/* * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "opto/compile.hpp" #include "opto/castnode.hpp" #include "opto/graphKit.hpp" #include "opto/idealKit.hpp" #include "opto/loopnode.hpp" #include "opto/macro.hpp" #include "opto/node.hpp" #include "opto/type.hpp" #include "utilities/macros.hpp" #include "gc/z/c2/zBarrierSetC2.hpp" #include "gc/z/zThreadLocalData.hpp" #include "gc/z/zBarrierSetRuntime.hpp" ZBarrierSetC2State::ZBarrierSetC2State(Arena* comp_arena) : _load_barrier_nodes(new (comp_arena) GrowableArray(comp_arena, 8, 0, NULL)) {} int ZBarrierSetC2State::load_barrier_count() const { return _load_barrier_nodes->length(); } void ZBarrierSetC2State::add_load_barrier_node(LoadBarrierNode * n) { assert(!_load_barrier_nodes->contains(n), " duplicate entry in expand list"); _load_barrier_nodes->append(n); } void ZBarrierSetC2State::remove_load_barrier_node(LoadBarrierNode * n) { // this function may be called twice for a node so check // that the node is in the array before attempting to remove it if (_load_barrier_nodes->contains(n)) { _load_barrier_nodes->remove(n); } } LoadBarrierNode* ZBarrierSetC2State::load_barrier_node(int idx) const { return _load_barrier_nodes->at(idx); } void* ZBarrierSetC2::create_barrier_state(Arena* comp_arena) const { return new(comp_arena) ZBarrierSetC2State(comp_arena); } ZBarrierSetC2State* ZBarrierSetC2::state() const { return reinterpret_cast(Compile::current()->barrier_set_state()); } bool ZBarrierSetC2::is_gc_barrier_node(Node* node) const { // 1. This step follows potential oop projections of a load barrier before expansion if (node->is_Proj()) { node = node->in(0); } // 2. This step checks for unexpanded load barriers if (node->is_LoadBarrier()) { return true; } // 3. This step checks for the phi corresponding to an optimized load barrier expansion if (node->is_Phi()) { PhiNode* phi = node->as_Phi(); Node* n = phi->in(1); if (n != NULL && (n->is_LoadBarrierSlowReg() || n->is_LoadBarrierWeakSlowReg())) { return true; } } return false; } void ZBarrierSetC2::register_potential_barrier_node(Node* node) const { if (node->is_LoadBarrier()) { state()->add_load_barrier_node(node->as_LoadBarrier()); } } void ZBarrierSetC2::unregister_potential_barrier_node(Node* node) const { if (node->is_LoadBarrier()) { state()->remove_load_barrier_node(node->as_LoadBarrier()); } } void ZBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { // Remove useless LoadBarrier nodes ZBarrierSetC2State* s = state(); for (int i = s->load_barrier_count()-1; i >= 0; i--) { LoadBarrierNode* n = s->load_barrier_node(i); if (!useful.member(n)) { unregister_potential_barrier_node(n); } } } void ZBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { if (node->is_LoadBarrier() && !node->as_LoadBarrier()->has_true_uses()) { igvn->_worklist.push(node); } } void ZBarrierSetC2::find_dominating_barriers(PhaseIterGVN& igvn) { // Look for dominating barriers on the same address only once all // other loop opts are over: loop opts may cause a safepoint to be // inserted between a barrier and its dominating barrier. Compile* C = Compile::current(); ZBarrierSetC2* bs = (ZBarrierSetC2*)BarrierSet::barrier_set()->barrier_set_c2(); ZBarrierSetC2State* s = bs->state(); if (s->load_barrier_count() >= 2) { Compile::TracePhase tp("idealLoop", &C->timers[Phase::_t_idealLoop]); PhaseIdealLoop ideal_loop(igvn, LoopOptsLastRound); if (C->major_progress()) C->print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); } } void ZBarrierSetC2::add_users_to_worklist(Unique_Node_List* worklist) const { // Permanent temporary workaround // Loadbarriers may have non-obvious dead uses keeping them alive during parsing. The use is // removed by RemoveUseless (after parsing, before optimize) but the barriers won't be added to // the worklist. Unless we add them explicitly they are not guaranteed to end up there. ZBarrierSetC2State* s = state(); for (int i = 0; i < s->load_barrier_count(); i++) { LoadBarrierNode* n = s->load_barrier_node(i); worklist->push(n); } } const TypeFunc* ZBarrierSetC2::load_barrier_Type() const { const Type** fields; // Create input types (domain) fields = TypeTuple::fields(2); fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; fields[TypeFunc::Parms+1] = TypeOopPtr::BOTTOM; const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); // Create result type (range) fields = TypeTuple::fields(1); fields[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); return TypeFunc::make(domain, range); } // == LoadBarrierNode == LoadBarrierNode::LoadBarrierNode(Compile* C, Node* c, Node* mem, Node* val, Node* adr, bool weak, bool writeback, bool oop_reload_allowed) : MultiNode(Number_of_Inputs), _weak(weak), _writeback(writeback), _oop_reload_allowed(oop_reload_allowed) { init_req(Control, c); init_req(Memory, mem); init_req(Oop, val); init_req(Address, adr); init_req(Similar, C->top()); init_class_id(Class_LoadBarrier); BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); bs->register_potential_barrier_node(this); } const Type *LoadBarrierNode::bottom_type() const { const Type** floadbarrier = (const Type **)(Compile::current()->type_arena()->Amalloc_4((Number_of_Outputs)*sizeof(Type*))); Node* in_oop = in(Oop); floadbarrier[Control] = Type::CONTROL; floadbarrier[Memory] = Type::MEMORY; floadbarrier[Oop] = in_oop == NULL ? Type::TOP : in_oop->bottom_type(); return TypeTuple::make(Number_of_Outputs, floadbarrier); } const Type *LoadBarrierNode::Value(PhaseGVN *phase) const { const Type** floadbarrier = (const Type **)(phase->C->type_arena()->Amalloc_4((Number_of_Outputs)*sizeof(Type*))); const Type* val_t = phase->type(in(Oop)); floadbarrier[Control] = Type::CONTROL; floadbarrier[Memory] = Type::MEMORY; floadbarrier[Oop] = val_t; return TypeTuple::make(Number_of_Outputs, floadbarrier); } bool LoadBarrierNode::is_dominator(PhaseIdealLoop* phase, bool linear_only, Node *d, Node *n) { if (phase != NULL) { return phase->is_dominator(d, n); } for (int i = 0; i < 10 && n != NULL; i++) { n = IfNode::up_one_dom(n, linear_only); if (n == d) { return true; } } return