1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by frequently used macros.
  32 //
  33 // Instructions for which a 'better' code sequence exists depending
  34 // on arguments should also go in here.
  35 
  36 class MacroAssembler: public Assembler {
  37   friend class LIR_Assembler;
  38 
  39  public:
  40   using Assembler::mov;
  41   using Assembler::movi;
  42 
  43  protected:
  44 
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50   virtual void call_VM_leaf_base(
  51     address entry_point,               // the entry point
  52     int     number_of_arguments,        // the number of arguments to pop after the call
  53     Label *retaddr = NULL
  54   );
  55 
  56   virtual void call_VM_leaf_base(
  57     address entry_point,               // the entry point
  58     int     number_of_arguments,        // the number of arguments to pop after the call
  59     Label &retaddr) {
  60     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  61   }
  62 
  63   // This is the base routine called by the different versions of call_VM. The interpreter
  64   // may customize this version by overriding it for its purposes (e.g., to save/restore
  65   // additional registers when doing a VM call).
  66   //
  67   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  68   // returns the register which contains the thread upon return. If a thread register has been
  69   // specified, the return value will correspond to that register. If no last_java_sp is specified
  70   // (noreg) than rsp will be used instead.
  71   virtual void call_VM_base(           // returns the register containing the thread upon return
  72     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  73     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  74     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  75     address  entry_point,              // the entry point
  76     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  77     bool     check_exceptions          // whether to check for pending exceptions after return
  78   );
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // True if an XOR can be used to expand narrow klass references.
  83   bool use_XOR_for_compressed_class_base;
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  87     use_XOR_for_compressed_class_base
  88       = (operand_valid_for_logical_immediate(false /*is32*/,
  89                                              (uint64_t)Universe::narrow_klass_base())
  90          && ((uint64_t)Universe::narrow_klass_base()
  91              > (1UL << log2_intptr(Universe::narrow_klass_range()))));
  92   }
  93 
  94  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  95  // The implementation is only non-empty for the InterpreterMacroAssembler,
  96  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  97  virtual void check_and_handle_popframe(Register java_thread);
  98  virtual void check_and_handle_earlyret(Register java_thread);
  99 
 100   void safepoint_poll(Label& slow_path);
 101   void safepoint_poll_acquire(Label& slow_path);
 102 
 103   // Biased locking support
 104   // lock_reg and obj_reg must be loaded up with the appropriate values.
 105   // swap_reg is killed.
 106   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 107   // Optional slow case is for implementations (interpreter and C1) which branch to
 108   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 109   // Returns offset of first potentially-faulting instruction for null
 110   // check info (currently consumed only by C1). If
 111   // swap_reg_contains_mark is true then returns -1 as it is assumed
 112   // the calling code has already passed any potential faults.
 113   int biased_locking_enter(Register lock_reg, Register obj_reg,
 114                            Register swap_reg, Register tmp_reg,
 115                            bool swap_reg_contains_mark,
 116                            Label& done, Label* slow_case = NULL,
 117                            BiasedLockingCounters* counters = NULL);
 118   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 119 
 120 
 121   // Helper functions for statistics gathering.
 122   // Unconditional atomic increment.
 123   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 124   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 125     lea(tmp1, counter_addr);
 126     atomic_incw(tmp1, tmp2, tmp3);
 127   }
 128   // Load Effective Address
 129   void lea(Register r, const Address &a) {
 130     InstructionMark im(this);
 131     code_section()->relocate(inst_mark(), a.rspec());
 132     a.lea(this, r);
 133   }
 134 
 135   void addmw(Address a, Register incr, Register scratch) {
 136     ldrw(scratch, a);
 137     addw(scratch, scratch, incr);
 138     strw(scratch, a);
 139   }
 140 
 141   // Add constant to memory word
 142   void addmw(Address a, int imm, Register scratch) {
 143     ldrw(scratch, a);
 144     if (imm > 0)
 145       addw(scratch, scratch, (unsigned)imm);
 146     else
 147       subw(scratch, scratch, (unsigned)-imm);
 148     strw(scratch, a);
 149   }
 150 
 151   void bind(Label& L) {
 152     Assembler::bind(L);
 153     code()->clear_last_insn();
 154   }
 155 
 156   void membar(Membar_mask_bits order_constraint);
 157 
 158   using Assembler::ldr;
 159   using Assembler::str;
 160 
 161   void ldr(Register Rx, const Address &adr);
 162   void ldrw(Register Rw, const Address &adr);
 163   void str(Register Rx, const Address &adr);
 164   void strw(Register Rx, const Address &adr);
 165 
 166   // Frame creation and destruction shared between JITs.
