1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/narrowptrnode.hpp"
  39 #include "opto/mulnode.hpp"
  40 #include "opto/phaseX.hpp"
  41 #include "opto/regmask.hpp"
  42 #include "opto/runtime.hpp"
  43 #include "opto/subnode.hpp"
  44 #include "utilities/vmError.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 //=============================================================================
  51 //------------------------------Value------------------------------------------
  52 // Compute the type of the RegionNode.
  53 const Type* RegionNode::Value(PhaseGVN* phase) const {
  54   for( uint i=1; i<req(); ++i ) {       // For all paths in
  55     Node *n = in(i);            // Get Control source
  56     if( !n ) continue;          // Missing inputs are TOP
  57     if( phase->type(n) == Type::CONTROL )
  58       return Type::CONTROL;
  59   }
  60   return Type::TOP;             // All paths dead?  Then so are we
  61 }
  62 
  63 //------------------------------Identity---------------------------------------
  64 // Check for Region being Identity.
  65 Node* RegionNode::Identity(PhaseGVN* phase) {
  66   // Cannot have Region be an identity, even if it has only 1 input.
  67   // Phi users cannot have their Region input folded away for them,
  68   // since they need to select the proper data input
  69   return this;
  70 }
  71 
  72 //------------------------------merge_region-----------------------------------
  73 // If a Region flows into a Region, merge into one big happy merge.  This is
  74 // hard to do if there is stuff that has to happen
  75 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  76   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  77     return NULL;
  78   Node *progress = NULL;        // Progress flag
  79   PhaseIterGVN *igvn = phase->is_IterGVN();
  80 
  81   uint rreq = region->req();
  82   for( uint i = 1; i < rreq; i++ ) {
  83     Node *r = region->in(i);
  84     if( r && r->Opcode() == Op_Region && // Found a region?
  85         r->in(0) == r &&        // Not already collapsed?
  86         r != region &&          // Avoid stupid situations
  87         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  88       assert(!r->as_Region()->has_phi(), "no phi users");
  89       if( !progress ) {         // No progress
  90         if (region->has_phi()) {
  91           return NULL;        // Only flatten if no Phi users
  92           // igvn->hash_delete( phi );
  93         }
  94         igvn->hash_delete( region );
  95         progress = region;      // Making progress
  96       }
  97       igvn->hash_delete( r );
  98 
  99       // Append inputs to 'r' onto 'region'
 100       for( uint j = 1; j < r->req(); j++ ) {
 101         // Move an input from 'r' to 'region'
 102         region->add_req(r->in(j));
 103         r->set_req(j, phase->C->top());
 104         // Update phis of 'region'
 105         //for( uint k = 0; k < max; k++ ) {
 106         //  Node *phi = region->out(k);
 107         //  if( phi->is_Phi() ) {
 108         //    phi->add_req(phi->in(i));
 109         //  }
 110         //}
 111 
 112         rreq++;                 // One more input to Region
 113       } // Found a region to merge into Region
 114       igvn->_worklist.push(r);
 115       // Clobber pointer to the now dead 'r'
 116       region->set_req(i, phase->C->top());
 117     }
 118   }
 119 
 120   return progress;
 121 }
 122 
 123 
 124 
 125 //--------------------------------has_phi--------------------------------------
 126 // Helper function: Return any PhiNode that uses this region or NULL
 127 PhiNode* RegionNode::has_phi() const {
 128   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 129     Node* phi = fast_out(i);
 130     if (phi->is_Phi()) {   // Check for Phi users
 131       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 132       return phi->as_Phi();  // this one is good enough
 133     }
 134   }
 135 
 136   return NULL;
 137 }
 138 
 139 
 140 //-----------------------------has_unique_phi----------------------------------
 141 // Helper function: Return the only PhiNode that uses this region or NULL
 142 PhiNode* RegionNode::has_unique_phi() const {
 143   // Check that only one use is a Phi
 144   PhiNode* only_phi = NULL;
 145   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 146     Node* phi = fast_out(i);
 147     if (phi->is_Phi()) {   // Check for Phi users
 148       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 149       if (only_phi == NULL) {
 150         only_phi = phi->as_Phi();
 151       } else {
 152         return NULL;  // multiple phis
 153       }
 154     }
 155   }
 156 
 157   return only_phi;
 158 }
 159 
 160 
 161 //------------------------------check_phi_clipping-----------------------------
 162 // Helper function for RegionNode's identification of FP clipping
 163 // Check inputs to the Phi
 164 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 165   min     = NULL;
 166   max     = NULL;
 167   val     = NULL;
 168   min_idx = 0;
 169   max_idx = 0;
 170   val_idx = 0;
 171   uint  phi_max = phi->req();
 172   if( phi_max == 4 ) {
 173     for( uint j = 1; j < phi_max; ++j ) {
 174       Node *n = phi->in(j);
 175       int opcode = n->Opcode();
 176       switch( opcode ) {
 177       case Op_ConI:
 178         {
 179           if( min == NULL ) {
 180             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 181             min_idx = j;
 182           } else {
 183             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 184             max_idx = j;
 185             if( min->get_int() > max->get_int() ) {
 186               // Swap min and max
 187               ConNode *temp;
 188               uint     temp_idx;
 189               temp     = min;     min     = max;     max     = temp;
 190               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 191             }
 192           }
 193         }
 194         break;
 195       default:
 196         {
 197           val = n;
 198           val_idx = j;
 199         }
 200         break;
 201       }
 202     }
 203   }
 204   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 205 }
 206 
 207 
 208 //------------------------------check_if_clipping------------------------------
 209 // Helper function for RegionNode's identification of FP clipping
 210 // Check that inputs to Region come from two IfNodes,
 211 //
 212 //            If
 213 //      False    True
 214 //       If        |
 215 //  False  True    |
 216 //    |      |     |
 217 //  RegionNode_inputs
 218 //
 219 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 220   top_if = NULL;
 221   bot_if = NULL;
 222 
 223   // Check control structure above RegionNode for (if  ( if  ) )
 224   Node *in1 = region->in(1);
 225   Node *in2 = region->in(2);
 226   Node *in3 = region->in(3);
 227   // Check that all inputs are projections
 228   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 229     Node *in10 = in1->in(0);
 230     Node *in20 = in2->in(0);
 231     Node *in30 = in3->in(0);
 232     // Check that #1 and #2 are ifTrue and ifFalse from same If
 233     if( in10 != NULL && in10->is_If() &&
 234         in20 != NULL && in20->is_If() &&
 235         in30 != NULL && in30->is_If() && in10 == in20 &&
 236         (in1->Opcode() != in2->Opcode()) ) {
 237       Node  *in100 = in10->in(0);
 238       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 239       // Check that control for in10 comes from other branch of IF from in3
 240       if( in1000 != NULL && in1000->is_If() &&
 241           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 242         // Control pattern checks
 243         top_if = (IfNode*)in1000;
 244         bot_if = (IfNode*)in10;
 245       }
 246     }
 247   }
 248 
 249   return (top_if != NULL);
 250 }
 251 
 252 
 253 //------------------------------check_convf2i_clipping-------------------------
 254 // Helper function for RegionNode's identification of FP clipping
 255 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 256 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 257   convf2i = NULL;
 258 
 259   // Check for the RShiftNode
 260   Node *rshift = phi->in(idx);
 261   assert( rshift, "Previous checks ensure phi input is present");
 262   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 263 
 264   // Check for the LShiftNode
 265   Node *lshift = rshift->in(1);
 266   assert( lshift, "Previous checks ensure phi input is present");
 267   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 268 
 269   // Check for the ConvF2INode
 270   Node *conv = lshift->in(1);
 271   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 272 
 273   // Check that shift amounts are only to get sign bits set after F2I
 274   jint max_cutoff     = max->get_int();
 275   jint min_cutoff     = min->get_int();
 276   jint left_shift     = lshift->in(2)->get_int();
 277   jint right_shift    = rshift->in(2)->get_int();
 278   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 279   if( left_shift != right_shift ||
 280       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 281       max_post_shift < max_cutoff ||
 282       max_post_shift < -min_cutoff ) {
 283     // Shifts are necessary but current transformation eliminates them
 284     return false;
 285   }
 286 
 287   // OK to return the result of ConvF2I without shifting
 288   convf2i = (ConvF2INode*)conv;
 289   return true;
 290 }
 291 
 292 
 293 //------------------------------check_compare_clipping-------------------------
 294 // Helper function for RegionNode's identification of FP clipping
 295 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 296   Node *i1 = iff->in(1);
 297   if ( !i1->is_Bool() ) { return false; }
 298   BoolNode *bool1 = i1->as_Bool();
 299   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 300   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 301   const Node *cmpF = bool1->in(1);
 302   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 303   // Test that the float value being compared against
 304   // is equivalent to the int value used as a limit
 305   Node *nodef = cmpF->in(2);
 306   if( nodef->Opcode() != Op_ConF ) { return false; }
 307   jfloat conf = nodef->getf();
 308   jint   coni = limit->get_int();
 309   if( ((int)conf) != coni )        { return false; }
 310   input = cmpF->in(1);
 311   return true;
 312 }
 313 
 314 //------------------------------is_unreachable_region--------------------------
 315 // Find if the Region node is reachable from the root.
 316 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 317   assert(req() == 2, "");
 318 
 319   // First, cut the simple case of fallthrough region when NONE of
 320   // region's phis references itself directly or through a data node.
 321   uint max = outcnt();
 322   uint i;
 323   for (i = 0; i < max; i++) {
 324     Node* phi = raw_out(i);
 325     if (phi != NULL && phi->is_Phi()) {
 326       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 327       if (phi->outcnt() == 0)
 328         continue; // Safe case - no loops
 329       if (phi->outcnt() == 1) {
 330         Node* u = phi->raw_out(0);
 331         // Skip if only one use is an other Phi or Call or Uncommon trap.
 332         // It is safe to consider this case as fallthrough.
 333         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 334           continue;
 335       }
 336       // Check when phi references itself directly or through an other node.
 337       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 338         break; // Found possible unsafe data loop.
 339     }
 340   }
 341   if (i >= max)
 342     return false; // An unsafe case was NOT found - don't need graph walk.
 343 
 344   // Unsafe case - check if the Region node is reachable from root.
 345   ResourceMark rm;
 346 
 347   Arena *a = Thread::current()->resource_area();
 348   Node_List nstack(a);
 349   VectorSet visited(a);
 350 
 351   // Mark all control nodes reachable from root outputs
 352   Node *n = (Node*)phase->C->root();
 353   nstack.push(n);
 354   visited.set(n->_idx);
 355   while (nstack.size() != 0) {
 356     n = nstack.pop();
 357     uint max = n->outcnt();
 358     for (uint i = 0; i < max; i++) {
 359       Node* m = n->raw_out(i);
 360       if (m != NULL && m->is_CFG()) {
 361         if (phase->eqv(m, this)) {
 362           return false; // We reached the Region node - it is not dead.