false; } LoadBarrierNode* LoadBarrierNode::has_dominating_barrier(PhaseIdealLoop* phase, bool linear_only, bool look_for_similar) { Node* val = in(LoadBarrierNode::Oop); if (in(Similar)->is_Proj() && in(Similar)->in(0)->is_LoadBarrier()) { LoadBarrierNode* lb = in(Similar)->in(0)->as_LoadBarrier(); assert(lb->in(Address) == in(Address), ""); // Load barrier on Similar edge dominates so if it now has the Oop field it can replace this barrier. if (lb->in(Oop) == in(Oop)) { return lb; } // Follow chain of load barrier through Similar edges while (!lb->in(Similar)->is_top()) { lb = lb->in(Similar)->in(0)->as_LoadBarrier(); assert(lb->in(Address) == in(Address), ""); } if (lb != in(Similar)->in(0)) { return lb; } } for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) { Node* u = val->fast_out(i); if (u != this && u->is_LoadBarrier() && u->in(Oop) == val && u->as_LoadBarrier()->has_true_uses()) { Node* this_ctrl = in(LoadBarrierNode::Control); Node* other_ctrl = u->in(LoadBarrierNode::Control); if (is_dominator(phase, linear_only, other_ctrl, this_ctrl)) { return u->as_LoadBarrier(); } } } if (ZVerifyLoadBarriers || can_be_eliminated()) { return NULL; } if (!look_for_similar) { return NULL; } Node* addr = in(LoadBarrierNode::Address); for (DUIterator_Fast imax, i = addr->fast_outs(imax); i < imax; i++) { Node* u = addr->fast_out(i); if (u != this && u->is_LoadBarrier() && u->as_LoadBarrier()->has_true_uses()) { Node* this_ctrl = in(LoadBarrierNode::Control); Node* other_ctrl = u->in(LoadBarrierNode::Control); if (is_dominator(phase, linear_only, other_ctrl, this_ctrl)) { ResourceMark rm; Unique_Node_List wq; wq.push(in(LoadBarrierNode::Control)); bool ok = true; bool dom_found = false; for (uint next = 0; next < wq.size(); ++next) { Node *n = wq.at(next); if (n->is_top()) { return NULL; } assert(n->is_CFG(), ""); if (n->is_SafePoint()) { ok = false; break; } if (n == u) { dom_found = true; continue; } if (n->is_Region()) { for (uint i = 1; i < n->req(); i++) { Node* m = n->in(i); if (m != NULL) { wq.push(m); } } } else { Node* m = n->in(0); if (m != NULL) { wq.push(m); } } } if (ok) { assert(dom_found, ""); return u->as_LoadBarrier();; } break; } } } return NULL; } void LoadBarrierNode::push_dominated_barriers(PhaseIterGVN* igvn) const { // Change to that barrier may affect a dominated barrier so re-push those Node* val = in(LoadBarrierNode::Oop); for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) { Node* u = val->fast_out(i); if (u != this && u->is_LoadBarrier() && u->in(Oop) == val) { Node* this_ctrl = in(Control); Node* other_ctrl = u->in(Control); if (is_dominator(NULL, false, this_ctrl, other_ctrl)) { igvn->_worklist.push(u); } } Node* addr = in(LoadBarrierNode::Address); for (DUIterator_Fast imax, i = addr->fast_outs(imax); i < imax; i++) { Node* u = addr->fast_out(i); if (u != this && u->is_LoadBarrier() && u->in(Similar)->is_top()) { Node* this_ctrl = in(Control); Node* other_ctrl = u->in(Control); if (is_dominator(NULL, false, this_ctrl, other_ctrl)) { igvn->_worklist.push(u); } } } } } Node *LoadBarrierNode::Identity(PhaseGVN *phase) { if (!phase->C->directive()->ZOptimizeLoadBarriersOption) { return this; } bool redundant_addr = false; LoadBarrierNode* dominating_barrier = has_dominating_barrier(NULL, true, false); if (dominating_barrier != NULL) { assert(dominating_barrier->in(Oop) == in(Oop), ""); return dominating_barrier; } return this; } Node *LoadBarrierNode::Ideal(PhaseGVN *phase, bool can_reshape) { if (remove_dead_region(phase, can_reshape)) { return this; } Node* val = in(Oop); Node* mem = in(Memory); Node* ctrl = in(Control); Node* adr = in(Address); assert(val->Opcode() != Op_LoadN, ""); if (mem->is_MergeMem()) { Node* new_mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); set_req(Memory, new_mem); if (mem->outcnt() == 0 && can_reshape) { phase->is_IterGVN()->_worklist.push(mem); } return this; } bool optimizeLoadBarriers = phase->C->directive()->ZOptimizeLoadBarriersOption; LoadBarrierNode* dominating_barrier = optimizeLoadBarriers ? has_dominating_barrier(NULL, !can_reshape, !phase->C->major_progress()) : NULL; if (dominating_barrier != NULL && dominating_barrier->in(Oop) != in(Oop)) { assert(in(Address) == dominating_barrier->in(Address), ""); set_req(Similar, dominating_barrier->proj_out(Oop)); return this; } bool eliminate = (optimizeLoadBarriers && !(val->is_Phi() || val->Opcode() == Op_LoadP || val->Opcode() == Op_GetAndSetP || val->is_DecodeN())) || (can_reshape && (dominating_barrier != NULL || !has_true_uses())); if (eliminate) { if (can_reshape) { PhaseIterGVN* igvn = phase->is_IterGVN(); Node* out_ctrl = proj_out_or_null(Control); Node* out_res = proj_out_or_null(Oop); if (out_ctrl != NULL) { igvn->replace_node(out_ctrl, ctrl); } // That transformation may cause the Similar edge on the load barrier to be invalid fix_similar_in_uses(igvn); if (out_res != NULL) { if (dominating_barrier != NULL) { igvn->replace_node(out_res, dominating_barrier->proj_out(Oop)); } else { igvn->replace_node(out_res, val); } } } return new ConINode(TypeInt::ZERO); } // If the Similar edge is no longer a load barrier, clear it Node* similar = in(Similar); if (!similar->is_top() && !(similar->is_Proj() && similar->in(0)->is_LoadBarrier())) { set_req(Similar, phase->C->top()); return this; } if (can_reshape) { // If this barrier is linked through the Similar edge by a // dominated barrier and both barriers have the same Oop field, // the dominated barrier can go away, so push it for reprocessing. // We also want to avoid a barrier to depend on another dominating // barrier through its Similar edge that itself depend on another // barrier through its Similar edge and rather have the first // depend on the third. PhaseIterGVN* igvn = phase->is_IterGVN(); Node* out_res = proj_out(Oop); for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) { Node* u = out_res->fast_out(i); if (u->is_LoadBarrier() && u->in(Similar) == out_res && (u->in(Oop) == val || !u->in(Similar)->is_top())) { igvn->_worklist.push(u); } } push_dominated_barriers(igvn); } return NULL; } void LoadBarrierNode::fix_similar_in_uses(PhaseIterGVN* igvn) { Node* out_res = proj_out_or_null(Oop); if (out_res == NULL) { return; } for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) { Node* u = out_res->fast_out(i); if (u->is_LoadBarrier() && u->in(Similar) == out_res) { igvn->replace_input_of(u, Similar, igvn->C->top()); --i; --imax; } } } bool LoadBarrierNode::has_true_uses() const { Node* out_res = proj_out_or_null(Oop); if (out_res == NULL) { return false; } for (DUIterator_Fast imax, i = out_res->fast_outs(imax); i < imax; i++) { Node* u = out_res->fast_out(i); if (!u->is_LoadBarrier() || u->in(Similar) != out_res) { return true; } } return false; } // == Accesses == Node* ZBarrierSetC2::make_cas_loadbarrier(C2AtomicParseAccess& access) const { assert(!UseCompressedOops, "Not allowed"); CompareAndSwapNode* cas = (CompareAndSwapNode*)access.raw_access(); PhaseGVN& gvn = access.gvn(); Compile* C = Compile::current(); GraphKit* kit = access.kit(); Node* in_ctrl = cas->in(MemNode::Control); Node* in_mem = cas->in(MemNode::Memory); Node* in_adr = cas->in(MemNode::Address); Node* in_val = cas->in(MemNode::ValueIn); Node* in_expected = cas->in(LoadStoreConditionalNode::ExpectedIn); float likely = PROB_LIKELY(0.999); const TypePtr *adr_type = gvn.type(in_adr)->isa_ptr(); Compile::AliasType* alias_type = C->alias_type(adr_type); int alias_idx = C->get_alias_index(adr_type); // Outer check - true: continue, false: load and check Node* region = new RegionNode(3); Node* phi = new PhiNode(region, TypeInt::BOOL); Node* phi_mem = new PhiNode(region, Type::MEMORY, adr_type); // Inner check - is the healed ref equal to the expected Node* region2 = new RegionNode(3); Node* phi2 = new PhiNode(region2, TypeInt::BOOL); Node* phi_mem2 = new PhiNode(region2, Type::MEMORY, adr_type); // CAS node returns 0 or 1 Node* cmp = gvn.transform(new CmpINode(cas, kit->intcon(0))); Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool(); IfNode* iff = gvn.transform(new IfNode(in_ctrl, bol, likely, COUNT_UNKNOWN))->as_If(); Node* then = gvn.transform(new IfTrueNode(iff)); Node* elsen = gvn.transform(new IfFalseNode(iff)); Node* scmemproj1 = gvn.transform(new SCMemProjNode(cas)); kit->set_memory(scmemproj1, alias_idx); phi_mem->init_req(1, scmemproj1); phi_mem2->init_req(2, scmemproj1); // CAS fail - reload and heal oop Node* reload = kit->make_load(elsen, in_adr, TypeOopPtr::BOTTOM, T_OBJECT, MemNode::unordered); Node* barrier = gvn.transform(new LoadBarrierNode(C, elsen, scmemproj1, reload, in_adr, false, true, false)); Node* barrierctrl = gvn.transform(new ProjNode(barrier, LoadBarrierNode::Control)); Node* barrierdata = gvn.transform(new ProjNode(barrier, LoadBarrierNode::Oop)); // Check load Node* tmpX = gvn.transform(new CastP2XNode(NULL, barrierdata)); Node* in_expX = gvn.transform(new CastP2XNode(NULL, in_expected)); Node* cmp2 = gvn.transform(new CmpXNode(tmpX, in_expX)); Node *bol2 = gvn.transform(new BoolNode(cmp2, BoolTest::ne))->as_Bool(); IfNode* iff2 = gvn.transform(new IfNode(barrierctrl, bol2, likely, COUNT_UNKNOWN))->as_If(); Node* then2 = gvn.transform(new IfTrueNode(iff2)); Node* elsen2 = gvn.transform(new IfFalseNode(iff2)); // redo CAS Node* cas2 = gvn.transform(new CompareAndSwapPNode(elsen2, kit->memory(alias_idx), in_adr, in_val, in_expected, cas->order())); Node* scmemproj2 = gvn.transform(new SCMemProjNode(cas2)); kit->set_control(elsen2); kit->set_memory(scmemproj2, alias_idx); // Merge inner flow - check if healed oop was equal too expected. region2->set_req(1, kit->control()); region2->set_req(2, then2); phi2->set_req(1, cas2); phi2->set_req(2, kit->intcon(0)); phi_mem2->init_req(1, scmemproj2); kit->set_memory(phi_mem2, alias_idx); // Merge outer flow - then check if first CAS succeeded region->set_req(1, then); region->set_req(2, region2); phi->set_req(1, kit->intcon(1)); phi->set_req(2, phi2); phi_mem->init_req(2, phi_mem2); kit->set_memory(phi_mem, alias_idx); gvn.transform(region2); gvn.transform(phi2); gvn.transform(phi_mem2); gvn.transform(region); gvn.transform(phi); gvn.transform(phi_mem); kit->set_control(region); kit->insert_mem_bar(Op_MemBarCPUOrder); return phi; } Node* ZBarrierSetC2::make_cmpx_loadbarrier(C2AtomicParseAccess& access) const { CompareAndExchangePNode* cmpx = (CompareAndExchangePNode*)access.raw_access(); GraphKit* kit = access.kit(); PhaseGVN& gvn = kit->gvn(); Compile* C = Compile::current(); Node* in_ctrl = cmpx->in(MemNode::Control); Node* in_mem = cmpx->in(MemNode::Memory); Node* in_adr = cmpx->in(MemNode::Address); Node* in_val = cmpx->in(MemNode::ValueIn); Node* in_expected = cmpx->in(LoadStoreConditionalNode::ExpectedIn); float likely = PROB_LIKELY(0.999); const TypePtr *adr_type = cmpx->get_ptr_type(); Compile::AliasType* alias_type = C->alias_type(adr_type); int alias_idx = C->get_alias_index(adr_type); // Outer check - true: continue, false: load and check Node* region = new RegionNode(3); Node* phi = new PhiNode(region, adr_type); // Inner check - is the healed ref equal to the expected Node* region2 = new RegionNode(3); Node* phi2 = new PhiNode(region2, adr_type); // Check if cmpx succeeded Node* cmp = gvn.transform(new CmpPNode(cmpx, in_expected)); Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::eq))->as_Bool(); IfNode* iff = gvn.transform(new IfNode(in_ctrl, bol, likely, COUNT_UNKNOWN))->as_If(); Node* then = gvn.transform(new IfTrueNode(iff)); Node* elsen = gvn.transform(new IfFalseNode(iff)); Node* scmemproj1 = gvn.transform(new SCMemProjNode(cmpx)); kit->set_memory(scmemproj1, alias_idx); // CAS fail - reload and heal oop Node* reload = kit->make_load(elsen, in_adr, TypeOopPtr::BOTTOM, T_OBJECT, MemNode::unordered); Node* barrier = gvn.transform(new LoadBarrierNode(C, elsen, scmemproj1, reload, in_adr, false, true, false)); Node* barrierctrl = gvn.transform(new ProjNode(barrier, LoadBarrierNode::Control)); Node* barrierdata = gvn.transform(new ProjNode(barrier, LoadBarrierNode::Oop)); // Check load Node* tmpX = gvn.transform(new CastP2XNode(NULL, barrierdata)); Node* in_expX = gvn.transform(new CastP2XNode(NULL, in_expected)); Node* cmp2 = gvn.transform(new CmpXNode(tmpX, in_expX)); Node *bol2 = gvn.transform(new