode::Base);
1275     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1276       // Get ConP node which is static 'cache' field.
1277       cache_base = cache_base->in(1);
1278     }
1279     if ((cache_base != NULL) && cache_base->is_Con()) {
1280       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1281       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1282         Node* elements[4];
1283         int shift = exact_log2(type2aelembytes(T_OBJECT));
1284         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1285         if (count > 0 && elements[0]->is_Con() &&
1286             (count == 1 ||
1287              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1288                             elements[1]->in(2) == phase->intcon(shift)))) {
1289           ciObjArray* array = base_type->const_oop()->as_obj_array();
1290           // Fetch the box object cache[0] at the base of the array and get its value
1291           ciInstance* box = array->obj_at(0)->as_instance();
1292           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1293           assert(ik->is_box_klass(), "sanity");
1294           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1295           if (ik->nof_nonstatic_fields() == 1) {
1296             // This should be true nonstatic_field_at requires calling
1297             // nof_nonstatic_fields so check it anyway
1298             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1299             BasicType bt = c.basic_type();
1300             // Only integer types have boxing cache.
1301             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1302                    bt == T_BYTE    || bt == T_SHORT ||
1303                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1304             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1305             if (cache_low != (int)cache_low) {
1306               return NULL; // should not happen since cache is array indexed by value
1307             }
1308             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1309             if (offset != (int)offset) {
1310               return NULL; // should not happen since cache is array indexed by value
1311             }
1312            // Add up all the offsets making of the address of the load
1313             Node* result = elements[0];
1314             for (int i = 1; i < count; i++) {
1315               result = phase->transform(new AddXNode(result, elements[i]));
1316             }
1317             // Remove the constant offset from the address and then
1318             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1319             // remove the scaling of the offset to recover the original index.
1320             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1321               // Peel the shift off directly but wrap it in a dummy node
1322               // since Ideal can't return existing nodes
1323               result = new RShiftXNode(result->in(1), phase->intcon(0));
1324             } else if (result->is_Add() && result->in(2)->is_Con() &&
1325                        result->in(1)->Opcode() == Op_LShiftX &&
1326                        result->in(1)->in(2) == phase->intcon(shift)) {
1327               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1328               // but for boxing cache access we know that X<<Z will not overflow
1329               // (there is range check) so we do this optimizatrion by hand here.
1330               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1331               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1332             } else {
1333               result = new RShiftXNode(result, phase->intcon(shift));
1334             }
1335 #ifdef _LP64
1336             if (bt != T_LONG) {
1337               result = new ConvL2INode(phase->transform(result));
1338             }
1339 #else
1340             if (bt == T_LONG) {
1341               result = new ConvI2LNode(phase->transform(result));
1342             }
1343 #endif
1344             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1345             // Need to preserve unboxing load type if it is unsigned.
1346             switch(this->Opcode()) {
1347               case Op_LoadUB:
1348                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1349                 break;
1350               case Op_LoadUS:
1351                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1352                 break;
1353             }
1354             return result;
1355           }
1356         }
1357       }
1358     }
1359   }
1360   return NULL;
1361 }
1362 
1363 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1364   Node* region = phi->in(0);
1365   if (region == NULL) {
1366     return false; // Wait stable graph
1367   }
1368   uint cnt = phi->req();
1369   for (uint i = 1; i < cnt; i++) {
1370     Node* rc = region->in(i);
1371     if (rc == NULL || phase->type(rc) == Type::TOP)
1372       return false; // Wait stable graph
1373     Node* in = phi->in(i);
1374     if (in == NULL || phase->type(in) == Type::TOP)
1375       return false; // Wait stable graph
1376   }
1377   return true;
1378 }
1379 //------------------------------split_through_phi------------------------------
1380 // Split instance or boxed field load through Phi.
1381 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1382   Node* mem     = in(Memory);
1383   Node* address = in(Address);
1384   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1385 
1386   assert((t_oop != NULL) &&
1387          (t_oop->is_known_instance_field() ||
1388           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1389 
1390   Compile* C = phase->C;
1391   intptr_t ignore = 0;
1392   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1393   bool base_is_phi = (base != NULL) && base->is_Phi();
1394   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1395                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1396                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1397 
1398   if (!((mem->is_Phi() || base_is_phi) &&
1399         (load_boxed_values || t_oop->is_known_instance_field()))) {
1400     return NULL; // memory is not Phi
1401   }
1402 
1403   if (mem->is_Phi()) {
1404     if (!stable_phi(mem->as_Phi(), phase)) {
1405       return NULL; // Wait stable graph
1406     }
1407     uint cnt = mem->req();
1408     // Check for loop invariant memory.
1409     if (cnt == 3) {
1410       for (uint i = 1; i < cnt; i++) {
1411         Node* in = mem->in(i);
1412         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1413         if (m == mem) {
1414           set_req(Memory, mem->in(cnt - i));
1415           return this; // made change
1416         }
1417       }
1418     }
1419   }
1420   if (base_is_phi) {
1421     if (!stable_phi(base->as_Phi(), phase)) {
1422       return NULL; // Wait stable graph
1423     }
1424     uint cnt = base->req();
1425     // Check for loop invariant memory.
1426     if (cnt == 3) {
1427       for (uint i = 1; i < cnt; i++) {
1428         if (base->in(i) == base) {
1429           return NULL; // Wait stable graph
1430         }
1431       }
1432     }
1433   }
1434 
1435   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1436 
1437   // Split through Phi (see original code in loopopts.cpp).
1438   assert(C->have_alias_type(t_oop), "instance should have alias type");
1439 
1440   // Do nothing here if Identity will find a value
1441   // (to avoid infinite chain of value phis generation).
1442   if (!phase->eqv(this, phase->apply_identity(this)))
1443     return NULL;
1444 
1445   // Select Region to split through.
1446   Node* region;
1447   if (!base_is_phi) {
1448     assert(mem->is_Phi(), "sanity");
1449     region = mem->in(0);
1450     // Skip if the region dominates some control edge of the address.
1451     if (!MemNode::all_controls_dominate(address, region))
1452       return NULL;
1453   } else if (!mem->is_Phi()) {
1454     assert(base_is_phi, "sanity");
1455     region = base->in(0);
1456     // Skip if the region dominates some control edge of the memory.
1457     if (!MemNode::all_controls_dominate(mem, region))
1458       return NULL;
1459   } else if (base->in(0) != mem->in(0)) {
1460     assert(base_is_phi && mem->is_Phi(), "sanity");
1461     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1462       region = base->in(0);
1463     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1464       region = mem->in(0);
1465     } else {
1466       return NULL; // complex graph
1467     }
1468   } else {
1469     assert(base->in(0) == mem->in(0), "sanity");
1470     region = mem->in(0);
1471   }
1472 
1473   const Type* this_type = this->bottom_type();
1474   int this_index  = C->get_alias_index(t_oop);
1475   int this_offset = t_oop->offset();
1476   int this_iid    = t_oop->instance_id();
1477   if (!t_oop->is_known_instance() && load_boxed_values) {
1478     // Use _idx of address base for boxed values.
1479     this_iid = base->_idx;
1480   }
1481   PhaseIterGVN* igvn = phase->is_IterGVN();
1482   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1483   for (uint i = 1; i < region->req(); i++) {
1484     Node* x;
1485     Node* the_clone = NULL;
1486     if (region->in(i) == C->top()) {
1487       x = C->top();      // Dead path?  Use a dead data op
1488     } else {
1489       x = this->clone();        // Else clone up the data op
1490       the_clone = x;            // Remember for possible deletion.
1491       // Alter data node to use pre-phi inputs
1492       if (this->in(0) == region) {
1493         x->set_req(0, region->in(i));
1494       } else {
1495         x->set_req(0, NULL);
1496       }
1497       if (mem->is_Phi() && (mem->in(0) == region)) {
1498         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1499       }
1500       if (address->is_Phi() && address->in(0) == region) {
1501         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1502       }
1503       if (base_is_phi && (base->in(0) == region)) {
1504         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1505         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1506         x->set_req(Address, adr_x);
1507       }
1508     }
1509     // Check for a 'win' on some paths
1510     const Type *t = x->Value(igvn);
1511 
1512     bool singleton = t->singleton();
1513 
1514     // See comments in PhaseIdealLoop::split_thru_phi().
1515     if (singleton && t == Type::TOP) {
1516       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1517     }
1518 
1519     if (singleton) {
1520       x = igvn->makecon(t);
1521     } else {
1522       // We now call Identity to try to simplify the cloned node.
1523       // Note that some Identity methods call phase->type(this).
1524       // Make sure that the type array is big enough for
1525       // our new node, even though we may throw the node away.
1526       // (This tweaking with igvn only works because x is a new node.)
1527       igvn->set_type(x, t);
1528       // If x is a TypeNode, capture any more-precise type permanently into Node
1529       // otherwise it will be not updated during igvn->transform since
1530       // igvn->type(x) is set to x->Value() already.
1531       x->raise_bottom_type(t);
1532       Node *y = igvn->apply_identity(x);
1533       if (y != x) {
1534         x = y;
1535       } else {
1536         y = igvn->hash_find_insert(x);
1537         if (y) {
1538           x = y;
1539         } else {
1540           // Else x is a new node we are keeping
1541           // We do not need register_new_node_with_optimizer
1542           // because set_type has already been called.
1543           igvn->_worklist.push(x);
1544         }
1545       }
1546     }
1547     if (x != the_clone && the_clone != NULL) {
1548       igvn->remove_dead_node(the_clone);
1549     }
1550     phi->set_req(i, x);
1551   }
1552   // Record Phi
1553   igvn->register_new_node_with_optimizer(phi);
1554   return phi;
1555 }
1556 
1557 //------------------------------Ideal------------------------------------------
1558 // If the load is from Field memory and the pointer is non-null, it might be possible to
1559 // zero out the control input.
1560 // If the offset is constant and the base is an object allocation,
1561 // try to hook me up to the exact initializing store.
1562 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1563   Node* p = MemNode::Ideal_common(phase, can_reshape);
1564   if (p)  return (p == NodeSentinel) ? NULL : p;
1565 
1566   Node* ctrl    = in(MemNode::Control);
1567   Node* address = in(MemNode::Address);
1568   bool progress = false;
1569 
1570   // Skip up past a SafePoint control.  Cannot do this for Stores because
1571   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1572   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1573       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1574     ctrl = ctrl->in(0);
1575     set_req(MemNode::Control,ctrl);
1576     progress = true;
1577   }
1578 
1579   intptr_t ignore = 0;
1580   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1581   if (base != NULL
1582       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1583     // Check for useless control edge in some common special cases
1584     if (in(MemNode::Control) != NULL
1585         && can_remove_control()
1586         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1587         && all_controls_dominate(base, phase->C->start())) {
1588       // A method-invariant, non-null address (constant or 'this' argument).
1589       set_req(MemNode::Control, NULL);
1590       progress = true;
1591     }
1592   }
1593 
1594   Node* mem = in(MemNode::Memory);
1595   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1596 
1597   if (can_reshape && (addr_t != NULL)) {
1598     // try to optimize our memory input
1599     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1600     if (opt_mem != mem) {
1601       set_req(MemNode::Memory, opt_mem);
1602       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1603       return this;
1604     }
1605     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1606     if ((t_oop != NULL) &&
1607         (t_oop->is_known_instance_field() ||
1608          t_oop->is_ptr_to_boxed_value())) {
1609       PhaseIterGVN *igvn = phase->is_IterGVN();
1610       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1611         // Delay this transformation until memory Phi is processed.
1612         phase->is_IterGVN()->_worklist.push(this);
1613         return NULL;
1614       }
1615       // Split instance field load through Phi.
1616       Node* result = split_through_phi(phase);
1617       if (result != NULL) return result;
1618 
1619       if (t_oop->is_ptr_to_boxed_value()) {
1620         Node* result = eliminate_autobox(phase);
1621         if (result != NULL) return result;
1622       }
1623     }
1624   }
1625 
1626   // Is there a dominating load that loads the same value?  Leave
1627   // anything that is not a load of a field/array element (like
1628   // barriers etc.) alone
1629   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1630     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1631       Node *use = mem->fast_out(i);
1632       if (use != this &&
1633           use->Opcode() == Opcode() &&
1634           use->in(0) != NULL &&
1635           use->in(0) != in(0) &&
1636           use->in(Address) == in(Address)) {
1637         Node* ctl = in(0);
1638         for (int i = 0; i < 10 && ctl != NULL; i++) {
1639           ctl = IfNode::up_one_dom(ctl);
1640           if (ctl == use->in(0)) {
1641             set_req(0, use->in(0));
1642             return this;
1643           }
1644         }
1645       }
1646     }
1647   }
1648 
1649   // Check for prior store with a different base or offset; make Load
1650   // independent.  Skip through any number of them.  Bail out if the stores
1651   // are in an endless dead cycle and report no progress.  This is a key
1652   // transform for Reflection.  However, if after skipping through the Stores
1653   // we can't then fold up against a prior store do NOT do the transform as
1654   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1655   // array memory alive twice: once for the hoisted Load and again after the
1656   // bypassed Store.  This situation only works if EVERYBODY who does
1657   // anti-dependence work knows how to bypass.  I.e. we need all
1658   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1659   // the alias index stuff.  So instead, peek through Stores and IFF we can
1660   // fold up, do so.
1661   Node* prev_mem = find_previous_store(phase);
1662   if (prev_mem != NULL) {
1663     Node* value = can_see_arraycopy_value(prev_mem, phase);
1664     if (value != NULL) {
1665       return value;
1666     }
1667   }
1668   // Steps (a), (b):  Walk past independent stores to find an exact match.
1669   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1670     // (c) See if we can fold up on the spot, but don't fold up here.
1671     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1672     // just return a prior value, which is done by Identity calls.
1673     if (can_see_stored_value(prev_mem, phase)) {
1674       // Make ready for step (d):
1675       set_req(MemNode::Memory, prev_mem);
1676       return this;
1677     }
1678   }
1679 
1680   AllocateNode* alloc = AllocateNode::Ideal_allocation(address, phase);
1681   if (alloc != NULL && mem->is_Proj() &&
1682       mem->in(0) != NULL &&
1683       mem->in(0) == alloc->initialization() &&
1684       Opcode() == Op_LoadX &&
1685       alloc->initialization()->proj_out_or_null(0) != NULL) {
1686     InitializeNode* init = alloc->initialization();
1687     Node* control = init->proj_out(0);
1688     return alloc->make_ideal_mark(phase, address, control, mem, NULL);
1689   }
1690 
1691   return progress ? this : NULL;
1692 }
1693 
1694 // Helper to recognize certain Klass fields which are invariant across
1695 // some group of array types (e.g., int[] or all T[] where T < Object).
1696 const Type*
1697 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1698                                  ciKlass* klass) const {
1699   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1700     // The field is Klass::_modifier_flags.  Return its (constant) value.
1701     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1702     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1703     return TypeInt::make(klass->modifier_flags());
1704   }
1705   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1706     // The field is Klass::_access_flags.  Return its (constant) value.
1707     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1708     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1709     return TypeInt::make(klass->access_flags());
1710   }
1711   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1712     // The field is Klass::_layout_helper.  Return its constant value if known.
1713     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1714     return TypeInt::make(klass->layout_helper());
1715   }
1716 
1717   // No match.
1718   return NULL;
1719 }
1720 
1721 //------------------------------Value-----------------------------------------
1722 const Type* LoadNode::Value(PhaseGVN* phase) const {
1723   // Either input is TOP ==> the result is TOP
1724   Node* mem = in(MemNode::Memory);
1725   const Type *t1 = phase->type(mem);
1726   if (t1 == Type::TOP)  return Type::TOP;
1727   Node* adr = in(MemNode::Address);
1728   const TypePtr* tp = phase->type(adr)->isa_ptr();
1729   if (tp == NULL || tp->empty())  return Type::TOP;
1730   int off = tp->offset();
1731   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1732   Compile* C = phase->C;
1733 
1734   // Try to guess loaded type from pointer type
1735   if (tp->isa_aryptr()) {
1736     const TypeAryPtr* ary = tp->is_aryptr();
1737     const Type* t = ary->elem();
1738 
1739     // Determine whether the reference is beyond the header or not, by comparing
1740     // the offset against the offset of the start of the array's data.
