1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 142   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 143   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 144   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 145   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 146   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 147   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 148   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 149   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 150   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 151   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 152   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 153   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 154   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 155 };
 156 
 157 // Map ideal registers (machine types) to ideal types
 158 const Type *Type::mreg2type[_last_machine_leaf];
 159 
 160 // Map basic types to canonical Type* pointers.
 161 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 162 
 163 // Map basic types to constant-zero Types.
 164 const Type* Type::            _zero_type[T_CONFLICT+1];
 165 
 166 // Map basic types to array-body alias types.
 167 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 168 
 169 //=============================================================================
 170 // Convenience common pre-built types.
 171 const Type *Type::ABIO;         // State-of-machine only
 172 const Type *Type::BOTTOM;       // All values
 173 const Type *Type::CONTROL;      // Control only
 174 const Type *Type::DOUBLE;       // All doubles
 175 const Type *Type::FLOAT;        // All floats
 176 const Type *Type::HALF;         // Placeholder half of doublewide type
 177 const Type *Type::MEMORY;       // Abstract store only
 178 const Type *Type::RETURN_ADDRESS;
 179 const Type *Type::TOP;          // No values in set
 180 
 181 //------------------------------get_const_type---------------------------
 182 const Type* Type::get_const_type(ciType* type) {
 183   if (type == NULL) {
 184     return NULL;
 185   } else if (type->is_primitive_type()) {
 186     return get_const_basic_type(type->basic_type());
 187   } else {
 188     return TypeOopPtr::make_from_klass(type->as_klass());
 189   }
 190 }
 191 
 192 //---------------------------array_element_basic_type---------------------------------
 193 // Mapping to the array element's basic type.
 194 BasicType Type::array_element_basic_type() const {
 195   BasicType bt = basic_type();
 196   if (bt == T_INT) {
 197     if (this == TypeInt::INT)   return T_INT;
 198     if (this == TypeInt::CHAR)  return T_CHAR;
 199     if (this == TypeInt::BYTE)  return T_BYTE;
 200     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 201     if (this == TypeInt::SHORT) return T_SHORT;
 202     return T_VOID;
 203   }
 204   return bt;
 205 }
 206 
 207 // For two instance arrays of same dimension, return the base element types.
 208 // Otherwise or if the arrays have different dimensions, return NULL.
 209 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 210                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 211 
 212   if (e1) *e1 = NULL;
 213   if (e2) *e2 = NULL;
 214   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 215   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 216 
 217   if (a1tap != NULL && a2tap != NULL) {
 218     // Handle multidimensional arrays
 219     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 220     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 221     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 222       a1tap = a1tp->is_aryptr();
 223       a2tap = a2tp->is_aryptr();
 224       a1tp = a1tap->elem()->make_ptr();
 225       a2tp = a2tap->elem()->make_ptr();
 226     }
 227     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 228       if (e1) *e1 = a1tp->is_instptr();
 229       if (e2) *e2 = a2tp->is_instptr();
 230     }
 231   }
 232 }
 233 
 234 //---------------------------get_typeflow_type---------------------------------
 235 // Import a type produced by ciTypeFlow.
 236 const Type* Type::get_typeflow_type(ciType* type) {
 237   switch (type->basic_type()) {
 238 
 239   case ciTypeFlow::StateVector::T_BOTTOM:
 240     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 241     return Type::BOTTOM;
 242 
 243   case ciTypeFlow::StateVector::T_TOP:
 244     assert(type == ciTypeFlow::StateVector::top_type(), "");
 245     return Type::TOP;
 246 
 247   case ciTypeFlow::StateVector::T_NULL:
 248     assert(type == ciTypeFlow::StateVector::null_type(), "");
 249     return TypePtr::NULL_PTR;
 250 
 251   case ciTypeFlow::StateVector::T_LONG2:
 252     // The ciTypeFlow pass pushes a long, then the half.
 253     // We do the same.
 254     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 255     return TypeInt::TOP;
 256 
 257   case ciTypeFlow::StateVector::T_DOUBLE2:
 258     // The ciTypeFlow pass pushes double, then the half.
 259     // Our convention is the same.
 260     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 261     return Type::TOP;
 262 
 263   case T_ADDRESS:
 264     assert(type->is_return_address(), "");
 265     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 266 
 267   case T_VALUETYPE: {
 268     bool is_never_null = type->is_never_null();
 269     ciValueKlass* vk = type->unwrap()->as_value_klass();
 270     if (vk->is_scalarizable() && is_never_null) {
 271       return TypeValueType::make(vk);
 272     } else {
 273       return TypeOopPtr::make_from_klass(vk)->join_speculative(is_never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 274     }
 275   }
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 297     case T_CHAR:     return TypeInt::make(constant.as_char());
 298     case T_BYTE:     return TypeInt::make(constant.as_byte());
 299     case T_SHORT:    return TypeInt::make(constant.as_short());
 300     case T_INT:      return TypeInt::make(constant.as_int());
 301     case T_LONG:     return TypeLong::make(constant.as_long());
 302     case T_FLOAT:    return TypeF::make(constant.as_float());
 303     case T_DOUBLE:   return TypeD::make(constant.as_double());
 304     case T_ARRAY:
 305     case T_VALUETYPE:
 306     case T_OBJECT: {
 307         // cases:
 308         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 309         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 310         // An oop is not scavengable if it is in the perm gen.
 311         const Type* con_type = NULL;
 312         ciObject* oop_constant = constant.as_object();
 313         if (oop_constant->is_null_object()) {
 314           con_type = Type::get_zero_type(T_OBJECT);
 315         } else {
 316           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 317           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 318           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 319             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 320           }
 321           if (stable_dimension > 0) {
 322             assert(FoldStableValues, "sanity");
 323             assert(!con_type->is_zero_type(), "default value for stable field");
 324             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 325           }
 326         }
 327         if (is_narrow_oop) {
 328           con_type = con_type->make_narrowoop();
 329         }
 330         return con_type;
 331       }
 332     case T_ILLEGAL:
 333       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 334       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 335       return NULL;
 336     default:
 337       // Fall through to failure
 338       return NULL;
 339   }
 340 }
 341 
 342 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 343   BasicType conbt = con.basic_type();
 344   switch (conbt) {
 345     case T_BOOLEAN: conbt = T_BYTE;   break;
 346     case T_ARRAY:   conbt = T_OBJECT; break;
 347     case T_VALUETYPE: conbt = T_OBJECT; break;
 348     default:                          break;
 349   }
 350   switch (loadbt) {
 351     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 352     case T_NARROWOOP: loadbt = T_OBJECT; break;
 353     case T_ARRAY:     loadbt = T_OBJECT; break;
 354     case T_VALUETYPE: loadbt = T_OBJECT; break;
 355     case T_ADDRESS:   loadbt = T_OBJECT; break;
 356     default:                             break;
 357   }
 358   if (conbt == loadbt) {
 359     if (is_unsigned && conbt == T_BYTE) {
 360       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 361       return ciConstant(T_INT, con.as_int() & 0xFF);
 362     } else {
 363       return con;
 364     }
 365   }
 366   if (conbt == T_SHORT && loadbt == T_CHAR) {
 367     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 368     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 369   }
 370   return ciConstant(); // T_ILLEGAL
 371 }
 372 
 373 // Try to constant-fold a stable array element.
 374 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 375                                                    BasicType loadbt, bool is_unsigned_load) {
 376   // Decode the results of GraphKit::array_element_address.
 377   ciConstant element_value = array->element_value_by_offset(off);
 378   if (element_value.basic_type() == T_ILLEGAL) {
 379     return NULL; // wrong offset
 380   }
 381   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 382 
 383   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 384          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 385 
 386   if (con.is_valid() &&          // not a mismatched access
 387       !con.is_null_or_zero()) {  // not a default value
 388     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 389     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 390   }
 391   return NULL;
 392 }
 393 
 394 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 395   ciField* field;
 396   ciType* type = holder->java_mirror_type();
 397   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 398     // Static field
 399     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 400   } else {
 401     // Instance field
 402     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 403   }
 404   if (field == NULL) {
 405     return NULL; // Wrong offset
 406   }
 407   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 408 }
 409 
 410 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 411                                            BasicType loadbt, bool is_unsigned_load) {
 412   if (!field->is_constant()) {
 413     return NULL; // Non-constant field
 414   }
 415   ciConstant field_value;
 416   if (field->is_static()) {
 417     // final static field
 418     field_value = field->constant_value();
 419   } else if (holder != NULL) {
 420     // final or stable non-static field
 421     // Treat final non-static fields of trusted classes (classes in
 422     // java.lang.invoke and sun.invoke packages and subpackages) as
 423     // compile time constants.
 424     field_value = field->constant_value_of(holder);
 425   }
 426   if (!field_value.is_valid()) {
 427     return NULL; // Not a constant
 428   }
 429 
 430   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 431 
 432   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 433          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 434 
 435   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 436   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 437   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 438 
 439   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 440                                             stable_dimension, is_narrow_oop,
 441                                             field->is_autobox_cache());
 442   if (con_type != NULL && field->is_call_site_target()) {
 443     ciCallSite* call_site = holder->as_call_site();
 444     if (!call_site->is_constant_call_site()) {
 445       ciMethodHandle* target = con.as_object()->as_method_handle();
 446       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 447     }
 448   }
 449   return con_type;
 450 }
 451 
 452 //------------------------------make-------------------------------------------
 453 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 454 // and look for an existing copy in the type dictionary.
 455 const Type *Type::make( enum TYPES t ) {
 456   return (new Type(t))->hashcons();
 457 }
 458 
 459 //------------------------------cmp--------------------------------------------
 460 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 461   if( t1->_base != t2->_base )
 462     return 1;                   // Missed badly
 463   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 464   return !t1->eq(t2);           // Return ZERO if equal
 465 }
 466 
 467 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 468   if (!include_speculative) {
 469     return remove_speculative();
 470   }
 471   return this;
 472 }
 473 
 474 //------------------------------hash-------------------------------------------
 475 int Type::uhash( const Type *const t ) {
 476   return t->hash();
 477 }
 478 
 479 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 480 
 481 static double pos_dinf() {
 482   union { int64_t i; double d; } v;
 483   v.i = CONST64(0x7ff0000000000000);
 484   return v.d;
 485 }
 486 
 487 static float pos_finf() {
 488   union { int32_t i; float f; } v;
 489   v.i = 0x7f800000;
 490   return v.f;
 491 }
 492 
 493 //--------------------------Initialize_shared----------------------------------
 494 void Type::Initialize_shared(Compile* current) {
 495   // This method does not need to be locked because the first system
 496   // compilations (stub compilations) occur serially.  If they are
 497   // changed to proceed in parallel, then this section will need
 498   // locking.
 499 
 500   Arena* save = current->type_arena();
 501   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 502 
 503   current->set_type_arena(shared_type_arena);
 504   _shared_type_dict =
 505     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 506                                   shared_type_arena, 128 );
 507   current->set_type_dict(_shared_type_dict);
 508 
 509   // Make shared pre-built types.
 510   CONTROL = make(Control);      // Control only
 511   TOP     = make(Top);          // No values in set
 512   MEMORY  = make(Memory);       // Abstract store only
 513   ABIO    = make(Abio);         // State-of-machine only
 514   RETURN_ADDRESS=make(Return_Address);
 515   FLOAT   = make(FloatBot);     // All floats
 516   DOUBLE  = make(DoubleBot);    // All doubles
 517   BOTTOM  = make(Bottom);       // Everything
 518   HALF    = make(Half);         // Placeholder half of doublewide type
 519 
 520   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 521   TypeF::ONE  = TypeF::make(1.0); // Float 1
 522   TypeF::POS_INF = TypeF::make(pos_finf());
 523   TypeF::NEG_INF = TypeF::make(-pos_finf());
 524 
 525   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 526   TypeD::ONE  = TypeD::make(1.0); // Double 1
 527   TypeD::POS_INF = TypeD::make(pos_dinf());
 528   TypeD::NEG_INF = TypeD::make(-pos_dinf());
 529 
 530   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 531   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 532   TypeInt::ONE     = TypeInt::make( 1);  //  1
 533   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 534   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 535   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 536   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 537   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 538   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 539   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 540   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 541   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 542   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 543   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 544   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 545   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 546   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 547   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 548   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 549   // CmpL is overloaded both as the bytecode computation returning
 550   // a trinary (-1,0,+1) integer result AND as an efficient long
 551   // compare returning optimizer ideal-type flags.
 552   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 553   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 554   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 555   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 556   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 557 
 558   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 559   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 560   TypeLong::ONE     = TypeLong::make( 1);        //  1
 561   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 562   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 563   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 564   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 565   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 566 
 567   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 568   fboth[0] = Type::CONTROL;
 569   fboth[1] = Type::CONTROL;
 570   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 571 
 572   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 573   ffalse[0] = Type::CONTROL;
 574   ffalse[1] = Type::TOP;
 575   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 576 
 577   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 578   fneither[0] = Type::TOP;
 579   fneither[1] = Type::TOP;
 580   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 581 
 582   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 583   ftrue[0] = Type::TOP;
 584   ftrue[1] = Type::CONTROL;
 585   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 586 
 587   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 588   floop[0] = Type::CONTROL;
 589   floop[1] = TypeInt::INT;
 590   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 591 
 592   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 593   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 594   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 595 
 596   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 597   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 598 
 599   const Type **fmembar = TypeTuple::fields(0);
 600   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 601 
 602   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 603   fsc[0] = TypeInt::CC;
 604   fsc[1] = Type::MEMORY;
 605   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 606 
 607   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 608   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 609   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 610   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 611                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 612   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 613                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 614   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 615 
 616   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 617 
 618   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 619   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 620 
 621   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 622 
 623   mreg2type[Op_Node] = Type::BOTTOM;
 624   mreg2type[Op_Set ] = 0;
 625   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 626   mreg2type[Op_RegI] = TypeInt::INT;
 627   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 628   mreg2type[Op_RegF] = Type::FLOAT;
 629   mreg2type[Op_RegD] = Type::DOUBLE;
 630   mreg2type[Op_RegL] = TypeLong::LONG;
 631   mreg2type[Op_RegFlags] = TypeInt::CC;
 632 
 633   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 634 
 635   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 636 
 637 #ifdef _LP64
 638   if (UseCompressedOops) {
 639     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 640     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 641   } else
 642 #endif
 643   {
 644     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 645     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 646   }
 647   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 648   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 649   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 650   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 651   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 652   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 653   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 654 
 655   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 656   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 657   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 658   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 659   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 660   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 661   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 662   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 663   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 664   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 665   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 666   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 667   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 668 
 669   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 670   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 671 
 672   const Type **fi2c = TypeTuple::fields(2);
 673   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 674   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 675   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 676 
 677   const Type **intpair = TypeTuple::fields(2);
 678   intpair[0] = TypeInt::INT;
 679   intpair[1] = TypeInt::INT;
 680   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 681 
 682   const Type **longpair = TypeTuple::fields(2);
 683   longpair[0] = TypeLong::LONG;
 684   longpair[1] = TypeLong::LONG;
 685   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 686 
 687   const Type **intccpair = TypeTuple::fields(2);
 688   intccpair[0] = TypeInt::INT;
 689   intccpair[1] = TypeInt::CC;
 690   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 691 
 692   const Type **longccpair = TypeTuple::fields(2);
 693   longccpair[0] = TypeLong::LONG;
 694   longccpair[1] = TypeInt::CC;
 695   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 696 
 697   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 698   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 699   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 700   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 701   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 702   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 703   _const_basic_type[T_INT]         = TypeInt::INT;
 704   _const_basic_type[T_LONG]        = TypeLong::LONG;
 705   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 706   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 707   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 708   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 709   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 710   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 711   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 712   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 713 
 714   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 715   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 716   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 717   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 718   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 719   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 720   _zero_type[T_INT]         = TypeInt::ZERO;
 721   _zero_type[T_LONG]        = TypeLong::ZERO;
 722   _zero_type[T_FLOAT]       = TypeF::ZERO;
 723   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 724   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 725   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 726   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 727   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 728   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 729 
 730   // get_zero_type() should not happen for T_CONFLICT
 731   _zero_type[T_CONFLICT]= NULL;
 732 
 733   // Vector predefined types, it needs initialized _const_basic_type[].
 734   if (Matcher::vector_size_supported(T_BYTE,4)) {
 735     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 736   }
 737   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 738     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 739   }
 740   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 741     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 742   }
 743   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 744     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 745   }
 746   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 747     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 748   }
 749   mreg2type[Op_VecS] = TypeVect::VECTS;
 750   mreg2type[Op_VecD] = TypeVect::VECTD;
 751   mreg2type[Op_VecX] = TypeVect::VECTX;
 752   mreg2type[Op_VecY] = TypeVect::VECTY;
 753   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 754 
 755   // Restore working type arena.
 756   current->set_type_arena(save);
 757   current->set_type_dict(NULL);
 758 }
 759 
 760 //------------------------------Initialize-------------------------------------
 761 void Type::Initialize(Compile* current) {
 762   assert(current->type_arena() != NULL, "must have created type arena");
 763 
 764   if (_shared_type_dict == NULL) {
 765     Initialize_shared(current);
 766   }
 767 
 768   Arena* type_arena = current->type_arena();
 769 
 770   // Create the hash-cons'ing dictionary with top-level storage allocation
 771   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 772   current->set_type_dict(tdic);
 773 
 774   // Transfer the shared types.
 775   DictI i(_shared_type_dict);
 776   for( ; i.test(); ++i ) {
 777     Type* t = (Type*)i._value;
 778     tdic->Insert(t,t);  // New Type, insert into Type table
 779   }
 780 }
 781 
 782 //------------------------------hashcons---------------------------------------
 783 // Do the hash-cons trick.  If the Type already exists in the type table,
 784 // delete the current Type and return the existing Type.  Otherwise stick the
 785 // current Type in the Type table.
 786 const Type *Type::hashcons(void) {
 787   debug_only(base());           // Check the assertion in Type::base().
 788   // Look up the Type in the Type dictionary
 789   Dict *tdic = type_dict();
 790   Type* old = (Type*)(tdic->Insert(this, this, false));
 791   if( old ) {                   // Pre-existing Type?
 792     if( old != this )           // Yes, this guy is not the pre-existing?
 793       delete this;              // Yes, Nuke this guy
 794     assert( old->_dual, "" );
 795     return old;                 // Return pre-existing
 796   }
 797 
 798   // Every type has a dual (to make my lattice symmetric).
 799   // Since we just discovered a new Type, compute its dual right now.
 800   assert( !_dual, "" );         // No dual yet
 801   _dual = xdual();              // Compute the dual
 802   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 803     _dual = this;
 804     return this;
 805   }
 806   assert( !_dual->_dual, "" );  // No reverse dual yet
 807   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 808   // New Type, insert into Type table
 809   tdic->Insert((void*)_dual,(void*)_dual);
 810   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 811 #ifdef ASSERT
 812   Type *dual_dual = (Type*)_dual->xdual();
 813   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 814   delete dual_dual;
 815 #endif
 816   return this;                  // Return new Type
 817 }
 818 
 819 //------------------------------eq---------------------------------------------
 820 // Structural equality check for Type representations
 821 bool Type::eq( const Type * ) const {
 822   return true;                  // Nothing else can go wrong
 823 }
 824 
 825 //------------------------------hash-------------------------------------------
 826 // Type-specific hashing function.
 827 int Type::hash(void) const {
 828   return _base;
 829 }
 830 
 831 //------------------------------is_finite--------------------------------------
 832 // Has a finite value
 833 bool Type::is_finite() const {
 834   return false;
 835 }
 836 
 837 //------------------------------is_nan-----------------------------------------
 838 // Is not a number (NaN)
 839 bool Type::is_nan()    const {
 840   return false;
 841 }
 842 
 843 //----------------------interface_vs_oop---------------------------------------
 844 #ifdef ASSERT
 845 bool Type::interface_vs_oop_helper(const Type *t) const {
 846   bool result = false;
 847 
 848   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 849   const TypePtr*    t_ptr =    t->make_ptr();
 850   if( this_ptr == NULL || t_ptr == NULL )
 851     return result;
 852 
 853   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 854   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 855   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 856     bool this_interface = this_inst->klass()->is_interface();
 857     bool    t_interface =    t_inst->klass()->is_interface();
 858     result = this_interface ^ t_interface;
 859   }
 860 
 861   return result;
 862 }
 863 
 864 bool Type::interface_vs_oop(const Type *t) const {
 865   if (interface_vs_oop_helper(t)) {
 866     return true;
 867   }
 868   // Now check the speculative parts as well
 869   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 870   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 871   if (this_spec != NULL && t_spec != NULL) {
 872     if (this_spec->interface_vs_oop_helper(t_spec)) {
 873       return true;
 874     }
 875     return false;
 876   }
 877   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 878     return true;
 879   }
 880   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 881     return true;
 882   }
 883   return false;
 884 }
 885 
 886 #endif
 887 
 888 //------------------------------meet-------------------------------------------
 889 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 890 // commutative and the lattice is symmetric.
 891 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 892   if (isa_narrowoop() && t->isa_narrowoop()) {
 893     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 894     return result->make_narrowoop();
 895   }
 896   if (isa_narrowklass() && t->isa_narrowklass()) {
 897     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 898     return result->make_narrowklass();
 899   }
 900 
 901   const Type *this_t = maybe_remove_speculative(include_speculative);
 902   t = t->maybe_remove_speculative(include_speculative);
 903 
 904   const Type *mt = this_t->xmeet(t);
 905   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 906   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 907 #ifdef ASSERT
 908   assert(mt == t->xmeet(this_t), "meet not commutative");
 909   const Type* dual_join = mt->_dual;
 910   const Type *t2t    = dual_join->xmeet(t->_dual);
 911   const Type *t2this = dual_join->xmeet(this_t->_dual);
 912 
 913   // Interface meet Oop is Not Symmetric:
 914   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 915   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 916 
 917   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 918     tty->print_cr("=== Meet Not Symmetric ===");
 919     tty->print("t   =                   ");              t->dump(); tty->cr();
 920     tty->print("this=                   ");         this_t->dump(); tty->cr();
 921     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 922 
 923     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 924     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 925     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 926 
 927     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 928     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 929 
 930     fatal("meet not symmetric" );
 931   }
 932 #endif
 933   return mt;
 934 }
 935 
 936 //------------------------------xmeet------------------------------------------
 937 // Compute the MEET of two types.  It returns a new Type object.
