1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/loopnode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/movenode.hpp"
  39 #include "opto/narrowptrnode.hpp"
  40 #include "opto/mulnode.hpp"
  41 #include "opto/phaseX.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "opto/runtime.hpp"
  44 #include "opto/subnode.hpp"
  45 #include "utilities/vmError.hpp"
  46 
  47 // Portions of code courtesy of Clifford Click
  48 
  49 // Optimization - Graph Style
  50 
  51 //=============================================================================
  52 //------------------------------Value------------------------------------------
  53 // Compute the type of the RegionNode.
  54 const Type* RegionNode::Value(PhaseGVN* phase) const {
  55   for( uint i=1; i<req(); ++i ) {       // For all paths in
  56     Node *n = in(i);            // Get Control source
  57     if( !n ) continue;          // Missing inputs are TOP
  58     if( phase->type(n) == Type::CONTROL )
  59       return Type::CONTROL;
  60   }
  61   return Type::TOP;             // All paths dead?  Then so are we
  62 }
  63 
  64 //------------------------------Identity---------------------------------------
  65 // Check for Region being Identity.
  66 Node* RegionNode::Identity(PhaseGVN* phase) {
  67   // Cannot have Region be an identity, even if it has only 1 input.
  68   // Phi users cannot have their Region input folded away for them,
  69   // since they need to select the proper data input
  70   return this;
  71 }
  72 
  73 //------------------------------merge_region-----------------------------------
  74 // If a Region flows into a Region, merge into one big happy merge.  This is
  75 // hard to do if there is stuff that has to happen
  76 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  77   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  78     return NULL;
  79   Node *progress = NULL;        // Progress flag
  80   PhaseIterGVN *igvn = phase->is_IterGVN();
  81 
  82   uint rreq = region->req();
  83   for( uint i = 1; i < rreq; i++ ) {
  84     Node *r = region->in(i);
  85     if( r && r->Opcode() == Op_Region && // Found a region?
  86         r->in(0) == r &&        // Not already collapsed?
  87         r != region &&          // Avoid stupid situations
  88         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  89       assert(!r->as_Region()->has_phi(), "no phi users");
  90       if( !progress ) {         // No progress
  91         if (region->has_phi()) {
  92           return NULL;        // Only flatten if no Phi users
  93           // igvn->hash_delete( phi );
  94         }
  95         igvn->hash_delete( region );
  96         progress = region;      // Making progress
  97       }
  98       igvn->hash_delete( r );
  99 
 100       // Append inputs to 'r' onto 'region'
 101       for( uint j = 1; j < r->req(); j++ ) {
 102         // Move an input from 'r' to 'region'
 103         region->add_req(r->in(j));
 104         r->set_req(j, phase->C->top());
 105         // Update phis of 'region'
 106         //for( uint k = 0; k < max; k++ ) {
 107         //  Node *phi = region->out(k);
 108         //  if( phi->is_Phi() ) {
 109         //    phi->add_req(phi->in(i));
 110         //  }
 111         //}
 112 
 113         rreq++;                 // One more input to Region
 114       } // Found a region to merge into Region
 115       igvn->_worklist.push(r);
 116       // Clobber pointer to the now dead 'r'
 117       region->set_req(i, phase->C->top());
 118     }
 119   }
 120 
 121   return progress;
 122 }
 123 
 124 
 125 
 126 //--------------------------------has_phi--------------------------------------
 127 // Helper function: Return any PhiNode that uses this region or NULL
 128 PhiNode* RegionNode::has_phi() const {
 129   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 130     Node* phi = fast_out(i);
 131     if (phi->is_Phi()) {   // Check for Phi users
 132       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 133       return phi->as_Phi();  // this one is good enough
 134     }
 135   }
 136 
 137   return NULL;
 138 }
 139 
 140 
 141 //-----------------------------has_unique_phi----------------------------------
 142 // Helper function: Return the only PhiNode that uses this region or NULL
 143 PhiNode* RegionNode::has_unique_phi() const {
 144   // Check that only one use is a Phi
 145   PhiNode* only_phi = NULL;
 146   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 147     Node* phi = fast_out(i);
 148     if (phi->is_Phi()) {   // Check for Phi users
 149       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 150       if (only_phi == NULL) {
 151         only_phi = phi->as_Phi();
 152       } else {
 153         return NULL;  // multiple phis
 154       }
 155     }
 156   }
 157 
 158   return only_phi;
 159 }
 160 
 161 
 162 //------------------------------check_phi_clipping-----------------------------
 163 // Helper function for RegionNode's identification of FP clipping
 164 // Check inputs to the Phi
 165 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 166   min     = NULL;
 167   max     = NULL;
 168   val     = NULL;
 169   min_idx = 0;
 170   max_idx = 0;
 171   val_idx = 0;
 172   uint  phi_max = phi->req();
 173   if( phi_max == 4 ) {
 174     for( uint j = 1; j < phi_max; ++j ) {
 175       Node *n = phi->in(j);
 176       int opcode = n->Opcode();
 177       switch( opcode ) {
 178       case Op_ConI:
 179         {
 180           if( min == NULL ) {
 181             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 182             min_idx = j;
 183           } else {
 184             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 185             max_idx = j;
 186             if( min->get_int() > max->get_int() ) {
 187               // Swap min and max
 188               ConNode *temp;
 189               uint     temp_idx;
 190               temp     = min;     min     = max;     max     = temp;
 191               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 192             }
 193           }
 194         }
 195         break;
 196       default:
 197         {
 198           val = n;
 199           val_idx = j;
 200         }
 201         break;
 202       }
 203     }
 204   }
 205   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 206 }
 207 
 208 
 209 //------------------------------check_if_clipping------------------------------
 210 // Helper function for RegionNode's identification of FP clipping
 211 // Check that inputs to Region come from two IfNodes,
 212 //
 213 //            If
 214 //      False    True
 215 //       If        |
 216 //  False  True    |
 217 //    |      |     |
 218 //  RegionNode_inputs
 219 //
 220 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 221   top_if = NULL;
 222   bot_if = NULL;
 223 
 224   // Check control structure above RegionNode for (if  ( if  ) )
 225   Node *in1 = region->in(1);
 226   Node *in2 = region->in(2);
 227   Node *in3 = region->in(3);
 228   // Check that all inputs are projections
 229   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 230     Node *in10 = in1->in(0);
 231     Node *in20 = in2->in(0);
 232     Node *in30 = in3->in(0);
 233     // Check that #1 and #2 are ifTrue and ifFalse from same If
 234     if( in10 != NULL && in10->is_If() &&
 235         in20 != NULL && in20->is_If() &&
 236         in30 != NULL && in30->is_If() && in10 == in20 &&
 237         (in1->Opcode() != in2->Opcode()) ) {
 238       Node  *in100 = in10->in(0);
 239       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 240       // Check that control for in10 comes from other branch of IF from in3
 241       if( in1000 != NULL && in1000->is_If() &&
 242           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 243         // Control pattern checks
 244         top_if = (IfNode*)in1000;
 245         bot_if = (IfNode*)in10;
 246       }
 247     }
 248   }
 249 
 250   return (top_if != NULL);
 251 }
 252 
 253 
 254 //------------------------------check_convf2i_clipping-------------------------
 255 // Helper function for RegionNode's identification of FP clipping
 256 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 257 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 258   convf2i = NULL;
 259 
 260   // Check for the RShiftNode
 261   Node *rshift = phi->in(idx);
 262   assert( rshift, "Previous checks ensure phi input is present");
 263   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 264 
 265   // Check for the LShiftNode
 266   Node *lshift = rshift->in(1);
 267   assert( lshift, "Previous checks ensure phi input is present");
 268   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 269 
 270   // Check for the ConvF2INode
 271   Node *conv = lshift->in(1);
 272   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 273 
 274   // Check that shift amounts are only to get sign bits set after F2I
 275   jint max_cutoff     = max->get_int();
 276   jint min_cutoff     = min->get_int();
 277   jint left_shift     = lshift->in(2)->get_int();
 278   jint right_shift    = rshift->in(2)->get_int();
 279   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 280   if( left_shift != right_shift ||
 281       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 282       max_post_shift < max_cutoff ||
 283       max_post_shift < -min_cutoff ) {
 284     // Shifts are necessary but current transformation eliminates them
 285     return false;
 286   }
 287 
 288   // OK to return the result of ConvF2I without shifting
 289   convf2i = (ConvF2INode*)conv;
 290   return true;
 291 }
 292 
 293 
 294 //------------------------------check_compare_clipping-------------------------
 295 // Helper function for RegionNode's identification of FP clipping
 296 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 297   Node *i1 = iff->in(1);
 298   if ( !i1->is_Bool() ) { return false; }
 299   BoolNode *bool1 = i1->as_Bool();
 300   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 301   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 302   const Node *cmpF = bool1->in(1);
 303   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 304   // Test that the float value being compared against
 305   // is equivalent to the int value used as a limit
 306   Node *nodef = cmpF->in(2);
 307   if( nodef->Opcode() != Op_ConF ) { return false; }
 308   jfloat conf = nodef->getf();
 309   jint   coni = limit->get_int();
 310   if( ((int)conf) != coni )        { return false; }
 311   input = cmpF->in(1);
 312   return true;
 313 }
 314 
 315 //------------------------------is_unreachable_region--------------------------
 316 // Find if the Region node is reachable from the root.
 317 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 318   assert(req() == 2, "");
 319 
 320   // First, cut the simple case of fallthrough region when NONE of
 321   // region's phis references itself directly or through a data node.
 322   uint max = outcnt();
 323   uint i;
 324   for (i = 0; i < max; i++) {
 325     Node* phi = raw_out(i);
 326     if (phi != NULL && phi->is_Phi()) {
 327       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 328       if (phi->outcnt() == 0)
 329         continue; // Safe case - no loops
 330       if (phi->outcnt() == 1) {
 331         Node* u = phi->raw_out(0);
 332         // Skip if only one use is an other Phi or Call or Uncommon trap.
 333         // It is safe to consider this case as fallthrough.
 334         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 335           continue;
 336       }
 337       // Check when phi references itself directly or through an other node.
 338       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 339         break; // Found possible unsafe data loop.
 340     }
 341   }
 342   if (i >= max)
 343     return false; // An unsafe case was NOT found - don't need graph walk.
 344 
 345   // Unsafe case - check if the Region node is reachable from root.
 346   ResourceMark rm;
 347 
 348   Arena *a = Thread::current()->resource_area();
 349   Node_List nstack(a);
 350   VectorSet visited(a);
 351 
 352   // Mark all control nodes reachable from root outputs
 353   Node *n = (Node*)phase->C->root();
 354   nstack.push(n);
 355   visited.set(n->_idx);
 356   while (nstack.size() != 0) {
 357     n = nstack.pop();
 358     uint max = n->outcnt();
 359     for (uint i = 0; i < max; i++) {
 360       Node* m = n->raw_out(i);
 361       if (m != NULL && m->is_CFG()) {
 362         if (phase->eqv(m, this)) {
 363           return false; // We reached the Region node - it is not dead.