1741     // Different array types begin at slightly different offsets (12 vs. 16).
1742     // We choose T_BYTE as an example base type that is least restrictive
1743     // as to alignment, which will therefore produce the smallest
1744     // possible base offset.
1745     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1746     const bool off_beyond_header = (off >= min_base_off);
1747 
1748     // Try to constant-fold a stable array element.
1749     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1750       // Make sure the reference is not into the header and the offset is constant
1751       ciObject* aobj = ary->const_oop();
1752       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1753         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1754         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1755                                                                       stable_dimension,
1756                                                                       memory_type(), is_unsigned());
1757         if (con_type != NULL) {
1758           return con_type;
1759         }
1760       }
1761     }
1762 
1763     // Don't do this for integer types. There is only potential profit if
1764     // the element type t is lower than _type; that is, for int types, if _type is
1765     // more restrictive than t.  This only happens here if one is short and the other
1766     // char (both 16 bits), and in those cases we've made an intentional decision
1767     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1768     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1769     //
1770     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1771     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1772     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1773     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1774     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1775     // In fact, that could have been the original type of p1, and p1 could have
1776     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1777     // expression (LShiftL quux 3) independently optimized to the constant 8.
1778     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1779         && (_type->isa_vect() == NULL)
1780         && t->isa_valuetype() == NULL
1781         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1782       // t might actually be lower than _type, if _type is a unique
1783       // concrete subclass of abstract class t.
1784       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1785         const Type* jt = t->join_speculative(_type);
1786         // In any case, do not allow the join, per se, to empty out the type.
1787         if (jt->empty() && !t->empty()) {
1788           // This can happen if a interface-typed array narrows to a class type.
1789           jt = _type;
1790         }
1791 #ifdef ASSERT
1792         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1793           // The pointers in the autobox arrays are always non-null
1794           Node* base = adr->in(AddPNode::Base);
1795           if ((base != NULL) && base->is_DecodeN()) {
1796             // Get LoadN node which loads IntegerCache.cache field
1797             base = base->in(1);
1798           }
1799           if ((base != NULL) && base->is_Con()) {
1800             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1801             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1802               // It could be narrow oop
1803               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1804             }
1805           }
1806         }
1807 #endif
1808         return jt;
1809       }
1810     }
1811   } else if (tp->base() == Type::InstPtr) {
1812     assert( off != Type::OffsetBot ||
1813             // arrays can be cast to Objects
1814             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1815             tp->is_oopptr()->klass() == ciEnv::current()->Class_klass() ||
1816             // unsafe field access may not have a constant offset
1817             C->has_unsafe_access(),
1818             "Field accesses must be precise" );
1819     // For oop loads, we expect the _type to be precise.
1820 
1821     // Optimize loads from constant fields.
1822     const TypeInstPtr* tinst = tp->is_instptr();
1823     ciObject* const_oop = tinst->const_oop();
1824     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1825       BasicType bt = memory_type();
1826       ciType* mirror_type = const_oop->as_instance()->java_mirror_type();
1827       if (mirror_type != NULL && mirror_type->is_valuetype()) {
1828         ciValueKlass* vk = mirror_type->as_value_klass();
1829         if (off == vk->default_value_offset()) {
1830           // Loading a special hidden field that contains the oop of the default value type
1831           const Type* const_oop = TypeInstPtr::make(vk->default_value_instance());
1832           return (bt == T_NARROWOOP) ? const_oop->make_narrowoop() : const_oop;
1833         }
1834       }
1835       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), bt);
1836       if (con_type != NULL) {
1837         return con_type;
1838       }
1839     }
1840   } else if (tp->base() == Type::KlassPtr) {
1841     assert( off != Type::OffsetBot ||
1842             // arrays can be cast to Objects
1843             tp->is_klassptr()->klass() == NULL ||
1844             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1845             // also allow array-loading from the primary supertype
1846             // array during subtype checks
1847             Opcode() == Op_LoadKlass,
1848             "Field accesses must be precise" );
1849     // For klass/static loads, we expect the _type to be precise
1850   } else if (tp->base() == Type::RawPtr && !StressReflectiveCode) {
1851     if (adr->is_Load() && off == 0) {
1852       /* With mirrors being an indirect in the Klass*
1853        * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1854        * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1855        *
1856        * So check the type and klass of the node before the LoadP.
1857        */
1858       Node* adr2 = adr->in(MemNode::Address);
1859       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1860       if (tkls != NULL) {
1861         ciKlass* klass = tkls->klass();
1862         if (klass != NULL && klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1863           assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1864           assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1865           return TypeInstPtr::make(klass->java_mirror());
1866         }
1867       }
1868     } else {
1869       // Check for a load of the default value offset from the ValueKlassFixedBlock:
1870       // LoadI(LoadP(value_klass, adr_valueklass_fixed_block_offset), default_value_offset_offset)
1871       intptr_t offset = 0;
1872       Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1873       if (base != NULL && base->is_Load() && offset == in_bytes(ValueKlass::default_value_offset_offset())) {
1874         const TypeKlassPtr* tkls = phase->type(base->in(MemNode::Address))->isa_klassptr();
1875         if (tkls != NULL && tkls->is_loaded() && tkls->klass_is_exact() && tkls->isa_valuetype() &&
1876             tkls->offset() == in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset())) {
1877           assert(base->Opcode() == Op_LoadP, "must load an oop from klass");
1878           assert(Opcode() == Op_LoadI, "must load an int from fixed block");
1879           return TypeInt::make(tkls->klass()->as_value_klass()->default_value_offset());
1880         }
1881       }
1882     }
1883   }
1884 
1885   const TypeKlassPtr *tkls = tp->isa_klassptr();
1886   if (tkls != NULL && !StressReflectiveCode) {
1887     ciKlass* klass = tkls->klass();
1888     if (tkls->is_loaded() && tkls->klass_is_exact()) {
1889       // We are loading a field from a Klass metaobject whose identity
1890       // is known at compile time (the type is "exact" or "precise").
1891       // Check for fields we know are maintained as constants by the VM.
1892       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1893         // The field is Klass::_super_check_offset.  Return its (constant) value.
1894         // (Folds up type checking code.)
1895         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1896         return TypeInt::make(klass->super_check_offset());
1897       }
1898       // Compute index into primary_supers array
1899       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1900       // Check for overflowing; use unsigned compare to handle the negative case.
1901       if( depth < ciKlass::primary_super_limit() ) {
1902         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1903         // (Folds up type checking code.)
1904         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1905         ciKlass *ss = klass->super_of_depth(depth);
1906         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1907       }
1908       const Type* aift = load_array_final_field(tkls, klass);
1909       if (aift != NULL)  return aift;
1910     }
1911 
1912     // We can still check if we are loading from the primary_supers array at a
1913     // shallow enough depth.  Even though the klass is not exact, entries less
1914     // than or equal to its super depth are correct.
1915     if (tkls->is_loaded()) {
1916       ciType *inner = klass;
1917       while( inner->is_obj_array_klass() )
1918         inner = inner->as_obj_array_klass()->base_element_type();
1919       if( inner->is_instance_klass() &&
1920           !inner->as_instance_klass()->flags().is_interface() ) {
1921         // Compute index into primary_supers array
1922         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1923         // Check for overflowing; use unsigned compare to handle the negative case.
1924         if( depth < ciKlass::primary_super_limit() &&
1925             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1926           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1927           // (Folds up type checking code.)
1928           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1929           ciKlass *ss = klass->super_of_depth(depth);
1930           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1931         }
1932       }
1933     }
1934 
1935     // If the type is enough to determine that the thing is not an array,
1936     // we can give the layout_helper a positive interval type.
1937     // This will help short-circuit some reflective code.
1938     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1939         && !klass->is_array_klass() // not directly typed as an array
1940         && !klass->is_interface()  // specifically not Serializable & Cloneable
1941         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1942         ) {
1943       // Note:  When interfaces are reliable, we can narrow the interface
1944       // test to (klass != Serializable && klass != Cloneable).
1945       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1946       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1947       // The key property of this type is that it folds up tests
1948       // for array-ness, since it proves that the layout_helper is positive.
1949       // Thus, a generic value like the basic object layout helper works fine.
1950       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1951     }
1952   }
1953 
1954   // If we are loading from a freshly-allocated object, produce a zero,
1955   // if the load is provably beyond the header of the object.
1956   // (Also allow a variable load from a fresh array to produce zero.)
1957   const TypeOopPtr *tinst = tp->isa_oopptr();
1958   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1959   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1960   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1961     Node* value = can_see_stored_value(mem,phase);
1962     if (value != NULL && value->is_Con()) {
1963       assert(value->bottom_type()->higher_equal(_type),"sanity");
1964       return value->bottom_type();
1965     }
1966   }
1967 
1968   if (is_instance) {
1969     // If we have an instance type and our memory input is the
1970     // programs's initial memory state, there is no matching store,
1971     // so just return a zero of the appropriate type
1972     Node *mem = in(MemNode::Memory);
1973     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1974       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1975       return Type::get_zero_type(_type->basic_type());
1976     }
1977   }
1978   return _type;
1979 }
1980 
1981 //------------------------------match_edge-------------------------------------
1982 // Do we Match on this edge index or not?  Match only the address.
1983 uint LoadNode::match_edge(uint idx) const {
1984   return idx == MemNode::Address;
1985 }
1986 
1987 //--------------------------LoadBNode::Ideal--------------------------------------
1988 //
1989 //  If the previous store is to the same address as this load,
1990 //  and the value stored was larger than a byte, replace this load
1991 //  with the value stored truncated to a byte.  If no truncation is
1992 //  needed, the replacement is done in LoadNode::Identity().
1993 //
1994 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1995   Node* mem = in(MemNode::Memory);
1996   Node* value = can_see_stored_value(mem,phase);
1997   if( value && !phase->type(value)->higher_equal( _type ) ) {
1998     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1999     return new RShiftINode(result, phase->intcon(24));
2000   }
2001   // Identity call will handle the case where truncation is not needed.
2002   return LoadNode::Ideal(phase, can_reshape);
2003 }
2004 
2005 const Type* LoadBNode::Value(PhaseGVN* phase) const {
2006   Node* mem = in(MemNode::Memory);
2007   Node* value = can_see_stored_value(mem,phase);
2008   if (value != NULL && value->is_Con() &&
2009       !value->bottom_type()->higher_equal(_type)) {
2010     // If the input to the store does not fit with the load's result type,
2011     // it must be truncated. We can't delay until Ideal call since
2012     // a singleton Value is needed for split_thru_phi optimization.
2013     int con = value->get_int();
2014     return TypeInt::make((con << 24) >> 24);
2015   }
2016   return LoadNode::Value(phase);
2017 }
2018 
2019 //--------------------------LoadUBNode::Ideal-------------------------------------
2020 //
2021 //  If the previous store is to the same address as this load,
2022 //  and the value stored was larger than a byte, replace this load
2023 //  with the value stored truncated to a byte.  If no truncation is
2024 //  needed, the replacement is done in LoadNode::Identity().
2025 //
2026 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
2027   Node* mem = in(MemNode::Memory);
2028   Node* value = can_see_stored_value(mem, phase);
2029   if (value && !phase->type(value)->higher_equal(_type))
2030     return new AndINode(value, phase->intcon(0xFF));
2031   // Identity call will handle the case where truncation is not needed.
2032   return LoadNode::Ideal(phase, can_reshape);
2033 }
2034 
2035 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
2036   Node* mem = in(MemNode::Memory);
2037   Node* value = can_see_stored_value(mem,phase);
2038   if (value != NULL && value->is_Con() &&
2039       !value->bottom_type()->higher_equal(_type)) {
2040     // If the input to the store does not fit with the load's result type,
2041     // it must be truncated. We can't delay until Ideal call since
2042     // a singleton Value is needed for split_thru_phi optimization.
2043     int con = value->get_int();
2044     return TypeInt::make(con & 0xFF);
2045   }
2046   return LoadNode::Value(phase);
2047 }
2048 
2049 //--------------------------LoadUSNode::Ideal-------------------------------------
2050 //
2051 //  If the previous store is to the same address as this load,
2052 //  and the value stored was larger than a char, replace this load
2053 //  with the value stored truncated to a char.  If no truncation is
2054 //  needed, the replacement is done in LoadNode::Identity().
2055 //
2056 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2057   Node* mem = in(MemNode::Memory);
2058   Node* value = can_see_stored_value(mem,phase);
2059   if( value && !phase->type(value)->higher_equal( _type ) )
2060     return new AndINode(value,phase->intcon(0xFFFF));
2061   // Identity call will handle the case where truncation is not needed.
2062   return LoadNode::Ideal(phase, can_reshape);
2063 }
2064 
2065 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2066   Node* mem = in(MemNode::Memory);
2067   Node* value = can_see_stored_value(mem,phase);
2068   if (value != NULL && value->is_Con() &&
2069       !value->bottom_type()->higher_equal(_type)) {
2070     // If the input to the store does not fit with the load's result type,
2071     // it must be truncated. We can't delay until Ideal call since
2072     // a singleton Value is needed for split_thru_phi optimization.
2073     int con = value->get_int();
2074     return TypeInt::make(con & 0xFFFF);
2075   }
2076   return LoadNode::Value(phase);
2077 }
2078 
2079 //--------------------------LoadSNode::Ideal--------------------------------------
2080 //
2081 //  If the previous store is to the same address as this load,
2082 //  and the value stored was larger than a short, replace this load
2083 //  with the value stored truncated to a short.  If no truncation is
2084 //  needed, the replacement is done in LoadNode::Identity().
2085 //
2086 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2087   Node* mem = in(MemNode::Memory);
2088   Node* value = can_see_stored_value(mem,phase);
2089   if( value && !phase->type(value)->higher_equal( _type ) ) {
2090     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2091     return new RShiftINode(result, phase->intcon(16));
2092   }
2093   // Identity call will handle the case where truncation is not needed.
2094   return LoadNode::Ideal(phase, can_reshape);
2095 }
2096 
2097 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2098   Node* mem = in(MemNode::Memory);
2099   Node* value = can_see_stored_value(mem,phase);
2100   if (value != NULL && value->is_Con() &&
2101       !value->bottom_type()->higher_equal(_type)) {
2102     // If the input to the store does not fit with the load's result type,
2103     // it must be truncated. We can't delay until Ideal call since
2104     // a singleton Value is needed for split_thru_phi optimization.
2105     int con = value->get_int();
2106     return TypeInt::make((con << 16) >> 16);
2107   }
2108   return LoadNode::Value(phase);
2109 }
2110 
2111 //=============================================================================
2112 //----------------------------LoadKlassNode::make------------------------------
2113 // Polymorphic factory method:
2114 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2115   // sanity check the alias category against the created node type
2116   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2117   assert(adr_type != NULL, "expecting TypeKlassPtr");
2118 #ifdef _LP64
2119   if (adr_type->is_ptr_to_narrowklass()) {
2120     assert(UseCompressedClassPointers, "no compressed klasses");
2121     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2122     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2123   }
2124 #endif
2125   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2126   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2127 }
2128 
2129 //------------------------------Value------------------------------------------
2130 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2131   return klass_value_common(phase);
2132 }
2133 
2134 // In most cases, LoadKlassNode does not have the control input set. If the control
2135 // input is set, it must not be removed (by LoadNode::Ideal()).