 167   void build_frame(int framesize);
 168   void remove_frame(int framesize);
 169 
 170   virtual void _call_Unimplemented(address call_site) {
 171     mov(rscratch2, call_site);
 172     haltsim();
 173   }
 174 
 175 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 176 
 177   virtual void notify(int type);
 178 
 179   // aliases defined in AARCH64 spec
 180 
 181   template<class T>
 182   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 183 
 184   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 185   inline void cmp(Register Rd, unsigned imm) __attribute__ ((deprecated));
 186 
 187   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 188   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 189 
 190   void cset(Register Rd, Assembler::Condition cond) {
 191     csinc(Rd, zr, zr, ~cond);
 192   }
 193   void csetw(Register Rd, Assembler::Condition cond) {
 194     csincw(Rd, zr, zr, ~cond);
 195   }
 196 
 197   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 198     csneg(Rd, Rn, Rn, ~cond);
 199   }
 200   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 201     csnegw(Rd, Rn, Rn, ~cond);
 202   }
 203 
 204   inline void movw(Register Rd, Register Rn) {
 205     if (Rd == sp || Rn == sp) {
 206       addw(Rd, Rn, 0U);
 207     } else {
 208       orrw(Rd, zr, Rn);
 209     }
 210   }
 211   inline void mov(Register Rd, Register Rn) {
 212     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 213     if (Rd == Rn) {
 214     } else if (Rd == sp || Rn == sp) {
 215       add(Rd, Rn, 0U);
 216     } else {
 217       orr(Rd, zr, Rn);
 218     }
 219   }
 220 
 221   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 222   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 223 
 224   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 225   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 226 
 227   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 228   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 229 
 230   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 231     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 232   }
 233   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 234     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 235   }
 236 
 237   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 238     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 239   }
 240   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 241     bfm(Rd, Rn, lsb , (lsb + width - 1));
 242   }
 243 
 244   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 245     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 246   }
 247   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 248     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 249   }
 250 
 251   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 252     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 253   }
 254   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 255     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 256   }
 257 
 258   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 259     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 260   }
 261   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 262     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 263   }
 264 
 265   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 267   }
 268   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 269     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 270   }
 271 
 272   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 273     sbfmw(Rd, Rn, imm, 31);
 274   }
 275 
 276   inline void asr(Register Rd, Register Rn, unsigned imm) {
 277     sbfm(Rd, Rn, imm, 63);
 278   }
 279 
 280   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 281     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 282   }
 283 
 284   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 285     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 286   }
 287 
 288   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 289     ubfmw(Rd, Rn, imm, 31);
 290   }
 291 
 292   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 293     ubfm(Rd, Rn, imm, 63);
 294   }
 295 
 296   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 297     extrw(Rd, Rn, Rn, imm);
 298   }
 299 
 300   inline void ror(Register Rd, Register Rn, unsigned imm) {
 301     extr(Rd, Rn, Rn, imm);
 302   }
 303 
 304   inline void sxtbw(Register Rd, Register Rn) {
 305     sbfmw(Rd, Rn, 0, 7);
 306   }
 307   inline void sxthw(Register Rd, Register Rn) {
 308     sbfmw(Rd, Rn, 0, 15);
 309   }
 310   inline void sxtb(Register Rd, Register Rn) {
 311     sbfm(Rd, Rn, 0, 7);
 312   }
 313   inline void sxth(Register Rd, Register Rn) {
 314     sbfm(Rd, Rn, 0, 15);
 315   }
 316   inline void sxtw(Register Rd, Register Rn) {
 317     sbfm(Rd, Rn, 0, 31);
 318   }
 319 
 320   inline void uxtbw(Register Rd, Register Rn) {
 321     ubfmw(Rd, Rn, 0, 7);
 322   }
 323   inline void uxthw(Register Rd, Register Rn) {
 324     ubfmw(Rd, Rn, 0, 15);
 325   }
 326   inline void uxtb(Register Rd, Register Rn) {
 327     ubfm(Rd, Rn, 0, 7);
 328   }
 329   inline void uxth(Register Rd, Register Rn) {
 330     ubfm(Rd, Rn, 0, 15);
 331   }
 332   inline void uxtw(Register Rd, Register Rn) {
 333     ubfm(Rd, Rn, 0, 31);
 334   }
 335 
 336   inline void cmnw(Register Rn, Register Rm) {
 337     addsw(zr, Rn, Rm);
 338   }
 339   inline void cmn(Register Rn, Register Rm) {
 340     adds(zr, Rn, Rm);
 341   }
 342 
 343   inline void cmpw(Register Rn, Register Rm) {
 344     subsw(zr, Rn, Rm);
 345   }
 346   inline void cmp(Register Rn, Register Rm) {
 347     subs(zr, Rn, Rm);
 348   }
 349 
 350   inline void negw(Register Rd, Register Rn) {
 351     subw(Rd, zr, Rn);
 352   }
 353 
 354   inline void neg(Register Rd, Register Rn) {
 355     sub(Rd, zr, Rn);
 356   }
 357 
 358   inline void negsw(Register Rd, Register Rn) {
 359     subsw(Rd, zr, Rn);
 360   }
 361 
 362   inline void negs(Register Rd, Register Rn) {
 363     subs(Rd, zr, Rn);
 364   }
 365 
 366   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 367     addsw(zr, Rn, Rm, kind, shift);
 368   }
 369   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 370     adds(zr, Rn, Rm, kind, shift);
 371   }
 372 
 373   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 374     subsw(zr, Rn, Rm, kind, shift);
 375   }