 938 const Type *Type::xmeet( const Type *t ) const {
 939   // Perform a fast test for common case; meeting the same types together.
 940   if( this == t ) return this;  // Meeting same type-rep?
 941 
 942   // Meeting TOP with anything?
 943   if( _base == Top ) return t;
 944 
 945   // Meeting BOTTOM with anything?
 946   if( _base == Bottom ) return BOTTOM;
 947 
 948   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 949   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 950   switch (t->base()) {  // Switch on original type
 951 
 952   // Cut in half the number of cases I must handle.  Only need cases for when
 953   // the given enum "t->type" is less than or equal to the local enum "type".
 954   case FloatCon:
 955   case DoubleCon:
 956   case Int:
 957   case Long:
 958     return t->xmeet(this);
 959 
 960   case OopPtr:
 961     return t->xmeet(this);
 962 
 963   case InstPtr:
 964     return t->xmeet(this);
 965 
 966   case MetadataPtr:
 967   case KlassPtr:
 968     return t->xmeet(this);
 969 
 970   case AryPtr:
 971     return t->xmeet(this);
 972 
 973   case NarrowOop:
 974     return t->xmeet(this);
 975 
 976   case NarrowKlass:
 977     return t->xmeet(this);
 978 
 979   case ValueType:
 980     return t->xmeet(this);
 981 
 982   case Bad:                     // Type check
 983   default:                      // Bogus type not in lattice
 984     typerr(t);
 985     return Type::BOTTOM;
 986 
 987   case Bottom:                  // Ye Olde Default
 988     return t;
 989 
 990   case FloatTop:
 991     if( _base == FloatTop ) return this;
 992   case FloatBot:                // Float
 993     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 994     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 995     typerr(t);
 996     return Type::BOTTOM;
 997 
 998   case DoubleTop:
 999     if( _base == DoubleTop ) return this;
1000   case DoubleBot:               // Double
1001     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
1002     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
1003     typerr(t);
1004     return Type::BOTTOM;
1005 
1006   // These next few cases must match exactly or it is a compile-time error.
1007   case Control:                 // Control of code
1008   case Abio:                    // State of world outside of program
1009   case Memory:
1010     if( _base == t->_base )  return this;
1011     typerr(t);
1012     return Type::BOTTOM;
1013 
1014   case Top:                     // Top of the lattice
1015     return this;
1016   }
1017 
1018   // The type is unchanged
1019   return this;
1020 }
1021 
1022 //-----------------------------filter------------------------------------------
1023 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1024   const Type* ft = join_helper(kills, include_speculative);
1025   if (ft->empty())
1026     return Type::TOP;           // Canonical empty value
1027   return ft;
1028 }
1029 
1030 //------------------------------xdual------------------------------------------
1031 // Compute dual right now.
1032 const Type::TYPES Type::dual_type[Type::lastype] = {
1033   Bad,          // Bad
1034   Control,      // Control
1035   Bottom,       // Top
1036   Bad,          // Int - handled in v-call
1037   Bad,          // Long - handled in v-call
1038   Half,         // Half
1039   Bad,          // NarrowOop - handled in v-call
1040   Bad,          // NarrowKlass - handled in v-call
1041 
1042   Bad,          // Tuple - handled in v-call
1043   Bad,          // Array - handled in v-call
1044   Bad,          // VectorS - handled in v-call
1045   Bad,          // VectorD - handled in v-call
1046   Bad,          // VectorX - handled in v-call
1047   Bad,          // VectorY - handled in v-call
1048   Bad,          // VectorZ - handled in v-call
1049   Bad,          // ValueType - handled in v-call
1050 
1051   Bad,          // AnyPtr - handled in v-call
1052   Bad,          // RawPtr - handled in v-call
1053   Bad,          // OopPtr - handled in v-call
1054   Bad,          // InstPtr - handled in v-call
1055   Bad,          // AryPtr - handled in v-call
1056 
1057   Bad,          //  MetadataPtr - handled in v-call
1058   Bad,          // KlassPtr - handled in v-call
1059 
1060   Bad,          // Function - handled in v-call
1061   Abio,         // Abio
1062   Return_Address,// Return_Address
1063   Memory,       // Memory
1064   FloatBot,     // FloatTop
1065   FloatCon,     // FloatCon
1066   FloatTop,     // FloatBot
1067   DoubleBot,    // DoubleTop
1068   DoubleCon,    // DoubleCon
1069   DoubleTop,    // DoubleBot
1070   Top           // Bottom
1071 };
1072 
1073 const Type *Type::xdual() const {
1074   // Note: the base() accessor asserts the sanity of _base.
1075   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1076   return new Type(_type_info[_base].dual_type);
1077 }
1078 
1079 //------------------------------has_memory-------------------------------------
1080 bool Type::has_memory() const {
1081   Type::TYPES tx = base();
1082   if (tx == Memory) return true;
1083   if (tx == Tuple) {
1084     const TypeTuple *t = is_tuple();
1085     for (uint i=0; i < t->cnt(); i++) {
1086       tx = t->field_at(i)->base();
1087       if (tx == Memory)  return true;
1088     }
1089   }
1090   return false;
1091 }
1092 
1093 #ifndef PRODUCT
1094 //------------------------------dump2------------------------------------------
1095 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1096   st->print("%s", _type_info[_base].msg);
1097 }
1098 
1099 //------------------------------dump-------------------------------------------
1100 void Type::dump_on(outputStream *st) const {
1101   ResourceMark rm;
1102   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1103   dump2(d,1, st);
1104   if (is_ptr_to_narrowoop()) {
1105     st->print(" [narrow]");
1106   } else if (is_ptr_to_narrowklass()) {
1107     st->print(" [narrowklass]");
1108   }
1109 }
1110 
1111 //-----------------------------------------------------------------------------
1112 const char* Type::str(const Type* t) {
1113   stringStream ss;
1114   t->dump_on(&ss);
1115   return ss.as_string();
1116 }
1117 #endif
1118 
1119 //------------------------------singleton--------------------------------------
1120 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1121 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1122 bool Type::singleton(void) const {
1123   return _base == Top || _base == Half;
1124 }
1125 
1126 //------------------------------empty------------------------------------------
1127 // TRUE if Type is a type with no values, FALSE otherwise.
1128 bool Type::empty(void) const {
1129   switch (_base) {
1130   case DoubleTop:
1131   case FloatTop:
1132   case Top:
1133     return true;
1134 
1135   case Half:
1136   case Abio:
1137   case Return_Address:
1138   case Memory:
1139   case Bottom:
1140   case FloatBot:
1141   case DoubleBot:
1142     return false;  // never a singleton, therefore never empty
1143 
1144   default:
1145     ShouldNotReachHere();
1146     return false;
1147   }
1148 }
1149 
1150 //------------------------------dump_stats-------------------------------------
1151 // Dump collected statistics to stderr
1152 #ifndef PRODUCT
1153 void Type::dump_stats() {
1154   tty->print("Types made: %d\n", type_dict()->Size());
1155 }
1156 #endif
1157 
1158 //------------------------------typerr-----------------------------------------
1159 void Type::typerr( const Type *t ) const {
1160 #ifndef PRODUCT
1161   tty->print("\nError mixing types: ");
1162   dump();
1163   tty->print(" and ");
1164   t->dump();
1165   tty->print("\n");
1166 #endif
1167   ShouldNotReachHere();
1168 }
1169 
1170 
1171 //=============================================================================
1172 // Convenience common pre-built types.
1173 const TypeF *TypeF::ZERO;       // Floating point zero
1174 const TypeF *TypeF::ONE;        // Floating point one
1175 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1176 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1177 
1178 //------------------------------make-------------------------------------------
1179 // Create a float constant
1180 const TypeF *TypeF::make(float f) {
1181   return (TypeF*)(new TypeF(f))->hashcons();
1182 }
1183 
1184 //------------------------------meet-------------------------------------------
1185 // Compute the MEET of two types.  It returns a new Type object.
1186 const Type *TypeF::xmeet( const Type *t ) const {
1187   // Perform a fast test for common case; meeting the same types together.
1188   if( this == t ) return this;  // Meeting same type-rep?
1189 
1190   // Current "this->_base" is FloatCon
1191   switch (t->base()) {          // Switch on original type
1192   case AnyPtr:                  // Mixing with oops happens when javac
1193   case RawPtr:                  // reuses local variables
1194   case OopPtr:
1195   case InstPtr:
1196   case AryPtr:
1197   case MetadataPtr:
1198   case KlassPtr:
1199   case NarrowOop:
1200   case NarrowKlass:
1201   case Int:
1202   case Long:
1203   case DoubleTop:
1204   case DoubleCon:
1205   case DoubleBot:
1206   case Bottom:                  // Ye Olde Default
1207     return Type::BOTTOM;
1208 
1209   case FloatBot:
1210     return t;
1211 
1212   default:                      // All else is a mistake
1213     typerr(t);
1214 
1215   case FloatCon:                // Float-constant vs Float-constant?
1216     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1217                                 // must compare bitwise as positive zero, negative zero and NaN have
1218                                 // all the same representation in C++
1219       return FLOAT;             // Return generic float
1220                                 // Equal constants
1221   case Top:
1222   case FloatTop:
1223     break;                      // Return the float constant
1224   }
1225   return this;                  // Return the float constant
1226 }
1227 
1228 //------------------------------xdual------------------------------------------
1229 // Dual: symmetric
1230 const Type *TypeF::xdual() const {
1231   return this;
1232 }
1233 
1234 //------------------------------eq---------------------------------------------
1235 // Structural equality check for Type representations
1236 bool TypeF::eq(const Type *t) const {
1237   // Bitwise comparison to distinguish between +/-0. These values must be treated
1238   // as different to be consistent with C1 and the interpreter.
1239   return (jint_cast(_f) == jint_cast(t->getf()));
1240 }
1241 
1242 //------------------------------hash-------------------------------------------
1243 // Type-specific hashing function.
1244 int TypeF::hash(void) const {
1245   return *(int*)(&_f);
1246 }
1247 
1248 //------------------------------is_finite--------------------------------------
1249 // Has a finite value
1250 bool TypeF::is_finite() const {
1251   return g_isfinite(getf()) != 0;
1252 }
1253 
1254 //------------------------------is_nan-----------------------------------------
1255 // Is not a number (NaN)
1256 bool TypeF::is_nan()    const {
1257   return g_isnan(getf()) != 0;
1258 }
1259 
1260 //------------------------------dump2------------------------------------------
1261 // Dump float constant Type
1262 #ifndef PRODUCT
1263 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1264   Type::dump2(d,depth, st);
1265   st->print("%f", _f);
1266 }
1267 #endif
1268 
1269 //------------------------------singleton--------------------------------------
1270 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1271 // constants (Ldi nodes).  Singletons are integer, float or double constants
1272 // or a single symbol.
1273 bool TypeF::singleton(void) const {
1274   return true;                  // Always a singleton
1275 }
1276 
1277 bool TypeF::empty(void) const {
1278   return false;                 // always exactly a singleton
1279 }
1280 
1281 //=============================================================================
1282 // Convenience common pre-built types.
1283 const TypeD *TypeD::ZERO;       // Floating point zero
1284 const TypeD *TypeD::ONE;        // Floating point one
1285 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1286 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1287 
1288 //------------------------------make-------------------------------------------
1289 const TypeD *TypeD::make(double d) {
1290   return (TypeD*)(new TypeD(d))->hashcons();
1291 }
1292 
1293 //------------------------------meet-------------------------------------------
1294 // Compute the MEET of two types.  It returns a new Type object.
1295 const Type *TypeD::xmeet( const Type *t ) const {
1296   // Perform a fast test for common case; meeting the same types together.
1297   if( this == t ) return this;  // Meeting same type-rep?
1298 
1299   // Current "this->_base" is DoubleCon
1300   switch (t->base()) {          // Switch on original type
1301   case AnyPtr:                  // Mixing with oops happens when javac
1302   case RawPtr:                  // reuses local variables
1303   case OopPtr:
1304   case InstPtr:
1305   case AryPtr:
1306   case MetadataPtr:
1307   case KlassPtr:
1308   case NarrowOop:
1309   case NarrowKlass:
1310   case Int:
1311   case Long:
1312   case FloatTop:
1313   case FloatCon:
1314   case FloatBot:
1315   case Bottom:                  // Ye Olde Default
1316     return Type::BOTTOM;
1317 
1318   case DoubleBot:
1319     return t;
1320 
1321   default:                      // All else is a mistake
1322     typerr(t);
1323 
1324   case DoubleCon:               // Double-constant vs Double-constant?
1325     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1326       return DOUBLE;            // Return generic double
1327   case Top:
1328   case DoubleTop:
1329     break;
1330   }
1331   return this;                  // Return the double constant
1332 }
1333 
1334 //------------------------------xdual------------------------------------------
1335 // Dual: symmetric
1336 const Type *TypeD::xdual() const {
1337   return this;
1338 }
1339 
1340 //------------------------------eq---------------------------------------------
1341 // Structural equality check for Type representations
1342 bool TypeD::eq(const Type *t) const {
1343   // Bitwise comparison to distinguish between +/-0. These values must be treated
1344   // as different to be consistent with C1 and the interpreter.
1345   return (jlong_cast(_d) == jlong_cast(t->getd()));
1346 }
1347 
1348 //------------------------------hash-------------------------------------------
1349 // Type-specific hashing function.
1350 int TypeD::hash(void) const {
1351   return *(int*)(&_d);
1352 }
1353 
1354 //------------------------------is_finite--------------------------------------
1355 // Has a finite value
1356 bool TypeD::is_finite() const {
1357   return g_isfinite(getd()) != 0;
1358 }
1359 
1360 //------------------------------is_nan-----------------------------------------
1361 // Is not a number (NaN)
1362 bool TypeD::is_nan()    const {
1363   return g_isnan(getd()) != 0;
1364 }
1365 
1366 //------------------------------dump2------------------------------------------
1367 // Dump double constant Type
1368 #ifndef PRODUCT
1369 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1370   Type::dump2(d,depth,st);
1371   st->print("%f", _d);
1372 }
1373 #endif
1374 
1375 //------------------------------singleton--------------------------------------
1376 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1377 // constants (Ldi nodes).  Singletons are integer, float or double constants
1378 // or a single symbol.
1379 bool TypeD::singleton(void) const {
1380   return true;                  // Always a singleton
1381 }
1382 
1383 bool TypeD::empty(void) const {
1384   return false;                 // always exactly a singleton
1385 }
1386 
1387 //=============================================================================
1388 // Convience common pre-built types.
1389 const TypeInt *TypeInt::MINUS_1;// -1
1390 const TypeInt *TypeInt::ZERO;   // 0
1391 const TypeInt *TypeInt::ONE;    // 1
1392 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1393 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1394 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1395 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1396 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1397 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1398 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1399 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1400 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1401 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1402 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1403 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1404 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1405 const TypeInt *TypeInt::INT;    // 32-bit integers
1406 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1407 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1408 
1409 //------------------------------TypeInt----------------------------------------
1410 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1411 }
1412 
1413 //------------------------------make-------------------------------------------
1414 const TypeInt *TypeInt::make( jint lo ) {
1415   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1416 }
1417 
1418 static int normalize_int_widen( jint lo, jint hi, int w ) {
1419   // Certain normalizations keep us sane when comparing types.
1420   // The 'SMALLINT' covers constants and also CC and its relatives.
1421   if (lo <= hi) {
1422     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1423     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1424   } else {
1425     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1426     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1427   }
1428   return w;
1429 }
1430 
1431 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1432   w = normalize_int_widen(lo, hi, w);
1433   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1434 }
1435 
1436 //------------------------------meet-------------------------------------------
1437 // Compute the MEET of two types.  It returns a new Type representation object
1438 // with reference count equal to the number of Types pointing at it.
1439 // Caller should wrap a Types around it.
1440 const Type *TypeInt::xmeet( const Type *t ) const {
1441   // Perform a fast test for common case; meeting the same types together.
1442   if( this == t ) return this;  // Meeting same type?
1443 
1444   // Currently "this->_base" is a TypeInt
1445   switch (t->base()) {          // Switch on original type
1446   case AnyPtr:                  // Mixing with oops happens when javac
1447   case RawPtr:                  // reuses local variables
1448   case OopPtr:
1449   case InstPtr:
1450   case AryPtr:
1451   case MetadataPtr:
1452   case KlassPtr:
1453   case NarrowOop:
1454   case NarrowKlass:
1455   case Long:
1456   case FloatTop:
1457   case FloatCon:
1458   case FloatBot:
1459   case DoubleTop:
1460   case DoubleCon:
1461   case DoubleBot:
1462   case Bottom:                  // Ye Olde Default
1463     return Type::BOTTOM;
1464   default:                      // All else is a mistake
1465     typerr(t);
1466   case Top:                     // No change
1467     return this;
1468   case Int:                     // Int vs Int?
1469     break;
1470   }
1471 
1472   // Expand covered set
1473   const TypeInt *r = t->is_int();
1474   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1475 }
1476 
1477 //------------------------------xdual------------------------------------------
1478 // Dual: reverse hi & lo; flip widen
1479 const Type *TypeInt::xdual() const {
1480   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1481   return new TypeInt(_hi,_lo,w);
1482 }
1483 
1484 //------------------------------widen------------------------------------------
1485 // Only happens for optimistic top-down optimizations.
1486 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1487   // Coming from TOP or such; no widening
1488   if( old->base() != Int ) return this;
1489   const TypeInt *ot = old->is_int();
1490 
1491   // If new guy is equal to old guy, no widening
1492   if( _lo == ot->_lo && _hi == ot->_hi )
1493     return old;
1494 
1495   // If new guy contains old, then we widened
1496   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1497     // New contains old
1498     // If new guy is already wider than old, no widening
1499     if( _widen > ot->_widen ) return this;
1500     // If old guy was a constant, do not bother
1501     if (ot->_lo == ot->_hi)  return this;
1502     // Now widen new guy.
1503     // Check for widening too far
1504     if (_widen == WidenMax) {
1505       int max = max_jint;
1506       int min = min_jint;
1507       if (limit->isa_int()) {
1508         max = limit->is_int()->_hi;
1509         min = limit->is_int()->_lo;
1510       }
1511       if (min < _lo && _hi < max) {
1512         // If neither endpoint is extremal yet, push out the endpoint
1513         // which is closer to its respective limit.
1514         if (_lo >= 0 ||                 // easy common case
1515             (juint)(_lo - min) >= (juint)(max - _hi)) {
1516           // Try to widen to an unsigned range type of 31 bits:
1517           return make(_lo, max, WidenMax);
1518         } else {
1519           return make(min, _hi, WidenMax);
1520         }
1521       }
1522       return TypeInt::INT;
1523     }
1524     // Returned widened new guy
1525     return make(_lo,_hi,_widen+1);
1526   }
1527 
1528   // If old guy contains new, then we probably widened too far & dropped to
1529   // bottom.  Return the wider fellow.
1530   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1531     return old;
1532 
1533   //fatal("Integer value range is not subset");
1534   //return this;
1535   return TypeInt::INT;
1536 }
1537 
1538 //------------------------------narrow---------------------------------------
1539 // Only happens for pessimistic optimizations.
1540 const Type *TypeInt::narrow( const Type *old ) const {
1541   if (_lo >= _hi)  return this;   // already narrow enough
1542   if (old == NULL)  return this;
1543   const TypeInt* ot = old->isa_int();
1544   if (ot == NULL)  return this;
1545   jint olo = ot->_lo;
1546   jint ohi = ot->_hi;
1547 
1548   // If new guy is equal to old guy, no narrowing
1549   if (_lo == olo && _hi == ohi)  return old;
1550 
1551   // If old guy was maximum range, allow the narrowing
1552   if (olo == min_jint && ohi == max_jint)  return this;
1553 
1554   if (_lo < olo || _hi > ohi)
1555     return this;                // doesn't narrow; pretty wierd
1556 
1557   // The new type narrows the old type, so look for a "death march".
1558   // See comments on PhaseTransform::saturate.
1559   juint nrange = (juint)_hi - _lo;
1560   juint orange = (juint)ohi - olo;
1561   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1562     // Use the new type only if the range shrinks a lot.
1563     // We do not want the optimizer computing 2^31 point by point.
1564     return old;
1565   }
1566 
1567   return this;
1568 }
1569 
1570 //-----------------------------filter------------------------------------------
1571 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1572   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1573   if (ft == NULL || ft->empty())
1574     return Type::TOP;           // Canonical empty value
1575   if (ft->_widen < this->_widen) {
1576     // Do not allow the value of kill->_widen to affect the outcome.
1577     // The widen bits must be allowed to run freely through the graph.
1578     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1579   }
1580   return ft;
1581 }
1582 
1583 //------------------------------eq---------------------------------------------
1584 // Structural equality check for Type representations
1585 bool TypeInt::eq( const Type *t ) const {
1586   const TypeInt *r = t->is_int(); // Handy access
1587   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1588 }
1589 
1590 //------------------------------hash-------------------------------------------
1591 // Type-specific hashing function.
1592 int TypeInt::hash(void) const {
1593   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1594 }
1595 
1596 //------------------------------is_finite--------------------------------------
1597 // Has a finite value
1598 bool TypeInt::is_finite() const {
1599   return true;
1600 }
1601 
1602 //------------------------------dump2------------------------------------------
1603 // Dump TypeInt
1604 #ifndef PRODUCT
1605 static const char* intname(char* buf, jint n) {
1606   if (n == min_jint)
1607     return "min";
1608   else if (n < min_jint + 10000)
1609     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1610   else if (n == max_jint)
1611     return "max";
1612   else if (n > max_jint - 10000)
1613     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1614   else
1615     sprintf(buf, INT32_FORMAT, n);
1616   return buf;
1617 }
1618 
1619 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1620   char buf[40], buf2[40];
1621   if (_lo == min_jint && _hi == max_jint)
1622     st->print("int");
1623   else if (is_con())
1624     st->print("int:%s", intname(buf, get_con()));
1625   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1626     st->print("bool");
1627   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1628     st->print("byte");
1629   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1630     st->print("char");
1631   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1632     st->print("short");
1633   else if (_hi == max_jint)
1634     st->print("int:>=%s", intname(buf, _lo));
1635   else if (_lo == min_jint)
1636     st->print("int:<=%s", intname(buf, _hi));
1637   else
1638     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1639 
1640   if (_widen != 0 && this != TypeInt::INT)
1641     st->print(":%.*s", _widen, "wwww");
1642 }
1643 #endif
1644 
1645 //------------------------------singleton--------------------------------------
1646 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1647 // constants.