 363         }
 364         if (!visited.test_set(m->_idx))
 365           nstack.push(m);
 366       }
 367     }
 368   }
 369 
 370   return true; // The Region node is unreachable - it is dead.
 371 }
 372 
 373 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
 374   // Incremental inlining + PhaseStringOpts sometimes produce:
 375   //
 376   // cmpP with 1 top input
 377   //           |
 378   //          If
 379   //         /  \
 380   //   IfFalse  IfTrue  /- Some Node
 381   //         \  /      /    /
 382   //        Region    / /-MergeMem
 383   //             \---Phi
 384   //
 385   //
 386   // It's expected by PhaseStringOpts that the Region goes away and is
 387   // replaced by If's control input but because there's still a Phi,
 388   // the Region stays in the graph. The top input from the cmpP is
 389   // propagated forward and a subgraph that is useful goes away. The
 390   // code below replaces the Phi with the MergeMem so that the Region
 391   // is simplified.
 392 
 393   PhiNode* phi = has_unique_phi();
 394   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
 395     MergeMemNode* m = NULL;
 396     assert(phi->req() == 3, "same as region");
 397     for (uint i = 1; i < 3; ++i) {
 398       Node *mem = phi->in(i);
 399       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
 400         // Nothing is control-dependent on path #i except the region itself.
 401         m = mem->as_MergeMem();
 402         uint j = 3 - i;
 403         Node* other = phi->in(j);
 404         if (other && other == m->base_memory()) {
 405           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
 406           // This will allow the diamond to collapse completely.
 407           phase->is_IterGVN()->replace_node(phi, m);
 408           return true;
 409         }
 410       }
 411     }
 412   }
 413   return false;
 414 }
 415 
 416 //------------------------------Ideal------------------------------------------
 417 // Return a node which is more "ideal" than the current node.  Must preserve
 418 // the CFG, but we can still strip out dead paths.
 419 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 420   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 421   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 422 
 423   // Check for RegionNode with no Phi users and both inputs come from either
 424   // arm of the same IF.  If found, then the control-flow split is useless.
 425   bool has_phis = false;
 426   if (can_reshape) {            // Need DU info to check for Phi users
 427     has_phis = (has_phi() != NULL);       // Cache result
 428     if (has_phis && try_clean_mem_phi(phase)) {
 429       has_phis = false;
 430     }
 431 
 432     if (!has_phis) {            // No Phi users?  Nothing merging?
 433       for (uint i = 1; i < req()-1; i++) {
 434         Node *if1 = in(i);
 435         if( !if1 ) continue;
 436         Node *iff = if1->in(0);
 437         if( !iff || !iff->is_If() ) continue;
 438         for( uint j=i+1; j<req(); j++ ) {
 439           if( in(j) && in(j)->in(0) == iff &&
 440               if1->Opcode() != in(j)->Opcode() ) {
 441             // Add the IF Projections to the worklist. They (and the IF itself)
 442             // will be eliminated if dead.
 443             phase->is_IterGVN()->add_users_to_worklist(iff);
 444             set_req(i, iff->in(0));// Skip around the useless IF diamond
 445             set_req(j, NULL);
 446             return this;      // Record progress
 447           }
 448         }
 449       }
 450     }
 451   }
 452 
 453   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 454   // degrades to a copy.
 455   bool add_to_worklist = false;
 456   bool modified = false;
 457   int cnt = 0;                  // Count of values merging
 458   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 459   int del_it = 0;               // The last input path we delete
 460   // For all inputs...
 461   for( uint i=1; i<req(); ++i ){// For all paths in
 462     Node *n = in(i);            // Get the input
 463     if( n != NULL ) {
 464       // Remove useless control copy inputs
 465       if( n->is_Region() && n->as_Region()->is_copy() ) {
 466         set_req(i, n->nonnull_req());
 467         modified = true;
 468         i--;
 469         continue;
 470       }
 471       if( n->is_Proj() ) {      // Remove useless rethrows
 472         Node *call = n->in(0);
 473         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 474           set_req(i, call->in(0));
 475           modified = true;
 476           i--;
 477           continue;
 478         }
 479       }
 480       if( phase->type(n) == Type::TOP ) {
 481         set_req(i, NULL);       // Ignore TOP inputs
 482         modified = true;
 483         i--;
 484         continue;
 485       }
 486       cnt++;                    // One more value merging
 487 
 488     } else if (can_reshape) {   // Else found dead path with DU info
 489       PhaseIterGVN *igvn = phase->is_IterGVN();
 490       del_req(i);               // Yank path from self
 491       del_it = i;
 492       uint max = outcnt();
 493       DUIterator j;
 494       bool progress = true;
 495       while(progress) {         // Need to establish property over all users
 496         progress = false;
 497         for (j = outs(); has_out(j); j++) {
 498           Node *n = out(j);
 499           if( n->req() != req() && n->is_Phi() ) {
 500             assert( n->in(0) == this, "" );
 501             igvn->hash_delete(n); // Yank from hash before hacking edges
 502             n->set_req_X(i,NULL,igvn);// Correct DU info
 503             n->del_req(i);        // Yank path from Phis
 504             if( max != outcnt() ) {
 505               progress = true;
 506               j = refresh_out_pos(j);
 507               max = outcnt();
 508             }
 509           }
 510         }
 511       }
 512       add_to_worklist = true;
 513       i--;
 514     }
 515   }
 516 
 517   if (can_reshape && cnt == 1) {
 518     // Is it dead loop?
 519     // If it is LoopNopde it had 2 (+1 itself) inputs and
 520     // one of them was cut. The loop is dead if it was EntryContol.
 521     // Loop node may have only one input because entry path
 522     // is removed in PhaseIdealLoop::Dominators().
 523     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 524     if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
 525                              (del_it == 0 && is_unreachable_region(phase)))) ||
 526         (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
 527       // Yes,  the region will be removed during the next step below.
 528       // Cut the backedge input and remove phis since no data paths left.
 529       // We don't cut outputs to other nodes here since we need to put them
 530       // on the worklist.
 531       PhaseIterGVN *igvn = phase->is_IterGVN();
 532       if (in(1)->outcnt() == 1) {
 533         igvn->_worklist.push(in(1));
 534       }
 535       del_req(1);
 536       cnt = 0;
 537       assert( req() == 1, "no more inputs expected" );
 538       uint max = outcnt();
 539       bool progress = true;
 540       Node *top = phase->C->top();
 541       DUIterator j;
 542       while(progress) {
 543         progress = false;
 544         for (j = outs(); has_out(j); j++) {
 545           Node *n = out(j);
 546           if( n->is_Phi() ) {
 547             assert( igvn->eqv(n->in(0), this), "" );
 548             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 549             // Break dead loop data path.
 550             // Eagerly replace phis with top to avoid phis copies generation.
 551             igvn->replace_node(n, top);
 552             if( max != outcnt() ) {
 553               progress = true;
 554               j = refresh_out_pos(j);
 555               max = outcnt();
 556             }
 557           }
 558         }
 559       }
 560       add_to_worklist = true;
 561     }
 562   }
 563   if (add_to_worklist) {
 564     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 565   }
 566 
 567   if( cnt <= 1 ) {              // Only 1 path in?
 568     set_req(0, NULL);           // Null control input for region copy
 569     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 570       // No inputs or all inputs are NULL.
 571       return NULL;
 572     } else if (can_reshape) {   // Optimization phase - remove the node
 573       PhaseIterGVN *igvn = phase->is_IterGVN();
 574       // Strip mined (inner) loop is going away, remove outer loop.
 575       if (is_CountedLoop() &&
 576           as_Loop()->is_strip_mined()) {
 577         Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
 578         Node* outer_out = as_CountedLoop()->outer_loop_exit();
 579         if (outer_sfpt != NULL && outer_out != NULL) {
 580           Node* in = outer_sfpt->in(0);
 581           igvn->replace_node(outer_out, in);
 582           LoopNode* outer = as_CountedLoop()->outer_loop();
 583           igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
 584         }
 585       }
 586       Node *parent_ctrl;
 587       if( cnt == 0 ) {
 588         assert( req() == 1, "no inputs expected" );
 589         // During IGVN phase such region will be subsumed by TOP node
 590         // so region's phis will have TOP as control node.
 591         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 592         // Also set other user's input to top.
 593         parent_ctrl = phase->C->top();
 594       } else {
 595         // The fallthrough case since we already checked dead loops above.
 596         parent_ctrl = in(1);
 597         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 598         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 599       }
 600       if (!add_to_worklist)
 601         igvn->add_users_to_worklist(this); // Check for further allowed opts
 602       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 603         Node* n = last_out(i);
 604         igvn->hash_delete(n); // Remove from worklist before modifying edges
 605         if( n->is_Phi() ) {   // Collapse all Phis
 606           // Eagerly replace phis to avoid copies generation.
 607           Node* in;
 608           if( cnt == 0 ) {
 609             assert( n->req() == 1, "No data inputs expected" );
 610             in = parent_ctrl; // replaced by top
 611           } else {
 612             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 613             in = n->in(1);               // replaced by unique input
 614             if( n->as_Phi()->is_unsafe_data_reference(in) )
 615               in = phase->C->top();      // replaced by top
 616           }
 617           igvn->replace_node(n, in);
 618         }
 619         else if( n->is_Region() ) { // Update all incoming edges
 620           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 621           uint uses_found = 0;
 622           for( uint k=1; k < n->req(); k++ ) {
 623             if( n->in(k) == this ) {
 624               n->set_req(k, parent_ctrl);
 625               uses_found++;
 626             }
 627           }
 628           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 629             i -= (uses_found - 1);
 630           }
 631         }
 632         else {
 633           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 634           n->set_req(0, parent_ctrl);
 635         }
 636 #ifdef ASSERT
 637         for( uint k=0; k < n->req(); k++ ) {
 638           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 639         }
 640 #endif
 641       }
 642       // Remove the RegionNode itself from DefUse info
 643       igvn->remove_dead_node(this);
 644       return NULL;
 645     }
 646     return this;                // Record progress
 647   }
 648 
 649 
 650   // If a Region flows into a Region, merge into one big happy merge.