 376   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 377     subs(zr, Rn, Rm, kind, shift);
 378   }
 379 
 380   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 381     subw(Rd, zr, Rn, kind, shift);
 382   }
 383 
 384   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 385     sub(Rd, zr, Rn, kind, shift);
 386   }
 387 
 388   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 389     subsw(Rd, zr, Rn, kind, shift);
 390   }
 391 
 392   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 393     subs(Rd, zr, Rn, kind, shift);
 394   }
 395 
 396   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 397     msubw(Rd, Rn, Rm, zr);
 398   }
 399   inline void mneg(Register Rd, Register Rn, Register Rm) {
 400     msub(Rd, Rn, Rm, zr);
 401   }
 402 
 403   inline void mulw(Register Rd, Register Rn, Register Rm) {
 404     maddw(Rd, Rn, Rm, zr);
 405   }
 406   inline void mul(Register Rd, Register Rn, Register Rm) {
 407     madd(Rd, Rn, Rm, zr);
 408   }
 409 
 410   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 411     smsubl(Rd, Rn, Rm, zr);
 412   }
 413   inline void smull(Register Rd, Register Rn, Register Rm) {
 414     smaddl(Rd, Rn, Rm, zr);
 415   }
 416 
 417   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 418     umsubl(Rd, Rn, Rm, zr);
 419   }
 420   inline void umull(Register Rd, Register Rn, Register Rm) {
 421     umaddl(Rd, Rn, Rm, zr);
 422   }
 423 
 424 #define WRAP(INSN)                                                            \
 425   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 426     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 427       nop();                                                                  \
 428     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 429   }
 430 
 431   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 432   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 433 #undef WRAP
 434 
 435 
 436   // macro assembly operations needed for aarch64
 437 
 438   // first two private routines for loading 32 bit or 64 bit constants
 439 private:
 440 
 441   void mov_immediate64(Register dst, u_int64_t imm64);
 442   void mov_immediate32(Register dst, u_int32_t imm32);
 443 
 444   int push(unsigned int bitset, Register stack);
 445   int pop(unsigned int bitset, Register stack);
 446 
 447   void mov(Register dst, Address a);
 448 
 449 public:
 450   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 451   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 452 
 453   // Push and pop everything that might be clobbered by a native
 454   // runtime call except rscratch1 and rscratch2.  (They are always
 455   // scratch, so we don't have to protect them.)  Only save the lower
 456   // 64 bits of each vector register.
 457   void push_call_clobbered_registers();
 458   void pop_call_clobbered_registers();
 459 
 460   // now mov instructions for loading absolute addresses and 32 or
 461   // 64 bit integers
 462 
 463   inline void mov(Register dst, address addr)
 464   {
 465     mov_immediate64(dst, (u_int64_t)addr);
 466   }
 467 
 468   inline void mov(Register dst, u_int64_t imm64)
 469   {
 470     mov_immediate64(dst, imm64);
 471   }
 472 
 473   inline void movw(Register dst, u_int32_t imm32)
 474   {
 475     mov_immediate32(dst, imm32);
 476   }
 477 
 478   inline void mov(Register dst, long l)
 479   {
 480     mov(dst, (u_int64_t)l);
 481   }
 482 
 483   inline void mov(Register dst, int i)
 484   {
 485     mov(dst, (long)i);
 486   }
 487 
 488   void mov(Register dst, RegisterOrConstant src) {
 489     if (src.is_register())
 490       mov(dst, src.as_register());
 491     else
 492       mov(dst, src.as_constant());
 493   }
 494 
 495   void movptr(Register r, uintptr_t imm64);
 496 
 497   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 498 
 499   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 500     orr(Vd, T, Vn, Vn);
 501   }
 502 
 503 public:
 504 
 505   // Generalized Test Bit And Branch, including a "far" variety which
 506   // spans more than 32KiB.
 507   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 508     assert(cond == EQ || cond == NE, "must be");
 509 
 510     if (far)
 511       cond = ~cond;
 512 
 513     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 514     if (cond == Assembler::EQ)
 515       branch = &Assembler::tbz;
 516     else
 517       branch = &Assembler::tbnz;
 518 
 519     if (far) {
 520       Label L;
 521       (this->*branch)(Rt, bitpos, L);
 522       b(dest);
 523       bind(L);
 524     } else {
 525       (this->*branch)(Rt, bitpos, dest);
 526     }
 527   }
 528 
 529   // macro instructions for accessing and updating floating point
 530   // status register
 531   //
 532   // FPSR : op1 == 011
 533   //        CRn == 0100
 534   //        CRm == 0100
 535   //        op2 == 001
 536 
 537   inline void get_fpsr(Register reg)
 538   {
 539     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 540   }
 541 
 542   inline void set_fpsr(Register reg)
 543   {
 544     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 545   }
 546 
 547   inline void clear_fpsr()
 548   {
 549     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 550   }
 551 
 552   // DCZID_EL0: op1 == 011
 553   //            CRn == 0000
 554   //            CRm == 0000
 555   //            op2 == 111
 556   inline void get_dczid_el0(Register reg)
 557   {
 558     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 559   }
 560 
 561   // CTR_EL0:   op1 == 011
 562   //            CRn == 0000
 563   //            CRm == 0000
 564   //            op2 == 001
 565   inline void get_ctr_el0(Register reg)
 566   {
 567     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 568   }
 569 
 570   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 571   int corrected_idivl(Register result, Register ra, Register rb,
 572                       bool want_remainder, Register tmp = rscratch1);
 573   int corrected_idivq(Register result, Register ra, Register rb,
 574                       bool want_remainder, Register tmp = rscratch1);
 575 
 576   // Support for NULL-checks
 577   //
 578   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 579   // If the accessed location is M[reg + offset] and the offset is known, provide the
 580   // offset. No explicit code generation is needed if the offset is within a certain
 581   // range (0 <= offset <= page_size).
