1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 142   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 143   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 144   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 145   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 146   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 147   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 148   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 149   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 150   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 151   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 152   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 153   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 154   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 155 };
 156 
 157 // Map ideal registers (machine types) to ideal types
 158 const Type *Type::mreg2type[_last_machine_leaf];
 159 
 160 // Map basic types to canonical Type* pointers.
 161 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 162 
 163 // Map basic types to constant-zero Types.
 164 const Type* Type::            _zero_type[T_CONFLICT+1];
 165 
 166 // Map basic types to array-body alias types.
 167 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 168 
 169 //=============================================================================
 170 // Convenience common pre-built types.
 171 const Type *Type::ABIO;         // State-of-machine only
 172 const Type *Type::BOTTOM;       // All values
 173 const Type *Type::CONTROL;      // Control only
 174 const Type *Type::DOUBLE;       // All doubles
 175 const Type *Type::FLOAT;        // All floats
 176 const Type *Type::HALF;         // Placeholder half of doublewide type
 177 const Type *Type::MEMORY;       // Abstract store only
 178 const Type *Type::RETURN_ADDRESS;
 179 const Type *Type::TOP;          // No values in set
 180 
 181 //------------------------------get_const_type---------------------------
 182 const Type* Type::get_const_type(ciType* type) {
 183   if (type == NULL) {
 184     return NULL;
 185   } else if (type->is_primitive_type()) {
 186     return get_const_basic_type(type->basic_type());
 187   } else {
 188     return TypeOopPtr::make_from_klass(type->as_klass());
 189   }
 190 }
 191 
 192 //---------------------------array_element_basic_type---------------------------------
 193 // Mapping to the array element's basic type.
 194 BasicType Type::array_element_basic_type() const {
 195   BasicType bt = basic_type();
 196   if (bt == T_INT) {
 197     if (this == TypeInt::INT)   return T_INT;
 198     if (this == TypeInt::CHAR)  return T_CHAR;
 199     if (this == TypeInt::BYTE)  return T_BYTE;
 200     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 201     if (this == TypeInt::SHORT) return T_SHORT;
 202     return T_VOID;
 203   }
 204   return bt;
 205 }
 206 
 207 // For two instance arrays of same dimension, return the base element types.
 208 // Otherwise or if the arrays have different dimensions, return NULL.
 209 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 210                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 211 
 212   if (e1) *e1 = NULL;
 213   if (e2) *e2 = NULL;
 214   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 215   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 216 
 217   if (a1tap != NULL && a2tap != NULL) {
 218     // Handle multidimensional arrays
 219     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 220     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 221     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 222       a1tap = a1tp->is_aryptr();
 223       a2tap = a2tp->is_aryptr();
 224       a1tp = a1tap->elem()->make_ptr();
 225       a2tp = a2tap->elem()->make_ptr();
 226     }
 227     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 228       if (e1) *e1 = a1tp->is_instptr();
 229       if (e2) *e2 = a2tp->is_instptr();
 230     }
 231   }
 232 }
 233 
 234 //---------------------------get_typeflow_type---------------------------------
 235 // Import a type produced by ciTypeFlow.
 236 const Type* Type::get_typeflow_type(ciType* type) {
 237   switch (type->basic_type()) {
 238 
 239   case ciTypeFlow::StateVector::T_BOTTOM:
 240     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 241     return Type::BOTTOM;
 242 
 243   case ciTypeFlow::StateVector::T_TOP:
 244     assert(type == ciTypeFlow::StateVector::top_type(), "");
 245     return Type::TOP;
 246 
 247   case ciTypeFlow::StateVector::T_NULL:
 248     assert(type == ciTypeFlow::StateVector::null_type(), "");
 249     return TypePtr::NULL_PTR;
 250 
 251   case ciTypeFlow::StateVector::T_LONG2:
 252     // The ciTypeFlow pass pushes a long, then the half.
 253     // We do the same.
 254     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 255     return TypeInt::TOP;
 256 
 257   case ciTypeFlow::StateVector::T_DOUBLE2:
 258     // The ciTypeFlow pass pushes double, then the half.
 259     // Our convention is the same.
 260     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 261     return Type::TOP;
 262 
 263   case T_ADDRESS:
 264     assert(type->is_return_address(), "");
 265     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 266 
 267   case T_VALUETYPE: {
 268     bool is_never_null = type->is_never_null();
 269     ciValueKlass* vk = type->unwrap()->as_value_klass();
 270     if (vk->is_scalarizable() && is_never_null) {
 271       return TypeValueType::make(vk);
 272     } else {
 273       return TypeOopPtr::make_from_klass(vk)->join_speculative(is_never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 274     }
 275   }
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 297     case T_CHAR:     return TypeInt::make(constant.as_char());
 298     case T_BYTE:     return TypeInt::make(constant.as_byte());
 299     case T_SHORT:    return TypeInt::make(constant.as_short());
 300     case T_INT:      return TypeInt::make(constant.as_int());
 301     case T_LONG:     return TypeLong::make(constant.as_long());
 302     case T_FLOAT:    return TypeF::make(constant.as_float());
 303     case T_DOUBLE:   return TypeD::make(constant.as_double());
 304     case T_ARRAY:
 305     case T_VALUETYPE:
 306     case T_OBJECT: {
 307         // cases:
 308         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 309         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 310         // An oop is not scavengable if it is in the perm gen.
 311         const Type* con_type = NULL;
 312         ciObject* oop_constant = constant.as_object();
 313         if (oop_constant->is_null_object()) {
 314           con_type = Type::get_zero_type(T_OBJECT);
 315         } else {
 316           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 317           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 318           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 319             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 320           }
 321           if (stable_dimension > 0) {
 322             assert(FoldStableValues, "sanity");
 323             assert(!con_type->is_zero_type(), "default value for stable field");
 324             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 325           }
 326         }
 327         if (is_narrow_oop) {
 328           con_type = con_type->make_narrowoop();
 329         }
 330         return con_type;
 331       }
 332     case T_ILLEGAL:
 333       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 334       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 335       return NULL;
 336     default:
 337       // Fall through to failure
 338       return NULL;
 339   }
 340 }
 341 
 342 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 343   BasicType conbt = con.basic_type();
 344   switch (conbt) {
 345     case T_BOOLEAN: conbt = T_BYTE;   break;
 346     case T_ARRAY:   conbt = T_OBJECT; break;
 347     case T_VALUETYPE: conbt = T_OBJECT; break;
 348     default:                          break;
 349   }
 350   switch (loadbt) {
 351     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 352     case T_NARROWOOP: loadbt = T_OBJECT; break;
 353     case T_ARRAY:     loadbt = T_OBJECT; break;
 354     case T_VALUETYPE: loadbt = T_OBJECT; break;
 355     case T_ADDRESS:   loadbt = T_OBJECT; break;
 356     default:                             break;
 357   }
 358   if (conbt == loadbt) {
 359     if (is_unsigned && conbt == T_BYTE) {
 360       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 361       return ciConstant(T_INT, con.as_int() & 0xFF);
 362     } else {
 363       return con;
 364     }
 365   }
 366   if (conbt == T_SHORT && loadbt == T_CHAR) {
 367     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 368     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 369   }
 370   return ciConstant(); // T_ILLEGAL
 371 }
 372 
 373 // Try to constant-fold a stable array element.
 374 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 375                                                    BasicType loadbt, bool is_unsigned_load) {
 376   // Decode the results of GraphKit::array_element_address.
 377   ciConstant element_value = array->element_value_by_offset(off);
 378   if (element_value.basic_type() == T_ILLEGAL) {
 379     return NULL; // wrong offset
 380   }
 381   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 382 
 383   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 384          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 385 
 386   if (con.is_valid() &&          // not a mismatched access
 387       !con.is_null_or_zero()) {  // not a default value
 388     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 389     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 390   }
 391   return NULL;
 392 }
 393 
 394 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 395   ciField* field;
 396   ciType* type = holder->java_mirror_type();
 397   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 398     // Static field
 399     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 400   } else {
 401     // Instance field
 402     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 403   }
 404   if (field == NULL) {
 405     return NULL; // Wrong offset
 406   }
 407   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 408 }
 409 
 410 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 411                                            BasicType loadbt, bool is_unsigned_load) {
 412   if (!field->is_constant()) {
 413     return NULL; // Non-constant field
 414   }
 415   ciConstant field_value;
 416   if (field->is_static()) {
 417     // final static field
 418     field_value = field->constant_value();
 419   } else if (holder != NULL) {
 420     // final or stable non-static field
 421     // Treat final non-static fields of trusted classes (classes in
 422     // java.lang.invoke and sun.invoke packages and subpackages) as
 423     // compile time constants.
 424     field_value = field->constant_value_of(holder);
 425   }
 426   if (!field_value.is_valid()) {
 427     return NULL; // Not a constant
 428   }
 429 
 430   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 431 
 432   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 433          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 434 
 435   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 436   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 437   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 438 
 439   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 440                                             stable_dimension, is_narrow_oop,
 441                                             field->is_autobox_cache());
 442   if (con_type != NULL && field->is_call_site_target()) {
 443     ciCallSite* call_site = holder->as_call_site();
 444     if (!call_site->is_constant_call_site()) {
 445       ciMethodHandle* target = con.as_object()->as_method_handle();
 446       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 447     }
 448   }
 449   return con_type;
 450 }
 451 
 452 //------------------------------make-------------------------------------------
 453 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 454 // and look for an existing copy in the type dictionary.
 455 const Type *Type::make( enum TYPES t ) {
 456   return (new Type(t))->hashcons();
 457 }
 458 
 459 //------------------------------cmp--------------------------------------------
 460 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 461   if( t1->_base != t2->_base )
 462     return 1;                   // Missed badly
 463   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 464   return !t1->eq(t2);           // Return ZERO if equal
 465 }
 466 
 467 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 468   if (!include_speculative) {
 469     return remove_speculative();
 470   }
 471   return this;
 472 }
 473 
 474 //------------------------------hash-------------------------------------------
 475 int Type::uhash( const Type *const t ) {
 476   return t->hash();
 477 }
 478 
 479 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 480 
 481 static double pos_dinf() {
 482   union { int64_t i; double d; } v;
 483   v.i = CONST64(0x7ff0000000000000);
 484   return v.d;
 485 }
 486 
 487 static float pos_finf() {
 488   union { int32_t i; float f; } v;
 489   v.i = 0x7f800000;
 490   return v.f;
 491 }
 492 
 493 //--------------------------Initialize_shared----------------------------------
 494 void Type::Initialize_shared(Compile* current) {
 495   // This method does not need to be locked because the first system
 496   // compilations (stub compilations) occur serially.  If they are
 497   // changed to proceed in parallel, then this section will need
 498   // locking.
 499 
 500   Arena* save = current->type_arena();
 501   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 502 
 503   current->set_type_arena(shared_type_arena);
 504   _shared_type_dict =
 505     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 506                                   shared_type_arena, 128 );
 507   current->set_type_dict(_shared_type_dict);
 508 
 509   // Make shared pre-built types.
 510   CONTROL = make(Control);      // Control only
 511   TOP     = make(Top);          // No values in set
 512   MEMORY  = make(Memory);       // Abstract store only
 513   ABIO    = make(Abio);         // State-of-machine only
 514   RETURN_ADDRESS=make(Return_Address);
 515   FLOAT   = make(FloatBot);     // All floats
 516   DOUBLE  = make(DoubleBot);    // All doubles
 517   BOTTOM  = make(Bottom);       // Everything
 518   HALF    = make(Half);         // Placeholder half of doublewide type
 519 
 520   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 521   TypeF::ONE  = TypeF::make(1.0); // Float 1
 522   TypeF::POS_INF = TypeF::make(pos_finf());
 523   TypeF::NEG_INF = TypeF::make(-pos_finf());
 524 
 525   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 526   TypeD::ONE  = TypeD::make(1.0); // Double 1
 527   TypeD::POS_INF = TypeD::make(pos_dinf());
 528   TypeD::NEG_INF = TypeD::make(-pos_dinf());
 529 
 530   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 531   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 532   TypeInt::ONE     = TypeInt::make( 1);  //  1
 533   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 534   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 535   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 536   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 537   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 538   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 539   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 540   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 541   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 542   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 543   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 544   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 545   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 546   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 547   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 548   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 549   // CmpL is overloaded both as the bytecode computation returning
 550   // a trinary (-1,0,+1) integer result AND as an efficient long
 551   // compare returning optimizer ideal-type flags.
 552   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 553   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 554   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 555   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 556   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 557 
 558   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 559   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 560   TypeLong::ONE     = TypeLong::make( 1);        //  1
 561   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 562   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 563   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 564   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 565   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 566 
 567   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 568   fboth[0] = Type::CONTROL;
 569   fboth[1] = Type::CONTROL;
 570   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 571 
 572   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 573   ffalse[0] = Type::CONTROL;
 574   ffalse[1] = Type::TOP;
 575   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 576 
 577   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 578   fneither[0] = Type::TOP;
 579   fneither[1] = Type::TOP;
 580   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 581 
 582   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 583   ftrue[0] = Type::TOP;
 584   ftrue[1] = Type::CONTROL;
 585   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 586 
 587   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 588   floop[0] = Type::CONTROL;
 589   floop[1] = TypeInt::INT;
 590   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 591 
 592   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 593   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 594   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 595 
 596   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 597   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 598 
 599   const Type **fmembar = TypeTuple::fields(0);
 600   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 601 
 602   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 603   fsc[0] = TypeInt::CC;
 604   fsc[1] = Type::MEMORY;
 605   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 606 
 607   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 608   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 609   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 610   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 611                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 612   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 613                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 614   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 615 
 616   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 617 
 618   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 619   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 620 
 621   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 622 
 623   mreg2type[Op_Node] = Type::BOTTOM;
 624   mreg2type[Op_Set ] = 0;
 625   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 626   mreg2type[Op_RegI] = TypeInt::INT;
 627   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 628   mreg2type[Op_RegF] = Type::FLOAT;
 629   mreg2type[Op_RegD] = Type::DOUBLE;
 630   mreg2type[Op_RegL] = TypeLong::LONG;
 631   mreg2type[Op_RegFlags] = TypeInt::CC;
 632 
 633   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 634 
 635   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 636 
 637 #ifdef _LP64
 638   if (UseCompressedOops) {
 639     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 640     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 641   } else
 642 #endif
 643   {
 644     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 645     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 646   }
 647   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 648   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 649   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 650   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 651   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 652   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 653   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 654 
 655   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 656   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 657   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 658   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 659   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 660   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 661   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 662   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 663   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 664   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 665   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 666   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 667   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 668 
 669   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 670   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 671 
 672   const Type **fi2c = TypeTuple::fields(2);
 673   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 674   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 675   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 676 
 677   const Type **intpair = TypeTuple::fields(2);
 678   intpair[0] = TypeInt::INT;
 679   intpair[1] = TypeInt::INT;
 680   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 681 
 682   const Type **longpair = TypeTuple::fields(2);
 683   longpair[0] = TypeLong::LONG;
 684   longpair[1] = TypeLong::LONG;
 685   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 686 
 687   const Type **intccpair = TypeTuple::fields(2);
 688   intccpair[0] = TypeInt::INT;
 689   intccpair[1] = TypeInt::CC;
 690   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 691 
 692   const Type **longccpair = TypeTuple::fields(2);
 693   longccpair[0] = TypeLong::LONG;
 694   longccpair[1] = TypeInt::CC;
 695   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 696 
 697   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 698   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 699   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 700   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 701   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 702   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 703   _const_basic_type[T_INT]         = TypeInt::INT;
 704   _const_basic_type[T_LONG]        = TypeLong::LONG;
 705   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 706   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 707   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 708   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 709   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 710   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 711   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 712   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 713 
 714   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 715   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 716   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 717   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 718   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 719   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 720   _zero_type[T_INT]         = TypeInt::ZERO;
 721   _zero_type[T_LONG]        = TypeLong::ZERO;
 722   _zero_type[T_FLOAT]       = TypeF::ZERO;
 723   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 724   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 725   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 726   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 727   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 728   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 729 
 730   // get_zero_type() should not happen for T_CONFLICT
 731   _zero_type[T_CONFLICT]= NULL;
 732 
 733   // Vector predefined types, it needs initialized _const_basic_type[].
 734   if (Matcher::vector_size_supported(T_BYTE,4)) {
 735     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 736   }
 737   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 738     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 739   }
 740   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 741     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 742   }
 743   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 744     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 745   }
 746   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 747     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 748   }
 749   mreg2type[Op_VecS] = TypeVect::VECTS;
 750   mreg2type[Op_VecD] = TypeVect::VECTD;
 751   mreg2type[Op_VecX] = TypeVect::VECTX;
 752   mreg2type[Op_VecY] = TypeVect::VECTY;
 753   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 754 
 755   // Restore working type arena.
 756   current->set_type_arena(save);
 757   current->set_type_dict(NULL);
 758 }
 759 
 760 //------------------------------Initialize-------------------------------------
 761 void Type::Initialize(Compile* current) {
 762   assert(current->type_arena() != NULL, "must have created type arena");
 763 
 764   if (_shared_type_dict == NULL) {
 765     Initialize_shared(current);
 766   }
 767 
 768   Arena* type_arena = current->type_arena();
 769 
 770   // Create the hash-cons'ing dictionary with top-level storage allocation
 771   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 772   current->set_type_dict(tdic);
 773 
 774   // Transfer the shared types.
 775   DictI i(_shared_type_dict);
 776   for( ; i.test(); ++i ) {
 777     Type* t = (Type*)i._value;
 778     tdic->Insert(t,t);  // New Type, insert into Type table
 779   }
 780 }
 781 
 782 //------------------------------hashcons---------------------------------------
 783 // Do the hash-cons trick.  If the Type already exists in the type table,
 784 // delete the current Type and return the existing Type.  Otherwise stick the
 785 // current Type in the Type table.
 786 const Type *Type::hashcons(void) {
 787   debug_only(base());           // Check the assertion in Type::base().
 788   // Look up the Type in the Type dictionary
 789   Dict *tdic = type_dict();
 790   Type* old = (Type*)(tdic->Insert(this, this, false));
 791   if( old ) {                   // Pre-existing Type?
 792     if( old != this )           // Yes, this guy is not the pre-existing?
 793       delete this;              // Yes, Nuke this guy
 794     assert( old->_dual, "" );
 795     return old;                 // Return pre-existing
 796   }
 797 
 798   // Every type has a dual (to make my lattice symmetric).
 799   // Since we just discovered a new Type, compute its dual right now.
 800   assert( !_dual, "" );         // No dual yet
 801   _dual = xdual();              // Compute the dual
 802   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 803     _dual = this;
 804     return this;
 805   }
 806   assert( !_dual->_dual, "" );  // No reverse dual yet
 807   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 808   // New Type, insert into Type table
 809   tdic->Insert((void*)_dual,(void*)_dual);
 810   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 811 #ifdef ASSERT
 812   Type *dual_dual = (Type*)_dual->xdual();
 813   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 814   delete dual_dual;
 815 #endif
 816   return this;                  // Return new Type
 817 }
 818 
 819 //------------------------------eq---------------------------------------------
 820 // Structural equality check for Type representations
 821 bool Type::eq( const Type * ) const {
 822   return true;                  // Nothing else can go wrong
 823 }
 824 
 825 //------------------------------hash-------------------------------------------
 826 // Type-specific hashing function.
 827 int Type::hash(void) const {
 828   return _base;
 829 }
 830 
 831 //------------------------------is_finite--------------------------------------
 832 // Has a finite value
 833 bool Type::is_finite() const {
 834   return false;
 835 }
 836 
 837 //------------------------------is_nan-----------------------------------------
 838 // Is not a number (NaN)
 839 bool Type::is_nan()    const {
 840   return false;
 841 }
 842 
 843 //----------------------interface_vs_oop---------------------------------------
 844 #ifdef ASSERT
 845 bool Type::interface_vs_oop_helper(const Type *t) const {
 846   bool result = false;
 847 
 848   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 849   const TypePtr*    t_ptr =    t->make_ptr();
 850   if( this_ptr == NULL || t_ptr == NULL )
 851     return result;
 852 
 853   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 854   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 855   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 856     bool this_interface = this_inst->klass()->is_interface();
 857     bool    t_interface =    t_inst->klass()->is_interface();
 858     result = this_interface ^ t_interface;
 859   }
 860 
 861   return result;
 862 }
 863 
 864 bool Type::interface_vs_oop(const Type *t) const {
 865   if (interface_vs_oop_helper(t)) {
 866     return true;
 867   }
 868   // Now check the speculative parts as well
 869   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 870   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 871   if (this_spec != NULL && t_spec != NULL) {
 872     if (this_spec->interface_vs_oop_helper(t_spec)) {
 873       return true;
 874     }
 875     return false;
 876   }
 877   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 878     return true;
 879   }
 880   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 881     return true;
 882   }
 883   return false;
 884 }
 885 
 886 #endif
 887 
 888 //------------------------------meet-------------------------------------------
 889 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 890 // commutative and the lattice is symmetric.
 891 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 892   if (isa_narrowoop() && t->isa_narrowoop()) {
 893     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 894     return result->make_narrowoop();
 895   }
 896   if (isa_narrowklass() && t->isa_narrowklass()) {
 897     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 898     return result->make_narrowklass();
 899   }
 900 
 901   const Type *this_t = maybe_remove_speculative(include_speculative);
 902   t = t->maybe_remove_speculative(include_speculative);
 903 
 904   const Type *mt = this_t->xmeet(t);
 905   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 906   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 907 #ifdef ASSERT
 908   assert(mt == t->xmeet(this_t), "meet not commutative");
 909   const Type* dual_join = mt->_dual;
 910   const Type *t2t    = dual_join->xmeet(t->_dual);
 911   const Type *t2this = dual_join->xmeet(this_t->_dual);
 912 
 913   // Interface meet Oop is Not Symmetric:
 914   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 915   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 916 
 917   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 918     tty->print_cr("=== Meet Not Symmetric ===");
 919     tty->print("t   =                   ");              t->dump(); tty->cr();
 920     tty->print("this=                   ");         this_t->dump(); tty->cr();
 921     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 922 
 923     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 924     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 925     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 926 
 927     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 928     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 929 
 930     fatal("meet not symmetric" );
 931   }
 932 #endif
 933   return mt;
 934 }
 935 
 936 //------------------------------xmeet------------------------------------------
 937 // Compute the MEET of two types.  It returns a new Type object.