 651   if (can_reshape) {
 652     Node *m = merge_region(this, phase);
 653     if (m != NULL)  return m;
 654   }
 655 
 656   // Check if this region is the root of a clipping idiom on floats
 657   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 658     // Check that only one use is a Phi and that it simplifies to two constants +
 659     PhiNode* phi = has_unique_phi();
 660     if (phi != NULL) {          // One Phi user
 661       // Check inputs to the Phi
 662       ConNode *min;
 663       ConNode *max;
 664       Node    *val;
 665       uint     min_idx;
 666       uint     max_idx;
 667       uint     val_idx;
 668       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 669         IfNode *top_if;
 670         IfNode *bot_if;
 671         if( check_if_clipping( this, bot_if, top_if ) ) {
 672           // Control pattern checks, now verify compares
 673           Node   *top_in = NULL;   // value being compared against
 674           Node   *bot_in = NULL;
 675           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 676               check_compare_clipping( false, top_if, max, top_in ) ) {
 677             if( bot_in == top_in ) {
 678               PhaseIterGVN *gvn = phase->is_IterGVN();
 679               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 680               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 681 
 682               // Check for the ConvF2INode
 683               ConvF2INode *convf2i;
 684               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 685                 convf2i->in(1) == bot_in ) {
 686                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 687                 // max test
 688                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
 689                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
 690                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 691                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 692                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 693                 // min test
 694                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
 695                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
 696                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 697                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 698                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 699                 // update input edges to region node
 700                 set_req_X( min_idx, if_min, gvn );
 701                 set_req_X( max_idx, if_max, gvn );
 702                 set_req_X( val_idx, ifF,    gvn );
 703                 // remove unnecessary 'LShiftI; RShiftI' idiom
 704                 gvn->hash_delete(phi);
 705                 phi->set_req_X( val_idx, convf2i, gvn );
 706                 gvn->hash_find_insert(phi);
 707                 // Return transformed region node
 708                 return this;
 709               }
 710             }
 711           }
 712         }
 713       }
 714     }
 715   }
 716 
 717   if (can_reshape) {
 718     modified |= optimize_trichotomy(phase->is_IterGVN());
 719   }
 720 
 721   return modified ? this : NULL;
 722 }
 723 
 724 //------------------------------optimize_trichotomy--------------------------
 725 // Optimize nested comparisons of the following kind:
 726 //
 727 // int compare(int a, int b) {
 728 //   return (a < b) ? -1 : (a == b) ? 0 : 1;
 729 // }
 730 //
 731 // Shape 1:
 732 // if (compare(a, b) == 1) { ... } -> if (a > b) { ... }
 733 //
 734 // Shape 2:
 735 // if (compare(a, b) == 0) { ... } -> if (a == b) { ... }
 736 //
 737 // Above code leads to the following IR shapes where both Ifs compare the
 738 // same value and two out of three region inputs idx1 and idx2 map to
 739 // the same value and control flow.
 740 //
 741 // (1)   If                 (2)   If
 742 //      /  \                     /  \
 743 //   Proj  Proj               Proj  Proj
 744 //     |      \                |      \
 745 //     |       If              |      If                      If
 746 //     |      /  \             |     /  \                    /  \
 747 //     |   Proj  Proj          |  Proj  Proj      ==>     Proj  Proj
 748 //     |   /      /            \    |    /                  |    /
 749 //    Region     /              \   |   /                   |   /
 750 //         \    /                \  |  /                    |  /
 751 //         Region                Region                    Region
 752 //
 753 // The method returns true if 'this' is modified and false otherwise.
 754 bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) {
 755   int idx1 = 1, idx2 = 2;
 756   Node* region = NULL;
 757   if (req() == 3 && in(1) != NULL && in(2) != NULL) {
 758     // Shape 1: Check if one of the inputs is a region that merges two control
 759     // inputs and has no other users (especially no Phi users).
 760     region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region();
 761     if (region == NULL || region->outcnt() != 2 || region->req() != 3) {
 762       return false; // No suitable region input found
 763     }
 764   } else if (req() == 4) {
 765     // Shape 2: Check if two control inputs map to the same value of the unique phi
 766     // user and treat these as if they would come from another region (shape (1)).
 767     PhiNode* phi = has_unique_phi();
 768     if (phi == NULL) {
 769       return false; // No unique phi user
 770     }
 771     if (phi->in(idx1) != phi->in(idx2)) {
 772       idx2 = 3;
 773       if (phi->in(idx1) != phi->in(idx2)) {
 774         idx1 = 2;
 775         if (phi->in(idx1) != phi->in(idx2)) {
 776           return false; // No equal phi inputs found
 777         }
 778       }
 779     }
 780     assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value
 781     region = this;
 782   }
 783   if (region == NULL || region->in(idx1) == NULL || region->in(idx2) == NULL) {
 784     return false; // Region does not merge two control inputs
 785   }
 786   // At this point we know that region->in(idx1) and region->(idx2) map to the same
 787   // value and control flow. Now search for ifs that feed into these region inputs.
 788   ProjNode* proj1 = region->in(idx1)->isa_Proj();
 789   ProjNode* proj2 = region->in(idx2)->isa_Proj();
 790   if (proj1 == NULL || proj1->outcnt() != 1 ||
 791       proj2 == NULL || proj2->outcnt() != 1) {
 792     return false; // No projection inputs with region as unique user found
 793   }
 794   assert(proj1 != proj2, "should be different projections");
 795   IfNode* iff1 = proj1->in(0)->isa_If();
 796   IfNode* iff2 = proj2->in(0)->isa_If();
 797   if (iff1 == NULL || iff1->outcnt() != 2 ||
 798       iff2 == NULL || iff2->outcnt() != 2) {
 799     return false; // No ifs found
 800   }
 801   if (iff1 == iff2) {
 802     igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated
 803     igvn->replace_input_of(region, idx1, iff1->in(0));
 804     igvn->replace_input_of(region, idx2, igvn->C->top());
 805     return (region == this); // Remove useless if (both projections map to the same control/value)
 806   }
 807   BoolNode* bol1 = iff1->in(1)->isa_Bool();
 808   BoolNode* bol2 = iff2->in(1)->isa_Bool();
 809   if (bol1 == NULL || bol2 == NULL) {
 810     return false; // No bool inputs found
 811   }
 812   Node* cmp1 = bol1->in(1);
 813   Node* cmp2 = bol2->in(1);
 814   bool commute = false;
 815   if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) {
 816     return false; // No comparison
 817   } else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD ||
 818              cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD ||
 819              cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN ||
 820              cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN) {
 821     // Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests.
 822     return false;
 823   } else if (cmp1 != cmp2) {
 824     if (cmp1->in(1) == cmp2->in(2) &&
 825         cmp1->in(2) == cmp2->in(1)) {
 826       commute = true; // Same but swapped inputs, commute the test
 827     } else {
 828       return false; // Ifs are not comparing the same values
 829     }
 830   }
 831   proj1 = proj1->other_if_proj();
 832   proj2 = proj2->other_if_proj();
 833   if (!((proj1->unique_ctrl_out() == iff2 &&
 834          proj2->unique_ctrl_out() == this) ||
 835         (proj2->unique_ctrl_out() == iff1 &&
 836          proj1->unique_ctrl_out() == this))) {
 837     return false; // Ifs are not connected through other projs
 838   }
 839   // Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged
 840   // through 'region' and map to the same value. Merge the boolean tests and replace
 841   // the ifs by a single comparison.
 842   BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate();
 843   BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate();
 844   test1 = commute ? test1.commute() : test1;
 845   // After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine.
 846   BoolTest::mask res = test1.merge(test2);
 847   if (res == BoolTest::illegal) {
 848     return false; // Unable to merge tests
 849   }
 850   // Adjust iff1 to always pass (only iff2 will remain)
 851   igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con));
 852   if (res == BoolTest::never) {
 853     // Merged test is always false, adjust iff2 to always fail
 854     igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con));
 855   } else {
 856     // Replace bool input of iff2 with merged test
 857     BoolNode* new_bol = new BoolNode(bol2->in(1), res);
 858     igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn)));
 859   }
 860   return false;
 861 }
 862 
 863 const RegMask &RegionNode::out_RegMask() const {
 864   return RegMask::Empty;
 865 }
 866 
 867 // Find the one non-null required input.  RegionNode only
 868 Node *Node::nonnull_req() const {
 869   assert( is_Region(), "" );
 870   for( uint i = 1; i < _cnt; i++ )
 871     if( in(i) )
 872       return in(i);
 873   ShouldNotReachHere();
 874   return NULL;
 875 }
 876 
 877 
 878 //=============================================================================
 879 // note that these functions assume that the _adr_type field is flattened
 880 uint PhiNode::hash() const {
 881   const Type* at = _adr_type;
 882   return TypeNode::hash() + (at ? at->hash() : 0);
 883 }
 884 uint PhiNode::cmp( const Node &n ) const {
 885   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 886 }
 887 static inline
 888 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 889   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 890   return Compile::current()->alias_type(at)->adr_type();
 891 }
 892 
 893 //----------------------------make---------------------------------------------
 894 // create a new phi with edges matching r and set (initially) to x
 895 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 896   uint preds = r->req();   // Number of predecessor paths
 897   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 898   PhiNode* p = new PhiNode(r, t, at);
 899   for (uint j = 1; j < preds; j++) {
 900     // Fill in all inputs, except those which the region does not yet have
 901     if (r->in(j) != NULL)
 902       p->init_req(j, x);
 903   }
 904   return p;
 905 }
 906 PhiNode* PhiNode::make(Node* r, Node* x) {
 907   const Type*    t  = x->bottom_type();
 908   const TypePtr* at = NULL;
 909   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 910   return make(r, x, t, at);
 911 }
 912 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 913   const Type*    t  = x->bottom_type();
 914   const TypePtr* at = NULL;
 915   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 916   return new PhiNode(r, t, at);
 917 }
 918 
 919 
 920 //------------------------slice_memory-----------------------------------------
 921 // create a new phi with narrowed memory type
 922 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 923   PhiNode* mem = (PhiNode*) clone();
 924   *(const TypePtr**)&mem->_adr_type = adr_type;
 925   // convert self-loops, or else we get a bad graph
 926   for (uint i = 1; i < req(); i++) {
 927     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 928   }
 929   mem->verify_adr_type();
 930   return mem;
 931 }
 932 
 933 //------------------------split_out_instance-----------------------------------
 934 // Split out an instance type from a bottom phi.
 935 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 936   const TypeOopPtr *t_oop = at->isa_oopptr();
 937   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 938   const TypePtr *t = adr_type();
 939   assert(type() == Type::MEMORY &&
 940          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 941           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 942           t->is_oopptr()->cast_to_exactness(true)
 943            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 944            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 945          "bottom or raw memory required");
 946 
 947   // Check if an appropriate node already exists.