2136 bool LoadKlassNode::can_remove_control() const {
2137   return false;
2138 }
2139 
2140 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2141   // Either input is TOP ==> the result is TOP
2142   const Type *t1 = phase->type( in(MemNode::Memory) );
2143   if (t1 == Type::TOP)  return Type::TOP;
2144   Node *adr = in(MemNode::Address);
2145   const Type *t2 = phase->type( adr );
2146   if (t2 == Type::TOP)  return Type::TOP;
2147   const TypePtr *tp = t2->is_ptr();
2148   if (TypePtr::above_centerline(tp->ptr()) ||
2149       tp->ptr() == TypePtr::Null)  return Type::TOP;
2150 
2151   // Return a more precise klass, if possible
2152   const TypeInstPtr *tinst = tp->isa_instptr();
2153   if (tinst != NULL) {
2154     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2155     int offset = tinst->offset();
2156     if (ik == phase->C->env()->Class_klass()
2157         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2158             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2159       // We are loading a special hidden field from a Class mirror object,
2160       // the field which points to the VM's Klass metaobject.
2161       ciType* t = tinst->java_mirror_type();
2162       // java_mirror_type returns non-null for compile-time Class constants.
2163       if (t != NULL) {
2164         // constant oop => constant klass
2165         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2166           if (t->is_void()) {
2167             // We cannot create a void array.  Since void is a primitive type return null
2168             // klass.  Users of this result need to do a null check on the returned klass.
2169             return TypePtr::NULL_PTR;
2170           }
2171           return TypeKlassPtr::make(ciArrayKlass::make(t));
2172         }
2173         if (!t->is_klass()) {
2174           // a primitive Class (e.g., int.class) has NULL for a klass field
2175           return TypePtr::NULL_PTR;
2176         }
2177         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2178         return TypeKlassPtr::make(t->as_klass());
2179       }
2180       // non-constant mirror, so we can't tell what's going on
2181     }
2182     if( !ik->is_loaded() )
2183       return _type;             // Bail out if not loaded
2184     if (offset == oopDesc::klass_offset_in_bytes()) {
2185       if (tinst->klass_is_exact()) {
2186         return TypeKlassPtr::make(ik);
2187       }
2188       // See if we can become precise: no subklasses and no interface
2189       // (Note:  We need to support verified interfaces.)
2190       if (!ik->is_interface() && !ik->has_subklass()) {
2191         //assert(!UseExactTypes, "this code should be useless with exact types");
2192         // Add a dependence; if any subclass added we need to recompile
2193         if (!ik->is_final()) {
2194           // %%% should use stronger assert_unique_concrete_subtype instead
2195           phase->C->dependencies()->assert_leaf_type(ik);
2196         }
2197         // Return precise klass
2198         return TypeKlassPtr::make(ik);
2199       }
2200 
2201       // Return root of possible klass
2202       return TypeKlassPtr::make(TypePtr::NotNull, ik, Type::Offset(0));
2203     }
2204   }
2205 
2206   // Check for loading klass from an array
2207   const TypeAryPtr *tary = tp->isa_aryptr();
2208   if( tary != NULL ) {
2209     ciKlass *tary_klass = tary->klass();
2210     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2211         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2212       if (tary->klass_is_exact()) {
2213         return TypeKlassPtr::make(tary_klass);
2214       }
2215       ciArrayKlass *ak = tary->klass()->as_array_klass();
2216       // If the klass is an object array, we defer the question to the
2217       // array component klass.
2218       if( ak->is_obj_array_klass() ) {
2219         assert( ak->is_loaded(), "" );
2220         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2221         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2222           ciInstanceKlass* ik = base_k->as_instance_klass();
2223           // See if we can become precise: no subklasses and no interface
2224           if (!ik->is_interface() && !ik->has_subklass()) {
2225             //assert(!UseExactTypes, "this code should be useless with exact types");
2226             // Add a dependence; if any subclass added we need to recompile
2227             if (!ik->is_final()) {
2228               phase->C->dependencies()->assert_leaf_type(ik);
2229             }
2230             // Return precise array klass
2231             return TypeKlassPtr::make(ak);
2232           }
2233         }
2234         return TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
2235       } else {                  // Found a type-array?
2236         //assert(!UseExactTypes, "this code should be useless with exact types");
2237         assert( ak->is_type_array_klass(), "" );
2238         return TypeKlassPtr::make(ak); // These are always precise
2239       }
2240     }
2241   }
2242 
2243   // Check for loading klass from an array klass
2244   const TypeKlassPtr *tkls = tp->isa_klassptr();
2245   if (tkls != NULL && !StressReflectiveCode) {
2246     if (!tkls->is_loaded()) {
2247       return _type;             // Bail out if not loaded
2248     }
2249     ciKlass* klass = tkls->klass();
2250     if( klass->is_obj_array_klass() &&
2251         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2252       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2253       // // Always returning precise element type is incorrect,
2254       // // e.g., element type could be object and array may contain strings
2255       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2256 
2257       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2258       // according to the element type's subclassing.
2259       return TypeKlassPtr::make(tkls->ptr(), elem, Type::Offset(0));
2260     }
2261     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2262         tkls->offset() == in_bytes(Klass::super_offset())) {
2263       ciKlass* sup = klass->as_instance_klass()->super();
2264       // The field is Klass::_super.  Return its (constant) value.
2265       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2266       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2267     }
2268   }
2269 
2270   // Bailout case
2271   return LoadNode::Value(phase);
2272 }
2273 
2274 //------------------------------Identity---------------------------------------
2275 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2276 // Also feed through the klass in Allocate(...klass...)._klass.
2277 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2278   return klass_identity_common(phase);
2279 }
2280 
2281 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2282   Node* x = LoadNode::Identity(phase);
2283   if (x != this)  return x;
2284 
2285   // Take apart the address into an oop and and offset.
2286   // Return 'this' if we cannot.
2287   Node*    adr    = in(MemNode::Address);
2288   intptr_t offset = 0;
2289   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2290   if (base == NULL)     return this;
2291   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2292   if (toop == NULL)     return this;
2293 
2294   // Step over potential GC barrier for OopHandle resolve
2295   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2296   if (bs->is_gc_barrier_node(base)) {
2297     base = bs->step_over_gc_barrier(base);
2298   }
2299 
2300   // We can fetch the klass directly through an AllocateNode.
2301   // This works even if the klass is not constant (clone or newArray).
2302   if (offset == oopDesc::klass_offset_in_bytes()) {
2303     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2304     if (allocated_klass != NULL) {
2305       return allocated_klass;
2306     }
2307   }
2308 
2309   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2310   // See inline_native_Class_query for occurrences of these patterns.
2311   // Java Example:  x.getClass().isAssignableFrom(y)
2312   //
2313   // This improves reflective code, often making the Class
2314   // mirror go completely dead.  (Current exception:  Class
2315   // mirrors may appear in debug info, but we could clean them out by
2316   // introducing a new debug info operator for Klass.java_mirror).
2317 
2318   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2319       && offset == java_lang_Class::klass_offset_in_bytes()) {
2320     if (base->is_Load()) {
2321       Node* base2 = base->in(MemNode::Address);
2322       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2323         Node* adr2 = base2->in(MemNode::Address);
2324         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2325         if (tkls != NULL && !tkls->empty()
2326             && (tkls->klass()->is_instance_klass() ||
2327               tkls->klass()->is_array_klass())
2328             && adr2->is_AddP()
2329            ) {
2330           int mirror_field = in_bytes(Klass::java_mirror_offset());
2331           if (tkls->offset() == mirror_field) {
2332             return adr2->in(AddPNode::Base);
2333           }
2334         }
2335       }
2336     }
2337   }
2338 
2339   return this;
2340 }
2341 
2342 
2343 //------------------------------Value------------------------------------------
2344 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2345   const Type *t = klass_value_common(phase);
2346   if (t == Type::TOP)
2347     return t;
2348 
2349   return t->make_narrowklass();
2350 }
2351 
2352 //------------------------------Identity---------------------------------------
2353 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2354 // Also feed through the klass in Allocate(...klass...)._klass.
2355 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2356   Node *x = klass_identity_common(phase);
2357 
2358   const Type *t = phase->type( x );
2359   if( t == Type::TOP ) return x;
2360   if( t->isa_narrowklass()) return x;
2361   assert (!t->isa_narrowoop(), "no narrow oop here");
2362 
2363   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2364 }
2365 
2366 //------------------------------Value-----------------------------------------
2367 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2368   // Either input is TOP ==> the result is TOP
2369   const Type *t1 = phase->type( in(MemNode::Memory) );
2370   if( t1 == Type::TOP ) return Type::TOP;
2371   Node *adr = in(MemNode::Address);
2372   const Type *t2 = phase->type( adr );
2373   if( t2 == Type::TOP ) return Type::TOP;
2374   const TypePtr *tp = t2->is_ptr();
2375   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2376   const TypeAryPtr *tap = tp->isa_aryptr();
2377   if( !tap ) return _type;
2378   return tap->size();
2379 }
2380 
2381 //-------------------------------Ideal---------------------------------------
2382 // Feed through the length in AllocateArray(...length...)._length.
2383 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2384   Node* p = MemNode::Ideal_common(phase, can_reshape);
2385   if (p)  return (p == NodeSentinel) ? NULL : p;
2386 
2387   // Take apart the address into an oop and and offset.
2388   // Return 'this' if we cannot.
2389   Node*    adr    = in(MemNode::Address);
2390   intptr_t offset = 0;
2391   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2392   if (base == NULL)     return NULL;
2393   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2394   if (tary == NULL)     return NULL;
2395 
2396   // We can fetch the length directly through an AllocateArrayNode.
2397   // This works even if the length is not constant (clone or newArray).
2398   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2399     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2400     if (alloc != NULL) {
2401       Node* allocated_length = alloc->Ideal_length();
2402       Node* len = alloc->make_ideal_length(tary, phase);
2403       if (allocated_length != len) {
2404         // New CastII improves on this.
2405         return len;
2406       }
2407     }
2408   }
2409 
2410   return NULL;
2411 }
2412 
2413 //------------------------------Identity---------------------------------------
2414 // Feed through the length in AllocateArray(...length...)._length.
2415 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2416   Node* x = LoadINode::Identity(phase);
2417   if (x != this)  return x;
2418 
2419   // Take apart the address into an oop and and offset.
2420   // Return 'this' if we cannot.
2421   Node*    adr    = in(MemNode::Address);
2422   intptr_t offset = 0;
2423   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2424   if (base == NULL)     return this;
2425   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2426   if (tary == NULL)     return this;
2427 
2428   // We can fetch the length directly through an AllocateArrayNode.
2429   // This works even if the length is not constant (clone or newArray).
2430   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2431     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2432     if (alloc != NULL) {
2433       Node* allocated_length = alloc->Ideal_length();
2434       // Do not allow make_ideal_length to allocate a CastII node.
2435       Node* len = alloc->make_ideal_length(tary, phase, false);
2436       if (allocated_length == len) {
2437         // Return allocated_length only if it would not be improved by a CastII.
2438         return allocated_length;
2439       }
2440     }
2441   }
2442 
2443   return this;
2444 
2445 }
2446 
2447 //=============================================================================
2448 //---------------------------StoreNode::make-----------------------------------
2449 // Polymorphic factory method:
2450 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2451   assert((mo == unordered || mo == release), "unexpected");
2452   Compile* C = gvn.C;
2453   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2454          ctl != NULL, "raw memory operations should have control edge");
2455 
2456   switch (bt) {
2457   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2458   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2459   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2460   case T_CHAR:
2461   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2462   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2463   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2464   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2465   case T_METADATA:
2466   case T_ADDRESS:
2467   case T_VALUETYPE:
2468   case T_OBJECT:
2469 #ifdef _LP64
2470     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2471       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2472       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2473     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2474                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2475                 adr->bottom_type()->isa_rawptr())) {
2476       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2477       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2478     }
2479 #endif
2480     {
2481       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2482     }
2483   default:
2484     ShouldNotReachHere();
2485     return (StoreNode*)NULL;
2486   }
2487 }
2488 
2489 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2490   bool require_atomic = true;
2491   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2492 }
2493 
2494 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2495   bool require_atomic = true;
2496   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2497 }
2498 
2499 
2500 //--------------------------bottom_type----------------------------------------
2501 const Type *StoreNode::bottom_type() const {
2502   return Type::MEMORY;
2503 }
2504 
2505 //------------------------------hash-------------------------------------------
2506 uint StoreNode::hash() const {
2507   // unroll addition of interesting fields
2508   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2509 
2510   // Since they are not commoned, do not hash them:
2511   return NO_HASH;
2512 }
2513 
2514 //------------------------------Ideal------------------------------------------
2515 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2516 // When a store immediately follows a relevant allocation/initialization,
2517 // try to capture it into the initialization, or hoist it above.
2518 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2519   Node* p = MemNode::Ideal_common(phase, can_reshape);
2520   if (p)  return (p == NodeSentinel) ? NULL : p;
2521 
2522   Node* mem     = in(MemNode::Memory);
2523   Node* address = in(MemNode::Address);
2524   // Back-to-back stores to same address?  Fold em up.  Generally
2525   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2526   // since they must follow each StoreP operation.  Redundant StoreCMs
2527   // are eliminated just before matching in final_graph_reshape.
2528   {
2529     Node* st = mem;
2530     // If Store 'st' has more than one use, we cannot fold 'st' away.
2531     // For example, 'st' might be the final state at a conditional
2532     // return.  Or, 'st' might be used by some node which is live at
2533     // the same time 'st' is live, which might be unschedulable.  So,
2534     // require exactly ONE user until such time as we clone 'mem' for
2535     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2536     // true).
2537     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2538       // Looking at a dead closed cycle of memory?
2539       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2540       assert(Opcode() == st->Opcode() ||
2541              st->Opcode() == Op_StoreVector ||
2542              Opcode() == Op_StoreVector ||
2543              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2544              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2545              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2546              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreN) ||
2547              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2548              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2549 
2550       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2551           st->as_Store()->memory_size() <= this->memory_size()) {
2552         Node* use = st->raw_out(0);
2553         phase->igvn_rehash_node_delayed(use);
2554         if (can_reshape) {
2555           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2556         } else {
2557           // It's OK to do this in the parser, since DU info is always accurate,
2558           // and the parser always refers to nodes via SafePointNode maps.
2559           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2560         }
2561         return this;
2562       }
2563       st = st->in(MemNode::Memory);
2564     }
2565   }
2566 
2567 
2568   // Capture an unaliased, unconditional, simple store into an initializer.
2569   // Or, if it is independent of the allocation, hoist it above the allocation.
2570   if (ReduceFieldZeroing && /*can_reshape &&*/
2571       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2572     InitializeNode* init = mem->in(0)->as_Initialize();
2573     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2574     if (offset > 0) {
2575       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2576       // If the InitializeNode captured me, it made a raw copy of me,
2577       // and I need to disappear.
2578       if (moved != NULL) {
2579         // %%% hack to ensure that Ideal returns a new node:
2580         mem = MergeMemNode::make(mem);
2581         return mem;             // fold me away
2582       }
2583     }
2584   }
2585 
2586   return NULL;                  // No further progress
2587 }
2588 
2589 //------------------------------Value-----------------------------------------
2590 const Type* StoreNode::Value(PhaseGVN* phase) const {
2591   // Either input is TOP ==> the result is TOP
2592   const Type *t1 = phase->type( in(MemNode::Memory) );
2593   if( t1 == Type::TOP ) return Type::TOP;
2594   const Type *t2 = phase->type( in(MemNode::Address) );
2595   if( t2 == Type::TOP ) return Type::TOP;
2596   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2597   if( t3 == Type::TOP ) return Type::TOP;
2598   return Type::MEMORY;
2599 }
2600 
2601 //------------------------------Identity---------------------------------------
2602 // Remove redundant stores:
2603 //   Store(m, p, Load(m, p)) changes to m.
2604 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2605 Node* StoreNode::Identity(PhaseGVN* phase) {
2606   Node* mem = in(MemNode::Memory);
2607   Node* adr = in(MemNode::Address);
2608   Node* val = in(MemNode::ValueIn);
2609 
2610   Node* result = this;
2611 
2612   // Load then Store?  Then the Store is useless
2613   if (val->is_Load() &&
2614       val->in(MemNode::Address)->eqv_uncast(adr) &&
2615       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2616       val->as_Load()->store_Opcode() == Opcode()) {
2617     result = mem;
2618   }
2619 
2620   // Two stores in a row of the same value?