BoolNode(cmp2, BoolTest::ne))->as_Bool(); IfNode* iff2 = gvn.transform(new IfNode(barrierctrl, bol2, likely, COUNT_UNKNOWN))->as_If(); Node* then2 = gvn.transform(new IfTrueNode(iff2)); Node* elsen2 = gvn.transform(new IfFalseNode(iff2)); // Redo CAS Node* cmpx2 = gvn.transform(new CompareAndExchangePNode(elsen2, kit->memory(alias_idx), in_adr, in_val, in_expected, adr_type, cmpx->get_ptr_type(), cmpx->order())); Node* scmemproj2 = gvn.transform(new SCMemProjNode(cmpx2)); kit->set_control(elsen2); kit->set_memory(scmemproj2, alias_idx); // Merge inner flow - check if healed oop was equal too expected. region2->set_req(1, kit->control()); region2->set_req(2, then2); phi2->set_req(1, cmpx2); phi2->set_req(2, barrierdata); // Merge outer flow - then check if first cas succeeded region->set_req(1, then); region->set_req(2, region2); phi->set_req(1, cmpx); phi->set_req(2, phi2); gvn.transform(region2); gvn.transform(phi2); gvn.transform(region); gvn.transform(phi); kit->set_control(region); kit->set_memory(in_mem, alias_idx); kit->insert_mem_bar(Op_MemBarCPUOrder); return phi; } Node* ZBarrierSetC2::load_barrier(GraphKit* kit, Node* val, Node* adr, bool weak, bool writeback, bool oop_reload_allowed) const { PhaseGVN& gvn = kit->gvn(); Node* barrier = new LoadBarrierNode(Compile::current(), kit->control(), kit->memory(TypeRawPtr::BOTTOM), val, adr, weak, writeback, oop_reload_allowed); Node* transformed_barrier = gvn.transform(barrier); if (transformed_barrier->is_LoadBarrier()) { if (barrier == transformed_barrier) { kit->set_control(gvn.transform(new ProjNode(barrier, LoadBarrierNode::Control))); } Node* result = gvn.transform(new ProjNode(transformed_barrier, LoadBarrierNode::Oop)); assert(is_gc_barrier_node(result), "sanity"); assert(step_over_gc_barrier(result) == val, "sanity"); return result; } else { return val; } } static bool barrier_needed(C2Access& access) { return ZBarrierSet::barrier_needed(access.decorators(), access.type()); } Node* ZBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { Node* p = BarrierSetC2::load_at_resolved(access, val_type); if (!barrier_needed(access)) { return p; } bool weak = (access.decorators() & ON_WEAK_OOP_REF) != 0; assert(access.is_parse_access(), "entry not supported at optimization time"); C2ParseAccess& parse_access = static_cast(access); GraphKit* kit = parse_access.kit(); PhaseGVN& gvn = kit->gvn(); Node* adr = access.addr().node(); Node* heap_base_oop = access.base(); bool unsafe = (access.decorators() & C2_UNSAFE_ACCESS) != 0; if (unsafe) { if (!ZVerifyLoadBarriers) { p = load_barrier(kit, p, adr); } else { if (!TypePtr::NULL_PTR->higher_equal(gvn.type(heap_base_oop))) { p = load_barrier(kit, p, adr); } else { IdealKit ideal(kit); IdealVariable res(ideal); #define __ ideal. __ declarations_done(); __ set(res, p); __ if_then(heap_base_oop, BoolTest::ne, kit->null(), PROB_UNLIKELY(0.999)); { kit->sync_kit(ideal); p = load_barrier(kit, p, adr); __ set(res, p); __ sync_kit(kit); } __ end_if(); kit->final_sync(ideal); p = __ value(res); #undef __ } } return p; } else { return load_barrier(parse_access.kit(), p, access.addr().node(), weak, true, true); } } Node* ZBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, Node* new_val, const Type* val_type) const { Node* result = BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, val_type); if (!barrier_needed(access)) { return result; } access.set_needs_pinning(false); return make_cmpx_loadbarrier(access); } Node* ZBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, Node* new_val, const Type* value_type) const { Node* result = BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); if (!barrier_needed(access)) { return result; } Node* load_store = access.raw_access(); bool weak_cas = (access.decorators() & C2_WEAK_CMPXCHG) != 0; bool expected_is_null = (expected_val->get_ptr_type() == TypePtr::NULL_PTR); if (!expected_is_null) { if (weak_cas) { access.set_needs_pinning(false); load_store = make_cas_loadbarrier(access); } else { access.set_needs_pinning(false); load_store = make_cas_loadbarrier(access); } } return load_store; } Node* ZBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* val_type) const { Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, new_val, val_type); if (!barrier_needed(access)) { return result; } Node* load_store = access.raw_access(); Node* adr = access.addr().node(); assert(access.is_parse_access(), "entry not supported at optimization time"); C2ParseAccess& parse_access = static_cast(access); return load_barrier(parse_access.kit(), load_store, adr, false, false, false); } // == Macro Expansion == void ZBarrierSetC2::expand_loadbarrier_node(PhaseMacroExpand* phase, LoadBarrierNode* barrier) const { Node* in_ctrl = barrier->in(LoadBarrierNode::Control); Node* in_mem = barrier->in(LoadBarrierNode::Memory); Node* in_val = barrier->in(LoadBarrierNode::Oop); Node* in_adr = barrier->in(LoadBarrierNode::Address); Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control); Node* out_res = barrier->proj_out(LoadBarrierNode::Oop); PhaseIterGVN &igvn = phase->igvn(); if (ZVerifyLoadBarriers) { igvn.replace_node(out_res, in_val); igvn.replace_node(out_ctrl, in_ctrl); return; } if (barrier->can_be_eliminated()) { // Clone and pin the load for this barrier below the dominating // barrier: the load cannot be allowed to float above the // dominating barrier Node* load = in_val; if (load->is_Load()) { Node* new_load = load->clone(); Node* addp = new_load->in(MemNode::Address); assert(addp->is_AddP() || addp->is_Phi() || addp->is_Load(), "bad address"); Node* cast = new CastPPNode(addp, igvn.type(addp), true); Node* ctrl = NULL; Node* similar = barrier->in(LoadBarrierNode::Similar); if (similar->is_Phi()) { // already expanded ctrl = similar->in(0); } else { assert(similar->is_Proj() && similar->in(0)->is_LoadBarrier(), "unexpected graph shape"); ctrl = similar->in(0)->as_LoadBarrier()->proj_out(LoadBarrierNode::Control); } assert(ctrl != NULL, "bad control"); cast->set_req(0, ctrl); igvn.transform(cast); new_load->set_req(MemNode::Address, cast); igvn.transform(new_load); igvn.replace_node(out_res, new_load); igvn.replace_node(out_ctrl, in_ctrl); return; } // cannot