 364         }
 365         if (!visited.test_set(m->_idx))
 366           nstack.push(m);
 367       }
 368     }
 369   }
 370 
 371   return true; // The Region node is unreachable - it is dead.
 372 }
 373 
 374 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
 375   // Incremental inlining + PhaseStringOpts sometimes produce:
 376   //
 377   // cmpP with 1 top input
 378   //           |
 379   //          If
 380   //         /  \
 381   //   IfFalse  IfTrue  /- Some Node
 382   //         \  /      /    /
 383   //        Region    / /-MergeMem
 384   //             \---Phi
 385   //
 386   //
 387   // It's expected by PhaseStringOpts that the Region goes away and is
 388   // replaced by If's control input but because there's still a Phi,
 389   // the Region stays in the graph. The top input from the cmpP is
 390   // propagated forward and a subgraph that is useful goes away. The
 391   // code below replaces the Phi with the MergeMem so that the Region
 392   // is simplified.
 393 
 394   PhiNode* phi = has_unique_phi();
 395   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
 396     MergeMemNode* m = NULL;
 397     assert(phi->req() == 3, "same as region");
 398     for (uint i = 1; i < 3; ++i) {
 399       Node *mem = phi->in(i);
 400       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
 401         // Nothing is control-dependent on path #i except the region itself.
 402         m = mem->as_MergeMem();
 403         uint j = 3 - i;
 404         Node* other = phi->in(j);
 405         if (other && other == m->base_memory()) {
 406           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
 407           // This will allow the diamond to collapse completely.
 408           phase->is_IterGVN()->replace_node(phi, m);
 409           return true;
 410         }
 411       }
 412     }
 413   }
 414   return false;
 415 }
 416 
 417 //------------------------------Ideal------------------------------------------
 418 // Return a node which is more "ideal" than the current node.  Must preserve
 419 // the CFG, but we can still strip out dead paths.
 420 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 421   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 422   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 423 
 424   // Check for RegionNode with no Phi users and both inputs come from either
 425   // arm of the same IF.  If found, then the control-flow split is useless.
 426   bool has_phis = false;
 427   if (can_reshape) {            // Need DU info to check for Phi users
 428     has_phis = (has_phi() != NULL);       // Cache result
 429     if (has_phis && try_clean_mem_phi(phase)) {
 430       has_phis = false;
 431     }
 432 
 433     if (!has_phis) {            // No Phi users?  Nothing merging?
 434       for (uint i = 1; i < req()-1; i++) {
 435         Node *if1 = in(i);
 436         if( !if1 ) continue;
 437         Node *iff = if1->in(0);
 438         if( !iff || !iff->is_If() ) continue;
 439         for( uint j=i+1; j<req(); j++ ) {
 440           if( in(j) && in(j)->in(0) == iff &&
 441               if1->Opcode() != in(j)->Opcode() ) {
 442             // Add the IF Projections to the worklist. They (and the IF itself)
 443             // will be eliminated if dead.
 444             phase->is_IterGVN()->add_users_to_worklist(iff);
 445             set_req(i, iff->in(0));// Skip around the useless IF diamond
 446             set_req(j, NULL);
 447             return this;      // Record progress
 448           }
 449         }
 450       }
 451     }
 452   }
 453 
 454   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 455   // degrades to a copy.
 456   bool add_to_worklist = false;
 457   bool modified = false;
 458   int cnt = 0;                  // Count of values merging
 459   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 460   int del_it = 0;               // The last input path we delete
 461   // For all inputs...
 462   for( uint i=1; i<req(); ++i ){// For all paths in
 463     Node *n = in(i);            // Get the input
 464     if( n != NULL ) {
 465       // Remove useless control copy inputs
 466       if( n->is_Region() && n->as_Region()->is_copy() ) {
 467         set_req(i, n->nonnull_req());
 468         modified = true;
 469         i--;
 470         continue;
 471       }
 472       if( n->is_Proj() ) {      // Remove useless rethrows
 473         Node *call = n->in(0);
 474         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 475           set_req(i, call->in(0));
 476           modified = true;
 477           i--;
 478           continue;
 479         }
 480       }
 481       if( phase->type(n) == Type::TOP ) {
 482         set_req(i, NULL);       // Ignore TOP inputs
 483         modified = true;
 484         i--;
 485         continue;
 486       }
 487       cnt++;                    // One more value merging
 488 
 489     } else if (can_reshape) {   // Else found dead path with DU info
 490       PhaseIterGVN *igvn = phase->is_IterGVN();
 491       del_req(i);               // Yank path from self
 492       del_it = i;
 493       uint max = outcnt();
 494       DUIterator j;
 495       bool progress = true;
 496       while(progress) {         // Need to establish property over all users
 497         progress = false;
 498         for (j = outs(); has_out(j); j++) {
 499           Node *n = out(j);
 500           if( n->req() != req() && n->is_Phi() ) {
 501             assert( n->in(0) == this, "" );
 502             igvn->hash_delete(n); // Yank from hash before hacking edges
 503             n->set_req_X(i,NULL,igvn);// Correct DU info
 504             n->del_req(i);        // Yank path from Phis
 505             if( max != outcnt() ) {
 506               progress = true;
 507               j = refresh_out_pos(j);
 508               max = outcnt();
 509             }
 510           }
 511         }
 512       }
 513       add_to_worklist = true;
 514       i--;
 515     }
 516   }
 517 
 518   if (can_reshape && cnt == 1) {
 519     // Is it dead loop?
 520     // If it is LoopNopde it had 2 (+1 itself) inputs and
 521     // one of them was cut. The loop is dead if it was EntryContol.
 522     // Loop node may have only one input because entry path
 523     // is removed in PhaseIdealLoop::Dominators().
 524     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 525     if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
 526                              (del_it == 0 && is_unreachable_region(phase)))) ||
 527         (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
 528       // Yes,  the region will be removed during the next step below.
 529       // Cut the backedge input and remove phis since no data paths left.
 530       // We don't cut outputs to other nodes here since we need to put them
 531       // on the worklist.
 532       PhaseIterGVN *igvn = phase->is_IterGVN();
 533       if (in(1)->outcnt() == 1) {
 534         igvn->_worklist.push(in(1));
 535       }
 536       del_req(1);
 537       cnt = 0;
 538       assert( req() == 1, "no more inputs expected" );
 539       uint max = outcnt();
 540       bool progress = true;
 541       Node *top = phase->C->top();
 542       DUIterator j;
 543       while(progress) {
 544         progress = false;
 545         for (j = outs(); has_out(j); j++) {
 546           Node *n = out(j);
 547           if( n->is_Phi() ) {
 548             assert( igvn->eqv(n->in(0), this), "" );
 549             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 550             // Break dead loop data path.
 551             // Eagerly replace phis with top to avoid phis copies generation.
 552             igvn->replace_node(n, top);
 553             if( max != outcnt() ) {
 554               progress = true;
 555               j = refresh_out_pos(j);
 556               max = outcnt();
 557             }
 558           }
 559         }
 560       }
 561       add_to_worklist = true;
 562     }
 563   }
 564   if (add_to_worklist) {
 565     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 566   }
 567 
 568   if( cnt <= 1 ) {              // Only 1 path in?
 569     set_req(0, NULL);           // Null control input for region copy
 570     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 571       // No inputs or all inputs are NULL.
 572       return NULL;
 573     } else if (can_reshape) {   // Optimization phase - remove the node
 574       PhaseIterGVN *igvn = phase->is_IterGVN();
 575       // Strip mined (inner) loop is going away, remove outer loop.
 576       if (is_CountedLoop() &&
 577           as_Loop()->is_strip_mined()) {
 578         Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
 579         Node* outer_out = as_CountedLoop()->outer_loop_exit();
 580         if (outer_sfpt != NULL && outer_out != NULL) {
 581           Node* in = outer_sfpt->in(0);
 582           igvn->replace_node(outer_out, in);
 583           LoopNode* outer = as_CountedLoop()->outer_loop();
 584           igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
 585         }
 586       }
 587       Node *parent_ctrl;
 588       if( cnt == 0 ) {
 589         assert( req() == 1, "no inputs expected" );
 590         // During IGVN phase such region will be subsumed by TOP node
 591         // so region's phis will have TOP as control node.
 592         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 593         // Also set other user's input to top.
 594         parent_ctrl = phase->C->top();
 595       } else {
 596         // The fallthrough case since we already checked dead loops above.
 597         parent_ctrl = in(1);
 598         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 599         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 600       }
 601       if (!add_to_worklist)
 602         igvn->add_users_to_worklist(this); // Check for further allowed opts
 603       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 604         Node* n = last_out(i);
 605         igvn->hash_delete(n); // Remove from worklist before modifying edges
 606         if( n->is_Phi() ) {   // Collapse all Phis
 607           // Eagerly replace phis to avoid copies generation.
 608           Node* in;
 609           if( cnt == 0 ) {
 610             assert( n->req() == 1, "No data inputs expected" );
 611             in = parent_ctrl; // replaced by top
 612           } else {
 613             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 614             in = n->in(1);               // replaced by unique input
 615             if( n->as_Phi()->is_unsafe_data_reference(in) )
 616               in = phase->C->top();      // replaced by top
 617           }
 618           igvn->replace_node(n, in);
 619         }
 620         else if( n->is_Region() ) { // Update all incoming edges
 621           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 622           uint uses_found = 0;
 623           for( uint k=1; k < n->req(); k++ ) {
 624             if( n->in(k) == this ) {
 625               n->set_req(k, parent_ctrl);
 626               uses_found++;
 627             }
 628           }
 629           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 630             i -= (uses_found - 1);
 631           }
 632         }
 633         else {
 634           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 635           n->set_req(0, parent_ctrl);
 636         }
 637 #ifdef ASSERT
 638         for( uint k=0; k < n->req(); k++ ) {
 639           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 640         }
 641 #endif
 642       }
 643       // Remove the RegionNode itself from DefUse info
 644       igvn->remove_dead_node(this);
 645       return NULL;
 646     }
 647     return this;                // Record progress
 648   }
 649 
 650 
 651   // If a Region flows into a Region, merge into one big happy merge.