 938 const Type *Type::xmeet( const Type *t ) const {
 939   // Perform a fast test for common case; meeting the same types together.
 940   if( this == t ) return this;  // Meeting same type-rep?
 941 
 942   // Meeting TOP with anything?
 943   if( _base == Top ) return t;
 944 
 945   // Meeting BOTTOM with anything?
 946   if( _base == Bottom ) return BOTTOM;
 947 
 948   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 949   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 950   switch (t->base()) {  // Switch on original type
 951 
 952   // Cut in half the number of cases I must handle.  Only need cases for when
 953   // the given enum "t->type" is less than or equal to the local enum "type".
 954   case FloatCon:
 955   case DoubleCon:
 956   case Int:
 957   case Long:
 958     return t->xmeet(this);
 959 
 960   case OopPtr:
 961     return t->xmeet(this);
 962 
 963   case InstPtr:
 964     return t->xmeet(this);
 965 
 966   case MetadataPtr:
 967   case KlassPtr:
 968     return t->xmeet(this);
 969 
 970   case AryPtr:
 971     return t->xmeet(this);
 972 
 973   case NarrowOop:
 974     return t->xmeet(this);
 975 
 976   case NarrowKlass:
 977     return t->xmeet(this);
 978 
 979   case ValueType:
 980     return t->xmeet(this);
 981 
 982   case Bad:                     // Type check
 983   default:                      // Bogus type not in lattice
 984     typerr(t);
 985     return Type::BOTTOM;
 986 
 987   case Bottom:                  // Ye Olde Default
 988     return t;
 989 
 990   case FloatTop:
 991     if( _base == FloatTop ) return this;
 992   case FloatBot:                // Float
 993     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 994     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 995     typerr(t);
 996     return Type::BOTTOM;
 997 
 998   case DoubleTop:
 999     if( _base == DoubleTop ) return this;
1000   case DoubleBot:               // Double
1001     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
1002     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
1003     typerr(t);
1004     return Type::BOTTOM;
1005 
1006   // These next few cases must match exactly or it is a compile-time error.
1007   case Control:                 // Control of code
1008   case Abio:                    // State of world outside of program
1009   case Memory:
1010     if( _base == t->_base )  return this;
1011     typerr(t);
1012     return Type::BOTTOM;
1013 
1014   case Top:                     // Top of the lattice
1015     return this;
1016   }
1017 
1018   // The type is unchanged
1019   return this;
1020 }
1021 
1022 //-----------------------------filter------------------------------------------
1023 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1024   const Type* ft = join_helper(kills, include_speculative);
1025   if (ft->empty())
1026     return Type::TOP;           // Canonical empty value
1027   return ft;
1028 }
1029 
1030 //------------------------------xdual------------------------------------------
1031 // Compute dual right now.
1032 const Type::TYPES Type::dual_type[Type::lastype] = {
1033   Bad,          // Bad
1034   Control,      // Control
1035   Bottom,       // Top
1036   Bad,          // Int - handled in v-call
1037   Bad,          // Long - handled in v-call
1038   Half,         // Half
1039   Bad,          // NarrowOop - handled in v-call
1040   Bad,          // NarrowKlass - handled in v-call
1041 
1042   Bad,          // Tuple - handled in v-call
1043   Bad,          // Array - handled in v-call
1044   Bad,          // VectorS - handled in v-call
1045   Bad,          // VectorD - handled in v-call
1046   Bad,          // VectorX - handled in v-call
1047   Bad,          // VectorY - handled in v-call
1048   Bad,          // VectorZ - handled in v-call
1049   Bad,          // ValueType - handled in v-call
1050 
1051   Bad,          // AnyPtr - handled in v-call
1052   Bad,          // RawPtr - handled in v-call
1053   Bad,          // OopPtr - handled in v-call
1054   Bad,          // InstPtr - handled in v-call
1055   Bad,          // AryPtr - handled in v-call
1056 
1057   Bad,          //  MetadataPtr - handled in v-call
1058   Bad,          // KlassPtr - handled in v-call
1059 
1060   Bad,          // Function - handled in v-call
1061   Abio,         // Abio
1062   Return_Address,// Return_Address
1063   Memory,       // Memory
1064   FloatBot,     // FloatTop
1065   FloatCon,     // FloatCon
1066   FloatTop,     // FloatBot
1067   DoubleBot,    // DoubleTop
1068   DoubleCon,    // DoubleCon
1069   DoubleTop,    // DoubleBot
1070   Top           // Bottom
1071 };
1072 
1073 const Type *Type::xdual() const {
1074   // Note: the base() accessor asserts the sanity of _base.
1075   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1076   return new Type(_type_info[_base].dual_type);
1077 }
1078 
1079 //------------------------------has_memory-------------------------------------
1080 bool Type::has_memory() const {
1081   Type::TYPES tx = base();
1082   if (tx == Memory) return true;
1083   if (tx == Tuple) {
1084     const TypeTuple *t = is_tuple();
1085     for (uint i=0; i < t->cnt(); i++) {
1086       tx = t->field_at(i)->base();
1087       if (tx == Memory)  return true;
1088     }
1089   }
1090   return false;
1091 }
1092 
1093 #ifndef PRODUCT
1094 //------------------------------dump2------------------------------------------
1095 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1096   st->print("%s", _type_info[_base].msg);
1097 }
1098 
1099 //------------------------------dump-------------------------------------------
1100 void Type::dump_on(outputStream *st) const {
1101   ResourceMark rm;
1102   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1103   dump2(d,1, st);
1104   if (is_ptr_to_narrowoop()) {
1105     st->print(" [narrow]");
1106   } else if (is_ptr_to_narrowklass()) {
1107     st->print(" [narrowklass]");
1108   }
1109 }
1110 
1111 //-----------------------------------------------------------------------------
1112 const char* Type::str(const Type* t) {
1113   stringStream ss;
1114   t->dump_on(&ss);
1115   return ss.as_string();
1116 }
1117 #endif
1118 
1119 //------------------------------singleton--------------------------------------
1120 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1121 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1122 bool Type::singleton(void) const {
1123   return _base == Top || _base == Half;
1124 }
1125 
1126 //------------------------------empty------------------------------------------
1127 // TRUE if Type is a type with no values, FALSE otherwise.
1128 bool Type::empty(void) const {
1129   switch (_base) {
1130   case DoubleTop:
1131   case FloatTop:
1132   case Top:
1133     return true;
1134 
1135   case Half:
1136   case Abio:
1137   case Return_Address:
1138   case Memory:
1139   case Bottom:
1140   case FloatBot:
1141   case DoubleBot:
1142     return false;  // never a singleton, therefore never empty
1143 
1144   default:
1145     ShouldNotReachHere();
1146     return false;
1147   }
1148 }
1149 
1150 //------------------------------dump_stats-------------------------------------
1151 // Dump collected statistics to stderr
1152 #ifndef PRODUCT
1153 void Type::dump_stats() {
1154   tty->print("Types made: %d\n", type_dict()->Size());
1155 }
1156 #endif
1157 
1158 //------------------------------typerr-----------------------------------------
1159 void Type::typerr( const Type *t ) const {
1160 #ifndef PRODUCT
1161   tty->print("\nError mixing types: ");
1162   dump();
1163   tty->print(" and ");
1164   t->dump();
1165   tty->print("\n");
1166 #endif
1167   ShouldNotReachHere();
1168 }
1169 
1170 
1171 //=============================================================================
1172 // Convenience common pre-built types.
1173 const TypeF *TypeF::ZERO;       // Floating point zero
1174 const TypeF *TypeF::ONE;        // Floating point one
1175 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1176 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1177 
1178 //------------------------------make-------------------------------------------
1179 // Create a float constant
1180 const TypeF *TypeF::make(float f) {
1181   return (TypeF*)(new TypeF(f))->hashcons();
1182 }
1183 
1184 //------------------------------meet-------------------------------------------
1185 // Compute the MEET of two types.  It returns a new Type object.
1186 const Type *TypeF::xmeet( const Type *t ) const {
1187   // Perform a fast test for common case; meeting the same types together.
1188   if( this == t ) return this;  // Meeting same type-rep?
1189 
1190   // Current "this->_base" is FloatCon
1191   switch (t->base()) {          // Switch on original type
1192   case AnyPtr:                  // Mixing with oops happens when javac
1193   case RawPtr:                  // reuses local variables
1194   case OopPtr:
1195   case InstPtr:
1196   case AryPtr:
1197   case MetadataPtr:
1198   case KlassPtr:
1199   case NarrowOop:
1200   case NarrowKlass:
1201   case Int:
1202   case Long:
1203   case DoubleTop:
1204   case DoubleCon:
1205   case DoubleBot:
1206   case Bottom:                  // Ye Olde Default
1207     return Type::BOTTOM;
1208 
1209   case FloatBot:
1210     return t;
1211 
1212   default:                      // All else is a mistake
1213     typerr(t);
1214 
1215   case FloatCon:                // Float-constant vs Float-constant?
1216     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1217                                 // must compare bitwise as positive zero, negative zero and NaN have
1218                                 // all the same representation in C++
1219       return FLOAT;             // Return generic float
1220                                 // Equal constants
1221   case Top:
1222   case FloatTop:
1223     break;                      // Return the float constant
1224   }
1225   return this;                  // Return the float constant
1226 }
1227 
1228 //------------------------------xdual------------------------------------------
1229 // Dual: symmetric
1230 const Type *TypeF::xdual() const {
1231   return this;
1232 }
1233 
1234 //------------------------------eq---------------------------------------------
1235 // Structural equality check for Type representations
1236 bool TypeF::eq(const Type *t) const {
1237   // Bitwise comparison to distinguish between +/-0. These values must be treated
1238   // as different to be consistent with C1 and the interpreter.
1239   return (jint_cast(_f) == jint_cast(t->getf()));
1240 }
1241 
1242 //------------------------------hash-------------------------------------------
1243 // Type-specific hashing function.
1244 int TypeF::hash(void) const {
1245   return *(int*)(&_f);
1246 }
1247 
1248 //------------------------------is_finite--------------------------------------
1249 // Has a finite value
1250 bool TypeF::is_finite() const {
1251   return g_isfinite(getf()) != 0;
1252 }
1253 
1254 //------------------------------is_nan-----------------------------------------
1255 // Is not a number (NaN)
1256 bool TypeF::is_nan()    const {
1257   return g_isnan(getf()) != 0;
1258 }
1259 
1260 //------------------------------dump2------------------------------------------
1261 // Dump float constant Type
1262 #ifndef PRODUCT
1263 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1264   Type::dump2(d,depth, st);
1265   st->print("%f", _f);
1266 }
1267 #endif
1268 
1269 //------------------------------singleton--------------------------------------
1270 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1271 // constants (Ldi nodes).  Singletons are integer, float or double constants
1272 // or a single symbol.
1273 bool TypeF::singleton(void) const {
1274   return true;                  // Always a singleton
1275 }
1276 
1277 bool TypeF::empty(void) const {
1278   return false;                 // always exactly a singleton
1279 }
1280 
1281 //=============================================================================
1282 // Convenience common pre-built types.
1283 const TypeD *TypeD::ZERO;       // Floating point zero
1284 const TypeD *TypeD::ONE;        // Floating point one
1285 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1286 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1287 
1288 //------------------------------make-------------------------------------------
1289 const TypeD *TypeD::make(double d) {
1290   return (TypeD*)(new TypeD(d))->hashcons();
1291 }
1292 
1293 //------------------------------meet-------------------------------------------
1294 // Compute the MEET of two types.  It returns a new Type object.
1295 const Type *TypeD::xmeet( const Type *t ) const {
1296   // Perform a fast test for common case; meeting the same types together.
1297   if( this == t ) return this;  // Meeting same type-rep?
1298 
1299   // Current "this->_base" is DoubleCon
1300   switch (t->base()) {          // Switch on original type
1301   case AnyPtr:                  // Mixing with oops happens when javac
1302   case RawPtr:                  // reuses local variables
1303   case OopPtr:
1304   case InstPtr:
1305   case AryPtr:
1306   case MetadataPtr:
1307   case KlassPtr:
1308   case NarrowOop:
1309   case NarrowKlass:
1310   case Int:
1311   case Long:
1312   case FloatTop:
1313   case FloatCon:
1314   case FloatBot:
1315   case Bottom:                  // Ye Olde Default
1316     return Type::BOTTOM;
1317 
1318   case DoubleBot:
1319     return t;
1320 
1321   default:                      // All else is a mistake
1322     typerr(t);
1323 
1324   case DoubleCon:               // Double-constant vs Double-constant?
1325     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1326       return DOUBLE;            // Return generic double
1327   case Top:
1328   case DoubleTop:
1329     break;
1330   }
1331   return this;                  // Return the double constant
1332 }
1333 
1334 //------------------------------xdual------------------------------------------
1335 // Dual: symmetric
1336 const Type *TypeD::xdual() const {
1337   return this;
1338 }
1339 
1340 //------------------------------eq---------------------------------------------
1341 // Structural equality check for Type representations
1342 bool TypeD::eq(const Type *t) const {
1343   // Bitwise comparison to distinguish between +/-0. These values must be treated
1344   // as different to be consistent with C1 and the interpreter.
1345   return (jlong_cast(_d) == jlong_cast(t->getd()));
1346 }
1347 
1348 //------------------------------hash-------------------------------------------
1349 // Type-specific hashing function.
1350 int TypeD::hash(void) const {
1351   return *(int*)(&_d);
1352 }
1353 
1354 //------------------------------is_finite--------------------------------------
1355 // Has a finite value
1356 bool TypeD::is_finite() const {
1357   return g_isfinite(getd()) != 0;
1358 }
1359 
1360 //------------------------------is_nan-----------------------------------------
1361 // Is not a number (NaN)
1362 bool TypeD::is_nan()    const {
1363   return g_isnan(getd()) != 0;
1364 }
1365 
1366 //------------------------------dump2------------------------------------------
1367 // Dump double constant Type
1368 #ifndef PRODUCT
1369 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1370   Type::dump2(d,depth,st);
1371   st->print("%f", _d);
1372 }
1373 #endif
1374 
1375 //------------------------------singleton--------------------------------------
1376 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1377 // constants (Ldi nodes).  Singletons are integer, float or double constants
1378 // or a single symbol.
1379 bool TypeD::singleton(void) const {
1380   return true;                  // Always a singleton
1381 }
1382 
1383 bool TypeD::empty(void) const {
1384   return false;                 // always exactly a singleton
1385 }
1386 
1387 //=============================================================================
1388 // Convience common pre-built types.
1389 const TypeInt *TypeInt::MINUS_1;// -1
1390 const TypeInt *TypeInt::ZERO;   // 0
1391 const TypeInt *TypeInt::ONE;    // 1
1392 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1393 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1394 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1395 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1396 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1397 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1398 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1399 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1400 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1401 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1402 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1403 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1404 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1405 const TypeInt *TypeInt::INT;    // 32-bit integers
1406 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1407 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1408 
1409 //------------------------------TypeInt----------------------------------------
1410 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1411 }
1412 
1413 //------------------------------make-------------------------------------------
1414 const TypeInt *TypeInt::make( jint lo ) {
1415   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1416 }
1417 
1418 static int normalize_int_widen( jint lo, jint hi, int w ) {
1419   // Certain normalizations keep us sane when comparing types.
1420   // The 'SMALLINT' covers constants and also CC and its relatives.
1421   if (lo <= hi) {
1422     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1423     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1424   } else {
1425     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1426     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1427   }
1428   return w;
1429 }
1430 
1431 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1432   w = normalize_int_widen(lo, hi, w);
1433   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1434 }
1435 
1436 //------------------------------meet-------------------------------------------
1437 // Compute the MEET of two types.  It returns a new Type representation object
1438 // with reference count equal to the number of Types pointing at it.
1439 // Caller should wrap a Types around it.
1440 const Type *TypeInt::xmeet( const Type *t ) const {
1441   // Perform a fast test for common case; meeting the same types together.
1442   if( this == t ) return this;  // Meeting same type?
1443 
1444   // Currently "this->_base" is a TypeInt
1445   switch (t->base()) {          // Switch on original type
1446   case AnyPtr:                  // Mixing with oops happens when javac
1447   case RawPtr:                  // reuses local variables
1448   case OopPtr:
1449   case InstPtr:
1450   case AryPtr:
1451   case MetadataPtr:
1452   case KlassPtr:
1453   case NarrowOop:
1454   case NarrowKlass:
1455   case Long:
1456   case FloatTop:
1457   case FloatCon:
1458   case FloatBot:
1459   case DoubleTop:
1460   case DoubleCon:
1461   case DoubleBot:
1462   case Bottom:                  // Ye Olde Default
1463     return Type::BOTTOM;
1464   default:                      // All else is a mistake
1465     typerr(t);
1466   case Top:                     // No change
1467     return this;
1468   case Int:                     // Int vs Int?
1469     break;
1470   }
1471 
1472   // Expand covered set
1473   const TypeInt *r = t->is_int();
1474   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1475 }
1476 
1477 //------------------------------xdual------------------------------------------
1478 // Dual: reverse hi & lo; flip widen
1479 const Type *TypeInt::xdual() const {
1480   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1481   return new TypeInt(_hi,_lo,w);
1482 }
1483 
1484 //------------------------------widen------------------------------------------
1485 // Only happens for optimistic top-down optimizations.
1486 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1487   // Coming from TOP or such; no widening
1488   if( old->base() != Int ) return this;
1489   const TypeInt *ot = old->is_int();
1490 
1491   // If new guy is equal to old guy, no widening
1492   if( _lo == ot->_lo && _hi == ot->_hi )
1493     return old;
1494 
1495   // If new guy contains old, then we widened
1496   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1497     // New contains old
1498     // If new guy is already wider than old, no widening
1499     if( _widen > ot->_widen ) return this;
1500     // If old guy was a constant, do not bother
1501     if (ot->_lo == ot->_hi)  return this;
1502     // Now widen new guy.
1503     // Check for widening too far
1504     if (_widen == WidenMax) {
1505       int max = max_jint;
1506       int min = min_jint;
1507       if (limit->isa_int()) {
1508         max = limit->is_int()->_hi;
1509         min = limit->is_int()->_lo;
1510       }
1511       if (min < _lo && _hi < max) {
1512         // If neither endpoint is extremal yet, push out the endpoint
1513         // which is closer to its respective limit.
1514         if (_lo >= 0 ||                 // easy common case
1515             (juint)(_lo - min) >= (juint)(max - _hi)) {
1516           // Try to widen to an unsigned range type of 31 bits:
1517           return make(_lo, max, WidenMax);
1518         } else {
1519           return make(min, _hi, WidenMax);
1520         }
1521       }
1522       return TypeInt::INT;
1523     }
1524     // Returned widened new guy
1525     return make(_lo,_hi,_widen+1);
1526   }
1527 
1528   // If old guy contains new, then we probably widened too far & dropped to
1529   // bottom.  Return the wider fellow.
1530   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1531     return old;
1532 
1533   //fatal("Integer value range is not subset");
1534   //return this;
1535   return TypeInt::INT;
1536 }
1537 
1538 //------------------------------narrow---------------------------------------
1539 // Only happens for pessimistic optimizations.
1540 const Type *TypeInt::narrow( const Type *old ) const {
1541   if (_lo >= _hi)  return this;   // already narrow enough
1542   if (old == NULL)  return this;
1543   const TypeInt* ot = old->isa_int();
1544   if (ot == NULL)  return this;
1545   jint olo = ot->_lo;
1546   jint ohi = ot->_hi;
1547 
1548   // If new guy is equal to old guy, no narrowing
1549   if (_lo == olo && _hi == ohi)  return old;
1550 
1551   // If old guy was maximum range, allow the narrowing
1552   if (olo == min_jint && ohi == max_jint)  return this;
1553 
1554   if (_lo < olo || _hi > ohi)
1555     return this;                // doesn't narrow; pretty wierd
1556 
1557   // The new type narrows the old type, so look for a "death march".
1558   // See comments on PhaseTransform::saturate.
1559   juint nrange = (juint)_hi - _lo;
1560   juint orange = (juint)ohi - olo;
1561   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1562     // Use the new type only if the range shrinks a lot.
1563     // We do not want the optimizer computing 2^31 point by point.
1564     return old;
1565   }
1566 
1567   return this;
1568 }
1569 
1570 //-----------------------------filter------------------------------------------
1571 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1572   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1573   if (ft == NULL || ft->empty())
1574     return Type::TOP;           // Canonical empty value
1575   if (ft->_widen < this->_widen) {
1576     // Do not allow the value of kill->_widen to affect the outcome.
1577     // The widen bits must be allowed to run freely through the graph.
1578     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1579   }
1580   return ft;
1581 }
1582 
1583 //------------------------------eq---------------------------------------------
1584 // Structural equality check for Type representations
1585 bool TypeInt::eq( const Type *t ) const {
1586   const TypeInt *r = t->is_int(); // Handy access
1587   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1588 }
1589 
1590 //------------------------------hash-------------------------------------------
1591 // Type-specific hashing function.
1592 int TypeInt::hash(void) const {
1593   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1594 }
1595 
1596 //------------------------------is_finite--------------------------------------
1597 // Has a finite value
1598 bool TypeInt::is_finite() const {
1599   return true;
1600 }
1601 
1602 //------------------------------dump2------------------------------------------
1603 // Dump TypeInt
1604 #ifndef PRODUCT
1605 static const char* intname(char* buf, jint n) {
1606   if (n == min_jint)
1607     return "min";
1608   else if (n < min_jint + 10000)
1609     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1610   else if (n == max_jint)
1611     return "max";
1612   else if (n > max_jint - 10000)
1613     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1614   else
1615     sprintf(buf, INT32_FORMAT, n);
1616   return buf;
1617 }
1618 
1619 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1620   char buf[40], buf2[40];
1621   if (_lo == min_jint && _hi == max_jint)
1622     st->print("int");
1623   else if (is_con())
1624     st->print("int:%s", intname(buf, get_con()));
1625   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1626     st->print("bool");
1627   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1628     st->print("byte");
1629   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1630     st->print("char");
1631   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1632     st->print("short");
1633   else if (_hi == max_jint)
1634     st->print("int:>=%s", intname(buf, _lo));
1635   else if (_lo == min_jint)
1636     st->print("int:<=%s", intname(buf, _hi));
1637   else
1638     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1639 
1640   if (_widen != 0 && this != TypeInt::INT)
1641     st->print(":%.*s", _widen, "wwww");
1642 }
1643 #endif
1644 
1645 //------------------------------singleton--------------------------------------
1646 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1647 // constants.