1648 bool TypeInt::singleton(void) const {
1649   return _lo >= _hi;
1650 }
1651 
1652 bool TypeInt::empty(void) const {
1653   return _lo > _hi;
1654 }
1655 
1656 //=============================================================================
1657 // Convenience common pre-built types.
1658 const TypeLong *TypeLong::MINUS_1;// -1
1659 const TypeLong *TypeLong::ZERO; // 0
1660 const TypeLong *TypeLong::ONE;  // 1
1661 const TypeLong *TypeLong::POS;  // >=0
1662 const TypeLong *TypeLong::LONG; // 64-bit integers
1663 const TypeLong *TypeLong::INT;  // 32-bit subrange
1664 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1665 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1666 
1667 //------------------------------TypeLong---------------------------------------
1668 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1669 }
1670 
1671 //------------------------------make-------------------------------------------
1672 const TypeLong *TypeLong::make( jlong lo ) {
1673   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1674 }
1675 
1676 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1677   // Certain normalizations keep us sane when comparing types.
1678   // The 'SMALLINT' covers constants.
1679   if (lo <= hi) {
1680     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1681     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1682   } else {
1683     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1684     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1685   }
1686   return w;
1687 }
1688 
1689 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1690   w = normalize_long_widen(lo, hi, w);
1691   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1692 }
1693 
1694 
1695 //------------------------------meet-------------------------------------------
1696 // Compute the MEET of two types.  It returns a new Type representation object
1697 // with reference count equal to the number of Types pointing at it.
1698 // Caller should wrap a Types around it.
1699 const Type *TypeLong::xmeet( const Type *t ) const {
1700   // Perform a fast test for common case; meeting the same types together.
1701   if( this == t ) return this;  // Meeting same type?
1702 
1703   // Currently "this->_base" is a TypeLong
1704   switch (t->base()) {          // Switch on original type
1705   case AnyPtr:                  // Mixing with oops happens when javac
1706   case RawPtr:                  // reuses local variables
1707   case OopPtr:
1708   case InstPtr:
1709   case AryPtr:
1710   case MetadataPtr:
1711   case KlassPtr:
1712   case NarrowOop:
1713   case NarrowKlass:
1714   case Int:
1715   case FloatTop:
1716   case FloatCon:
1717   case FloatBot:
1718   case DoubleTop:
1719   case DoubleCon:
1720   case DoubleBot:
1721   case Bottom:                  // Ye Olde Default
1722     return Type::BOTTOM;
1723   default:                      // All else is a mistake
1724     typerr(t);
1725   case Top:                     // No change
1726     return this;
1727   case Long:                    // Long vs Long?
1728     break;
1729   }
1730 
1731   // Expand covered set
1732   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1733   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1734 }
1735 
1736 //------------------------------xdual------------------------------------------
1737 // Dual: reverse hi & lo; flip widen
1738 const Type *TypeLong::xdual() const {
1739   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1740   return new TypeLong(_hi,_lo,w);
1741 }
1742 
1743 //------------------------------widen------------------------------------------
1744 // Only happens for optimistic top-down optimizations.
1745 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1746   // Coming from TOP or such; no widening
1747   if( old->base() != Long ) return this;
1748   const TypeLong *ot = old->is_long();
1749 
1750   // If new guy is equal to old guy, no widening
1751   if( _lo == ot->_lo && _hi == ot->_hi )
1752     return old;
1753 
1754   // If new guy contains old, then we widened
1755   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1756     // New contains old
1757     // If new guy is already wider than old, no widening
1758     if( _widen > ot->_widen ) return this;
1759     // If old guy was a constant, do not bother
1760     if (ot->_lo == ot->_hi)  return this;
1761     // Now widen new guy.
1762     // Check for widening too far
1763     if (_widen == WidenMax) {
1764       jlong max = max_jlong;
1765       jlong min = min_jlong;
1766       if (limit->isa_long()) {
1767         max = limit->is_long()->_hi;
1768         min = limit->is_long()->_lo;
1769       }
1770       if (min < _lo && _hi < max) {
1771         // If neither endpoint is extremal yet, push out the endpoint
1772         // which is closer to its respective limit.
1773         if (_lo >= 0 ||                 // easy common case
1774             ((julong)_lo - min) >= ((julong)max - _hi)) {
1775           // Try to widen to an unsigned range type of 32/63 bits:
1776           if (max >= max_juint && _hi < max_juint)
1777             return make(_lo, max_juint, WidenMax);
1778           else
1779             return make(_lo, max, WidenMax);
1780         } else {
1781           return make(min, _hi, WidenMax);
1782         }
1783       }
1784       return TypeLong::LONG;
1785     }
1786     // Returned widened new guy
1787     return make(_lo,_hi,_widen+1);
1788   }
1789 
1790   // If old guy contains new, then we probably widened too far & dropped to
1791   // bottom.  Return the wider fellow.
1792   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1793     return old;
1794 
1795   //  fatal("Long value range is not subset");
1796   // return this;
1797   return TypeLong::LONG;
1798 }
1799 
1800 //------------------------------narrow----------------------------------------
1801 // Only happens for pessimistic optimizations.
1802 const Type *TypeLong::narrow( const Type *old ) const {
1803   if (_lo >= _hi)  return this;   // already narrow enough
1804   if (old == NULL)  return this;
1805   const TypeLong* ot = old->isa_long();
1806   if (ot == NULL)  return this;
1807   jlong olo = ot->_lo;
1808   jlong ohi = ot->_hi;
1809 
1810   // If new guy is equal to old guy, no narrowing
1811   if (_lo == olo && _hi == ohi)  return old;
1812 
1813   // If old guy was maximum range, allow the narrowing
1814   if (olo == min_jlong && ohi == max_jlong)  return this;
1815 
1816   if (_lo < olo || _hi > ohi)
1817     return this;                // doesn't narrow; pretty wierd
1818 
1819   // The new type narrows the old type, so look for a "death march".
1820   // See comments on PhaseTransform::saturate.
1821   julong nrange = _hi - _lo;
1822   julong orange = ohi - olo;
1823   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1824     // Use the new type only if the range shrinks a lot.
1825     // We do not want the optimizer computing 2^31 point by point.
1826     return old;
1827   }
1828 
1829   return this;
1830 }
1831 
1832 //-----------------------------filter------------------------------------------
1833 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1834   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1835   if (ft == NULL || ft->empty())
1836     return Type::TOP;           // Canonical empty value
1837   if (ft->_widen < this->_widen) {
1838     // Do not allow the value of kill->_widen to affect the outcome.
1839     // The widen bits must be allowed to run freely through the graph.
1840     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1841   }
1842   return ft;
1843 }
1844 
1845 //------------------------------eq---------------------------------------------
1846 // Structural equality check for Type representations
1847 bool TypeLong::eq( const Type *t ) const {
1848   const TypeLong *r = t->is_long(); // Handy access
1849   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1850 }
1851 
1852 //------------------------------hash-------------------------------------------
1853 // Type-specific hashing function.
1854 int TypeLong::hash(void) const {
1855   return (int)(_lo+_hi+_widen+(int)Type::Long);
1856 }
1857 
1858 //------------------------------is_finite--------------------------------------
1859 // Has a finite value
1860 bool TypeLong::is_finite() const {
1861   return true;
1862 }
1863 
1864 //------------------------------dump2------------------------------------------
1865 // Dump TypeLong
1866 #ifndef PRODUCT
1867 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1868   if (n > x) {
1869     if (n >= x + 10000)  return NULL;
1870     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1871   } else if (n < x) {
1872     if (n <= x - 10000)  return NULL;
1873     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1874   } else {
1875     return xname;
1876   }
1877   return buf;
1878 }
1879 
1880 static const char* longname(char* buf, jlong n) {
1881   const char* str;
1882   if (n == min_jlong)
1883     return "min";
1884   else if (n < min_jlong + 10000)
1885     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1886   else if (n == max_jlong)
1887     return "max";
1888   else if (n > max_jlong - 10000)
1889     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1890   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1891     return str;
1892   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1893     return str;
1894   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1895     return str;
1896   else
1897     sprintf(buf, JLONG_FORMAT, n);
1898   return buf;
1899 }
1900 
1901 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1902   char buf[80], buf2[80];
1903   if (_lo == min_jlong && _hi == max_jlong)
1904     st->print("long");
1905   else if (is_con())
1906     st->print("long:%s", longname(buf, get_con()));
1907   else if (_hi == max_jlong)
1908     st->print("long:>=%s", longname(buf, _lo));
1909   else if (_lo == min_jlong)
1910     st->print("long:<=%s", longname(buf, _hi));
1911   else
1912     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1913 
1914   if (_widen != 0 && this != TypeLong::LONG)
1915     st->print(":%.*s", _widen, "wwww");
1916 }
1917 #endif
1918 
1919 //------------------------------singleton--------------------------------------
1920 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1921 // constants
1922 bool TypeLong::singleton(void) const {
1923   return _lo >= _hi;
1924 }
1925 
1926 bool TypeLong::empty(void) const {
1927   return _lo > _hi;
1928 }
1929 
1930 //=============================================================================
1931 // Convenience common pre-built types.
1932 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1933 const TypeTuple *TypeTuple::IFFALSE;
1934 const TypeTuple *TypeTuple::IFTRUE;
1935 const TypeTuple *TypeTuple::IFNEITHER;
1936 const TypeTuple *TypeTuple::LOOPBODY;
1937 const TypeTuple *TypeTuple::MEMBAR;
1938 const TypeTuple *TypeTuple::STORECONDITIONAL;
1939 const TypeTuple *TypeTuple::START_I2C;
1940 const TypeTuple *TypeTuple::INT_PAIR;
1941 const TypeTuple *TypeTuple::LONG_PAIR;
1942 const TypeTuple *TypeTuple::INT_CC_PAIR;
1943 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1944 
1945 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos, SigEntry* res_entry = NULL) {
1946   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1947     if (res_entry != NULL && (int)pos == (res_entry->_offset + TypeFunc::Parms)) {
1948       // Add reserved entry
1949       field_array[pos++] = Type::get_const_basic_type(res_entry->_bt);
1950       if (res_entry->_bt == T_LONG || res_entry->_bt == T_DOUBLE) {
1951         field_array[pos++] = Type::HALF;
1952       }
1953     }
1954     ciField* field = vk->nonstatic_field_at(j);
1955     BasicType bt = field->type()->basic_type();
1956     const Type* ft = Type::get_const_type(field->type());
1957     field_array[pos++] = ft;
1958     if (bt == T_LONG || bt == T_DOUBLE) {
1959       field_array[pos++] = Type::HALF;
1960     }
1961   }
1962 }
1963 
1964 //------------------------------make-------------------------------------------
1965 // Make a TypeTuple from the range of a method signature
1966 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1967   ciType* return_type = sig->return_type();
1968   bool never_null = sig->returns_never_null();
1969 
1970   uint arg_cnt = 0;
1971   ret_vt_fields = ret_vt_fields && never_null && return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1972   if (ret_vt_fields) {
1973     ciValueKlass* vk = (ciValueKlass*)return_type;
1974     arg_cnt = vk->value_arg_slots()+1;
1975   } else {
1976     arg_cnt = return_type->size();
1977   }
1978 
1979   const Type **field_array = fields(arg_cnt);
1980   switch (return_type->basic_type()) {
1981   case T_LONG:
1982     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1983     field_array[TypeFunc::Parms+1] = Type::HALF;
1984     break;
1985   case T_DOUBLE:
1986     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1987     field_array[TypeFunc::Parms+1] = Type::HALF;
1988     break;
1989   case T_OBJECT:
1990   case T_ARRAY:
1991   case T_BOOLEAN:
1992   case T_CHAR:
1993   case T_FLOAT:
1994   case T_BYTE:
1995   case T_SHORT:
1996   case T_INT:
1997     field_array[TypeFunc::Parms] = get_const_type(return_type);
1998     break;
1999   case T_VALUETYPE:
2000     if (ret_vt_fields) {
2001       ciValueKlass* vk = (ciValueKlass*)return_type;
2002       uint pos = TypeFunc::Parms;
2003       field_array[pos] = TypePtr::BOTTOM;
2004       pos++;
2005       collect_value_fields(vk, field_array, pos);
2006     } else {
2007       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2008     }
2009     break;
2010   case T_VOID:
2011     break;
2012   default:
2013     ShouldNotReachHere();
2014   }
2015   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2016 }
2017 
2018 // Make a TypeTuple from the domain of a method signature
2019 const TypeTuple *TypeTuple::make_domain(ciMethod* method, bool vt_fields_as_args) {
2020   ciInstanceKlass* recv = method->is_static() ? NULL : method->holder();
2021   ciSignature* sig = method->signature();
2022   uint arg_cnt = sig->size();
2023 
2024   int vt_extra = 0;
2025   SigEntry res_entry = method->get_Method()->get_res_entry();
2026   if (vt_fields_as_args) {
2027     for (int i = 0; i < sig->count(); i++) {
2028       ciType* type = sig->type_at(i);
2029       if (type->is_valuetype()) {
2030         vt_extra += type->as_value_klass()->value_arg_slots()-1;
2031       }
2032     }
2033     if (res_entry._offset != -1) {
2034       // Account for the reserved stack slot
2035       vt_extra += type2size[res_entry._bt];
2036     }
2037   }
2038 
2039   uint pos = TypeFunc::Parms;
2040   const Type **field_array;
2041   if (recv != NULL) {
2042     arg_cnt++;
2043     // TODO for now, don't scalarize value type receivers because of interface calls
2044     //bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype();
2045     bool vt_fields_for_recv = false;
2046     if (vt_fields_for_recv) {
2047       vt_extra += recv->as_value_klass()->value_arg_slots()-1;
2048     }
2049     field_array = fields(arg_cnt + vt_extra);
2050     // Use get_const_type here because it respects UseUniqueSubclasses:
2051     if (vt_fields_for_recv) {
2052       collect_value_fields(recv->as_value_klass(), field_array, pos, &res_entry);
2053     } else {
2054       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2055     }
2056   } else {
2057     field_array = fields(arg_cnt + vt_extra);
2058   }
2059 
2060   int i = 0;
2061   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2062     ciType* type = sig->type_at(i);
2063 
2064     switch (type->basic_type()) {
2065     case T_LONG:
2066       field_array[pos++] = TypeLong::LONG;
2067       field_array[pos++] = Type::HALF;
2068       break;
2069     case T_DOUBLE:
2070       field_array[pos++] = Type::DOUBLE;
2071       field_array[pos++] = Type::HALF;
2072       break;
2073     case T_OBJECT:
2074     case T_ARRAY:
2075     case T_FLOAT:
2076     case T_INT:
2077       field_array[pos++] = get_const_type(type);
2078       break;
2079     case T_BOOLEAN:
2080     case T_CHAR:
2081     case T_BYTE:
2082     case T_SHORT:
2083       field_array[pos++] = TypeInt::INT;
2084       break;
2085     case T_VALUETYPE: {
2086       bool never_null = sig->is_never_null_at(i);
2087       if (vt_fields_as_args && never_null) {
2088         collect_value_fields(type->as_value_klass(), field_array, pos, &res_entry);
2089       } else {
2090         field_array[pos++] = get_const_type(type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2091       }
2092       break;
2093     }
2094     default:
2095       ShouldNotReachHere();
2096     }
2097     i++;
2098 
2099     if (vt_fields_as_args && (int)pos == (res_entry._offset + TypeFunc::Parms)) {
2100       // Add reserved entry
2101       field_array[pos++] = Type::get_const_basic_type(res_entry._bt);
2102       if (res_entry._bt == T_LONG || res_entry._bt == T_DOUBLE) {
2103         field_array[pos++] = Type::HALF;
2104       }
2105     }
2106   }
2107   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2108 
2109   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2110 }
2111 
2112 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2113   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2114 }
2115 
2116 //------------------------------fields-----------------------------------------
2117 // Subroutine call type with space allocated for argument types
2118 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2119 const Type **TypeTuple::fields( uint arg_cnt ) {
2120   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2121   flds[TypeFunc::Control  ] = Type::CONTROL;
2122   flds[TypeFunc::I_O      ] = Type::ABIO;
2123   flds[TypeFunc::Memory   ] = Type::MEMORY;
2124   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2125   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2126 
2127   return flds;
2128 }
2129 
2130 //------------------------------meet-------------------------------------------
2131 // Compute the MEET of two types.  It returns a new Type object.
2132 const Type *TypeTuple::xmeet( const Type *t ) const {
2133   // Perform a fast test for common case; meeting the same types together.
2134   if( this == t ) return this;  // Meeting same type-rep?
2135 
2136   // Current "this->_base" is Tuple
2137   switch (t->base()) {          // switch on original type
2138 
2139   case Bottom:                  // Ye Olde Default
2140     return t;
2141 
2142   default:                      // All else is a mistake
2143     typerr(t);
2144 
2145   case Tuple: {                 // Meeting 2 signatures?
2146     const TypeTuple *x = t->is_tuple();
2147     assert( _cnt == x->_cnt, "" );
2148     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2149     for( uint i=0; i<_cnt; i++ )
2150       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2151     return TypeTuple::make(_cnt,fields);
2152   }
2153   case Top:
2154     break;
2155   }
2156   return this;                  // Return the double constant
2157 }
2158 
2159 //------------------------------xdual------------------------------------------
2160 // Dual: compute field-by-field dual
2161 const Type *TypeTuple::xdual() const {
2162   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2163   for( uint i=0; i<_cnt; i++ )
2164     fields[i] = _fields[i]->dual();
2165   return new TypeTuple(_cnt,fields);
2166 }
2167 
2168 //------------------------------eq---------------------------------------------
2169 // Structural equality check for Type representations
2170 bool TypeTuple::eq( const Type *t ) const {
2171   const TypeTuple *s = (const TypeTuple *)t;
2172   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2173   for (uint i = 0; i < _cnt; i++)
2174     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2175       return false;             // Missed
2176   return true;
2177 }
2178 
2179 //------------------------------hash-------------------------------------------
2180 // Type-specific hashing function.
2181 int TypeTuple::hash(void) const {
2182   intptr_t sum = _cnt;
2183   for( uint i=0; i<_cnt; i++ )
2184     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2185   return sum;
2186 }
2187 
2188 //------------------------------dump2------------------------------------------
2189 // Dump signature Type
2190 #ifndef PRODUCT
2191 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2192   st->print("{");
2193   if( !depth || d[this] ) {     // Check for recursive print
2194     st->print("...}");
2195     return;
2196   }
2197   d.Insert((void*)this, (void*)this);   // Stop recursion
2198   if( _cnt ) {
2199     uint i;
2200     for( i=0; i<_cnt-1; i++ ) {
2201       st->print("%d:", i);
2202       _fields[i]->dump2(d, depth-1, st);
2203       st->print(", ");
2204     }
2205     st->print("%d:", i);
2206     _fields[i]->dump2(d, depth-1, st);
2207   }
2208   st->print("}");
2209 }
2210 #endif
2211 
2212 //------------------------------singleton--------------------------------------
2213 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2214 // constants (Ldi nodes).  Singletons are integer, float or double constants
2215 // or a single symbol.
2216 bool TypeTuple::singleton(void) const {
2217   return false;                 // Never a singleton
2218 }
2219 
2220 bool TypeTuple::empty(void) const {
2221   for( uint i=0; i<_cnt; i++ ) {
2222     if (_fields[i]->empty())  return true;
2223   }
2224   return false;
2225 }
2226 
2227 //=============================================================================
2228 // Convenience common pre-built types.
2229 
2230 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2231   // Certain normalizations keep us sane when comparing types.
2232   // We do not want arrayOop variables to differ only by the wideness
2233   // of their index types.  Pick minimum wideness, since that is the
2234   // forced wideness of small ranges anyway.
2235   if (size->_widen != Type::WidenMin)
2236     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2237   else
2238     return size;
2239 }
2240 
2241 //------------------------------make-------------------------------------------
2242 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2243   if (elem->is_valuetypeptr()) {
2244     // Value type array elements cannot be NULL
2245     elem = elem->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2246   }
2247   if (UseCompressedOops && elem->isa_oopptr()) {
2248     elem = elem->make_narrowoop();
2249   }
2250   size = normalize_array_size(size);
2251   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2252 }
2253 
2254 //------------------------------meet-------------------------------------------
2255 // Compute the MEET of two types.  It returns a new Type object.
2256 const Type *TypeAry::xmeet( const Type *t ) const {
2257   // Perform a fast test for common case; meeting the same types together.
2258   if( this == t ) return this;  // Meeting same type-rep?
2259 
2260   // Current "this->_base" is Ary
2261   switch (t->base()) {          // switch on original type
2262 
2263   case Bottom:                  // Ye Olde Default
2264     return t;
2265 
2266   default:                      // All else is a mistake
2267     typerr(t);
2268 
2269   case Array: {                 // Meeting 2 arrays?
2270     const TypeAry *a = t->is_ary();
2271     return TypeAry::make(_elem->meet_speculative(a->_elem),
2272                          _size->xmeet(a->_size)->is_int(),
2273                          _stable & a->_stable);
2274   }
2275   case Top:
2276     break;
2277   }
2278   return this;                  // Return the double constant
2279 }
2280 
2281 //------------------------------xdual------------------------------------------
2282 // Dual: compute field-by-field dual
2283 const Type *TypeAry::xdual() const {
2284   const TypeInt* size_dual = _size->dual()->is_int();
2285   size_dual = normalize_array_size(size_dual);
2286   return new TypeAry(_elem->dual(), size_dual, !_stable);
2287 }
2288 
2289 //------------------------------eq---------------------------------------------
2290 // Structural equality check for Type representations
2291 bool TypeAry::eq( const Type *t ) const {
2292   const TypeAry *a = (const TypeAry*)t;
2293   return _elem == a->_elem &&
2294     _stable == a->_stable &&
2295     _size == a->_size;
2296 }
2297 
2298 //------------------------------hash-------------------------------------------
2299 // Type-specific hashing function.