 652   if (can_reshape) {
 653     Node *m = merge_region(this, phase);
 654     if (m != NULL)  return m;
 655   }
 656 
 657   // Check if this region is the root of a clipping idiom on floats
 658   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 659     // Check that only one use is a Phi and that it simplifies to two constants +
 660     PhiNode* phi = has_unique_phi();
 661     if (phi != NULL) {          // One Phi user
 662       // Check inputs to the Phi
 663       ConNode *min;
 664       ConNode *max;
 665       Node    *val;
 666       uint     min_idx;
 667       uint     max_idx;
 668       uint     val_idx;
 669       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 670         IfNode *top_if;
 671         IfNode *bot_if;
 672         if( check_if_clipping( this, bot_if, top_if ) ) {
 673           // Control pattern checks, now verify compares
 674           Node   *top_in = NULL;   // value being compared against
 675           Node   *bot_in = NULL;
 676           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 677               check_compare_clipping( false, top_if, max, top_in ) ) {
 678             if( bot_in == top_in ) {
 679               PhaseIterGVN *gvn = phase->is_IterGVN();
 680               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 681               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 682 
 683               // Check for the ConvF2INode
 684               ConvF2INode *convf2i;
 685               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 686                 convf2i->in(1) == bot_in ) {
 687                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 688                 // max test
 689                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
 690                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
 691                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 692                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 693                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 694                 // min test
 695                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
 696                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
 697                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 698                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 699                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 700                 // update input edges to region node
 701                 set_req_X( min_idx, if_min, gvn );
 702                 set_req_X( max_idx, if_max, gvn );
 703                 set_req_X( val_idx, ifF,    gvn );
 704                 // remove unnecessary 'LShiftI; RShiftI' idiom
 705                 gvn->hash_delete(phi);
 706                 phi->set_req_X( val_idx, convf2i, gvn );
 707                 gvn->hash_find_insert(phi);
 708                 // Return transformed region node
 709                 return this;
 710               }
 711             }
 712           }
 713         }
 714       }
 715     }
 716   }
 717 
 718   if (can_reshape) {
 719     modified |= optimize_trichotomy(phase->is_IterGVN());
 720   }
 721 
 722   return modified ? this : NULL;
 723 }
 724 
 725 //------------------------------optimize_trichotomy--------------------------
 726 // Optimize nested comparisons of the following kind:
 727 //
 728 // int compare(int a, int b) {
 729 //   return (a < b) ? -1 : (a == b) ? 0 : 1;
 730 // }
 731 //
 732 // Shape 1:
 733 // if (compare(a, b) == 1) { ... } -> if (a > b) { ... }
 734 //
 735 // Shape 2:
 736 // if (compare(a, b) == 0) { ... } -> if (a == b) { ... }
 737 //
 738 // Above code leads to the following IR shapes where both Ifs compare the
 739 // same value and two out of three region inputs idx1 and idx2 map to
 740 // the same value and control flow.
 741 //
 742 // (1)   If                 (2)   If
 743 //      /  \                     /  \
 744 //   Proj  Proj               Proj  Proj
 745 //     |      \                |      \
 746 //     |       If              |      If                      If
 747 //     |      /  \             |     /  \                    /  \
 748 //     |   Proj  Proj          |  Proj  Proj      ==>     Proj  Proj
 749 //     |   /      /            \    |    /                  |    /
 750 //    Region     /              \   |   /                   |   /
 751 //         \    /                \  |  /                    |  /
 752 //         Region                Region                    Region
 753 //
 754 // The method returns true if 'this' is modified and false otherwise.
 755 bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) {
 756   int idx1 = 1, idx2 = 2;
 757   Node* region = NULL;
 758   if (req() == 3 && in(1) != NULL && in(2) != NULL) {
 759     // Shape 1: Check if one of the inputs is a region that merges two control
 760     // inputs and has no other users (especially no Phi users).
 761     region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region();
 762     if (region == NULL || region->outcnt() != 2 || region->req() != 3) {
 763       return false; // No suitable region input found
 764     }
 765   } else if (req() == 4) {
 766     // Shape 2: Check if two control inputs map to the same value of the unique phi
 767     // user and treat these as if they would come from another region (shape (1)).
 768     PhiNode* phi = has_unique_phi();
 769     if (phi == NULL) {
 770       return false; // No unique phi user
 771     }
 772     if (phi->in(idx1) != phi->in(idx2)) {
 773       idx2 = 3;
 774       if (phi->in(idx1) != phi->in(idx2)) {
 775         idx1 = 2;
 776         if (phi->in(idx1) != phi->in(idx2)) {
 777           return false; // No equal phi inputs found
 778         }
 779       }
 780     }
 781     assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value
 782     region = this;
 783   }
 784   if (region == NULL || region->in(idx1) == NULL || region->in(idx2) == NULL) {
 785     return false; // Region does not merge two control inputs
 786   }
 787   // At this point we know that region->in(idx1) and region->(idx2) map to the same
 788   // value and control flow. Now search for ifs that feed into these region inputs.
 789   ProjNode* proj1 = region->in(idx1)->isa_Proj();
 790   ProjNode* proj2 = region->in(idx2)->isa_Proj();
 791   if (proj1 == NULL || proj1->outcnt() != 1 ||
 792       proj2 == NULL || proj2->outcnt() != 1) {
 793     return false; // No projection inputs with region as unique user found
 794   }
 795   assert(proj1 != proj2, "should be different projections");
 796   IfNode* iff1 = proj1->in(0)->isa_If();
 797   IfNode* iff2 = proj2->in(0)->isa_If();
 798   if (iff1 == NULL || iff1->outcnt() != 2 ||
 799       iff2 == NULL || iff2->outcnt() != 2) {
 800     return false; // No ifs found
 801   }
 802   if (iff1 == iff2) {
 803     igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated
 804     igvn->replace_input_of(region, idx1, iff1->in(0));
 805     igvn->replace_input_of(region, idx2, igvn->C->top());
 806     return (region == this); // Remove useless if (both projections map to the same control/value)
 807   }
 808   BoolNode* bol1 = iff1->in(1)->isa_Bool();
 809   BoolNode* bol2 = iff2->in(1)->isa_Bool();
 810   if (bol1 == NULL || bol2 == NULL) {
 811     return false; // No bool inputs found
 812   }
 813   Node* cmp1 = bol1->in(1);
 814   Node* cmp2 = bol2->in(1);
 815   bool commute = false;
 816   if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) {
 817     return false; // No comparison
 818   } else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD ||
 819              cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD ||
 820              cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN ||
 821              cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN) {
 822     // Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests.
 823     return false;
 824   } else if (cmp1 != cmp2) {
 825     if (cmp1->in(1) == cmp2->in(2) &&
 826         cmp1->in(2) == cmp2->in(1)) {
 827       commute = true; // Same but swapped inputs, commute the test
 828     } else {
 829       return false; // Ifs are not comparing the same values
 830     }
 831   }
 832   proj1 = proj1->other_if_proj();
 833   proj2 = proj2->other_if_proj();
 834   if (!((proj1->unique_ctrl_out() == iff2 &&
 835          proj2->unique_ctrl_out() == this) ||
 836         (proj2->unique_ctrl_out() == iff1 &&
 837          proj1->unique_ctrl_out() == this))) {
 838     return false; // Ifs are not connected through other projs
 839   }
 840   // Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged
 841   // through 'region' and map to the same value. Merge the boolean tests and replace
 842   // the ifs by a single comparison.
 843   BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate();
 844   BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate();
 845   test1 = commute ? test1.commute() : test1;
 846   // After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine.
 847   BoolTest::mask res = test1.merge(test2);
 848   if (res == BoolTest::illegal) {
 849     return false; // Unable to merge tests
 850   }
 851   // Adjust iff1 to always pass (only iff2 will remain)
 852   igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con));
 853   if (res == BoolTest::never) {
 854     // Merged test is always false, adjust iff2 to always fail
 855     igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con));
 856   } else {
 857     // Replace bool input of iff2 with merged test
 858     BoolNode* new_bol = new BoolNode(bol2->in(1), res);
 859     igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn)));
 860   }
 861   return false;
 862 }
 863 
 864 const RegMask &RegionNode::out_RegMask() const {
 865   return RegMask::Empty;
 866 }
 867 
 868 // Find the one non-null required input.  RegionNode only
 869 Node *Node::nonnull_req() const {
 870   assert( is_Region(), "" );
 871   for( uint i = 1; i < _cnt; i++ )
 872     if( in(i) )
 873       return in(i);
 874   ShouldNotReachHere();
 875   return NULL;
 876 }
 877 
 878 
 879 //=============================================================================
 880 // note that these functions assume that the _adr_type field is flattened
 881 uint PhiNode::hash() const {
 882   const Type* at = _adr_type;
 883   return TypeNode::hash() + (at ? at->hash() : 0);
 884 }
 885 uint PhiNode::cmp( const Node &n ) const {
 886   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 887 }
 888 static inline
 889 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 890   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 891   return Compile::current()->alias_type(at)->adr_type();
 892 }
 893 
 894 //----------------------------make---------------------------------------------
 895 // create a new phi with edges matching r and set (initially) to x
 896 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 897   uint preds = r->req();   // Number of predecessor paths
 898   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 899   PhiNode* p = new PhiNode(r, t, at);
 900   for (uint j = 1; j < preds; j++) {
 901     // Fill in all inputs, except those which the region does not yet have
 902     if (r->in(j) != NULL)
 903       p->init_req(j, x);
 904   }
 905   return p;
 906 }
 907 PhiNode* PhiNode::make(Node* r, Node* x) {
 908   const Type*    t  = x->bottom_type();
 909   const TypePtr* at = NULL;
 910   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 911   return make(r, x, t, at);
 912 }
 913 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 914   const Type*    t  = x->bottom_type();
 915   const TypePtr* at = NULL;
 916   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 917   return new PhiNode(r, t, at);
 918 }
 919 
 920 
 921 //------------------------slice_memory-----------------------------------------
 922 // create a new phi with narrowed memory type
 923 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 924   PhiNode* mem = (PhiNode*) clone();
 925   *(const TypePtr**)&mem->_adr_type = adr_type;
 926   // convert self-loops, or else we get a bad graph
 927   for (uint i = 1; i < req(); i++) {
 928     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 929   }
 930   mem->verify_adr_type();
 931   return mem;
 932 }
 933 
 934 //------------------------split_out_instance-----------------------------------
 935 // Split out an instance type from a bottom phi.
 936 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 937   const TypeOopPtr *t_oop = at->isa_oopptr();
 938   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 939   const TypePtr *t = adr_type();
 940   assert(type() == Type::MEMORY &&
 941          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 942           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 943           t->is_oopptr()->cast_to_exactness(true)
 944            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 945            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 946          "bottom or raw memory required");
 947 
 948   // Check if an appropriate node already exists.