2621   if (result == this &&
2622       mem->is_Store() &&
2623       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2624       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2625       mem->Opcode() == Opcode()) {
2626     result = mem;
2627   }
2628 
2629   // Store of zero anywhere into a freshly-allocated object?
2630   // Then the store is useless.
2631   // (It must already have been captured by the InitializeNode.)
2632   if (result == this && ReduceFieldZeroing) {
2633     // a newly allocated object is already all-zeroes everywhere
2634     if (mem->is_Proj() && mem->in(0)->is_Allocate() &&
2635         (phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == val)) {
2636       assert(!phase->type(val)->is_zero_type() || mem->in(0)->in(AllocateNode::DefaultValue) == NULL, "storing null to value array is forbidden");
2637       result = mem;
2638     }
2639 
2640     if (result == this) {
2641       // the store may also apply to zero-bits in an earlier object
2642       Node* prev_mem = find_previous_store(phase);
2643       // Steps (a), (b):  Walk past independent stores to find an exact match.
2644       if (prev_mem != NULL) {
2645         Node* prev_val = can_see_stored_value(prev_mem, phase);
2646         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2647           // prev_val and val might differ by a cast; it would be good
2648           // to keep the more informative of the two.
2649           if (phase->type(val)->is_zero_type()) {
2650             result = mem;
2651           } else if (prev_mem->is_Proj() && prev_mem->in(0)->is_Initialize()) {
2652             InitializeNode* init = prev_mem->in(0)->as_Initialize();
2653             AllocateNode* alloc = init->allocation();
2654             if (alloc != NULL && alloc->in(AllocateNode::DefaultValue) == val) {
2655               result = mem;
2656             }
2657           }
2658         }
2659       }
2660     }
2661   }
2662 
2663   if (result != this && phase->is_IterGVN() != NULL) {
2664     MemBarNode* trailing = trailing_membar();
2665     if (trailing != NULL) {
2666 #ifdef ASSERT
2667       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2668       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2669 #endif
2670       PhaseIterGVN* igvn = phase->is_IterGVN();
2671       trailing->remove(igvn);
2672     }
2673   }
2674 
2675   return result;
2676 }
2677 
2678 //------------------------------match_edge-------------------------------------
2679 // Do we Match on this edge index or not?  Match only memory & value
2680 uint StoreNode::match_edge(uint idx) const {
2681   return idx == MemNode::Address || idx == MemNode::ValueIn;
2682 }
2683 
2684 //------------------------------cmp--------------------------------------------
2685 // Do not common stores up together.  They generally have to be split
2686 // back up anyways, so do not bother.
2687 uint StoreNode::cmp( const Node &n ) const {
2688   return (&n == this);          // Always fail except on self
2689 }
2690 
2691 //------------------------------Ideal_masked_input-----------------------------
2692 // Check for a useless mask before a partial-word store
2693 // (StoreB ... (AndI valIn conIa) )
2694 // If (conIa & mask == mask) this simplifies to
2695 // (StoreB ... (valIn) )
2696 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2697   Node *val = in(MemNode::ValueIn);
2698   if( val->Opcode() == Op_AndI ) {
2699     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2700     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2701       set_req(MemNode::ValueIn, val->in(1));
2702       return this;
2703     }
2704   }
2705   return NULL;
2706 }
2707 
2708 
2709 //------------------------------Ideal_sign_extended_input----------------------
2710 // Check for useless sign-extension before a partial-word store
2711 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2712 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2713 // (StoreB ... (valIn) )
2714 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2715   Node *val = in(MemNode::ValueIn);
2716   if( val->Opcode() == Op_RShiftI ) {
2717     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2718     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2719       Node *shl = val->in(1);
2720       if( shl->Opcode() == Op_LShiftI ) {
2721         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2722         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2723           set_req(MemNode::ValueIn, shl->in(1));
2724           return this;
2725         }
2726       }
2727     }
2728   }
2729   return NULL;
2730 }
2731 
2732 //------------------------------value_never_loaded-----------------------------------
2733 // Determine whether there are any possible loads of the value stored.
2734 // For simplicity, we actually check if there are any loads from the
2735 // address stored to, not just for loads of the value stored by this node.
2736 //
2737 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2738   Node *adr = in(Address);
2739   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2740   if (adr_oop == NULL)
2741     return false;
2742   if (!adr_oop->is_known_instance_field())
2743     return false; // if not a distinct instance, there may be aliases of the address
2744   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2745     Node *use = adr->fast_out(i);
2746     if (use->is_Load() || use->is_LoadStore()) {
2747       return false;
2748     }
2749   }
2750   return true;
2751 }
2752 
2753 MemBarNode* StoreNode::trailing_membar() const {
2754   if (is_release()) {
2755     MemBarNode* trailing_mb = NULL;
2756     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2757       Node* u = fast_out(i);
2758       if (u->is_MemBar()) {
2759         if (u->as_MemBar()->trailing_store()) {
2760           assert(u->Opcode() == Op_MemBarVolatile, "");
2761           assert(trailing_mb == NULL, "only one");
2762           trailing_mb = u->as_MemBar();
2763 #ifdef ASSERT
2764           Node* leading = u->as_MemBar()->leading_membar();
2765           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2766           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2767           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2768 #endif
2769         } else {
2770           assert(u->as_MemBar()->standalone(), "");
2771         }
2772       }
2773     }
2774     return trailing_mb;
2775   }
2776   return NULL;
2777 }
2778 
2779 
2780 //=============================================================================
2781 //------------------------------Ideal------------------------------------------
2782 // If the store is from an AND mask that leaves the low bits untouched, then
2783 // we can skip the AND operation.  If the store is from a sign-extension
2784 // (a left shift, then right shift) we can skip both.
2785 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2786   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2787   if( progress != NULL ) return progress;
2788 
2789   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2790   if( progress != NULL ) return progress;
2791 
2792   // Finally check the default case
2793   return StoreNode::Ideal(phase, can_reshape);
2794 }
2795 
2796 //=============================================================================
2797 //------------------------------Ideal------------------------------------------
2798 // If the store is from an AND mask that leaves the low bits untouched, then
2799 // we can skip the AND operation
2800 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2801   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2802   if( progress != NULL ) return progress;
2803 
2804   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2805   if( progress != NULL ) return progress;
2806 
2807   // Finally check the default case
2808   return StoreNode::Ideal(phase, can_reshape);
2809 }
2810 
2811 //=============================================================================
2812 //------------------------------Identity---------------------------------------
2813 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2814   // No need to card mark when storing a null ptr
2815   Node* my_store = in(MemNode::OopStore);
2816   if (my_store->is_Store()) {
2817     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2818     if( t1 == TypePtr::NULL_PTR ) {
2819       return in(MemNode::Memory);
2820     }
2821   }
2822   return this;
2823 }
2824 
2825 //=============================================================================
2826 //------------------------------Ideal---------------------------------------
2827 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2828   Node* progress = StoreNode::Ideal(phase, can_reshape);
2829   if (progress != NULL) return progress;
2830 
2831   Node* my_store = in(MemNode::OopStore);
2832   if (my_store->is_MergeMem()) {
2833     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2834     set_req(MemNode::OopStore, mem);
2835     return this;
2836   }
2837 
2838   return NULL;
2839 }
2840 
2841 //------------------------------Value-----------------------------------------
2842 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2843   // Either input is TOP ==> the result is TOP
2844   const Type *t = phase->type( in(MemNode::Memory) );
2845   if( t == Type::TOP ) return Type::TOP;
2846   t = phase->type( in(MemNode::Address) );
2847   if( t == Type::TOP ) return Type::TOP;
2848   t = phase->type( in(MemNode::ValueIn) );
2849   if( t == Type::TOP ) return Type::TOP;
2850   // If extra input is TOP ==> the result is TOP
2851   t = phase->type( in(MemNode::OopStore) );
2852   if( t == Type::TOP ) return Type::TOP;
2853 
2854   return StoreNode::Value( phase );
2855 }
2856 
2857 
2858 //=============================================================================
2859 //----------------------------------SCMemProjNode------------------------------
2860 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2861 {
2862   return bottom_type();
2863 }
2864 
2865 //=============================================================================
2866 //----------------------------------LoadStoreNode------------------------------
2867 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2868   : Node(required),
2869     _type(rt),
2870     _adr_type(at)
2871 {
2872   init_req(MemNode::Control, c  );
2873   init_req(MemNode::Memory , mem);
2874   init_req(MemNode::Address, adr);
2875   init_req(MemNode::ValueIn, val);
2876   init_class_id(Class_LoadStore);
2877 }
2878 
2879 uint LoadStoreNode::ideal_reg() const {
2880   return _type->ideal_reg();
2881 }
2882 
2883 bool LoadStoreNode::result_not_used() const {
2884   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2885     Node *x = fast_out(i);
2886     if (x->Opcode() == Op_SCMemProj) continue;
2887     return false;
2888   }
2889   return true;
2890 }
2891 
2892 MemBarNode* LoadStoreNode::trailing_membar() const {
2893   MemBarNode* trailing = NULL;
2894   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2895     Node* u = fast_out(i);
2896     if (u->is_MemBar()) {
2897       if (u->as_MemBar()->trailing_load_store()) {
2898         assert(u->Opcode() == Op_MemBarAcquire, "");
2899         assert(trailing == NULL, "only one");
2900         trailing = u->as_MemBar();
2901 #ifdef ASSERT
2902         Node* leading = trailing->leading_membar();
2903         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2904         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2905         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2906 #endif
2907       } else {
2908         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2909       }
2910     }
2911   }
2912 
2913   return trailing;
2914 }
2915 
2916 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2917 
2918 //=============================================================================
2919 //----------------------------------LoadStoreConditionalNode--------------------
2920 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2921   init_req(ExpectedIn, ex );
2922 }
2923 
2924 //=============================================================================
2925 //-------------------------------adr_type--------------------------------------
2926 const TypePtr* ClearArrayNode::adr_type() const {
2927   Node *adr = in(3);
2928   if (adr == NULL)  return NULL; // node is dead
2929   return MemNode::calculate_adr_type(adr->bottom_type());
2930 }
2931 
2932 //------------------------------match_edge-------------------------------------
2933 // Do we Match on this edge index or not?  Do not match memory
2934 uint ClearArrayNode::match_edge(uint idx) const {
2935   return idx > 1;
2936 }
2937 
2938 //------------------------------Identity---------------------------------------
2939 // Clearing a zero length array does nothing
2940 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2941   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2942 }
2943 
2944 //------------------------------Idealize---------------------------------------
2945 // Clearing a short array is faster with stores
2946 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2947   // Already know this is a large node, do not try to ideal it
2948   if (!IdealizeClearArrayNode || _is_large) return NULL;
2949 
2950   const int unit = BytesPerLong;
2951   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2952   if (!t)  return NULL;
2953   if (!t->is_con())  return NULL;
2954   intptr_t raw_count = t->get_con();
2955   intptr_t size = raw_count;
2956   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2957   // Clearing nothing uses the Identity call.
2958   // Negative clears are possible on dead ClearArrays
2959   // (see jck test stmt114.stmt11402.val).
2960   if (size <= 0 || size % unit != 0)  return NULL;
2961   intptr_t count = size / unit;
2962   // Length too long; communicate this to matchers and assemblers.
2963   // Assemblers are responsible to produce fast hardware clears for it.
2964   if (size > InitArrayShortSize) {
2965     return new ClearArrayNode(in(0), in(1), in(2), in(3), in(4), true);
2966   }
2967   Node *mem = in(1);
2968   if( phase->type(mem)==Type::TOP ) return NULL;
2969   Node *adr = in(3);
2970   const Type* at = phase->type(adr);
2971   if( at==Type::TOP ) return NULL;
2972   const TypePtr* atp = at->isa_ptr();
2973   // adjust atp to be the correct array element address type
2974   if (atp == NULL)  atp = TypePtr::BOTTOM;
2975   else              atp = atp->add_offset(Type::OffsetBot);
2976   // Get base for derived pointer purposes
2977   if( adr->Opcode() != Op_AddP ) Unimplemented();
2978   Node *base = adr->in(1);
2979 
2980   Node *val = in(4);
2981   Node *off  = phase->MakeConX(BytesPerLong);
2982   mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
2983   count--;
2984   while( count-- ) {
2985     mem = phase->transform(mem);
2986     adr = phase->transform(new AddPNode(base,adr,off));
2987     mem = new StoreLNode(in(0), mem, adr, atp, val, MemNode::unordered, false);
2988   }
2989   return mem;
2990 }
2991 
2992 //----------------------------step_through----------------------------------
2993 // Return allocation input memory edge if it is different instance
2994 // or itself if it is the one we are looking for.
2995 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2996   Node* n = *np;
2997   assert(n->is_ClearArray(), "sanity");
2998   intptr_t offset;
2999   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
3000   // This method is called only before Allocate nodes are expanded
3001   // during macro nodes expansion. Before that ClearArray nodes are
3002   // only generated in PhaseMacroExpand::generate_arraycopy() (before
3003   // Allocate nodes are expanded) which follows allocations.
3004   assert(alloc != NULL, "should have allocation");
3005   if (alloc->_idx == instance_id) {
3006     // Can not bypass initialization of the instance we are looking for.
3007     return false;
3008   }
3009   // Otherwise skip it.
3010   InitializeNode* init = alloc->initialization();
3011   if (init != NULL)
3012     *np = init->in(TypeFunc::Memory);
3013   else
3014     *np = alloc->in(TypeFunc::Memory);
3015   return true;
3016 }
3017 
3018 //----------------------------clear_memory-------------------------------------
3019 // Generate code to initialize object storage to zero.
3020 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3021                                    Node* val,
3022                                    Node* raw_val,
3023                                    intptr_t start_offset,
3024                                    Node* end_offset,
3025                                    PhaseGVN* phase) {
3026   intptr_t offset = start_offset;
3027 
3028   int unit = BytesPerLong;
3029   if ((offset % unit) != 0) {
3030     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
3031     adr = phase->transform(adr);
3032     const TypePtr* atp = TypeRawPtr::BOTTOM;
3033     if (val != NULL) {
3034       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3035       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3036     } else {
3037       assert(raw_val == NULL, "val may not be null");
3038       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3039     }
3040     mem = phase->transform(mem);
3041     offset += BytesPerInt;
3042   }
3043   assert((offset % unit) == 0, "");
3044 
3045   // Initialize the remaining stuff, if any, with a ClearArray.