1648 bool TypeInt::singleton(void) const {
1649   return _lo >= _hi;
1650 }
1651 
1652 bool TypeInt::empty(void) const {
1653   return _lo > _hi;
1654 }
1655 
1656 //=============================================================================
1657 // Convenience common pre-built types.
1658 const TypeLong *TypeLong::MINUS_1;// -1
1659 const TypeLong *TypeLong::ZERO; // 0
1660 const TypeLong *TypeLong::ONE;  // 1
1661 const TypeLong *TypeLong::POS;  // >=0
1662 const TypeLong *TypeLong::LONG; // 64-bit integers
1663 const TypeLong *TypeLong::INT;  // 32-bit subrange
1664 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1665 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1666 
1667 //------------------------------TypeLong---------------------------------------
1668 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1669 }
1670 
1671 //------------------------------make-------------------------------------------
1672 const TypeLong *TypeLong::make( jlong lo ) {
1673   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1674 }
1675 
1676 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1677   // Certain normalizations keep us sane when comparing types.
1678   // The 'SMALLINT' covers constants.
1679   if (lo <= hi) {
1680     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1681     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1682   } else {
1683     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1684     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1685   }
1686   return w;
1687 }
1688 
1689 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1690   w = normalize_long_widen(lo, hi, w);
1691   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1692 }
1693 
1694 
1695 //------------------------------meet-------------------------------------------
1696 // Compute the MEET of two types.  It returns a new Type representation object
1697 // with reference count equal to the number of Types pointing at it.
1698 // Caller should wrap a Types around it.
1699 const Type *TypeLong::xmeet( const Type *t ) const {
1700   // Perform a fast test for common case; meeting the same types together.
1701   if( this == t ) return this;  // Meeting same type?
1702 
1703   // Currently "this->_base" is a TypeLong
1704   switch (t->base()) {          // Switch on original type
1705   case AnyPtr:                  // Mixing with oops happens when javac
1706   case RawPtr:                  // reuses local variables
1707   case OopPtr:
1708   case InstPtr:
1709   case AryPtr:
1710   case MetadataPtr:
1711   case KlassPtr:
1712   case NarrowOop:
1713   case NarrowKlass:
1714   case Int:
1715   case FloatTop:
1716   case FloatCon:
1717   case FloatBot:
1718   case DoubleTop:
1719   case DoubleCon:
1720   case DoubleBot:
1721   case Bottom:                  // Ye Olde Default
1722     return Type::BOTTOM;
1723   default:                      // All else is a mistake
1724     typerr(t);
1725   case Top:                     // No change
1726     return this;
1727   case Long:                    // Long vs Long?
1728     break;
1729   }
1730 
1731   // Expand covered set
1732   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1733   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1734 }
1735 
1736 //------------------------------xdual------------------------------------------
1737 // Dual: reverse hi & lo; flip widen
1738 const Type *TypeLong::xdual() const {
1739   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1740   return new TypeLong(_hi,_lo,w);
1741 }
1742 
1743 //------------------------------widen------------------------------------------
1744 // Only happens for optimistic top-down optimizations.
1745 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1746   // Coming from TOP or such; no widening
1747   if( old->base() != Long ) return this;
1748   const TypeLong *ot = old->is_long();
1749 
1750   // If new guy is equal to old guy, no widening
1751   if( _lo == ot->_lo && _hi == ot->_hi )
1752     return old;
1753 
1754   // If new guy contains old, then we widened
1755   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1756     // New contains old
1757     // If new guy is already wider than old, no widening
1758     if( _widen > ot->_widen ) return this;
1759     // If old guy was a constant, do not bother
1760     if (ot->_lo == ot->_hi)  return this;
1761     // Now widen new guy.
1762     // Check for widening too far
1763     if (_widen == WidenMax) {
1764       jlong max = max_jlong;
1765       jlong min = min_jlong;
1766       if (limit->isa_long()) {
1767         max = limit->is_long()->_hi;
1768         min = limit->is_long()->_lo;
1769       }
1770       if (min < _lo && _hi < max) {
1771         // If neither endpoint is extremal yet, push out the endpoint
1772         // which is closer to its respective limit.
1773         if (_lo >= 0 ||                 // easy common case
1774             ((julong)_lo - min) >= ((julong)max - _hi)) {
1775           // Try to widen to an unsigned range type of 32/63 bits:
1776           if (max >= max_juint && _hi < max_juint)
1777             return make(_lo, max_juint, WidenMax);
1778           else
1779             return make(_lo, max, WidenMax);
1780         } else {
1781           return make(min, _hi, WidenMax);
1782         }
1783       }
1784       return TypeLong::LONG;
1785     }
1786     // Returned widened new guy
1787     return make(_lo,_hi,_widen+1);
1788   }
1789 
1790   // If old guy contains new, then we probably widened too far & dropped to
1791   // bottom.  Return the wider fellow.
1792   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1793     return old;
1794 
1795   //  fatal("Long value range is not subset");
1796   // return this;
1797   return TypeLong::LONG;
1798 }
1799 
1800 //------------------------------narrow----------------------------------------
1801 // Only happens for pessimistic optimizations.
1802 const Type *TypeLong::narrow( const Type *old ) const {
1803   if (_lo >= _hi)  return this;   // already narrow enough
1804   if (old == NULL)  return this;
1805   const TypeLong* ot = old->isa_long();
1806   if (ot == NULL)  return this;
1807   jlong olo = ot->_lo;
1808   jlong ohi = ot->_hi;
1809 
1810   // If new guy is equal to old guy, no narrowing
1811   if (_lo == olo && _hi == ohi)  return old;
1812 
1813   // If old guy was maximum range, allow the narrowing
1814   if (olo == min_jlong && ohi == max_jlong)  return this;
1815 
1816   if (_lo < olo || _hi > ohi)
1817     return this;                // doesn't narrow; pretty wierd
1818 
1819   // The new type narrows the old type, so look for a "death march".
1820   // See comments on PhaseTransform::saturate.
1821   julong nrange = _hi - _lo;
1822   julong orange = ohi - olo;
1823   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1824     // Use the new type only if the range shrinks a lot.
1825     // We do not want the optimizer computing 2^31 point by point.
1826     return old;
1827   }
1828 
1829   return this;
1830 }
1831 
1832 //-----------------------------filter------------------------------------------
1833 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1834   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1835   if (ft == NULL || ft->empty())
1836     return Type::TOP;           // Canonical empty value
1837   if (ft->_widen < this->_widen) {
1838     // Do not allow the value of kill->_widen to affect the outcome.
1839     // The widen bits must be allowed to run freely through the graph.
1840     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1841   }
1842   return ft;
1843 }
1844 
1845 //------------------------------eq---------------------------------------------
1846 // Structural equality check for Type representations
1847 bool TypeLong::eq( const Type *t ) const {
1848   const TypeLong *r = t->is_long(); // Handy access
1849   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1850 }
1851 
1852 //------------------------------hash-------------------------------------------
1853 // Type-specific hashing function.
1854 int TypeLong::hash(void) const {
1855   return (int)(_lo+_hi+_widen+(int)Type::Long);
1856 }
1857 
1858 //------------------------------is_finite--------------------------------------
1859 // Has a finite value
1860 bool TypeLong::is_finite() const {
1861   return true;
1862 }
1863 
1864 //------------------------------dump2------------------------------------------
1865 // Dump TypeLong
1866 #ifndef PRODUCT
1867 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1868   if (n > x) {
1869     if (n >= x + 10000)  return NULL;
1870     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1871   } else if (n < x) {
1872     if (n <= x - 10000)  return NULL;
1873     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1874   } else {
1875     return xname;
1876   }
1877   return buf;
1878 }
1879 
1880 static const char* longname(char* buf, jlong n) {
1881   const char* str;
1882   if (n == min_jlong)
1883     return "min";
1884   else if (n < min_jlong + 10000)
1885     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1886   else if (n == max_jlong)
1887     return "max";
1888   else if (n > max_jlong - 10000)
1889     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1890   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1891     return str;
1892   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1893     return str;
1894   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1895     return str;
1896   else
1897     sprintf(buf, JLONG_FORMAT, n);
1898   return buf;
1899 }
1900 
1901 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1902   char buf[80], buf2[80];
1903   if (_lo == min_jlong && _hi == max_jlong)
1904     st->print("long");
1905   else if (is_con())
1906     st->print("long:%s", longname(buf, get_con()));
1907   else if (_hi == max_jlong)
1908     st->print("long:>=%s", longname(buf, _lo));
1909   else if (_lo == min_jlong)
1910     st->print("long:<=%s", longname(buf, _hi));
1911   else
1912     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1913 
1914   if (_widen != 0 && this != TypeLong::LONG)
1915     st->print(":%.*s", _widen, "wwww");
1916 }
1917 #endif
1918 
1919 //------------------------------singleton--------------------------------------
1920 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1921 // constants
1922 bool TypeLong::singleton(void) const {
1923   return _lo >= _hi;
1924 }
1925 
1926 bool TypeLong::empty(void) const {
1927   return _lo > _hi;
1928 }
1929 
1930 //=============================================================================
1931 // Convenience common pre-built types.
1932 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1933 const TypeTuple *TypeTuple::IFFALSE;
1934 const TypeTuple *TypeTuple::IFTRUE;
1935 const TypeTuple *TypeTuple::IFNEITHER;
1936 const TypeTuple *TypeTuple::LOOPBODY;
1937 const TypeTuple *TypeTuple::MEMBAR;
1938 const TypeTuple *TypeTuple::STORECONDITIONAL;
1939 const TypeTuple *TypeTuple::START_I2C;
1940 const TypeTuple *TypeTuple::INT_PAIR;
1941 const TypeTuple *TypeTuple::LONG_PAIR;
1942 const TypeTuple *TypeTuple::INT_CC_PAIR;
1943 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1944 
1945 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos, SigEntry* res_entry = NULL) {
1946   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1947     if (res_entry != NULL && (int)pos == (res_entry->_offset + TypeFunc::Parms)) {
1948       // Add reserved entry
1949       field_array[pos++] = Type::get_const_basic_type(res_entry->_bt);
1950       if (res_entry->_bt == T_LONG || res_entry->_bt == T_DOUBLE) {
1951         field_array[pos++] = Type::HALF;
1952       }
1953     }
1954     ciField* field = vk->nonstatic_field_at(j);
1955     BasicType bt = field->type()->basic_type();
1956     const Type* ft = Type::get_const_type(field->type());
1957     field_array[pos++] = ft;
1958     if (bt == T_LONG || bt == T_DOUBLE) {
1959       field_array[pos++] = Type::HALF;
1960     }
1961   }
1962 }
1963 
1964 //------------------------------make-------------------------------------------
1965 // Make a TypeTuple from the range of a method signature
1966 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1967   ciType* return_type = sig->return_type();
1968   bool never_null = sig->returns_never_null();
1969 
1970   uint arg_cnt = 0;
1971   ret_vt_fields = ret_vt_fields && never_null && return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1972   if (ret_vt_fields) {
1973     ciValueKlass* vk = (ciValueKlass*)return_type;
1974     arg_cnt = vk->value_arg_slots()+1;
1975   } else {
1976     arg_cnt = return_type->size();
1977   }
1978 
1979   const Type **field_array = fields(arg_cnt);
1980   switch (return_type->basic_type()) {
1981   case T_LONG:
1982     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1983     field_array[TypeFunc::Parms+1] = Type::HALF;
1984     break;
1985   case T_DOUBLE:
1986     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1987     field_array[TypeFunc::Parms+1] = Type::HALF;
1988     break;
1989   case T_OBJECT:
1990   case T_ARRAY:
1991   case T_BOOLEAN:
1992   case T_CHAR:
1993   case T_FLOAT:
1994   case T_BYTE:
1995   case T_SHORT:
1996   case T_INT:
1997     field_array[TypeFunc::Parms] = get_const_type(return_type);
1998     break;
1999   case T_VALUETYPE:
2000     if (ret_vt_fields) {
2001       ciValueKlass* vk = (ciValueKlass*)return_type;
2002       uint pos = TypeFunc::Parms;
2003       field_array[pos] = TypePtr::BOTTOM;
2004       pos++;
2005       collect_value_fields(vk, field_array, pos);
2006     } else {
2007       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2008     }
2009     break;
2010   case T_VOID:
2011     break;
2012   default:
2013     ShouldNotReachHere();
2014   }
2015   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2016 }
2017 
2018 // Make a TypeTuple from the domain of a method signature
2019 const TypeTuple *TypeTuple::make_domain(ciMethod* method, bool vt_fields_as_args) {
2020   ciInstanceKlass* recv = method->is_static() ? NULL : method->holder();
2021   ciSignature* sig = method->signature();
2022   uint arg_cnt = sig->size();
2023 
2024   int vt_extra = 0;
2025   SigEntry res_entry = method->get_Method()->get_res_entry();
2026   if (vt_fields_as_args) {
2027     for (int i = 0; i < sig->count(); i++) {
2028       ciType* type = sig->type_at(i);
2029       if (type->is_valuetype()) {
2030         vt_extra += type->as_value_klass()->value_arg_slots()-1;
2031       }
2032     }
2033     if (res_entry._offset != -1) {
2034       // Account for the reserved stack slot
2035       vt_extra += type2size[res_entry._bt];
2036     }
2037   }
2038 
2039   uint pos = TypeFunc::Parms;
2040   const Type **field_array;
2041   if (recv != NULL) {
2042     arg_cnt++;
2043     // TODO for now, don't scalarize value type receivers because of interface calls
2044     //bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype();
2045     bool vt_fields_for_recv = false;
2046     if (vt_fields_for_recv) {
2047       vt_extra += recv->as_value_klass()->value_arg_slots()-1;
2048     }
2049     field_array = fields(arg_cnt + vt_extra);
2050     // Use get_const_type here because it respects UseUniqueSubclasses:
2051     if (vt_fields_for_recv) {
2052       collect_value_fields(recv->as_value_klass(), field_array, pos, &res_entry);
2053     } else {
2054       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2055     }
2056   } else {
2057     field_array = fields(arg_cnt + vt_extra);
2058   }
2059 
2060   int i = 0;
2061   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2062     ciType* type = sig->type_at(i);
2063 
2064     switch (type->basic_type()) {
2065     case T_LONG:
2066       field_array[pos++] = TypeLong::LONG;
2067       field_array[pos++] = Type::HALF;
2068       break;
2069     case T_DOUBLE:
2070       field_array[pos++] = Type::DOUBLE;
2071       field_array[pos++] = Type::HALF;
2072       break;
2073     case T_OBJECT:
2074     case T_ARRAY:
2075     case T_FLOAT:
2076     case T_INT:
2077       field_array[pos++] = get_const_type(type);
2078       break;
2079     case T_BOOLEAN:
2080     case T_CHAR:
2081     case T_BYTE:
2082     case T_SHORT:
2083       field_array[pos++] = TypeInt::INT;
2084       break;
2085     case T_VALUETYPE: {
2086       bool never_null = sig->is_never_null_at(i);
2087       if (vt_fields_as_args && never_null) {
2088         collect_value_fields(type->as_value_klass(), field_array, pos, &res_entry);
2089       } else {
2090         field_array[pos++] = get_const_type(type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2091       }
2092       break;
2093     }
2094     default:
2095       ShouldNotReachHere();
2096     }
2097     i++;
2098 
2099     if (vt_fields_as_args && (int)pos == (res_entry._offset + TypeFunc::Parms)) {
2100       // Add reserved entry
2101       field_array[pos++] = Type::get_const_basic_type(res_entry._bt);
2102       if (res_entry._bt == T_LONG || res_entry._bt == T_DOUBLE) {
2103         field_array[pos++] = Type::HALF;
2104       }
2105     }
2106   }
2107   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2108 
2109   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2110 }
2111 
2112 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2113   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2114 }
2115 
2116 //------------------------------fields-----------------------------------------
2117 // Subroutine call type with space allocated for argument types
2118 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2119 const Type **TypeTuple::fields( uint arg_cnt ) {
2120   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2121   flds[TypeFunc::Control  ] = Type::CONTROL;
2122   flds[TypeFunc::I_O      ] = Type::ABIO;
2123   flds[TypeFunc::Memory   ] = Type::MEMORY;
2124   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2125   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2126 
2127   return flds;
2128 }
2129 
2130 //------------------------------meet-------------------------------------------
2131 // Compute the MEET of two types.  It returns a new Type object.
2132 const Type *TypeTuple::xmeet( const Type *t ) const {
2133   // Perform a fast test for common case; meeting the same types together.
2134   if( this == t ) return this;  // Meeting same type-rep?
2135 
2136   // Current "this->_base" is Tuple
2137   switch (t->base()) {          // switch on original type
2138 
2139   case Bottom:                  // Ye Olde Default
2140     return t;
2141 
2142   default:                      // All else is a mistake
2143     typerr(t);
2144 
2145   case Tuple: {                 // Meeting 2 signatures?
2146     const TypeTuple *x = t->is_tuple();
2147     assert( _cnt == x->_cnt, "" );
2148     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2149     for( uint i=0; i<_cnt; i++ )
2150       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2151     return TypeTuple::make(_cnt,fields);
2152   }
2153   case Top:
2154     break;
2155   }
2156   return this;                  // Return the double constant
2157 }
2158 
2159 //------------------------------xdual------------------------------------------
2160 // Dual: compute field-by-field dual
2161 const Type *TypeTuple::xdual() const {
2162   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2163   for( uint i=0; i<_cnt; i++ )
2164     fields[i] = _fields[i]->dual();
2165   return new TypeTuple(_cnt,fields);
2166 }
2167 
2168 //------------------------------eq---------------------------------------------
2169 // Structural equality check for Type representations
2170 bool TypeTuple::eq( const Type *t ) const {
2171   const TypeTuple *s = (const TypeTuple *)t;
2172   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2173   for (uint i = 0; i < _cnt; i++)
2174     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2175       return false;             // Missed
2176   return true;
2177 }
2178 
2179 //------------------------------hash-------------------------------------------
2180 // Type-specific hashing function.
2181 int TypeTuple::hash(void) const {
2182   intptr_t sum = _cnt;
2183   for( uint i=0; i<_cnt; i++ )
2184     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2185   return sum;
2186 }
2187 
2188 //------------------------------dump2------------------------------------------
2189 // Dump signature Type
2190 #ifndef PRODUCT
2191 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2192   st->print("{");
2193   if( !depth || d[this] ) {     // Check for recursive print
2194     st->print("...}");
2195     return;
2196   }
2197   d.Insert((void*)this, (void*)this);   // Stop recursion
2198   if( _cnt ) {
2199     uint i;
2200     for( i=0; i<_cnt-1; i++ ) {
2201       st->print("%d:", i);
2202       _fields[i]->dump2(d, depth-1, st);
2203       st->print(", ");
2204     }
2205     st->print("%d:", i);
2206     _fields[i]->dump2(d, depth-1, st);
2207   }
2208   st->print("}");
2209 }
2210 #endif
2211 
2212 //------------------------------singleton--------------------------------------
2213 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2214 // constants (Ldi nodes).  Singletons are integer, float or double constants
2215 // or a single symbol.
2216 bool TypeTuple::singleton(void) const {
2217   return false;                 // Never a singleton
2218 }
2219 
2220 bool TypeTuple::empty(void) const {
2221   for( uint i=0; i<_cnt; i++ ) {
2222     if (_fields[i]->empty())  return true;
2223   }
2224   return false;
2225 }
2226 
2227 //=============================================================================
2228 // Convenience common pre-built types.
2229 
2230 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2231   // Certain normalizations keep us sane when comparing types.
2232   // We do not want arrayOop variables to differ only by the wideness
2233   // of their index types.  Pick minimum wideness, since that is the
2234   // forced wideness of small ranges anyway.
2235   if (size->_widen != Type::WidenMin)
2236     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2237   else
2238     return size;
2239 }
2240 
2241 //------------------------------make-------------------------------------------
2242 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2243   if (elem->is_valuetypeptr()) {
2244     // Value type array elements cannot be NULL
2245     elem = elem->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2246   }
2247   if (UseCompressedOops && elem->isa_oopptr()) {
2248     elem = elem->make_narrowoop();
2249   }
2250   size = normalize_array_size(size);
2251   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2252 }
2253 
2254 //------------------------------meet-------------------------------------------
2255 // Compute the MEET of two types.  It returns a new Type object.
2256 const Type *TypeAry::xmeet( const Type *t ) const {
2257   // Perform a fast test for common case; meeting the same types together.
2258   if( this == t ) return this;  // Meeting same type-rep?
2259 
2260   // Current "this->_base" is Ary
2261   switch (t->base()) {          // switch on original type
2262 
2263   case Bottom:                  // Ye Olde Default
2264     return t;
2265 
2266   default:                      // All else is a mistake
2267     typerr(t);
2268 
2269   case Array: {                 // Meeting 2 arrays?
2270     const TypeAry *a = t->is_ary();
2271     return TypeAry::make(_elem->meet_speculative(a->_elem),
2272                          _size->xmeet(a->_size)->is_int(),
2273                          _stable & a->_stable);
2274   }
2275   case Top:
2276     break;
2277   }
2278   return this;                  // Return the double constant
2279 }
2280 
2281 //------------------------------xdual------------------------------------------
2282 // Dual: compute field-by-field dual
2283 const Type *TypeAry::xdual() const {
2284   const TypeInt* size_dual = _size->dual()->is_int();
2285   size_dual = normalize_array_size(size_dual);
2286   return new TypeAry(_elem->dual(), size_dual, !_stable);
2287 }
2288 
2289 //------------------------------eq---------------------------------------------
2290 // Structural equality check for Type representations
2291 bool TypeAry::eq( const Type *t ) const {
2292   const TypeAry *a = (const TypeAry*)t;
2293   return _elem == a->_elem &&
2294     _stable == a->_stable &&
2295     _size == a->_size;
2296 }
2297 
2298 //------------------------------hash-------------------------------------------
2299 // Type-specific hashing function.