 949   Node *region = in(0);
 950   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 951     Node* use = region->fast_out(k);
 952     if( use->is_Phi()) {
 953       PhiNode *phi2 = use->as_Phi();
 954       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 955         return phi2;
 956       }
 957     }
 958   }
 959   Compile *C = igvn->C;
 960   Arena *a = Thread::current()->resource_area();
 961   Node_Array node_map = new Node_Array(a);
 962   Node_Stack stack(a, C->live_nodes() >> 4);
 963   PhiNode *nphi = slice_memory(at);
 964   igvn->register_new_node_with_optimizer( nphi );
 965   node_map.map(_idx, nphi);
 966   stack.push((Node *)this, 1);
 967   while(!stack.is_empty()) {
 968     PhiNode *ophi = stack.node()->as_Phi();
 969     uint i = stack.index();
 970     assert(i >= 1, "not control edge");
 971     stack.pop();
 972     nphi = node_map[ophi->_idx]->as_Phi();
 973     for (; i < ophi->req(); i++) {
 974       Node *in = ophi->in(i);
 975       if (in == NULL || igvn->type(in) == Type::TOP)
 976         continue;
 977       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
 978       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 979       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 980         opt = node_map[optphi->_idx];
 981         if (opt == NULL) {
 982           stack.push(ophi, i);
 983           nphi = optphi->slice_memory(at);
 984           igvn->register_new_node_with_optimizer( nphi );
 985           node_map.map(optphi->_idx, nphi);
 986           ophi = optphi;
 987           i = 0; // will get incremented at top of loop
 988           continue;
 989         }
 990       }
 991       nphi->set_req(i, opt);
 992     }
 993   }
 994   return nphi;
 995 }
 996 
 997 //------------------------verify_adr_type--------------------------------------
 998 #ifdef ASSERT
 999 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
1000   if (visited.test_set(_idx))  return;  //already visited
1001 
1002   // recheck constructor invariants:
1003   verify_adr_type(false);
1004 
1005   // recheck local phi/phi consistency:
1006   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
1007          "adr_type must be consistent across phi nest");
1008 
1009   // walk around
1010   for (uint i = 1; i < req(); i++) {
1011     Node* n = in(i);
1012     if (n == NULL)  continue;
1013     const Node* np = in(i);
1014     if (np->is_Phi()) {
1015       np->as_Phi()->verify_adr_type(visited, at);
1016     } else if (n->bottom_type() == Type::TOP
1017                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
1018       // ignore top inputs
1019     } else {
1020       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
1021       // recheck phi/non-phi consistency at leaves:
1022       assert((nat != NULL) == (at != NULL), "");
1023       assert(nat == at || nat == TypePtr::BOTTOM,
1024              "adr_type must be consistent at leaves of phi nest");
1025     }
1026   }
1027 }
1028 
1029 // Verify a whole nest of phis rooted at this one.
1030 void PhiNode::verify_adr_type(bool recursive) const {
1031   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
1032   if (Node::in_dump())               return;  // muzzle asserts when printing
1033 
1034   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
1035 
1036   if (!VerifyAliases)       return;  // verify thoroughly only if requested
1037 
1038   assert(_adr_type == flatten_phi_adr_type(_adr_type),
1039          "Phi::adr_type must be pre-normalized");
1040 
1041   if (recursive) {
1042     VectorSet visited(Thread::current()->resource_area());
1043     verify_adr_type(visited, _adr_type);
1044   }
1045 }
1046 #endif
1047 
1048 
1049 //------------------------------Value------------------------------------------
1050 // Compute the type of the PhiNode
1051 const Type* PhiNode::Value(PhaseGVN* phase) const {
1052   Node *r = in(0);              // RegionNode
1053   if( !r )                      // Copy or dead
1054     return in(1) ? phase->type(in(1)) : Type::TOP;
1055 
1056   // Note: During parsing, phis are often transformed before their regions.
1057   // This means we have to use type_or_null to defend against untyped regions.
1058   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
1059     return Type::TOP;
1060 
1061   // Check for trip-counted loop.  If so, be smarter.
1062   CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
1063   if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
1064     // protect against init_trip() or limit() returning NULL
1065     if (l->can_be_counted_loop(phase)) {
1066       const Node *init   = l->init_trip();
1067       const Node *limit  = l->limit();
1068       const Node* stride = l->stride();
1069       if (init != NULL && limit != NULL && stride != NULL) {
1070         const TypeInt* lo = phase->type(init)->isa_int();
1071         const TypeInt* hi = phase->type(limit)->isa_int();
1072         const TypeInt* stride_t = phase->type(stride)->isa_int();
1073         if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
1074           assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
1075           BoolTest::mask bt = l->loopexit()->test_trip();
1076           // If the loop exit condition is "not equal", the condition
1077           // would not trigger if init > limit (if stride > 0) or if
1078           // init < limit if (stride > 0) so we can't deduce bounds
1079           // for the iv from the exit condition.
1080           if (bt != BoolTest::ne) {
1081             if (stride_t->_hi < 0) {          // Down-counter loop
1082               swap(lo, hi);
1083               return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
1084             } else if (stride_t->_lo >= 0) {
1085               return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
1086             }
1087           }
1088         }
1089       }
1090     } else if (l->in(LoopNode::LoopBackControl) != NULL &&
1091                in(LoopNode::EntryControl) != NULL &&
1092                phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
1093       // During CCP, if we saturate the type of a counted loop's Phi
1094       // before the special code for counted loop above has a chance
1095       // to run (that is as long as the type of the backedge's control
1096       // is top), we might end up with non monotonic types
1097       return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
1098     }
1099   }
1100 
1101   // Until we have harmony between classes and interfaces in the type
1102   // lattice, we must tread carefully around phis which implicitly
1103   // convert the one to the other.
1104   const TypePtr* ttp = _type->make_ptr();
1105   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
1106   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
1107   bool is_intf = false;
1108   if (ttip != NULL) {
1109     ciKlass* k = ttip->klass();
1110     if (k->is_loaded() && k->is_interface())
1111       is_intf = true;
1112   }
1113   if (ttkp != NULL) {
1114     ciKlass* k = ttkp->klass();
1115     if (k->is_loaded() && k->is_interface())
1116       is_intf = true;
1117   }
1118 
1119   // Default case: merge all inputs
1120   const Type *t = Type::TOP;        // Merged type starting value
1121   for (uint i = 1; i < req(); ++i) {// For all paths in
1122     // Reachable control path?
1123     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
1124       const Type* ti = phase->type(in(i));
1125       // We assume that each input of an interface-valued Phi is a true
1126       // subtype of that interface.  This might not be true of the meet
1127       // of all the input types.  The lattice is not distributive in
1128       // such cases.  Ward off asserts in type.cpp by refusing to do
1129       // meets between interfaces and proper classes.
1130       const TypePtr* tip = ti->make_ptr();
1131       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
1132       if (tiip) {
1133         bool ti_is_intf = false;
1134         ciKlass* k = tiip->klass();
1135         if (k->is_loaded() && k->is_interface())
1136           ti_is_intf = true;
1137         if (is_intf != ti_is_intf)
1138           { t = _type; break; }
1139       }
1140       t = t->meet_speculative(ti);
1141     }
1142   }
1143 
1144   // The worst-case type (from ciTypeFlow) should be consistent with "t".
1145   // That is, we expect that "t->higher_equal(_type)" holds true.
1146   // There are various exceptions:
1147   // - Inputs which are phis might in fact be widened unnecessarily.
1148   //   For example, an input might be a widened int while the phi is a short.
1149   // - Inputs might be BotPtrs but this phi is dependent on a null check,
1150   //   and postCCP has removed the cast which encodes the result of the check.
1151   // - The type of this phi is an interface, and the inputs are classes.
1152   // - Value calls on inputs might produce fuzzy results.
1153   //   (Occurrences of this case suggest improvements to Value methods.)
1154   //
1155   // It is not possible to see Type::BOTTOM values as phi inputs,
1156   // because the ciTypeFlow pre-pass produces verifier-quality types.
1157   const Type* ft = t->filter_speculative(_type);  // Worst case type
1158 
1159 #ifdef ASSERT
1160   // The following logic has been moved into TypeOopPtr::filter.
1161   const Type* jt = t->join_speculative(_type);
1162   if (jt->empty()) {           // Emptied out???
1163 
1164     // Check for evil case of 't' being a class and '_type' expecting an
1165     // interface.  This can happen because the bytecodes do not contain
1166     // enough type info to distinguish a Java-level interface variable
1167     // from a Java-level object variable.  If we meet 2 classes which
1168     // both implement interface I, but their meet is at 'j/l/O' which
1169     // doesn't implement I, we have no way to tell if the result should
1170     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
1171     // into a Phi which "knows" it's an Interface type we'll have to
1172     // uplift the type.
1173     if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1174       assert(ft == _type, ""); // Uplift to interface
1175     } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1176       assert(ft == _type, ""); // Uplift to interface
1177     } else {
1178       // We also have to handle 'evil cases' of interface- vs. class-arrays
1179       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1180       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1181           assert(ft == _type, "");   // Uplift to array of interface
1182       } else {
1183         // Otherwise it's something stupid like non-overlapping int ranges
1184         // found on dying counted loops.
1185         assert(ft == Type::TOP, ""); // Canonical empty value
1186       }
1187     }
1188   }
1189 
1190   else {
1191 
1192     // If we have an interface-typed Phi and we narrow to a class type, the join
1193     // should report back the class.  However, if we have a J/L/Object
1194     // class-typed Phi and an interface flows in, it's possible that the meet &
1195     // join report an interface back out.  This isn't possible but happens
1196     // because the type system doesn't interact well with interfaces.
1197     const TypePtr *jtp = jt->make_ptr();
1198     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1199     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1200     if( jtip && ttip ) {
1201       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1202           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1203         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1204                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1205         jt = ft;
1206       }
1207     }
1208     if( jtkp && ttkp ) {
1209       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1210           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1211           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1212         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1213                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1214         jt = ft;
1215       }
1216     }
1217     if (jt != ft && jt->base() == ft->base()) {
1218       if (jt->isa_int() &&
1219           jt->is_int()->_lo == ft->is_int()->_lo &&
1220           jt->is_int()->_hi == ft->is_int()->_hi)
1221         jt = ft;
1222       if (jt->isa_long() &&
1223           jt->is_long()->_lo == ft->is_long()->_lo &&
1224           jt->is_long()->_hi == ft->is_long()->_hi)
1225         jt = ft;
1226     }
1227     if (jt != ft) {
1228       tty->print("merge type:  "); t->dump(); tty->cr();
1229       tty->print("kill type:   "); _type->dump(); tty->cr();
1230       tty->print("join type:   "); jt->dump(); tty->cr();
1231       tty->print("filter type: "); ft->dump(); tty->cr();
1232     }
1233     assert(jt == ft, "");
1234   }
1235 #endif //ASSERT
1236 
1237   // Deal with conversion problems found in data loops.
1238   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1239 
1240   return ft;
1241 }
1242 
1243 
1244 //------------------------------is_diamond_phi---------------------------------
1245 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1246 // index of the true path or 0 otherwise.
1247 // If check_control_only is true, do not inspect the If node at the
1248 // top, and return -1 (not an edge number) on success.
1249 int PhiNode::is_diamond_phi(bool check_control_only) const {
1250   // Check for a 2-path merge
1251   Node *region = in(0);
1252   if( !region ) return 0;
1253   if( region->req() != 3 ) return 0;
1254   if(         req() != 3 ) return 0;
1255   // Check that both paths come from the same If
1256   Node *ifp1 = region->in(1);
1257   Node *ifp2 = region->in(2);
1258   if( !ifp1 || !ifp2 ) return 0;
1259   Node *iff = ifp1->in(0);
1260   if( !iff || !iff->is_If() ) return 0;
1261   if( iff != ifp2->in(0) ) return 0;
1262   if (check_control_only)  return -1;
1263   // Check for a proper bool/cmp
1264   const Node *b = iff->in(1);
1265   if( !b->is_Bool() ) return 0;
1266   const Node *cmp = b->in(1);
1267   if( !cmp->is_Cmp() ) return 0;
1268 
1269   // Check for branching opposite expected
1270   if( ifp2->Opcode() == Op_IfTrue ) {
1271     assert( ifp1->Opcode() == Op_IfFalse, "" );
1272     return 2;
1273   } else {
1274     assert( ifp1->Opcode() == Op_IfTrue, "" );
1275     return 1;
1276   }
1277 }
1278 
1279 //----------------------------check_cmove_id-----------------------------------
1280 // Check for CMove'ing a constant after comparing against the constant.