3046   return clear_memory(ctl, mem, dest, raw_val, phase->MakeConX(offset), end_offset, phase);
3047 }
3048 
3049 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3050                                    Node* raw_val,
3051                                    Node* start_offset,
3052                                    Node* end_offset,
3053                                    PhaseGVN* phase) {
3054   if (start_offset == end_offset) {
3055     // nothing to do
3056     return mem;
3057   }
3058 
3059   int unit = BytesPerLong;
3060   Node* zbase = start_offset;
3061   Node* zend  = end_offset;
3062 
3063   // Scale to the unit required by the CPU:
3064   if (!Matcher::init_array_count_is_in_bytes) {
3065     Node* shift = phase->intcon(exact_log2(unit));
3066     zbase = phase->transform(new URShiftXNode(zbase, shift) );
3067     zend  = phase->transform(new URShiftXNode(zend,  shift) );
3068   }
3069 
3070   // Bulk clear double-words
3071   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
3072   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
3073   if (raw_val == NULL) {
3074     raw_val = phase->MakeConX(0);
3075   }
3076   mem = new ClearArrayNode(ctl, mem, zsize, adr, raw_val, false);
3077   return phase->transform(mem);
3078 }
3079 
3080 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3081                                    Node* val,
3082                                    Node* raw_val,
3083                                    intptr_t start_offset,
3084                                    intptr_t end_offset,
3085                                    PhaseGVN* phase) {
3086   if (start_offset == end_offset) {
3087     // nothing to do
3088     return mem;
3089   }
3090 
3091   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3092   intptr_t done_offset = end_offset;
3093   if ((done_offset % BytesPerLong) != 0) {
3094     done_offset -= BytesPerInt;
3095   }
3096   if (done_offset > start_offset) {
3097     mem = clear_memory(ctl, mem, dest, val, raw_val,
3098                        start_offset, phase->MakeConX(done_offset), phase);
3099   }
3100   if (done_offset < end_offset) { // emit the final 32-bit store
3101     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3102     adr = phase->transform(adr);
3103     const TypePtr* atp = TypeRawPtr::BOTTOM;
3104     if (val != NULL) {
3105       assert(phase->type(val)->isa_narrowoop(), "should be narrow oop");
3106       mem = new StoreNNode(ctl, mem, adr, atp, val, MemNode::unordered);
3107     } else {
3108       assert(raw_val == NULL, "val may not be null");
3109       mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3110     }
3111     mem = phase->transform(mem);
3112     done_offset += BytesPerInt;
3113   }
3114   assert(done_offset == end_offset, "");
3115   return mem;
3116 }
3117 
3118 //=============================================================================
3119 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3120   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3121     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3122 #ifdef ASSERT
3123   , _pair_idx(0)
3124 #endif
3125 {
3126   init_class_id(Class_MemBar);
3127   Node* top = C->top();
3128   init_req(TypeFunc::I_O,top);
3129   init_req(TypeFunc::FramePtr,top);
3130   init_req(TypeFunc::ReturnAdr,top);
3131   if (precedent != NULL)
3132     init_req(TypeFunc::Parms, precedent);
3133 }
3134 
3135 //------------------------------cmp--------------------------------------------
3136 uint MemBarNode::hash() const { return NO_HASH; }
3137 uint MemBarNode::cmp( const Node &n ) const {
3138   return (&n == this);          // Always fail except on self
3139 }
3140 
3141 //------------------------------make-------------------------------------------
3142 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3143   switch (opcode) {
3144   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3145   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3146   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3147   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3148   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3149   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3150   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3151   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3152   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3153   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3154   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3155   default: ShouldNotReachHere(); return NULL;
3156   }
3157 }
3158 
3159 void MemBarNode::remove(PhaseIterGVN *igvn) {
3160   if (outcnt() != 2) {
3161     return;
3162   }
3163   if (trailing_store() || trailing_load_store()) {
3164     MemBarNode* leading = leading_membar();
3165     if (leading != NULL) {
3166       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3167       leading->remove(igvn);
3168     }
3169   }
3170   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3171   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3172 }
3173 
3174 //------------------------------Ideal------------------------------------------
3175 // Return a node which is more "ideal" than the current node.  Strip out
3176 // control copies
3177 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3178   if (remove_dead_region(phase, can_reshape)) return this;
3179   // Don't bother trying to transform a dead node
3180   if (in(0) && in(0)->is_top()) {
3181     return NULL;
3182   }
3183 
3184 #if INCLUDE_ZGC
3185   if (UseZGC) {
3186     if (req() == (Precedent+1) && in(MemBarNode::Precedent)->in(0) != NULL && in(MemBarNode::Precedent)->in(0)->is_LoadBarrier()) {
3187       Node* load_node = in(MemBarNode::Precedent)->in(0)->in(LoadBarrierNode::Oop);
3188       set_req(MemBarNode::Precedent, load_node);
3189       return this;
3190     }
3191   }
3192 #endif
3193 
3194   bool progress = false;
3195   // Eliminate volatile MemBars for scalar replaced objects.
3196   if (can_reshape && req() == (Precedent+1)) {
3197     bool eliminate = false;
3198     int opc = Opcode();
3199     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3200       // Volatile field loads and stores.
3201       Node* my_mem = in(MemBarNode::Precedent);
3202       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3203       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3204         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3205         // replace this Precedent (decodeN) with the Load instead.
3206         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3207           Node* load_node = my_mem->in(1);
3208           set_req(MemBarNode::Precedent, load_node);
3209           phase->is_IterGVN()->_worklist.push(my_mem);
3210           my_mem = load_node;
3211         } else {
3212           assert(my_mem->unique_out() == this, "sanity");
3213           del_req(Precedent);
3214           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3215           my_mem = NULL;
3216         }
3217         progress = true;
3218       }
3219       if (my_mem != NULL && my_mem->is_Mem()) {
3220         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3221         // Check for scalar replaced object reference.
3222         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3223             t_oop->offset() != Type::OffsetBot &&
3224             t_oop->offset() != Type::OffsetTop) {
3225           eliminate = true;
3226         }
3227       }
3228     } else if (opc == Op_MemBarRelease) {
3229       // Final field stores.
3230       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3231       if ((alloc != NULL) && alloc->is_Allocate() &&
3232           alloc->as_Allocate()->does_not_escape_thread()) {
3233         // The allocated object does not escape.
3234         eliminate = true;
3235       }
3236     }
3237     if (eliminate) {
3238       // Replace MemBar projections by its inputs.
3239       PhaseIterGVN* igvn = phase->is_IterGVN();
3240       remove(igvn);
3241       // Must return either the original node (now dead) or a new node
3242       // (Do not return a top here, since that would break the uniqueness of top.)
3243       return new ConINode(TypeInt::ZERO);
3244     }
3245   }
3246   return progress ? this : NULL;
3247 }
3248 
3249 //------------------------------Value------------------------------------------
3250 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3251   if( !in(0) ) return Type::TOP;
3252   if( phase->type(in(0)) == Type::TOP )
3253     return Type::TOP;
3254   return TypeTuple::MEMBAR;
3255 }
3256 
3257 //------------------------------match------------------------------------------
3258 // Construct projections for memory.
3259 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
3260   switch (proj->_con) {
3261   case TypeFunc::Control:
3262   case TypeFunc::Memory:
3263     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3264   }
3265   ShouldNotReachHere();
3266   return NULL;
3267 }
3268 
3269 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3270   trailing->_kind = TrailingStore;
3271   leading->_kind = LeadingStore;
3272 #ifdef ASSERT
3273   trailing->_pair_idx = leading->_idx;
3274   leading->_pair_idx = leading->_idx;
3275 #endif
3276 }
3277 
3278 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3279   trailing->_kind = TrailingLoadStore;
3280   leading->_kind = LeadingLoadStore;
3281 #ifdef ASSERT
3282   trailing->_pair_idx = leading->_idx;
3283   leading->_pair_idx = leading->_idx;
3284 #endif
3285 }
3286 
3287 MemBarNode* MemBarNode::trailing_membar() const {
3288   ResourceMark rm;
3289   Node* trailing = (Node*)this;
3290   VectorSet seen(Thread::current()->resource_area());
3291   Node_Stack multis(0);
3292   do {
3293     Node* c = trailing;
3294     uint i = 0;
3295     do {
3296       trailing = NULL;
3297       for (; i < c->outcnt(); i++) {
3298         Node* next = c->raw_out(i);
3299         if (next != c && next->is_CFG()) {
3300           if (c->is_MultiBranch()) {
3301             if (multis.node() == c) {
3302               multis.set_index(i+1);
3303             } else {
3304               multis.push(c, i+1);
3305             }
3306           }
3307           trailing = next;
3308           break;
3309         }
3310       }
3311       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3312         break;
3313       }
3314       while (multis.size() > 0) {
3315         c = multis.node();
3316         i = multis.index();
3317         if (i < c->req()) {
3318           break;
3319         }
3320         multis.pop();
3321       }
3322     } while (multis.size() > 0);
3323   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3324 
3325   MemBarNode* mb = trailing->as_MemBar();
3326   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3327          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3328   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3329   return mb;
3330 }
3331 
3332 MemBarNode* MemBarNode::leading_membar() const {
3333   ResourceMark rm;
3334   VectorSet seen(Thread::current()->resource_area());
3335   Node_Stack regions(0);
3336   Node* leading = in(0);
3337   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3338     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3339       leading = NULL;
3340       while (regions.size() > 0 && leading == NULL) {
3341         Node* r = regions.node();
3342         uint i = regions.index();
3343         if (i < r->req()) {
3344           leading = r->in(i);
3345           regions.set_index(i+1);
3346         } else {
3347           regions.pop();
3348         }
3349       }
3350       if (leading == NULL) {
3351         assert(regions.size() == 0, "all paths should have been tried");
3352         return NULL;
3353       }
3354     }
3355     if (leading->is_Region()) {
3356       regions.push(leading, 2);
3357       leading = leading->in(1);
3358     } else {
3359       leading = leading->in(0);
3360     }
3361   }
3362 #ifdef ASSERT
3363   Unique_Node_List wq;
3364   wq.push((Node*)this);
3365   uint found = 0;
3366   for (uint i = 0; i < wq.size(); i++) {
3367     Node* n = wq.at(i);
3368     if (n->is_Region()) {
3369       for (uint j = 1; j < n->req(); j++) {
3370         Node* in = n->in(j);
3371         if (in != NULL && !in->is_top()) {
3372           wq.push(in);
3373         }
3374       }
3375     } else {
3376       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3377         assert(n == leading, "consistency check failed");
3378         found++;
3379       } else {
3380         Node* in = n->in(0);
3381         if (in != NULL && !in->is_top()) {
3382           wq.push(in);
3383         }
3384       }
3385     }
3386   }
3387   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3388 #endif
3389   if (leading == NULL) {
3390     return NULL;
3391   }
3392   MemBarNode* mb = leading->as_MemBar();
3393   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3394          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3395   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3396   return mb;
3397 }
3398 
3399 //===========================InitializeNode====================================
3400 // SUMMARY:
3401 // This node acts as a memory barrier on raw memory, after some raw stores.
3402 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3403 // The Initialize can 'capture' suitably constrained stores as raw inits.
3404 // It can coalesce related raw stores into larger units (called 'tiles').
3405 // It can avoid zeroing new storage for memory units which have raw inits.
3406 // At macro-expansion, it is marked 'complete', and does not optimize further.
3407 //
3408 // EXAMPLE:
3409 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3410 //   ctl = incoming control; mem* = incoming memory
3411 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3412 // First allocate uninitialized memory and fill in the header:
3413 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3414 //   ctl := alloc.Control; mem* := alloc.Memory*
3415 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3416 // Then initialize to zero the non-header parts of the raw memory block:
3417 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3418 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3419 // After the initialize node executes, the object is ready for service:
3420 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3421 // Suppose its body is immediately initialized as {1,2}:
3422 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3423 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3424 //   mem.SLICE(#short[*]) := store2
3425 //
3426 // DETAILS:
3427 // An InitializeNode collects and isolates object initialization after
3428 // an AllocateNode and before the next possible safepoint.  As a
3429 // memory barrier (MemBarNode), it keeps critical stores from drifting
3430 // down past any safepoint or any publication of the allocation.
3431 // Before this barrier, a newly-allocated object may have uninitialized bits.
3432 // After this barrier, it may be treated as a real oop, and GC is allowed.
3433 //
3434 // The semantics of the InitializeNode include an implicit zeroing of
3435 // the new object from object header to the end of the object.
3436 // (The object header and end are determined by the AllocateNode.)
3437 //
3438 // Certain stores may be added as direct inputs to the InitializeNode.
3439 // These stores must update raw memory, and they must be to addresses
3440 // derived from the raw address produced by AllocateNode, and with
3441 // a constant offset.  They must be ordered by increasing offset.
3442 // The first one is at in(RawStores), the last at in(req()-1).
3443 // Unlike most memory operations, they are not linked in a chain,
3444 // but are displayed in parallel as users of the rawmem output of
3445 // the allocation.
3446 //
3447 // (See comments in InitializeNode::capture_store, which continue
3448 // the example given above.)
3449 //
3450 // When the associated Allocate is macro-expanded, the InitializeNode
3451 // may be rewritten to optimize collected stores.  A ClearArrayNode
3452 // may also be created at that point to represent any required zeroing.
3453 // The InitializeNode is then marked 'complete', prohibiting further
3454 // capturing of nearby memory operations.
3455 //
3456 // During macro-expansion, all captured initializations which store
3457 // constant values of 32 bits or smaller are coalesced (if advantageous)
3458 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3459 // initialized in fewer memory operations.  Memory words which are
3460 // covered by neither tiles nor non-constant stores are pre-zeroed
3461 // by explicit stores of zero.  (The code shape happens to do all
3462 // zeroing first, then all other stores, with both sequences occurring
3463 // in order of ascending offsets.)
3464 //
3465 // Alternatively, code may be inserted between an AllocateNode and its
3466 // InitializeNode, to perform arbitrary initialization of the new object.
3467 // E.g., the object copying intrinsics insert complex data transfers here.
3468 // The initialization must then be marked as 'complete' disable the
3469 // built-in zeroing semantics and the collection of initializing stores.
3470 //
3471 // While an InitializeNode is incomplete, reads from the memory state
3472 // produced by it are optimizable if they match the control edge and
3473 // new oop address associated with the allocation/initialization.
3474 // They return a stored value (if the offset matches) or else zero.
3475 // A write to the memory state, if it matches control and address,
3476 // and if it is to a constant offset, may be 'captured' by the
3477 // InitializeNode.  It is cloned as a raw memory operation and rewired
3478 // inside the initialization, to the raw oop produced by the allocation.
3479 // Operations on addresses which are provably distinct (e.g., to
3480 // other AllocateNodes) are allowed to bypass the initialization.
3481 //
3482 // The effect of all this is to consolidate object initialization
3483 // (both arrays and non-arrays, both piecewise and bulk) into a
3484 // single location, where it can be optimized as a unit.
3485 //
3486 // Only stores with an offset less than TrackedInitializationLimit words
3487 // will be considered for capture by an InitializeNode.  This puts a
3488 // reasonable limit on the complexity of optimized initializations.
3489 
3490 //---------------------------InitializeNode------------------------------------
3491 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3492   : MemBarNode(C, adr_type, rawoop),
3493     _is_complete(Incomplete), _does_not_escape(false)
3494 {
3495   init_class_id(Class_Initialize);
3496 
3497   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3498   assert(in(RawAddress) == rawoop, "proper init");
3499   // Note:  allocation() can be NULL, for secondary initialization barriers
3500 }
3501 
3502 // Since this node is not matched, it will be processed by the
3503 // register allocator.  Declare that there are no constraints
3504 // on the allocation of the RawAddress edge.
3505 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3506   // This edge should be set to top, by the set_complete.  But be conservative.
3507   if (idx == InitializeNode::RawAddress)
3508     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3509   return RegMask::Empty;
3510 }
3511 
3512 Node* InitializeNode::memory(uint alias_idx) {
3513   Node* mem = in(Memory);
3514   if (mem->is_MergeMem()) {
3515     return mem->as_MergeMem()->memory_at(alias_idx);
3516   } else {
3517     // incoming raw memory is not split
3518     return mem;
3519   }
3520 }
3521 
3522 bool InitializeNode::is_non_zero() {
3523   if (is_complete())  return false;
3524   remove_extra_zeroes();
3525   return (req() > RawStores);
3526 }
3527 
3528 void InitializeNode::set_complete(PhaseGVN* phase) {
3529   assert(!is_complete(), "caller responsibility");
3530   _is_complete = Complete;
3531 
3532   // After this node is complete, it contains a bunch of
3533   // raw-memory initializations.  There is no need for
3534   // it to have anything to do with non-raw memory effects.
3535   // Therefore, tell all non-raw users to re-optimize themselves,
3536   // after skipping the memory effects of this initialization.
3537   PhaseIterGVN* igvn = phase->is_IterGVN();
3538   if (igvn)  igvn->add_users_to_worklist(this);
3539 }
3540 
3541 // convenience function
3542 // return false if the init contains any stores already
3543 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3544   InitializeNode* init = initialization();
3545   if (init == NULL || init->is_complete()) {
3546     return false;
3547   }
3548   init->remove_extra_zeroes();
3549   // for now, if this allocation has already collected any inits, bail:
3550   if (init->is_non_zero())  return false;
3551   init->set_complete(phase);
3552   return true;
3553 }
3554 
3555 void InitializeNode::remove_extra_zeroes() {
3556   if (req() == RawStores)  return;
3557   Node* zmem = zero_memory();
3558   uint fill = RawStores;
3559   for (uint i = fill; i < req(); i++) {
3560     Node* n = in(i);
3561     if (n->is_top() || n == zmem)  continue;  // skip
3562     if (fill < i)  set_req(fill, n);          // compact
3563     ++fill;
3564   }
3565   // delete any empty spaces created:
3566   while (fill < req()) {
3567     del_req(fill);
3568   }
3569 }
3570 
3571 // Helper for remembering which stores go with which offsets.