 948   Node *region = in(0);
 949   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 950     Node* use = region->fast_out(k);
 951     if( use->is_Phi()) {
 952       PhiNode *phi2 = use->as_Phi();
 953       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 954         return phi2;
 955       }
 956     }
 957   }
 958   Compile *C = igvn->C;
 959   Arena *a = Thread::current()->resource_area();
 960   Node_Array node_map = new Node_Array(a);
 961   Node_Stack stack(a, C->live_nodes() >> 4);
 962   PhiNode *nphi = slice_memory(at);
 963   igvn->register_new_node_with_optimizer( nphi );
 964   node_map.map(_idx, nphi);
 965   stack.push((Node *)this, 1);
 966   while(!stack.is_empty()) {
 967     PhiNode *ophi = stack.node()->as_Phi();
 968     uint i = stack.index();
 969     assert(i >= 1, "not control edge");
 970     stack.pop();
 971     nphi = node_map[ophi->_idx]->as_Phi();
 972     for (; i < ophi->req(); i++) {
 973       Node *in = ophi->in(i);
 974       if (in == NULL || igvn->type(in) == Type::TOP)
 975         continue;
 976       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
 977       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 978       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 979         opt = node_map[optphi->_idx];
 980         if (opt == NULL) {
 981           stack.push(ophi, i);
 982           nphi = optphi->slice_memory(at);
 983           igvn->register_new_node_with_optimizer( nphi );
 984           node_map.map(optphi->_idx, nphi);
 985           ophi = optphi;
 986           i = 0; // will get incremented at top of loop
 987           continue;
 988         }
 989       }
 990       nphi->set_req(i, opt);
 991     }
 992   }
 993   return nphi;
 994 }
 995 
 996 //------------------------verify_adr_type--------------------------------------
 997 #ifdef ASSERT
 998 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 999   if (visited.test_set(_idx))  return;  //already visited
1000 
1001   // recheck constructor invariants:
1002   verify_adr_type(false);
1003 
1004   // recheck local phi/phi consistency:
1005   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
1006          "adr_type must be consistent across phi nest");
1007 
1008   // walk around
1009   for (uint i = 1; i < req(); i++) {
1010     Node* n = in(i);
1011     if (n == NULL)  continue;
1012     const Node* np = in(i);
1013     if (np->is_Phi()) {
1014       np->as_Phi()->verify_adr_type(visited, at);
1015     } else if (n->bottom_type() == Type::TOP
1016                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
1017       // ignore top inputs
1018     } else {
1019       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
1020       // recheck phi/non-phi consistency at leaves:
1021       assert((nat != NULL) == (at != NULL), "");
1022       assert(nat == at || nat == TypePtr::BOTTOM,
1023              "adr_type must be consistent at leaves of phi nest");
1024     }
1025   }
1026 }
1027 
1028 // Verify a whole nest of phis rooted at this one.
1029 void PhiNode::verify_adr_type(bool recursive) const {
1030   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
1031   if (Node::in_dump())               return;  // muzzle asserts when printing
1032 
1033   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
1034 
1035   if (!VerifyAliases)       return;  // verify thoroughly only if requested
1036 
1037   assert(_adr_type == flatten_phi_adr_type(_adr_type),
1038          "Phi::adr_type must be pre-normalized");
1039 
1040   if (recursive) {
1041     VectorSet visited(Thread::current()->resource_area());
1042     verify_adr_type(visited, _adr_type);
1043   }
1044 }
1045 #endif
1046 
1047 
1048 //------------------------------Value------------------------------------------
1049 // Compute the type of the PhiNode
1050 const Type* PhiNode::Value(PhaseGVN* phase) const {
1051   Node *r = in(0);              // RegionNode
1052   if( !r )                      // Copy or dead
1053     return in(1) ? phase->type(in(1)) : Type::TOP;
1054 
1055   // Note: During parsing, phis are often transformed before their regions.
1056   // This means we have to use type_or_null to defend against untyped regions.
1057   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
1058     return Type::TOP;
1059 
1060   // Check for trip-counted loop.  If so, be smarter.
1061   CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
1062   if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
1063     // protect against init_trip() or limit() returning NULL
1064     if (l->can_be_counted_loop(phase)) {
1065       const Node *init   = l->init_trip();
1066       const Node *limit  = l->limit();
1067       const Node* stride = l->stride();
1068       if (init != NULL && limit != NULL && stride != NULL) {
1069         const TypeInt* lo = phase->type(init)->isa_int();
1070         const TypeInt* hi = phase->type(limit)->isa_int();
1071         const TypeInt* stride_t = phase->type(stride)->isa_int();
1072         if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
1073           assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
1074           BoolTest::mask bt = l->loopexit()->test_trip();
1075           // If the loop exit condition is "not equal", the condition
1076           // would not trigger if init > limit (if stride > 0) or if
1077           // init < limit if (stride > 0) so we can't deduce bounds
1078           // for the iv from the exit condition.
1079           if (bt != BoolTest::ne) {
1080             if (stride_t->_hi < 0) {          // Down-counter loop
1081               swap(lo, hi);
1082               return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
1083             } else if (stride_t->_lo >= 0) {
1084               return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
1085             }
1086           }
1087         }
1088       }
1089     } else if (l->in(LoopNode::LoopBackControl) != NULL &&
1090                in(LoopNode::EntryControl) != NULL &&
1091                phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
1092       // During CCP, if we saturate the type of a counted loop's Phi
1093       // before the special code for counted loop above has a chance
1094       // to run (that is as long as the type of the backedge's control
1095       // is top), we might end up with non monotonic types
1096       return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
1097     }
1098   }
1099 
1100   // Until we have harmony between classes and interfaces in the type
1101   // lattice, we must tread carefully around phis which implicitly
1102   // convert the one to the other.
1103   const TypePtr* ttp = _type->make_ptr();
1104   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
1105   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
1106   bool is_intf = false;
1107   if (ttip != NULL) {
1108     ciKlass* k = ttip->klass();
1109     if (k->is_loaded() && k->is_interface())
1110       is_intf = true;
1111   }
1112   if (ttkp != NULL) {
1113     ciKlass* k = ttkp->klass();
1114     if (k->is_loaded() && k->is_interface())
1115       is_intf = true;
1116   }
1117 
1118   // Default case: merge all inputs
1119   const Type *t = Type::TOP;        // Merged type starting value
1120   for (uint i = 1; i < req(); ++i) {// For all paths in
1121     // Reachable control path?
1122     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
1123       const Type* ti = phase->type(in(i));
1124       // We assume that each input of an interface-valued Phi is a true
1125       // subtype of that interface.  This might not be true of the meet
1126       // of all the input types.  The lattice is not distributive in
1127       // such cases.  Ward off asserts in type.cpp by refusing to do
1128       // meets between interfaces and proper classes.
1129       const TypePtr* tip = ti->make_ptr();
1130       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
1131       if (tiip) {
1132         bool ti_is_intf = false;
1133         ciKlass* k = tiip->klass();
1134         if (k->is_loaded() && k->is_interface())
1135           ti_is_intf = true;
1136         if (is_intf != ti_is_intf)
1137           { t = _type; break; }
1138       }
1139       t = t->meet_speculative(ti);
1140     }
1141   }
1142 
1143   // The worst-case type (from ciTypeFlow) should be consistent with "t".
1144   // That is, we expect that "t->higher_equal(_type)" holds true.
1145   // There are various exceptions:
1146   // - Inputs which are phis might in fact be widened unnecessarily.
1147   //   For example, an input might be a widened int while the phi is a short.
1148   // - Inputs might be BotPtrs but this phi is dependent on a null check,
1149   //   and postCCP has removed the cast which encodes the result of the check.
1150   // - The type of this phi is an interface, and the inputs are classes.
1151   // - Value calls on inputs might produce fuzzy results.
1152   //   (Occurrences of this case suggest improvements to Value methods.)
1153   //
1154   // It is not possible to see Type::BOTTOM values as phi inputs,
1155   // because the ciTypeFlow pre-pass produces verifier-quality types.
1156   const Type* ft = t->filter_speculative(_type);  // Worst case type
1157 
1158 #ifdef ASSERT
1159   // The following logic has been moved into TypeOopPtr::filter.
1160   const Type* jt = t->join_speculative(_type);
1161   if (jt->empty()) {           // Emptied out???
1162 
1163     // Check for evil case of 't' being a class and '_type' expecting an
1164     // interface.  This can happen because the bytecodes do not contain
1165     // enough type info to distinguish a Java-level interface variable
1166     // from a Java-level object variable.  If we meet 2 classes which
1167     // both implement interface I, but their meet is at 'j/l/O' which
1168     // doesn't implement I, we have no way to tell if the result should
1169     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
1170     // into a Phi which "knows" it's an Interface type we'll have to
1171     // uplift the type.
1172     if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1173       assert(ft == _type, ""); // Uplift to interface
1174     } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1175       assert(ft == _type, ""); // Uplift to interface
1176     } else {
1177       // We also have to handle 'evil cases' of interface- vs. class-arrays
1178       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1179       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1180           assert(ft == _type, "");   // Uplift to array of interface
1181       } else {
1182         // Otherwise it's something stupid like non-overlapping int ranges
1183         // found on dying counted loops.
1184         assert(ft == Type::TOP, ""); // Canonical empty value
1185       }
1186     }
1187   }
1188 
1189   else {
1190 
1191     // If we have an interface-typed Phi and we narrow to a class type, the join
1192     // should report back the class.  However, if we have a J/L/Object
1193     // class-typed Phi and an interface flows in, it's possible that the meet &
1194     // join report an interface back out.  This isn't possible but happens
1195     // because the type system doesn't interact well with interfaces.
1196     const TypePtr *jtp = jt->make_ptr();
1197     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1198     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1199     if( jtip && ttip ) {
1200       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1201           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1202         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1203                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1204         jt = ft;
1205       }
1206     }
1207     if( jtkp && ttkp ) {
1208       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1209           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1210           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1211         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1212                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1213         jt = ft;
1214       }
1215     }
1216     if (jt != ft && jt->base() == ft->base()) {
1217       if (jt->isa_int() &&
1218           jt->is_int()->_lo == ft->is_int()->_lo &&
1219           jt->is_int()->_hi == ft->is_int()->_hi)
1220         jt = ft;
1221       if (jt->isa_long() &&
1222           jt->is_long()->_lo == ft->is_long()->_lo &&
1223           jt->is_long()->_hi == ft->is_long()->_hi)
1224         jt = ft;
1225     }
1226     if (jt != ft) {
1227       tty->print("merge type:  "); t->dump(); tty->cr();
1228       tty->print("kill type:   "); _type->dump(); tty->cr();
1229       tty->print("join type:   "); jt->dump(); tty->cr();
1230       tty->print("filter type: "); ft->dump(); tty->cr();
1231     }
1232     assert(jt == ft, "");
1233   }
1234 #endif //ASSERT
1235 
1236   // Deal with conversion problems found in data loops.
1237   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1238 
1239   return ft;
1240 }
1241 
1242 
1243 //------------------------------is_diamond_phi---------------------------------
1244 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1245 // index of the true path or 0 otherwise.
1246 // If check_control_only is true, do not inspect the If node at the
1247 // top, and return -1 (not an edge number) on success.
1248 int PhiNode::is_diamond_phi(bool check_control_only) const {
1249   // Check for a 2-path merge
1250   Node *region = in(0);
1251   if( !region ) return 0;
1252   if( region->req() != 3 ) return 0;
1253   if(         req() != 3 ) return 0;
1254   // Check that both paths come from the same If
1255   Node *ifp1 = region->in(1);
1256   Node *ifp2 = region->in(2);
1257   if( !ifp1 || !ifp2 ) return 0;
1258   Node *iff = ifp1->in(0);
1259   if( !iff || !iff->is_If() ) return 0;
1260   if( iff != ifp2->in(0) ) return 0;
1261   if (check_control_only)  return -1;
1262   // Check for a proper bool/cmp
1263   const Node *b = iff->in(1);
1264   if( !b->is_Bool() ) return 0;
1265   const Node *cmp = b->in(1);
1266   if( !cmp->is_Cmp() ) return 0;
1267 
1268   // Check for branching opposite expected
1269   if( ifp2->Opcode() == Op_IfTrue ) {
1270     assert( ifp1->Opcode() == Op_IfFalse, "" );
1271     return 2;
1272   } else {
1273     assert( ifp1->Opcode() == Op_IfTrue, "" );
1274     return 1;
1275   }
1276 }
1277 
1278 //----------------------------check_cmove_id-----------------------------------
1279 // Check for CMove'ing a constant after comparing against the constant.