1281 // Happens all the time now, since if we compare equality vs a constant in
1282 // the parser, we "know" the variable is constant on one path and we force
1283 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1284 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1285 // general in that we don't need constants.  Since CMove's are only inserted
1286 // in very special circumstances, we do it here on generic Phi's.
1287 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1288   assert(true_path !=0, "only diamond shape graph expected");
1289 
1290   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1291   // phi->region->if_proj->ifnode->bool->cmp
1292   Node*     region = in(0);
1293   Node*     iff    = region->in(1)->in(0);
1294   BoolNode* b      = iff->in(1)->as_Bool();
1295   Node*     cmp    = b->in(1);
1296   Node*     tval   = in(true_path);
1297   Node*     fval   = in(3-true_path);
1298   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1299   if (id == NULL)
1300     return NULL;
1301 
1302   // Either value might be a cast that depends on a branch of 'iff'.
1303   // Since the 'id' value will float free of the diamond, either
1304   // decast or return failure.
1305   Node* ctl = id->in(0);
1306   if (ctl != NULL && ctl->in(0) == iff) {
1307     if (id->is_ConstraintCast()) {
1308       return id->in(1);
1309     } else {
1310       // Don't know how to disentangle this value.
1311       return NULL;
1312     }
1313   }
1314 
1315   return id;
1316 }
1317 
1318 //------------------------------Identity---------------------------------------
1319 // Check for Region being Identity.
1320 Node* PhiNode::Identity(PhaseGVN* phase) {
1321   // Check for no merging going on
1322   // (There used to be special-case code here when this->region->is_Loop.
1323   // It would check for a tributary phi on the backedge that the main phi
1324   // trivially, perhaps with a single cast.  The unique_input method
1325   // does all this and more, by reducing such tributaries to 'this'.)
1326   Node* uin = unique_input(phase, false);
1327   if (uin != NULL) {
1328     return uin;
1329   }
1330 
1331   int true_path = is_diamond_phi();
1332   if (true_path != 0) {
1333     Node* id = is_cmove_id(phase, true_path);
1334     if (id != NULL)  return id;
1335   }
1336 
1337   return this;                     // No identity
1338 }
1339 
1340 //-----------------------------unique_input------------------------------------
1341 // Find the unique value, discounting top, self-loops, and casts.
1342 // Return top if there are no inputs, and self if there are multiple.
1343 Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1344   //  1) One unique direct input,
1345   // or if uncast is true:
1346   //  2) some of the inputs have an intervening ConstraintCast
1347   //  3) an input is a self loop
1348   //
1349   //  1) input   or   2) input     or   3) input __
1350   //     /   \           /   \               \  /  \
1351   //     \   /          |    cast             phi  cast
1352   //      phi            \   /               /  \  /
1353   //                      phi               /    --
1354 
1355   Node* r = in(0);                      // RegionNode
1356   if (r == NULL)  return in(1);         // Already degraded to a Copy
1357   Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1358 
1359   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1360     Node* rc = r->in(i);
1361     if (rc == NULL || phase->type(rc) == Type::TOP)
1362       continue;                 // ignore unreachable control path
1363     Node* n = in(i);
1364     if (n == NULL)
1365       continue;
1366     Node* un = n;
1367     if (uncast) {
1368 #ifdef ASSERT
1369       Node* m = un->uncast();
1370 #endif
1371       while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1372         Node* next = un->in(1);
1373         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1374           // risk exposing raw ptr at safepoint
1375           break;
1376         }
1377         un = next;
1378       }
1379       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1380     }
1381     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1382       continue; // ignore if top, or in(i) and "this" are in a data cycle
1383     }
1384     // Check for a unique input (maybe uncasted)
1385     if (input == NULL) {
1386       input = un;
1387     } else if (input != un) {
1388       input = NodeSentinel; // no unique input
1389     }
1390   }
1391   if (input == NULL) {
1392     return phase->C->top();        // no inputs
1393   }
1394 
1395   if (input != NodeSentinel) {
1396     return input;           // one unique direct input
1397   }
1398 
1399   // Nothing.
1400   return NULL;
1401 }
1402 
1403 //------------------------------is_x2logic-------------------------------------
1404 // Check for simple convert-to-boolean pattern
1405 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1406 // Convert Phi to an ConvIB.
1407 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1408   assert(true_path !=0, "only diamond shape graph expected");
1409   // Convert the true/false index into an expected 0/1 return.
1410   // Map 2->0 and 1->1.
1411   int flipped = 2-true_path;
1412 
1413   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1414   // phi->region->if_proj->ifnode->bool->cmp
1415   Node *region = phi->in(0);
1416   Node *iff = region->in(1)->in(0);
1417   BoolNode *b = (BoolNode*)iff->in(1);
1418   const CmpNode *cmp = (CmpNode*)b->in(1);
1419 
1420   Node *zero = phi->in(1);
1421   Node *one  = phi->in(2);
1422   const Type *tzero = phase->type( zero );
1423   const Type *tone  = phase->type( one  );
1424 
1425   // Check for compare vs 0
1426   const Type *tcmp = phase->type(cmp->in(2));
1427   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1428     // Allow cmp-vs-1 if the other input is bounded by 0-1
1429     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1430       return NULL;
1431     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1432   }
1433 
1434   // Check for setting zero/one opposite expected
1435   if( tzero == TypeInt::ZERO ) {
1436     if( tone == TypeInt::ONE ) {
1437     } else return NULL;
1438   } else if( tzero == TypeInt::ONE ) {
1439     if( tone == TypeInt::ZERO ) {
1440       flipped = 1-flipped;
1441     } else return NULL;
1442   } else return NULL;
1443 
1444   // Check for boolean test backwards
1445   if( b->_test._test == BoolTest::ne ) {
1446   } else if( b->_test._test == BoolTest::eq ) {
1447     flipped = 1-flipped;
1448   } else return NULL;
1449 
1450   // Build int->bool conversion
1451   Node *in1 = cmp->in(1);
1452   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1453   in1 = bs->step_over_gc_barrier(in1);
1454   Node *n = new Conv2BNode(in1);
1455   if( flipped )
1456     n = new XorINode( phase->transform(n), phase->intcon(1) );
1457 
1458   return n;
1459 }
1460 
1461 //------------------------------is_cond_add------------------------------------
1462 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1463 // To be profitable the control flow has to disappear; there can be no other
1464 // values merging here.  We replace the test-and-branch with:
1465 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1466 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1467 // Then convert Y to 0-or-Y and finally add.
1468 // This is a key transform for SpecJava _201_compress.
1469 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1470   assert(true_path !=0, "only diamond shape graph expected");
1471 
1472   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1473   // phi->region->if_proj->ifnode->bool->cmp
1474   RegionNode *region = (RegionNode*)phi->in(0);
1475   Node *iff = region->in(1)->in(0);
1476   BoolNode* b = iff->in(1)->as_Bool();
1477   const CmpNode *cmp = (CmpNode*)b->in(1);
1478 
1479   // Make sure only merging this one phi here
1480   if (region->has_unique_phi() != phi)  return NULL;
1481 
1482   // Make sure each arm of the diamond has exactly one output, which we assume
1483   // is the region.  Otherwise, the control flow won't disappear.
1484   if (region->in(1)->outcnt() != 1) return NULL;
1485   if (region->in(2)->outcnt() != 1) return NULL;
1486 
1487   // Check for "(P < Q)" of type signed int
1488   if (b->_test._test != BoolTest::lt)  return NULL;
1489   if (cmp->Opcode() != Op_CmpI)        return NULL;
1490 
1491   Node *p = cmp->in(1);
1492   Node *q = cmp->in(2);
1493   Node *n1 = phi->in(  true_path);
1494   Node *n2 = phi->in(3-true_path);
1495 
1496   int op = n1->Opcode();
1497   if( op != Op_AddI           // Need zero as additive identity
1498       /*&&op != Op_SubI &&
1499       op != Op_AddP &&
1500       op != Op_XorI &&
1501       op != Op_OrI*/ )
1502     return NULL;
1503 
1504   Node *x = n2;
1505   Node *y = NULL;
1506   if( x == n1->in(1) ) {
1507     y = n1->in(2);
1508   } else if( x == n1->in(2) ) {
1509     y = n1->in(1);
1510   } else return NULL;
1511 
1512   // Not so profitable if compare and add are constants
1513   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1514     return NULL;
1515 
1516   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1517   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1518   return new AddINode(j_and,x);
1519 }
1520 
1521 //------------------------------is_absolute------------------------------------
1522 // Check for absolute value.
1523 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1524   assert(true_path !=0, "only diamond shape graph expected");
1525 
1526   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1527   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1528 
1529   // ABS ends with the merge of 2 control flow paths.
1530   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1531   int false_path = 3 - true_path;
1532 
1533   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1534   // phi->region->if_proj->ifnode->bool->cmp
1535   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1536 
1537   // Check bool sense
1538   switch( bol->_test._test ) {
1539   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1540   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1541   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1542   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1543   default:           return NULL;                              break;
1544   }
1545 
1546   // Test is next
1547   Node *cmp = bol->in(1);
1548   const Type *tzero = NULL;
1549   switch( cmp->Opcode() ) {
1550   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1551   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1552   default: return NULL;
1553   }
1554 
1555   // Find zero input of compare; the other input is being abs'd
1556   Node *x = NULL;
1557   bool flip = false;
1558   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1559     x = cmp->in(3 - cmp_zero_idx);
1560   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1561     // The test is inverted, we should invert the result...
1562     x = cmp->in(cmp_zero_idx);
1563     flip = true;
1564   } else {
1565     return NULL;
1566   }
1567 
1568   // Next get the 2 pieces being selected, one is the original value
1569   // and the other is the negated value.
1570   if( phi_root->in(phi_x_idx) != x ) return NULL;
1571 
1572   // Check other phi input for subtract node
1573   Node *sub = phi_root->in(3 - phi_x_idx);
1574 
1575   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1576   if( tzero == TypeF::ZERO ) {
1577     if( sub->Opcode() != Op_SubF ||
1578         sub->in(2) != x ||
1579         phase->type(sub->in(1)) != tzero ) return NULL;
1580     x = new AbsFNode(x);
1581     if (flip) {
1582       x = new SubFNode(sub->in(1), phase->transform(x));
1583     }
1584   } else {
1585     if( sub->Opcode() != Op_SubD ||
1586         sub->in(2) != x ||
1587         phase->type(sub->in(1)) != tzero ) return NULL;
1588     x = new AbsDNode(x);
1589     if (flip) {
1590       x = new SubDNode(sub->in(1), phase->transform(x));
1591     }
1592   }
1593 
1594   return x;
1595 }
1596 
1597 //------------------------------split_once-------------------------------------
1598 // Helper for split_flow_path
1599 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1600   igvn->hash_delete(n);         // Remove from hash before hacking edges
1601 
1602   uint j = 1;
1603   for (uint i = phi->req()-1; i > 0; i--) {
1604     if (phi->in(i) == val) {   // Found a path with val?