2300 int TypeAry::hash(void) const {
2301   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2302 }
2303 
2304 /**
2305  * Return same type without a speculative part in the element
2306  */
2307 const Type* TypeAry::remove_speculative() const {
2308   return make(_elem->remove_speculative(), _size, _stable);
2309 }
2310 
2311 /**
2312  * Return same type with cleaned up speculative part of element
2313  */
2314 const Type* TypeAry::cleanup_speculative() const {
2315   return make(_elem->cleanup_speculative(), _size, _stable);
2316 }
2317 
2318 /**
2319  * Return same type but with a different inline depth (used for speculation)
2320  *
2321  * @param depth  depth to meet with
2322  */
2323 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2324   if (!UseInlineDepthForSpeculativeTypes) {
2325     return this;
2326   }
2327   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2328 }
2329 
2330 //----------------------interface_vs_oop---------------------------------------
2331 #ifdef ASSERT
2332 bool TypeAry::interface_vs_oop(const Type *t) const {
2333   const TypeAry* t_ary = t->is_ary();
2334   if (t_ary) {
2335     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2336     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2337     if(this_ptr != NULL && t_ptr != NULL) {
2338       return this_ptr->interface_vs_oop(t_ptr);
2339     }
2340   }
2341   return false;
2342 }
2343 #endif
2344 
2345 //------------------------------dump2------------------------------------------
2346 #ifndef PRODUCT
2347 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2348   if (_stable)  st->print("stable:");
2349   _elem->dump2(d, depth, st);
2350   st->print("[");
2351   _size->dump2(d, depth, st);
2352   st->print("]");
2353 }
2354 #endif
2355 
2356 //------------------------------singleton--------------------------------------
2357 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2358 // constants (Ldi nodes).  Singletons are integer, float or double constants
2359 // or a single symbol.
2360 bool TypeAry::singleton(void) const {
2361   return false;                 // Never a singleton
2362 }
2363 
2364 bool TypeAry::empty(void) const {
2365   return _elem->empty() || _size->empty();
2366 }
2367 
2368 //--------------------------ary_must_be_exact----------------------------------
2369 bool TypeAry::ary_must_be_exact() const {
2370   if (!UseExactTypes)       return false;
2371   // This logic looks at the element type of an array, and returns true
2372   // if the element type is either a primitive or a final instance class.
2373   // In such cases, an array built on this ary must have no subclasses.
2374   if (_elem == BOTTOM)      return false;  // general array not exact
2375   if (_elem == TOP   )      return false;  // inverted general array not exact
2376   const TypeOopPtr*  toop = NULL;
2377   if (UseCompressedOops && _elem->isa_narrowoop()) {
2378     toop = _elem->make_ptr()->isa_oopptr();
2379   } else {
2380     toop = _elem->isa_oopptr();
2381   }
2382   if (!toop)                return true;   // a primitive type, like int
2383   ciKlass* tklass = toop->klass();
2384   if (tklass == NULL)       return false;  // unloaded class
2385   if (!tklass->is_loaded()) return false;  // unloaded class
2386   const TypeInstPtr* tinst;
2387   if (_elem->isa_narrowoop())
2388     tinst = _elem->make_ptr()->isa_instptr();
2389   else
2390     tinst = _elem->isa_instptr();
2391   if (tinst)
2392     return tklass->as_instance_klass()->is_final();
2393   const TypeAryPtr*  tap;
2394   if (_elem->isa_narrowoop())
2395     tap = _elem->make_ptr()->isa_aryptr();
2396   else
2397     tap = _elem->isa_aryptr();
2398   if (tap)
2399     return tap->ary()->ary_must_be_exact();
2400   return false;
2401 }
2402 
2403 //==============================TypeValueType=======================================
2404 
2405 //------------------------------make-------------------------------------------
2406 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2407   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2408 }
2409 
2410 //------------------------------meet-------------------------------------------
2411 // Compute the MEET of two types.  It returns a new Type object.
2412 const Type* TypeValueType::xmeet(const Type* t) const {
2413   // Perform a fast test for common case; meeting the same types together.
2414   if(this == t) return this;  // Meeting same type-rep?
2415 
2416   // Current "this->_base" is ValueType
2417   switch (t->base()) {          // switch on original type
2418 
2419   case Int:
2420   case Long:
2421   case FloatTop:
2422   case FloatCon:
2423   case FloatBot:
2424   case DoubleTop:
2425   case DoubleCon:
2426   case DoubleBot:
2427   case NarrowKlass:
2428   case Bottom:
2429     return Type::BOTTOM;
2430 
2431   case OopPtr:
2432   case MetadataPtr:
2433   case KlassPtr:
2434   case RawPtr:
2435     return TypePtr::BOTTOM;
2436 
2437   case Top:
2438     return this;
2439 
2440   case NarrowOop: {
2441     const Type* res = t->make_ptr()->xmeet(this);
2442     if (res->isa_ptr()) {
2443       return res->make_narrowoop();
2444     }
2445     return res;
2446   }
2447 
2448   case AryPtr:
2449   case InstPtr: {
2450     return t->xmeet(this);
2451   }
2452 
2453   case ValueType: {
2454     // All value types inherit from Object
2455     return TypeInstPtr::NOTNULL;
2456   }
2457 
2458   default:                      // All else is a mistake
2459     typerr(t);
2460 
2461   }
2462   return this;
2463 }
2464 
2465 //------------------------------xdual------------------------------------------
2466 const Type* TypeValueType::xdual() const {
2467   return this;
2468 }
2469 
2470 //------------------------------eq---------------------------------------------
2471 // Structural equality check for Type representations
2472 bool TypeValueType::eq(const Type* t) const {
2473   const TypeValueType* vt = t->is_valuetype();
2474   return (_vk == vt->value_klass());
2475 }
2476 
2477 //------------------------------hash-------------------------------------------
2478 // Type-specific hashing function.
2479 int TypeValueType::hash(void) const {
2480   return (intptr_t)_vk;
2481 }
2482 
2483 //------------------------------singleton--------------------------------------
2484 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2485 bool TypeValueType::singleton(void) const {
2486   return false;
2487 }
2488 
2489 //------------------------------empty------------------------------------------
2490 // TRUE if Type is a type with no values, FALSE otherwise.
2491 bool TypeValueType::empty(void) const {
2492   return false;
2493 }
2494 
2495 //------------------------------dump2------------------------------------------
2496 #ifndef PRODUCT
2497 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2498   int count = _vk->nof_declared_nonstatic_fields();
2499   st->print("valuetype[%d]:{", count);
2500   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2501   for (int i = 1; i < count; ++i) {
2502     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2503   }
2504   st->print("}");
2505 }
2506 #endif
2507 
2508 //==============================TypeVect=======================================
2509 // Convenience common pre-built types.
2510 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2511 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2512 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2513 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2514 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2515 
2516 //------------------------------make-------------------------------------------
2517 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2518   BasicType elem_bt = elem->array_element_basic_type();
2519   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2520   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2521   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2522   int size = length * type2aelembytes(elem_bt);
2523   switch (Matcher::vector_ideal_reg(size)) {
2524   case Op_VecS:
2525     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2526   case Op_RegL:
2527   case Op_VecD:
2528   case Op_RegD:
2529     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2530   case Op_VecX:
2531     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2532   case Op_VecY:
2533     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2534   case Op_VecZ:
2535     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2536   }
2537  ShouldNotReachHere();
2538   return NULL;
2539 }
2540 
2541 //------------------------------meet-------------------------------------------
2542 // Compute the MEET of two types.  It returns a new Type object.
2543 const Type *TypeVect::xmeet( const Type *t ) const {
2544   // Perform a fast test for common case; meeting the same types together.
2545   if( this == t ) return this;  // Meeting same type-rep?
2546 
2547   // Current "this->_base" is Vector
2548   switch (t->base()) {          // switch on original type
2549 
2550   case Bottom:                  // Ye Olde Default
2551     return t;
2552 
2553   default:                      // All else is a mistake
2554     typerr(t);
2555 
2556   case VectorS:
2557   case VectorD:
2558   case VectorX:
2559   case VectorY:
2560   case VectorZ: {                // Meeting 2 vectors?
2561     const TypeVect* v = t->is_vect();
2562     assert(  base() == v->base(), "");
2563     assert(length() == v->length(), "");
2564     assert(element_basic_type() == v->element_basic_type(), "");
2565     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2566   }
2567   case Top:
2568     break;
2569   }
2570   return this;
2571 }
2572 
2573 //------------------------------xdual------------------------------------------
2574 // Dual: compute field-by-field dual
2575 const Type *TypeVect::xdual() const {
2576   return new TypeVect(base(), _elem->dual(), _length);
2577 }
2578 
2579 //------------------------------eq---------------------------------------------
2580 // Structural equality check for Type representations
2581 bool TypeVect::eq(const Type *t) const {
2582   const TypeVect *v = t->is_vect();
2583   return (_elem == v->_elem) && (_length == v->_length);
2584 }
2585 
2586 //------------------------------hash-------------------------------------------
2587 // Type-specific hashing function.
2588 int TypeVect::hash(void) const {
2589   return (intptr_t)_elem + (intptr_t)_length;
2590 }
2591 
2592 //------------------------------singleton--------------------------------------
2593 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2594 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2595 // constant value (when vector is created with Replicate code).
2596 bool TypeVect::singleton(void) const {
2597 // There is no Con node for vectors yet.
2598 //  return _elem->singleton();
2599   return false;
2600 }
2601 
2602 bool TypeVect::empty(void) const {
2603   return _elem->empty();
2604 }
2605 
2606 //------------------------------dump2------------------------------------------
2607 #ifndef PRODUCT
2608 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2609   switch (base()) {
2610   case VectorS:
2611     st->print("vectors["); break;
2612   case VectorD:
2613     st->print("vectord["); break;
2614   case VectorX:
2615     st->print("vectorx["); break;
2616   case VectorY:
2617     st->print("vectory["); break;
2618   case VectorZ:
2619     st->print("vectorz["); break;
2620   default:
2621     ShouldNotReachHere();
2622   }
2623   st->print("%d]:{", _length);
2624   _elem->dump2(d, depth, st);
2625   st->print("}");
2626 }
2627 #endif
2628 
2629 
2630 //=============================================================================
2631 // Convenience common pre-built types.
2632 const TypePtr *TypePtr::NULL_PTR;
2633 const TypePtr *TypePtr::NOTNULL;
2634 const TypePtr *TypePtr::BOTTOM;
2635 
2636 //------------------------------meet-------------------------------------------
2637 // Meet over the PTR enum
2638 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2639   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2640   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2641   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2642   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2643   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2644   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2645   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2646 };
2647 
2648 //------------------------------make-------------------------------------------
2649 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2650   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2651 }
2652 
2653 //------------------------------cast_to_ptr_type-------------------------------
2654 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2655   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2656   if( ptr == _ptr ) return this;
2657   return make(_base, ptr, _offset, _speculative, _inline_depth);
2658 }
2659 
2660 //------------------------------get_con----------------------------------------
2661 intptr_t TypePtr::get_con() const {
2662   assert( _ptr == Null, "" );
2663   return offset();
2664 }
2665 
2666 //------------------------------meet-------------------------------------------
2667 // Compute the MEET of two types.  It returns a new Type object.
2668 const Type *TypePtr::xmeet(const Type *t) const {
2669   const Type* res = xmeet_helper(t);
2670   if (res->isa_ptr() == NULL) {
2671     return res;
2672   }
2673 
2674   const TypePtr* res_ptr = res->is_ptr();
2675   if (res_ptr->speculative() != NULL) {
2676     // type->speculative() == NULL means that speculation is no better
2677     // than type, i.e. type->speculative() == type. So there are 2
2678     // ways to represent the fact that we have no useful speculative
2679     // data and we should use a single one to be able to test for
2680     // equality between types. Check whether type->speculative() ==
2681     // type and set speculative to NULL if it is the case.
2682     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2683       return res_ptr->remove_speculative();
2684     }
2685   }
2686 
2687   return res;
2688 }
2689 
2690 const Type *TypePtr::xmeet_helper(const Type *t) const {
2691   // Perform a fast test for common case; meeting the same types together.
2692   if( this == t ) return this;  // Meeting same type-rep?
2693 
2694   // Current "this->_base" is AnyPtr
2695   switch (t->base()) {          // switch on original type
2696   case Int:                     // Mixing ints & oops happens when javac
2697   case Long:                    // reuses local variables
2698   case FloatTop:
2699   case FloatCon:
2700   case FloatBot:
2701   case DoubleTop:
2702   case DoubleCon:
2703   case DoubleBot:
2704   case NarrowOop:
2705   case NarrowKlass:
2706   case Bottom:                  // Ye Olde Default
2707     return Type::BOTTOM;
2708   case Top:
2709     return this;
2710 
2711   case AnyPtr: {                // Meeting to AnyPtrs
2712     const TypePtr *tp = t->is_ptr();
2713     const TypePtr* speculative = xmeet_speculative(tp);
2714     int depth = meet_inline_depth(tp->inline_depth());
2715     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2716   }
2717   case RawPtr:                  // For these, flip the call around to cut down
2718   case OopPtr:
2719   case InstPtr:                 // on the cases I have to handle.
2720   case AryPtr:
2721   case MetadataPtr:
2722   case KlassPtr:
2723     return t->xmeet(this);      // Call in reverse direction
2724   default:                      // All else is a mistake
2725     typerr(t);
2726 
2727   }
2728   return this;
2729 }
2730 
2731 //------------------------------meet_offset------------------------------------
2732 Type::Offset TypePtr::meet_offset(int offset) const {
2733   return _offset.meet(Offset(offset));
2734 }
2735 
2736 //------------------------------dual_offset------------------------------------
2737 Type::Offset TypePtr::dual_offset() const {
2738   return _offset.dual();
2739 }
2740 
2741 //------------------------------xdual------------------------------------------
2742 // Dual: compute field-by-field dual
2743 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2744   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2745 };
2746 const Type *TypePtr::xdual() const {
2747   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2748 }
2749 
2750 //------------------------------xadd_offset------------------------------------
2751 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2752   return _offset.add(offset);
2753 }
2754 
2755 //------------------------------add_offset-------------------------------------
2756 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2757   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2758 }
2759 
2760 //------------------------------eq---------------------------------------------
2761 // Structural equality check for Type representations
2762 bool TypePtr::eq( const Type *t ) const {
2763   const TypePtr *a = (const TypePtr*)t;
2764   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2765 }
2766 
2767 //------------------------------hash-------------------------------------------
2768 // Type-specific hashing function.
2769 int TypePtr::hash(void) const {
2770   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2771 ;
2772 }
2773 
2774 /**
2775  * Return same type without a speculative part
2776  */
2777 const Type* TypePtr::remove_speculative() const {
2778   if (_speculative == NULL) {
2779     return this;
2780   }
2781   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2782   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2783 }
2784 
2785 /**
2786  * Return same type but drop speculative part if we know we won't use
2787  * it
2788  */
2789 const Type* TypePtr::cleanup_speculative() const {
2790   if (speculative() == NULL) {
2791     return this;
2792   }
2793   const Type* no_spec = remove_speculative();
2794   // If this is NULL_PTR then we don't need the speculative type
2795   // (with_inline_depth in case the current type inline depth is
2796   // InlineDepthTop)
2797   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2798     return no_spec;
2799   }
2800   if (above_centerline(speculative()->ptr())) {
2801     return no_spec;
2802   }
2803   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2804   // If the speculative may be null and is an inexact klass then it
2805   // doesn't help
2806   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2807       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2808     return no_spec;
2809   }
2810   return this;
2811 }
2812 
2813 /**
2814  * dual of the speculative part of the type
2815  */
2816 const TypePtr* TypePtr::dual_speculative() const {
2817   if (_speculative == NULL) {
2818     return NULL;
2819   }
2820   return _speculative->dual()->is_ptr();
2821 }
2822 
2823 /**
2824  * meet of the speculative parts of 2 types
2825  *
2826  * @param other  type to meet with
2827  */
2828 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2829   bool this_has_spec = (_speculative != NULL);
2830   bool other_has_spec = (other->speculative() != NULL);
2831 
2832   if (!this_has_spec && !other_has_spec) {
2833     return NULL;
2834   }
2835 
2836   // If we are at a point where control flow meets and one branch has
2837   // a speculative type and the other has not, we meet the speculative
2838   // type of one branch with the actual type of the other. If the
2839   // actual type is exact and the speculative is as well, then the
2840   // result is a speculative type which is exact and we can continue
2841   // speculation further.
2842   const TypePtr* this_spec = _speculative;
2843   const TypePtr* other_spec = other->speculative();
2844 
2845   if (!this_has_spec) {
2846     this_spec = this;
2847   }
2848 
2849   if (!other_has_spec) {
2850     other_spec = other;
2851   }
2852 
2853   return this_spec->meet(other_spec)->is_ptr();
2854 }
2855 
2856 /**
2857  * dual of the inline depth for this type (used for speculation)
2858  */
2859 int TypePtr::dual_inline_depth() const {
2860   return -inline_depth();
2861 }
2862 
2863 /**
2864  * meet of 2 inline depths (used for speculation)
2865  *
2866  * @param depth  depth to meet with
2867  */
2868 int TypePtr::meet_inline_depth(int depth) const {
2869   return MAX2(inline_depth(), depth);
2870 }
2871 
2872 /**
2873  * Are the speculative parts of 2 types equal?
2874  *
2875  * @param other  type to compare this one to
2876  */
2877 bool TypePtr::eq_speculative(const TypePtr* other) const {
2878   if (_speculative == NULL || other->speculative() == NULL) {
2879     return _speculative == other->speculative();
2880   }
2881 
2882   if (_speculative->base() != other->speculative()->base()) {
2883     return false;
2884   }
2885 
2886   return _speculative->eq(other->speculative());
2887 }
2888 
2889 /**
2890  * Hash of the speculative part of the type
2891  */
2892 int TypePtr::hash_speculative() const {
2893   if (_speculative == NULL) {
2894     return 0;
2895   }
2896 
2897   return _speculative->hash();
2898 }
2899 
2900 /**
2901  * add offset to the speculative part of the type
2902  *
2903  * @param offset  offset to add
2904  */
2905 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2906   if (_speculative == NULL) {
2907     return NULL;
2908   }
2909   return _speculative->add_offset(offset)->is_ptr();
2910 }
2911 
2912 /**
2913  * return exact klass from the speculative type if there's one
2914  */
2915 ciKlass* TypePtr::speculative_type() const {
2916   if (_speculative != NULL && _speculative->isa_oopptr()) {
2917     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2918     if (speculative->klass_is_exact()) {
2919       return speculative->klass();
2920     }
2921   }
2922   return NULL;
2923 }
2924 
2925 /**
2926  * return true if speculative type may be null
2927  */
2928 bool TypePtr::speculative_maybe_null() const {
2929   if (_speculative != NULL) {
2930     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2931     return speculative->maybe_null();
2932   }
2933   return true;
2934 }
2935 
2936 bool TypePtr::speculative_always_null() const {
2937   if (_speculative != NULL) {
2938     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2939     return speculative == TypePtr::NULL_PTR;
2940   }
2941   return false;
2942 }
2943 
2944 /**
2945  * Same as TypePtr::speculative_type() but return the klass only if
2946  * the speculative tells us is not null
2947  */
2948 ciKlass* TypePtr::speculative_type_not_null() const {
2949   if (speculative_maybe_null()) {
2950     return NULL;
2951   }
2952   return speculative_type();
2953 }
2954 
2955 /**
2956  * Check whether new profiling would improve speculative type
2957  *
2958  * @param   exact_kls    class from profiling
2959  * @param   inline_depth inlining depth of profile point
2960  *
2961  * @return  true if type profile is valuable
2962  */
2963 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2964   // no profiling?
2965   if (exact_kls == NULL) {
2966     return false;
2967   }
2968   if (speculative() == TypePtr::NULL_PTR) {
2969     return false;
2970   }
2971   // no speculative type or non exact speculative type?
2972   if (speculative_type() == NULL) {
2973     return true;
2974   }
2975   // If the node already has an exact speculative type keep it,
2976   // unless it was provided by profiling that is at a deeper
2977   // inlining level. Profiling at a higher inlining depth is
2978   // expected to be less accurate.
2979   if (_speculative->inline_depth() == InlineDepthBottom) {
2980     return false;
2981   }
2982   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2983   return inline_depth < _speculative->inline_depth();
2984 }
2985 
2986 /**
2987  * Check whether new profiling would improve ptr (= tells us it is non
2988  * null)
2989  *
2990  * @param   ptr_kind always null or not null?
2991  *
2992  * @return  true if ptr profile is valuable
2993  */
2994 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2995   // profiling doesn't tell us anything useful
2996   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2997     return false;
2998   }
2999   // We already know this is not null
3000   if (!this->maybe_null()) {
3001     return false;
3002   }
3003   // We already know the speculative type cannot be null
3004   if (!speculative_maybe_null()) {
3005     return false;
3006   }
3007   // We already know this is always null
3008   if (this == TypePtr::NULL_PTR) {
3009     return false;
3010   }
3011   // We already know the speculative type is always null
3012   if (speculative_always_null()) {
3013     return false;
3014   }
3015   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
3016     return false;
3017   }
3018   return true;
3019 }
3020 
3021 //------------------------------dump2------------------------------------------
3022 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3023   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
3024 };
3025 
3026 #ifndef PRODUCT
3027 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3028   if( _ptr == Null ) st->print("NULL");
3029   else st->print("%s *", ptr_msg[_ptr]);
3030   _offset.dump2(st);
3031   dump_inline_depth(st);
3032   dump_speculative(st);
3033 }
3034 
3035 /**
3036  *dump the speculative part of the type
3037  */
3038 void TypePtr::dump_speculative(outputStream *st) const {
3039   if (_speculative != NULL) {
3040     st->print(" (speculative=");
3041     _speculative->dump_on(st);
3042     st->print(")");
3043   }
3044 }
3045 
3046 /**
3047  *dump the inline depth of the type
3048  */
3049 void TypePtr::dump_inline_depth(outputStream *st) const {
3050   if (_inline_depth != InlineDepthBottom) {
3051     if (_inline_depth == InlineDepthTop) {
3052       st->print(" (inline_depth=InlineDepthTop)");
3053     } else {
3054       st->print(" (inline_depth=%d)", _inline_depth);
3055     }
3056   }
3057 }
3058 #endif
3059 
3060 //------------------------------singleton--------------------------------------
3061 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3062 // constants
3063 bool TypePtr::singleton(void) const {
3064   // TopPTR, Null, AnyNull, Constant are all singletons
3065   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3066 }
3067 
3068 bool TypePtr::empty(void) const {
3069   return (_offset == Offset::top) || above_centerline(_ptr);
3070 }
3071 
3072 //=============================================================================
3073 // Convenience common pre-built types.