2300 int TypeAry::hash(void) const {
2301   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2302 }
2303 
2304 /**
2305  * Return same type without a speculative part in the element
2306  */
2307 const Type* TypeAry::remove_speculative() const {
2308   return make(_elem->remove_speculative(), _size, _stable);
2309 }
2310 
2311 /**
2312  * Return same type with cleaned up speculative part of element
2313  */
2314 const Type* TypeAry::cleanup_speculative() const {
2315   return make(_elem->cleanup_speculative(), _size, _stable);
2316 }
2317 
2318 /**
2319  * Return same type but with a different inline depth (used for speculation)
2320  *
2321  * @param depth  depth to meet with
2322  */
2323 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2324   if (!UseInlineDepthForSpeculativeTypes) {
2325     return this;
2326   }
2327   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2328 }
2329 
2330 //----------------------interface_vs_oop---------------------------------------
2331 #ifdef ASSERT
2332 bool TypeAry::interface_vs_oop(const Type *t) const {
2333   const TypeAry* t_ary = t->is_ary();
2334   if (t_ary) {
2335     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2336     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2337     if(this_ptr != NULL && t_ptr != NULL) {
2338       return this_ptr->interface_vs_oop(t_ptr);
2339     }
2340   }
2341   return false;
2342 }
2343 #endif
2344 
2345 //------------------------------dump2------------------------------------------
2346 #ifndef PRODUCT
2347 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2348   if (_stable)  st->print("stable:");
2349   _elem->dump2(d, depth, st);
2350   st->print("[");
2351   _size->dump2(d, depth, st);
2352   st->print("]");
2353 }
2354 #endif
2355 
2356 //------------------------------singleton--------------------------------------
2357 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2358 // constants (Ldi nodes).  Singletons are integer, float or double constants
2359 // or a single symbol.
2360 bool TypeAry::singleton(void) const {
2361   return false;                 // Never a singleton
2362 }
2363 
2364 bool TypeAry::empty(void) const {
2365   return _elem->empty() || _size->empty();
2366 }
2367 
2368 //--------------------------ary_must_be_exact----------------------------------
2369 bool TypeAry::ary_must_be_exact() const {
2370   if (!UseExactTypes)       return false;
2371   // This logic looks at the element type of an array, and returns true
2372   // if the element type is either a primitive or a final instance class.
2373   // In such cases, an array built on this ary must have no subclasses.
2374   if (_elem == BOTTOM)      return false;  // general array not exact
2375   if (_elem == TOP   )      return false;  // inverted general array not exact
2376   const TypeOopPtr*  toop = NULL;
2377   if (UseCompressedOops && _elem->isa_narrowoop()) {
2378     toop = _elem->make_ptr()->isa_oopptr();
2379   } else {
2380     toop = _elem->isa_oopptr();
2381   }
2382   if (!toop)                return true;   // a primitive type, like int
2383   ciKlass* tklass = toop->klass();
2384   if (tklass == NULL)       return false;  // unloaded class
2385   if (!tklass->is_loaded()) return false;  // unloaded class
2386   const TypeInstPtr* tinst;
2387   if (_elem->isa_narrowoop())
2388     tinst = _elem->make_ptr()->isa_instptr();
2389   else
2390     tinst = _elem->isa_instptr();
2391   if (tinst)
2392     return tklass->as_instance_klass()->is_final();
2393   const TypeAryPtr*  tap;
2394   if (_elem->isa_narrowoop())
2395     tap = _elem->make_ptr()->isa_aryptr();
2396   else
2397     tap = _elem->isa_aryptr();
2398   if (tap)
2399     return tap->ary()->ary_must_be_exact();
2400   return false;
2401 }
2402 
2403 //==============================TypeValueType=======================================
2404 
2405 //------------------------------make-------------------------------------------
2406 const TypeValueType* TypeValueType::make(ciValueKlass* vk, bool larval) {
2407   return (TypeValueType*)(new TypeValueType(vk, larval))->hashcons();
2408 }
2409 
2410 //------------------------------meet-------------------------------------------
2411 // Compute the MEET of two types.  It returns a new Type object.
2412 const Type* TypeValueType::xmeet(const Type* t) const {
2413   // Perform a fast test for common case; meeting the same types together.
2414   if(this == t) return this;  // Meeting same type-rep?
2415 
2416   // Current "this->_base" is ValueType
2417   switch (t->base()) {          // switch on original type
2418 
2419   case Int:
2420   case Long:
2421   case FloatTop:
2422   case FloatCon:
2423   case FloatBot:
2424   case DoubleTop:
2425   case DoubleCon:
2426   case DoubleBot:
2427   case NarrowKlass:
2428   case Bottom:
2429     return Type::BOTTOM;
2430 
2431   case OopPtr:
2432   case MetadataPtr:
2433   case KlassPtr:
2434   case RawPtr:
2435     return TypePtr::BOTTOM;
2436 
2437   case Top:
2438     return this;
2439 
2440   case NarrowOop: {
2441     const Type* res = t->make_ptr()->xmeet(this);
2442     if (res->isa_ptr()) {
2443       return res->make_narrowoop();
2444     }
2445     return res;
2446   }
2447 
2448   case AryPtr:
2449   case InstPtr: {
2450     return t->xmeet(this);
2451   }
2452 
2453   case ValueType: {
2454     // All value types inherit from Object
2455     const TypeValueType* other = t->is_valuetype();
2456     if (_vk == other->_vk) {
2457       if (_larval == other->_larval ||
2458           !_larval) {
2459         return this;
2460       } else {
2461         return t;
2462       }
2463     }
2464     return TypeInstPtr::NOTNULL;
2465   }
2466 
2467   default:                      // All else is a mistake
2468     typerr(t);
2469 
2470   }
2471   return this;
2472 }
2473 
2474 //------------------------------xdual------------------------------------------
2475 const Type* TypeValueType::xdual() const {
2476   return this;
2477 }
2478 
2479 //------------------------------eq---------------------------------------------
2480 // Structural equality check for Type representations
2481 bool TypeValueType::eq(const Type* t) const {
2482   const TypeValueType* vt = t->is_valuetype();
2483   return (_vk == vt->value_klass() && _larval == vt->larval());
2484 }
2485 
2486 //------------------------------hash-------------------------------------------
2487 // Type-specific hashing function.
2488 int TypeValueType::hash(void) const {
2489   return (intptr_t)_vk;
2490 }
2491 
2492 //------------------------------singleton--------------------------------------
2493 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2494 bool TypeValueType::singleton(void) const {
2495   return false;
2496 }
2497 
2498 //------------------------------empty------------------------------------------
2499 // TRUE if Type is a type with no values, FALSE otherwise.
2500 bool TypeValueType::empty(void) const {
2501   return false;
2502 }
2503 
2504 //------------------------------dump2------------------------------------------
2505 #ifndef PRODUCT
2506 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2507   int count = _vk->nof_declared_nonstatic_fields();
2508   st->print("valuetype[%d]:{", count);
2509   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2510   for (int i = 1; i < count; ++i) {
2511     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2512   }
2513   st->print("}%s", _larval?":larval":"");
2514 }
2515 #endif
2516 
2517 //==============================TypeVect=======================================
2518 // Convenience common pre-built types.
2519 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2520 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2521 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2522 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2523 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2524 
2525 //------------------------------make-------------------------------------------
2526 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2527   BasicType elem_bt = elem->array_element_basic_type();
2528   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2529   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2530   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2531   int size = length * type2aelembytes(elem_bt);
2532   switch (Matcher::vector_ideal_reg(size)) {
2533   case Op_VecS:
2534     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2535   case Op_RegL:
2536   case Op_VecD:
2537   case Op_RegD:
2538     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2539   case Op_VecX:
2540     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2541   case Op_VecY:
2542     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2543   case Op_VecZ:
2544     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2545   }
2546  ShouldNotReachHere();
2547   return NULL;
2548 }
2549 
2550 //------------------------------meet-------------------------------------------
2551 // Compute the MEET of two types.  It returns a new Type object.
2552 const Type *TypeVect::xmeet( const Type *t ) const {
2553   // Perform a fast test for common case; meeting the same types together.
2554   if( this == t ) return this;  // Meeting same type-rep?
2555 
2556   // Current "this->_base" is Vector
2557   switch (t->base()) {          // switch on original type
2558 
2559   case Bottom:                  // Ye Olde Default
2560     return t;
2561 
2562   default:                      // All else is a mistake
2563     typerr(t);
2564 
2565   case VectorS:
2566   case VectorD:
2567   case VectorX:
2568   case VectorY:
2569   case VectorZ: {                // Meeting 2 vectors?
2570     const TypeVect* v = t->is_vect();
2571     assert(  base() == v->base(), "");
2572     assert(length() == v->length(), "");
2573     assert(element_basic_type() == v->element_basic_type(), "");
2574     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2575   }
2576   case Top:
2577     break;
2578   }
2579   return this;
2580 }
2581 
2582 //------------------------------xdual------------------------------------------
2583 // Dual: compute field-by-field dual
2584 const Type *TypeVect::xdual() const {
2585   return new TypeVect(base(), _elem->dual(), _length);
2586 }
2587 
2588 //------------------------------eq---------------------------------------------
2589 // Structural equality check for Type representations
2590 bool TypeVect::eq(const Type *t) const {
2591   const TypeVect *v = t->is_vect();
2592   return (_elem == v->_elem) && (_length == v->_length);
2593 }
2594 
2595 //------------------------------hash-------------------------------------------
2596 // Type-specific hashing function.
2597 int TypeVect::hash(void) const {
2598   return (intptr_t)_elem + (intptr_t)_length;
2599 }
2600 
2601 //------------------------------singleton--------------------------------------
2602 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2603 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2604 // constant value (when vector is created with Replicate code).
2605 bool TypeVect::singleton(void) const {
2606 // There is no Con node for vectors yet.
2607 //  return _elem->singleton();
2608   return false;
2609 }
2610 
2611 bool TypeVect::empty(void) const {
2612   return _elem->empty();
2613 }
2614 
2615 //------------------------------dump2------------------------------------------
2616 #ifndef PRODUCT
2617 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2618   switch (base()) {
2619   case VectorS:
2620     st->print("vectors["); break;
2621   case VectorD:
2622     st->print("vectord["); break;
2623   case VectorX:
2624     st->print("vectorx["); break;
2625   case VectorY:
2626     st->print("vectory["); break;
2627   case VectorZ:
2628     st->print("vectorz["); break;
2629   default:
2630     ShouldNotReachHere();
2631   }
2632   st->print("%d]:{", _length);
2633   _elem->dump2(d, depth, st);
2634   st->print("}");
2635 }
2636 #endif
2637 
2638 
2639 //=============================================================================
2640 // Convenience common pre-built types.
2641 const TypePtr *TypePtr::NULL_PTR;
2642 const TypePtr *TypePtr::NOTNULL;
2643 const TypePtr *TypePtr::BOTTOM;
2644 
2645 //------------------------------meet-------------------------------------------
2646 // Meet over the PTR enum
2647 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2648   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2649   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2650   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2651   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2652   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2653   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2654   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2655 };
2656 
2657 //------------------------------make-------------------------------------------
2658 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2659   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2660 }
2661 
2662 //------------------------------cast_to_ptr_type-------------------------------
2663 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2664   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2665   if( ptr == _ptr ) return this;
2666   return make(_base, ptr, _offset, _speculative, _inline_depth);
2667 }
2668 
2669 //------------------------------get_con----------------------------------------
2670 intptr_t TypePtr::get_con() const {
2671   assert( _ptr == Null, "" );
2672   return offset();
2673 }
2674 
2675 //------------------------------meet-------------------------------------------
2676 // Compute the MEET of two types.  It returns a new Type object.
2677 const Type *TypePtr::xmeet(const Type *t) const {
2678   const Type* res = xmeet_helper(t);
2679   if (res->isa_ptr() == NULL) {
2680     return res;
2681   }
2682 
2683   const TypePtr* res_ptr = res->is_ptr();
2684   if (res_ptr->speculative() != NULL) {
2685     // type->speculative() == NULL means that speculation is no better
2686     // than type, i.e. type->speculative() == type. So there are 2
2687     // ways to represent the fact that we have no useful speculative
2688     // data and we should use a single one to be able to test for
2689     // equality between types. Check whether type->speculative() ==
2690     // type and set speculative to NULL if it is the case.
2691     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2692       return res_ptr->remove_speculative();
2693     }
2694   }
2695 
2696   return res;
2697 }
2698 
2699 const Type *TypePtr::xmeet_helper(const Type *t) const {
2700   // Perform a fast test for common case; meeting the same types together.
2701   if( this == t ) return this;  // Meeting same type-rep?
2702 
2703   // Current "this->_base" is AnyPtr
2704   switch (t->base()) {          // switch on original type
2705   case Int:                     // Mixing ints & oops happens when javac
2706   case Long:                    // reuses local variables
2707   case FloatTop:
2708   case FloatCon:
2709   case FloatBot:
2710   case DoubleTop:
2711   case DoubleCon:
2712   case DoubleBot:
2713   case NarrowOop:
2714   case NarrowKlass:
2715   case Bottom:                  // Ye Olde Default
2716     return Type::BOTTOM;
2717   case Top:
2718     return this;
2719 
2720   case AnyPtr: {                // Meeting to AnyPtrs
2721     const TypePtr *tp = t->is_ptr();
2722     const TypePtr* speculative = xmeet_speculative(tp);
2723     int depth = meet_inline_depth(tp->inline_depth());
2724     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2725   }
2726   case RawPtr:                  // For these, flip the call around to cut down
2727   case OopPtr:
2728   case InstPtr:                 // on the cases I have to handle.
2729   case AryPtr:
2730   case MetadataPtr:
2731   case KlassPtr:
2732     return t->xmeet(this);      // Call in reverse direction
2733   default:                      // All else is a mistake
2734     typerr(t);
2735 
2736   }
2737   return this;
2738 }
2739 
2740 //------------------------------meet_offset------------------------------------
2741 Type::Offset TypePtr::meet_offset(int offset) const {
2742   return _offset.meet(Offset(offset));
2743 }
2744 
2745 //------------------------------dual_offset------------------------------------
2746 Type::Offset TypePtr::dual_offset() const {
2747   return _offset.dual();
2748 }
2749 
2750 //------------------------------xdual------------------------------------------
2751 // Dual: compute field-by-field dual
2752 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2753   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2754 };
2755 const Type *TypePtr::xdual() const {
2756   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2757 }
2758 
2759 //------------------------------xadd_offset------------------------------------
2760 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2761   return _offset.add(offset);
2762 }
2763 
2764 //------------------------------add_offset-------------------------------------
2765 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2766   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2767 }
2768 
2769 //------------------------------eq---------------------------------------------
2770 // Structural equality check for Type representations
2771 bool TypePtr::eq( const Type *t ) const {
2772   const TypePtr *a = (const TypePtr*)t;
2773   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2774 }
2775 
2776 //------------------------------hash-------------------------------------------
2777 // Type-specific hashing function.
2778 int TypePtr::hash(void) const {
2779   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2780 ;
2781 }
2782 
2783 /**
2784  * Return same type without a speculative part
2785  */
2786 const Type* TypePtr::remove_speculative() const {
2787   if (_speculative == NULL) {
2788     return this;
2789   }
2790   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2791   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2792 }
2793 
2794 /**
2795  * Return same type but drop speculative part if we know we won't use
2796  * it
2797  */
2798 const Type* TypePtr::cleanup_speculative() const {
2799   if (speculative() == NULL) {
2800     return this;
2801   }
2802   const Type* no_spec = remove_speculative();
2803   // If this is NULL_PTR then we don't need the speculative type
2804   // (with_inline_depth in case the current type inline depth is
2805   // InlineDepthTop)
2806   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2807     return no_spec;
2808   }
2809   if (above_centerline(speculative()->ptr())) {
2810     return no_spec;
2811   }
2812   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2813   // If the speculative may be null and is an inexact klass then it
2814   // doesn't help
2815   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2816       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2817     return no_spec;
2818   }
2819   return this;
2820 }
2821 
2822 /**
2823  * dual of the speculative part of the type
2824  */
2825 const TypePtr* TypePtr::dual_speculative() const {
2826   if (_speculative == NULL) {
2827     return NULL;
2828   }
2829   return _speculative->dual()->is_ptr();
2830 }
2831 
2832 /**
2833  * meet of the speculative parts of 2 types
2834  *
2835  * @param other  type to meet with
2836  */
2837 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2838   bool this_has_spec = (_speculative != NULL);
2839   bool other_has_spec = (other->speculative() != NULL);
2840 
2841   if (!this_has_spec && !other_has_spec) {
2842     return NULL;
2843   }
2844 
2845   // If we are at a point where control flow meets and one branch has
2846   // a speculative type and the other has not, we meet the speculative
2847   // type of one branch with the actual type of the other. If the
2848   // actual type is exact and the speculative is as well, then the
2849   // result is a speculative type which is exact and we can continue
2850   // speculation further.
2851   const TypePtr* this_spec = _speculative;
2852   const TypePtr* other_spec = other->speculative();
2853 
2854   if (!this_has_spec) {
2855     this_spec = this;
2856   }
2857 
2858   if (!other_has_spec) {
2859     other_spec = other;
2860   }
2861 
2862   return this_spec->meet(other_spec)->is_ptr();
2863 }
2864 
2865 /**
2866  * dual of the inline depth for this type (used for speculation)
2867  */
2868 int TypePtr::dual_inline_depth() const {
2869   return -inline_depth();
2870 }
2871 
2872 /**
2873  * meet of 2 inline depths (used for speculation)
2874  *
2875  * @param depth  depth to meet with
2876  */
2877 int TypePtr::meet_inline_depth(int depth) const {
2878   return MAX2(inline_depth(), depth);
2879 }
2880 
2881 /**
2882  * Are the speculative parts of 2 types equal?
2883  *
2884  * @param other  type to compare this one to
2885  */
2886 bool TypePtr::eq_speculative(const TypePtr* other) const {
2887   if (_speculative == NULL || other->speculative() == NULL) {
2888     return _speculative == other->speculative();
2889   }
2890 
2891   if (_speculative->base() != other->speculative()->base()) {
2892     return false;
2893   }
2894 
2895   return _speculative->eq(other->speculative());
2896 }
2897 
2898 /**
2899  * Hash of the speculative part of the type
2900  */
2901 int TypePtr::hash_speculative() const {
2902   if (_speculative == NULL) {
2903     return 0;
2904   }
2905 
2906   return _speculative->hash();
2907 }
2908 
2909 /**
2910  * add offset to the speculative part of the type
2911  *
2912  * @param offset  offset to add
2913  */
2914 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2915   if (_speculative == NULL) {
2916     return NULL;
2917   }
2918   return _speculative->add_offset(offset)->is_ptr();
2919 }
2920 
2921 /**
2922  * return exact klass from the speculative type if there's one
2923  */
2924 ciKlass* TypePtr::speculative_type() const {
2925   if (_speculative != NULL && _speculative->isa_oopptr()) {
2926     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2927     if (speculative->klass_is_exact()) {
2928       return speculative->klass();
2929     }
2930   }
2931   return NULL;
2932 }
2933 
2934 /**
2935  * return true if speculative type may be null
2936  */
2937 bool TypePtr::speculative_maybe_null() const {
2938   if (_speculative != NULL) {
2939     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2940     return speculative->maybe_null();
2941   }
2942   return true;
2943 }
2944 
2945 bool TypePtr::speculative_always_null() const {
2946   if (_speculative != NULL) {
2947     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2948     return speculative == TypePtr::NULL_PTR;
2949   }
2950   return false;
2951 }
2952 
2953 /**
2954  * Same as TypePtr::speculative_type() but return the klass only if
2955  * the speculative tells us is not null
2956  */
2957 ciKlass* TypePtr::speculative_type_not_null() const {
2958   if (speculative_maybe_null()) {
2959     return NULL;
2960   }
2961   return speculative_type();
2962 }
2963 
2964 /**
2965  * Check whether new profiling would improve speculative type
2966  *
2967  * @param   exact_kls    class from profiling
2968  * @param   inline_depth inlining depth of profile point
2969  *
2970  * @return  true if type profile is valuable
2971  */
2972 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2973   // no profiling?
2974   if (exact_kls == NULL) {
2975     return false;
2976   }
2977   if (speculative() == TypePtr::NULL_PTR) {
2978     return false;
2979   }
2980   // no speculative type or non exact speculative type?
2981   if (speculative_type() == NULL) {
2982     return true;
2983   }
2984   // If the node already has an exact speculative type keep it,
2985   // unless it was provided by profiling that is at a deeper
2986   // inlining level. Profiling at a higher inlining depth is
2987   // expected to be less accurate.
2988   if (_speculative->inline_depth() == InlineDepthBottom) {
2989     return false;
2990   }
2991   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2992   return inline_depth < _speculative->inline_depth();
2993 }
2994 
2995 /**
2996  * Check whether new profiling would improve ptr (= tells us it is non
2997  * null)
2998  *
2999  * @param   ptr_kind always null or not null?
3000  *
3001  * @return  true if ptr profile is valuable
3002  */
3003 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
3004   // profiling doesn't tell us anything useful
3005   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
3006     return false;
3007   }
3008   // We already know this is not null
3009   if (!this->maybe_null()) {
3010     return false;
3011   }
3012   // We already know the speculative type cannot be null
3013   if (!speculative_maybe_null()) {
3014     return false;
3015   }
3016   // We already know this is always null
3017   if (this == TypePtr::NULL_PTR) {
3018     return false;
3019   }
3020   // We already know the speculative type is always null
3021   if (speculative_always_null()) {
3022     return false;
3023   }
3024   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
3025     return false;
3026   }
3027   return true;
3028 }
3029 
3030 //------------------------------dump2------------------------------------------
3031 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3032   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
3033 };
3034 
3035 #ifndef PRODUCT
3036 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3037   if( _ptr == Null ) st->print("NULL");
3038   else st->print("%s *", ptr_msg[_ptr]);
3039   _offset.dump2(st);
3040   dump_inline_depth(st);
3041   dump_speculative(st);
3042 }
3043 
3044 /**
3045  *dump the speculative part of the type
3046  */
3047 void TypePtr::dump_speculative(outputStream *st) const {
3048   if (_speculative != NULL) {
3049     st->print(" (speculative=");
3050     _speculative->dump_on(st);
3051     st->print(")");
3052   }
3053 }
3054 
3055 /**
3056  *dump the inline depth of the type
3057  */
3058 void TypePtr::dump_inline_depth(outputStream *st) const {
3059   if (_inline_depth != InlineDepthBottom) {
3060     if (_inline_depth == InlineDepthTop) {
3061       st->print(" (inline_depth=InlineDepthTop)");
3062     } else {
3063       st->print(" (inline_depth=%d)", _inline_depth);
3064     }
3065   }
3066 }
3067 #endif
3068 
3069 //------------------------------singleton--------------------------------------
3070 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3071 // constants
3072 bool TypePtr::singleton(void) const {
3073   // TopPTR, Null, AnyNull, Constant are all singletons
3074   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3075 }
3076 
3077 bool TypePtr::empty(void) const {
3078   return (_offset == Offset::top) || above_centerline(_ptr);
3079 }
3080 
3081 //=============================================================================
3082 // Convenience common pre-built types.