eliminate } // There are two cases that require the basic loadbarrier // 1) When the writeback of a healed oop must be avoided (swap) // 2) When we must guarantee that no reload of is done (swap, cas, cmpx) if (!barrier->is_writeback()) { assert(!barrier->oop_reload_allowed(), "writeback barriers should be marked as requires oop"); } if (!barrier->oop_reload_allowed()) { expand_loadbarrier_basic(phase, barrier); } else { expand_loadbarrier_optimized(phase, barrier); } } // Basic loadbarrier using conventional argument passing void ZBarrierSetC2::expand_loadbarrier_basic(PhaseMacroExpand* phase, LoadBarrierNode *barrier) const { PhaseIterGVN &igvn = phase->igvn(); Node* in_ctrl = barrier->in(LoadBarrierNode::Control); Node* in_mem = barrier->in(LoadBarrierNode::Memory); Node* in_val = barrier->in(LoadBarrierNode::Oop); Node* in_adr = barrier->in(LoadBarrierNode::Address); Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control); Node* out_res = barrier->proj_out(LoadBarrierNode::Oop); float unlikely = PROB_UNLIKELY(0.999); const Type* in_val_maybe_null_t = igvn.type(in_val); Node* jthread = igvn.transform(new ThreadLocalNode()); Node* adr = phase->basic_plus_adr(jthread, in_bytes(ZThreadLocalData::address_bad_mask_offset())); Node* bad_mask = igvn.transform(LoadNode::make(igvn, in_ctrl, in_mem, adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); Node* cast = igvn.transform(new CastP2XNode(in_ctrl, in_val)); Node* obj_masked = igvn.transform(new AndXNode(cast, bad_mask)); Node* cmp = igvn.transform(new CmpXNode(obj_masked, igvn.zerocon(TypeX_X->basic_type()))); Node *bol = igvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool(); IfNode* iff = igvn.transform(new IfNode(in_ctrl, bol, unlikely, COUNT_UNKNOWN))->as_If(); Node* then = igvn.transform(new IfTrueNode(iff)); Node* elsen = igvn.transform(new IfFalseNode(iff)); Node* result_region; Node* result_val; result_region = new RegionNode(3); result_val = new PhiNode(result_region, TypeInstPtr::BOTTOM); result_region->set_req(1, elsen); Node* res = igvn.transform(new CastPPNode(in_val, in_val_maybe_null_t)); res->init_req(0, elsen); result_val->set_req(1, res); const TypeFunc *tf = load_barrier_Type(); Node* call; if (barrier->is_weak()) { call = new CallLeafNode(tf, ZBarrierSetRuntime::load_barrier_on_weak_oop_field_preloaded_addr(), "ZBarrierSetRuntime::load_barrier_on_weak_oop_field_preloaded", TypeRawPtr::BOTTOM); } else { call = new CallLeafNode(tf, ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(), "ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded", TypeRawPtr::BOTTOM); } call->init_req(TypeFunc::Control, then); call->init_req(TypeFunc::I_O , phase->top()); call->init_req(TypeFunc::Memory , in_mem); call->init_req(TypeFunc::FramePtr, phase->top()); call->init_req(TypeFunc::ReturnAdr, phase->top()); call->init_req(TypeFunc::Parms+0, in_val); if (barrier->is_writeback()) { call->init_req(TypeFunc::Parms+1, in_adr); } else { // When slow path is called with a null address, the healed oop will not be written back call->init_req(TypeFunc::Parms+1, igvn.zerocon(T_OBJECT)); } call = igvn.transform(call); Node* ctrl = igvn.transform(new ProjNode(call, TypeFunc::Control)); res = igvn.transform(new ProjNode(call, TypeFunc::Parms)); res = igvn.transform(new CheckCastPPNode(ctrl, res, in_val_maybe_null_t)); result_region->set_req(2, ctrl); result_val->set_req(2, res); result_region = igvn.transform(result_region); result_val = igvn.transform(result_val); if (out_ctrl != NULL) { // Added if cond igvn.replace_node(out_ctrl, result_region); } igvn.replace_node(out_res, result_val); } // Optimized, low spill, loadbarrier variant using stub specialized on register used void ZBarrierSetC2::expand_loadbarrier_optimized(PhaseMacroExpand* phase, LoadBarrierNode *barrier) const { PhaseIterGVN &igvn = phase->igvn(); #ifdef PRINT_NODE_TRAVERSALS Node* preceding_barrier_node = barrier->in(LoadBarrierNode::Oop); #endif Node* in_ctrl = barrier->in(LoadBarrierNode::Control); Node* in_mem = barrier->in(LoadBarrierNode::Memory); Node* in_val = barrier->in(LoadBarrierNode::Oop); Node* in_adr = barrier->in(LoadBarrierNode::Address); Node* out_ctrl = barrier->proj_out(LoadBarrierNode::Control); Node* out_res = barrier->proj_out(LoadBarrierNode::Oop); assert(barrier->in(LoadBarrierNode::Oop) != NULL, "oop to loadbarrier node cannot be null"); #ifdef PRINT_NODE_TRAVERSALS tty->print("\n\n\nBefore barrier optimization:\n"); traverse(barrier, out_ctrl, out_res, -1); tty->print("\nBefore barrier optimization: preceding_barrier_node\n"); traverse(preceding_barrier_node, out_ctrl, out_res, -1); #endif float unlikely = PROB_UNLIKELY(0.999); Node* jthread = igvn.transform(new ThreadLocalNode()); Node* adr = phase->basic_plus_adr(jthread, in_bytes(ZThreadLocalData::address_bad_mask_offset())); Node* bad_mask = igvn.transform(LoadNode::make(igvn, in_ctrl, in_mem, adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered)); Node* cast = igvn.transform(new CastP2XNode(in_ctrl, in_val)); Node* obj_masked = igvn.transform(new AndXNode(cast, bad_mask)); Node* cmp = igvn.transform(new CmpXNode(obj_masked, igvn.zerocon(TypeX_X->basic_type()))); Node *bol = igvn.transform(new BoolNode(cmp, BoolTest::ne))->as_Bool(); IfNode* iff = igvn.transform(new IfNode(in_ctrl, bol, unlikely, COUNT_UNKNOWN))->as_If(); Node* then = igvn.transform(new IfTrueNode(iff)); Node* elsen = igvn.transform(new IfFalseNode(iff)); Node* slow_path_surrogate; if (!barrier->is_weak()) { slow_path_surrogate = igvn.transform(new LoadBarrierSlowRegNode(then, in_mem, in_adr, in_val->adr_type(), (const TypePtr*) in_val->bottom_type(), MemNode::unordered)); } else { slow_path_surrogate = igvn.transform(new LoadBarrierWeakSlowRegNode(then, in_mem, in_adr, in_val->adr_type(), (const TypePtr*) in_val->bottom_type(), MemNode::unordered)); } Node *new_loadp; new_loadp = slow_path_surrogate; // Create the final region/phi pair to converge cntl/data paths to downstream code Node* result_region = igvn.transform(new