3074 const TypeRawPtr *TypeRawPtr::BOTTOM;
3075 const TypeRawPtr *TypeRawPtr::NOTNULL;
3076 
3077 //------------------------------make-------------------------------------------
3078 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3079   assert( ptr != Constant, "what is the constant?" );
3080   assert( ptr != Null, "Use TypePtr for NULL" );
3081   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3082 }
3083 
3084 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3085   assert( bits, "Use TypePtr for NULL" );
3086   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3087 }
3088 
3089 //------------------------------cast_to_ptr_type-------------------------------
3090 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3091   assert( ptr != Constant, "what is the constant?" );
3092   assert( ptr != Null, "Use TypePtr for NULL" );
3093   assert( _bits==0, "Why cast a constant address?");
3094   if( ptr == _ptr ) return this;
3095   return make(ptr);
3096 }
3097 
3098 //------------------------------get_con----------------------------------------
3099 intptr_t TypeRawPtr::get_con() const {
3100   assert( _ptr == Null || _ptr == Constant, "" );
3101   return (intptr_t)_bits;
3102 }
3103 
3104 //------------------------------meet-------------------------------------------
3105 // Compute the MEET of two types.  It returns a new Type object.
3106 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3107   // Perform a fast test for common case; meeting the same types together.
3108   if( this == t ) return this;  // Meeting same type-rep?
3109 
3110   // Current "this->_base" is RawPtr
3111   switch( t->base() ) {         // switch on original type
3112   case Bottom:                  // Ye Olde Default
3113     return t;
3114   case Top:
3115     return this;
3116   case AnyPtr:                  // Meeting to AnyPtrs
3117     break;
3118   case RawPtr: {                // might be top, bot, any/not or constant
3119     enum PTR tptr = t->is_ptr()->ptr();
3120     enum PTR ptr = meet_ptr( tptr );
3121     if( ptr == Constant ) {     // Cannot be equal constants, so...
3122       if( tptr == Constant && _ptr != Constant)  return t;
3123       if( _ptr == Constant && tptr != Constant)  return this;
3124       ptr = NotNull;            // Fall down in lattice
3125     }
3126     return make( ptr );
3127   }
3128 
3129   case OopPtr:
3130   case InstPtr:
3131   case AryPtr:
3132   case MetadataPtr:
3133   case KlassPtr:
3134     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3135   default:                      // All else is a mistake
3136     typerr(t);
3137   }
3138 
3139   // Found an AnyPtr type vs self-RawPtr type
3140   const TypePtr *tp = t->is_ptr();
3141   switch (tp->ptr()) {
3142   case TypePtr::TopPTR:  return this;
3143   case TypePtr::BotPTR:  return t;
3144   case TypePtr::Null:
3145     if( _ptr == TypePtr::TopPTR ) return t;
3146     return TypeRawPtr::BOTTOM;
3147   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3148   case TypePtr::AnyNull:
3149     if( _ptr == TypePtr::Constant) return this;
3150     return make( meet_ptr(TypePtr::AnyNull) );
3151   default: ShouldNotReachHere();
3152   }
3153   return this;
3154 }
3155 
3156 //------------------------------xdual------------------------------------------
3157 // Dual: compute field-by-field dual
3158 const Type *TypeRawPtr::xdual() const {
3159   return new TypeRawPtr( dual_ptr(), _bits );
3160 }
3161 
3162 //------------------------------add_offset-------------------------------------
3163 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3164   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3165   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3166   if( offset == 0 ) return this; // No change
3167   switch (_ptr) {
3168   case TypePtr::TopPTR:
3169   case TypePtr::BotPTR:
3170   case TypePtr::NotNull:
3171     return this;
3172   case TypePtr::Null:
3173   case TypePtr::Constant: {
3174     address bits = _bits+offset;
3175     if ( bits == 0 ) return TypePtr::NULL_PTR;
3176     return make( bits );
3177   }
3178   default:  ShouldNotReachHere();
3179   }
3180   return NULL;                  // Lint noise
3181 }
3182 
3183 //------------------------------eq---------------------------------------------
3184 // Structural equality check for Type representations
3185 bool TypeRawPtr::eq( const Type *t ) const {
3186   const TypeRawPtr *a = (const TypeRawPtr*)t;
3187   return _bits == a->_bits && TypePtr::eq(t);
3188 }
3189 
3190 //------------------------------hash-------------------------------------------
3191 // Type-specific hashing function.
3192 int TypeRawPtr::hash(void) const {
3193   return (intptr_t)_bits + TypePtr::hash();
3194 }
3195 
3196 //------------------------------dump2------------------------------------------
3197 #ifndef PRODUCT
3198 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3199   if( _ptr == Constant )
3200     st->print(INTPTR_FORMAT, p2i(_bits));
3201   else
3202     st->print("rawptr:%s", ptr_msg[_ptr]);
3203 }
3204 #endif
3205 
3206 //=============================================================================
3207 // Convenience common pre-built type.
3208 const TypeOopPtr *TypeOopPtr::BOTTOM;
3209 
3210 //------------------------------TypeOopPtr-------------------------------------
3211 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3212                        int instance_id, const TypePtr* speculative, int inline_depth)
3213   : TypePtr(t, ptr, offset, speculative, inline_depth),
3214     _const_oop(o), _klass(k),
3215     _klass_is_exact(xk),
3216     _is_ptr_to_narrowoop(false),
3217     _is_ptr_to_narrowklass(false),
3218     _is_ptr_to_boxed_value(false),
3219     _instance_id(instance_id) {
3220   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3221       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3222     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3223   }
3224 #ifdef _LP64
3225   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3226     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3227       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3228     } else if (klass() == NULL) {
3229       // Array with unknown body type
3230       assert(this->isa_aryptr(), "only arrays without klass");
3231       _is_ptr_to_narrowoop = UseCompressedOops;
3232     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3233       if (klass()->is_obj_array_klass()) {
3234         _is_ptr_to_narrowoop = true;
3235       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3236         // Check if the field of the value type array element contains oops
3237         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3238         int foffset = field_offset.get() + vk->first_field_offset();
3239         ciField* field = vk->get_field_by_offset(foffset, false);
3240         assert(field != NULL, "missing field");
3241         BasicType bt = field->layout_type();
3242         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3243       }
3244     } else if (klass()->is_instance_klass()) {
3245       if (this->isa_klassptr()) {
3246         // Perm objects don't use compressed references
3247       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3248         // unsafe access
3249         _is_ptr_to_narrowoop = UseCompressedOops;
3250       } else { // exclude unsafe ops
3251         assert(this->isa_instptr(), "must be an instance ptr.");
3252         if (klass() == ciEnv::current()->Class_klass() &&
3253             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3254              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3255           // Special hidden fields from the Class.
3256           assert(this->isa_instptr(), "must be an instance ptr.");
3257           _is_ptr_to_narrowoop = false;
3258         } else if (klass() == ciEnv::current()->Class_klass() &&
3259                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3260           // Static fields
3261           assert(o != NULL, "must be constant");
3262           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3263           BasicType basic_elem_type;
3264           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3265             // Special hidden field that contains the oop of the default value type
3266             basic_elem_type = T_VALUETYPE;
3267           } else {
3268             ciField* field = ik->get_field_by_offset(this->offset(), true);
3269             assert(field != NULL, "missing field");
3270             basic_elem_type = field->layout_type();
3271           }
3272           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3273                                                        basic_elem_type == T_VALUETYPE ||
3274                                                        basic_elem_type == T_ARRAY);
3275         } else {
3276           // Instance fields which contains a compressed oop references.
3277           ciInstanceKlass* ik = klass()->as_instance_klass();
3278           ciField* field = ik->get_field_by_offset(this->offset(), false);
3279           if (field != NULL) {
3280             BasicType basic_elem_type = field->layout_type();
3281             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3282                                                          basic_elem_type == T_VALUETYPE ||
3283                                                          basic_elem_type == T_ARRAY);
3284           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3285             // Compile::find_alias_type() cast exactness on all types to verify
3286             // that it does not affect alias type.
3287             _is_ptr_to_narrowoop = UseCompressedOops;
3288           } else {
3289             // Type for the copy start in LibraryCallKit::inline_native_clone().
3290             _is_ptr_to_narrowoop = UseCompressedOops;
3291           }
3292         }
3293       }
3294     }
3295   }
3296 #endif
3297 }
3298 
3299 //------------------------------make-------------------------------------------
3300 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3301                                    const TypePtr* speculative, int inline_depth) {
3302   assert(ptr != Constant, "no constant generic pointers");
3303   ciKlass*  k = Compile::current()->env()->Object_klass();
3304   bool      xk = false;
3305   ciObject* o = NULL;
3306   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3307 }
3308 
3309 
3310 //------------------------------cast_to_ptr_type-------------------------------
3311 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3312   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3313   if( ptr == _ptr ) return this;
3314   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3315 }
3316 
3317 //-----------------------------cast_to_instance_id----------------------------
3318 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3319   // There are no instances of a general oop.
3320   // Return self unchanged.
3321   return this;
3322 }
3323 
3324 const TypeOopPtr *TypeOopPtr::cast_to_nonconst() const {
3325   return this;
3326 }
3327 
3328 //-----------------------------cast_to_exactness-------------------------------
3329 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3330   // There is no such thing as an exact general oop.
3331   // Return self unchanged.
3332   return this;
3333 }
3334 
3335 
3336 //------------------------------as_klass_type----------------------------------
3337 // Return the klass type corresponding to this instance or array type.
3338 // It is the type that is loaded from an object of this type.
3339 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3340   ciKlass* k = klass();
3341   bool    xk = klass_is_exact();
3342   if (k == NULL)
3343     return TypeKlassPtr::OBJECT;
3344   else
3345     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3346 }
3347 
3348 //------------------------------meet-------------------------------------------
3349 // Compute the MEET of two types.  It returns a new Type object.
3350 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3351   // Perform a fast test for common case; meeting the same types together.
3352   if( this == t ) return this;  // Meeting same type-rep?
3353 
3354   // Current "this->_base" is OopPtr
3355   switch (t->base()) {          // switch on original type
3356 
3357   case Int:                     // Mixing ints & oops happens when javac
3358   case Long:                    // reuses local variables
3359   case FloatTop:
3360   case FloatCon:
3361   case FloatBot:
3362   case DoubleTop:
3363   case DoubleCon:
3364   case DoubleBot:
3365   case NarrowOop:
3366   case NarrowKlass:
3367   case Bottom:                  // Ye Olde Default
3368     return Type::BOTTOM;
3369   case Top:
3370     return this;
3371 
3372   default:                      // All else is a mistake
3373     typerr(t);
3374 
3375   case RawPtr:
3376   case MetadataPtr:
3377   case KlassPtr:
3378     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3379 
3380   case AnyPtr: {
3381     // Found an AnyPtr type vs self-OopPtr type
3382     const TypePtr *tp = t->is_ptr();
3383     Offset offset = meet_offset(tp->offset());
3384     PTR ptr = meet_ptr(tp->ptr());
3385     const TypePtr* speculative = xmeet_speculative(tp);
3386     int depth = meet_inline_depth(tp->inline_depth());
3387     switch (tp->ptr()) {
3388     case Null:
3389       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3390       // else fall through:
3391     case TopPTR:
3392     case AnyNull: {
3393       int instance_id = meet_instance_id(InstanceTop);
3394       return make(ptr, offset, instance_id, speculative, depth);
3395     }
3396     case BotPTR:
3397     case NotNull:
3398       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3399     default: typerr(t);
3400     }
3401   }
3402 
3403   case OopPtr: {                 // Meeting to other OopPtrs
3404     const TypeOopPtr *tp = t->is_oopptr();
3405     int instance_id = meet_instance_id(tp->instance_id());
3406     const TypePtr* speculative = xmeet_speculative(tp);
3407     int depth = meet_inline_depth(tp->inline_depth());
3408     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3409   }
3410 
3411   case InstPtr:                  // For these, flip the call around to cut down
3412   case AryPtr:
3413     return t->xmeet(this);      // Call in reverse direction
3414 
3415   } // End of switch
3416   return this;                  // Return the double constant
3417 }
3418 
3419 
3420 //------------------------------xdual------------------------------------------
3421 // Dual of a pure heap pointer.  No relevant klass or oop information.
3422 const Type *TypeOopPtr::xdual() const {
3423   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3424   assert(const_oop() == NULL,             "no constants here");
3425   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3426 }
3427 
3428 //--------------------------make_from_klass_common-----------------------------
3429 // Computes the element-type given a klass.
3430 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3431   if (klass->is_instance_klass() || klass->is_valuetype()) {
3432     Compile* C = Compile::current();
3433     Dependencies* deps = C->dependencies();
3434     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3435     // Element is an instance
3436     bool klass_is_exact = false;
3437     if (klass->is_loaded()) {
3438       // Try to set klass_is_exact.
3439       ciInstanceKlass* ik = klass->as_instance_klass();
3440       klass_is_exact = ik->is_final();
3441       if (!klass_is_exact && klass_change
3442           && deps != NULL && UseUniqueSubclasses) {
3443         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3444         if (sub != NULL) {
3445           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3446           klass = ik = sub;
3447           klass_is_exact = sub->is_final();
3448         }
3449       }
3450       if (!klass_is_exact && try_for_exact
3451           && deps != NULL && UseExactTypes) {
3452         if (!ik->is_interface() && !ik->has_subklass()) {
3453           // Add a dependence; if concrete subclass added we need to recompile
3454           deps->assert_leaf_type(ik);
3455           klass_is_exact = true;
3456         }
3457       }
3458     }
3459     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3460   } else if (klass->is_obj_array_klass()) {
3461     // Element is an object or value array. Recursively call ourself.
3462     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3463     bool xk = etype->klass_is_exact();
3464     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3465     // We used to pass NotNull in here, asserting that the sub-arrays
3466     // are all not-null.  This is not true in generally, as code can
3467     // slam NULLs down in the subarrays.
3468     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3469     return arr;
3470   } else if (klass->is_type_array_klass()) {
3471     // Element is an typeArray
3472     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3473     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3474     // We used to pass NotNull in here, asserting that the array pointer
3475     // is not-null. That was not true in general.
3476     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3477     return arr;
3478   } else if (klass->is_value_array_klass()) {
3479     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3480     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3481     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3482     return arr;
3483   } else {
3484     ShouldNotReachHere();
3485     return NULL;
3486   }
3487 }
3488 
3489 //------------------------------make_from_constant-----------------------------
3490 // Make a java pointer from an oop constant
3491 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3492   assert(!o->is_null_object(), "null object not yet handled here.");
3493   ciKlass* klass = o->klass();
3494   if (klass->is_instance_klass() || klass->is_valuetype()) {
3495     // Element is an instance or value type
3496     if (require_constant) {
3497       if (!o->can_be_constant())  return NULL;
3498     } else if (!o->should_be_constant()) {
3499       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3500     }
3501     return TypeInstPtr::make(o);
3502   } else if (klass->is_obj_array_klass()) {
3503     // Element is an object array. Recursively call ourself.
3504     const TypeOopPtr *etype =
3505       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3506     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3507     // We used to pass NotNull in here, asserting that the sub-arrays
3508     // are all not-null.  This is not true in generally, as code can
3509     // slam NULLs down in the subarrays.
3510     if (require_constant) {
3511       if (!o->can_be_constant())  return NULL;
3512     } else if (!o->should_be_constant()) {
3513       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3514     }
3515     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3516     return arr;
3517   } else if (klass->is_type_array_klass()) {
3518     // Element is an typeArray
3519     const Type* etype =
3520       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3521     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3522     // We used to pass NotNull in here, asserting that the array pointer
3523     // is not-null. That was not true in general.
3524     if (require_constant) {
3525       if (!o->can_be_constant())  return NULL;
3526     } else if (!o->should_be_constant()) {
3527       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3528     }
3529     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3530     return arr;
3531   } else if (klass->is_value_array_klass()) {
3532     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3533     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::make(o->as_array()->length()));
3534     // We used to pass NotNull in here, asserting that the sub-arrays
3535     // are all not-null.  This is not true in generally, as code can
3536     // slam NULLs down in the subarrays.
3537     if (require_constant) {
3538       if (!o->can_be_constant())  return NULL;
3539     } else if (!o->should_be_constant()) {
3540       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3541     }
3542     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3543     return arr;
3544   }
3545 
3546   fatal("unhandled object type");
3547   return NULL;
3548 }
3549 
3550 //------------------------------get_con----------------------------------------
3551 intptr_t TypeOopPtr::get_con() const {
3552   assert( _ptr == Null || _ptr == Constant, "" );
3553   assert(offset() >= 0, "");
3554 
3555   if (offset() != 0) {
3556     // After being ported to the compiler interface, the compiler no longer
3557     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3558     // to a handle at compile time.  This handle is embedded in the generated
3559     // code and dereferenced at the time the nmethod is made.  Until that time,
3560     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3561     // have access to the addresses!).  This does not seem to currently happen,
3562     // but this assertion here is to help prevent its occurence.
3563     tty->print_cr("Found oop constant with non-zero offset");
3564     ShouldNotReachHere();
3565   }
3566 
3567   return (intptr_t)const_oop()->constant_encoding();
3568 }
3569 
3570 
3571 //-----------------------------filter------------------------------------------
3572 // Do not allow interface-vs.-noninterface joins to collapse to top.
3573 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3574 
3575   const Type* ft = join_helper(kills, include_speculative);
3576   const TypeInstPtr* ftip = ft->isa_instptr();
3577   const TypeInstPtr* ktip = kills->isa_instptr();
3578 
3579   if (ft->empty()) {
3580     // Check for evil case of 'this' being a class and 'kills' expecting an
3581     // interface.  This can happen because the bytecodes do not contain
3582     // enough type info to distinguish a Java-level interface variable
3583     // from a Java-level object variable.  If we meet 2 classes which
3584     // both implement interface I, but their meet is at 'j/l/O' which
3585     // doesn't implement I, we have no way to tell if the result should
3586     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3587     // into a Phi which "knows" it's an Interface type we'll have to
3588     // uplift the type.
3589     if (!empty()) {
3590       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3591         return kills;           // Uplift to interface
3592       }
3593       // Also check for evil cases of 'this' being a class array
3594       // and 'kills' expecting an array of interfaces.
3595       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3596       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3597         return kills;           // Uplift to array of interface
3598       }
3599     }
3600 
3601     return Type::TOP;           // Canonical empty value
3602   }
3603 
3604   // If we have an interface-typed Phi or cast and we narrow to a class type,
3605   // the join should report back the class.  However, if we have a J/L/Object
3606   // class-typed Phi and an interface flows in, it's possible that the meet &
3607   // join report an interface back out.  This isn't possible but happens
3608   // because the type system doesn't interact well with interfaces.
3609   if (ftip != NULL && ktip != NULL &&
3610       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3611       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3612     assert(!ftip->klass_is_exact(), "interface could not be exact");
3613     return ktip->cast_to_ptr_type(ftip->ptr());
3614   }
3615 
3616   return ft;
3617 }
3618 
3619 //------------------------------eq---------------------------------------------
3620 // Structural equality check for Type representations
3621 bool TypeOopPtr::eq( const Type *t ) const {
3622   const TypeOopPtr *a = (const TypeOopPtr*)t;
3623   if (_klass_is_exact != a->_klass_is_exact ||
3624       _instance_id != a->_instance_id)  return false;
3625   ciObject* one = const_oop();
3626   ciObject* two = a->const_oop();
3627   if (one == NULL || two == NULL) {
3628     return (one == two) && TypePtr::eq(t);
3629   } else {
3630     return one->equals(two) && TypePtr::eq(t);
3631   }
3632 }
3633 
3634 //------------------------------hash-------------------------------------------
3635 // Type-specific hashing function.
3636 int TypeOopPtr::hash(void) const {
3637   return
3638     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3639              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3640 }
3641 
3642 //------------------------------dump2------------------------------------------
3643 #ifndef PRODUCT
3644 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3645   st->print("oopptr:%s", ptr_msg[_ptr]);
3646   if( _klass_is_exact ) st->print(":exact");
3647   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3648   _offset.dump2(st);
3649   if (_instance_id == InstanceTop)
3650     st->print(",iid=top");
3651   else if (_instance_id != InstanceBot)
3652     st->print(",iid=%d",_instance_id);
3653 
3654   dump_inline_depth(st);
3655   dump_speculative(st);
3656 }
3657 #endif
3658 
3659 //------------------------------singleton--------------------------------------
3660 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3661 // constants
3662 bool TypeOopPtr::singleton(void) const {
3663   // detune optimizer to not generate constant oop + constant offset as a constant!
3664   // TopPTR, Null, AnyNull, Constant are all singletons
3665   return (offset() == 0) && !below_centerline(_ptr);
3666 }
3667 
3668 //------------------------------add_offset-------------------------------------
3669 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3670   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3671 }
3672 
3673 /**
3674  * Return same type without a speculative part
3675  */
3676 const Type* TypeOopPtr::remove_speculative() const {
3677   if (_speculative == NULL) {
3678     return this;
3679   }
3680   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3681   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3682 }
3683 
3684 /**
3685  * Return same type but drop speculative part if we know we won't use
3686  * it
3687  */
3688 const Type* TypeOopPtr::cleanup_speculative() const {
3689   // If the klass is exact and the ptr is not null then there's
3690   // nothing that the speculative type can help us with
3691   if (klass_is_exact() && !maybe_null()) {
3692     return remove_speculative();
3693   }
3694   return TypePtr::cleanup_speculative();
3695 }
3696 
3697 /**
3698  * Return same type but with a different inline depth (used for speculation)
3699  *
3700  * @param depth  depth to meet with
3701  */
3702 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3703   if (!UseInlineDepthForSpeculativeTypes) {
3704     return this;
3705   }
3706   return make(_ptr, _offset, _instance_id, _speculative, depth);
3707 }
3708 
3709 //------------------------------meet_instance_id--------------------------------
3710 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3711   // Either is 'TOP' instance?  Return the other instance!