1280 // Happens all the time now, since if we compare equality vs a constant in
1281 // the parser, we "know" the variable is constant on one path and we force
1282 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1283 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1284 // general in that we don't need constants.  Since CMove's are only inserted
1285 // in very special circumstances, we do it here on generic Phi's.
1286 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1287   assert(true_path !=0, "only diamond shape graph expected");
1288 
1289   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1290   // phi->region->if_proj->ifnode->bool->cmp
1291   Node*     region = in(0);
1292   Node*     iff    = region->in(1)->in(0);
1293   BoolNode* b      = iff->in(1)->as_Bool();
1294   Node*     cmp    = b->in(1);
1295   Node*     tval   = in(true_path);
1296   Node*     fval   = in(3-true_path);
1297   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1298   if (id == NULL)
1299     return NULL;
1300 
1301   // Either value might be a cast that depends on a branch of 'iff'.
1302   // Since the 'id' value will float free of the diamond, either
1303   // decast or return failure.
1304   Node* ctl = id->in(0);
1305   if (ctl != NULL && ctl->in(0) == iff) {
1306     if (id->is_ConstraintCast()) {
1307       return id->in(1);
1308     } else {
1309       // Don't know how to disentangle this value.
1310       return NULL;
1311     }
1312   }
1313 
1314   return id;
1315 }
1316 
1317 //------------------------------Identity---------------------------------------
1318 // Check for Region being Identity.
1319 Node* PhiNode::Identity(PhaseGVN* phase) {
1320   // Check for no merging going on
1321   // (There used to be special-case code here when this->region->is_Loop.
1322   // It would check for a tributary phi on the backedge that the main phi
1323   // trivially, perhaps with a single cast.  The unique_input method
1324   // does all this and more, by reducing such tributaries to 'this'.)
1325   Node* uin = unique_input(phase, false);
1326   if (uin != NULL) {
1327     return uin;
1328   }
1329 
1330   int true_path = is_diamond_phi();
1331   if (true_path != 0) {
1332     Node* id = is_cmove_id(phase, true_path);
1333     if (id != NULL)  return id;
1334   }
1335 
1336   return this;                     // No identity
1337 }
1338 
1339 //-----------------------------unique_input------------------------------------
1340 // Find the unique value, discounting top, self-loops, and casts.
1341 // Return top if there are no inputs, and self if there are multiple.
1342 Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1343   //  1) One unique direct input,
1344   // or if uncast is true:
1345   //  2) some of the inputs have an intervening ConstraintCast
1346   //  3) an input is a self loop
1347   //
1348   //  1) input   or   2) input     or   3) input __
1349   //     /   \           /   \               \  /  \
1350   //     \   /          |    cast             phi  cast
1351   //      phi            \   /               /  \  /
1352   //                      phi               /    --
1353 
1354   Node* r = in(0);                      // RegionNode
1355   if (r == NULL)  return in(1);         // Already degraded to a Copy
1356   Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1357 
1358   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1359     Node* rc = r->in(i);
1360     if (rc == NULL || phase->type(rc) == Type::TOP)
1361       continue;                 // ignore unreachable control path
1362     Node* n = in(i);
1363     if (n == NULL)
1364       continue;
1365     Node* un = n;
1366     if (uncast) {
1367 #ifdef ASSERT
1368       Node* m = un->uncast();
1369 #endif
1370       while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1371         Node* next = un->in(1);
1372         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1373           // risk exposing raw ptr at safepoint
1374           break;
1375         }
1376         un = next;
1377       }
1378       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1379     }
1380     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1381       continue; // ignore if top, or in(i) and "this" are in a data cycle
1382     }
1383     // Check for a unique input (maybe uncasted)
1384     if (input == NULL) {
1385       input = un;
1386     } else if (input != un) {
1387       input = NodeSentinel; // no unique input
1388     }
1389   }
1390   if (input == NULL) {
1391     return phase->C->top();        // no inputs
1392   }
1393 
1394   if (input != NodeSentinel) {
1395     return input;           // one unique direct input
1396   }
1397 
1398   // Nothing.
1399   return NULL;
1400 }
1401 
1402 //------------------------------is_x2logic-------------------------------------
1403 // Check for simple convert-to-boolean pattern
1404 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1405 // Convert Phi to an ConvIB.
1406 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1407   assert(true_path !=0, "only diamond shape graph expected");
1408   // Convert the true/false index into an expected 0/1 return.
1409   // Map 2->0 and 1->1.
1410   int flipped = 2-true_path;
1411 
1412   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1413   // phi->region->if_proj->ifnode->bool->cmp
1414   Node *region = phi->in(0);
1415   Node *iff = region->in(1)->in(0);
1416   BoolNode *b = (BoolNode*)iff->in(1);
1417   const CmpNode *cmp = (CmpNode*)b->in(1);
1418 
1419   Node *zero = phi->in(1);
1420   Node *one  = phi->in(2);
1421   const Type *tzero = phase->type( zero );
1422   const Type *tone  = phase->type( one  );
1423 
1424   // Check for compare vs 0
1425   const Type *tcmp = phase->type(cmp->in(2));
1426   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1427     // Allow cmp-vs-1 if the other input is bounded by 0-1
1428     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1429       return NULL;
1430     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1431   }
1432 
1433   // Check for setting zero/one opposite expected
1434   if( tzero == TypeInt::ZERO ) {
1435     if( tone == TypeInt::ONE ) {
1436     } else return NULL;
1437   } else if( tzero == TypeInt::ONE ) {
1438     if( tone == TypeInt::ZERO ) {
1439       flipped = 1-flipped;
1440     } else return NULL;
1441   } else return NULL;
1442 
1443   // Check for boolean test backwards
1444   if( b->_test._test == BoolTest::ne ) {
1445   } else if( b->_test._test == BoolTest::eq ) {
1446     flipped = 1-flipped;
1447   } else return NULL;
1448 
1449   // Build int->bool conversion
1450   Node *n = new Conv2BNode( cmp->in(1) );
1451   if( flipped )
1452     n = new XorINode( phase->transform(n), phase->intcon(1) );
1453 
1454   return n;
1455 }
1456 
1457 //------------------------------is_cond_add------------------------------------
1458 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1459 // To be profitable the control flow has to disappear; there can be no other
1460 // values merging here.  We replace the test-and-branch with:
1461 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1462 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1463 // Then convert Y to 0-or-Y and finally add.
1464 // This is a key transform for SpecJava _201_compress.
1465 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1466   assert(true_path !=0, "only diamond shape graph expected");
1467 
1468   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1469   // phi->region->if_proj->ifnode->bool->cmp
1470   RegionNode *region = (RegionNode*)phi->in(0);
1471   Node *iff = region->in(1)->in(0);
1472   BoolNode* b = iff->in(1)->as_Bool();
1473   const CmpNode *cmp = (CmpNode*)b->in(1);
1474 
1475   // Make sure only merging this one phi here
1476   if (region->has_unique_phi() != phi)  return NULL;
1477 
1478   // Make sure each arm of the diamond has exactly one output, which we assume
1479   // is the region.  Otherwise, the control flow won't disappear.
1480   if (region->in(1)->outcnt() != 1) return NULL;
1481   if (region->in(2)->outcnt() != 1) return NULL;
1482 
1483   // Check for "(P < Q)" of type signed int
1484   if (b->_test._test != BoolTest::lt)  return NULL;
1485   if (cmp->Opcode() != Op_CmpI)        return NULL;
1486 
1487   Node *p = cmp->in(1);
1488   Node *q = cmp->in(2);
1489   Node *n1 = phi->in(  true_path);
1490   Node *n2 = phi->in(3-true_path);
1491 
1492   int op = n1->Opcode();
1493   if( op != Op_AddI           // Need zero as additive identity
1494       /*&&op != Op_SubI &&
1495       op != Op_AddP &&
1496       op != Op_XorI &&
1497       op != Op_OrI*/ )
1498     return NULL;
1499 
1500   Node *x = n2;
1501   Node *y = NULL;
1502   if( x == n1->in(1) ) {
1503     y = n1->in(2);
1504   } else if( x == n1->in(2) ) {
1505     y = n1->in(1);
1506   } else return NULL;
1507 
1508   // Not so profitable if compare and add are constants
1509   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1510     return NULL;
1511 
1512   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1513   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1514   return new AddINode(j_and,x);
1515 }
1516 
1517 //------------------------------is_absolute------------------------------------
1518 // Check for absolute value.
1519 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1520   assert(true_path !=0, "only diamond shape graph expected");
1521 
1522   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1523   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1524 
1525   // ABS ends with the merge of 2 control flow paths.
1526   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1527   int false_path = 3 - true_path;
1528 
1529   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1530   // phi->region->if_proj->ifnode->bool->cmp
1531   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1532 
1533   // Check bool sense
1534   switch( bol->_test._test ) {
1535   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1536   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1537   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1538   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1539   default:           return NULL;                              break;
1540   }
1541 
1542   // Test is next
1543   Node *cmp = bol->in(1);
1544   const Type *tzero = NULL;
1545   switch( cmp->Opcode() ) {
1546   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1547   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1548   default: return NULL;
1549   }
1550 
1551   // Find zero input of compare; the other input is being abs'd
1552   Node *x = NULL;
1553   bool flip = false;
1554   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1555     x = cmp->in(3 - cmp_zero_idx);
1556   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1557     // The test is inverted, we should invert the result...
1558     x = cmp->in(cmp_zero_idx);
1559     flip = true;
1560   } else {
1561     return NULL;
1562   }
1563 
1564   // Next get the 2 pieces being selected, one is the original value
1565   // and the other is the negated value.
1566   if( phi_root->in(phi_x_idx) != x ) return NULL;
1567 
1568   // Check other phi input for subtract node
1569   Node *sub = phi_root->in(3 - phi_x_idx);
1570 
1571   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1572   if( tzero == TypeF::ZERO ) {
1573     if( sub->Opcode() != Op_SubF ||
1574         sub->in(2) != x ||
1575         phase->type(sub->in(1)) != tzero ) return NULL;
1576     x = new AbsFNode(x);
1577     if (flip) {
1578       x = new SubFNode(sub->in(1), phase->transform(x));
1579     }
1580   } else {
1581     if( sub->Opcode() != Op_SubD ||
1582         sub->in(2) != x ||
1583         phase->type(sub->in(1)) != tzero ) return NULL;
1584     x = new AbsDNode(x);
1585     if (flip) {
1586       x = new SubDNode(sub->in(1), phase->transform(x));
1587     }
1588   }
1589 
1590   return x;
1591 }
1592 
1593 //------------------------------split_once-------------------------------------
1594 // Helper for split_flow_path
1595 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1596   igvn->hash_delete(n);         // Remove from hash before hacking edges
1597 
1598   uint j = 1;
1599   for (uint i = phi->req()-1; i > 0; i--) {
1600     if (phi->in(i) == val) {   // Found a path with val?