 582 
 583   virtual void null_check(Register reg, int offset = -1);
 584   static bool needs_explicit_null_check(intptr_t offset);
 585 
 586   static address target_addr_for_insn(address insn_addr, unsigned insn);
 587   static address target_addr_for_insn(address insn_addr) {
 588     unsigned insn = *(unsigned*)insn_addr;
 589     return target_addr_for_insn(insn_addr, insn);
 590   }
 591 
 592   // Required platform-specific helpers for Label::patch_instructions.
 593   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 594   static int pd_patch_instruction_size(address branch, address target);
 595   static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) {
 596     pd_patch_instruction_size(branch, target);
 597   }
 598   static address pd_call_destination(address branch) {
 599     return target_addr_for_insn(branch);
 600   }
 601 #ifndef PRODUCT
 602   static void pd_print_patched_instruction(address branch);
 603 #endif
 604 
 605   static int patch_oop(address insn_addr, address o);
 606   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 607 
 608   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 609 
 610   // The following 4 methods return the offset of the appropriate move instruction
 611 
 612   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 613   int load_unsigned_byte(Register dst, Address src);
 614   int load_unsigned_short(Register dst, Address src);
 615 
 616   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 617   int load_signed_byte(Register dst, Address src);
 618   int load_signed_short(Register dst, Address src);
 619 
 620   int load_signed_byte32(Register dst, Address src);
 621   int load_signed_short32(Register dst, Address src);
 622 
 623   // Support for sign-extension (hi:lo = extend_sign(lo))
 624   void extend_sign(Register hi, Register lo);
 625 
 626   // Load and store values by size and signed-ness
 627   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 628   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 629 
 630   // Support for inc/dec with optimal instruction selection depending on value
 631 
 632   // x86_64 aliases an unqualified register/address increment and
 633   // decrement to call incrementq and decrementq but also supports
 634   // explicitly sized calls to incrementq/decrementq or
 635   // incrementl/decrementl
 636 
 637   // for aarch64 the proper convention would be to use
 638   // increment/decrement for 64 bit operatons and
 639   // incrementw/decrementw for 32 bit operations. so when porting
 640   // x86_64 code we can leave calls to increment/decrement as is,
 641   // replace incrementq/decrementq with increment/decrement and
 642   // replace incrementl/decrementl with incrementw/decrementw.
 643 
 644   // n.b. increment/decrement calls with an Address destination will
 645   // need to use a scratch register to load the value to be
 646   // incremented. increment/decrement calls which add or subtract a
 647   // constant value greater than 2^12 will need to use a 2nd scratch
 648   // register to hold the constant. so, a register increment/decrement
 649   // may trash rscratch2 and an address increment/decrement trash
 650   // rscratch and rscratch2
 651 
 652   void decrementw(Address dst, int value = 1);
 653   void decrementw(Register reg, int value = 1);
 654 
 655   void decrement(Register reg, int value = 1);
 656   void decrement(Address dst, int value = 1);
 657 
 658   void incrementw(Address dst, int value = 1);
 659   void incrementw(Register reg, int value = 1);
 660 
 661   void increment(Register reg, int value = 1);
 662   void increment(Address dst, int value = 1);
 663 
 664 
 665   // Alignment
 666   void align(int modulus);
 667 
 668   // Stack frame creation/removal
 669   void enter()
 670   {
 671     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 672     mov(rfp, sp);
 673   }
 674   void leave()
 675   {
 676     mov(sp, rfp);
 677     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 678   }
 679 
 680   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 681   // The pointer will be loaded into the thread register.
 682   void get_thread(Register thread);
 683 
 684 
 685   // Support for VM calls
 686   //
 687   // It is imperative that all calls into the VM are handled via the call_VM macros.
 688   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 689   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 690 
 691 
 692   void call_VM(Register oop_result,
 693                address entry_point,
 694                bool check_exceptions = true);
 695   void call_VM(Register oop_result,
 696                address entry_point,
 697                Register arg_1,
 698                bool check_exceptions = true);
 699   void call_VM(Register oop_result,
 700                address entry_point,
 701                Register arg_1, Register arg_2,
 702                bool check_exceptions = true);
 703   void call_VM(Register oop_result,
 704                address entry_point,
 705                Register arg_1, Register arg_2, Register arg_3,
 706                bool check_exceptions = true);
 707 
 708   // Overloadings with last_Java_sp
 709   void call_VM(Register oop_result,
 710                Register last_java_sp,
 711                address entry_point,
 712                int number_of_arguments = 0,
 713                bool check_exceptions = true);
 714   void call_VM(Register oop_result,
 715                Register last_java_sp,
 716                address entry_point,
 717                Register arg_1, bool
 718                check_exceptions = true);
 719   void call_VM(Register oop_result,
 720                Register last_java_sp,
 721                address entry_point,
 722                Register arg_1, Register arg_2,
 723                bool check_exceptions = true);
 724   void call_VM(Register oop_result,
 725                Register last_java_sp,
 726                address entry_point,
 727                Register arg_1, Register arg_2, Register arg_3,
 728                bool check_exceptions = true);
 729 
 730   void get_vm_result  (Register oop_result, Register thread);
 731   void get_vm_result_2(Register metadata_result, Register thread);
 732 
 733   // These always tightly bind to MacroAssembler::call_VM_base
 734   // bypassing the virtual implementation
 735   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 736   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 737   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 738   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 739   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 740 
 741   void call_VM_leaf(address entry_point,
 742                     int number_of_arguments = 0);
 743   void call_VM_leaf(address entry_point,
 744                     Register arg_1);