3712   if( _instance_id == InstanceTop ) return  instance_id;
3713   if(  instance_id == InstanceTop ) return _instance_id;
3714   // If either is different, return 'BOTTOM' instance
3715   if( _instance_id != instance_id ) return InstanceBot;
3716   return _instance_id;
3717 }
3718 
3719 //------------------------------dual_instance_id--------------------------------
3720 int TypeOopPtr::dual_instance_id( ) const {
3721   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3722   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3723   return _instance_id;              // Map everything else into self
3724 }
3725 
3726 /**
3727  * Check whether new profiling would improve speculative type
3728  *
3729  * @param   exact_kls    class from profiling
3730  * @param   inline_depth inlining depth of profile point
3731  *
3732  * @return  true if type profile is valuable
3733  */
3734 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3735   // no way to improve an already exact type
3736   if (klass_is_exact()) {
3737     return false;
3738   }
3739   return TypePtr::would_improve_type(exact_kls, inline_depth);
3740 }
3741 
3742 //=============================================================================
3743 // Convenience common pre-built types.
3744 const TypeInstPtr *TypeInstPtr::NOTNULL;
3745 const TypeInstPtr *TypeInstPtr::BOTTOM;
3746 const TypeInstPtr *TypeInstPtr::MIRROR;
3747 const TypeInstPtr *TypeInstPtr::MARK;
3748 const TypeInstPtr *TypeInstPtr::KLASS;
3749 
3750 //------------------------------TypeInstPtr-------------------------------------
3751 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3752                          int instance_id, const TypePtr* speculative, int inline_depth)
3753   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3754     _name(k->name()) {
3755    assert(k != NULL &&
3756           (k->is_loaded() || o == NULL),
3757           "cannot have constants with non-loaded klass");
3758 };
3759 
3760 //------------------------------make-------------------------------------------
3761 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3762                                      ciKlass* k,
3763                                      bool xk,
3764                                      ciObject* o,
3765                                      Offset offset,
3766                                      int instance_id,
3767                                      const TypePtr* speculative,
3768                                      int inline_depth) {
3769   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3770   // Either const_oop() is NULL or else ptr is Constant
3771   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3772           "constant pointers must have a value supplied" );
3773   // Ptr is never Null
3774   assert( ptr != Null, "NULL pointers are not typed" );
3775 
3776   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3777   if (!UseExactTypes)  xk = false;
3778   if (ptr == Constant) {
3779     // Note:  This case includes meta-object constants, such as methods.
3780     xk = true;
3781   } else if (k->is_loaded()) {
3782     ciInstanceKlass* ik = k->as_instance_klass();
3783     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3784     if (xk && ik->is_interface())  xk = false;  // no exact interface
3785   }
3786 
3787   // Now hash this baby
3788   TypeInstPtr *result =
3789     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3790 
3791   return result;
3792 }
3793 
3794 /**
3795  *  Create constant type for a constant boxed value
3796  */
3797 const Type* TypeInstPtr::get_const_boxed_value() const {
3798   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3799   assert((const_oop() != NULL), "should be called only for constant object");
3800   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3801   BasicType bt = constant.basic_type();
3802   switch (bt) {
3803     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3804     case T_INT:      return TypeInt::make(constant.as_int());
3805     case T_CHAR:     return TypeInt::make(constant.as_char());
3806     case T_BYTE:     return TypeInt::make(constant.as_byte());
3807     case T_SHORT:    return TypeInt::make(constant.as_short());
3808     case T_FLOAT:    return TypeF::make(constant.as_float());
3809     case T_DOUBLE:   return TypeD::make(constant.as_double());
3810     case T_LONG:     return TypeLong::make(constant.as_long());
3811     default:         break;
3812   }
3813   fatal("Invalid boxed value type '%s'", type2name(bt));
3814   return NULL;
3815 }
3816 
3817 //------------------------------cast_to_ptr_type-------------------------------
3818 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3819   if( ptr == _ptr ) return this;
3820   // Reconstruct _sig info here since not a problem with later lazy
3821   // construction, _sig will show up on demand.
3822   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3823 }
3824 
3825 
3826 //-----------------------------cast_to_exactness-------------------------------
3827 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3828   if( klass_is_exact == _klass_is_exact ) return this;
3829   if (!UseExactTypes)  return this;
3830   if (!_klass->is_loaded())  return this;
3831   ciInstanceKlass* ik = _klass->as_instance_klass();
3832   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3833   if( ik->is_interface() )              return this;  // cannot set xk
3834   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3835 }
3836 
3837 //-----------------------------cast_to_instance_id----------------------------
3838 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3839   if( instance_id == _instance_id ) return this;
3840   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3841 }
3842 
3843 const TypeOopPtr *TypeInstPtr::cast_to_nonconst() const {
3844   if (const_oop() == NULL) return this;
3845   return make(NotNull, klass(), _klass_is_exact, NULL, _offset, _instance_id, _speculative, _inline_depth);
3846 }
3847 
3848 //------------------------------xmeet_unloaded---------------------------------
3849 // Compute the MEET of two InstPtrs when at least one is unloaded.
3850 // Assume classes are different since called after check for same name/class-loader
3851 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3852     Offset off = meet_offset(tinst->offset());
3853     PTR ptr = meet_ptr(tinst->ptr());
3854     int instance_id = meet_instance_id(tinst->instance_id());
3855     const TypePtr* speculative = xmeet_speculative(tinst);
3856     int depth = meet_inline_depth(tinst->inline_depth());
3857 
3858     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3859     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3860     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3861       //
3862       // Meet unloaded class with java/lang/Object
3863       //
3864       // Meet
3865       //          |                     Unloaded Class
3866       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3867       //  ===================================================================
3868       //   TOP    | ..........................Unloaded......................|
3869       //  AnyNull |  U-AN    |................Unloaded......................|
3870       // Constant | ... O-NN .................................. |   O-BOT   |
3871       //  NotNull | ... O-NN .................................. |   O-BOT   |
3872       //  BOTTOM  | ........................Object-BOTTOM ..................|
3873       //
3874       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3875       //
3876       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3877       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3878       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3879       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3880         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3881         else                                      { return TypeInstPtr::NOTNULL; }
3882       }
3883       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3884 
3885       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3886     }
3887 
3888     // Both are unloaded, not the same class, not Object
3889     // Or meet unloaded with a different loaded class, not java/lang/Object
3890     if( ptr != TypePtr::BotPTR ) {
3891       return TypeInstPtr::NOTNULL;
3892     }
3893     return TypeInstPtr::BOTTOM;
3894 }
3895 
3896 
3897 //------------------------------meet-------------------------------------------
3898 // Compute the MEET of two types.  It returns a new Type object.
3899 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3900   // Perform a fast test for common case; meeting the same types together.
3901   if( this == t ) return this;  // Meeting same type-rep?
3902 
3903   // Current "this->_base" is Pointer
3904   switch (t->base()) {          // switch on original type
3905 
3906   case Int:                     // Mixing ints & oops happens when javac
3907   case Long:                    // reuses local variables
3908   case FloatTop:
3909   case FloatCon:
3910   case FloatBot:
3911   case DoubleTop:
3912   case DoubleCon:
3913   case DoubleBot:
3914   case NarrowOop:
3915   case NarrowKlass:
3916   case Bottom:                  // Ye Olde Default
3917     return Type::BOTTOM;
3918   case Top:
3919     return this;
3920 
3921   default:                      // All else is a mistake
3922     typerr(t);
3923 
3924   case MetadataPtr:
3925   case KlassPtr:
3926   case RawPtr: return TypePtr::BOTTOM;
3927 
3928   case AryPtr: {                // All arrays inherit from Object class
3929     const TypeAryPtr *tp = t->is_aryptr();
3930     Offset offset = meet_offset(tp->offset());
3931     PTR ptr = meet_ptr(tp->ptr());
3932     int instance_id = meet_instance_id(tp->instance_id());
3933     const TypePtr* speculative = xmeet_speculative(tp);
3934     int depth = meet_inline_depth(tp->inline_depth());
3935     switch (ptr) {
3936     case TopPTR:
3937     case AnyNull:                // Fall 'down' to dual of object klass
3938       // For instances when a subclass meets a superclass we fall
3939       // below the centerline when the superclass is exact. We need to
3940       // do the same here.
3941       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3942         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3943       } else {
3944         // cannot subclass, so the meet has to fall badly below the centerline
3945         ptr = NotNull;
3946         instance_id = InstanceBot;
3947         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3948       }
3949     case Constant:
3950     case NotNull:
3951     case BotPTR:                // Fall down to object klass
3952       // LCA is object_klass, but if we subclass from the top we can do better
3953       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3954         // If 'this' (InstPtr) is above the centerline and it is Object class
3955         // then we can subclass in the Java class hierarchy.
3956         // For instances when a subclass meets a superclass we fall
3957         // below the centerline when the superclass is exact. We need
3958         // to do the same here.
3959         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3960           // that is, tp's array type is a subtype of my klass
3961           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3962                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3963         }
3964       }
3965       // The other case cannot happen, since I cannot be a subtype of an array.
3966       // The meet falls down to Object class below centerline.
3967       if( ptr == Constant )
3968          ptr = NotNull;
3969       instance_id = InstanceBot;
3970       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3971     default: typerr(t);
3972     }
3973   }
3974 
3975   case OopPtr: {                // Meeting to OopPtrs
3976     // Found a OopPtr type vs self-InstPtr type
3977     const TypeOopPtr *tp = t->is_oopptr();
3978     Offset offset = meet_offset(tp->offset());
3979     PTR ptr = meet_ptr(tp->ptr());
3980     switch (tp->ptr()) {
3981     case TopPTR:
3982     case AnyNull: {
3983       int instance_id = meet_instance_id(InstanceTop);
3984       const TypePtr* speculative = xmeet_speculative(tp);
3985       int depth = meet_inline_depth(tp->inline_depth());
3986       return make(ptr, klass(), klass_is_exact(),
3987                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3988     }
3989     case NotNull:
3990     case BotPTR: {
3991       int instance_id = meet_instance_id(tp->instance_id());
3992       const TypePtr* speculative = xmeet_speculative(tp);
3993       int depth = meet_inline_depth(tp->inline_depth());
3994       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3995     }
3996     default: typerr(t);
3997     }
3998   }
3999 
4000   case AnyPtr: {                // Meeting to AnyPtrs
4001     // Found an AnyPtr type vs self-InstPtr type
4002     const TypePtr *tp = t->is_ptr();
4003     Offset offset = meet_offset(tp->offset());
4004     PTR ptr = meet_ptr(tp->ptr());
4005     int instance_id = meet_instance_id(InstanceTop);
4006     const TypePtr* speculative = xmeet_speculative(tp);
4007     int depth = meet_inline_depth(tp->inline_depth());
4008     switch (tp->ptr()) {
4009     case Null:
4010       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4011       // else fall through to AnyNull
4012     case TopPTR:
4013     case AnyNull: {
4014       return make(ptr, klass(), klass_is_exact(),
4015                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
4016     }
4017     case NotNull:
4018     case BotPTR:
4019       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4020     default: typerr(t);
4021     }
4022   }
4023 
4024   /*
4025                  A-top         }
4026                /   |   \       }  Tops
4027            B-top A-any C-top   }
4028               | /  |  \ |      }  Any-nulls
4029            B-any   |   C-any   }
4030               |    |    |
4031            B-con A-con C-con   } constants; not comparable across classes
4032               |    |    |
4033            B-not   |   C-not   }
4034               | \  |  / |      }  not-nulls
4035            B-bot A-not C-bot   }
4036                \   |   /       }  Bottoms
4037                  A-bot         }
4038   */
4039 
4040   case InstPtr: {                // Meeting 2 Oops?
4041     // Found an InstPtr sub-type vs self-InstPtr type
4042     const TypeInstPtr *tinst = t->is_instptr();
4043     Offset off = meet_offset( tinst->offset() );
4044     PTR ptr = meet_ptr( tinst->ptr() );
4045     int instance_id = meet_instance_id(tinst->instance_id());
4046     const TypePtr* speculative = xmeet_speculative(tinst);
4047     int depth = meet_inline_depth(tinst->inline_depth());
4048 
4049     // Check for easy case; klasses are equal (and perhaps not loaded!)
4050     // If we have constants, then we created oops so classes are loaded
4051     // and we can handle the constants further down.  This case handles
4052     // both-not-loaded or both-loaded classes
4053     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4054       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4055     }
4056 
4057     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4058     ciKlass* tinst_klass = tinst->klass();
4059     ciKlass* this_klass  = this->klass();
4060     bool tinst_xk = tinst->klass_is_exact();
4061     bool this_xk  = this->klass_is_exact();
4062     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4063       // One of these classes has not been loaded
4064       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4065 #ifndef PRODUCT
4066       if( PrintOpto && Verbose ) {
4067         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4068         tty->print("  this == "); this->dump(); tty->cr();
4069         tty->print(" tinst == "); tinst->dump(); tty->cr();
4070       }
4071 #endif
4072       return unloaded_meet;
4073     }
4074 
4075     // Handle mixing oops and interfaces first.
4076     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4077                                         tinst_klass == ciEnv::current()->Object_klass())) {
4078       ciKlass *tmp = tinst_klass; // Swap interface around
4079       tinst_klass = this_klass;
4080       this_klass = tmp;
4081       bool tmp2 = tinst_xk;
4082       tinst_xk = this_xk;
4083       this_xk = tmp2;
4084     }
4085     if (tinst_klass->is_interface() &&
4086         !(this_klass->is_interface() ||
4087           // Treat java/lang/Object as an honorary interface,
4088           // because we need a bottom for the interface hierarchy.
4089           this_klass == ciEnv::current()->Object_klass())) {
4090       // Oop meets interface!
4091 
4092       // See if the oop subtypes (implements) interface.
4093       ciKlass *k;
4094       bool xk;
4095       if( this_klass->is_subtype_of( tinst_klass ) ) {
4096         // Oop indeed subtypes.  Now keep oop or interface depending
4097         // on whether we are both above the centerline or either is
4098         // below the centerline.  If we are on the centerline
4099         // (e.g., Constant vs. AnyNull interface), use the constant.
4100         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4101         // If we are keeping this_klass, keep its exactness too.
4102         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4103       } else {                  // Does not implement, fall to Object
4104         // Oop does not implement interface, so mixing falls to Object
4105         // just like the verifier does (if both are above the
4106         // centerline fall to interface)
4107         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4108         xk = above_centerline(ptr) ? tinst_xk : false;
4109         // Watch out for Constant vs. AnyNull interface.
4110         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4111         instance_id = InstanceBot;
4112       }
4113       ciObject* o = NULL;  // the Constant value, if any
4114       if (ptr == Constant) {
4115         // Find out which constant.
4116         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4117       }
4118       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4119     }
4120 
4121     // Either oop vs oop or interface vs interface or interface vs Object
4122 
4123     // !!! Here's how the symmetry requirement breaks down into invariants:
4124     // If we split one up & one down AND they subtype, take the down man.
4125     // If we split one up & one down AND they do NOT subtype, "fall hard".
4126     // If both are up and they subtype, take the subtype class.
4127     // If both are up and they do NOT subtype, "fall hard".
4128     // If both are down and they subtype, take the supertype class.
4129     // If both are down and they do NOT subtype, "fall hard".
4130     // Constants treated as down.
4131 
4132     // Now, reorder the above list; observe that both-down+subtype is also
4133     // "fall hard"; "fall hard" becomes the default case:
4134     // If we split one up & one down AND they subtype, take the down man.
4135     // If both are up and they subtype, take the subtype class.
4136 
4137     // If both are down and they subtype, "fall hard".
4138     // If both are down and they do NOT subtype, "fall hard".
4139     // If both are up and they do NOT subtype, "fall hard".
4140     // If we split one up & one down AND they do NOT subtype, "fall hard".
4141 
4142     // If a proper subtype is exact, and we return it, we return it exactly.
4143     // If a proper supertype is exact, there can be no subtyping relationship!
4144     // If both types are equal to the subtype, exactness is and-ed below the
4145     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4146 
4147     // Check for subtyping:
4148     ciKlass *subtype = NULL;
4149     bool subtype_exact = false;
4150     if( tinst_klass->equals(this_klass) ) {
4151       subtype = this_klass;
4152       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4153     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4154       subtype = this_klass;     // Pick subtyping class
4155       subtype_exact = this_xk;
4156     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4157       subtype = tinst_klass;    // Pick subtyping class
4158       subtype_exact = tinst_xk;
4159     }
4160 
4161     if( subtype ) {
4162       if( above_centerline(ptr) ) { // both are up?
4163         this_klass = tinst_klass = subtype;
4164         this_xk = tinst_xk = subtype_exact;
4165       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4166         this_klass = tinst_klass; // tinst is down; keep down man
4167         this_xk = tinst_xk;
4168       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4169         tinst_klass = this_klass; // this is down; keep down man
4170         tinst_xk = this_xk;
4171       } else {
4172         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4173       }
4174     }
4175 
4176     // Check for classes now being equal
4177     if (tinst_klass->equals(this_klass)) {
4178       // If the klasses are equal, the constants may still differ.  Fall to
4179       // NotNull if they do (neither constant is NULL; that is a special case
4180       // handled elsewhere).
4181       ciObject* o = NULL;             // Assume not constant when done
4182       ciObject* this_oop  = const_oop();
4183       ciObject* tinst_oop = tinst->const_oop();
4184       if( ptr == Constant ) {
4185         if (this_oop != NULL && tinst_oop != NULL &&
4186             this_oop->equals(tinst_oop) )
4187           o = this_oop;
4188         else if (above_centerline(this ->_ptr))
4189           o = tinst_oop;
4190         else if (above_centerline(tinst ->_ptr))
4191           o = this_oop;
4192         else
4193           ptr = NotNull;
4194       }
4195       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4196     } // Else classes are not equal
4197 
4198     // Since klasses are different, we require a LCA in the Java
4199     // class hierarchy - which means we have to fall to at least NotNull.
4200     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4201       ptr = NotNull;
4202 
4203     instance_id = InstanceBot;
4204 
4205     // Now we find the LCA of Java classes
4206     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4207     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4208   } // End of case InstPtr
4209 
4210   case ValueType: {
4211     const TypeValueType *tv = t->is_valuetype();
4212 
4213     if (above_centerline(ptr())) {
4214       if (tv->value_klass()->is_subtype_of(_klass)) {
4215         return t;
4216       } else {
4217         return TypeInstPtr::make(NotNull, _klass);
4218       }
4219     } else {
4220       if (tv->value_klass()->is_subtype_of(_klass)) {
4221         return TypeInstPtr::make(ptr(), _klass);
4222       } else {
4223         return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4224       }
4225     }
4226   }
4227 
4228   } // End of switch
4229   return this;                  // Return the double constant
4230 }
4231 
4232 
4233 //------------------------java_mirror_type--------------------------------------
4234 ciType* TypeInstPtr::java_mirror_type() const {
4235   // must be a singleton type
4236   if( const_oop() == NULL )  return NULL;
4237 
4238   // must be of type java.lang.Class
4239   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4240 
4241   return const_oop()->as_instance()->java_mirror_type();
4242 }
4243 
4244 
4245 //------------------------------xdual------------------------------------------
4246 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4247 // inheritance mechanism.
4248 const Type *TypeInstPtr::xdual() const {
4249   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4250 }
4251 
4252 //------------------------------eq---------------------------------------------
4253 // Structural equality check for Type representations
4254 bool TypeInstPtr::eq( const Type *t ) const {
4255   const TypeInstPtr *p = t->is_instptr();
4256   return
4257     klass()->equals(p->klass()) &&
4258     TypeOopPtr::eq(p);          // Check sub-type stuff
4259 }
4260 
4261 //------------------------------hash-------------------------------------------
4262 // Type-specific hashing function.
4263 int TypeInstPtr::hash(void) const {
4264   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4265   return hash;
4266 }
4267 
4268 //------------------------------dump2------------------------------------------
4269 // Dump oop Type
4270 #ifndef PRODUCT
4271 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4272   // Print the name of the klass.
4273   klass()->print_name_on(st);
4274 
4275   switch( _ptr ) {
4276   case Constant:
4277     // TO DO: Make CI print the hex address of the underlying oop.
4278     if (WizardMode || Verbose) {
4279       const_oop()->print_oop(st);
4280     }
4281   case BotPTR:
4282     if (!WizardMode && !Verbose) {
4283       if( _klass_is_exact ) st->print(":exact");
4284       break;
4285     }
4286   case TopPTR:
4287   case AnyNull:
4288   case NotNull:
4289     st->print(":%s", ptr_msg[_ptr]);
4290     if( _klass_is_exact ) st->print(":exact");
4291     break;
4292   default:
4293     break;
4294   }
4295 
4296   _offset.dump2(st);
4297 
4298   st->print(" *");
4299   if (_instance_id == InstanceTop)
4300     st->print(",iid=top");
4301   else if (_instance_id != InstanceBot)
4302     st->print(",iid=%d",_instance_id);
4303 
4304   dump_inline_depth(st);
4305   dump_speculative(st);
4306 }
4307 #endif
4308 
4309 //------------------------------add_offset-------------------------------------
4310 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4311   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4312               _instance_id, add_offset_speculative(offset), _inline_depth);
4313 }
4314 
4315 const Type *TypeInstPtr::remove_speculative() const {
4316   if (_speculative == NULL) {
4317     return this;
4318   }
4319   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4320   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4321               _instance_id, NULL, _inline_depth);
4322 }
4323 
4324 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4325   if (!UseInlineDepthForSpeculativeTypes) {
4326     return this;
4327   }
4328   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4329 }
4330 
4331 //=============================================================================
4332 // Convenience common pre-built types.