1601       // Add to NEW Region/Phi, no DU info
1602       newn->set_req( j++, n->in(i) );
1603       // Remove from OLD Region/Phi
1604       n->del_req(i);
1605     }
1606   }
1607 
1608   // Register the new node but do not transform it.  Cannot transform until the
1609   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1610   igvn->register_new_node_with_optimizer( newn );
1611 
1612   // Now I can point to the new node.
1613   n->add_req(newn);
1614   igvn->_worklist.push(n);
1615 }
1616 
1617 //------------------------------split_flow_path--------------------------------
1618 // Check for merging identical values and split flow paths
1619 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1620   BasicType bt = phi->type()->basic_type();
1621   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1622     return NULL;                // Bail out on funny non-value stuff
1623   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1624     return NULL;                // third unequal input to be worth doing
1625 
1626   // Scan for a constant
1627   uint i;
1628   for( i = 1; i < phi->req()-1; i++ ) {
1629     Node *n = phi->in(i);
1630     if( !n ) return NULL;
1631     if( phase->type(n) == Type::TOP ) return NULL;
1632     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1633       break;
1634   }
1635   if( i >= phi->req() )         // Only split for constants
1636     return NULL;
1637 
1638   Node *val = phi->in(i);       // Constant to split for
1639   uint hit = 0;                 // Number of times it occurs
1640   Node *r = phi->region();
1641 
1642   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1643     Node *n = phi->in(i);
1644     if( !n ) return NULL;
1645     if( phase->type(n) == Type::TOP ) return NULL;
1646     if( phi->in(i) == val ) {
1647       hit++;
1648       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1649         return NULL;            // don't split loop entry path
1650       }
1651     }
1652   }
1653 
1654   if( hit <= 1 ||               // Make sure we find 2 or more
1655       hit == phi->req()-1 )     // and not ALL the same value
1656     return NULL;
1657 
1658   // Now start splitting out the flow paths that merge the same value.
1659   // Split first the RegionNode.
1660   PhaseIterGVN *igvn = phase->is_IterGVN();
1661   RegionNode *newr = new RegionNode(hit+1);
1662   split_once(igvn, phi, val, r, newr);
1663 
1664   // Now split all other Phis than this one
1665   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1666     Node* phi2 = r->fast_out(k);
1667     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1668       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1669       split_once(igvn, phi, val, phi2, newphi);
1670     }
1671   }
1672 
1673   // Clean up this guy
1674   igvn->hash_delete(phi);
1675   for( i = phi->req()-1; i > 0; i-- ) {
1676     if( phi->in(i) == val ) {
1677       phi->del_req(i);
1678     }
1679   }
1680   phi->add_req(val);
1681 
1682   return phi;
1683 }
1684 
1685 //=============================================================================
1686 //------------------------------simple_data_loop_check-------------------------
1687 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1688 //  Returns:
1689 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1690 // Safe       - safe case when the phi and it's inputs reference only safe data
1691 //              nodes;
1692 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1693 //              is no reference back to the phi - need a graph walk
1694 //              to determine if it is in a loop;
1695 // UnsafeLoop - unsafe case when the phi references itself directly or through
1696 //              unsafe data node.
1697 //  Note: a safe data node is a node which could/never reference itself during
1698 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1699 //  I mark Phi nodes as safe node not only because they can reference itself
1700 //  but also to prevent mistaking the fallthrough case inside an outer loop
1701 //  as dead loop when the phi references itselfs through an other phi.
1702 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1703   // It is unsafe loop if the phi node references itself directly.
1704   if (in == (Node*)this)
1705     return UnsafeLoop; // Unsafe loop
1706   // Unsafe loop if the phi node references itself through an unsafe data node.
1707   // Exclude cases with null inputs or data nodes which could reference
1708   // itself (safe for dead loops).
1709   if (in != NULL && !in->is_dead_loop_safe()) {
1710     // Check inputs of phi's inputs also.
1711     // It is much less expensive then full graph walk.
1712     uint cnt = in->req();
1713     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1714     for (; i < cnt; ++i) {
1715       Node* m = in->in(i);
1716       if (m == (Node*)this)
1717         return UnsafeLoop; // Unsafe loop
1718       if (m != NULL && !m->is_dead_loop_safe()) {
1719         // Check the most common case (about 30% of all cases):
1720         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1721         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1722         if (m1 == (Node*)this)
1723           return UnsafeLoop; // Unsafe loop
1724         if (m1 != NULL && m1 == m->in(2) &&
1725             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1726           continue; // Safe case
1727         }
1728         // The phi references an unsafe node - need full analysis.
1729         return Unsafe;
1730       }
1731     }
1732   }
1733   return Safe; // Safe case - we can optimize the phi node.
1734 }
1735 
1736 //------------------------------is_unsafe_data_reference-----------------------
1737 // If phi can be reached through the data input - it is data loop.
1738 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1739   assert(req() > 1, "");
1740   // First, check simple cases when phi references itself directly or
1741   // through an other node.
1742   LoopSafety safety = simple_data_loop_check(in);
1743   if (safety == UnsafeLoop)
1744     return true;  // phi references itself - unsafe loop
1745   else if (safety == Safe)
1746     return false; // Safe case - phi could be replaced with the unique input.
1747 
1748   // Unsafe case when we should go through data graph to determine
1749   // if the phi references itself.
1750 
1751   ResourceMark rm;
1752 
1753   Arena *a = Thread::current()->resource_area();
1754   Node_List nstack(a);
1755   VectorSet visited(a);
1756 
1757   nstack.push(in); // Start with unique input.
1758   visited.set(in->_idx);
1759   while (nstack.size() != 0) {
1760     Node* n = nstack.pop();
1761     uint cnt = n->req();
1762     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1763     for (; i < cnt; i++) {
1764       Node* m = n->in(i);
1765       if (m == (Node*)this) {
1766         return true;    // Data loop
1767       }
1768       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1769         if (!visited.test_set(m->_idx))
1770           nstack.push(m);
1771       }
1772     }
1773   }
1774   return false; // The phi is not reachable from its inputs
1775 }
1776 
1777 
1778 //------------------------------Ideal------------------------------------------
1779 // Return a node which is more "ideal" than the current node.  Must preserve
1780 // the CFG, but we can still strip out dead paths.
1781 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1782   // The next should never happen after 6297035 fix.
1783   if( is_copy() )               // Already degraded to a Copy ?
1784     return NULL;                // No change
1785 
1786   Node *r = in(0);              // RegionNode
1787   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1788 
1789   // Note: During parsing, phis are often transformed before their regions.
1790   // This means we have to use type_or_null to defend against untyped regions.
1791   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1792     return NULL;                // No change
1793 
1794   Node *top = phase->C->top();
1795   bool new_phi = (outcnt() == 0); // transforming new Phi
1796   // No change for igvn if new phi is not hooked
1797   if (new_phi && can_reshape)
1798     return NULL;
1799 
1800   // The are 2 situations when only one valid phi's input is left
1801   // (in addition to Region input).
1802   // One: region is not loop - replace phi with this input.
1803   // Two: region is loop - replace phi with top since this data path is dead
1804   //                       and we need to break the dead data loop.
1805   Node* progress = NULL;        // Record if any progress made
1806   for( uint j = 1; j < req(); ++j ){ // For all paths in
1807     // Check unreachable control paths
1808     Node* rc = r->in(j);
1809     Node* n = in(j);            // Get the input
1810     if (rc == NULL || phase->type(rc) == Type::TOP) {
1811       if (n != top) {           // Not already top?
1812         PhaseIterGVN *igvn = phase->is_IterGVN();
1813         if (can_reshape && igvn != NULL) {
1814           igvn->_worklist.push(r);
1815         }
1816         set_req(j, top);        // Nuke it down
1817         progress = this;        // Record progress
1818       }
1819     }
1820   }
1821 
1822   if (can_reshape && outcnt() == 0) {
1823     // set_req() above may kill outputs if Phi is referenced
1824     // only by itself on the dead (top) control path.
1825     return top;
1826   }
1827 
1828   bool uncasted = false;
1829   Node* uin = unique_input(phase, false);
1830   if (uin == NULL && can_reshape) {
1831     uncasted = true;
1832     uin = unique_input(phase, true);
1833   }
1834   if (uin == top) {             // Simplest case: no alive inputs.
1835     if (can_reshape)            // IGVN transformation
1836       return top;
1837     else
1838       return NULL;              // Identity will return TOP
1839   } else if (uin != NULL) {
1840     // Only one not-NULL unique input path is left.
1841     // Determine if this input is backedge of a loop.
1842     // (Skip new phis which have no uses and dead regions).
1843     if (outcnt() > 0 && r->in(0) != NULL) {
1844       // First, take the short cut when we know it is a loop and
1845       // the EntryControl data path is dead.
1846       // Loop node may have only one input because entry path
1847       // is removed in PhaseIdealLoop::Dominators().
1848       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1849       bool is_loop = (r->is_Loop() && r->req() == 3);
1850       // Then, check if there is a data loop when phi references itself directly
1851       // or through other data nodes.
1852       if ((is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl))) ||
1853           (!is_loop && is_unsafe_data_reference(uin))) {
1854         // Break this data loop to avoid creation of a dead loop.
1855         if (can_reshape) {
1856           return top;
1857         } else {
1858           // We can't return top if we are in Parse phase - cut inputs only
1859           // let Identity to handle the case.
1860           replace_edge(uin, top);
1861           return NULL;
1862         }
1863       }
1864     }
1865 
1866     if (uncasted) {
1867       // Add cast nodes between the phi to be removed and its unique input.
1868       // Wait until after parsing for the type information to propagate from the casts.
1869       assert(can_reshape, "Invalid during parsing");
1870       const Type* phi_type = bottom_type();
1871       assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1872       // Add casts to carry the control dependency of the Phi that is
1873       // going away
1874       Node* cast = NULL;
1875       if (phi_type->isa_int()) {
1876         cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1877       } else {
1878         const Type* uin_type = phase->type(uin);
1879         if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1880           cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1881         } else {
1882           // Use a CastPP for a cast to not null and a CheckCastPP for
1883           // a cast to a new klass (and both if both null-ness and
1884           // klass change).