3083 const TypeRawPtr *TypeRawPtr::BOTTOM;
3084 const TypeRawPtr *TypeRawPtr::NOTNULL;
3085 
3086 //------------------------------make-------------------------------------------
3087 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3088   assert( ptr != Constant, "what is the constant?" );
3089   assert( ptr != Null, "Use TypePtr for NULL" );
3090   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3091 }
3092 
3093 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3094   assert( bits, "Use TypePtr for NULL" );
3095   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3096 }
3097 
3098 //------------------------------cast_to_ptr_type-------------------------------
3099 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3100   assert( ptr != Constant, "what is the constant?" );
3101   assert( ptr != Null, "Use TypePtr for NULL" );
3102   assert( _bits==0, "Why cast a constant address?");
3103   if( ptr == _ptr ) return this;
3104   return make(ptr);
3105 }
3106 
3107 //------------------------------get_con----------------------------------------
3108 intptr_t TypeRawPtr::get_con() const {
3109   assert( _ptr == Null || _ptr == Constant, "" );
3110   return (intptr_t)_bits;
3111 }
3112 
3113 //------------------------------meet-------------------------------------------
3114 // Compute the MEET of two types.  It returns a new Type object.
3115 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3116   // Perform a fast test for common case; meeting the same types together.
3117   if( this == t ) return this;  // Meeting same type-rep?
3118 
3119   // Current "this->_base" is RawPtr
3120   switch( t->base() ) {         // switch on original type
3121   case Bottom:                  // Ye Olde Default
3122     return t;
3123   case Top:
3124     return this;
3125   case AnyPtr:                  // Meeting to AnyPtrs
3126     break;
3127   case RawPtr: {                // might be top, bot, any/not or constant
3128     enum PTR tptr = t->is_ptr()->ptr();
3129     enum PTR ptr = meet_ptr( tptr );
3130     if( ptr == Constant ) {     // Cannot be equal constants, so...
3131       if( tptr == Constant && _ptr != Constant)  return t;
3132       if( _ptr == Constant && tptr != Constant)  return this;
3133       ptr = NotNull;            // Fall down in lattice
3134     }
3135     return make( ptr );
3136   }
3137 
3138   case OopPtr:
3139   case InstPtr:
3140   case AryPtr:
3141   case MetadataPtr:
3142   case KlassPtr:
3143     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3144   default:                      // All else is a mistake
3145     typerr(t);
3146   }
3147 
3148   // Found an AnyPtr type vs self-RawPtr type
3149   const TypePtr *tp = t->is_ptr();
3150   switch (tp->ptr()) {
3151   case TypePtr::TopPTR:  return this;
3152   case TypePtr::BotPTR:  return t;
3153   case TypePtr::Null:
3154     if( _ptr == TypePtr::TopPTR ) return t;
3155     return TypeRawPtr::BOTTOM;
3156   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3157   case TypePtr::AnyNull:
3158     if( _ptr == TypePtr::Constant) return this;
3159     return make( meet_ptr(TypePtr::AnyNull) );
3160   default: ShouldNotReachHere();
3161   }
3162   return this;
3163 }
3164 
3165 //------------------------------xdual------------------------------------------
3166 // Dual: compute field-by-field dual
3167 const Type *TypeRawPtr::xdual() const {
3168   return new TypeRawPtr( dual_ptr(), _bits );
3169 }
3170 
3171 //------------------------------add_offset-------------------------------------
3172 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3173   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3174   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3175   if( offset == 0 ) return this; // No change
3176   switch (_ptr) {
3177   case TypePtr::TopPTR:
3178   case TypePtr::BotPTR:
3179   case TypePtr::NotNull:
3180     return this;
3181   case TypePtr::Null:
3182   case TypePtr::Constant: {
3183     address bits = _bits+offset;
3184     if ( bits == 0 ) return TypePtr::NULL_PTR;
3185     return make( bits );
3186   }
3187   default:  ShouldNotReachHere();
3188   }
3189   return NULL;                  // Lint noise
3190 }
3191 
3192 //------------------------------eq---------------------------------------------
3193 // Structural equality check for Type representations
3194 bool TypeRawPtr::eq( const Type *t ) const {
3195   const TypeRawPtr *a = (const TypeRawPtr*)t;
3196   return _bits == a->_bits && TypePtr::eq(t);
3197 }
3198 
3199 //------------------------------hash-------------------------------------------
3200 // Type-specific hashing function.
3201 int TypeRawPtr::hash(void) const {
3202   return (intptr_t)_bits + TypePtr::hash();
3203 }
3204 
3205 //------------------------------dump2------------------------------------------
3206 #ifndef PRODUCT
3207 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3208   if( _ptr == Constant )
3209     st->print(INTPTR_FORMAT, p2i(_bits));
3210   else
3211     st->print("rawptr:%s", ptr_msg[_ptr]);
3212 }
3213 #endif
3214 
3215 //=============================================================================
3216 // Convenience common pre-built type.
3217 const TypeOopPtr *TypeOopPtr::BOTTOM;
3218 
3219 //------------------------------TypeOopPtr-------------------------------------
3220 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3221                        int instance_id, const TypePtr* speculative, int inline_depth)
3222   : TypePtr(t, ptr, offset, speculative, inline_depth),
3223     _const_oop(o), _klass(k),
3224     _klass_is_exact(xk),
3225     _is_ptr_to_narrowoop(false),
3226     _is_ptr_to_narrowklass(false),
3227     _is_ptr_to_boxed_value(false),
3228     _instance_id(instance_id) {
3229   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3230       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3231     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3232   }
3233 #ifdef _LP64
3234   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3235     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3236       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3237     } else if (klass() == NULL) {
3238       // Array with unknown body type
3239       assert(this->isa_aryptr(), "only arrays without klass");
3240       _is_ptr_to_narrowoop = UseCompressedOops;
3241     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3242       if (klass()->is_obj_array_klass()) {
3243         _is_ptr_to_narrowoop = true;
3244       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3245         // Check if the field of the value type array element contains oops
3246         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3247         int foffset = field_offset.get() + vk->first_field_offset();
3248         ciField* field = vk->get_field_by_offset(foffset, false);
3249         assert(field != NULL, "missing field");
3250         BasicType bt = field->layout_type();
3251         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3252       }
3253     } else if (klass()->is_instance_klass()) {
3254       if (this->isa_klassptr()) {
3255         // Perm objects don't use compressed references
3256       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3257         // unsafe access
3258         _is_ptr_to_narrowoop = UseCompressedOops;
3259       } else { // exclude unsafe ops
3260         assert(this->isa_instptr(), "must be an instance ptr.");
3261         if (klass() == ciEnv::current()->Class_klass() &&
3262             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3263              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3264           // Special hidden fields from the Class.
3265           assert(this->isa_instptr(), "must be an instance ptr.");
3266           _is_ptr_to_narrowoop = false;
3267         } else if (klass() == ciEnv::current()->Class_klass() &&
3268                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3269           // Static fields
3270           assert(o != NULL, "must be constant");
3271           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3272           BasicType basic_elem_type;
3273           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3274             // Special hidden field that contains the oop of the default value type
3275             basic_elem_type = T_VALUETYPE;
3276           } else {
3277             ciField* field = ik->get_field_by_offset(this->offset(), true);
3278             assert(field != NULL, "missing field");
3279             basic_elem_type = field->layout_type();
3280           }
3281           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3282                                                        basic_elem_type == T_VALUETYPE ||
3283                                                        basic_elem_type == T_ARRAY);
3284         } else {
3285           // Instance fields which contains a compressed oop references.
3286           ciInstanceKlass* ik = klass()->as_instance_klass();
3287           ciField* field = ik->get_field_by_offset(this->offset(), false);
3288           if (field != NULL) {
3289             BasicType basic_elem_type = field->layout_type();
3290             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3291                                                          basic_elem_type == T_VALUETYPE ||
3292                                                          basic_elem_type == T_ARRAY);
3293           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3294             // Compile::find_alias_type() cast exactness on all types to verify
3295             // that it does not affect alias type.
3296             _is_ptr_to_narrowoop = UseCompressedOops;
3297           } else {
3298             // Type for the copy start in LibraryCallKit::inline_native_clone().
3299             _is_ptr_to_narrowoop = UseCompressedOops;
3300           }
3301         }
3302       }
3303     }
3304   }
3305 #endif
3306 }
3307 
3308 //------------------------------make-------------------------------------------
3309 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3310                                    const TypePtr* speculative, int inline_depth) {
3311   assert(ptr != Constant, "no constant generic pointers");
3312   ciKlass*  k = Compile::current()->env()->Object_klass();
3313   bool      xk = false;
3314   ciObject* o = NULL;
3315   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3316 }
3317 
3318 
3319 //------------------------------cast_to_ptr_type-------------------------------
3320 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3321   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3322   if( ptr == _ptr ) return this;
3323   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3324 }
3325 
3326 //-----------------------------cast_to_instance_id----------------------------
3327 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3328   // There are no instances of a general oop.
3329   // Return self unchanged.
3330   return this;
3331 }
3332 
3333 const TypeOopPtr *TypeOopPtr::cast_to_nonconst() const {
3334   return this;
3335 }
3336 
3337 //-----------------------------cast_to_exactness-------------------------------
3338 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3339   // There is no such thing as an exact general oop.
3340   // Return self unchanged.
3341   return this;
3342 }
3343 
3344 
3345 //------------------------------as_klass_type----------------------------------
3346 // Return the klass type corresponding to this instance or array type.
3347 // It is the type that is loaded from an object of this type.
3348 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3349   ciKlass* k = klass();
3350   bool    xk = klass_is_exact();
3351   if (k == NULL)
3352     return TypeKlassPtr::OBJECT;
3353   else
3354     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3355 }
3356 
3357 //------------------------------meet-------------------------------------------
3358 // Compute the MEET of two types.  It returns a new Type object.
3359 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3360   // Perform a fast test for common case; meeting the same types together.
3361   if( this == t ) return this;  // Meeting same type-rep?
3362 
3363   // Current "this->_base" is OopPtr
3364   switch (t->base()) {          // switch on original type
3365 
3366   case Int:                     // Mixing ints & oops happens when javac
3367   case Long:                    // reuses local variables
3368   case FloatTop:
3369   case FloatCon:
3370   case FloatBot:
3371   case DoubleTop:
3372   case DoubleCon:
3373   case DoubleBot:
3374   case NarrowOop:
3375   case NarrowKlass:
3376   case Bottom:                  // Ye Olde Default
3377     return Type::BOTTOM;
3378   case Top:
3379     return this;
3380 
3381   default:                      // All else is a mistake
3382     typerr(t);
3383 
3384   case RawPtr:
3385   case MetadataPtr:
3386   case KlassPtr:
3387     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3388 
3389   case AnyPtr: {
3390     // Found an AnyPtr type vs self-OopPtr type
3391     const TypePtr *tp = t->is_ptr();
3392     Offset offset = meet_offset(tp->offset());
3393     PTR ptr = meet_ptr(tp->ptr());
3394     const TypePtr* speculative = xmeet_speculative(tp);
3395     int depth = meet_inline_depth(tp->inline_depth());
3396     switch (tp->ptr()) {
3397     case Null:
3398       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3399       // else fall through:
3400     case TopPTR:
3401     case AnyNull: {
3402       int instance_id = meet_instance_id(InstanceTop);
3403       return make(ptr, offset, instance_id, speculative, depth);
3404     }
3405     case BotPTR:
3406     case NotNull:
3407       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3408     default: typerr(t);
3409     }
3410   }
3411 
3412   case OopPtr: {                 // Meeting to other OopPtrs
3413     const TypeOopPtr *tp = t->is_oopptr();
3414     int instance_id = meet_instance_id(tp->instance_id());
3415     const TypePtr* speculative = xmeet_speculative(tp);
3416     int depth = meet_inline_depth(tp->inline_depth());
3417     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3418   }
3419 
3420   case InstPtr:                  // For these, flip the call around to cut down
3421   case AryPtr:
3422     return t->xmeet(this);      // Call in reverse direction
3423 
3424   } // End of switch
3425   return this;                  // Return the double constant
3426 }
3427 
3428 
3429 //------------------------------xdual------------------------------------------
3430 // Dual of a pure heap pointer.  No relevant klass or oop information.
3431 const Type *TypeOopPtr::xdual() const {
3432   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3433   assert(const_oop() == NULL,             "no constants here");
3434   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3435 }
3436 
3437 //--------------------------make_from_klass_common-----------------------------
3438 // Computes the element-type given a klass.
3439 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3440   if (klass->is_instance_klass() || klass->is_valuetype()) {
3441     Compile* C = Compile::current();
3442     Dependencies* deps = C->dependencies();
3443     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3444     // Element is an instance
3445     bool klass_is_exact = false;
3446     if (klass->is_loaded()) {
3447       // Try to set klass_is_exact.
3448       ciInstanceKlass* ik = klass->as_instance_klass();
3449       klass_is_exact = ik->is_final();
3450       if (!klass_is_exact && klass_change
3451           && deps != NULL && UseUniqueSubclasses) {
3452         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3453         if (sub != NULL) {
3454           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3455           klass = ik = sub;
3456           klass_is_exact = sub->is_final();
3457         }
3458       }
3459       if (!klass_is_exact && try_for_exact
3460           && deps != NULL && UseExactTypes) {
3461         if (!ik->is_interface() && !ik->has_subklass()) {
3462           // Add a dependence; if concrete subclass added we need to recompile
3463           deps->assert_leaf_type(ik);
3464           klass_is_exact = true;
3465         }
3466       }
3467     }
3468     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3469   } else if (klass->is_obj_array_klass()) {
3470     // Element is an object or value array. Recursively call ourself.
3471     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3472     bool xk = etype->klass_is_exact();
3473     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3474     // We used to pass NotNull in here, asserting that the sub-arrays
3475     // are all not-null.  This is not true in generally, as code can
3476     // slam NULLs down in the subarrays.
3477     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3478     return arr;
3479   } else if (klass->is_type_array_klass()) {
3480     // Element is an typeArray
3481     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3482     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3483     // We used to pass NotNull in here, asserting that the array pointer
3484     // is not-null. That was not true in general.
3485     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3486     return arr;
3487   } else if (klass->is_value_array_klass()) {
3488     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3489     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3490     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3491     return arr;
3492   } else {
3493     ShouldNotReachHere();
3494     return NULL;
3495   }
3496 }
3497 
3498 //------------------------------make_from_constant-----------------------------
3499 // Make a java pointer from an oop constant
3500 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3501   assert(!o->is_null_object(), "null object not yet handled here.");
3502   ciKlass* klass = o->klass();
3503   if (klass->is_instance_klass() || klass->is_valuetype()) {
3504     // Element is an instance or value type
3505     if (require_constant) {
3506       if (!o->can_be_constant())  return NULL;
3507     } else if (!o->should_be_constant()) {
3508       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3509     }
3510     return TypeInstPtr::make(o);
3511   } else if (klass->is_obj_array_klass()) {
3512     // Element is an object array. Recursively call ourself.
3513     const TypeOopPtr *etype =
3514       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3515     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3516     // We used to pass NotNull in here, asserting that the sub-arrays
3517     // are all not-null.  This is not true in generally, as code can
3518     // slam NULLs down in the subarrays.
3519     if (require_constant) {
3520       if (!o->can_be_constant())  return NULL;
3521     } else if (!o->should_be_constant()) {
3522       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3523     }
3524     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3525     return arr;
3526   } else if (klass->is_type_array_klass()) {
3527     // Element is an typeArray
3528     const Type* etype =
3529       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3530     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3531     // We used to pass NotNull in here, asserting that the array pointer
3532     // is not-null. That was not true in general.
3533     if (require_constant) {
3534       if (!o->can_be_constant())  return NULL;
3535     } else if (!o->should_be_constant()) {
3536       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3537     }
3538     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3539     return arr;
3540   } else if (klass->is_value_array_klass()) {
3541     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3542     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::make(o->as_array()->length()));
3543     // We used to pass NotNull in here, asserting that the sub-arrays
3544     // are all not-null.  This is not true in generally, as code can
3545     // slam NULLs down in the subarrays.
3546     if (require_constant) {
3547       if (!o->can_be_constant())  return NULL;
3548     } else if (!o->should_be_constant()) {
3549       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3550     }
3551     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3552     return arr;
3553   }
3554 
3555   fatal("unhandled object type");
3556   return NULL;
3557 }
3558 
3559 //------------------------------get_con----------------------------------------
3560 intptr_t TypeOopPtr::get_con() const {
3561   assert( _ptr == Null || _ptr == Constant, "" );
3562   assert(offset() >= 0, "");
3563 
3564   if (offset() != 0) {
3565     // After being ported to the compiler interface, the compiler no longer
3566     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3567     // to a handle at compile time.  This handle is embedded in the generated
3568     // code and dereferenced at the time the nmethod is made.  Until that time,
3569     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3570     // have access to the addresses!).  This does not seem to currently happen,
3571     // but this assertion here is to help prevent its occurence.
3572     tty->print_cr("Found oop constant with non-zero offset");
3573     ShouldNotReachHere();
3574   }
3575 
3576   return (intptr_t)const_oop()->constant_encoding();
3577 }
3578 
3579 
3580 //-----------------------------filter------------------------------------------
3581 // Do not allow interface-vs.-noninterface joins to collapse to top.
3582 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3583 
3584   const Type* ft = join_helper(kills, include_speculative);
3585   const TypeInstPtr* ftip = ft->isa_instptr();
3586   const TypeInstPtr* ktip = kills->isa_instptr();
3587 
3588   if (ft->empty()) {
3589     // Check for evil case of 'this' being a class and 'kills' expecting an
3590     // interface.  This can happen because the bytecodes do not contain
3591     // enough type info to distinguish a Java-level interface variable
3592     // from a Java-level object variable.  If we meet 2 classes which
3593     // both implement interface I, but their meet is at 'j/l/O' which
3594     // doesn't implement I, we have no way to tell if the result should
3595     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3596     // into a Phi which "knows" it's an Interface type we'll have to
3597     // uplift the type.
3598     if (!empty()) {
3599       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3600         return kills;           // Uplift to interface
3601       }
3602       // Also check for evil cases of 'this' being a class array
3603       // and 'kills' expecting an array of interfaces.
3604       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3605       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3606         return kills;           // Uplift to array of interface
3607       }
3608     }
3609 
3610     return Type::TOP;           // Canonical empty value
3611   }
3612 
3613   // If we have an interface-typed Phi or cast and we narrow to a class type,
3614   // the join should report back the class.  However, if we have a J/L/Object
3615   // class-typed Phi and an interface flows in, it's possible that the meet &
3616   // join report an interface back out.  This isn't possible but happens
3617   // because the type system doesn't interact well with interfaces.
3618   if (ftip != NULL && ktip != NULL &&
3619       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3620       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3621     assert(!ftip->klass_is_exact(), "interface could not be exact");
3622     return ktip->cast_to_ptr_type(ftip->ptr());
3623   }
3624 
3625   return ft;
3626 }
3627 
3628 //------------------------------eq---------------------------------------------
3629 // Structural equality check for Type representations
3630 bool TypeOopPtr::eq( const Type *t ) const {
3631   const TypeOopPtr *a = (const TypeOopPtr*)t;
3632   if (_klass_is_exact != a->_klass_is_exact ||
3633       _instance_id != a->_instance_id)  return false;
3634   ciObject* one = const_oop();
3635   ciObject* two = a->const_oop();
3636   if (one == NULL || two == NULL) {
3637     return (one == two) && TypePtr::eq(t);
3638   } else {
3639     return one->equals(two) && TypePtr::eq(t);
3640   }
3641 }
3642 
3643 //------------------------------hash-------------------------------------------
3644 // Type-specific hashing function.
3645 int TypeOopPtr::hash(void) const {
3646   return
3647     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3648              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3649 }
3650 
3651 //------------------------------dump2------------------------------------------
3652 #ifndef PRODUCT
3653 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3654   st->print("oopptr:%s", ptr_msg[_ptr]);
3655   if( _klass_is_exact ) st->print(":exact");
3656   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3657   _offset.dump2(st);
3658   if (_instance_id == InstanceTop)
3659     st->print(",iid=top");
3660   else if (_instance_id != InstanceBot)
3661     st->print(",iid=%d",_instance_id);
3662 
3663   dump_inline_depth(st);
3664   dump_speculative(st);
3665 }
3666 #endif
3667 
3668 //------------------------------singleton--------------------------------------
3669 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3670 // constants
3671 bool TypeOopPtr::singleton(void) const {
3672   // detune optimizer to not generate constant oop + constant offset as a constant!
3673   // TopPTR, Null, AnyNull, Constant are all singletons
3674   return (offset() == 0) && !below_centerline(_ptr);
3675 }
3676 
3677 //------------------------------add_offset-------------------------------------
3678 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3679   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3680 }
3681 
3682 /**
3683  * Return same type without a speculative part
3684  */
3685 const Type* TypeOopPtr::remove_speculative() const {
3686   if (_speculative == NULL) {
3687     return this;
3688   }
3689   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3690   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3691 }
3692 
3693 /**
3694  * Return same type but drop speculative part if we know we won't use
3695  * it
3696  */
3697 const Type* TypeOopPtr::cleanup_speculative() const {
3698   // If the klass is exact and the ptr is not null then there's
3699   // nothing that the speculative type can help us with
3700   if (klass_is_exact() && !maybe_null()) {
3701     return remove_speculative();
3702   }
3703   return TypePtr::cleanup_speculative();
3704 }
3705 
3706 /**
3707  * Return same type but with a different inline depth (used for speculation)
3708  *
3709  * @param depth  depth to meet with
3710  */
3711 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3712   if (!UseInlineDepthForSpeculativeTypes) {
3713     return this;
3714   }
3715   return make(_ptr, _offset, _instance_id, _speculative, depth);
3716 }
3717 
3718 //------------------------------meet_instance_id--------------------------------
3719 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3720   // Either is 'TOP' instance?  Return the other instance!