 745   void call_VM_leaf(address entry_point,
 746                     Register arg_1, Register arg_2);
 747   void call_VM_leaf(address entry_point,
 748                     Register arg_1, Register arg_2, Register arg_3);
 749 
 750   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 751   // bypassing the virtual implementation
 752   void super_call_VM_leaf(address entry_point);
 753   void super_call_VM_leaf(address entry_point, Register arg_1);
 754   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 755   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 756   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 757 
 758   // last Java Frame (fills frame anchor)
 759   void set_last_Java_frame(Register last_java_sp,
 760                            Register last_java_fp,
 761                            address last_java_pc,
 762                            Register scratch);
 763 
 764   void set_last_Java_frame(Register last_java_sp,
 765                            Register last_java_fp,
 766                            Label &last_java_pc,
 767                            Register scratch);
 768 
 769   void set_last_Java_frame(Register last_java_sp,
 770                            Register last_java_fp,
 771                            Register last_java_pc,
 772                            Register scratch);
 773 
 774   void reset_last_Java_frame(Register thread);
 775 
 776   // thread in the default location (rthread)
 777   void reset_last_Java_frame(bool clear_fp);
 778 
 779   // Stores
 780   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 781   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 782 
 783   void resolve_jobject(Register value, Register thread, Register tmp);
 784 
 785   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 786   void c2bool(Register x);
 787 
 788   // oop manipulations
 789   void load_klass(Register dst, Register src);
 790   void store_klass(Register dst, Register src);
 791   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 792 
 793   void resolve_oop_handle(Register result, Register tmp = r5);
 794   void load_mirror(Register dst, Register method, Register tmp = r5);
 795 
 796   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 797                       Register tmp1, Register tmp_thread);
 798 
 799   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 800                        Register tmp1, Register tmp_thread);
 801 
 802   // Resolves obj for access. Result is placed in the same register.
 803   // All other registers are preserved.
 804   void resolve(DecoratorSet decorators, Register obj);
 805 
 806   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 807                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 808 
 809   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 810                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 811   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 812                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 813 
 814   // currently unimplemented
 815   // Used for storing NULL. All other oop constants should be
 816   // stored using routines that take a jobject.
 817   void store_heap_oop_null(Address dst);
 818 
 819   void load_prototype_header(Register dst, Register src);
 820 
 821   void store_klass_gap(Register dst, Register src);
 822 
 823   // This dummy is to prevent a call to store_heap_oop from
 824   // converting a zero (like NULL) into a Register by giving
 825   // the compiler two choices it can't resolve
 826 
 827   void store_heap_oop(Address dst, void* dummy);
 828 
 829   void encode_heap_oop(Register d, Register s);
 830   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 831   void decode_heap_oop(Register d, Register s);
 832   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 833   void encode_heap_oop_not_null(Register r);
 834   void decode_heap_oop_not_null(Register r);
 835   void encode_heap_oop_not_null(Register dst, Register src);
 836   void decode_heap_oop_not_null(Register dst, Register src);
 837 
 838   void set_narrow_oop(Register dst, jobject obj);
 839 
 840   void encode_klass_not_null(Register r);
 841   void decode_klass_not_null(Register r);
 842   void encode_klass_not_null(Register dst, Register src);
 843   void decode_klass_not_null(Register dst, Register src);
 844 
 845   void set_narrow_klass(Register dst, Klass* k);
 846 
 847   // if heap base register is used - reinit it with the correct value
 848   void reinit_heapbase();
 849 
 850   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 851 
 852   void push_CPU_state(bool save_vectors = false);
 853   void pop_CPU_state(bool restore_vectors = false) ;
 854 
 855   // Round up to a power of two
 856   void round_to(Register reg, int modulus);
 857 
 858   // allocation
 859   void eden_allocate(
 860     Register obj,                      // result: pointer to object after successful allocation
 861     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 862     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 863     Register t1,                       // temp register
 864     Label&   slow_case                 // continuation point if fast allocation fails
 865   );
 866   void tlab_allocate(
 867     Register obj,                      // result: pointer to object after successful allocation
 868     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 869     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 870     Register t1,                       // temp register
 871     Register t2,                       // temp register
 872     Label&   slow_case                 // continuation point if fast allocation fails
 873   );
 874   void zero_memory(Register addr, Register len, Register t1);
 875   void verify_tlab();
 876 
 877   // interface method calling
 878   void lookup_interface_method(Register recv_klass,
 879                                Register intf_klass,
 880                                RegisterOrConstant itable_index,
 881                                Register method_result,
 882                                Register scan_temp,
 883                                Label& no_such_interface,
 884                    bool return_method = true);
 885 
 886   // virtual method calling
 887   // n.b. x86 allows RegisterOrConstant for vtable_index
 888   void lookup_virtual_method(Register recv_klass,
 889                              RegisterOrConstant vtable_index,
 890                              Register method_result);
 891 
 892   // Test sub_klass against super_klass, with fast and slow paths.
 893 
 894   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 895   // One of the three labels can be NULL, meaning take the fall-through.
 896   // If super_check_offset is -1, the value is loaded up from super_klass.