RegionNode(3)); result_region->set_req(1, then); result_region->set_req(2, elsen); Node* result_phi = igvn.transform(new PhiNode(result_region, TypeInstPtr::BOTTOM)); result_phi->set_req(1, new_loadp); result_phi->set_req(2, barrier->in(LoadBarrierNode::Oop)); // Finally, connect the original outputs to the barrier region and phi to complete the expansion/substitution // igvn.replace_node(out_ctrl, result_region); if (out_ctrl != NULL) { // added if cond igvn.replace_node(out_ctrl, result_region); } igvn.replace_node(out_res, result_phi); assert(barrier->outcnt() == 0,"LoadBarrier macro node has non-null outputs after expansion!"); #ifdef PRINT_NODE_TRAVERSALS tty->print("\nAfter barrier optimization: old out_ctrl\n"); traverse(out_ctrl, out_ctrl, out_res, -1); tty->print("\nAfter barrier optimization: old out_res\n"); traverse(out_res, out_ctrl, out_res, -1); tty->print("\nAfter barrier optimization: old barrier\n"); traverse(barrier, out_ctrl, out_res, -1); tty->print("\nAfter barrier optimization: preceding_barrier_node\n"); traverse(preceding_barrier_node, result_region, result_phi, -1); #endif assert(is_gc_barrier_node(result_phi), "sanity"); assert(step_over_gc_barrier(result_phi) == in_val, "sanity"); return; } bool ZBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { Compile* C = Compile::current(); PhaseIterGVN &igvn = macro->igvn(); ZBarrierSetC2State* s = state(); if (s->load_barrier_count() > 0) { #ifdef ASSERT verify_gc_barriers(false); #endif igvn.set_delay_transform(true); int skipped = 0; while (s->load_barrier_count() > skipped) { int load_barrier_count = s->load_barrier_count(); LoadBarrierNode * n = s->load_barrier_node(load_barrier_count-1-skipped); if (igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) { // Node is unreachable, so don't try to expand it s->remove_load_barrier_node(n); continue; } if (!n->can_be_eliminated()) { skipped++; continue; } expand_loadbarrier_node(macro, n); assert(s->load_barrier_count() < load_barrier_count, "must have deleted a node from load barrier list"); if (C->failing()) return true; } while (s->load_barrier_count() > 0) { int load_barrier_count = s->load_barrier_count(); LoadBarrierNode* n = s->load_barrier_node(load_barrier_count - 1); assert(!(igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())), "should have been processed already"); assert(!n->can_be_eliminated(), "should have been processed already"); expand_loadbarrier_node(macro, n); assert(s->load_barrier_count() < load_barrier_count, "must have deleted a node from load barrier list"); if (C->failing()) return true; } igvn.set_delay_transform(false); igvn.optimize(); if (C->failing()) return true; } return false; } // == Loop optimization == static bool replace_with_dominating_barrier(PhaseIdealLoop* phase, LoadBarrierNode* lb, bool last_round) { PhaseIterGVN &igvn = phase->igvn(); Compile* C = Compile::current(); LoadBarrierNode* lb2 = lb->has_dominating_barrier(phase, false, last_round); if (lb2 != NULL) { if (lb->in(LoadBarrierNode::Oop) != lb2->in(LoadBarrierNode::Oop)) { assert(lb->in(LoadBarrierNode::Address) == lb2->in(LoadBarrierNode::Address), ""); igvn.replace_input_of(lb, LoadBarrierNode::Similar, lb2->proj_out(LoadBarrierNode::Oop)); C->set_major_progress(); } else { // That transformation may cause the Similar edge on dominated load barriers to be invalid lb->fix_similar_in_uses(&igvn); Node* val = lb->proj_out(LoadBarrierNode::Oop); assert(lb2->has_true_uses(), ""); assert(lb2->in(LoadBarrierNode::Oop) == lb->in(LoadBarrierNode::Oop), ""); phase->lazy_update(lb, lb->in(LoadBarrierNode::Control)); phase->lazy_replace(lb->proj_out(LoadBarrierNode::Control), lb->in(LoadBarrierNode::Control)); igvn.replace_node(val, lb2->proj_out(LoadBarrierNode::Oop)); return true; } } return false; } static Node* find_dominating_memory(PhaseIdealLoop* phase, Node* mem, Node* dom, int i) { assert(dom->is_Region() || i == -1, ""); Node* m = mem; while(phase->is_dominator(dom, phase->has_ctrl(m) ? phase->get_ctrl(m) : m->in(0))) { if (m->is_Mem()) { assert(m->as_Mem()->adr_type() == TypeRawPtr::BOTTOM, ""); m = m->in(MemNode::Memory); } else if (m->is_MergeMem()) { m = m->as_MergeMem()->memory_at(Compile::AliasIdxRaw); } else if (m->is_Phi()) { if (m->in(0) == dom && i != -1) { m = m->in(i); break; } else { m = m->in(LoopNode::EntryControl); } } else if (m->is_Proj()) { m = m->in(0); } else if (m->is_SafePoint() || m->is_MemBar()) { m = m->in(TypeFunc::Memory); } else { #ifdef ASSERT m->dump(); #endif ShouldNotReachHere(); } } return m; } static LoadBarrierNode* clone_load_barrier(PhaseIdealLoop* phase, LoadBarrierNode* lb, Node* ctl, Node* mem, Node* oop_in) { PhaseIterGVN &igvn = phase->igvn(); Compile* C = Compile::current(); Node* the_clone = lb->clone(); the_clone->set_req(LoadBarrierNode::Control, ctl); the_clone->set_req(LoadBarrierNode::Memory, mem); if (oop_in != NULL) { the_clone->set_req(LoadBarrierNode::Oop, oop_in); } LoadBarrierNode* new_lb = the_clone->as_LoadBarrier(); igvn.register_new_node_with_optimizer(new_lb); IdealLoopTree *loop = phase->get_loop(new_lb->in(0)); phase->set_ctrl(new_lb, new_lb->in(0)); phase->set_loop(new_lb, loop); phase->set_idom(new_lb, new_lb->in(0), phase->dom_depth(new_lb->in(0))+1); if (!loop->_child) { loop->_body.push(new_lb); } Node* proj_ctl = new ProjNode(new_lb, LoadBarrierNode::Control); igvn.register_new_node_with_optimizer(proj_ctl); phase->set_ctrl(proj_ctl, proj_ctl->in(0)); phase->set_loop(proj_ctl, loop); phase->set_idom(proj_ctl, new_lb, phase->dom_depth(new_lb)+1); if (!loop->_child) { loop->_body.push(proj_ctl); } Node* proj_oop = new ProjNode(new_lb, LoadBarrierNode::Oop); phase->register_new_node(proj_oop, new_lb); if (!new_lb->in(LoadBarrierNode::Similar)->is_top()) { LoadBarrierNode* similar = new_lb->in(LoadBarrierNode::Similar)->in(0)->as_LoadBarrier(); if (!phase->is_dominator(similar, ctl)) { igvn.replace_input_of(new_lb, LoadBarrierNode::Similar, C->top()); } } return new_lb; } static void replace_barrier(PhaseIdealLoop* phase, LoadBarrierNode* lb, Node* new_val) { PhaseIterGVN &igvn = phase->igvn(); Node* val = lb->proj_out(LoadBarrierNode::Oop); igvn.replace_node(val, new_val); phase->lazy_update(lb, lb->in(LoadBarrierNode::Control)); phase->lazy_replace(lb->proj_out(LoadBarrierNode::Control), lb->in(LoadBarrierNode::Control)); } static bool split_barrier_thru_phi(PhaseIdealLoop* phase, LoadBarrierNode* lb) { PhaseIterGVN &igvn = phase->igvn(); Compile* C = Compile::current(); if (lb->in(LoadBarrierNode::Oop)->is_Phi()) { Node* oop_phi = lb->in(LoadBarrierNode::Oop); if (oop_phi->in(2) == oop_phi) { // Ignore phis with only one input return false; } if (phase->is_dominator(phase->get_ctrl(lb->in(LoadBarrierNode::Address)), oop_phi->in(0)) && phase->get_ctrl(lb->in(LoadBarrierNode::Address)) != oop_phi->in(0)) { // That transformation may cause the Similar edge on dominated load barriers to be invalid lb->fix_similar_in_uses(&igvn); RegionNode* region = oop_phi->in(0)->as_Region(); int backedge = LoopNode::LoopBackControl; if (region->is_Loop() && region->in(backedge)->is_Proj() && region->in(backedge)->in(0)->is_If()) { Node* c = region->in(backedge)->in(0)->in(0); assert(c->unique_ctrl_out() == region->in(backedge)->in(0), ""); Node* oop = lb->in(LoadBarrierNode::Oop)->in(backedge); Node* oop_c = phase->has_ctrl(oop) ? phase->get_ctrl(oop) : oop; if (!phase->is_dominator(oop_c, c)) { return false; } } // If the node on the backedge above the phi is the node itself - we have a self loop. // Don't clone - this will be folded later. if (oop_phi->in(LoopNode::LoopBackControl) == lb->proj_out(LoadBarrierNode::Oop)) { return false; } bool is_strip_mined = region->is_CountedLoop() && region->as_CountedLoop()->is_strip_mined(); Node *phi = oop_phi->clone(); for (uint i = 1; i < region->req(); i++) { Node* ctrl = region->in(i); if (ctrl != C->top()) { assert(!phase->is_dominator(ctrl, region) || region->is_Loop(), ""); Node* mem = lb->in(LoadBarrierNode::Memory); Node* m = find_dominating_memory(phase, mem, region, i); if (region->is_Loop() && i == LoopNode::LoopBackControl && ctrl->is_Proj() && ctrl->in(0)->is_If()) { ctrl = ctrl->in(0)->in(0); } else if (region->is_Loop() && is_strip_mined) { // If this is a strip mined loop, control must move above OuterStripMinedLoop assert(i == LoopNode::EntryControl, "check"); assert(ctrl->is_OuterStripMinedLoop(), "sanity"); ctrl = ctrl->as_OuterStripMinedLoop()->in(LoopNode::EntryControl); } LoadBarrierNode* new_lb = clone_load_barrier(phase, lb, ctrl, m, lb->in(LoadBarrierNode::Oop)->in(i)); Node* out_ctrl = new_lb->proj_out(LoadBarrierNode::Control); if (is_strip_mined && (i == LoopNode::EntryControl)) { assert(region->in(i)->is_OuterStripMinedLoop(), ""); igvn.replace_input_of(region->in(i), i, out_ctrl); phase->set_idom(region->in(i), out_ctrl, phase->dom_depth(out_ctrl)); } else if (ctrl == region->in(i)) { igvn.replace_input_of(region, i, out_ctrl); // Only update the idom if is the loop entry we are updating // - A loop backedge doesn't change the idom if (region->is_Loop() && i == LoopNode::EntryControl) { phase->set_idom(region, out_ctrl, phase->dom_depth(out_ctrl)); } } else { Node* iff = region->in(i)->in(0); igvn.replace_input_of(iff, 0, out_ctrl); phase->set_idom(iff, out_ctrl, phase->dom_depth(out_ctrl)+1); } phi->set_req(i, new_lb->proj_out(LoadBarrierNode::Oop)); } } phase->register_new_node(phi, region); replace_barrier(phase, lb, phi); if (region->is_Loop()) { // Load barrier moved to the back edge of the Loop may now // have a safepoint on the path to the barrier on the Similar // edge igvn.replace_input_of(phi->in(LoopNode::LoopBackControl)->in(0), LoadBarrierNode::Similar, C->top()); Node* head = region->in(LoopNode::EntryControl); phase->set_idom(region, head, phase->dom_depth(head)+1); phase->recompute_dom_depth(); if (head->is_CountedLoop() && head->as_CountedLoop()->is_main_loop()) { head->as_CountedLoop()->set_normal_loop(); } } return true; } } return false; } static bool move_out_of_loop(PhaseIdealLoop* phase, LoadBarrierNode* lb) { PhaseIterGVN &igvn = phase->igvn(); IdealLoopTree *lb_loop = phase->get_loop(lb->in(0)); if (lb_loop != phase->ltree_root() && !lb_loop->_irreducible) { Node* oop_ctrl = phase->get_ctrl(lb->in(LoadBarrierNode::Oop)); IdealLoopTree *oop_loop = phase->get_loop(oop_ctrl); IdealLoopTree* adr_loop = phase->get_loop(phase->get_ctrl(lb->in(LoadBarrierNode::Address))); if (!lb_loop->is_member(oop_loop) && !lb_loop->is_member(adr_loop)) { // That transformation may cause the Similar edge on dominated load barriers to be invalid lb->fix_similar_in_uses(&igvn); Node* head = lb_loop->_head; assert(head->is_Loop(), ""); if (phase->is_dominator(head, oop_ctrl)) { assert(oop_ctrl->Opcode() == Op_CProj && oop_ctrl->in(0)->Opcode() == Op_NeverBranch, ""); assert(lb_loop->is_member(phase->get_loop(oop_ctrl->in(0)->in(0))), ""); return false; } if (head->is_CountedLoop()) { CountedLoopNode* cloop = head->as_CountedLoop(); if (cloop->is_main_loop()) { cloop->set_normal_loop(); } // When we are moving barrier out of a counted loop, // make sure we move it all the way out of the strip mined outer loop. if (cloop->is_strip_mined()) { head = cloop->outer_loop(); } } Node* mem = lb->in(LoadBarrierNode::Memory); Node* m = find_dominating_memory(phase, mem, head, -1); LoadBarrierNode* new_lb = clone_load_barrier(phase, lb, head->in(LoopNode::EntryControl), m, NULL); assert(phase->idom(head) == head->in(LoopNode::EntryControl), ""); Node* proj_ctl = new_lb->proj_out(LoadBarrierNode::Control); igvn.replace_input_of(head, LoopNode::EntryControl, proj_ctl); phase->set_idom(head, proj_ctl, phase->dom_depth(proj_ctl) + 1); replace_barrier(phase, lb, new_lb->proj_out(LoadBarrierNode::Oop)); phase->recompute_dom_depth(); return true; } } return false; } static bool common_barriers(PhaseIdealLoop* phase, LoadBarrierNode* lb) { PhaseIterGVN &igvn = phase->igvn(); Node* in_val = lb->in(LoadBarrierNode::Oop); for (DUIterator_Fast imax, i = in_val->fast_outs(imax); i < imax; i++) { Node* u = in_val->fast_out(i); if (u != lb && u->is_LoadBarrier() && u->as_LoadBarrier()->has_true_uses()) { Node* this_ctrl = lb->in(LoadBarrierNode::Control); Node* other_ctrl = u->in(LoadBarrierNode::Control); Node* lca = phase->dom_lca(this_ctrl, other_ctrl); bool ok = true; Node* proj1 = NULL; Node* proj2 = NULL; while (this_ctrl != lca && ok) { if (this_ctrl->in(0) != NULL && this_ctrl->in(0)->is_MultiBranch()) { if (this_ctrl->in(0)->in(0) == lca) { assert(proj1 == NULL, ""); assert(this_ctrl->is_Proj(), ""); proj1 = this_ctrl; } else if (!