3572 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3573   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3574   intptr_t offset = -1;
3575   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3576                                                phase, offset);
3577   if (base == NULL)     return -1;  // something is dead,
3578   if (offset < 0)       return -1;  //        dead, dead
3579   return offset;
3580 }
3581 
3582 // Helper for proving that an initialization expression is
3583 // "simple enough" to be folded into an object initialization.
3584 // Attempts to prove that a store's initial value 'n' can be captured
3585 // within the initialization without creating a vicious cycle, such as:
3586 //     { Foo p = new Foo(); p.next = p; }
3587 // True for constants and parameters and small combinations thereof.
3588 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3589   if (n == NULL)      return true;   // (can this really happen?)
3590   if (n->is_Proj())   n = n->in(0);
3591   if (n == this)      return false;  // found a cycle
3592   if (n->is_Con())    return true;
3593   if (n->is_Start())  return true;   // params, etc., are OK
3594   if (n->is_Root())   return true;   // even better
3595 
3596   Node* ctl = n->in(0);
3597   if (ctl != NULL && !ctl->is_top()) {
3598     if (ctl->is_Proj())  ctl = ctl->in(0);
3599     if (ctl == this)  return false;
3600 
3601     // If we already know that the enclosing memory op is pinned right after
3602     // the init, then any control flow that the store has picked up
3603     // must have preceded the init, or else be equal to the init.
3604     // Even after loop optimizations (which might change control edges)
3605     // a store is never pinned *before* the availability of its inputs.
3606     if (!MemNode::all_controls_dominate(n, this))
3607       return false;                  // failed to prove a good control
3608   }
3609 
3610   // Check data edges for possible dependencies on 'this'.
3611   if ((count += 1) > 20)  return false;  // complexity limit
3612   for (uint i = 1; i < n->req(); i++) {
3613     Node* m = n->in(i);
3614     if (m == NULL || m == n || m->is_top())  continue;
3615     uint first_i = n->find_edge(m);
3616     if (i != first_i)  continue;  // process duplicate edge just once
3617     if (!detect_init_independence(m, count)) {
3618       return false;
3619     }
3620   }
3621 
3622   return true;
3623 }
3624 
3625 // Here are all the checks a Store must pass before it can be moved into
3626 // an initialization.  Returns zero if a check fails.
3627 // On success, returns the (constant) offset to which the store applies,
3628 // within the initialized memory.
3629 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3630   const int FAIL = 0;
3631   if (st->is_unaligned_access()) {
3632     return FAIL;
3633   }
3634   if (st->req() != MemNode::ValueIn + 1)
3635     return FAIL;                // an inscrutable StoreNode (card mark?)
3636   Node* ctl = st->in(MemNode::Control);
3637   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3638     return FAIL;                // must be unconditional after the initialization
3639   Node* mem = st->in(MemNode::Memory);
3640   if (!(mem->is_Proj() && mem->in(0) == this))
3641     return FAIL;                // must not be preceded by other stores
3642   Node* adr = st->in(MemNode::Address);
3643   intptr_t offset;
3644   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3645   if (alloc == NULL)
3646     return FAIL;                // inscrutable address
3647   if (alloc != allocation())
3648     return FAIL;                // wrong allocation!  (store needs to float up)
3649   Node* val = st->in(MemNode::ValueIn);
3650   int complexity_count = 0;
3651   if (!detect_init_independence(val, complexity_count))
3652     return FAIL;                // stored value must be 'simple enough'
3653 
3654   // The Store can be captured only if nothing after the allocation
3655   // and before the Store is using the memory location that the store
3656   // overwrites.
3657   bool failed = false;
3658   // If is_complete_with_arraycopy() is true the shape of the graph is
3659   // well defined and is safe so no need for extra checks.
3660   if (!is_complete_with_arraycopy()) {
3661     // We are going to look at each use of the memory state following
3662     // the allocation to make sure nothing reads the memory that the
3663     // Store writes.
3664     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3665     int alias_idx = phase->C->get_alias_index(t_adr);
3666     ResourceMark rm;
3667     Unique_Node_List mems;
3668     mems.push(mem);
3669     Node* unique_merge = NULL;
3670     for (uint next = 0; next < mems.size(); ++next) {
3671       Node *m  = mems.at(next);
3672       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3673         Node *n = m->fast_out(j);
3674         if (n->outcnt() == 0) {
3675           continue;
3676         }
3677         if (n == st) {
3678           continue;
3679         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3680           // If the control of this use is different from the control
3681           // of the Store which is right after the InitializeNode then
3682           // this node cannot be between the InitializeNode and the
3683           // Store.
3684           continue;
3685         } else if (n->is_MergeMem()) {
3686           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3687             // We can hit a MergeMemNode (that will likely go away
3688             // later) that is a direct use of the memory state
3689             // following the InitializeNode on the same slice as the
3690             // store node that we'd like to capture. We need to check
3691             // the uses of the MergeMemNode.
3692             mems.push(n);
3693           }
3694         } else if (n->is_Mem()) {
3695           Node* other_adr = n->in(MemNode::Address);
3696           if (other_adr == adr) {
3697             failed = true;
3698             break;
3699           } else {
3700             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3701             if (other_t_adr != NULL) {
3702               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3703               if (other_alias_idx == alias_idx) {
3704                 // A load from the same memory slice as the store right
3705                 // after the InitializeNode. We check the control of the
3706                 // object/array that is loaded from. If it's the same as
3707                 // the store control then we cannot capture the store.
3708                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3709                 Node* base = other_adr;
3710                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3711                 base = base->in(AddPNode::Base);
3712                 if (base != NULL) {
3713                   base = base->uncast();
3714                   if (base->is_Proj() && base->in(0) == alloc) {
3715                     failed = true;
3716                     break;
3717                   }
3718                 }
3719               }
3720             }
3721           }
3722         } else {
3723           failed = true;
3724           break;
3725         }
3726       }
3727     }
3728   }
3729   if (failed) {
3730     if (!can_reshape) {
3731       // We decided we couldn't capture the store during parsing. We
3732       // should try again during the next IGVN once the graph is
3733       // cleaner.
3734       phase->C->record_for_igvn(st);
3735     }
3736     return FAIL;
3737   }
3738 
3739   return offset;                // success
3740 }
3741 
3742 // Find the captured store in(i) which corresponds to the range
3743 // [start..start+size) in the initialized object.
3744 // If there is one, return its index i.  If there isn't, return the
3745 // negative of the index where it should be inserted.
3746 // Return 0 if the queried range overlaps an initialization boundary
3747 // or if dead code is encountered.
3748 // If size_in_bytes is zero, do not bother with overlap checks.
3749 int InitializeNode::captured_store_insertion_point(intptr_t start,
3750                                                    int size_in_bytes,
3751                                                    PhaseTransform* phase) {
3752   const int FAIL = 0, MAX_STORE = BytesPerLong;
3753 
3754   if (is_complete())
3755     return FAIL;                // arraycopy got here first; punt
3756 
3757   assert(allocation() != NULL, "must be present");
3758 
3759   // no negatives, no header fields:
3760   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3761 
3762   // after a certain size, we bail out on tracking all the stores:
3763   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3764   if (start >= ti_limit)  return FAIL;
3765 
3766   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3767     if (i >= limit)  return -(int)i; // not found; here is where to put it
3768 
3769     Node*    st     = in(i);
3770     intptr_t st_off = get_store_offset(st, phase);
3771     if (st_off < 0) {
3772       if (st != zero_memory()) {
3773         return FAIL;            // bail out if there is dead garbage
3774       }
3775     } else if (st_off > start) {
3776       // ...we are done, since stores are ordered
3777       if (st_off < start + size_in_bytes) {
3778         return FAIL;            // the next store overlaps
3779       }
3780       return -(int)i;           // not found; here is where to put it
3781     } else if (st_off < start) {
3782       if (size_in_bytes != 0 &&
3783           start < st_off + MAX_STORE &&
3784           start < st_off + st->as_Store()->memory_size()) {
3785         return FAIL;            // the previous store overlaps
3786       }
3787     } else {
3788       if (size_in_bytes != 0 &&
3789           st->as_Store()->memory_size() != size_in_bytes) {
3790         return FAIL;            // mismatched store size
3791       }
3792       return i;
3793     }
3794 
3795     ++i;
3796   }
3797 }
3798 
3799 // Look for a captured store which initializes at the offset 'start'
3800 // with the given size.  If there is no such store, and no other
3801 // initialization interferes, then return zero_memory (the memory
3802 // projection of the AllocateNode).
3803 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3804                                           PhaseTransform* phase) {
3805   assert(stores_are_sane(phase), "");
3806   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3807   if (i == 0) {
3808     return NULL;                // something is dead
3809   } else if (i < 0) {
3810     return zero_memory();       // just primordial zero bits here
3811   } else {
3812     Node* st = in(i);           // here is the store at this position
3813     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3814     return st;
3815   }
3816 }
3817 
3818 // Create, as a raw pointer, an address within my new object at 'offset'.
3819 Node* InitializeNode::make_raw_address(intptr_t offset,
3820                                        PhaseTransform* phase) {
3821   Node* addr = in(RawAddress);
3822   if (offset != 0) {
3823     Compile* C = phase->C;
3824     addr = phase->transform( new AddPNode(C->top(), addr,
3825                                                  phase->MakeConX(offset)) );
3826   }
3827   return addr;
3828 }
3829 
3830 // Clone the given store, converting it into a raw store
3831 // initializing a field or element of my new object.
3832 // Caller is responsible for retiring the original store,
3833 // with subsume_node or the like.
3834 //
3835 // From the example above InitializeNode::InitializeNode,
3836 // here are the old stores to be captured:
3837 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3838 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3839 //
3840 // Here is the changed code; note the extra edges on init:
3841 //   alloc = (Allocate ...)
3842 //   rawoop = alloc.RawAddress
3843 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3844 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3845 //   init = (Initialize alloc.Control alloc.Memory rawoop
3846 //                      rawstore1 rawstore2)
3847 //
3848 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3849                                     PhaseTransform* phase, bool can_reshape) {
3850   assert(stores_are_sane(phase), "");
3851 
3852   if (start < 0)  return NULL;
3853   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3854 
3855   Compile* C = phase->C;
3856   int size_in_bytes = st->memory_size();
3857   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3858   if (i == 0)  return NULL;     // bail out
3859   Node* prev_mem = NULL;        // raw memory for the captured store
3860   if (i > 0) {
3861     prev_mem = in(i);           // there is a pre-existing store under this one
3862     set_req(i, C->top());       // temporarily disconnect it
3863     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3864   } else {
3865     i = -i;                     // no pre-existing store
3866     prev_mem = zero_memory();   // a slice of the newly allocated object
3867     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3868       set_req(--i, C->top());   // reuse this edge; it has been folded away
3869     else
3870       ins_req(i, C->top());     // build a new edge
3871   }
3872   Node* new_st = st->clone();
3873   new_st->set_req(MemNode::Control, in(Control));
3874   new_st->set_req(MemNode::Memory,  prev_mem);
3875   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3876   new_st = phase->transform(new_st);
3877 
3878   // At this point, new_st might have swallowed a pre-existing store
3879   // at the same offset, or perhaps new_st might have disappeared,
3880   // if it redundantly stored the same value (or zero to fresh memory).
3881 
3882   // In any case, wire it in:
3883   phase->igvn_rehash_node_delayed(this);
3884   set_req(i, new_st);
3885 
3886   // The caller may now kill the old guy.
3887   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3888   assert(check_st == new_st || check_st == NULL, "must be findable");
3889   assert(!is_complete(), "");
3890   return new_st;
3891 }
3892 
3893 static bool store_constant(jlong* tiles, int num_tiles,
3894                            intptr_t st_off, int st_size,
3895                            jlong con) {
3896   if ((st_off & (st_size-1)) != 0)
3897     return false;               // strange store offset (assume size==2**N)
3898   address addr = (address)tiles + st_off;
3899   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3900   switch (st_size) {
3901   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3902   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3903   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3904   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3905   default: return false;        // strange store size (detect size!=2**N here)
3906   }
3907   return true;                  // return success to caller
3908 }
3909 
3910 // Coalesce subword constants into int constants and possibly
3911 // into long constants.  The goal, if the CPU permits,
3912 // is to initialize the object with a small number of 64-bit tiles.
3913 // Also, convert floating-point constants to bit patterns.
3914 // Non-constants are not relevant to this pass.
3915 //
3916 // In terms of the running example on InitializeNode::InitializeNode
3917 // and InitializeNode::capture_store, here is the transformation
3918 // of rawstore1 and rawstore2 into rawstore12:
3919 //   alloc = (Allocate ...)
3920 //   rawoop = alloc.RawAddress
3921 //   tile12 = 0x00010002
3922 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3923 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3924 //
3925 void
3926 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3927                                         Node* size_in_bytes,
3928                                         PhaseGVN* phase) {
3929   Compile* C = phase->C;
3930 
3931   assert(stores_are_sane(phase), "");
3932   // Note:  After this pass, they are not completely sane,
3933   // since there may be some overlaps.
3934 
3935   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3936 
3937   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3938   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3939   size_limit = MIN2(size_limit, ti_limit);
3940   size_limit = align_up(size_limit, BytesPerLong);
3941   int num_tiles = size_limit / BytesPerLong;
3942 
3943   // allocate space for the tile map:
3944   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3945   jlong  tiles_buf[small_len];
3946   Node*  nodes_buf[small_len];
3947   jlong  inits_buf[small_len];
3948   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3949                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3950   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3951                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3952   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3953                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3954   // tiles: exact bitwise model of all primitive constants
3955   // nodes: last constant-storing node subsumed into the tiles model
3956   // inits: which bytes (in each tile) are touched by any initializations
3957 
3958   //// Pass A: Fill in the tile model with any relevant stores.
3959 
3960   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3961   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3962   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3963   Node* zmem = zero_memory(); // initially zero memory state
3964   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3965     Node* st = in(i);
3966     intptr_t st_off = get_store_offset(st, phase);
3967 
3968     // Figure out the store's offset and constant value:
3969     if (st_off < header_size)             continue; //skip (ignore header)
3970     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3971     int st_size = st->as_Store()->memory_size();
3972     if (st_off + st_size > size_limit)    break;
3973 
3974     // Record which bytes are touched, whether by constant or not.
3975     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3976       continue;                 // skip (strange store size)
3977 
3978     const Type* val = phase->type(st->in(MemNode::ValueIn));
3979     if (!val->singleton())                continue; //skip (non-con store)
3980     BasicType type = val->basic_type();
3981 
3982     jlong con = 0;
3983     switch (type) {
3984     case T_INT:    con = val->is_int()->get_con();  break;
3985     case T_LONG:   con = val->is_long()->get_con(); break;
3986     case T_FLOAT:  con = jint_cast(val->getf());    break;
3987     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3988     default:                              continue; //skip (odd store type)
3989     }
3990 
3991     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3992         st->Opcode() == Op_StoreL) {
3993       continue;                 // This StoreL is already optimal.
3994     }
3995 
3996     // Store down the constant.
3997     store_constant(tiles, num_tiles, st_off, st_size, con);
3998 
3999     intptr_t j = st_off >> LogBytesPerLong;
4000 
4001     if (type == T_INT && st_size == BytesPerInt
4002         && (st_off & BytesPerInt) == BytesPerInt) {
4003       jlong lcon = tiles[j];
4004       if (!Matcher::isSimpleConstant64(lcon) &&
4005           st->Opcode() == Op_StoreI) {
4006         // This StoreI is already optimal by itself.