1605       // Add to NEW Region/Phi, no DU info
1606       newn->set_req( j++, n->in(i) );
1607       // Remove from OLD Region/Phi
1608       n->del_req(i);
1609     }
1610   }
1611 
1612   // Register the new node but do not transform it.  Cannot transform until the
1613   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1614   igvn->register_new_node_with_optimizer( newn );
1615 
1616   // Now I can point to the new node.
1617   n->add_req(newn);
1618   igvn->_worklist.push(n);
1619 }
1620 
1621 //------------------------------split_flow_path--------------------------------
1622 // Check for merging identical values and split flow paths
1623 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1624   BasicType bt = phi->type()->basic_type();
1625   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1626     return NULL;                // Bail out on funny non-value stuff
1627   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1628     return NULL;                // third unequal input to be worth doing
1629 
1630   // Scan for a constant
1631   uint i;
1632   for( i = 1; i < phi->req()-1; i++ ) {
1633     Node *n = phi->in(i);
1634     if( !n ) return NULL;
1635     if( phase->type(n) == Type::TOP ) return NULL;
1636     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1637       break;
1638   }
1639   if( i >= phi->req() )         // Only split for constants
1640     return NULL;
1641 
1642   Node *val = phi->in(i);       // Constant to split for
1643   uint hit = 0;                 // Number of times it occurs
1644   Node *r = phi->region();
1645 
1646   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1647     Node *n = phi->in(i);
1648     if( !n ) return NULL;
1649     if( phase->type(n) == Type::TOP ) return NULL;
1650     if( phi->in(i) == val ) {
1651       hit++;
1652       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1653         return NULL;            // don't split loop entry path
1654       }
1655     }
1656   }
1657 
1658   if( hit <= 1 ||               // Make sure we find 2 or more
1659       hit == phi->req()-1 )     // and not ALL the same value
1660     return NULL;
1661 
1662   // Now start splitting out the flow paths that merge the same value.
1663   // Split first the RegionNode.
1664   PhaseIterGVN *igvn = phase->is_IterGVN();
1665   RegionNode *newr = new RegionNode(hit+1);
1666   split_once(igvn, phi, val, r, newr);
1667 
1668   // Now split all other Phis than this one
1669   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1670     Node* phi2 = r->fast_out(k);
1671     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1672       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1673       split_once(igvn, phi, val, phi2, newphi);
1674     }
1675   }
1676 
1677   // Clean up this guy
1678   igvn->hash_delete(phi);
1679   for( i = phi->req()-1; i > 0; i-- ) {
1680     if( phi->in(i) == val ) {
1681       phi->del_req(i);
1682     }
1683   }
1684   phi->add_req(val);
1685 
1686   return phi;
1687 }
1688 
1689 //=============================================================================
1690 //------------------------------simple_data_loop_check-------------------------
1691 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1692 //  Returns:
1693 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1694 // Safe       - safe case when the phi and it's inputs reference only safe data
1695 //              nodes;
1696 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1697 //              is no reference back to the phi - need a graph walk
1698 //              to determine if it is in a loop;
1699 // UnsafeLoop - unsafe case when the phi references itself directly or through
1700 //              unsafe data node.
1701 //  Note: a safe data node is a node which could/never reference itself during
1702 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1703 //  I mark Phi nodes as safe node not only because they can reference itself
1704 //  but also to prevent mistaking the fallthrough case inside an outer loop
1705 //  as dead loop when the phi references itselfs through an other phi.
1706 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1707   // It is unsafe loop if the phi node references itself directly.
1708   if (in == (Node*)this)
1709     return UnsafeLoop; // Unsafe loop
1710   // Unsafe loop if the phi node references itself through an unsafe data node.
1711   // Exclude cases with null inputs or data nodes which could reference
1712   // itself (safe for dead loops).
1713   if (in != NULL && !in->is_dead_loop_safe()) {
1714     // Check inputs of phi's inputs also.
1715     // It is much less expensive then full graph walk.
1716     uint cnt = in->req();
1717     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1718     for (; i < cnt; ++i) {
1719       Node* m = in->in(i);
1720       if (m == (Node*)this)
1721         return UnsafeLoop; // Unsafe loop
1722       if (m != NULL && !m->is_dead_loop_safe()) {
1723         // Check the most common case (about 30% of all cases):
1724         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1725         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1726         if (m1 == (Node*)this)
1727           return UnsafeLoop; // Unsafe loop
1728         if (m1 != NULL && m1 == m->in(2) &&
1729             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1730           continue; // Safe case
1731         }
1732         // The phi references an unsafe node - need full analysis.
1733         return Unsafe;
1734       }
1735     }
1736   }
1737   return Safe; // Safe case - we can optimize the phi node.
1738 }
1739 
1740 //------------------------------is_unsafe_data_reference-----------------------
1741 // If phi can be reached through the data input - it is data loop.
1742 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1743   assert(req() > 1, "");
1744   // First, check simple cases when phi references itself directly or
1745   // through an other node.
1746   LoopSafety safety = simple_data_loop_check(in);
1747   if (safety == UnsafeLoop)
1748     return true;  // phi references itself - unsafe loop
1749   else if (safety == Safe)
1750     return false; // Safe case - phi could be replaced with the unique input.
1751 
1752   // Unsafe case when we should go through data graph to determine
1753   // if the phi references itself.
1754 
1755   ResourceMark rm;
1756 
1757   Arena *a = Thread::current()->resource_area();
1758   Node_List nstack(a);
1759   VectorSet visited(a);
1760 
1761   nstack.push(in); // Start with unique input.
1762   visited.set(in->_idx);
1763   while (nstack.size() != 0) {
1764     Node* n = nstack.pop();
1765     uint cnt = n->req();
1766     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1767     for (; i < cnt; i++) {
1768       Node* m = n->in(i);
1769       if (m == (Node*)this) {
1770         return true;    // Data loop
1771       }
1772       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1773         if (!visited.test_set(m->_idx))
1774           nstack.push(m);
1775       }
1776     }
1777   }
1778   return false; // The phi is not reachable from its inputs
1779 }
1780 
1781 
1782 //------------------------------Ideal------------------------------------------
1783 // Return a node which is more "ideal" than the current node.  Must preserve
1784 // the CFG, but we can still strip out dead paths.
1785 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1786   // The next should never happen after 6297035 fix.
1787   if( is_copy() )               // Already degraded to a Copy ?
1788     return NULL;                // No change
1789 
1790   Node *r = in(0);              // RegionNode
1791   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1792 
1793   // Note: During parsing, phis are often transformed before their regions.
1794   // This means we have to use type_or_null to defend against untyped regions.
1795   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1796     return NULL;                // No change
1797 
1798   Node *top = phase->C->top();
1799   bool new_phi = (outcnt() == 0); // transforming new Phi
1800   // No change for igvn if new phi is not hooked
1801   if (new_phi && can_reshape)
1802     return NULL;
1803 
1804   // The are 2 situations when only one valid phi's input is left
1805   // (in addition to Region input).
1806   // One: region is not loop - replace phi with this input.
1807   // Two: region is loop - replace phi with top since this data path is dead
1808   //                       and we need to break the dead data loop.
1809   Node* progress = NULL;        // Record if any progress made
1810   for( uint j = 1; j < req(); ++j ){ // For all paths in
1811     // Check unreachable control paths
1812     Node* rc = r->in(j);
1813     Node* n = in(j);            // Get the input
1814     if (rc == NULL || phase->type(rc) == Type::TOP) {
1815       if (n != top) {           // Not already top?
1816         PhaseIterGVN *igvn = phase->is_IterGVN();
1817         if (can_reshape && igvn != NULL) {
1818           igvn->_worklist.push(r);
1819         }
1820         // Nuke it down
1821         if (can_reshape) {
1822           set_req_X(j, top, igvn);
1823         } else {
1824           set_req(j, top);
1825         }
1826         progress = this;        // Record progress
1827       }
1828     }
1829   }
1830 
1831   if (can_reshape && outcnt() == 0) {
1832     // set_req() above may kill outputs if Phi is referenced
1833     // only by itself on the dead (top) control path.
1834     return top;
1835   }
1836 
1837   bool uncasted = false;
1838   Node* uin = unique_input(phase, false);
1839   if (uin == NULL && can_reshape) {
1840     uncasted = true;
1841     uin = unique_input(phase, true);
1842   }
1843   if (uin == top) {             // Simplest case: no alive inputs.
1844     if (can_reshape)            // IGVN transformation
1845       return top;
1846     else
1847       return NULL;              // Identity will return TOP
1848   } else if (uin != NULL) {
1849     // Only one not-NULL unique input path is left.
1850     // Determine if this input is backedge of a loop.
1851     // (Skip new phis which have no uses and dead regions).
1852     if (outcnt() > 0 && r->in(0) != NULL) {
1853       // First, take the short cut when we know it is a loop and
1854       // the EntryControl data path is dead.
1855       // Loop node may have only one input because entry path
1856       // is removed in PhaseIdealLoop::Dominators().
1857       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1858       bool is_loop = (r->is_Loop() && r->req() == 3);
1859       // Then, check if there is a data loop when phi references itself directly
1860       // or through other data nodes.
1861       if ((is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl))) ||
1862           (!is_loop && is_unsafe_data_reference(uin))) {
1863         // Break this data loop to avoid creation of a dead loop.
1864         if (can_reshape) {
1865           return top;
1866         } else {
1867           // We can't return top if we are in Parse phase - cut inputs only
1868           // let Identity to handle the case.
1869           replace_edge(uin, top);
1870           return NULL;
1871         }
1872       }
1873     }
1874 
1875     if (uncasted) {
1876       // Add cast nodes between the phi to be removed and its unique input.
1877       // Wait until after parsing for the type information to propagate from the casts.
1878       assert(can_reshape, "Invalid during parsing");
1879       const Type* phi_type = bottom_type();
1880       assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1881       // Add casts to carry the control dependency of the Phi that is
1882       // going away
1883       Node* cast = NULL;
1884       if (phi_type->isa_int()) {
1885         cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1886       } else {
1887         const Type* uin_type = phase->type(uin);
1888         if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1889           cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1890         } else {
1891           // Use a CastPP for a cast to not null and a CheckCastPP for
1892           // a cast to a new klass (and both if both null-ness and
1893           // klass change).