1885 
1886           // If the type of phi is not null but the type of uin may be
1887           // null, uin's type must be casted to not null
1888           if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1889               uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1890             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1891           }
1892 
1893           // If the type of phi and uin, both casted to not null,
1894           // differ the klass of uin must be (check)cast'ed to match
1895           // that of phi
1896           if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
1897             Node* n = uin;
1898             if (cast != NULL) {
1899               cast = phase->transform(cast);
1900               n = cast;
1901             }
1902             cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
1903           }
1904           if (cast == NULL) {
1905             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1906           }
1907         }
1908       }
1909       assert(cast != NULL, "cast should be set");
1910       cast = phase->transform(cast);
1911       // set all inputs to the new cast(s) so the Phi is removed by Identity
1912       PhaseIterGVN* igvn = phase->is_IterGVN();
1913       for (uint i = 1; i < req(); i++) {
1914         set_req_X(i, cast, igvn);
1915       }
1916       uin = cast;
1917     }
1918 
1919     // One unique input.
1920     debug_only(Node* ident = Identity(phase));
1921     // The unique input must eventually be detected by the Identity call.
1922 #ifdef ASSERT
1923     if (ident != uin && !ident->is_top()) {
1924       // print this output before failing assert
1925       r->dump(3);
1926       this->dump(3);
1927       ident->dump();
1928       uin->dump();
1929     }
1930 #endif
1931     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1932     return NULL;
1933   }
1934 
1935   Node* opt = NULL;
1936   int true_path = is_diamond_phi();
1937   if( true_path != 0 ) {
1938     // Check for CMove'ing identity. If it would be unsafe,
1939     // handle it here. In the safe case, let Identity handle it.
1940     Node* unsafe_id = is_cmove_id(phase, true_path);
1941     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1942       opt = unsafe_id;
1943 
1944     // Check for simple convert-to-boolean pattern
1945     if( opt == NULL )
1946       opt = is_x2logic(phase, this, true_path);
1947 
1948     // Check for absolute value
1949     if( opt == NULL )
1950       opt = is_absolute(phase, this, true_path);
1951 
1952     // Check for conditional add
1953     if( opt == NULL && can_reshape )
1954       opt = is_cond_add(phase, this, true_path);
1955 
1956     // These 4 optimizations could subsume the phi:
1957     // have to check for a dead data loop creation.
1958     if( opt != NULL ) {
1959       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1960         // Found dead loop.
1961         if( can_reshape )
1962           return top;
1963         // We can't return top if we are in Parse phase - cut inputs only
1964         // to stop further optimizations for this phi. Identity will return TOP.
1965         assert(req() == 3, "only diamond merge phi here");
1966         set_req(1, top);
1967         set_req(2, top);
1968         return NULL;
1969       } else {
1970         return opt;
1971       }
1972     }
1973   }
1974 
1975   // Check for merging identical values and split flow paths
1976   if (can_reshape) {
1977     opt = split_flow_path(phase, this);
1978     // This optimization only modifies phi - don't need to check for dead loop.
1979     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1980     if (opt != NULL)  return opt;
1981   }
1982 
1983   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1984     // Try to undo Phi of AddP:
1985     // (Phi (AddP base base y) (AddP base2 base2 y))
1986     // becomes:
1987     // newbase := (Phi base base2)
1988     // (AddP newbase newbase y)
1989     //
1990     // This occurs as a result of unsuccessful split_thru_phi and
1991     // interferes with taking advantage of addressing modes. See the
1992     // clone_shift_expressions code in matcher.cpp
1993     Node* addp = in(1);
1994     const Type* type = addp->in(AddPNode::Base)->bottom_type();
1995     Node* y = addp->in(AddPNode::Offset);
1996     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1997       // make sure that all the inputs are similar to the first one,
1998       // i.e. AddP with base == address and same offset as first AddP
1999       bool doit = true;
2000       for (uint i = 2; i < req(); i++) {
2001         if (in(i) == NULL ||
2002             in(i)->Opcode() != Op_AddP ||
2003             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
2004             in(i)->in(AddPNode::Offset) != y) {
2005           doit = false;
2006           break;
2007         }
2008         // Accumulate type for resulting Phi
2009         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
2010       }
2011       Node* base = NULL;
2012       if (doit) {
2013         // Check for neighboring AddP nodes in a tree.
2014         // If they have a base, use that it.
2015         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
2016           Node* u = this->fast_out(k);
2017           if (u->is_AddP()) {
2018             Node* base2 = u->in(AddPNode::Base);
2019             if (base2 != NULL && !base2->is_top()) {
2020               if (base == NULL)
2021                 base = base2;
2022               else if (base != base2)
2023                 { doit = false; break; }
2024             }
2025           }
2026         }
2027       }
2028       if (doit) {
2029         if (base == NULL) {
2030           base = new PhiNode(in(0), type, NULL);
2031           for (uint i = 1; i < req(); i++) {
2032             base->init_req(i, in(i)->in(AddPNode::Base));
2033           }
2034           phase->is_IterGVN()->register_new_node_with_optimizer(base);
2035         }
2036         return new AddPNode(base, base, y);
2037       }
2038     }
2039   }
2040 
2041   // Split phis through memory merges, so that the memory merges will go away.
2042   // Piggy-back this transformation on the search for a unique input....
2043   // It will be as if the merged memory is the unique value of the phi.
2044   // (Do not attempt this optimization unless parsing is complete.
2045   // It would make the parser's memory-merge logic sick.)
2046   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
2047   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
2048     // see if this phi should be sliced
2049     uint merge_width = 0;
2050     bool saw_self = false;
2051     for( uint i=1; i<req(); ++i ) {// For all paths in
2052       Node *ii = in(i);
2053       // TOP inputs should not be counted as safe inputs because if the
2054       // Phi references itself through all other inputs then splitting the
2055       // Phi through memory merges would create dead loop at later stage.
2056       if (ii == top) {
2057         return NULL; // Delay optimization until graph is cleaned.
2058       }
2059       if (ii->is_MergeMem()) {
2060         MergeMemNode* n = ii->as_MergeMem();
2061         merge_width = MAX2(merge_width, n->req());
2062         saw_self = saw_self || phase->eqv(n->base_memory(), this);
2063       }
2064     }
2065 
2066     // This restriction is temporarily necessary to ensure termination:
2067     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
2068 
2069     if (merge_width > Compile::AliasIdxRaw) {
2070       // found at least one non-empty MergeMem
2071       const TypePtr* at = adr_type();
2072       if (at != TypePtr::BOTTOM) {
2073         // Patch the existing phi to select an input from the merge:
2074         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
2075         //     Phi:AT1(...m1...)
2076         int alias_idx = phase->C->get_alias_index(at);
2077         for (uint i=1; i<req(); ++i) {
2078           Node *ii = in(i);
2079           if (ii->is_MergeMem()) {
2080             MergeMemNode* n = ii->as_MergeMem();
2081             // compress paths and change unreachable cycles to TOP
2082             // If not, we can update the input infinitely along a MergeMem cycle
2083             // Equivalent code is in MemNode::Ideal_common
2084             Node *m  = phase->transform(n);
2085             if (outcnt() == 0) {  // Above transform() may kill us!
2086               return top;
2087             }
2088             // If transformed to a MergeMem, get the desired slice
2089             // Otherwise the returned node represents memory for every slice
2090             Node *new_mem = (m->is_MergeMem()) ?
2091                              m->as_MergeMem()->memory_at(alias_idx) : m;
2092             // Update input if it is progress over what we have now
2093             if (new_mem != ii) {
2094               set_req(i, new_mem);
2095               progress = this;
2096             }
2097           }
2098         }
2099       } else {
2100         // We know that at least one MergeMem->base_memory() == this
2101         // (saw_self == true). If all other inputs also references this phi
2102         // (directly or through data nodes) - it is dead loop.
2103         bool saw_safe_input = false;
2104         for (uint j = 1; j < req(); ++j) {
2105           Node *n = in(j);
2106           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
2107             continue;              // skip known cases
2108           if (!is_unsafe_data_reference(n)) {
2109             saw_safe_input = true; // found safe input
2110             break;
2111           }
2112         }
2113         if (!saw_safe_input)
2114           return top; // all inputs reference back to this phi - dead loop
2115 
2116         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2117         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2118         PhaseIterGVN *igvn = phase->is_IterGVN();
2119         Node* hook = new Node(1);
2120         PhiNode* new_base = (PhiNode*) clone();
2121         // Must eagerly register phis, since they participate in loops.
2122         if (igvn) {
2123           igvn->register_new_node_with_optimizer(new_base);
2124           hook->add_req(new_base);
2125         }
2126         MergeMemNode* result = MergeMemNode::make(new_base);
2127         for (uint i = 1; i < req(); ++i) {
2128           Node *ii = in(i);
2129           if (ii->is_MergeMem()) {
2130             MergeMemNode* n = ii->as_MergeMem();
2131             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2132               // If we have not seen this slice yet, make a phi for it.
2133               bool made_new_phi = false;
2134               if (mms.is_empty()) {
2135                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2136                 made_new_phi = true;
2137                 if (igvn) {
2138                   igvn->register_new_node_with_optimizer(new_phi);
2139                   hook->add_req(new_phi);
2140                 }
2141                 mms.set_memory(new_phi);
2142               }
2143               Node* phi = mms.memory();
2144               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2145               phi->set_req(i, mms.memory2());
2146             }
2147           }
2148         }
2149         // Distribute all self-loops.
2150         { // (Extra braces to hide mms.)
2151           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2152             Node* phi = mms.memory();
2153             for (uint i = 1; i < req(); ++i) {
2154               if (phi->in(i) == this)  phi->set_req(i, phi);
2155             }
2156           }
2157         }
2158         // now transform the new nodes, and return the mergemem
2159         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2160           Node* phi = mms.memory();
2161           mms.set_memory(phase->transform(phi));
2162         }
2163         if (igvn) { // Unhook.
2164           igvn->hash_delete(hook);
2165           for (uint i = 1; i < hook->req(); i++) {
2166             hook->set_req(i, NULL);
2167           }
2168         }
2169         // Replace self with the result.
2170         return result;
2171       }
2172     }
2173     //
2174     // Other optimizations on the memory chain
2175     //
2176     const TypePtr* at = adr_type();
2177     for( uint i=1; i<req(); ++i ) {// For all paths in
2178       Node *ii = in(i);
2179       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2180       if (ii != new_in ) {
2181         set_req(i, new_in);
2182         progress = this;
2183       }
2184     }
2185   }
2186 
2187 #ifdef _LP64
2188   // Push DecodeN/DecodeNKlass down through phi.
2189   // The rest of phi graph will transform by split EncodeP node though phis up.
2190   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2191     bool may_push = true;
2192     bool has_decodeN = false;
2193     bool is_decodeN = false;
2194     for (uint i=1; i<req(); ++i) {// For all paths in
2195       Node *ii = in(i);
2196       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2197         // Do optimization if a non dead path exist.
2198         if (ii->in(1)->bottom_type() != Type::TOP) {
2199           has_decodeN = true;
2200           is_decodeN = ii->is_DecodeN();
2201         }
2202       } else if (!ii->is_Phi()) {
2203         may_push = false;
2204       }
2205     }
2206 
2207     if (has_decodeN && may_push) {
2208       PhaseIterGVN *igvn = phase->is_IterGVN();
2209       // Make narrow type for new phi.