4333 const TypeAryPtr *TypeAryPtr::RANGE;
4334 const TypeAryPtr *TypeAryPtr::OOPS;
4335 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4336 const TypeAryPtr *TypeAryPtr::BYTES;
4337 const TypeAryPtr *TypeAryPtr::SHORTS;
4338 const TypeAryPtr *TypeAryPtr::CHARS;
4339 const TypeAryPtr *TypeAryPtr::INTS;
4340 const TypeAryPtr *TypeAryPtr::LONGS;
4341 const TypeAryPtr *TypeAryPtr::FLOATS;
4342 const TypeAryPtr *TypeAryPtr::DOUBLES;
4343 
4344 //------------------------------make-------------------------------------------
4345 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4346                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4347   assert(!(k == NULL && ary->_elem->isa_int()),
4348          "integral arrays must be pre-equipped with a class");
4349   if (!xk)  xk = ary->ary_must_be_exact();
4350   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4351   if (!UseExactTypes)  xk = (ptr == Constant);
4352   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4353 }
4354 
4355 //------------------------------make-------------------------------------------
4356 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4357                                    int instance_id, const TypePtr* speculative, int inline_depth,
4358                                    bool is_autobox_cache) {
4359   assert(!(k == NULL && ary->_elem->isa_int()),
4360          "integral arrays must be pre-equipped with a class");
4361   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4362   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4363   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4364   if (!UseExactTypes)  xk = (ptr == Constant);
4365   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4366 }
4367 
4368 //------------------------------cast_to_ptr_type-------------------------------
4369 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4370   if( ptr == _ptr ) return this;
4371   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4372 }
4373 
4374 
4375 //-----------------------------cast_to_exactness-------------------------------
4376 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4377   if( klass_is_exact == _klass_is_exact ) return this;
4378   if (!UseExactTypes)  return this;
4379   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4380   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4381 }
4382 
4383 //-----------------------------cast_to_instance_id----------------------------
4384 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4385   if( instance_id == _instance_id ) return this;
4386   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4387 }
4388 
4389 const TypeOopPtr *TypeAryPtr::cast_to_nonconst() const {
4390   if (const_oop() == NULL) return this;
4391   return make(NotNull, NULL, _ary, klass(), _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth);
4392 }
4393 
4394 
4395 //-----------------------------narrow_size_type-------------------------------
4396 // Local cache for arrayOopDesc::max_array_length(etype),
4397 // which is kind of slow (and cached elsewhere by other users).
4398 static jint max_array_length_cache[T_CONFLICT+1];
4399 static jint max_array_length(BasicType etype) {
4400   jint& cache = max_array_length_cache[etype];
4401   jint res = cache;
4402   if (res == 0) {
4403     switch (etype) {
4404     case T_NARROWOOP:
4405       etype = T_OBJECT;
4406       break;
4407     case T_NARROWKLASS:
4408     case T_CONFLICT:
4409     case T_ILLEGAL:
4410     case T_VOID:
4411       etype = T_BYTE;           // will produce conservatively high value
4412       break;
4413     default:
4414       break;
4415     }
4416     cache = res = arrayOopDesc::max_array_length(etype);
4417   }
4418   return res;
4419 }
4420 
4421 // Narrow the given size type to the index range for the given array base type.
4422 // Return NULL if the resulting int type becomes empty.
4423 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4424   jint hi = size->_hi;
4425   jint lo = size->_lo;
4426   jint min_lo = 0;
4427   jint max_hi = max_array_length(elem()->basic_type());
4428   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4429   bool chg = false;
4430   if (lo < min_lo) {
4431     lo = min_lo;
4432     if (size->is_con()) {
4433       hi = lo;
4434     }
4435     chg = true;
4436   }
4437   if (hi > max_hi) {
4438     hi = max_hi;
4439     if (size->is_con()) {
4440       lo = hi;
4441     }
4442     chg = true;
4443   }
4444   // Negative length arrays will produce weird intermediate dead fast-path code
4445   if (lo > hi)
4446     return TypeInt::ZERO;
4447   if (!chg)
4448     return size;
4449   return TypeInt::make(lo, hi, Type::WidenMin);
4450 }
4451 
4452 //-------------------------------cast_to_size----------------------------------
4453 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4454   assert(new_size != NULL, "");
4455   new_size = narrow_size_type(new_size);
4456   if (new_size == size())  return this;
4457   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4458   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4459 }
4460 
4461 //------------------------------cast_to_stable---------------------------------
4462 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4463   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4464     return this;
4465 
4466   const Type* elem = this->elem();
4467   const TypePtr* elem_ptr = elem->make_ptr();
4468 
4469   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4470     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4471     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4472   }
4473 
4474   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4475 
4476   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4477 }
4478 
4479 //-----------------------------stable_dimension--------------------------------
4480 int TypeAryPtr::stable_dimension() const {
4481   if (!is_stable())  return 0;
4482   int dim = 1;
4483   const TypePtr* elem_ptr = elem()->make_ptr();
4484   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4485     dim += elem_ptr->is_aryptr()->stable_dimension();
4486   return dim;
4487 }
4488 
4489 //----------------------cast_to_autobox_cache-----------------------------------
4490 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4491   if (is_autobox_cache() == cache)  return this;
4492   const TypeOopPtr* etype = elem()->make_oopptr();
4493   if (etype == NULL)  return this;
4494   // The pointers in the autobox arrays are always non-null.
4495   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4496   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4497   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4498   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4499 }
4500 
4501 //------------------------------eq---------------------------------------------
4502 // Structural equality check for Type representations
4503 bool TypeAryPtr::eq( const Type *t ) const {
4504   const TypeAryPtr *p = t->is_aryptr();
4505   return
4506     _ary == p->_ary &&  // Check array
4507     TypeOopPtr::eq(p) &&// Check sub-parts
4508     _field_offset == p->_field_offset;
4509 }
4510 
4511 //------------------------------hash-------------------------------------------
4512 // Type-specific hashing function.
4513 int TypeAryPtr::hash(void) const {
4514   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4515 }
4516 
4517 //------------------------------meet-------------------------------------------
4518 // Compute the MEET of two types.  It returns a new Type object.
4519 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4520   // Perform a fast test for common case; meeting the same types together.
4521   if( this == t ) return this;  // Meeting same type-rep?
4522   // Current "this->_base" is Pointer
4523   switch (t->base()) {          // switch on original type
4524 
4525   // Mixing ints & oops happens when javac reuses local variables
4526   case Int:
4527   case Long:
4528   case FloatTop:
4529   case FloatCon:
4530   case FloatBot:
4531   case DoubleTop:
4532   case DoubleCon:
4533   case DoubleBot:
4534   case NarrowOop:
4535   case NarrowKlass:
4536   case Bottom:                  // Ye Olde Default
4537     return Type::BOTTOM;
4538   case Top:
4539     return this;
4540 
4541   default:                      // All else is a mistake
4542     typerr(t);
4543 
4544   case OopPtr: {                // Meeting to OopPtrs
4545     // Found a OopPtr type vs self-AryPtr type
4546     const TypeOopPtr *tp = t->is_oopptr();
4547     Offset offset = meet_offset(tp->offset());
4548     PTR ptr = meet_ptr(tp->ptr());
4549     int depth = meet_inline_depth(tp->inline_depth());
4550     const TypePtr* speculative = xmeet_speculative(tp);
4551     switch (tp->ptr()) {
4552     case TopPTR:
4553     case AnyNull: {
4554       int instance_id = meet_instance_id(InstanceTop);
4555       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4556                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4557     }
4558     case BotPTR:
4559     case NotNull: {
4560       int instance_id = meet_instance_id(tp->instance_id());
4561       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4562     }
4563     default: ShouldNotReachHere();
4564     }
4565   }
4566 
4567   case AnyPtr: {                // Meeting two AnyPtrs
4568     // Found an AnyPtr type vs self-AryPtr type
4569     const TypePtr *tp = t->is_ptr();
4570     Offset offset = meet_offset(tp->offset());
4571     PTR ptr = meet_ptr(tp->ptr());
4572     const TypePtr* speculative = xmeet_speculative(tp);
4573     int depth = meet_inline_depth(tp->inline_depth());
4574     switch (tp->ptr()) {
4575     case TopPTR:
4576       return this;
4577     case BotPTR:
4578     case NotNull:
4579       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4580     case Null:
4581       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4582       // else fall through to AnyNull
4583     case AnyNull: {
4584       int instance_id = meet_instance_id(InstanceTop);
4585       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4586                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4587     }
4588     default: ShouldNotReachHere();
4589     }
4590   }
4591 
4592   case MetadataPtr:
4593   case KlassPtr:
4594   case RawPtr: return TypePtr::BOTTOM;
4595 
4596   case AryPtr: {                // Meeting 2 references?
4597     const TypeAryPtr *tap = t->is_aryptr();
4598     Offset off = meet_offset(tap->offset());
4599     Offset field_off = meet_field_offset(tap->field_offset());
4600     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4601     PTR ptr = meet_ptr(tap->ptr());
4602     int instance_id = meet_instance_id(tap->instance_id());
4603     const TypePtr* speculative = xmeet_speculative(tap);
4604     int depth = meet_inline_depth(tap->inline_depth());
4605     ciKlass* lazy_klass = NULL;
4606     if (tary->_elem->isa_int()) {
4607       // Integral array element types have irrelevant lattice relations.
4608       // It is the klass that determines array layout, not the element type.
4609       if (_klass == NULL)
4610         lazy_klass = tap->_klass;
4611       else if (tap->_klass == NULL || tap->_klass == _klass) {
4612         lazy_klass = _klass;
4613       } else {
4614         // Something like byte[int+] meets char[int+].
4615         // This must fall to bottom, not (int[-128..65535])[int+].
4616         instance_id = InstanceBot;
4617         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4618       }
4619     } else // Non integral arrays.
4620       // Must fall to bottom if exact klasses in upper lattice
4621       // are not equal or super klass is exact.
4622       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4623           // meet with top[] and bottom[] are processed further down:
4624           tap->_klass != NULL  && this->_klass != NULL   &&
4625           // both are exact and not equal:
4626           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4627            // 'tap'  is exact and super or unrelated:
4628            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4629            // 'this' is exact and super or unrelated:
4630            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4631       if (above_centerline(ptr)) {
4632         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4633       }
4634       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4635     }
4636 
4637     bool xk = false;
4638     switch (tap->ptr()) {
4639     case AnyNull:
4640     case TopPTR:
4641       // Compute new klass on demand, do not use tap->_klass
4642       if (below_centerline(this->_ptr)) {
4643         xk = this->_klass_is_exact;
4644       } else {
4645         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4646       }
4647       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4648     case Constant: {
4649       ciObject* o = const_oop();
4650       if( _ptr == Constant ) {
4651         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4652           xk = (klass() == tap->klass());
4653           ptr = NotNull;
4654           o = NULL;
4655           instance_id = InstanceBot;
4656         } else {
4657           xk = true;
4658         }
4659       } else if(above_centerline(_ptr)) {
4660         o = tap->const_oop();
4661         xk = true;
4662       } else {
4663         // Only precise for identical arrays
4664         xk = this->_klass_is_exact && (klass() == tap->klass());
4665       }
4666       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4667     }
4668     case NotNull:
4669     case BotPTR:
4670       // Compute new klass on demand, do not use tap->_klass
4671       if (above_centerline(this->_ptr))
4672             xk = tap->_klass_is_exact;
4673       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4674               (klass() == tap->klass()); // Only precise for identical arrays
4675       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4676     default: ShouldNotReachHere();
4677     }
4678   }
4679 
4680   // All arrays inherit from Object class
4681   case InstPtr: {
4682     const TypeInstPtr *tp = t->is_instptr();
4683     Offset offset = meet_offset(tp->offset());
4684     PTR ptr = meet_ptr(tp->ptr());
4685     int instance_id = meet_instance_id(tp->instance_id());
4686     const TypePtr* speculative = xmeet_speculative(tp);
4687     int depth = meet_inline_depth(tp->inline_depth());
4688     switch (ptr) {
4689     case TopPTR:
4690     case AnyNull:                // Fall 'down' to dual of object klass
4691       // For instances when a subclass meets a superclass we fall
4692       // below the centerline when the superclass is exact. We need to
4693       // do the same here.
4694       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4695         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4696       } else {
4697         // cannot subclass, so the meet has to fall badly below the centerline
4698         ptr = NotNull;
4699         instance_id = InstanceBot;
4700         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4701       }
4702     case Constant:
4703     case NotNull:
4704     case BotPTR:                // Fall down to object klass
4705       // LCA is object_klass, but if we subclass from the top we can do better
4706       if (above_centerline(tp->ptr())) {
4707         // If 'tp'  is above the centerline and it is Object class
4708         // then we can subclass in the Java class hierarchy.
4709         // For instances when a subclass meets a superclass we fall
4710         // below the centerline when the superclass is exact. We need
4711         // to do the same here.
4712         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4713           // that is, my array type is a subtype of 'tp' klass
4714           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4715                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4716         }
4717       }
4718       // The other case cannot happen, since t cannot be a subtype of an array.
4719       // The meet falls down to Object class below centerline.
4720       if( ptr == Constant )
4721          ptr = NotNull;
4722       instance_id = InstanceBot;
4723       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4724     default: typerr(t);
4725     }
4726   }
4727 
4728   case ValueType: {
4729     // All value types inherit from Object
4730     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4731   }
4732 
4733   }
4734   return this;                  // Lint noise
4735 }
4736 
4737 //------------------------------xdual------------------------------------------
4738 // Dual: compute field-by-field dual
4739 const Type *TypeAryPtr::xdual() const {
4740   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4741 }
4742 
4743 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4744   return _field_offset.meet(offset);
4745 }
4746 
4747 //------------------------------dual_offset------------------------------------
4748 Type::Offset TypeAryPtr::dual_field_offset() const {
4749   return _field_offset.dual();
4750 }
4751 
4752 //----------------------interface_vs_oop---------------------------------------
4753 #ifdef ASSERT
4754 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4755   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4756   if (t_aryptr) {
4757     return _ary->interface_vs_oop(t_aryptr->_ary);
4758   }
4759   return false;
4760 }
4761 #endif
4762 
4763 //------------------------------dump2------------------------------------------
4764 #ifndef PRODUCT
4765 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4766   _ary->dump2(d,depth,st);
4767   switch( _ptr ) {
4768   case Constant:
4769     const_oop()->print(st);
4770     break;
4771   case BotPTR:
4772     if (!WizardMode && !Verbose) {
4773       if( _klass_is_exact ) st->print(":exact");
4774       break;
4775     }
4776   case TopPTR:
4777   case AnyNull:
4778   case NotNull:
4779     st->print(":%s", ptr_msg[_ptr]);
4780     if( _klass_is_exact ) st->print(":exact");
4781     break;
4782   default:
4783     break;
4784   }
4785 
4786   if (elem()->isa_valuetype()) {
4787     st->print("(");
4788     _field_offset.dump2(st);
4789     st->print(")");
4790   }
4791   if (offset() != 0) {
4792     int header_size = objArrayOopDesc::header_size() * wordSize;
4793     if( _offset == Offset::top )       st->print("+undefined");
4794     else if( _offset == Offset::bottom )  st->print("+any");
4795     else if( offset() < header_size ) st->print("+%d", offset());
4796     else {
4797       BasicType basic_elem_type = elem()->basic_type();
4798       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4799       int elem_size = type2aelembytes(basic_elem_type);
4800       st->print("[%d]", (offset() - array_base)/elem_size);
4801     }
4802   }
4803   st->print(" *");
4804   if (_instance_id == InstanceTop)
4805     st->print(",iid=top");
4806   else if (_instance_id != InstanceBot)
4807     st->print(",iid=%d",_instance_id);
4808 
4809   dump_inline_depth(st);
4810   dump_speculative(st);
4811 }
4812 #endif
4813 
4814 bool TypeAryPtr::empty(void) const {
4815   if (_ary->empty())       return true;
4816   return TypeOopPtr::empty();
4817 }
4818 
4819 //------------------------------add_offset-------------------------------------
4820 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4821   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4822 }
4823 
4824 const Type *TypeAryPtr::remove_speculative() const {
4825   if (_speculative == NULL) {
4826     return this;
4827   }
4828   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4829   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4830 }
4831 
4832 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4833   if (!UseInlineDepthForSpeculativeTypes) {
4834     return this;
4835   }
4836   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4837 }
4838 
4839 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4840   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4841 }
4842 
4843 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4844   int adj = 0;
4845   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4846     const Type* elemtype = elem();
4847     if (elemtype->isa_valuetype()) {
4848       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4849         adj = _offset.get();
4850         offset += _offset.get();
4851       }
4852       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4853       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4854         offset += _field_offset.get();
4855         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4856           offset += header;
4857         }
4858       }
4859       if (offset >= (intptr_t)header || offset < 0) {
4860         // Try to get the field of the value type array element we are pointing to
4861         ciKlass* arytype_klass = klass();
4862         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4863         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4864         int shift = vak->log2_element_size();
4865         int mask = (1 << shift) - 1;
4866         intptr_t field_offset = ((offset - header) & mask);
4867         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4868         if (field == NULL) {
4869           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4870           return add_offset(offset);
4871         } else {
4872           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4873         }
4874       }
4875     }
4876   }
4877   return add_offset(offset - adj);
4878 }
4879 
4880 // Return offset incremented by field_offset for flattened value type arrays
4881 const int TypeAryPtr::flattened_offset() const {
4882   int offset = _offset.get();
4883   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4884       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4885     offset += _field_offset.get();
4886   }
4887   return offset;
4888 }
4889 
4890 //=============================================================================
4891 
4892 
4893 //------------------------------hash-------------------------------------------
4894 // Type-specific hashing function.
4895 int TypeNarrowPtr::hash(void) const {
4896   return _ptrtype->hash() + 7;
4897 }
4898 
4899 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4900   return _ptrtype->singleton();
4901 }
4902 
4903 bool TypeNarrowPtr::empty(void) const {
4904   return _ptrtype->empty();
4905 }
4906 
4907 intptr_t TypeNarrowPtr::get_con() const {
4908   return _ptrtype->get_con();
4909 }
4910 
4911 bool TypeNarrowPtr::eq( const Type *t ) const {
4912   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4913   if (tc != NULL) {
4914     if (_ptrtype->base() != tc->_ptrtype->base()) {
4915       return false;
4916     }
4917     return tc->_ptrtype->eq(_ptrtype);
4918   }
4919   return false;
4920 }
4921 
4922 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4923   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4924   return make_same_narrowptr(odual);
4925 }
4926 
4927 
4928 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4929   if (isa_same_narrowptr(kills)) {
4930     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4931     if (ft->empty())
4932       return Type::TOP;           // Canonical empty value
4933     if (ft->isa_ptr()) {
4934       return make_hash_same_narrowptr(ft->isa_ptr());
4935     }
4936     return ft;
4937   } else if (kills->isa_ptr()) {
4938     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4939     if (ft->empty())
4940       return Type::TOP;           // Canonical empty value
4941     return ft;
4942   } else {
4943     return Type::TOP;
4944   }
4945 }
4946 
4947 //------------------------------xmeet------------------------------------------
4948 // Compute the MEET of two types.  It returns a new Type object.
4949 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4950   // Perform a fast test for common case; meeting the same types together.
4951   if( this == t ) return this;  // Meeting same type-rep?
4952 
4953   if (t->base() == base()) {
4954     const Type* result = _ptrtype->xmeet(t->make_ptr());
4955     if (result->isa_ptr()) {
4956       return make_hash_same_narrowptr(result->is_ptr());
4957     }
4958     return result;
4959   }
4960 
4961   // Current "this->_base" is NarrowKlass or NarrowOop
4962   switch (t->base()) {          // switch on original type
4963 
4964   case Int:                     // Mixing ints & oops happens when javac
4965   case Long:                    // reuses local variables
4966   case FloatTop:
4967   case FloatCon:
4968   case FloatBot:
4969   case DoubleTop:
4970   case DoubleCon:
4971   case DoubleBot:
4972   case AnyPtr:
4973   case RawPtr:
4974   case OopPtr:
4975   case InstPtr:
4976   case AryPtr:
4977   case MetadataPtr:
4978   case KlassPtr:
4979   case NarrowOop:
4980   case NarrowKlass:
4981   case Bottom:                  // Ye Olde Default
4982     return Type::BOTTOM;
4983   case Top:
4984     return this;
4985 
4986   case ValueType:
4987     return t->xmeet(this);
4988 
4989   default:                      // All else is a mistake
4990     typerr(t);
4991 
4992   } // End of switch
4993 
4994   return this;
4995 }
4996 
4997 #ifndef PRODUCT
4998 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4999   _ptrtype->dump2(d, depth, st);
5000 }
5001 #endif
5002 
5003 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5004 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5005 
5006 
5007 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5008   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5009 }
5010 
5011 const Type* TypeNarrowOop::remove_speculative() const {
5012   return make(_ptrtype->remove_speculative()->is_ptr());
5013 }
5014 
5015 const Type* TypeNarrowOop::cleanup_speculative() const {
5016   return make(_ptrtype->cleanup_speculative()->is_ptr());
5017 }
5018 
5019 #ifndef PRODUCT
5020 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5021   st->print("narrowoop: ");
5022   TypeNarrowPtr::dump2(d, depth, st);
5023 }
5024 #endif
5025 
5026 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5027 
5028 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5029   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5030 }
5031 
5032 #ifndef PRODUCT
5033 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5034   st->print("narrowklass: ");
5035   TypeNarrowPtr::dump2(d, depth, st);
5036 }
5037 #endif
5038 
5039 
5040 //------------------------------eq---------------------------------------------
5041 // Structural equality check for Type representations
5042 bool TypeMetadataPtr::eq( const Type *t ) const {
5043   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5044   ciMetadata* one = metadata();
5045   ciMetadata* two = a->metadata();
5046   if (one == NULL || two == NULL) {
5047     return (one == two) && TypePtr::eq(t);
5048   } else {
5049     return one->equals(two) && TypePtr::eq(t);
5050   }
5051 }
5052 
5053 //------------------------------hash-------------------------------------------
5054 // Type-specific hashing function.
5055 int TypeMetadataPtr::hash(void) const {
5056   return
5057     (metadata() ? metadata()->hash() : 0) +
5058     TypePtr::hash();
5059 }
5060 
5061 //------------------------------singleton--------------------------------------
5062 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5063 // constants
5064 bool TypeMetadataPtr::singleton(void) const {
5065   // detune optimizer to not generate constant metadata + constant offset as a constant!
5066   // TopPTR, Null, AnyNull, Constant are all singletons
5067   return (offset() == 0) && !below_centerline(_ptr);
5068 }
5069 
5070 //------------------------------add_offset-------------------------------------
5071 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5072   return make( _ptr, _metadata, xadd_offset(offset));
5073 }
5074 
5075 //-----------------------------filter------------------------------------------
5076 // Do not allow interface-vs.-noninterface joins to collapse to top.