4007         jint* intcon = (jint*) &tiles[j];
4008         intcon[1] = 0;  // undo the store_constant()
4009 
4010         // If the previous store is also optimal by itself, back up and
4011         // undo the action of the previous loop iteration... if we can.
4012         // But if we can't, just let the previous half take care of itself.
4013         st = nodes[j];
4014         st_off -= BytesPerInt;
4015         con = intcon[0];
4016         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
4017           assert(st_off >= header_size, "still ignoring header");
4018           assert(get_store_offset(st, phase) == st_off, "must be");
4019           assert(in(i-1) == zmem, "must be");
4020           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
4021           assert(con == tcon->is_int()->get_con(), "must be");
4022           // Undo the effects of the previous loop trip, which swallowed st:
4023           intcon[0] = 0;        // undo store_constant()
4024           set_req(i-1, st);     // undo set_req(i, zmem)
4025           nodes[j] = NULL;      // undo nodes[j] = st
4026           --old_subword;        // undo ++old_subword
4027         }
4028         continue;               // This StoreI is already optimal.
4029       }
4030     }
4031 
4032     // This store is not needed.
4033     set_req(i, zmem);
4034     nodes[j] = st;              // record for the moment
4035     if (st_size < BytesPerLong) // something has changed
4036           ++old_subword;        // includes int/float, but who's counting...
4037     else  ++old_long;
4038   }
4039 
4040   if ((old_subword + old_long) == 0)
4041     return;                     // nothing more to do
4042 
4043   //// Pass B: Convert any non-zero tiles into optimal constant stores.
4044   // Be sure to insert them before overlapping non-constant stores.
4045   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
4046   for (int j = 0; j < num_tiles; j++) {
4047     jlong con  = tiles[j];
4048     jlong init = inits[j];
4049     if (con == 0)  continue;
4050     jint con0,  con1;           // split the constant, address-wise
4051     jint init0, init1;          // split the init map, address-wise
4052     { union { jlong con; jint intcon[2]; } u;
4053       u.con = con;
4054       con0  = u.intcon[0];
4055       con1  = u.intcon[1];
4056       u.con = init;
4057       init0 = u.intcon[0];
4058       init1 = u.intcon[1];
4059     }
4060 
4061     Node* old = nodes[j];
4062     assert(old != NULL, "need the prior store");
4063     intptr_t offset = (j * BytesPerLong);
4064 
4065     bool split = !Matcher::isSimpleConstant64(con);
4066 
4067     if (offset < header_size) {
4068       assert(offset + BytesPerInt >= header_size, "second int counts");
4069       assert(*(jint*)&tiles[j] == 0, "junk in header");
4070       split = true;             // only the second word counts
4071       // Example:  int a[] = { 42 ... }
4072     } else if (con0 == 0 && init0 == -1) {
4073       split = true;             // first word is covered by full inits
4074       // Example:  int a[] = { ... foo(), 42 ... }
4075     } else if (con1 == 0 && init1 == -1) {
4076       split = true;             // second word is covered by full inits
4077       // Example:  int a[] = { ... 42, foo() ... }
4078     }
4079 
4080     // Here's a case where init0 is neither 0 nor -1:
4081     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
4082     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
4083     // In this case the tile is not split; it is (jlong)42.
4084     // The big tile is stored down, and then the foo() value is inserted.
4085     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
4086 
4087     Node* ctl = old->in(MemNode::Control);
4088     Node* adr = make_raw_address(offset, phase);
4089     const TypePtr* atp = TypeRawPtr::BOTTOM;
4090 
4091     // One or two coalesced stores to plop down.
4092     Node*    st[2];
4093     intptr_t off[2];
4094     int  nst = 0;
4095     if (!split) {
4096       ++new_long;
4097       off[nst] = offset;
4098       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4099                                   phase->longcon(con), T_LONG, MemNode::unordered);
4100     } else {
4101       // Omit either if it is a zero.
4102       if (con0 != 0) {
4103         ++new_int;
4104         off[nst]  = offset;
4105         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4106                                     phase->intcon(con0), T_INT, MemNode::unordered);
4107       }
4108       if (con1 != 0) {
4109         ++new_int;
4110         offset += BytesPerInt;
4111         adr = make_raw_address(offset, phase);
4112         off[nst]  = offset;
4113         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4114                                     phase->intcon(con1), T_INT, MemNode::unordered);
4115       }
4116     }
4117 
4118     // Insert second store first, then the first before the second.
4119     // Insert each one just before any overlapping non-constant stores.
4120     while (nst > 0) {
4121       Node* st1 = st[--nst];
4122       C->copy_node_notes_to(st1, old);
4123       st1 = phase->transform(st1);
4124       offset = off[nst];
4125       assert(offset >= header_size, "do not smash header");
4126       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4127       guarantee(ins_idx != 0, "must re-insert constant store");
4128       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4129       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4130         set_req(--ins_idx, st1);
4131       else
4132         ins_req(ins_idx, st1);
4133     }
4134   }
4135 
4136   if (PrintCompilation && WizardMode)
4137     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4138                   old_subword, old_long, new_int, new_long);
4139   if (C->log() != NULL)
4140     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4141                    old_subword, old_long, new_int, new_long);
4142 
4143   // Clean up any remaining occurrences of zmem:
4144   remove_extra_zeroes();
4145 }
4146 
4147 // Explore forward from in(start) to find the first fully initialized
4148 // word, and return its offset.  Skip groups of subword stores which
4149 // together initialize full words.  If in(start) is itself part of a
4150 // fully initialized word, return the offset of in(start).  If there
4151 // are no following full-word stores, or if something is fishy, return
4152 // a negative value.
4153 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4154   int       int_map = 0;
4155   intptr_t  int_map_off = 0;
4156   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4157 
4158   for (uint i = start, limit = req(); i < limit; i++) {
4159     Node* st = in(i);
4160 
4161     intptr_t st_off = get_store_offset(st, phase);
4162     if (st_off < 0)  break;  // return conservative answer
4163 
4164     int st_size = st->as_Store()->memory_size();
4165     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4166       return st_off;            // we found a complete word init
4167     }
4168 
4169     // update the map:
4170 
4171     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4172     if (this_int_off != int_map_off) {
4173       // reset the map:
4174       int_map = 0;
4175       int_map_off = this_int_off;
4176     }
4177 
4178     int subword_off = st_off - this_int_off;
4179     int_map |= right_n_bits(st_size) << subword_off;
4180     if ((int_map & FULL_MAP) == FULL_MAP) {
4181       return this_int_off;      // we found a complete word init
4182     }
4183 
4184     // Did this store hit or cross the word boundary?
4185     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4186     if (next_int_off == this_int_off + BytesPerInt) {
4187       // We passed the current int, without fully initializing it.
4188       int_map_off = next_int_off;
4189       int_map >>= BytesPerInt;
4190     } else if (next_int_off > this_int_off + BytesPerInt) {
4191       // We passed the current and next int.
4192       return this_int_off + BytesPerInt;
4193     }
4194   }
4195 
4196   return -1;
4197 }
4198 
4199 
4200 // Called when the associated AllocateNode is expanded into CFG.
4201 // At this point, we may perform additional optimizations.
4202 // Linearize the stores by ascending offset, to make memory
4203 // activity as coherent as possible.
4204 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4205                                       intptr_t header_size,
4206                                       Node* size_in_bytes,
4207                                       PhaseGVN* phase) {
4208   assert(!is_complete(), "not already complete");
4209   assert(stores_are_sane(phase), "");
4210   assert(allocation() != NULL, "must be present");
4211 
4212   remove_extra_zeroes();
4213 
4214   if (ReduceFieldZeroing || ReduceBulkZeroing)
4215     // reduce instruction count for common initialization patterns
4216     coalesce_subword_stores(header_size, size_in_bytes, phase);
4217 
4218   Node* zmem = zero_memory();   // initially zero memory state
4219   Node* inits = zmem;           // accumulating a linearized chain of inits
4220   #ifdef ASSERT
4221   intptr_t first_offset = allocation()->minimum_header_size();
4222   intptr_t last_init_off = first_offset;  // previous init offset
4223   intptr_t last_init_end = first_offset;  // previous init offset+size
4224   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4225   #endif
4226   intptr_t zeroes_done = header_size;
4227 
4228   bool do_zeroing = true;       // we might give up if inits are very sparse
4229   int  big_init_gaps = 0;       // how many large gaps have we seen?
4230 
4231   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4232   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4233 
4234   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4235     Node* st = in(i);
4236     intptr_t st_off = get_store_offset(st, phase);
4237     if (st_off < 0)
4238       break;                    // unknown junk in the inits
4239     if (st->in(MemNode::Memory) != zmem)
4240       break;                    // complicated store chains somehow in list
4241 
4242     int st_size = st->as_Store()->memory_size();
4243     intptr_t next_init_off = st_off + st_size;
4244 
4245     if (do_zeroing && zeroes_done < next_init_off) {
4246       // See if this store needs a zero before it or under it.
4247       intptr_t zeroes_needed = st_off;
4248 
4249       if (st_size < BytesPerInt) {
4250         // Look for subword stores which only partially initialize words.
4251         // If we find some, we must lay down some word-level zeroes first,
4252         // underneath the subword stores.
4253         //
4254         // Examples:
4255         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4256         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4257         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4258         //
4259         // Note:  coalesce_subword_stores may have already done this,
4260         // if it was prompted by constant non-zero subword initializers.
4261         // But this case can still arise with non-constant stores.
4262 
4263         intptr_t next_full_store = find_next_fullword_store(i, phase);
4264 
4265         // In the examples above:
4266         //   in(i)          p   q   r   s     x   y     z
4267         //   st_off        12  13  14  15    12  13    14
4268         //   st_size        1   1   1   1     1   1     1
4269         //   next_full_s.  12  16  16  16    16  16    16
4270         //   z's_done      12  16  16  16    12  16    12
4271         //   z's_needed    12  16  16  16    16  16    16
4272         //   zsize          0   0   0   0     4   0     4
4273         if (next_full_store < 0) {
4274           // Conservative tack:  Zero to end of current word.
4275           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4276         } else {
4277           // Zero to beginning of next fully initialized word.
4278           // Or, don't zero at all, if we are already in that word.
4279           assert(next_full_store >= zeroes_needed, "must go forward");
4280           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4281           zeroes_needed = next_full_store;
4282         }
4283       }
4284 
4285       if (zeroes_needed > zeroes_done) {
4286         intptr_t zsize = zeroes_needed - zeroes_done;
4287         // Do some incremental zeroing on rawmem, in parallel with inits.
4288         zeroes_done = align_down(zeroes_done, BytesPerInt);
4289         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4290                                               allocation()->in(AllocateNode::DefaultValue),
4291                                               allocation()->in(AllocateNode::RawDefaultValue),
4292                                               zeroes_done, zeroes_needed,
4293                                               phase);
4294         zeroes_done = zeroes_needed;
4295         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4296           do_zeroing = false;   // leave the hole, next time
4297       }
4298     }
4299 
4300     // Collect the store and move on:
4301     st->set_req(MemNode::Memory, inits);
4302     inits = st;                 // put it on the linearized chain
4303     set_req(i, zmem);           // unhook from previous position
4304 
4305     if (zeroes_done == st_off)
4306       zeroes_done = next_init_off;
4307 
4308     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4309 
4310     #ifdef ASSERT
4311     // Various order invariants.  Weaker than stores_are_sane because
4312     // a large constant tile can be filled in by smaller non-constant stores.
4313     assert(st_off >= last_init_off, "inits do not reverse");
4314     last_init_off = st_off;
4315     const Type* val = NULL;
4316     if (st_size >= BytesPerInt &&
4317         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4318         (int)val->basic_type() < (int)T_OBJECT) {
4319       assert(st_off >= last_tile_end, "tiles do not overlap");
4320       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4321       last_tile_end = MAX2(last_tile_end, next_init_off);
4322     } else {
4323       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4324       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4325       assert(st_off      >= last_init_end, "inits do not overlap");
4326       last_init_end = next_init_off;  // it's a non-tile
4327     }
4328     #endif //ASSERT
4329   }
4330 
4331   remove_extra_zeroes();        // clear out all the zmems left over
4332   add_req(inits);
4333 
4334   if (!(UseTLAB && ZeroTLAB)) {
4335     // If anything remains to be zeroed, zero it all now.
4336     zeroes_done = align_down(zeroes_done, BytesPerInt);
4337     // if it is the last unused 4 bytes of an instance, forget about it
4338     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4339     if (zeroes_done + BytesPerLong >= size_limit) {
4340       AllocateNode* alloc = allocation();
4341       assert(alloc != NULL, "must be present");
4342       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4343         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4344         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4345         if (zeroes_done == k->layout_helper())
4346           zeroes_done = size_limit;
4347       }
4348     }
4349     if (zeroes_done < size_limit) {
4350       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4351                                             allocation()->in(AllocateNode::DefaultValue),
4352                                             allocation()->in(AllocateNode::RawDefaultValue),
4353                                             zeroes_done, size_in_bytes, phase);
4354     }
4355   }
4356 
4357   set_complete(phase);
4358   return rawmem;
4359 }
4360 
4361 
4362 #ifdef ASSERT
4363 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4364   if (is_complete())
4365     return true;                // stores could be anything at this point
4366   assert(allocation() != NULL, "must be present");
4367   intptr_t last_off = allocation()->minimum_header_size();
4368   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4369     Node* st = in(i);
4370     intptr_t st_off = get_store_offset(st, phase);
4371     if (st_off < 0)  continue;  // ignore dead garbage
4372     if (last_off > st_off) {
4373       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4374       this->dump(2);
4375       assert(false, "ascending store offsets");
4376       return false;
4377     }
4378     last_off = st_off + st->as_Store()->memory_size();
4379   }
4380   return true;
4381 }
4382 #endif //ASSERT
4383 
4384 
4385 
4386 
4387 //============================MergeMemNode=====================================
4388 //
4389 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4390 // contributing store or call operations.  Each contributor provides the memory
4391 // state for a particular "alias type" (see Compile::alias_type).  For example,
4392 // if a MergeMem has an input X for alias category #6, then any memory reference
4393 // to alias category #6 may use X as its memory state input, as an exact equivalent
4394 // to using the MergeMem as a whole.
4395 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4396 //
4397 // (Here, the <N> notation gives the index of the relevant adr_type.)
4398 //
4399 // In one special case (and more cases in the future), alias categories overlap.
4400 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4401 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4402 // it is exactly equivalent to that state W:
4403 //   MergeMem(<Bot>: W) <==> W
4404 //
4405 // Usually, the merge has more than one input.  In that case, where inputs
4406 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4407 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4408 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4409 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4410 //
4411 // A merge can take a "wide" memory state as one of its narrow inputs.
4412 // This simply means that the merge observes out only the relevant parts of
4413 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4414 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4415 //
4416 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4417 // and that memory slices "leak through":
4418 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4419 //
4420 // But, in such a cascade, repeated memory slices can "block the leak":
4421 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4422 //
4423 // In the last example, Y is not part of the combined memory state of the
4424 // outermost MergeMem.  The system must, of course, prevent unschedulable
4425 // memory states from arising, so you can be sure that the state Y is somehow
4426 // a precursor to state Y'.
4427 //
4428 //
4429 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4430 // of each MergeMemNode array are exactly the numerical alias indexes, including
4431 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4432 // Compile::alias_type (and kin) produce and manage these indexes.
4433 //
4434 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4435 // (Note that this provides quick access to the top node inside MergeMem methods,
4436 // without the need to reach out via TLS to Compile::current.)
4437 //
4438 // As a consequence of what was just described, a MergeMem that represents a full
4439 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4440 // containing all alias categories.
4441 //
4442 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4443 //
4444 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4445 // a memory state for the alias type <N>, or else the top node, meaning that
4446 // there is no particular input for that alias type.  Note that the length of
4447 // a MergeMem is variable, and may be extended at any time to accommodate new
4448 // memory states at larger alias indexes.  When merges grow, they are of course
4449 // filled with "top" in the unused in() positions.