2210       const Type* narrow_t;
2211       if (is_decodeN) {
2212         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2213       } else {
2214         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2215       }
2216       PhiNode* new_phi = new PhiNode(r, narrow_t);
2217       uint orig_cnt = req();
2218       for (uint i=1; i<req(); ++i) {// For all paths in
2219         Node *ii = in(i);
2220         Node* new_ii = NULL;
2221         if (ii->is_DecodeNarrowPtr()) {
2222           assert(ii->bottom_type() == bottom_type(), "sanity");
2223           new_ii = ii->in(1);
2224         } else {
2225           assert(ii->is_Phi(), "sanity");
2226           if (ii->as_Phi() == this) {
2227             new_ii = new_phi;
2228           } else {
2229             if (is_decodeN) {
2230               new_ii = new EncodePNode(ii, narrow_t);
2231             } else {
2232               new_ii = new EncodePKlassNode(ii, narrow_t);
2233             }
2234             igvn->register_new_node_with_optimizer(new_ii);
2235           }
2236         }
2237         new_phi->set_req(i, new_ii);
2238       }
2239       igvn->register_new_node_with_optimizer(new_phi, this);
2240       if (is_decodeN) {
2241         progress = new DecodeNNode(new_phi, bottom_type());
2242       } else {
2243         progress = new DecodeNKlassNode(new_phi, bottom_type());
2244       }
2245     }
2246   }
2247 #endif
2248 
2249   return progress;              // Return any progress
2250 }
2251 
2252 //------------------------------is_tripcount-----------------------------------
2253 bool PhiNode::is_tripcount() const {
2254   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2255           in(0)->as_CountedLoop()->phi() == this);
2256 }
2257 
2258 //------------------------------out_RegMask------------------------------------
2259 const RegMask &PhiNode::in_RegMask(uint i) const {
2260   return i ? out_RegMask() : RegMask::Empty;
2261 }
2262 
2263 const RegMask &PhiNode::out_RegMask() const {
2264   uint ideal_reg = _type->ideal_reg();
2265   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2266   if( ideal_reg == 0 ) return RegMask::Empty;
2267   assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2268   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2269 }
2270 
2271 #ifndef PRODUCT
2272 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2273   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2274   // and all outputs till level 1. In compact mode, inputs till level 1 are
2275   // collected.
2276   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2277   this->collect_nodes(out_rel, -1, false, false);
2278 }
2279 
2280 void PhiNode::dump_spec(outputStream *st) const {
2281   TypeNode::dump_spec(st);
2282   if (is_tripcount()) {
2283     st->print(" #tripcount");
2284   }
2285 }
2286 #endif
2287 
2288 
2289 //=============================================================================
2290 const Type* GotoNode::Value(PhaseGVN* phase) const {
2291   // If the input is reachable, then we are executed.
2292   // If the input is not reachable, then we are not executed.
2293   return phase->type(in(0));
2294 }
2295 
2296 Node* GotoNode::Identity(PhaseGVN* phase) {
2297   return in(0);                // Simple copy of incoming control
2298 }
2299 
2300 const RegMask &GotoNode::out_RegMask() const {
2301   return RegMask::Empty;
2302 }
2303 
2304 #ifndef PRODUCT
2305 //-----------------------------related-----------------------------------------
2306 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2307 // outputs at level 1. This is regardless of compact mode.
2308 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2309   this->collect_nodes(in_rel, 1, false, false);
2310   this->collect_nodes(out_rel, -1, false, false);
2311 }
2312 #endif
2313 
2314 
2315 //=============================================================================
2316 const RegMask &JumpNode::out_RegMask() const {
2317   return RegMask::Empty;
2318 }
2319 
2320 #ifndef PRODUCT
2321 //-----------------------------related-----------------------------------------
2322 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2323 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2324 // This is regardless of compact mode.
2325 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2326   this->collect_nodes(in_rel, 1, false, false);
2327   this->collect_nodes(out_rel, -2, false, false);
2328 }
2329 #endif
2330 
2331 //=============================================================================
2332 const RegMask &JProjNode::out_RegMask() const {
2333   return RegMask::Empty;
2334 }
2335 
2336 //=============================================================================
2337 const RegMask &CProjNode::out_RegMask() const {
2338   return RegMask::Empty;
2339 }
2340 
2341 
2342 
2343 //=============================================================================
2344 
2345 uint PCTableNode::hash() const { return Node::hash() + _size; }
2346 uint PCTableNode::cmp( const Node &n ) const
2347 { return _size == ((PCTableNode&)n)._size; }
2348 
2349 const Type *PCTableNode::bottom_type() const {
2350   const Type** f = TypeTuple::fields(_size);
2351   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2352   return TypeTuple::make(_size, f);
2353 }
2354 
2355 //------------------------------Value------------------------------------------
2356 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2357 // Control, otherwise the table targets are not reachable
2358 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2359   if( phase->type(in(0)) == Type::CONTROL )
2360     return bottom_type();
2361   return Type::TOP;             // All paths dead?  Then so are we
2362 }
2363 
2364 //------------------------------Ideal------------------------------------------
2365 // Return a node which is more "ideal" than the current node.  Strip out
2366 // control copies
2367 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2368   return remove_dead_region(phase, can_reshape) ? this : NULL;
2369 }
2370 
2371 //=============================================================================
2372 uint JumpProjNode::hash() const {
2373   return Node::hash() + _dest_bci;
2374 }
2375 
2376 uint JumpProjNode::cmp( const Node &n ) const {
2377   return ProjNode::cmp(n) &&
2378     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2379 }
2380 
2381 #ifndef PRODUCT
2382 void JumpProjNode::dump_spec(outputStream *st) const {
2383   ProjNode::dump_spec(st);
2384   st->print("@bci %d ",_dest_bci);
2385 }
2386 
2387 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2388   ProjNode::dump_compact_spec(st);
2389   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2390 }
2391 
2392 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2393   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2394   this->collect_nodes(in_rel, 1, false, false);
2395   this->collect_nodes(out_rel, -1, false, false);
2396 }
2397 #endif
2398 
2399 //=============================================================================
2400 //------------------------------Value------------------------------------------
2401 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2402 // have the default "fall_through_index" path.
2403 const Type* CatchNode::Value(PhaseGVN* phase) const {
2404   // Unreachable?  Then so are all paths from here.
2405   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2406   // First assume all paths are reachable
2407   const Type** f = TypeTuple::fields(_size);
2408   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2409   // Identify cases that will always throw an exception
2410   // () rethrow call
2411   // () virtual or interface call with NULL receiver
2412   // () call is a check cast with incompatible arguments
2413   if( in(1)->is_Proj() ) {
2414     Node *i10 = in(1)->in(0);
2415     if( i10->is_Call() ) {
2416       CallNode *call = i10->as_Call();
2417       // Rethrows always throw exceptions, never return
2418       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2419         f[CatchProjNode::fall_through_index] = Type::TOP;
2420       } else if( call->req() > TypeFunc::Parms ) {
2421         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2422         // Check for null receiver to virtual or interface calls
2423         if( call->is_CallDynamicJava() &&
2424             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2425           f[CatchProjNode::fall_through_index] = Type::TOP;
2426         }
2427       } // End of if not a runtime stub
2428     } // End of if have call above me
2429   } // End of slot 1 is not a projection
2430   return TypeTuple::make(_size, f);
2431 }
2432 
2433 //=============================================================================
2434 uint CatchProjNode::hash() const {
2435   return Node::hash() + _handler_bci;
2436 }
2437 
2438 
2439 uint CatchProjNode::cmp( const Node &n ) const {
2440   return ProjNode::cmp(n) &&
2441     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2442 }
2443 
2444 
2445 //------------------------------Identity---------------------------------------
2446 // If only 1 target is possible, choose it if it is the main control
2447 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2448   // If my value is control and no other value is, then treat as ID
2449   const TypeTuple *t = phase->type(in(0))->is_tuple();
2450   if (t->field_at(_con) != Type::CONTROL)  return this;
2451   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2452   // also remove any exception table entry.  Thus we must know the call
2453   // feeding the Catch will not really throw an exception.  This is ok for
2454   // the main fall-thru control (happens when we know a call can never throw
2455   // an exception) or for "rethrow", because a further optimization will
2456   // yank the rethrow (happens when we inline a function that can throw an
2457   // exception and the caller has no handler).  Not legal, e.g., for passing
2458   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2459   // These cases MUST throw an exception via the runtime system, so the VM
2460   // will be looking for a table entry.
2461   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2462   CallNode *call;
2463   if (_con != TypeFunc::Control && // Bail out if not the main control.
2464       !(proj->is_Proj() &&      // AND NOT a rethrow
2465         proj->in(0)->is_Call() &&
2466         (call = proj->in(0)->as_Call()) &&
2467         call->entry_point() == OptoRuntime::rethrow_stub()))
2468     return this;
2469 
2470   // Search for any other path being control
2471   for (uint i = 0; i < t->cnt(); i++) {
2472     if (i != _con && t->field_at(i) == Type::CONTROL)
2473       return this;
2474   }
2475   // Only my path is possible; I am identity on control to the jump
2476   return in(0)->in(0);
2477 }
2478 
2479 
2480 #ifndef PRODUCT
2481 void CatchProjNode::dump_spec(outputStream *st) const {
2482   ProjNode::dump_spec(st);
2483   st->print("@bci %d ",_handler_bci);
2484 }
2485 #endif
2486 
2487 //=============================================================================
2488 //------------------------------Identity---------------------------------------
2489 // Check for CreateEx being Identity.
2490 Node* CreateExNode::Identity(PhaseGVN* phase) {
2491   if( phase->type(in(1)) == Type::TOP ) return in(1);
2492   if( phase->type(in(0)) == Type::TOP ) return in(0);
2493   // We only come from CatchProj, unless the CatchProj goes away.
2494   // If the CatchProj is optimized away, then we just carry the
2495   // exception oop through.
2496   CallNode *call = in(1)->in(0)->as_Call();
2497 
2498   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2499     ? this
2500     : call->in(TypeFunc::Parms);
2501 }
2502 
2503 //=============================================================================
2504 //------------------------------Value------------------------------------------
2505 // Check for being unreachable.
2506 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2507   if (!in(0) || in(0)->is_top()) return Type::TOP;
2508   return bottom_type();
2509 }
2510 
2511 //------------------------------Ideal------------------------------------------
2512 // Check for no longer being part of a loop
2513 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2514   if (can_reshape && !in(0)->is_Loop()) {
2515     // Dead code elimination can sometimes delete this projection so
2516     // if it's not there, there's nothing to do.
2517     Node* fallthru = proj_out_or_null(0);
2518     if (fallthru != NULL) {
2519       phase->is_IterGVN()->replace_node(fallthru, in(0));
2520     }
2521     return phase->C->top();
2522   }
2523   return NULL;
2524 }
2525 
2526 #ifndef PRODUCT
2527 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2528   st->print("%s", Name());
2529 }
2530 #endif