5077 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5078   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5079   if (ft == NULL || ft->empty())
5080     return Type::TOP;           // Canonical empty value
5081   return ft;
5082 }
5083 
5084  //------------------------------get_con----------------------------------------
5085 intptr_t TypeMetadataPtr::get_con() const {
5086   assert( _ptr == Null || _ptr == Constant, "" );
5087   assert(offset() >= 0, "");
5088 
5089   if (offset() != 0) {
5090     // After being ported to the compiler interface, the compiler no longer
5091     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5092     // to a handle at compile time.  This handle is embedded in the generated
5093     // code and dereferenced at the time the nmethod is made.  Until that time,
5094     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5095     // have access to the addresses!).  This does not seem to currently happen,
5096     // but this assertion here is to help prevent its occurence.
5097     tty->print_cr("Found oop constant with non-zero offset");
5098     ShouldNotReachHere();
5099   }
5100 
5101   return (intptr_t)metadata()->constant_encoding();
5102 }
5103 
5104 //------------------------------cast_to_ptr_type-------------------------------
5105 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5106   if( ptr == _ptr ) return this;
5107   return make(ptr, metadata(), _offset);
5108 }
5109 
5110 //------------------------------meet-------------------------------------------
5111 // Compute the MEET of two types.  It returns a new Type object.
5112 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5113   // Perform a fast test for common case; meeting the same types together.
5114   if( this == t ) return this;  // Meeting same type-rep?
5115 
5116   // Current "this->_base" is OopPtr
5117   switch (t->base()) {          // switch on original type
5118 
5119   case Int:                     // Mixing ints & oops happens when javac
5120   case Long:                    // reuses local variables
5121   case FloatTop:
5122   case FloatCon:
5123   case FloatBot:
5124   case DoubleTop:
5125   case DoubleCon:
5126   case DoubleBot:
5127   case NarrowOop:
5128   case NarrowKlass:
5129   case Bottom:                  // Ye Olde Default
5130     return Type::BOTTOM;
5131   case Top:
5132     return this;
5133 
5134   default:                      // All else is a mistake
5135     typerr(t);
5136 
5137   case AnyPtr: {
5138     // Found an AnyPtr type vs self-OopPtr type
5139     const TypePtr *tp = t->is_ptr();
5140     Offset offset = meet_offset(tp->offset());
5141     PTR ptr = meet_ptr(tp->ptr());
5142     switch (tp->ptr()) {
5143     case Null:
5144       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5145       // else fall through:
5146     case TopPTR:
5147     case AnyNull: {
5148       return make(ptr, _metadata, offset);
5149     }
5150     case BotPTR:
5151     case NotNull:
5152       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5153     default: typerr(t);
5154     }
5155   }
5156 
5157   case RawPtr:
5158   case KlassPtr:
5159   case OopPtr:
5160   case InstPtr:
5161   case AryPtr:
5162     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5163 
5164   case MetadataPtr: {
5165     const TypeMetadataPtr *tp = t->is_metadataptr();
5166     Offset offset = meet_offset(tp->offset());
5167     PTR tptr = tp->ptr();
5168     PTR ptr = meet_ptr(tptr);
5169     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5170     if (tptr == TopPTR || _ptr == TopPTR ||
5171         metadata()->equals(tp->metadata())) {
5172       return make(ptr, md, offset);
5173     }
5174     // metadata is different
5175     if( ptr == Constant ) {  // Cannot be equal constants, so...
5176       if( tptr == Constant && _ptr != Constant)  return t;
5177       if( _ptr == Constant && tptr != Constant)  return this;
5178       ptr = NotNull;            // Fall down in lattice
5179     }
5180     return make(ptr, NULL, offset);
5181     break;
5182   }
5183   } // End of switch
5184   return this;                  // Return the double constant
5185 }
5186 
5187 
5188 //------------------------------xdual------------------------------------------
5189 // Dual of a pure metadata pointer.
5190 const Type *TypeMetadataPtr::xdual() const {
5191   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5192 }
5193 
5194 //------------------------------dump2------------------------------------------
5195 #ifndef PRODUCT
5196 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5197   st->print("metadataptr:%s", ptr_msg[_ptr]);
5198   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5199   switch (offset()) {
5200   case OffsetTop: st->print("+top"); break;
5201   case OffsetBot: st->print("+any"); break;
5202   case         0: break;
5203   default:        st->print("+%d",offset()); break;
5204   }
5205 }
5206 #endif
5207 
5208 
5209 //=============================================================================
5210 // Convenience common pre-built type.
5211 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5212 
5213 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5214   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5215 }
5216 
5217 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5218   return make(Constant, m, Offset(0));
5219 }
5220 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5221   return make(Constant, m, Offset(0));
5222 }
5223 
5224 //------------------------------make-------------------------------------------
5225 // Create a meta data constant
5226 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5227   assert(m == NULL || !m->is_klass(), "wrong type");
5228   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5229 }
5230 
5231 
5232 //=============================================================================
5233 // Convenience common pre-built types.
5234 
5235 // Not-null object klass or below
5236 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5237 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5238 
5239 //------------------------------TypeKlassPtr-----------------------------------
5240 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5241   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5242 }
5243 
5244 //------------------------------make-------------------------------------------
5245 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5246 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5247   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5248   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5249 }
5250 
5251 //------------------------------eq---------------------------------------------
5252 // Structural equality check for Type representations
5253 bool TypeKlassPtr::eq( const Type *t ) const {
5254   const TypeKlassPtr *p = t->is_klassptr();
5255   return klass() == p->klass() && TypePtr::eq(p);
5256 }
5257 
5258 //------------------------------hash-------------------------------------------
5259 // Type-specific hashing function.
5260 int TypeKlassPtr::hash(void) const {
5261   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5262 }
5263 
5264 //------------------------------singleton--------------------------------------
5265 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5266 // constants
5267 bool TypeKlassPtr::singleton(void) const {
5268   // detune optimizer to not generate constant klass + constant offset as a constant!
5269   // TopPTR, Null, AnyNull, Constant are all singletons
5270   return (offset() == 0) && !below_centerline(_ptr);
5271 }
5272 
5273 // Do not allow interface-vs.-noninterface joins to collapse to top.
5274 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5275   // logic here mirrors the one from TypeOopPtr::filter. See comments
5276   // there.
5277   const Type* ft = join_helper(kills, include_speculative);
5278   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5279   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5280 
5281   if (ft->empty()) {
5282     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5283       return kills;             // Uplift to interface
5284 
5285     return Type::TOP;           // Canonical empty value
5286   }
5287 
5288   // Interface klass type could be exact in opposite to interface type,
5289   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5290   if (ftkp != NULL && ktkp != NULL &&
5291       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5292       !ftkp->klass_is_exact() && // Keep exact interface klass
5293       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5294     return ktkp->cast_to_ptr_type(ftkp->ptr());
5295   }
5296 
5297   return ft;
5298 }
5299 
5300 //----------------------compute_klass------------------------------------------
5301 // Compute the defining klass for this class
5302 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5303   // Compute _klass based on element type.
5304   ciKlass* k_ary = NULL;
5305   const TypeAryPtr *tary;
5306   const Type* el = elem();
5307   if (el->isa_narrowoop()) {
5308     el = el->make_ptr();
5309   }
5310 
5311   // Get element klass
5312   if (el->isa_instptr()) {
5313     // Compute object array klass from element klass
5314     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5315   } else if (el->isa_valuetype()) {
5316     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5317   } else if ((tary = el->isa_aryptr()) != NULL) {
5318     // Compute array klass from element klass
5319     ciKlass* k_elem = tary->klass();
5320     // If element type is something like bottom[], k_elem will be null.
5321     if (k_elem != NULL)
5322       k_ary = ciObjArrayKlass::make(k_elem);
5323   } else if ((el->base() == Type::Top) ||
5324              (el->base() == Type::Bottom)) {
5325     // element type of Bottom occurs from meet of basic type
5326     // and object; Top occurs when doing join on Bottom.
5327     // Leave k_ary at NULL.
5328   } else {
5329     // Cannot compute array klass directly from basic type,
5330     // since subtypes of TypeInt all have basic type T_INT.
5331 #ifdef ASSERT
5332     if (verify && el->isa_int()) {
5333       // Check simple cases when verifying klass.
5334       BasicType bt = T_ILLEGAL;
5335       if (el == TypeInt::BYTE) {
5336         bt = T_BYTE;
5337       } else if (el == TypeInt::SHORT) {
5338         bt = T_SHORT;
5339       } else if (el == TypeInt::CHAR) {
5340         bt = T_CHAR;
5341       } else if (el == TypeInt::INT) {
5342         bt = T_INT;
5343       } else {
5344         return _klass; // just return specified klass
5345       }
5346       return ciTypeArrayKlass::make(bt);
5347     }
5348 #endif
5349     assert(!el->isa_int(),
5350            "integral arrays must be pre-equipped with a class");
5351     // Compute array klass directly from basic type
5352     k_ary = ciTypeArrayKlass::make(el->basic_type());
5353   }
5354   return k_ary;
5355 }
5356 
5357 //------------------------------klass------------------------------------------
5358 // Return the defining klass for this class
5359 ciKlass* TypeAryPtr::klass() const {
5360   if( _klass ) return _klass;   // Return cached value, if possible
5361 
5362   // Oops, need to compute _klass and cache it
5363   ciKlass* k_ary = compute_klass();
5364 
5365   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5366     // The _klass field acts as a cache of the underlying
5367     // ciKlass for this array type.  In order to set the field,
5368     // we need to cast away const-ness.
5369     //
5370     // IMPORTANT NOTE: we *never* set the _klass field for the
5371     // type TypeAryPtr::OOPS.  This Type is shared between all
5372     // active compilations.  However, the ciKlass which represents
5373     // this Type is *not* shared between compilations, so caching
5374     // this value would result in fetching a dangling pointer.
5375     //
5376     // Recomputing the underlying ciKlass for each request is
5377     // a bit less efficient than caching, but calls to
5378     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5379     ((TypeAryPtr*)this)->_klass = k_ary;
5380     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5381         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5382       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5383     }
5384   }
5385   return k_ary;
5386 }
5387 
5388 
5389 //------------------------------add_offset-------------------------------------
5390 // Access internals of klass object
5391 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5392   return make( _ptr, klass(), xadd_offset(offset) );
5393 }
5394 
5395 //------------------------------cast_to_ptr_type-------------------------------
5396 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5397   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5398   if( ptr == _ptr ) return this;
5399   return make(ptr, _klass, _offset);
5400 }
5401 
5402 
5403 //-----------------------------cast_to_exactness-------------------------------
5404 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5405   if( klass_is_exact == _klass_is_exact ) return this;
5406   if (!UseExactTypes)  return this;
5407   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5408 }
5409 
5410 
5411 //-----------------------------as_instance_type--------------------------------
5412 // Corresponding type for an instance of the given class.
5413 // It will be NotNull, and exact if and only if the klass type is exact.
5414 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5415   ciKlass* k = klass();
5416   assert(k != NULL, "klass should not be NULL");
5417   bool    xk = klass_is_exact();
5418   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5419   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5420   guarantee(toop != NULL, "need type for given klass");
5421   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5422   return toop->cast_to_exactness(xk)->is_oopptr();
5423 }
5424 
5425 
5426 //------------------------------xmeet------------------------------------------
5427 // Compute the MEET of two types, return a new Type object.
5428 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5429   // Perform a fast test for common case; meeting the same types together.
5430   if( this == t ) return this;  // Meeting same type-rep?
5431 
5432   // Current "this->_base" is Pointer
5433   switch (t->base()) {          // switch on original type
5434 
5435   case Int:                     // Mixing ints & oops happens when javac
5436   case Long:                    // reuses local variables
5437   case FloatTop:
5438   case FloatCon:
5439   case FloatBot:
5440   case DoubleTop:
5441   case DoubleCon:
5442   case DoubleBot:
5443   case NarrowOop:
5444   case NarrowKlass:
5445   case Bottom:                  // Ye Olde Default
5446     return Type::BOTTOM;
5447   case Top:
5448     return this;
5449 
5450   default:                      // All else is a mistake
5451     typerr(t);
5452 
5453   case AnyPtr: {                // Meeting to AnyPtrs
5454     // Found an AnyPtr type vs self-KlassPtr type
5455     const TypePtr *tp = t->is_ptr();
5456     Offset offset = meet_offset(tp->offset());
5457     PTR ptr = meet_ptr(tp->ptr());
5458     switch (tp->ptr()) {
5459     case TopPTR:
5460       return this;
5461     case Null:
5462       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5463     case AnyNull:
5464       return make( ptr, klass(), offset );
5465     case BotPTR:
5466     case NotNull:
5467       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5468     default: typerr(t);
5469     }
5470   }
5471 
5472   case RawPtr:
5473   case MetadataPtr:
5474   case OopPtr:
5475   case AryPtr:                  // Meet with AryPtr
5476   case InstPtr:                 // Meet with InstPtr
5477     return TypePtr::BOTTOM;
5478 
5479   //
5480   //             A-top         }
5481   //           /   |   \       }  Tops
5482   //       B-top A-any C-top   }
5483   //          | /  |  \ |      }  Any-nulls
5484   //       B-any   |   C-any   }
5485   //          |    |    |
5486   //       B-con A-con C-con   } constants; not comparable across classes
5487   //          |    |    |
5488   //       B-not   |   C-not   }
5489   //          | \  |  / |      }  not-nulls
5490   //       B-bot A-not C-bot   }
5491   //           \   |   /       }  Bottoms
5492   //             A-bot         }
5493   //
5494 
5495   case KlassPtr: {  // Meet two KlassPtr types
5496     const TypeKlassPtr *tkls = t->is_klassptr();
5497     Offset  off  = meet_offset(tkls->offset());
5498     PTR  ptr     = meet_ptr(tkls->ptr());
5499 
5500     if (klass() == NULL || tkls->klass() == NULL) {
5501       ciKlass* k = NULL;
5502       if (ptr == Constant) {
5503         k = (klass() == NULL) ? tkls->klass() : klass();
5504       }
5505       return make(ptr, k, off);
5506     }
5507 
5508     // Check for easy case; klasses are equal (and perhaps not loaded!)
5509     // If we have constants, then we created oops so classes are loaded
5510     // and we can handle the constants further down.  This case handles
5511     // not-loaded classes
5512     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5513       return make( ptr, klass(), off );
5514     }
5515 
5516     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5517     ciKlass* tkls_klass = tkls->klass();
5518     ciKlass* this_klass = this->klass();
5519     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5520     assert( this_klass->is_loaded(), "This class should have been loaded.");
5521 
5522     // If 'this' type is above the centerline and is a superclass of the
5523     // other, we can treat 'this' as having the same type as the other.
5524     if ((above_centerline(this->ptr())) &&
5525         tkls_klass->is_subtype_of(this_klass)) {
5526       this_klass = tkls_klass;
5527     }
5528     // If 'tinst' type is above the centerline and is a superclass of the
5529     // other, we can treat 'tinst' as having the same type as the other.
5530     if ((above_centerline(tkls->ptr())) &&
5531         this_klass->is_subtype_of(tkls_klass)) {
5532       tkls_klass = this_klass;
5533     }
5534 
5535     // Check for classes now being equal
5536     if (tkls_klass->equals(this_klass)) {
5537       // If the klasses are equal, the constants may still differ.  Fall to
5538       // NotNull if they do (neither constant is NULL; that is a special case
5539       // handled elsewhere).
5540       if( ptr == Constant ) {
5541         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5542             this->klass()->equals(tkls->klass()));
5543         else if (above_centerline(this->ptr()));
5544         else if (above_centerline(tkls->ptr()));
5545         else
5546           ptr = NotNull;
5547       }
5548       return make( ptr, this_klass, off );
5549     } // Else classes are not equal
5550 
5551     // Since klasses are different, we require the LCA in the Java
5552     // class hierarchy - which means we have to fall to at least NotNull.
5553     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5554       ptr = NotNull;
5555     // Now we find the LCA of Java classes
5556     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5557     return   make( ptr, k, off );
5558   } // End of case KlassPtr
5559 
5560   } // End of switch
5561   return this;                  // Return the double constant
5562 }
5563 
5564 //------------------------------xdual------------------------------------------
5565 // Dual: compute field-by-field dual
5566 const Type    *TypeKlassPtr::xdual() const {
5567   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5568 }
5569 
5570 //------------------------------get_con----------------------------------------
5571 intptr_t TypeKlassPtr::get_con() const {
5572   assert( _ptr == Null || _ptr == Constant, "" );
5573   assert(offset() >= 0, "");
5574 
5575   if (offset() != 0) {
5576     // After being ported to the compiler interface, the compiler no longer
5577     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5578     // to a handle at compile time.  This handle is embedded in the generated
5579     // code and dereferenced at the time the nmethod is made.  Until that time,
5580     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5581     // have access to the addresses!).  This does not seem to currently happen,
5582     // but this assertion here is to help prevent its occurence.
5583     tty->print_cr("Found oop constant with non-zero offset");
5584     ShouldNotReachHere();
5585   }
5586 
5587   return (intptr_t)klass()->constant_encoding();
5588 }
5589 //------------------------------dump2------------------------------------------
5590 // Dump Klass Type
5591 #ifndef PRODUCT
5592 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5593   switch( _ptr ) {
5594   case Constant:
5595     st->print("precise ");
5596   case NotNull:
5597     {
5598       if (klass() != NULL) {
5599         const char* name = klass()->name()->as_utf8();
5600         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5601       } else {
5602         st->print("klass BOTTOM");
5603       }
5604     }
5605   case BotPTR:
5606     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5607   case TopPTR:
5608   case AnyNull:
5609     st->print(":%s", ptr_msg[_ptr]);
5610     if( _klass_is_exact ) st->print(":exact");
5611     break;
5612   default:
5613     break;
5614   }
5615 
5616   _offset.dump2(st);
5617 
5618   st->print(" *");
5619 }
5620 #endif
5621 
5622 
5623 
5624 //=============================================================================
5625 // Convenience common pre-built types.
5626 
5627 //------------------------------make-------------------------------------------
5628 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5629                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5630   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5631 }
5632 
5633 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5634   return make(domain, domain, range, range);
5635 }
5636 
5637 //------------------------------make-------------------------------------------
5638 const TypeFunc *TypeFunc::make(ciMethod* method) {
5639   Compile* C = Compile::current();
5640   const TypeFunc* tf = C->last_tf(method); // check cache
5641   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5642   const TypeTuple *domain_sig, *domain_cc;
5643   // Value type arguments are not passed by reference, instead each
5644   // field of the value type is passed as an argument. We maintain 2
5645   // views of the argument list here: one based on the signature (with
5646   // a value type argument as a single slot), one based on the actual
5647   // calling convention (with a value type argument as a list of its
5648   // fields).
5649   if (method->is_static()) {
5650     domain_sig = TypeTuple::make_domain(method, false);
5651     domain_cc = TypeTuple::make_domain(method, method->get_Method()->has_scalarized_args());
5652   } else {
5653     domain_sig = TypeTuple::make_domain(method, false);
5654     domain_cc = TypeTuple::make_domain(method, method->get_Method()->has_scalarized_args());
5655   }
5656   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5657   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5658   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5659   C->set_last_tf(method, tf);  // fill cache
5660   return tf;
5661 }
5662 
5663 //------------------------------meet-------------------------------------------
5664 // Compute the MEET of two types.  It returns a new Type object.
5665 const Type *TypeFunc::xmeet( const Type *t ) const {
5666   // Perform a fast test for common case; meeting the same types together.
5667   if( this == t ) return this;  // Meeting same type-rep?
5668 
5669   // Current "this->_base" is Func
5670   switch (t->base()) {          // switch on original type
5671 
5672   case Bottom:                  // Ye Olde Default
5673     return t;
5674 
5675   default:                      // All else is a mistake
5676     typerr(t);
5677 
5678   case Top:
5679     break;
5680   }
5681   return this;                  // Return the double constant
5682 }
5683 
5684 //------------------------------xdual------------------------------------------
5685 // Dual: compute field-by-field dual
5686 const Type *TypeFunc::xdual() const {
5687   return this;
5688 }
5689 
5690 //------------------------------eq---------------------------------------------
5691 // Structural equality check for Type representations
5692 bool TypeFunc::eq( const Type *t ) const {
5693   const TypeFunc *a = (const TypeFunc*)t;
5694   return _domain_sig == a->_domain_sig &&
5695     _domain_cc == a->_domain_cc &&
5696     _range_sig == a->_range_sig &&
5697     _range_cc == a->_range_cc;
5698 }
5699 
5700 //------------------------------hash-------------------------------------------
5701 // Type-specific hashing function.
5702 int TypeFunc::hash(void) const {
5703   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5704 }
5705 
5706 //------------------------------dump2------------------------------------------
5707 // Dump Function Type
5708 #ifndef PRODUCT
5709 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5710   if( _range_sig->cnt() <= Parms )
5711     st->print("void");
5712   else {
5713     uint i;
5714     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5715       _range_sig->field_at(i)->dump2(d,depth,st);
5716       st->print("/");
5717     }
5718     _range_sig->field_at(i)->dump2(d,depth,st);
5719   }
5720   st->print(" ");
5721   st->print("( ");
5722   if( !depth || d[this] ) {     // Check for recursive dump
5723     st->print("...)");
5724     return;
5725   }
5726   d.Insert((void*)this,(void*)this);    // Stop recursion
5727   if (Parms < _domain_sig->cnt())
5728     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5729   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5730     st->print(", ");
5731     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5732   }
5733   st->print(" )");
5734 }
5735 #endif
5736 
5737 //------------------------------singleton--------------------------------------
5738 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5739 // constants (Ldi nodes).  Singletons are integer, float or double constants
5740 // or a single symbol.
5741 bool TypeFunc::singleton(void) const {
5742   return false;                 // Never a singleton
5743 }
5744 
5745 bool TypeFunc::empty(void) const {
5746   return false;                 // Never empty
5747 }
5748 
5749 
5750 BasicType TypeFunc::return_type() const{
5751   if (range_sig()->cnt() == TypeFunc::Parms) {
5752     return T_VOID;
5753   }
5754   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5755 }