3721   if( _instance_id == InstanceTop ) return  instance_id;
3722   if(  instance_id == InstanceTop ) return _instance_id;
3723   // If either is different, return 'BOTTOM' instance
3724   if( _instance_id != instance_id ) return InstanceBot;
3725   return _instance_id;
3726 }
3727 
3728 //------------------------------dual_instance_id--------------------------------
3729 int TypeOopPtr::dual_instance_id( ) const {
3730   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3731   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3732   return _instance_id;              // Map everything else into self
3733 }
3734 
3735 /**
3736  * Check whether new profiling would improve speculative type
3737  *
3738  * @param   exact_kls    class from profiling
3739  * @param   inline_depth inlining depth of profile point
3740  *
3741  * @return  true if type profile is valuable
3742  */
3743 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3744   // no way to improve an already exact type
3745   if (klass_is_exact()) {
3746     return false;
3747   }
3748   return TypePtr::would_improve_type(exact_kls, inline_depth);
3749 }
3750 
3751 //=============================================================================
3752 // Convenience common pre-built types.
3753 const TypeInstPtr *TypeInstPtr::NOTNULL;
3754 const TypeInstPtr *TypeInstPtr::BOTTOM;
3755 const TypeInstPtr *TypeInstPtr::MIRROR;
3756 const TypeInstPtr *TypeInstPtr::MARK;
3757 const TypeInstPtr *TypeInstPtr::KLASS;
3758 
3759 //------------------------------TypeInstPtr-------------------------------------
3760 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3761                          int instance_id, const TypePtr* speculative, int inline_depth)
3762   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3763     _name(k->name()) {
3764    assert(k != NULL &&
3765           (k->is_loaded() || o == NULL),
3766           "cannot have constants with non-loaded klass");
3767 };
3768 
3769 //------------------------------make-------------------------------------------
3770 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3771                                      ciKlass* k,
3772                                      bool xk,
3773                                      ciObject* o,
3774                                      Offset offset,
3775                                      int instance_id,
3776                                      const TypePtr* speculative,
3777                                      int inline_depth) {
3778   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3779   // Either const_oop() is NULL or else ptr is Constant
3780   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3781           "constant pointers must have a value supplied" );
3782   // Ptr is never Null
3783   assert( ptr != Null, "NULL pointers are not typed" );
3784 
3785   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3786   if (!UseExactTypes)  xk = false;
3787   if (ptr == Constant) {
3788     // Note:  This case includes meta-object constants, such as methods.
3789     xk = true;
3790   } else if (k->is_loaded()) {
3791     ciInstanceKlass* ik = k->as_instance_klass();
3792     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3793     if (xk && ik->is_interface())  xk = false;  // no exact interface
3794   }
3795 
3796   // Now hash this baby
3797   TypeInstPtr *result =
3798     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3799 
3800   return result;
3801 }
3802 
3803 /**
3804  *  Create constant type for a constant boxed value
3805  */
3806 const Type* TypeInstPtr::get_const_boxed_value() const {
3807   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3808   assert((const_oop() != NULL), "should be called only for constant object");
3809   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3810   BasicType bt = constant.basic_type();
3811   switch (bt) {
3812     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3813     case T_INT:      return TypeInt::make(constant.as_int());
3814     case T_CHAR:     return TypeInt::make(constant.as_char());
3815     case T_BYTE:     return TypeInt::make(constant.as_byte());
3816     case T_SHORT:    return TypeInt::make(constant.as_short());
3817     case T_FLOAT:    return TypeF::make(constant.as_float());
3818     case T_DOUBLE:   return TypeD::make(constant.as_double());
3819     case T_LONG:     return TypeLong::make(constant.as_long());
3820     default:         break;
3821   }
3822   fatal("Invalid boxed value type '%s'", type2name(bt));
3823   return NULL;
3824 }
3825 
3826 //------------------------------cast_to_ptr_type-------------------------------
3827 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3828   if( ptr == _ptr ) return this;
3829   // Reconstruct _sig info here since not a problem with later lazy
3830   // construction, _sig will show up on demand.
3831   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3832 }
3833 
3834 
3835 //-----------------------------cast_to_exactness-------------------------------
3836 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3837   if( klass_is_exact == _klass_is_exact ) return this;
3838   if (!UseExactTypes)  return this;
3839   if (!_klass->is_loaded())  return this;
3840   ciInstanceKlass* ik = _klass->as_instance_klass();
3841   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3842   if( ik->is_interface() )              return this;  // cannot set xk
3843   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3844 }
3845 
3846 //-----------------------------cast_to_instance_id----------------------------
3847 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3848   if( instance_id == _instance_id ) return this;
3849   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3850 }
3851 
3852 const TypeOopPtr *TypeInstPtr::cast_to_nonconst() const {
3853   if (const_oop() == NULL) return this;
3854   return make(NotNull, klass(), _klass_is_exact, NULL, _offset, _instance_id, _speculative, _inline_depth);
3855 }
3856 
3857 //------------------------------xmeet_unloaded---------------------------------
3858 // Compute the MEET of two InstPtrs when at least one is unloaded.
3859 // Assume classes are different since called after check for same name/class-loader
3860 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3861     Offset off = meet_offset(tinst->offset());
3862     PTR ptr = meet_ptr(tinst->ptr());
3863     int instance_id = meet_instance_id(tinst->instance_id());
3864     const TypePtr* speculative = xmeet_speculative(tinst);
3865     int depth = meet_inline_depth(tinst->inline_depth());
3866 
3867     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3868     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3869     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3870       //
3871       // Meet unloaded class with java/lang/Object
3872       //
3873       // Meet
3874       //          |                     Unloaded Class
3875       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3876       //  ===================================================================
3877       //   TOP    | ..........................Unloaded......................|
3878       //  AnyNull |  U-AN    |................Unloaded......................|
3879       // Constant | ... O-NN .................................. |   O-BOT   |
3880       //  NotNull | ... O-NN .................................. |   O-BOT   |
3881       //  BOTTOM  | ........................Object-BOTTOM ..................|
3882       //
3883       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3884       //
3885       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3886       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3887       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3888       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3889         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3890         else                                      { return TypeInstPtr::NOTNULL; }
3891       }
3892       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3893 
3894       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3895     }
3896 
3897     // Both are unloaded, not the same class, not Object
3898     // Or meet unloaded with a different loaded class, not java/lang/Object
3899     if( ptr != TypePtr::BotPTR ) {
3900       return TypeInstPtr::NOTNULL;
3901     }
3902     return TypeInstPtr::BOTTOM;
3903 }
3904 
3905 
3906 //------------------------------meet-------------------------------------------
3907 // Compute the MEET of two types.  It returns a new Type object.
3908 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3909   // Perform a fast test for common case; meeting the same types together.
3910   if( this == t ) return this;  // Meeting same type-rep?
3911 
3912   // Current "this->_base" is Pointer
3913   switch (t->base()) {          // switch on original type
3914 
3915   case Int:                     // Mixing ints & oops happens when javac
3916   case Long:                    // reuses local variables
3917   case FloatTop:
3918   case FloatCon:
3919   case FloatBot:
3920   case DoubleTop:
3921   case DoubleCon:
3922   case DoubleBot:
3923   case NarrowOop:
3924   case NarrowKlass:
3925   case Bottom:                  // Ye Olde Default
3926     return Type::BOTTOM;
3927   case Top:
3928     return this;
3929 
3930   default:                      // All else is a mistake
3931     typerr(t);
3932 
3933   case MetadataPtr:
3934   case KlassPtr:
3935   case RawPtr: return TypePtr::BOTTOM;
3936 
3937   case AryPtr: {                // All arrays inherit from Object class
3938     const TypeAryPtr *tp = t->is_aryptr();
3939     Offset offset = meet_offset(tp->offset());
3940     PTR ptr = meet_ptr(tp->ptr());
3941     int instance_id = meet_instance_id(tp->instance_id());
3942     const TypePtr* speculative = xmeet_speculative(tp);
3943     int depth = meet_inline_depth(tp->inline_depth());
3944     switch (ptr) {
3945     case TopPTR:
3946     case AnyNull:                // Fall 'down' to dual of object klass
3947       // For instances when a subclass meets a superclass we fall
3948       // below the centerline when the superclass is exact. We need to
3949       // do the same here.
3950       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3951         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3952       } else {
3953         // cannot subclass, so the meet has to fall badly below the centerline
3954         ptr = NotNull;
3955         instance_id = InstanceBot;
3956         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3957       }
3958     case Constant:
3959     case NotNull:
3960     case BotPTR:                // Fall down to object klass
3961       // LCA is object_klass, but if we subclass from the top we can do better
3962       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3963         // If 'this' (InstPtr) is above the centerline and it is Object class
3964         // then we can subclass in the Java class hierarchy.
3965         // For instances when a subclass meets a superclass we fall
3966         // below the centerline when the superclass is exact. We need
3967         // to do the same here.
3968         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3969           // that is, tp's array type is a subtype of my klass
3970           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3971                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3972         }
3973       }
3974       // The other case cannot happen, since I cannot be a subtype of an array.
3975       // The meet falls down to Object class below centerline.
3976       if( ptr == Constant )
3977          ptr = NotNull;
3978       instance_id = InstanceBot;
3979       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3980     default: typerr(t);
3981     }
3982   }
3983 
3984   case OopPtr: {                // Meeting to OopPtrs
3985     // Found a OopPtr type vs self-InstPtr type
3986     const TypeOopPtr *tp = t->is_oopptr();
3987     Offset offset = meet_offset(tp->offset());
3988     PTR ptr = meet_ptr(tp->ptr());
3989     switch (tp->ptr()) {
3990     case TopPTR:
3991     case AnyNull: {
3992       int instance_id = meet_instance_id(InstanceTop);
3993       const TypePtr* speculative = xmeet_speculative(tp);
3994       int depth = meet_inline_depth(tp->inline_depth());
3995       return make(ptr, klass(), klass_is_exact(),
3996                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3997     }
3998     case NotNull:
3999     case BotPTR: {
4000       int instance_id = meet_instance_id(tp->instance_id());
4001       const TypePtr* speculative = xmeet_speculative(tp);
4002       int depth = meet_inline_depth(tp->inline_depth());
4003       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4004     }
4005     default: typerr(t);
4006     }
4007   }
4008 
4009   case AnyPtr: {                // Meeting to AnyPtrs
4010     // Found an AnyPtr type vs self-InstPtr type
4011     const TypePtr *tp = t->is_ptr();
4012     Offset offset = meet_offset(tp->offset());
4013     PTR ptr = meet_ptr(tp->ptr());
4014     int instance_id = meet_instance_id(InstanceTop);
4015     const TypePtr* speculative = xmeet_speculative(tp);
4016     int depth = meet_inline_depth(tp->inline_depth());
4017     switch (tp->ptr()) {
4018     case Null:
4019       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4020       // else fall through to AnyNull
4021     case TopPTR:
4022     case AnyNull: {
4023       return make(ptr, klass(), klass_is_exact(),
4024                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
4025     }
4026     case NotNull:
4027     case BotPTR:
4028       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4029     default: typerr(t);
4030     }
4031   }
4032 
4033   /*
4034                  A-top         }
4035                /   |   \       }  Tops
4036            B-top A-any C-top   }
4037               | /  |  \ |      }  Any-nulls
4038            B-any   |   C-any   }
4039               |    |    |
4040            B-con A-con C-con   } constants; not comparable across classes
4041               |    |    |
4042            B-not   |   C-not   }
4043               | \  |  / |      }  not-nulls
4044            B-bot A-not C-bot   }
4045                \   |   /       }  Bottoms
4046                  A-bot         }
4047   */
4048 
4049   case InstPtr: {                // Meeting 2 Oops?
4050     // Found an InstPtr sub-type vs self-InstPtr type
4051     const TypeInstPtr *tinst = t->is_instptr();
4052     Offset off = meet_offset( tinst->offset() );
4053     PTR ptr = meet_ptr( tinst->ptr() );
4054     int instance_id = meet_instance_id(tinst->instance_id());
4055     const TypePtr* speculative = xmeet_speculative(tinst);
4056     int depth = meet_inline_depth(tinst->inline_depth());
4057 
4058     // Check for easy case; klasses are equal (and perhaps not loaded!)
4059     // If we have constants, then we created oops so classes are loaded
4060     // and we can handle the constants further down.  This case handles
4061     // both-not-loaded or both-loaded classes
4062     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4063       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4064     }
4065 
4066     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4067     ciKlass* tinst_klass = tinst->klass();
4068     ciKlass* this_klass  = this->klass();
4069     bool tinst_xk = tinst->klass_is_exact();
4070     bool this_xk  = this->klass_is_exact();
4071     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4072       // One of these classes has not been loaded
4073       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4074 #ifndef PRODUCT
4075       if( PrintOpto && Verbose ) {
4076         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4077         tty->print("  this == "); this->dump(); tty->cr();
4078         tty->print(" tinst == "); tinst->dump(); tty->cr();
4079       }
4080 #endif
4081       return unloaded_meet;
4082     }
4083 
4084     // Handle mixing oops and interfaces first.
4085     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4086                                         tinst_klass == ciEnv::current()->Object_klass())) {
4087       ciKlass *tmp = tinst_klass; // Swap interface around
4088       tinst_klass = this_klass;
4089       this_klass = tmp;
4090       bool tmp2 = tinst_xk;
4091       tinst_xk = this_xk;
4092       this_xk = tmp2;
4093     }
4094     if (tinst_klass->is_interface() &&
4095         !(this_klass->is_interface() ||
4096           // Treat java/lang/Object as an honorary interface,
4097           // because we need a bottom for the interface hierarchy.
4098           this_klass == ciEnv::current()->Object_klass())) {
4099       // Oop meets interface!
4100 
4101       // See if the oop subtypes (implements) interface.
4102       ciKlass *k;
4103       bool xk;
4104       if( this_klass->is_subtype_of( tinst_klass ) ) {
4105         // Oop indeed subtypes.  Now keep oop or interface depending
4106         // on whether we are both above the centerline or either is
4107         // below the centerline.  If we are on the centerline
4108         // (e.g., Constant vs. AnyNull interface), use the constant.
4109         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4110         // If we are keeping this_klass, keep its exactness too.
4111         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4112       } else {                  // Does not implement, fall to Object
4113         // Oop does not implement interface, so mixing falls to Object
4114         // just like the verifier does (if both are above the
4115         // centerline fall to interface)
4116         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4117         xk = above_centerline(ptr) ? tinst_xk : false;
4118         // Watch out for Constant vs. AnyNull interface.
4119         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4120         instance_id = InstanceBot;
4121       }
4122       ciObject* o = NULL;  // the Constant value, if any
4123       if (ptr == Constant) {
4124         // Find out which constant.
4125         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4126       }
4127       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4128     }
4129 
4130     // Either oop vs oop or interface vs interface or interface vs Object
4131 
4132     // !!! Here's how the symmetry requirement breaks down into invariants:
4133     // If we split one up & one down AND they subtype, take the down man.
4134     // If we split one up & one down AND they do NOT subtype, "fall hard".
4135     // If both are up and they subtype, take the subtype class.
4136     // If both are up and they do NOT subtype, "fall hard".
4137     // If both are down and they subtype, take the supertype class.
4138     // If both are down and they do NOT subtype, "fall hard".
4139     // Constants treated as down.
4140 
4141     // Now, reorder the above list; observe that both-down+subtype is also
4142     // "fall hard"; "fall hard" becomes the default case:
4143     // If we split one up & one down AND they subtype, take the down man.
4144     // If both are up and they subtype, take the subtype class.
4145 
4146     // If both are down and they subtype, "fall hard".
4147     // If both are down and they do NOT subtype, "fall hard".
4148     // If both are up and they do NOT subtype, "fall hard".
4149     // If we split one up & one down AND they do NOT subtype, "fall hard".
4150 
4151     // If a proper subtype is exact, and we return it, we return it exactly.
4152     // If a proper supertype is exact, there can be no subtyping relationship!
4153     // If both types are equal to the subtype, exactness is and-ed below the
4154     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4155 
4156     // Check for subtyping:
4157     ciKlass *subtype = NULL;
4158     bool subtype_exact = false;
4159     if( tinst_klass->equals(this_klass) ) {
4160       subtype = this_klass;
4161       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4162     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4163       subtype = this_klass;     // Pick subtyping class
4164       subtype_exact = this_xk;
4165     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4166       subtype = tinst_klass;    // Pick subtyping class
4167       subtype_exact = tinst_xk;
4168     }
4169 
4170     if( subtype ) {
4171       if( above_centerline(ptr) ) { // both are up?
4172         this_klass = tinst_klass = subtype;
4173         this_xk = tinst_xk = subtype_exact;
4174       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4175         this_klass = tinst_klass; // tinst is down; keep down man
4176         this_xk = tinst_xk;
4177       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4178         tinst_klass = this_klass; // this is down; keep down man
4179         tinst_xk = this_xk;
4180       } else {
4181         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4182       }
4183     }
4184 
4185     // Check for classes now being equal
4186     if (tinst_klass->equals(this_klass)) {
4187       // If the klasses are equal, the constants may still differ.  Fall to
4188       // NotNull if they do (neither constant is NULL; that is a special case
4189       // handled elsewhere).
4190       ciObject* o = NULL;             // Assume not constant when done
4191       ciObject* this_oop  = const_oop();
4192       ciObject* tinst_oop = tinst->const_oop();
4193       if( ptr == Constant ) {
4194         if (this_oop != NULL && tinst_oop != NULL &&
4195             this_oop->equals(tinst_oop) )
4196           o = this_oop;
4197         else if (above_centerline(this ->_ptr))
4198           o = tinst_oop;
4199         else if (above_centerline(tinst ->_ptr))
4200           o = this_oop;
4201         else
4202           ptr = NotNull;
4203       }
4204       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4205     } // Else classes are not equal
4206 
4207     // Since klasses are different, we require a LCA in the Java
4208     // class hierarchy - which means we have to fall to at least NotNull.
4209     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4210       ptr = NotNull;
4211 
4212     instance_id = InstanceBot;
4213 
4214     // Now we find the LCA of Java classes
4215     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4216     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4217   } // End of case InstPtr
4218 
4219   case ValueType: {
4220     const TypeValueType *tv = t->is_valuetype();
4221 
4222     if (above_centerline(ptr())) {
4223       if (tv->value_klass()->is_subtype_of(_klass)) {
4224         return t;
4225       } else {
4226         return TypeInstPtr::make(NotNull, _klass);
4227       }
4228     } else {
4229       if (tv->value_klass()->is_subtype_of(_klass)) {
4230         return TypeInstPtr::make(ptr(), _klass);
4231       } else {
4232         return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4233       }
4234     }
4235   }
4236 
4237   } // End of switch
4238   return this;                  // Return the double constant
4239 }
4240 
4241 
4242 //------------------------java_mirror_type--------------------------------------
4243 ciType* TypeInstPtr::java_mirror_type() const {
4244   // must be a singleton type
4245   if( const_oop() == NULL )  return NULL;
4246 
4247   // must be of type java.lang.Class
4248   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4249 
4250   return const_oop()->as_instance()->java_mirror_type();
4251 }
4252 
4253 
4254 //------------------------------xdual------------------------------------------
4255 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4256 // inheritance mechanism.
4257 const Type *TypeInstPtr::xdual() const {
4258   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4259 }
4260 
4261 //------------------------------eq---------------------------------------------
4262 // Structural equality check for Type representations
4263 bool TypeInstPtr::eq( const Type *t ) const {
4264   const TypeInstPtr *p = t->is_instptr();
4265   return
4266     klass()->equals(p->klass()) &&
4267     TypeOopPtr::eq(p);          // Check sub-type stuff
4268 }
4269 
4270 //------------------------------hash-------------------------------------------
4271 // Type-specific hashing function.
4272 int TypeInstPtr::hash(void) const {
4273   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4274   return hash;
4275 }
4276 
4277 //------------------------------dump2------------------------------------------
4278 // Dump oop Type
4279 #ifndef PRODUCT
4280 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4281   // Print the name of the klass.
4282   klass()->print_name_on(st);
4283 
4284   switch( _ptr ) {
4285   case Constant:
4286     // TO DO: Make CI print the hex address of the underlying oop.
4287     if (WizardMode || Verbose) {
4288       const_oop()->print_oop(st);
4289     }
4290   case BotPTR:
4291     if (!WizardMode && !Verbose) {
4292       if( _klass_is_exact ) st->print(":exact");
4293       break;
4294     }
4295   case TopPTR:
4296   case AnyNull:
4297   case NotNull:
4298     st->print(":%s", ptr_msg[_ptr]);
4299     if( _klass_is_exact ) st->print(":exact");
4300     break;
4301   default:
4302     break;
4303   }
4304 
4305   _offset.dump2(st);
4306 
4307   st->print(" *");
4308   if (_instance_id == InstanceTop)
4309     st->print(",iid=top");
4310   else if (_instance_id != InstanceBot)
4311     st->print(",iid=%d",_instance_id);
4312 
4313   dump_inline_depth(st);
4314   dump_speculative(st);
4315 }
4316 #endif
4317 
4318 //------------------------------add_offset-------------------------------------
4319 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4320   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4321               _instance_id, add_offset_speculative(offset), _inline_depth);
4322 }
4323 
4324 const Type *TypeInstPtr::remove_speculative() const {
4325   if (_speculative == NULL) {
4326     return this;
4327   }
4328   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4329   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4330               _instance_id, NULL, _inline_depth);
4331 }
4332 
4333 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4334   if (!UseInlineDepthForSpeculativeTypes) {
4335     return this;
4336   }
4337   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4338 }
4339 
4340 //=============================================================================
4341 // Convenience common pre-built types.