1894 
1895           // If the type of phi is not null but the type of uin may be
1896           // null, uin's type must be casted to not null
1897           if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1898               uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1899             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1900           }
1901 
1902           // If the type of phi and uin, both casted to not null,
1903           // differ the klass of uin must be (check)cast'ed to match
1904           // that of phi
1905           if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
1906             Node* n = uin;
1907             if (cast != NULL) {
1908               cast = phase->transform(cast);
1909               n = cast;
1910             }
1911             cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
1912           }
1913           if (cast == NULL) {
1914             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1915           }
1916         }
1917       }
1918       assert(cast != NULL, "cast should be set");
1919       cast = phase->transform(cast);
1920       // set all inputs to the new cast(s) so the Phi is removed by Identity
1921       PhaseIterGVN* igvn = phase->is_IterGVN();
1922       for (uint i = 1; i < req(); i++) {
1923         set_req_X(i, cast, igvn);
1924       }
1925       uin = cast;
1926     }
1927 
1928     // One unique input.
1929     debug_only(Node* ident = Identity(phase));
1930     // The unique input must eventually be detected by the Identity call.
1931 #ifdef ASSERT
1932     if (ident != uin && !ident->is_top()) {
1933       // print this output before failing assert
1934       r->dump(3);
1935       this->dump(3);
1936       ident->dump();
1937       uin->dump();
1938     }
1939 #endif
1940     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1941     return NULL;
1942   }
1943 
1944   Node* opt = NULL;
1945   int true_path = is_diamond_phi();
1946   if( true_path != 0 ) {
1947     // Check for CMove'ing identity. If it would be unsafe,
1948     // handle it here. In the safe case, let Identity handle it.
1949     Node* unsafe_id = is_cmove_id(phase, true_path);
1950     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1951       opt = unsafe_id;
1952 
1953     // Check for simple convert-to-boolean pattern
1954     if( opt == NULL )
1955       opt = is_x2logic(phase, this, true_path);
1956 
1957     // Check for absolute value
1958     if( opt == NULL )
1959       opt = is_absolute(phase, this, true_path);
1960 
1961     // Check for conditional add
1962     if( opt == NULL && can_reshape )
1963       opt = is_cond_add(phase, this, true_path);
1964 
1965     // These 4 optimizations could subsume the phi:
1966     // have to check for a dead data loop creation.
1967     if( opt != NULL ) {
1968       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1969         // Found dead loop.
1970         if( can_reshape )
1971           return top;
1972         // We can't return top if we are in Parse phase - cut inputs only
1973         // to stop further optimizations for this phi. Identity will return TOP.
1974         assert(req() == 3, "only diamond merge phi here");
1975         set_req(1, top);
1976         set_req(2, top);
1977         return NULL;
1978       } else {
1979         return opt;
1980       }
1981     }
1982   }
1983 
1984   // Check for merging identical values and split flow paths
1985   if (can_reshape) {
1986     opt = split_flow_path(phase, this);
1987     // This optimization only modifies phi - don't need to check for dead loop.
1988     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1989     if (opt != NULL)  return opt;
1990   }
1991 
1992   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1993     // Try to undo Phi of AddP:
1994     // (Phi (AddP base base y) (AddP base2 base2 y))
1995     // becomes:
1996     // newbase := (Phi base base2)
1997     // (AddP newbase newbase y)
1998     //
1999     // This occurs as a result of unsuccessful split_thru_phi and
2000     // interferes with taking advantage of addressing modes. See the
2001     // clone_shift_expressions code in matcher.cpp
2002     Node* addp = in(1);
2003     const Type* type = addp->in(AddPNode::Base)->bottom_type();
2004     Node* y = addp->in(AddPNode::Offset);
2005     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
2006       // make sure that all the inputs are similar to the first one,
2007       // i.e. AddP with base == address and same offset as first AddP
2008       bool doit = true;
2009       for (uint i = 2; i < req(); i++) {
2010         if (in(i) == NULL ||
2011             in(i)->Opcode() != Op_AddP ||
2012             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
2013             in(i)->in(AddPNode::Offset) != y) {
2014           doit = false;
2015           break;
2016         }
2017         // Accumulate type for resulting Phi
2018         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
2019       }
2020       Node* base = NULL;
2021       if (doit) {
2022         // Check for neighboring AddP nodes in a tree.
2023         // If they have a base, use that it.
2024         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
2025           Node* u = this->fast_out(k);
2026           if (u->is_AddP()) {
2027             Node* base2 = u->in(AddPNode::Base);
2028             if (base2 != NULL && !base2->is_top()) {
2029               if (base == NULL)
2030                 base = base2;
2031               else if (base != base2)
2032                 { doit = false; break; }
2033             }
2034           }
2035         }
2036       }
2037       if (doit) {
2038         if (base == NULL) {
2039           base = new PhiNode(in(0), type, NULL);
2040           for (uint i = 1; i < req(); i++) {
2041             base->init_req(i, in(i)->in(AddPNode::Base));
2042           }
2043           phase->is_IterGVN()->register_new_node_with_optimizer(base);
2044         }
2045         return new AddPNode(base, base, y);
2046       }
2047     }
2048   }
2049 
2050   // Split phis through memory merges, so that the memory merges will go away.
2051   // Piggy-back this transformation on the search for a unique input....
2052   // It will be as if the merged memory is the unique value of the phi.
2053   // (Do not attempt this optimization unless parsing is complete.
2054   // It would make the parser's memory-merge logic sick.)
2055   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
2056   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
2057     // see if this phi should be sliced
2058     uint merge_width = 0;
2059     bool saw_self = false;
2060     for( uint i=1; i<req(); ++i ) {// For all paths in
2061       Node *ii = in(i);
2062       // TOP inputs should not be counted as safe inputs because if the
2063       // Phi references itself through all other inputs then splitting the
2064       // Phi through memory merges would create dead loop at later stage.
2065       if (ii == top) {
2066         return NULL; // Delay optimization until graph is cleaned.
2067       }
2068       if (ii->is_MergeMem()) {
2069         MergeMemNode* n = ii->as_MergeMem();
2070         merge_width = MAX2(merge_width, n->req());
2071         saw_self = saw_self || phase->eqv(n->base_memory(), this);
2072       }
2073     }
2074 
2075     // This restriction is temporarily necessary to ensure termination:
2076     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
2077 
2078     if (merge_width > Compile::AliasIdxRaw) {
2079       // found at least one non-empty MergeMem
2080       const TypePtr* at = adr_type();
2081       if (at != TypePtr::BOTTOM) {
2082         // Patch the existing phi to select an input from the merge:
2083         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
2084         //     Phi:AT1(...m1...)
2085         int alias_idx = phase->C->get_alias_index(at);
2086         for (uint i=1; i<req(); ++i) {
2087           Node *ii = in(i);
2088           if (ii->is_MergeMem()) {
2089             MergeMemNode* n = ii->as_MergeMem();
2090             // compress paths and change unreachable cycles to TOP
2091             // If not, we can update the input infinitely along a MergeMem cycle
2092             // Equivalent code is in MemNode::Ideal_common
2093             Node *m  = phase->transform(n);
2094             if (outcnt() == 0) {  // Above transform() may kill us!
2095               return top;
2096             }
2097             // If transformed to a MergeMem, get the desired slice
2098             // Otherwise the returned node represents memory for every slice
2099             Node *new_mem = (m->is_MergeMem()) ?
2100                              m->as_MergeMem()->memory_at(alias_idx) : m;
2101             // Update input if it is progress over what we have now
2102             if (new_mem != ii) {
2103               set_req(i, new_mem);
2104               progress = this;
2105             }
2106           }
2107         }
2108       } else {
2109         // We know that at least one MergeMem->base_memory() == this
2110         // (saw_self == true). If all other inputs also references this phi
2111         // (directly or through data nodes) - it is dead loop.
2112         bool saw_safe_input = false;
2113         for (uint j = 1; j < req(); ++j) {
2114           Node *n = in(j);
2115           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
2116             continue;              // skip known cases
2117           if (!is_unsafe_data_reference(n)) {
2118             saw_safe_input = true; // found safe input
2119             break;
2120           }
2121         }
2122         if (!saw_safe_input)
2123           return top; // all inputs reference back to this phi - dead loop
2124 
2125         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2126         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2127         PhaseIterGVN *igvn = phase->is_IterGVN();
2128         Node* hook = new Node(1);
2129         PhiNode* new_base = (PhiNode*) clone();
2130         // Must eagerly register phis, since they participate in loops.
2131         if (igvn) {
2132           igvn->register_new_node_with_optimizer(new_base);
2133           hook->add_req(new_base);
2134         }
2135         MergeMemNode* result = MergeMemNode::make(new_base);
2136         for (uint i = 1; i < req(); ++i) {
2137           Node *ii = in(i);
2138           if (ii->is_MergeMem()) {
2139             MergeMemNode* n = ii->as_MergeMem();
2140             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2141               // If we have not seen this slice yet, make a phi for it.
2142               bool made_new_phi = false;
2143               if (mms.is_empty()) {
2144                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2145                 made_new_phi = true;
2146                 if (igvn) {
2147                   igvn->register_new_node_with_optimizer(new_phi);
2148                   hook->add_req(new_phi);
2149                 }
2150                 mms.set_memory(new_phi);
2151               }
2152               Node* phi = mms.memory();
2153               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2154               phi->set_req(i, mms.memory2());
2155             }
2156           }
2157         }
2158         // Distribute all self-loops.
2159         { // (Extra braces to hide mms.)
2160           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2161             Node* phi = mms.memory();
2162             for (uint i = 1; i < req(); ++i) {
2163               if (phi->in(i) == this)  phi->set_req(i, phi);
2164             }
2165           }
2166         }
2167         // now transform the new nodes, and return the mergemem
2168         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2169           Node* phi = mms.memory();
2170           mms.set_memory(phase->transform(phi));
2171         }
2172         if (igvn) { // Unhook.
2173           igvn->hash_delete(hook);
2174           for (uint i = 1; i < hook->req(); i++) {
2175             hook->set_req(i, NULL);
2176           }
2177         }
2178         // Replace self with the result.
2179         return result;
2180       }
2181     }
2182     //
2183     // Other optimizations on the memory chain
2184     //
2185     const TypePtr* at = adr_type();
2186     for( uint i=1; i<req(); ++i ) {// For all paths in
2187       Node *ii = in(i);
2188       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2189       if (ii != new_in ) {
2190         set_req(i, new_in);
2191         progress = this;
2192       }
2193     }
2194   }
2195 
2196 #ifdef _LP64
2197   // Push DecodeN/DecodeNKlass down through phi.
2198   // The rest of phi graph will transform by split EncodeP node though phis up.
2199   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2200     bool may_push = true;
2201     bool has_decodeN = false;
2202     bool is_decodeN = false;
2203     for (uint i=1; i<req(); ++i) {// For all paths in
2204       Node *ii = in(i);
2205       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2206         // Do optimization if a non dead path exist.
2207         if (ii->in(1)->bottom_type() != Type::TOP) {
2208           has_decodeN = true;
2209           is_decodeN = ii->is_DecodeN();
2210         }
2211       } else if (!ii->is_Phi()) {
2212         may_push = false;
2213       }
2214     }
2215 
2216     if (has_decodeN && may_push) {
2217       PhaseIterGVN *igvn = phase->is_IterGVN();
2218       // Make narrow type for new phi.