 897   // No registers are killed, except temp_reg.
 898   void check_klass_subtype_fast_path(Register sub_klass,
 899                                      Register super_klass,
 900                                      Register temp_reg,
 901                                      Label* L_success,
 902                                      Label* L_failure,
 903                                      Label* L_slow_path,
 904                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 905 
 906   // The rest of the type check; must be wired to a corresponding fast path.
 907   // It does not repeat the fast path logic, so don't use it standalone.
 908   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 909   // Updates the sub's secondary super cache as necessary.
 910   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 911   void check_klass_subtype_slow_path(Register sub_klass,
 912                                      Register super_klass,
 913                                      Register temp_reg,
 914                                      Register temp2_reg,
 915                                      Label* L_success,
 916                                      Label* L_failure,
 917                                      bool set_cond_codes = false);
 918 
 919   // Simplified, combined version, good for typical uses.
 920   // Falls through on failure.
 921   void check_klass_subtype(Register sub_klass,
 922                            Register super_klass,
 923                            Register temp_reg,
 924                            Label& L_success);
 925 
 926   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 927 
 928 
 929   // Debugging
 930 
 931   // only if +VerifyOops
 932   void verify_oop(Register reg, const char* s = "broken oop");
 933   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 934 
 935 // TODO: verify method and klass metadata (compare against vptr?)
 936   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 937   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 938 
 939 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 940 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 941 
 942   // only if +VerifyFPU
 943   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 944 
 945   // prints msg, dumps registers and stops execution
 946   void stop(const char* msg);
 947 
 948   // prints msg and continues
 949   void warn(const char* msg);
 950 
 951   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 952 
 953   void untested()                                { stop("untested"); }
 954 
 955   void unimplemented(const char* what = "");
 956 
 957   void should_not_reach_here()                   { stop("should not reach here"); }
 958 
 959   // Stack overflow checking
 960   void bang_stack_with_offset(int offset) {
 961     // stack grows down, caller passes positive offset
 962     assert(offset > 0, "must bang with negative offset");
 963     sub(rscratch2, sp, offset);
 964     str(zr, Address(rscratch2));
 965   }
 966 
 967   // Writes to stack successive pages until offset reached to check for
 968   // stack overflow + shadow pages.  Also, clobbers tmp
 969   void bang_stack_size(Register size, Register tmp);
 970 
 971   // Check for reserved stack access in method being exited (for JIT)
 972   void reserved_stack_check();
 973 
 974   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 975                                                 Register tmp,
 976                                                 int offset);
 977 
 978   // Support for serializing memory accesses between threads
 979   void serialize_memory(Register thread, Register tmp);
 980 
 981   // Arithmetics
 982 
 983   void addptr(const Address &dst, int32_t src);
 984   void cmpptr(Register src1, Address src2);
 985 
 986   void cmpoop(Register obj1, Register obj2);
 987 
 988   // Various forms of CAS
 989 
 990   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
 991                           Label &suceed, Label *fail);
 992   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 993                   Label &suceed, Label *fail);
 994 
 995   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 996                   Label &suceed, Label *fail);
 997 
 998   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 999   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1000   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1001   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1002 
1003   void atomic_xchg(Register prev, Register newv, Register addr);
1004   void atomic_xchgw(Register prev, Register newv, Register addr);
1005   void atomic_xchgal(Register prev, Register newv, Register addr);
1006   void atomic_xchgalw(Register prev, Register newv, Register addr);
1007 
1008   void orptr(Address adr, RegisterOrConstant src) {
1009     ldr(rscratch1, adr);
1010     if (src.is_register())
1011       orr(rscratch1, rscratch1, src.as_register());
1012     else
1013       orr(rscratch1, rscratch1, src.as_constant());
1014     str(rscratch1, adr);
1015   }
1016 
1017   // A generic CAS; success or failure is in the EQ flag.
1018   // Clobbers rscratch1
1019   void cmpxchg(Register addr, Register expected, Register new_val,
1020                enum operand_size size,
1021                bool acquire, bool release, bool weak,
1022                Register result);
1023 
1024   // Calls
1025 
1026   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1027 
1028   static bool far_branches() {
1029     return ReservedCodeCacheSize > branch_range || UseAOT;
1030   }
1031 
1032   // Jumps that can reach anywhere in the code cache.
1033   // Trashes tmp.