4342 const TypeAryPtr *TypeAryPtr::RANGE;
4343 const TypeAryPtr *TypeAryPtr::OOPS;
4344 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4345 const TypeAryPtr *TypeAryPtr::BYTES;
4346 const TypeAryPtr *TypeAryPtr::SHORTS;
4347 const TypeAryPtr *TypeAryPtr::CHARS;
4348 const TypeAryPtr *TypeAryPtr::INTS;
4349 const TypeAryPtr *TypeAryPtr::LONGS;
4350 const TypeAryPtr *TypeAryPtr::FLOATS;
4351 const TypeAryPtr *TypeAryPtr::DOUBLES;
4352 
4353 //------------------------------make-------------------------------------------
4354 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4355                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4356   assert(!(k == NULL && ary->_elem->isa_int()),
4357          "integral arrays must be pre-equipped with a class");
4358   if (!xk)  xk = ary->ary_must_be_exact();
4359   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4360   if (!UseExactTypes)  xk = (ptr == Constant);
4361   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4362 }
4363 
4364 //------------------------------make-------------------------------------------
4365 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4366                                    int instance_id, const TypePtr* speculative, int inline_depth,
4367                                    bool is_autobox_cache) {
4368   assert(!(k == NULL && ary->_elem->isa_int()),
4369          "integral arrays must be pre-equipped with a class");
4370   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4371   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4372   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4373   if (!UseExactTypes)  xk = (ptr == Constant);
4374   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4375 }
4376 
4377 //------------------------------cast_to_ptr_type-------------------------------
4378 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4379   if( ptr == _ptr ) return this;
4380   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4381 }
4382 
4383 
4384 //-----------------------------cast_to_exactness-------------------------------
4385 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4386   if( klass_is_exact == _klass_is_exact ) return this;
4387   if (!UseExactTypes)  return this;
4388   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4389   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4390 }
4391 
4392 //-----------------------------cast_to_instance_id----------------------------
4393 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4394   if( instance_id == _instance_id ) return this;
4395   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4396 }
4397 
4398 const TypeOopPtr *TypeAryPtr::cast_to_nonconst() const {
4399   if (const_oop() == NULL) return this;
4400   return make(NotNull, NULL, _ary, klass(), _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth);
4401 }
4402 
4403 
4404 //-----------------------------narrow_size_type-------------------------------
4405 // Local cache for arrayOopDesc::max_array_length(etype),
4406 // which is kind of slow (and cached elsewhere by other users).
4407 static jint max_array_length_cache[T_CONFLICT+1];
4408 static jint max_array_length(BasicType etype) {
4409   jint& cache = max_array_length_cache[etype];
4410   jint res = cache;
4411   if (res == 0) {
4412     switch (etype) {
4413     case T_NARROWOOP:
4414       etype = T_OBJECT;
4415       break;
4416     case T_NARROWKLASS:
4417     case T_CONFLICT:
4418     case T_ILLEGAL:
4419     case T_VOID:
4420       etype = T_BYTE;           // will produce conservatively high value
4421       break;
4422     default:
4423       break;
4424     }
4425     cache = res = arrayOopDesc::max_array_length(etype);
4426   }
4427   return res;
4428 }
4429 
4430 // Narrow the given size type to the index range for the given array base type.
4431 // Return NULL if the resulting int type becomes empty.
4432 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4433   jint hi = size->_hi;
4434   jint lo = size->_lo;
4435   jint min_lo = 0;
4436   jint max_hi = max_array_length(elem()->basic_type());
4437   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4438   bool chg = false;
4439   if (lo < min_lo) {
4440     lo = min_lo;
4441     if (size->is_con()) {
4442       hi = lo;
4443     }
4444     chg = true;
4445   }
4446   if (hi > max_hi) {
4447     hi = max_hi;
4448     if (size->is_con()) {
4449       lo = hi;
4450     }
4451     chg = true;
4452   }
4453   // Negative length arrays will produce weird intermediate dead fast-path code
4454   if (lo > hi)
4455     return TypeInt::ZERO;
4456   if (!chg)
4457     return size;
4458   return TypeInt::make(lo, hi, Type::WidenMin);
4459 }
4460 
4461 //-------------------------------cast_to_size----------------------------------
4462 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4463   assert(new_size != NULL, "");
4464   new_size = narrow_size_type(new_size);
4465   if (new_size == size())  return this;
4466   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4467   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4468 }
4469 
4470 //------------------------------cast_to_stable---------------------------------
4471 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4472   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4473     return this;
4474 
4475   const Type* elem = this->elem();
4476   const TypePtr* elem_ptr = elem->make_ptr();
4477 
4478   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4479     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4480     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4481   }
4482 
4483   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4484 
4485   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4486 }
4487 
4488 //-----------------------------stable_dimension--------------------------------
4489 int TypeAryPtr::stable_dimension() const {
4490   if (!is_stable())  return 0;
4491   int dim = 1;
4492   const TypePtr* elem_ptr = elem()->make_ptr();
4493   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4494     dim += elem_ptr->is_aryptr()->stable_dimension();
4495   return dim;
4496 }
4497 
4498 //----------------------cast_to_autobox_cache-----------------------------------
4499 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4500   if (is_autobox_cache() == cache)  return this;
4501   const TypeOopPtr* etype = elem()->make_oopptr();
4502   if (etype == NULL)  return this;
4503   // The pointers in the autobox arrays are always non-null.
4504   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4505   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4506   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4507   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4508 }
4509 
4510 //------------------------------eq---------------------------------------------
4511 // Structural equality check for Type representations
4512 bool TypeAryPtr::eq( const Type *t ) const {
4513   const TypeAryPtr *p = t->is_aryptr();
4514   return
4515     _ary == p->_ary &&  // Check array
4516     TypeOopPtr::eq(p) &&// Check sub-parts
4517     _field_offset == p->_field_offset;
4518 }
4519 
4520 //------------------------------hash-------------------------------------------
4521 // Type-specific hashing function.
4522 int TypeAryPtr::hash(void) const {
4523   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4524 }
4525 
4526 //------------------------------meet-------------------------------------------
4527 // Compute the MEET of two types.  It returns a new Type object.
4528 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4529   // Perform a fast test for common case; meeting the same types together.
4530   if( this == t ) return this;  // Meeting same type-rep?
4531   // Current "this->_base" is Pointer
4532   switch (t->base()) {          // switch on original type
4533 
4534   // Mixing ints & oops happens when javac reuses local variables
4535   case Int:
4536   case Long:
4537   case FloatTop:
4538   case FloatCon:
4539   case FloatBot:
4540   case DoubleTop:
4541   case DoubleCon:
4542   case DoubleBot:
4543   case NarrowOop:
4544   case NarrowKlass:
4545   case Bottom:                  // Ye Olde Default
4546     return Type::BOTTOM;
4547   case Top:
4548     return this;
4549 
4550   default:                      // All else is a mistake
4551     typerr(t);
4552 
4553   case OopPtr: {                // Meeting to OopPtrs
4554     // Found a OopPtr type vs self-AryPtr type
4555     const TypeOopPtr *tp = t->is_oopptr();
4556     Offset offset = meet_offset(tp->offset());
4557     PTR ptr = meet_ptr(tp->ptr());
4558     int depth = meet_inline_depth(tp->inline_depth());
4559     const TypePtr* speculative = xmeet_speculative(tp);
4560     switch (tp->ptr()) {
4561     case TopPTR:
4562     case AnyNull: {
4563       int instance_id = meet_instance_id(InstanceTop);
4564       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4565                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4566     }
4567     case BotPTR:
4568     case NotNull: {
4569       int instance_id = meet_instance_id(tp->instance_id());
4570       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4571     }
4572     default: ShouldNotReachHere();
4573     }
4574   }
4575 
4576   case AnyPtr: {                // Meeting two AnyPtrs
4577     // Found an AnyPtr type vs self-AryPtr type
4578     const TypePtr *tp = t->is_ptr();
4579     Offset offset = meet_offset(tp->offset());
4580     PTR ptr = meet_ptr(tp->ptr());
4581     const TypePtr* speculative = xmeet_speculative(tp);
4582     int depth = meet_inline_depth(tp->inline_depth());
4583     switch (tp->ptr()) {
4584     case TopPTR:
4585       return this;
4586     case BotPTR:
4587     case NotNull:
4588       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4589     case Null:
4590       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4591       // else fall through to AnyNull
4592     case AnyNull: {
4593       int instance_id = meet_instance_id(InstanceTop);
4594       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4595                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4596     }
4597     default: ShouldNotReachHere();
4598     }
4599   }
4600 
4601   case MetadataPtr:
4602   case KlassPtr:
4603   case RawPtr: return TypePtr::BOTTOM;
4604 
4605   case AryPtr: {                // Meeting 2 references?
4606     const TypeAryPtr *tap = t->is_aryptr();
4607     Offset off = meet_offset(tap->offset());
4608     Offset field_off = meet_field_offset(tap->field_offset());
4609     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4610     PTR ptr = meet_ptr(tap->ptr());
4611     int instance_id = meet_instance_id(tap->instance_id());
4612     const TypePtr* speculative = xmeet_speculative(tap);
4613     int depth = meet_inline_depth(tap->inline_depth());
4614     ciKlass* lazy_klass = NULL;
4615     if (tary->_elem->isa_int()) {
4616       // Integral array element types have irrelevant lattice relations.
4617       // It is the klass that determines array layout, not the element type.
4618       if (_klass == NULL)
4619         lazy_klass = tap->_klass;
4620       else if (tap->_klass == NULL || tap->_klass == _klass) {
4621         lazy_klass = _klass;
4622       } else {
4623         // Something like byte[int+] meets char[int+].
4624         // This must fall to bottom, not (int[-128..65535])[int+].
4625         instance_id = InstanceBot;
4626         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4627       }
4628     } else // Non integral arrays.
4629       // Must fall to bottom if exact klasses in upper lattice
4630       // are not equal or super klass is exact.
4631       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4632           // meet with top[] and bottom[] are processed further down:
4633           tap->_klass != NULL  && this->_klass != NULL   &&
4634           // both are exact and not equal:
4635           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4636            // 'tap'  is exact and super or unrelated:
4637            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4638            // 'this' is exact and super or unrelated:
4639            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4640       if (above_centerline(ptr)) {
4641         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4642       }
4643       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4644     }
4645 
4646     bool xk = false;
4647     switch (tap->ptr()) {
4648     case AnyNull:
4649     case TopPTR:
4650       // Compute new klass on demand, do not use tap->_klass
4651       if (below_centerline(this->_ptr)) {
4652         xk = this->_klass_is_exact;
4653       } else {
4654         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4655       }
4656       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4657     case Constant: {
4658       ciObject* o = const_oop();
4659       if( _ptr == Constant ) {
4660         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4661           xk = (klass() == tap->klass());
4662           ptr = NotNull;
4663           o = NULL;
4664           instance_id = InstanceBot;
4665         } else {
4666           xk = true;
4667         }
4668       } else if(above_centerline(_ptr)) {
4669         o = tap->const_oop();
4670         xk = true;
4671       } else {
4672         // Only precise for identical arrays
4673         xk = this->_klass_is_exact && (klass() == tap->klass());
4674       }
4675       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4676     }
4677     case NotNull:
4678     case BotPTR:
4679       // Compute new klass on demand, do not use tap->_klass
4680       if (above_centerline(this->_ptr))
4681             xk = tap->_klass_is_exact;
4682       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4683               (klass() == tap->klass()); // Only precise for identical arrays
4684       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4685     default: ShouldNotReachHere();
4686     }
4687   }
4688 
4689   // All arrays inherit from Object class
4690   case InstPtr: {
4691     const TypeInstPtr *tp = t->is_instptr();
4692     Offset offset = meet_offset(tp->offset());
4693     PTR ptr = meet_ptr(tp->ptr());
4694     int instance_id = meet_instance_id(tp->instance_id());
4695     const TypePtr* speculative = xmeet_speculative(tp);
4696     int depth = meet_inline_depth(tp->inline_depth());
4697     switch (ptr) {
4698     case TopPTR:
4699     case AnyNull:                // Fall 'down' to dual of object klass
4700       // For instances when a subclass meets a superclass we fall
4701       // below the centerline when the superclass is exact. We need to
4702       // do the same here.
4703       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4704         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4705       } else {
4706         // cannot subclass, so the meet has to fall badly below the centerline
4707         ptr = NotNull;
4708         instance_id = InstanceBot;
4709         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4710       }
4711     case Constant:
4712     case NotNull:
4713     case BotPTR:                // Fall down to object klass
4714       // LCA is object_klass, but if we subclass from the top we can do better
4715       if (above_centerline(tp->ptr())) {
4716         // If 'tp'  is above the centerline and it is Object class
4717         // then we can subclass in the Java class hierarchy.
4718         // For instances when a subclass meets a superclass we fall
4719         // below the centerline when the superclass is exact. We need
4720         // to do the same here.
4721         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4722           // that is, my array type is a subtype of 'tp' klass
4723           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4724                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4725         }
4726       }
4727       // The other case cannot happen, since t cannot be a subtype of an array.
4728       // The meet falls down to Object class below centerline.
4729       if( ptr == Constant )
4730          ptr = NotNull;
4731       instance_id = InstanceBot;
4732       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4733     default: typerr(t);
4734     }
4735   }
4736 
4737   case ValueType: {
4738     // All value types inherit from Object
4739     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4740   }
4741 
4742   }
4743   return this;                  // Lint noise
4744 }
4745 
4746 //------------------------------xdual------------------------------------------
4747 // Dual: compute field-by-field dual
4748 const Type *TypeAryPtr::xdual() const {
4749   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4750 }
4751 
4752 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4753   return _field_offset.meet(offset);
4754 }
4755 
4756 //------------------------------dual_offset------------------------------------
4757 Type::Offset TypeAryPtr::dual_field_offset() const {
4758   return _field_offset.dual();
4759 }
4760 
4761 //----------------------interface_vs_oop---------------------------------------
4762 #ifdef ASSERT
4763 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4764   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4765   if (t_aryptr) {
4766     return _ary->interface_vs_oop(t_aryptr->_ary);
4767   }
4768   return false;
4769 }
4770 #endif
4771 
4772 //------------------------------dump2------------------------------------------
4773 #ifndef PRODUCT
4774 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4775   _ary->dump2(d,depth,st);
4776   switch( _ptr ) {
4777   case Constant:
4778     const_oop()->print(st);
4779     break;
4780   case BotPTR:
4781     if (!WizardMode && !Verbose) {
4782       if( _klass_is_exact ) st->print(":exact");
4783       break;
4784     }
4785   case TopPTR:
4786   case AnyNull:
4787   case NotNull:
4788     st->print(":%s", ptr_msg[_ptr]);
4789     if( _klass_is_exact ) st->print(":exact");
4790     break;
4791   default:
4792     break;
4793   }
4794 
4795   if (elem()->isa_valuetype()) {
4796     st->print("(");
4797     _field_offset.dump2(st);
4798     st->print(")");
4799   }
4800   if (offset() != 0) {
4801     int header_size = objArrayOopDesc::header_size() * wordSize;
4802     if( _offset == Offset::top )       st->print("+undefined");
4803     else if( _offset == Offset::bottom )  st->print("+any");
4804     else if( offset() < header_size ) st->print("+%d", offset());
4805     else {
4806       BasicType basic_elem_type = elem()->basic_type();
4807       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4808       int elem_size = type2aelembytes(basic_elem_type);
4809       st->print("[%d]", (offset() - array_base)/elem_size);
4810     }
4811   }
4812   st->print(" *");
4813   if (_instance_id == InstanceTop)
4814     st->print(",iid=top");
4815   else if (_instance_id != InstanceBot)
4816     st->print(",iid=%d",_instance_id);
4817 
4818   dump_inline_depth(st);
4819   dump_speculative(st);
4820 }
4821 #endif
4822 
4823 bool TypeAryPtr::empty(void) const {
4824   if (_ary->empty())       return true;
4825   return TypeOopPtr::empty();
4826 }
4827 
4828 //------------------------------add_offset-------------------------------------
4829 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4830   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4831 }
4832 
4833 const Type *TypeAryPtr::remove_speculative() const {
4834   if (_speculative == NULL) {
4835     return this;
4836   }
4837   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4838   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4839 }
4840 
4841 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4842   if (!UseInlineDepthForSpeculativeTypes) {
4843     return this;
4844   }
4845   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4846 }
4847 
4848 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4849   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4850 }
4851 
4852 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4853   int adj = 0;
4854   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4855     const Type* elemtype = elem();
4856     if (elemtype->isa_valuetype()) {
4857       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4858         adj = _offset.get();
4859         offset += _offset.get();
4860       }
4861       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4862       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4863         offset += _field_offset.get();
4864         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4865           offset += header;
4866         }
4867       }
4868       if (offset >= (intptr_t)header || offset < 0) {
4869         // Try to get the field of the value type array element we are pointing to
4870         ciKlass* arytype_klass = klass();
4871         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4872         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4873         int shift = vak->log2_element_size();
4874         int mask = (1 << shift) - 1;
4875         intptr_t field_offset = ((offset - header) & mask);
4876         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4877         if (field == NULL) {
4878           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4879           return add_offset(offset);
4880         } else {
4881           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4882         }
4883       }
4884     }
4885   }
4886   return add_offset(offset - adj);
4887 }
4888 
4889 // Return offset incremented by field_offset for flattened value type arrays
4890 const int TypeAryPtr::flattened_offset() const {
4891   int offset = _offset.get();
4892   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4893       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4894     offset += _field_offset.get();
4895   }
4896   return offset;
4897 }
4898 
4899 //=============================================================================
4900 
4901 
4902 //------------------------------hash-------------------------------------------
4903 // Type-specific hashing function.
4904 int TypeNarrowPtr::hash(void) const {
4905   return _ptrtype->hash() + 7;
4906 }
4907 
4908 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4909   return _ptrtype->singleton();
4910 }
4911 
4912 bool TypeNarrowPtr::empty(void) const {
4913   return _ptrtype->empty();
4914 }
4915 
4916 intptr_t TypeNarrowPtr::get_con() const {
4917   return _ptrtype->get_con();
4918 }
4919 
4920 bool TypeNarrowPtr::eq( const Type *t ) const {
4921   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4922   if (tc != NULL) {
4923     if (_ptrtype->base() != tc->_ptrtype->base()) {
4924       return false;
4925     }
4926     return tc->_ptrtype->eq(_ptrtype);
4927   }
4928   return false;
4929 }
4930 
4931 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4932   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4933   return make_same_narrowptr(odual);
4934 }
4935 
4936 
4937 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4938   if (isa_same_narrowptr(kills)) {
4939     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4940     if (ft->empty())
4941       return Type::TOP;           // Canonical empty value
4942     if (ft->isa_ptr()) {
4943       return make_hash_same_narrowptr(ft->isa_ptr());
4944     }
4945     return ft;
4946   } else if (kills->isa_ptr()) {
4947     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4948     if (ft->empty())
4949       return Type::TOP;           // Canonical empty value
4950     return ft;
4951   } else {
4952     return Type::TOP;
4953   }
4954 }
4955 
4956 //------------------------------xmeet------------------------------------------
4957 // Compute the MEET of two types.  It returns a new Type object.
4958 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4959   // Perform a fast test for common case; meeting the same types together.
4960   if( this == t ) return this;  // Meeting same type-rep?
4961 
4962   if (t->base() == base()) {
4963     const Type* result = _ptrtype->xmeet(t->make_ptr());
4964     if (result->isa_ptr()) {
4965       return make_hash_same_narrowptr(result->is_ptr());
4966     }
4967     return result;
4968   }
4969 
4970   // Current "this->_base" is NarrowKlass or NarrowOop
4971   switch (t->base()) {          // switch on original type
4972 
4973   case Int:                     // Mixing ints & oops happens when javac
4974   case Long:                    // reuses local variables
4975   case FloatTop:
4976   case FloatCon:
4977   case FloatBot:
4978   case DoubleTop:
4979   case DoubleCon:
4980   case DoubleBot:
4981   case AnyPtr:
4982   case RawPtr:
4983   case OopPtr:
4984   case InstPtr:
4985   case AryPtr:
4986   case MetadataPtr:
4987   case KlassPtr:
4988   case NarrowOop:
4989   case NarrowKlass:
4990   case Bottom:                  // Ye Olde Default
4991     return Type::BOTTOM;
4992   case Top:
4993     return this;
4994 
4995   case ValueType:
4996     return t->xmeet(this);
4997 
4998   default:                      // All else is a mistake
4999     typerr(t);
5000 
5001   } // End of switch
5002 
5003   return this;
5004 }
5005 
5006 #ifndef PRODUCT
5007 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5008   _ptrtype->dump2(d, depth, st);
5009 }
5010 #endif
5011 
5012 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5013 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5014 
5015 
5016 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5017   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5018 }
5019 
5020 const Type* TypeNarrowOop::remove_speculative() const {
5021   return make(_ptrtype->remove_speculative()->is_ptr());
5022 }
5023 
5024 const Type* TypeNarrowOop::cleanup_speculative() const {
5025   return make(_ptrtype->cleanup_speculative()->is_ptr());
5026 }
5027 
5028 #ifndef PRODUCT
5029 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5030   st->print("narrowoop: ");
5031   TypeNarrowPtr::dump2(d, depth, st);
5032 }
5033 #endif
5034 
5035 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5036 
5037 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5038   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5039 }
5040 
5041 #ifndef PRODUCT
5042 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5043   st->print("narrowklass: ");
5044   TypeNarrowPtr::dump2(d, depth, st);
5045 }
5046 #endif
5047 
5048 
5049 //------------------------------eq---------------------------------------------
5050 // Structural equality check for Type representations
5051 bool TypeMetadataPtr::eq( const Type *t ) const {
5052   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5053   ciMetadata* one = metadata();
5054   ciMetadata* two = a->metadata();
5055   if (one == NULL || two == NULL) {
5056     return (one == two) && TypePtr::eq(t);
5057   } else {
5058     return one->equals(two) && TypePtr::eq(t);
5059   }
5060 }
5061 
5062 //------------------------------hash-------------------------------------------
5063 // Type-specific hashing function.
5064 int TypeMetadataPtr::hash(void) const {
5065   return
5066     (metadata() ? metadata()->hash() : 0) +
5067     TypePtr::hash();
5068 }
5069 
5070 //------------------------------singleton--------------------------------------
5071 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5072 // constants
5073 bool TypeMetadataPtr::singleton(void) const {
5074   // detune optimizer to not generate constant metadata + constant offset as a constant!