2219       const Type* narrow_t;
2220       if (is_decodeN) {
2221         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2222       } else {
2223         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2224       }
2225       PhiNode* new_phi = new PhiNode(r, narrow_t);
2226       uint orig_cnt = req();
2227       for (uint i=1; i<req(); ++i) {// For all paths in
2228         Node *ii = in(i);
2229         Node* new_ii = NULL;
2230         if (ii->is_DecodeNarrowPtr()) {
2231           assert(ii->bottom_type() == bottom_type(), "sanity");
2232           new_ii = ii->in(1);
2233         } else {
2234           assert(ii->is_Phi(), "sanity");
2235           if (ii->as_Phi() == this) {
2236             new_ii = new_phi;
2237           } else {
2238             if (is_decodeN) {
2239               new_ii = new EncodePNode(ii, narrow_t);
2240             } else {
2241               new_ii = new EncodePKlassNode(ii, narrow_t);
2242             }
2243             igvn->register_new_node_with_optimizer(new_ii);
2244           }
2245         }
2246         new_phi->set_req(i, new_ii);
2247       }
2248       igvn->register_new_node_with_optimizer(new_phi, this);
2249       if (is_decodeN) {
2250         progress = new DecodeNNode(new_phi, bottom_type());
2251       } else {
2252         progress = new DecodeNKlassNode(new_phi, bottom_type());
2253       }
2254     }
2255   }
2256 #endif
2257 
2258   return progress;              // Return any progress
2259 }
2260 
2261 //------------------------------is_tripcount-----------------------------------
2262 bool PhiNode::is_tripcount() const {
2263   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2264           in(0)->as_CountedLoop()->phi() == this);
2265 }
2266 
2267 //------------------------------out_RegMask------------------------------------
2268 const RegMask &PhiNode::in_RegMask(uint i) const {
2269   return i ? out_RegMask() : RegMask::Empty;
2270 }
2271 
2272 const RegMask &PhiNode::out_RegMask() const {
2273   uint ideal_reg = _type->ideal_reg();
2274   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2275   if( ideal_reg == 0 ) return RegMask::Empty;
2276   assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2277   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2278 }
2279 
2280 #ifndef PRODUCT
2281 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2282   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2283   // and all outputs till level 1. In compact mode, inputs till level 1 are
2284   // collected.
2285   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2286   this->collect_nodes(out_rel, -1, false, false);
2287 }
2288 
2289 void PhiNode::dump_spec(outputStream *st) const {
2290   TypeNode::dump_spec(st);
2291   if (is_tripcount()) {
2292     st->print(" #tripcount");
2293   }
2294 }
2295 #endif
2296 
2297 
2298 //=============================================================================
2299 const Type* GotoNode::Value(PhaseGVN* phase) const {
2300   // If the input is reachable, then we are executed.
2301   // If the input is not reachable, then we are not executed.
2302   return phase->type(in(0));
2303 }
2304 
2305 Node* GotoNode::Identity(PhaseGVN* phase) {
2306   return in(0);                // Simple copy of incoming control
2307 }
2308 
2309 const RegMask &GotoNode::out_RegMask() const {
2310   return RegMask::Empty;
2311 }
2312 
2313 #ifndef PRODUCT
2314 //-----------------------------related-----------------------------------------
2315 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2316 // outputs at level 1. This is regardless of compact mode.
2317 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2318   this->collect_nodes(in_rel, 1, false, false);
2319   this->collect_nodes(out_rel, -1, false, false);
2320 }
2321 #endif
2322 
2323 
2324 //=============================================================================
2325 const RegMask &JumpNode::out_RegMask() const {
2326   return RegMask::Empty;
2327 }
2328 
2329 #ifndef PRODUCT
2330 //-----------------------------related-----------------------------------------
2331 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2332 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2333 // This is regardless of compact mode.
2334 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2335   this->collect_nodes(in_rel, 1, false, false);
2336   this->collect_nodes(out_rel, -2, false, false);
2337 }
2338 #endif
2339 
2340 //=============================================================================
2341 const RegMask &JProjNode::out_RegMask() const {
2342   return RegMask::Empty;
2343 }
2344 
2345 //=============================================================================
2346 const RegMask &CProjNode::out_RegMask() const {
2347   return RegMask::Empty;
2348 }
2349 
2350 
2351 
2352 //=============================================================================
2353 
2354 uint PCTableNode::hash() const { return Node::hash() + _size; }
2355 uint PCTableNode::cmp( const Node &n ) const
2356 { return _size == ((PCTableNode&)n)._size; }
2357 
2358 const Type *PCTableNode::bottom_type() const {
2359   const Type** f = TypeTuple::fields(_size);
2360   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2361   return TypeTuple::make(_size, f);
2362 }
2363 
2364 //------------------------------Value------------------------------------------
2365 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2366 // Control, otherwise the table targets are not reachable
2367 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2368   if( phase->type(in(0)) == Type::CONTROL )
2369     return bottom_type();
2370   return Type::TOP;             // All paths dead?  Then so are we
2371 }
2372 
2373 //------------------------------Ideal------------------------------------------
2374 // Return a node which is more "ideal" than the current node.  Strip out
2375 // control copies
2376 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2377   return remove_dead_region(phase, can_reshape) ? this : NULL;
2378 }
2379 
2380 //=============================================================================
2381 uint JumpProjNode::hash() const {
2382   return Node::hash() + _dest_bci;
2383 }
2384 
2385 uint JumpProjNode::cmp( const Node &n ) const {
2386   return ProjNode::cmp(n) &&
2387     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2388 }
2389 
2390 #ifndef PRODUCT
2391 void JumpProjNode::dump_spec(outputStream *st) const {
2392   ProjNode::dump_spec(st);
2393   st->print("@bci %d ",_dest_bci);
2394 }
2395 
2396 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2397   ProjNode::dump_compact_spec(st);
2398   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2399 }
2400 
2401 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2402   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2403   this->collect_nodes(in_rel, 1, false, false);
2404   this->collect_nodes(out_rel, -1, false, false);
2405 }
2406 #endif
2407 
2408 //=============================================================================
2409 //------------------------------Value------------------------------------------
2410 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2411 // have the default "fall_through_index" path.
2412 const Type* CatchNode::Value(PhaseGVN* phase) const {
2413   // Unreachable?  Then so are all paths from here.
2414   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2415   // First assume all paths are reachable
2416   const Type** f = TypeTuple::fields(_size);
2417   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2418   // Identify cases that will always throw an exception
2419   // () rethrow call
2420   // () virtual or interface call with NULL receiver
2421   // () call is a check cast with incompatible arguments
2422   if( in(1)->is_Proj() ) {
2423     Node *i10 = in(1)->in(0);
2424     if( i10->is_Call() ) {
2425       CallNode *call = i10->as_Call();
2426       // Rethrows always throw exceptions, never return
2427       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2428         f[CatchProjNode::fall_through_index] = Type::TOP;
2429       } else if( call->req() > TypeFunc::Parms ) {
2430         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2431         // Check for null receiver to virtual or interface calls
2432         if( call->is_CallDynamicJava() &&
2433             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2434           f[CatchProjNode::fall_through_index] = Type::TOP;
2435         }
2436       } // End of if not a runtime stub
2437     } // End of if have call above me
2438   } // End of slot 1 is not a projection
2439   return TypeTuple::make(_size, f);
2440 }
2441 
2442 //=============================================================================
2443 uint CatchProjNode::hash() const {
2444   return Node::hash() + _handler_bci;
2445 }
2446 
2447 
2448 uint CatchProjNode::cmp( const Node &n ) const {
2449   return ProjNode::cmp(n) &&
2450     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2451 }
2452 
2453 
2454 //------------------------------Identity---------------------------------------
2455 // If only 1 target is possible, choose it if it is the main control
2456 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2457   // If my value is control and no other value is, then treat as ID
2458   const TypeTuple *t = phase->type(in(0))->is_tuple();
2459   if (t->field_at(_con) != Type::CONTROL)  return this;
2460   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2461   // also remove any exception table entry.  Thus we must know the call
2462   // feeding the Catch will not really throw an exception.  This is ok for
2463   // the main fall-thru control (happens when we know a call can never throw
2464   // an exception) or for "rethrow", because a further optimization will
2465   // yank the rethrow (happens when we inline a function that can throw an
2466   // exception and the caller has no handler).  Not legal, e.g., for passing
2467   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2468   // These cases MUST throw an exception via the runtime system, so the VM
2469   // will be looking for a table entry.
2470   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2471   CallNode *call;
2472   if (_con != TypeFunc::Control && // Bail out if not the main control.
2473       !(proj->is_Proj() &&      // AND NOT a rethrow
2474         proj->in(0)->is_Call() &&
2475         (call = proj->in(0)->as_Call()) &&
2476         call->entry_point() == OptoRuntime::rethrow_stub()))
2477     return this;
2478 
2479   // Search for any other path being control
2480   for (uint i = 0; i < t->cnt(); i++) {
2481     if (i != _con && t->field_at(i) == Type::CONTROL)
2482       return this;
2483   }
2484   // Only my path is possible; I am identity on control to the jump
2485   return in(0)->in(0);
2486 }
2487 
2488 
2489 #ifndef PRODUCT
2490 void CatchProjNode::dump_spec(outputStream *st) const {
2491   ProjNode::dump_spec(st);
2492   st->print("@bci %d ",_handler_bci);
2493 }
2494 #endif
2495 
2496 //=============================================================================
2497 //------------------------------Identity---------------------------------------
2498 // Check for CreateEx being Identity.
2499 Node* CreateExNode::Identity(PhaseGVN* phase) {
2500   if( phase->type(in(1)) == Type::TOP ) return in(1);
2501   if( phase->type(in(0)) == Type::TOP ) return in(0);
2502   // We only come from CatchProj, unless the CatchProj goes away.
2503   // If the CatchProj is optimized away, then we just carry the
2504   // exception oop through.
2505   CallNode *call = in(1)->in(0)->as_Call();
2506 
2507   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2508     ? this
2509     : call->in(TypeFunc::Parms);
2510 }
2511 
2512 //=============================================================================
2513 //------------------------------Value------------------------------------------
2514 // Check for being unreachable.
2515 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2516   if (!in(0) || in(0)->is_top()) return Type::TOP;
2517   return bottom_type();
2518 }
2519 
2520 //------------------------------Ideal------------------------------------------
2521 // Check for no longer being part of a loop
2522 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2523   if (can_reshape && !in(0)->is_Loop()) {
2524     // Dead code elimination can sometimes delete this projection so
2525     // if it's not there, there's nothing to do.
2526     Node* fallthru = proj_out_or_null(0);
2527     if (fallthru != NULL) {
2528       phase->is_IterGVN()->replace_node(fallthru, in(0));
2529     }
2530     return phase->C->top();
2531   }
2532   return NULL;
2533 }
2534 
2535 #ifndef PRODUCT
2536 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2537   st->print("%s", Name());
2538 }
2539 #endif