1034   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1035   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1036 
1037   static int far_branch_size() {
1038     if (far_branches()) {
1039       return 3 * 4;  // adrp, add, br
1040     } else {
1041       return 4;
1042     }
1043   }
1044 
1045   // Emit the CompiledIC call idiom
1046   address ic_call(address entry, jint method_index = 0);
1047 
1048 public:
1049 
1050   // Data
1051 
1052   void mov_metadata(Register dst, Metadata* obj);
1053   Address allocate_metadata_address(Metadata* obj);
1054   Address constant_oop_address(jobject obj);
1055 
1056   void movoop(Register dst, jobject obj, bool immediate = false);
1057 
1058   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1059   void kernel_crc32(Register crc, Register buf, Register len,
1060         Register table0, Register table1, Register table2, Register table3,
1061         Register tmp, Register tmp2, Register tmp3);
1062   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1063   void kernel_crc32c(Register crc, Register buf, Register len,
1064         Register table0, Register table1, Register table2, Register table3,
1065         Register tmp, Register tmp2, Register tmp3);
1066 
1067   // Stack push and pop individual 64 bit registers
1068   void push(Register src);
1069   void pop(Register dst);
1070 
1071   // push all registers onto the stack
1072   void pusha();
1073   void popa();
1074 
1075   void repne_scan(Register addr, Register value, Register count,
1076                   Register scratch);
1077   void repne_scanw(Register addr, Register value, Register count,
1078                    Register scratch);
1079 
1080   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1081   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1082 
1083   // If a constant does not fit in an immediate field, generate some
1084   // number of MOV instructions and then perform the operation
1085   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1086                              add_sub_imm_insn insn1,
1087                              add_sub_reg_insn insn2);
1088   // Seperate vsn which sets the flags
1089   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1090                              add_sub_imm_insn insn1,
1091                              add_sub_reg_insn insn2);
1092 
1093 #define WRAP(INSN)                                                      \
1094   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1095     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1096   }                                                                     \
1097                                                                         \
1098   void INSN(Register Rd, Register Rn, Register Rm,                      \
1099              enum shift_kind kind, unsigned shift = 0) {                \
1100     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1101   }                                                                     \
1102                                                                         \
1103   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1104     Assembler::INSN(Rd, Rn, Rm);                                        \
1105   }                                                                     \
1106                                                                         \
1107   void INSN(Register Rd, Register Rn, Register Rm,                      \
1108            ext::operation option, int amount = 0) {                     \
1109     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1110   }
1111 
1112   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1113 
1114 #undef WRAP
1115 #define WRAP(INSN)                                                      \
1116   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1117     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1118   }                                                                     \
1119                                                                         \
1120   void INSN(Register Rd, Register Rn, Register Rm,                      \
1121              enum shift_kind kind, unsigned shift = 0) {                \
1122     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1123   }                                                                     \
1124                                                                         \
1125   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1126     Assembler::INSN(Rd, Rn, Rm);                                        \
1127   }                                                                     \
1128                                                                         \
1129   void INSN(Register Rd, Register Rn, Register Rm,                      \
1130            ext::operation option, int amount = 0) {                     \
1131     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1132   }
1133 
1134   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1135 
1136   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1137   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1138   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1139   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1140 
1141   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1142 
1143   void tableswitch(Register index, jint lowbound, jint highbound,
1144                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1145     adr(rscratch1, jumptable);
1146     subsw(rscratch2, index, lowbound);
1147     subsw(zr, rscratch2, highbound - lowbound);
1148     br(Assembler::HS, jumptable_end);
1149     add(rscratch1, rscratch1, rscratch2,
1150         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1151     br(rscratch1);
1152   }
1153 
1154   // Form an address from base + offset in Rd.  Rd may or may not
1155   // actually be used: you must use the Address that is returned.  It
1156   // is up to you to ensure that the shift provided matches the size
1157   // of your data.
1158   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1159 
1160   // Return true iff an address is within the 48-bit AArch64 address
1161   // space.
1162   bool is_valid_AArch64_address(address a) {
1163     return ((uint64_t)a >> 48) == 0;
1164   }
1165 
1166   // Load the base of the cardtable byte map into reg.
1167   void load_byte_map_base(Register reg);
1168 
1169   // Prolog generator routines to support switch between x86 code and
1170   // generated ARM code
1171 
1172   // routine to generate an x86 prolog for a stub function which
1173   // bootstraps into the generated ARM code which directly follows the
1174   // stub
1175   //
1176 
1177   public:
1178   // enum used for aarch64--x86 linkage to define return type of x86 function
1179   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1180 
1181 #ifdef BUILTIN_SIM
1182   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1183 #else
1184   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1185 #endif
1186 
1187   // special version of call_VM_leaf_base needed for aarch64 simulator
1188   // where we need to specify both the gp and fp arg counts and the
1189   // return type so that the linkage routine from aarch64 to x86 and
1190   // back knows which aarch64 registers to copy to x86 registers and
1191   // which x86 result register to copy back to an aarch64 register
1192 
1193   void call_VM_leaf_base1(
1194     address  entry_point,             // the entry point
1195     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1196     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1197     ret_type type,                    // the return type for the call
1198     Label*   retaddr = NULL
1199   );
1200 
1201   void ldr_constant(Register dest, const Address &const_addr) {
1202     if (NearCpool) {
1203       ldr(dest, const_addr);
1204     } else {
1205       unsigned long offset;
1206       adrp(dest, InternalAddress(const_addr.target()), offset);
1207       ldr(dest, Address(dest, offset));
1208     }
1209   }
1210 
1211   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1212   address read_polling_page(Register r, relocInfo::relocType rtype);