(this_ctrl->in(0)->is_If() && this_ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none))) { ok = false; } } this_ctrl = phase->idom(this_ctrl); } while (other_ctrl != lca && ok) { if (other_ctrl->in(0) != NULL && other_ctrl->in(0)->is_MultiBranch()) { if (other_ctrl->in(0)->in(0) == lca) { assert(other_ctrl->is_Proj(), ""); assert(proj2 == NULL, ""); proj2 = other_ctrl; } else if (!(other_ctrl->in(0)->is_If() && other_ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none))) { ok = false; } } other_ctrl = phase->idom(other_ctrl); } assert(proj1 == NULL || proj2 == NULL || proj1->in(0) == proj2->in(0), ""); if (ok && proj1 && proj2 && proj1 != proj2 && proj1->in(0)->is_If()) { // That transformation may cause the Similar edge on dominated load barriers to be invalid lb->fix_similar_in_uses(&igvn); u->as_LoadBarrier()->fix_similar_in_uses(&igvn); Node* split = lca->unique_ctrl_out(); assert(split->in(0) == lca, ""); Node* mem = lb->in(LoadBarrierNode::Memory); Node* m = find_dominating_memory(phase, mem, split, -1); LoadBarrierNode* new_lb = clone_load_barrier(phase, lb, lca, m, NULL); Node* proj_ctl = new_lb->proj_out(LoadBarrierNode::Control); igvn.replace_input_of(split, 0, new_lb->proj_out(LoadBarrierNode::Control)); phase->set_idom(split, proj_ctl, phase->dom_depth(proj_ctl)+1); Node* proj_oop = new_lb->proj_out(LoadBarrierNode::Oop); replace_barrier(phase, lb, proj_oop); replace_barrier(phase, u->as_LoadBarrier(), proj_oop); phase->recompute_dom_depth(); return true; } } } return false; } static void optimize_load_barrier(PhaseIdealLoop* phase, LoadBarrierNode* lb, bool last_round) { Compile* C = Compile::current(); if (!C->directive()->ZOptimizeLoadBarriersOption) { return; } if (lb->has_true_uses()) { if (replace_with_dominating_barrier(phase, lb, last_round)) { return; } if (split_barrier_thru_phi(phase, lb)) { return; } if (move_out_of_loop(phase, lb)) { return; } if (common_barriers(phase, lb)) { return; } } } void ZBarrierSetC2::loop_optimize_gc_barrier(PhaseIdealLoop* phase, Node* node, bool last_round) { if (node->is_LoadBarrier()) { optimize_load_barrier(phase, node->as_LoadBarrier(), last_round); } } Node* ZBarrierSetC2::step_over_gc_barrier(Node* c) const { Node* node = c; // 1. This step follows potential oop projections of a load barrier before expansion if (node->is_Proj()) { node = node->in(0); } // 2. This step checks for unexpanded load barriers if (node->is_LoadBarrier()) { return node->in(LoadBarrierNode::Oop); } // 3. This step checks for the phi corresponding to an optimized load barrier expansion if (node->is_Phi()) { PhiNode* phi = node->as_Phi(); Node* n = phi->in(1); if (n != NULL && (n->is_LoadBarrierSlowReg() || n->is_LoadBarrierWeakSlowReg())) { assert(c == node, "projections from step 1 should only be seen before macro expansion"); return phi->in(2); } } return c; } bool ZBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, ArrayCopyPhase phase) const { return type == T_OBJECT || type == T_ARRAY; } // == Verification == #ifdef ASSERT static bool look_for_barrier(Node* n, bool post_parse, VectorSet& visited) { if (visited.test_set(n->_idx)) { return true; } for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node* u = n->fast_out(i); if (u->is_LoadBarrier()) { } else if ((u->is_Phi() || u->is_CMove()) && !post_parse) { if (!look_for_barrier(u, post_parse, visited)) { return false; } } else if (u->Opcode() == Op_EncodeP || u->Opcode() == Op_DecodeN) { if (!look_for_barrier(u, post_parse, visited)) { return false; } } else if (u->Opcode() != Op_SCMemProj) { tty->print("bad use"); u->dump(); return false; } } return true; } void ZBarrierSetC2::verify_gc_barriers(bool post_parse) const { ZBarrierSetC2State* s = state(); Compile* C = Compile::current(); ResourceMark rm; VectorSet visited(Thread::current()->resource_area()); for (int i = 0; i < s->load_barrier_count(); i++) { LoadBarrierNode* n = s->load_barrier_node(i); // The dominating barrier on the same address if it exists and // this barrier must not be applied on the value from the same // load otherwise the value is not reloaded before it's used the // second time. assert(n->in(LoadBarrierNode::Similar)->is_top() || (n->in(LoadBarrierNode::Similar)->in(0)->is_LoadBarrier() && n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Address) == n->in(LoadBarrierNode::Address) && n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Oop) != n->in(LoadBarrierNode::Oop)), "broken similar edge"); assert(post_parse || n->as_LoadBarrier()->has_true_uses(), "found unneeded load barrier"); // Several load barrier nodes chained through their Similar edge // break the code that remove the barriers in final graph reshape. assert(n->in(LoadBarrierNode::Similar)->is_top() || (n->in(LoadBarrierNode::Similar)->in(0)->is_LoadBarrier() && n->in(LoadBarrierNode::Similar)->in(0)->in(LoadBarrierNode::Similar)->is_top()), "chain of Similar load barriers"); if (!n->in(LoadBarrierNode::Similar)->is_top()) { ResourceMark rm; Unique_Node_List wq; Node* other = n->in(LoadBarrierNode::Similar)->in(0); wq.push(n); bool ok = true; bool dom_found = false; for (uint next = 0; next < wq.size(); ++next) { Node *n = wq.at(next); assert(n->is_CFG(), ""); assert(!n->is_SafePoint(), ""); if (n == other) { continue; } if (n->is_Region()) { for (uint i = 1; i < n->req(); i++) { Node* m = n->in(i); if (m != NULL) { wq.push(m); } } } else { Node* m = n->in(0); if (m != NULL) { wq.push(m); } } } } if (ZVerifyLoadBarriers) { if ((n->is_Load() || n->is_LoadStore()) && n->bottom_type()->make_oopptr() != NULL) { visited.Clear(); bool found = look_for_barrier(n, post_parse, visited); if (!found) { n->dump(1); n->dump(-3); stringStream ss; C->method()->print_short_name(&ss); tty->print_cr("-%s-", ss.as_string()); assert(found, ""); } } } } } #endif