4450 //
4451 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4452 // (Top was chosen because it works smoothly with passes like GCM.)
4453 //
4454 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4455 // the type of random VM bits like TLS references.)  Since it is always the
4456 // first non-Bot memory slice, some low-level loops use it to initialize an
4457 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4458 //
4459 //
4460 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4461 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4462 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4463 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4464 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4465 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4466 //
4467 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4468 // really that different from the other memory inputs.  An abbreviation called
4469 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4470 //
4471 //
4472 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4473 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4474 // that "emerges though" the base memory will be marked as excluding the alias types
4475 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4476 //
4477 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4478 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4479 //
4480 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4481 // (It is currently unimplemented.)  As you can see, the resulting merge is
4482 // actually a disjoint union of memory states, rather than an overlay.
4483 //
4484 
4485 //------------------------------MergeMemNode-----------------------------------
4486 Node* MergeMemNode::make_empty_memory() {
4487   Node* empty_memory = (Node*) Compile::current()->top();
4488   assert(empty_memory->is_top(), "correct sentinel identity");
4489   return empty_memory;
4490 }
4491 
4492 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4493   init_class_id(Class_MergeMem);
4494   // all inputs are nullified in Node::Node(int)
4495   // set_input(0, NULL);  // no control input
4496 
4497   // Initialize the edges uniformly to top, for starters.
4498   Node* empty_mem = make_empty_memory();
4499   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4500     init_req(i,empty_mem);
4501   }
4502   assert(empty_memory() == empty_mem, "");
4503 
4504   if( new_base != NULL && new_base->is_MergeMem() ) {
4505     MergeMemNode* mdef = new_base->as_MergeMem();
4506     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4507     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4508       mms.set_memory(mms.memory2());
4509     }
4510     assert(base_memory() == mdef->base_memory(), "");
4511   } else {
4512     set_base_memory(new_base);
4513   }
4514 }
4515 
4516 // Make a new, untransformed MergeMem with the same base as 'mem'.
4517 // If mem is itself a MergeMem, populate the result with the same edges.
4518 MergeMemNode* MergeMemNode::make(Node* mem) {
4519   return new MergeMemNode(mem);
4520 }
4521 
4522 //------------------------------cmp--------------------------------------------
4523 uint MergeMemNode::hash() const { return NO_HASH; }
4524 uint MergeMemNode::cmp( const Node &n ) const {
4525   return (&n == this);          // Always fail except on self
4526 }
4527 
4528 //------------------------------Identity---------------------------------------
4529 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4530   // Identity if this merge point does not record any interesting memory
4531   // disambiguations.
4532   Node* base_mem = base_memory();
4533   Node* empty_mem = empty_memory();
4534   if (base_mem != empty_mem) {  // Memory path is not dead?
4535     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4536       Node* mem = in(i);
4537       if (mem != empty_mem && mem != base_mem) {
4538         return this;            // Many memory splits; no change
4539       }
4540     }
4541   }
4542   return base_mem;              // No memory splits; ID on the one true input
4543 }
4544 
4545 //------------------------------Ideal------------------------------------------
4546 // This method is invoked recursively on chains of MergeMem nodes
4547 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4548   // Remove chain'd MergeMems
4549   //
4550   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4551   // relative to the "in(Bot)".  Since we are patching both at the same time,
4552   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4553   // but rewrite each "in(i)" relative to the new "in(Bot)".
4554   Node *progress = NULL;
4555 
4556 
4557   Node* old_base = base_memory();
4558   Node* empty_mem = empty_memory();
4559   if (old_base == empty_mem)
4560     return NULL; // Dead memory path.
4561 
4562   MergeMemNode* old_mbase;
4563   if (old_base != NULL && old_base->is_MergeMem())
4564     old_mbase = old_base->as_MergeMem();
4565   else
4566     old_mbase = NULL;
4567   Node* new_base = old_base;
4568 
4569   // simplify stacked MergeMems in base memory
4570   if (old_mbase)  new_base = old_mbase->base_memory();
4571 
4572   // the base memory might contribute new slices beyond my req()
4573   if (old_mbase)  grow_to_match(old_mbase);
4574 
4575   // Look carefully at the base node if it is a phi.
4576   PhiNode* phi_base;
4577   if (new_base != NULL && new_base->is_Phi())
4578     phi_base = new_base->as_Phi();
4579   else
4580     phi_base = NULL;
4581 
4582   Node*    phi_reg = NULL;
4583   uint     phi_len = (uint)-1;
4584   if (phi_base != NULL && !phi_base->is_copy()) {
4585     // do not examine phi if degraded to a copy
4586     phi_reg = phi_base->region();
4587     phi_len = phi_base->req();
4588     // see if the phi is unfinished
4589     for (uint i = 1; i < phi_len; i++) {
4590       if (phi_base->in(i) == NULL) {
4591         // incomplete phi; do not look at it yet!
4592         phi_reg = NULL;
4593         phi_len = (uint)-1;
4594         break;
4595       }
4596     }
4597   }
4598 
4599   // Note:  We do not call verify_sparse on entry, because inputs
4600   // can normalize to the base_memory via subsume_node or similar
4601   // mechanisms.  This method repairs that damage.
4602 
4603   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4604 
4605   // Look at each slice.
4606   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4607     Node* old_in = in(i);
4608     // calculate the old memory value
4609     Node* old_mem = old_in;
4610     if (old_mem == empty_mem)  old_mem = old_base;
4611     assert(old_mem == memory_at(i), "");
4612 
4613     // maybe update (reslice) the old memory value
4614 
4615     // simplify stacked MergeMems
4616     Node* new_mem = old_mem;
4617     MergeMemNode* old_mmem;
4618     if (old_mem != NULL && old_mem->is_MergeMem())
4619       old_mmem = old_mem->as_MergeMem();
4620     else
4621       old_mmem = NULL;
4622     if (old_mmem == this) {
4623       // This can happen if loops break up and safepoints disappear.
4624       // A merge of BotPtr (default) with a RawPtr memory derived from a
4625       // safepoint can be rewritten to a merge of the same BotPtr with
4626       // the BotPtr phi coming into the loop.  If that phi disappears
4627       // also, we can end up with a self-loop of the mergemem.
4628       // In general, if loops degenerate and memory effects disappear,
4629       // a mergemem can be left looking at itself.  This simply means
4630       // that the mergemem's default should be used, since there is
4631       // no longer any apparent effect on this slice.
4632       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4633       //       from start.  Update the input to TOP.
4634       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4635     }
4636     else if (old_mmem != NULL) {
4637       new_mem = old_mmem->memory_at(i);
4638     }
4639     // else preceding memory was not a MergeMem
4640 
4641     // replace equivalent phis (unfortunately, they do not GVN together)
4642     if (new_mem != NULL && new_mem != new_base &&
4643         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4644       if (new_mem->is_Phi()) {
4645         PhiNode* phi_mem = new_mem->as_Phi();
4646         for (uint i = 1; i < phi_len; i++) {
4647           if (phi_base->in(i) != phi_mem->in(i)) {
4648             phi_mem = NULL;
4649             break;
4650           }
4651         }
4652         if (phi_mem != NULL) {
4653           // equivalent phi nodes; revert to the def
4654           new_mem = new_base;
4655         }
4656       }
4657     }
4658 
4659     // maybe store down a new value
4660     Node* new_in = new_mem;
4661     if (new_in == new_base)  new_in = empty_mem;
4662 
4663     if (new_in != old_in) {
4664       // Warning:  Do not combine this "if" with the previous "if"
4665       // A memory slice might have be be rewritten even if it is semantically
4666       // unchanged, if the base_memory value has changed.
4667       set_req(i, new_in);
4668       progress = this;          // Report progress
4669     }
4670   }
4671 
4672   if (new_base != old_base) {
4673     set_req(Compile::AliasIdxBot, new_base);
4674     // Don't use set_base_memory(new_base), because we need to update du.
4675     assert(base_memory() == new_base, "");
4676     progress = this;
4677   }
4678 
4679   if( base_memory() == this ) {
4680     // a self cycle indicates this memory path is dead
4681     set_req(Compile::AliasIdxBot, empty_mem);
4682   }
4683 
4684   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4685   // Recursion must occur after the self cycle check above
4686   if( base_memory()->is_MergeMem() ) {
4687     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4688     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4689     if( m != NULL &&
4690         (m->is_top() ||
4691          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4692       // propagate rollup of dead cycle to self
4693       set_req(Compile::AliasIdxBot, empty_mem);
4694     }
4695   }
4696 
4697   if( base_memory() == empty_mem ) {
4698     progress = this;
4699     // Cut inputs during Parse phase only.
4700     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4701     if( !can_reshape ) {
4702       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4703         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4704       }
4705     }
4706   }
4707 
4708   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4709     // Check if PhiNode::Ideal's "Split phis through memory merges"
4710     // transform should be attempted. Look for this->phi->this cycle.
4711     uint merge_width = req();
4712     if (merge_width > Compile::AliasIdxRaw) {
4713       PhiNode* phi = base_memory()->as_Phi();
4714       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4715         if (phi->in(i) == this) {
4716           phase->is_IterGVN()->_worklist.push(phi);
4717           break;
4718         }
4719       }
4720     }
4721   }
4722 
4723   assert(progress || verify_sparse(), "please, no dups of base");
4724   return progress;
4725 }
4726 
4727 //-------------------------set_base_memory-------------------------------------
4728 void MergeMemNode::set_base_memory(Node *new_base) {
4729   Node* empty_mem = empty_memory();
4730   set_req(Compile::AliasIdxBot, new_base);
4731   assert(memory_at(req()) == new_base, "must set default memory");
4732   // Clear out other occurrences of new_base:
4733   if (new_base != empty_mem) {
4734     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4735       if (in(i) == new_base)  set_req(i, empty_mem);
4736     }
4737   }
4738 }
4739 
4740 //------------------------------out_RegMask------------------------------------
4741 const RegMask &MergeMemNode::out_RegMask() const {
4742   return RegMask::Empty;
4743 }
4744 
4745 //------------------------------dump_spec--------------------------------------
4746 #ifndef PRODUCT
4747 void MergeMemNode::dump_spec(outputStream *st) const {
4748   st->print(" {");
4749   Node* base_mem = base_memory();
4750   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4751     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4752     if (mem == base_mem) { st->print(" -"); continue; }
4753     st->print( " N%d:", mem->_idx );
4754     Compile::current()->get_adr_type(i)->dump_on(st);
4755   }
4756   st->print(" }");
4757 }
4758 #endif // !PRODUCT
4759 
4760 
4761 #ifdef ASSERT
4762 static bool might_be_same(Node* a, Node* b) {
4763   if (a == b)  return true;
4764   if (!(a->is_Phi() || b->is_Phi()))  return false;
4765   // phis shift around during optimization
4766   return true;  // pretty stupid...
4767 }
4768 
4769 // verify a narrow slice (either incoming or outgoing)
4770 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4771   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4772   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4773   if (Node::in_dump())               return;  // muzzle asserts when printing
4774   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4775   assert(n != NULL, "");
4776   // Elide intervening MergeMem's
4777   while (n->is_MergeMem()) {
4778     n = n->as_MergeMem()->memory_at(alias_idx);
4779   }
4780   Compile* C = Compile::current();
4781   const TypePtr* n_adr_type = n->adr_type();
4782   if (n == m->empty_memory()) {
4783     // Implicit copy of base_memory()
4784   } else if (n_adr_type != TypePtr::BOTTOM) {
4785     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4786     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4787   } else {
4788     // A few places like make_runtime_call "know" that VM calls are narrow,
4789     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4790     bool expected_wide_mem = false;
4791     if (n == m->base_memory()) {
4792       expected_wide_mem = true;
4793     } else if (alias_idx == Compile::AliasIdxRaw ||
4794                n == m->memory_at(Compile::AliasIdxRaw)) {
4795       expected_wide_mem = true;
4796     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4797       // memory can "leak through" calls on channels that
4798       // are write-once.  Allow this also.
4799       expected_wide_mem = true;
4800     }
4801     assert(expected_wide_mem, "expected narrow slice replacement");
4802   }
4803 }
4804 #else // !ASSERT
4805 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4806 #endif
4807 
4808 
4809 //-----------------------------memory_at---------------------------------------
4810 Node* MergeMemNode::memory_at(uint alias_idx) const {
4811   assert(alias_idx >= Compile::AliasIdxRaw ||
4812          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4813          "must avoid base_memory and AliasIdxTop");
4814 
4815   // Otherwise, it is a narrow slice.
4816   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4817   Compile *C = Compile::current();
4818   if (is_empty_memory(n)) {
4819     // the array is sparse; empty slots are the "top" node
4820     n = base_memory();
4821     assert(Node::in_dump()
4822            || n == NULL || n->bottom_type() == Type::TOP
4823            || n->adr_type() == NULL // address is TOP
4824            || n->adr_type() == TypePtr::BOTTOM
4825            || n->adr_type() == TypeRawPtr::BOTTOM
4826            || Compile::current()->AliasLevel() == 0,
4827            "must be a wide memory");
4828     // AliasLevel == 0 if we are organizing the memory states manually.
4829     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4830   } else {
4831     // make sure the stored slice is sane
4832     #ifdef ASSERT
4833     if (VMError::is_error_reported() || Node::in_dump()) {
4834     } else if (might_be_same(n, base_memory())) {
4835       // Give it a pass:  It is a mostly harmless repetition of the base.
4836       // This can arise normally from node subsumption during optimization.
4837     } else {
4838       verify_memory_slice(this, alias_idx, n);
4839     }
4840     #endif
4841   }
4842   return n;
4843 }
4844 
4845 //---------------------------set_memory_at-------------------------------------
4846 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4847   verify_memory_slice(this, alias_idx, n);
4848   Node* empty_mem = empty_memory();
4849   if (n == base_memory())  n = empty_mem;  // collapse default
4850   uint need_req = alias_idx+1;
4851   if (req() < need_req) {
4852     if (n == empty_mem)  return;  // already the default, so do not grow me
4853     // grow the sparse array
4854     do {
4855       add_req(empty_mem);
4856     } while (req() < need_req);
4857   }
4858   set_req( alias_idx, n );
4859 }
4860 
4861 
4862 
4863 //--------------------------iteration_setup------------------------------------
4864 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4865   if (other != NULL) {
4866     grow_to_match(other);
4867     // invariant:  the finite support of mm2 is within mm->req()
4868     #ifdef ASSERT
4869     for (uint i = req(); i < other->req(); i++) {
4870       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4871     }
4872     #endif
4873   }
4874   // Replace spurious copies of base_memory by top.
4875   Node* base_mem = base_memory();
4876   if (base_mem != NULL && !base_mem->is_top()) {
4877     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4878       if (in(i) == base_mem)
4879         set_req(i, empty_memory());
4880     }
4881   }
4882 }
4883 
4884 //---------------------------grow_to_match-------------------------------------
4885 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4886   Node* empty_mem = empty_memory();
4887   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4888   // look for the finite support of the other memory
4889   for (uint i = other->req(); --i >= req(); ) {
4890     if (other->in(i) != empty_mem) {
4891       uint new_len = i+1;
4892       while (req() < new_len)  add_req(empty_mem);
4893       break;
4894     }
4895   }
4896 }
4897 
4898 //---------------------------verify_sparse-------------------------------------
4899 #ifndef PRODUCT
4900 bool MergeMemNode::verify_sparse() const {
4901   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4902   Node* base_mem = base_memory();
4903   // The following can happen in degenerate cases, since empty==top.
4904   if (is_empty_memory(base_mem))  return true;
4905   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4906     assert(in(i) != NULL, "sane slice");
4907     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4908   }
4909   return true;
4910 }
4911 
4912 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4913   Node* n;
4914   n = mm->in(idx);
4915   if (mem == n)  return true;  // might be empty_memory()
4916   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4917   if (mem == n)  return true;
4918   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4919     if (mem == n)  return true;
4920     if (n == NULL)  break;
4921   }
4922   return false;
4923 }
4924 #endif // !PRODUCT