5075   // TopPTR, Null, AnyNull, Constant are all singletons
5076   return (offset() == 0) && !below_centerline(_ptr);
5077 }
5078 
5079 //------------------------------add_offset-------------------------------------
5080 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5081   return make( _ptr, _metadata, xadd_offset(offset));
5082 }
5083 
5084 //-----------------------------filter------------------------------------------
5085 // Do not allow interface-vs.-noninterface joins to collapse to top.
5086 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5087   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5088   if (ft == NULL || ft->empty())
5089     return Type::TOP;           // Canonical empty value
5090   return ft;
5091 }
5092 
5093  //------------------------------get_con----------------------------------------
5094 intptr_t TypeMetadataPtr::get_con() const {
5095   assert( _ptr == Null || _ptr == Constant, "" );
5096   assert(offset() >= 0, "");
5097 
5098   if (offset() != 0) {
5099     // After being ported to the compiler interface, the compiler no longer
5100     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5101     // to a handle at compile time.  This handle is embedded in the generated
5102     // code and dereferenced at the time the nmethod is made.  Until that time,
5103     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5104     // have access to the addresses!).  This does not seem to currently happen,
5105     // but this assertion here is to help prevent its occurence.
5106     tty->print_cr("Found oop constant with non-zero offset");
5107     ShouldNotReachHere();
5108   }
5109 
5110   return (intptr_t)metadata()->constant_encoding();
5111 }
5112 
5113 //------------------------------cast_to_ptr_type-------------------------------
5114 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5115   if( ptr == _ptr ) return this;
5116   return make(ptr, metadata(), _offset);
5117 }
5118 
5119 //------------------------------meet-------------------------------------------
5120 // Compute the MEET of two types.  It returns a new Type object.
5121 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5122   // Perform a fast test for common case; meeting the same types together.
5123   if( this == t ) return this;  // Meeting same type-rep?
5124 
5125   // Current "this->_base" is OopPtr
5126   switch (t->base()) {          // switch on original type
5127 
5128   case Int:                     // Mixing ints & oops happens when javac
5129   case Long:                    // reuses local variables
5130   case FloatTop:
5131   case FloatCon:
5132   case FloatBot:
5133   case DoubleTop:
5134   case DoubleCon:
5135   case DoubleBot:
5136   case NarrowOop:
5137   case NarrowKlass:
5138   case Bottom:                  // Ye Olde Default
5139     return Type::BOTTOM;
5140   case Top:
5141     return this;
5142 
5143   default:                      // All else is a mistake
5144     typerr(t);
5145 
5146   case AnyPtr: {
5147     // Found an AnyPtr type vs self-OopPtr type
5148     const TypePtr *tp = t->is_ptr();
5149     Offset offset = meet_offset(tp->offset());
5150     PTR ptr = meet_ptr(tp->ptr());
5151     switch (tp->ptr()) {
5152     case Null:
5153       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5154       // else fall through:
5155     case TopPTR:
5156     case AnyNull: {
5157       return make(ptr, _metadata, offset);
5158     }
5159     case BotPTR:
5160     case NotNull:
5161       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5162     default: typerr(t);
5163     }
5164   }
5165 
5166   case RawPtr:
5167   case KlassPtr:
5168   case OopPtr:
5169   case InstPtr:
5170   case AryPtr:
5171     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5172 
5173   case MetadataPtr: {
5174     const TypeMetadataPtr *tp = t->is_metadataptr();
5175     Offset offset = meet_offset(tp->offset());
5176     PTR tptr = tp->ptr();
5177     PTR ptr = meet_ptr(tptr);
5178     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5179     if (tptr == TopPTR || _ptr == TopPTR ||
5180         metadata()->equals(tp->metadata())) {
5181       return make(ptr, md, offset);
5182     }
5183     // metadata is different
5184     if( ptr == Constant ) {  // Cannot be equal constants, so...
5185       if( tptr == Constant && _ptr != Constant)  return t;
5186       if( _ptr == Constant && tptr != Constant)  return this;
5187       ptr = NotNull;            // Fall down in lattice
5188     }
5189     return make(ptr, NULL, offset);
5190     break;
5191   }
5192   } // End of switch
5193   return this;                  // Return the double constant
5194 }
5195 
5196 
5197 //------------------------------xdual------------------------------------------
5198 // Dual of a pure metadata pointer.
5199 const Type *TypeMetadataPtr::xdual() const {
5200   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5201 }
5202 
5203 //------------------------------dump2------------------------------------------
5204 #ifndef PRODUCT
5205 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5206   st->print("metadataptr:%s", ptr_msg[_ptr]);
5207   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5208   switch (offset()) {
5209   case OffsetTop: st->print("+top"); break;
5210   case OffsetBot: st->print("+any"); break;
5211   case         0: break;
5212   default:        st->print("+%d",offset()); break;
5213   }
5214 }
5215 #endif
5216 
5217 
5218 //=============================================================================
5219 // Convenience common pre-built type.
5220 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5221 
5222 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5223   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5224 }
5225 
5226 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5227   return make(Constant, m, Offset(0));
5228 }
5229 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5230   return make(Constant, m, Offset(0));
5231 }
5232 
5233 //------------------------------make-------------------------------------------
5234 // Create a meta data constant
5235 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5236   assert(m == NULL || !m->is_klass(), "wrong type");
5237   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5238 }
5239 
5240 
5241 //=============================================================================
5242 // Convenience common pre-built types.
5243 
5244 // Not-null object klass or below
5245 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5246 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5247 
5248 //------------------------------TypeKlassPtr-----------------------------------
5249 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5250   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5251 }
5252 
5253 //------------------------------make-------------------------------------------
5254 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5255 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5256   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5257   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5258 }
5259 
5260 //------------------------------eq---------------------------------------------
5261 // Structural equality check for Type representations
5262 bool TypeKlassPtr::eq( const Type *t ) const {
5263   const TypeKlassPtr *p = t->is_klassptr();
5264   return klass() == p->klass() && TypePtr::eq(p);
5265 }
5266 
5267 //------------------------------hash-------------------------------------------
5268 // Type-specific hashing function.
5269 int TypeKlassPtr::hash(void) const {
5270   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5271 }
5272 
5273 //------------------------------singleton--------------------------------------
5274 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5275 // constants
5276 bool TypeKlassPtr::singleton(void) const {
5277   // detune optimizer to not generate constant klass + constant offset as a constant!
5278   // TopPTR, Null, AnyNull, Constant are all singletons
5279   return (offset() == 0) && !below_centerline(_ptr);
5280 }
5281 
5282 // Do not allow interface-vs.-noninterface joins to collapse to top.
5283 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5284   // logic here mirrors the one from TypeOopPtr::filter. See comments
5285   // there.
5286   const Type* ft = join_helper(kills, include_speculative);
5287   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5288   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5289 
5290   if (ft->empty()) {
5291     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5292       return kills;             // Uplift to interface
5293 
5294     return Type::TOP;           // Canonical empty value
5295   }
5296 
5297   // Interface klass type could be exact in opposite to interface type,
5298   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5299   if (ftkp != NULL && ktkp != NULL &&
5300       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5301       !ftkp->klass_is_exact() && // Keep exact interface klass
5302       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5303     return ktkp->cast_to_ptr_type(ftkp->ptr());
5304   }
5305 
5306   return ft;
5307 }
5308 
5309 //----------------------compute_klass------------------------------------------
5310 // Compute the defining klass for this class
5311 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5312   // Compute _klass based on element type.
5313   ciKlass* k_ary = NULL;
5314   const TypeAryPtr *tary;
5315   const Type* el = elem();
5316   if (el->isa_narrowoop()) {
5317     el = el->make_ptr();
5318   }
5319 
5320   // Get element klass
5321   if (el->isa_instptr()) {
5322     // Compute object array klass from element klass
5323     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5324   } else if (el->isa_valuetype()) {
5325     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5326   } else if ((tary = el->isa_aryptr()) != NULL) {
5327     // Compute array klass from element klass
5328     ciKlass* k_elem = tary->klass();
5329     // If element type is something like bottom[], k_elem will be null.
5330     if (k_elem != NULL)
5331       k_ary = ciObjArrayKlass::make(k_elem);
5332   } else if ((el->base() == Type::Top) ||
5333              (el->base() == Type::Bottom)) {
5334     // element type of Bottom occurs from meet of basic type
5335     // and object; Top occurs when doing join on Bottom.
5336     // Leave k_ary at NULL.
5337   } else {
5338     // Cannot compute array klass directly from basic type,
5339     // since subtypes of TypeInt all have basic type T_INT.
5340 #ifdef ASSERT
5341     if (verify && el->isa_int()) {
5342       // Check simple cases when verifying klass.
5343       BasicType bt = T_ILLEGAL;
5344       if (el == TypeInt::BYTE) {
5345         bt = T_BYTE;
5346       } else if (el == TypeInt::SHORT) {
5347         bt = T_SHORT;
5348       } else if (el == TypeInt::CHAR) {
5349         bt = T_CHAR;
5350       } else if (el == TypeInt::INT) {
5351         bt = T_INT;
5352       } else {
5353         return _klass; // just return specified klass
5354       }
5355       return ciTypeArrayKlass::make(bt);
5356     }
5357 #endif
5358     assert(!el->isa_int(),
5359            "integral arrays must be pre-equipped with a class");
5360     // Compute array klass directly from basic type
5361     k_ary = ciTypeArrayKlass::make(el->basic_type());
5362   }
5363   return k_ary;
5364 }
5365 
5366 //------------------------------klass------------------------------------------
5367 // Return the defining klass for this class
5368 ciKlass* TypeAryPtr::klass() const {
5369   if( _klass ) return _klass;   // Return cached value, if possible
5370 
5371   // Oops, need to compute _klass and cache it
5372   ciKlass* k_ary = compute_klass();
5373 
5374   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5375     // The _klass field acts as a cache of the underlying
5376     // ciKlass for this array type.  In order to set the field,
5377     // we need to cast away const-ness.
5378     //
5379     // IMPORTANT NOTE: we *never* set the _klass field for the
5380     // type TypeAryPtr::OOPS.  This Type is shared between all
5381     // active compilations.  However, the ciKlass which represents
5382     // this Type is *not* shared between compilations, so caching
5383     // this value would result in fetching a dangling pointer.
5384     //
5385     // Recomputing the underlying ciKlass for each request is
5386     // a bit less efficient than caching, but calls to
5387     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5388     ((TypeAryPtr*)this)->_klass = k_ary;
5389     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5390         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5391       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5392     }
5393   }
5394   return k_ary;
5395 }
5396 
5397 
5398 //------------------------------add_offset-------------------------------------
5399 // Access internals of klass object
5400 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5401   return make( _ptr, klass(), xadd_offset(offset) );
5402 }
5403 
5404 //------------------------------cast_to_ptr_type-------------------------------
5405 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5406   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5407   if( ptr == _ptr ) return this;
5408   return make(ptr, _klass, _offset);
5409 }
5410 
5411 
5412 //-----------------------------cast_to_exactness-------------------------------
5413 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5414   if( klass_is_exact == _klass_is_exact ) return this;
5415   if (!UseExactTypes)  return this;
5416   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5417 }
5418 
5419 
5420 //-----------------------------as_instance_type--------------------------------
5421 // Corresponding type for an instance of the given class.
5422 // It will be NotNull, and exact if and only if the klass type is exact.
5423 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5424   ciKlass* k = klass();
5425   assert(k != NULL, "klass should not be NULL");
5426   bool    xk = klass_is_exact();
5427   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5428   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5429   guarantee(toop != NULL, "need type for given klass");
5430   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5431   return toop->cast_to_exactness(xk)->is_oopptr();
5432 }
5433 
5434 
5435 //------------------------------xmeet------------------------------------------
5436 // Compute the MEET of two types, return a new Type object.
5437 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5438   // Perform a fast test for common case; meeting the same types together.
5439   if( this == t ) return this;  // Meeting same type-rep?
5440 
5441   // Current "this->_base" is Pointer
5442   switch (t->base()) {          // switch on original type
5443 
5444   case Int:                     // Mixing ints & oops happens when javac
5445   case Long:                    // reuses local variables
5446   case FloatTop:
5447   case FloatCon:
5448   case FloatBot:
5449   case DoubleTop:
5450   case DoubleCon:
5451   case DoubleBot:
5452   case NarrowOop:
5453   case NarrowKlass:
5454   case Bottom:                  // Ye Olde Default
5455     return Type::BOTTOM;
5456   case Top:
5457     return this;
5458 
5459   default:                      // All else is a mistake
5460     typerr(t);
5461 
5462   case AnyPtr: {                // Meeting to AnyPtrs
5463     // Found an AnyPtr type vs self-KlassPtr type
5464     const TypePtr *tp = t->is_ptr();
5465     Offset offset = meet_offset(tp->offset());
5466     PTR ptr = meet_ptr(tp->ptr());
5467     switch (tp->ptr()) {
5468     case TopPTR:
5469       return this;
5470     case Null:
5471       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5472     case AnyNull:
5473       return make( ptr, klass(), offset );
5474     case BotPTR:
5475     case NotNull:
5476       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5477     default: typerr(t);
5478     }
5479   }
5480 
5481   case RawPtr:
5482   case MetadataPtr:
5483   case OopPtr:
5484   case AryPtr:                  // Meet with AryPtr
5485   case InstPtr:                 // Meet with InstPtr
5486     return TypePtr::BOTTOM;
5487 
5488   //
5489   //             A-top         }
5490   //           /   |   \       }  Tops
5491   //       B-top A-any C-top   }
5492   //          | /  |  \ |      }  Any-nulls
5493   //       B-any   |   C-any   }
5494   //          |    |    |
5495   //       B-con A-con C-con   } constants; not comparable across classes
5496   //          |    |    |
5497   //       B-not   |   C-not   }
5498   //          | \  |  / |      }  not-nulls
5499   //       B-bot A-not C-bot   }
5500   //           \   |   /       }  Bottoms
5501   //             A-bot         }
5502   //
5503 
5504   case KlassPtr: {  // Meet two KlassPtr types
5505     const TypeKlassPtr *tkls = t->is_klassptr();
5506     Offset  off  = meet_offset(tkls->offset());
5507     PTR  ptr     = meet_ptr(tkls->ptr());
5508 
5509     if (klass() == NULL || tkls->klass() == NULL) {
5510       ciKlass* k = NULL;
5511       if (ptr == Constant) {
5512         k = (klass() == NULL) ? tkls->klass() : klass();
5513       }
5514       return make(ptr, k, off);
5515     }
5516 
5517     // Check for easy case; klasses are equal (and perhaps not loaded!)
5518     // If we have constants, then we created oops so classes are loaded
5519     // and we can handle the constants further down.  This case handles
5520     // not-loaded classes
5521     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5522       return make( ptr, klass(), off );
5523     }
5524 
5525     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5526     ciKlass* tkls_klass = tkls->klass();
5527     ciKlass* this_klass = this->klass();
5528     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5529     assert( this_klass->is_loaded(), "This class should have been loaded.");
5530 
5531     // If 'this' type is above the centerline and is a superclass of the
5532     // other, we can treat 'this' as having the same type as the other.
5533     if ((above_centerline(this->ptr())) &&
5534         tkls_klass->is_subtype_of(this_klass)) {
5535       this_klass = tkls_klass;
5536     }
5537     // If 'tinst' type is above the centerline and is a superclass of the
5538     // other, we can treat 'tinst' as having the same type as the other.
5539     if ((above_centerline(tkls->ptr())) &&
5540         this_klass->is_subtype_of(tkls_klass)) {
5541       tkls_klass = this_klass;
5542     }
5543 
5544     // Check for classes now being equal
5545     if (tkls_klass->equals(this_klass)) {
5546       // If the klasses are equal, the constants may still differ.  Fall to
5547       // NotNull if they do (neither constant is NULL; that is a special case
5548       // handled elsewhere).
5549       if( ptr == Constant ) {
5550         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5551             this->klass()->equals(tkls->klass()));
5552         else if (above_centerline(this->ptr()));
5553         else if (above_centerline(tkls->ptr()));
5554         else
5555           ptr = NotNull;
5556       }
5557       return make( ptr, this_klass, off );
5558     } // Else classes are not equal
5559 
5560     // Since klasses are different, we require the LCA in the Java
5561     // class hierarchy - which means we have to fall to at least NotNull.
5562     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5563       ptr = NotNull;
5564     // Now we find the LCA of Java classes
5565     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5566     return   make( ptr, k, off );
5567   } // End of case KlassPtr
5568 
5569   } // End of switch
5570   return this;                  // Return the double constant
5571 }
5572 
5573 //------------------------------xdual------------------------------------------
5574 // Dual: compute field-by-field dual
5575 const Type    *TypeKlassPtr::xdual() const {
5576   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5577 }
5578 
5579 //------------------------------get_con----------------------------------------
5580 intptr_t TypeKlassPtr::get_con() const {
5581   assert( _ptr == Null || _ptr == Constant, "" );
5582   assert(offset() >= 0, "");
5583 
5584   if (offset() != 0) {
5585     // After being ported to the compiler interface, the compiler no longer
5586     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5587     // to a handle at compile time.  This handle is embedded in the generated
5588     // code and dereferenced at the time the nmethod is made.  Until that time,
5589     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5590     // have access to the addresses!).  This does not seem to currently happen,
5591     // but this assertion here is to help prevent its occurence.
5592     tty->print_cr("Found oop constant with non-zero offset");
5593     ShouldNotReachHere();
5594   }
5595 
5596   return (intptr_t)klass()->constant_encoding();
5597 }
5598 //------------------------------dump2------------------------------------------
5599 // Dump Klass Type
5600 #ifndef PRODUCT
5601 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5602   switch( _ptr ) {
5603   case Constant:
5604     st->print("precise ");
5605   case NotNull:
5606     {
5607       if (klass() != NULL) {
5608         const char* name = klass()->name()->as_utf8();
5609         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5610       } else {
5611         st->print("klass BOTTOM");
5612       }
5613     }
5614   case BotPTR:
5615     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5616   case TopPTR:
5617   case AnyNull:
5618     st->print(":%s", ptr_msg[_ptr]);
5619     if( _klass_is_exact ) st->print(":exact");
5620     break;
5621   default:
5622     break;
5623   }
5624 
5625   _offset.dump2(st);
5626 
5627   st->print(" *");
5628 }
5629 #endif
5630 
5631 
5632 
5633 //=============================================================================
5634 // Convenience common pre-built types.
5635 
5636 //------------------------------make-------------------------------------------
5637 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5638                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5639   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5640 }
5641 
5642 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5643   return make(domain, domain, range, range);
5644 }
5645 
5646 //------------------------------make-------------------------------------------
5647 const TypeFunc *TypeFunc::make(ciMethod* method) {
5648   Compile* C = Compile::current();
5649   const TypeFunc* tf = C->last_tf(method); // check cache
5650   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5651   const TypeTuple *domain_sig, *domain_cc;
5652   // Value type arguments are not passed by reference, instead each
5653   // field of the value type is passed as an argument. We maintain 2
5654   // views of the argument list here: one based on the signature (with
5655   // a value type argument as a single slot), one based on the actual
5656   // calling convention (with a value type argument as a list of its
5657   // fields).
5658   if (method->is_static()) {
5659     domain_sig = TypeTuple::make_domain(method, false);
5660     domain_cc = TypeTuple::make_domain(method, method->get_Method()->has_scalarized_args());
5661   } else {
5662     domain_sig = TypeTuple::make_domain(method, false);
5663     domain_cc = TypeTuple::make_domain(method, method->get_Method()->has_scalarized_args());
5664   }
5665   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5666   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5667   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5668   C->set_last_tf(method, tf);  // fill cache
5669   return tf;
5670 }
5671 
5672 //------------------------------meet-------------------------------------------
5673 // Compute the MEET of two types.  It returns a new Type object.
5674 const Type *TypeFunc::xmeet( const Type *t ) const {
5675   // Perform a fast test for common case; meeting the same types together.
5676   if( this == t ) return this;  // Meeting same type-rep?
5677 
5678   // Current "this->_base" is Func
5679   switch (t->base()) {          // switch on original type
5680 
5681   case Bottom:                  // Ye Olde Default
5682     return t;
5683 
5684   default:                      // All else is a mistake
5685     typerr(t);
5686 
5687   case Top:
5688     break;
5689   }
5690   return this;                  // Return the double constant
5691 }
5692 
5693 //------------------------------xdual------------------------------------------
5694 // Dual: compute field-by-field dual
5695 const Type *TypeFunc::xdual() const {
5696   return this;
5697 }
5698 
5699 //------------------------------eq---------------------------------------------
5700 // Structural equality check for Type representations
5701 bool TypeFunc::eq( const Type *t ) const {
5702   const TypeFunc *a = (const TypeFunc*)t;
5703   return _domain_sig == a->_domain_sig &&
5704     _domain_cc == a->_domain_cc &&
5705     _range_sig == a->_range_sig &&
5706     _range_cc == a->_range_cc;
5707 }
5708 
5709 //------------------------------hash-------------------------------------------
5710 // Type-specific hashing function.
5711 int TypeFunc::hash(void) const {
5712   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5713 }
5714 
5715 //------------------------------dump2------------------------------------------
5716 // Dump Function Type
5717 #ifndef PRODUCT
5718 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5719   if( _range_sig->cnt() <= Parms )
5720     st->print("void");
5721   else {
5722     uint i;
5723     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5724       _range_sig->field_at(i)->dump2(d,depth,st);
5725       st->print("/");
5726     }
5727     _range_sig->field_at(i)->dump2(d,depth,st);
5728   }
5729   st->print(" ");
5730   st->print("( ");
5731   if( !depth || d[this] ) {     // Check for recursive dump
5732     st->print("...)");
5733     return;
5734   }
5735   d.Insert((void*)this,(void*)this);    // Stop recursion
5736   if (Parms < _domain_sig->cnt())
5737     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5738   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5739     st->print(", ");
5740     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5741   }
5742   st->print(" )");
5743 }
5744 #endif
5745 
5746 //------------------------------singleton--------------------------------------
5747 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5748 // constants (Ldi nodes).  Singletons are integer, float or double constants
5749 // or a single symbol.
5750 bool TypeFunc::singleton(void) const {
5751   return false;                 // Never a singleton
5752 }
5753 
5754 bool TypeFunc::empty(void) const {
5755   return false;                 // Never empty
5756 }
5757 
5758 
5759 BasicType TypeFunc::return_type() const{
5760   if (range_sig()->cnt() == TypeFunc::Parms) {
5761     return T_VOID;
5762   }
5763   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5764 }