1213   void get_polling_page(Register dest, address page, relocInfo::relocType rtype);
1214 
1215   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1216   void update_byte_crc32(Register crc, Register val, Register table);
1217   void update_word_crc32(Register crc, Register v, Register tmp,
1218         Register table0, Register table1, Register table2, Register table3,
1219         bool upper = false);
1220 
1221   void string_compare(Register str1, Register str2,
1222                       Register cnt1, Register cnt2, Register result,
1223                       Register tmp1, Register tmp2, FloatRegister vtmp1,
1224                       FloatRegister vtmp2, FloatRegister vtmp3, int ae);
1225 
1226   void has_negatives(Register ary1, Register len, Register result);
1227 
1228   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1229                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1230 
1231   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1232                      int elem_size);
1233 
1234   void fill_words(Register base, Register cnt, Register value);
1235   void zero_words(Register base, u_int64_t cnt);
1236   void zero_words(Register ptr, Register cnt);
1237   void zero_dcache_blocks(Register base, Register cnt);
1238 
1239   static const int zero_words_block_size;
1240 
1241   void byte_array_inflate(Register src, Register dst, Register len,
1242                           FloatRegister vtmp1, FloatRegister vtmp2,
1243                           FloatRegister vtmp3, Register tmp4);
1244 
1245   void char_array_compress(Register src, Register dst, Register len,
1246                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1247                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1248                            Register result);
1249 
1250   void encode_iso_array(Register src, Register dst,
1251                         Register len, Register result,
1252                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1253                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1254   void string_indexof(Register str1, Register str2,
1255                       Register cnt1, Register cnt2,
1256                       Register tmp1, Register tmp2,
1257                       Register tmp3, Register tmp4,
1258                       Register tmp5, Register tmp6,
1259                       int int_cnt1, Register result, int ae);
1260   void string_indexof_char(Register str1, Register cnt1,
1261                            Register ch, Register result,
1262                            Register tmp1, Register tmp2, Register tmp3);
1263   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1264                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1265                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1266                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1267                 Register tmp3, Register tmp4, Register tmp5);
1268   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1269       address pio2, address dsin_coef, address dcos_coef);
1270  private:
1271   // begin trigonometric functions support block
1272   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1273   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1274   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1275   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1276   // end trigonometric functions support block
1277   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1278                        Register src1, Register src2);
1279   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1280     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1281   }
1282   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1283                              Register y, Register y_idx, Register z,
1284                              Register carry, Register product,
1285                              Register idx, Register kdx);
1286   void multiply_128_x_128_loop(Register y, Register z,
1287                                Register carry, Register carry2,
1288                                Register idx, Register jdx,
1289                                Register yz_idx1, Register yz_idx2,
1290                                Register tmp, Register tmp3, Register tmp4,
1291                                Register tmp7, Register product_hi);
1292   void kernel_crc32_using_crc32(Register crc, Register buf,
1293         Register len, Register tmp0, Register tmp1, Register tmp2,
1294         Register tmp3);
1295   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1296         Register len, Register tmp0, Register tmp1, Register tmp2,
1297         Register tmp3);
1298 public:
1299   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1300                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1301                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1302   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1303   // ISB may be needed because of a safepoint
1304   void maybe_isb() { isb(); }
1305 
1306 private:
1307   // Return the effective address r + (r1 << ext) + offset.
1308   // Uses rscratch2.
1309   Address offsetted_address(Register r, Register r1, Address::extend ext,
1310                             int offset, int size);
1311 
1312 private:
1313   // Returns an address on the stack which is reachable with a ldr/str of size
1314   // Uses rscratch2 if the address is not directly reachable
1315   Address spill_address(int size, int offset, Register tmp=rscratch2);
1316 
1317   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1318 
1319   // Check whether two loads/stores can be merged into ldp/stp.
1320   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1321 
1322   // Merge current load/store with previous load/store into ldp/stp.
1323   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1324 
1325   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1326   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1327 
1328 public:
1329   void spill(Register Rx, bool is64, int offset) {
1330     if (is64) {
1331       str(Rx, spill_address(8, offset));
1332     } else {
1333       strw(Rx, spill_address(4, offset));
1334     }
1335   }
1336   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1337     str(Vx, T, spill_address(1 << (int)T, offset));
1338   }
1339   void unspill(Register Rx, bool is64, int offset) {
1340     if (is64) {
1341       ldr(Rx, spill_address(8, offset));
1342     } else {
1343       ldrw(Rx, spill_address(4, offset));
1344     }
1345   }
1346   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1347     ldr(Vx, T, spill_address(1 << (int)T, offset));
1348   }
1349   void spill_copy128(int src_offset, int dst_offset,
1350                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1351     if (src_offset < 512 && (src_offset & 7) == 0 &&
1352         dst_offset < 512 && (dst_offset & 7) == 0) {
1353       ldp(tmp1, tmp2, Address(sp, src_offset));
1354       stp(tmp1, tmp2, Address(sp, dst_offset));
1355     } else {
1356       unspill(tmp1, true, src_offset);
1357       spill(tmp1, true, dst_offset);
1358       unspill(tmp1, true, src_offset+8);
1359       spill(tmp1, true, dst_offset+8);
1360     }
1361   }
1362 };
1363 
1364 #ifdef ASSERT
1365 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1366 #endif
1367 
1368 /**
1369  * class SkipIfEqual:
1370  *
1371  * Instantiating this class will result in assembly code being output that will
1372  * jump around any code emitted between the creation of the instance and it's
1373  * automatic destruction at the end of a scope block, depending on the value of
1374  * the flag passed to the constructor, which will be checked at run-time.
1375  */
1376 class SkipIfEqual {
1377  private:
1378   MacroAssembler* _masm;
1379   Label _label;
1380 
1381  public:
1382    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1383    ~SkipIfEqual();
1384 };
1385 
1386 struct tableswitch {
1387   Register _reg;
1388   int _insn_index; jint _first_key; jint _last_key;
1389   Label _after;
1390   Label _branches;
1391 };
1392 
1393 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP