1 /*
   2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/c2/g1BarrierSetC2.hpp"
  27 #include "gc/g1/g1BarrierSet.hpp"
  28 #include "gc/g1/g1BarrierSetRuntime.hpp"
  29 #include "gc/g1/g1CardTable.hpp"
  30 #include "gc/g1/g1ThreadLocalData.hpp"
  31 #include "gc/g1/heapRegion.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/graphKit.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/macro.hpp"
  36 #include "opto/type.hpp"
  37 #include "utilities/macros.hpp"
  38 
  39 const TypeFunc *G1BarrierSetC2::write_ref_field_pre_entry_Type() {
  40   const Type **fields = TypeTuple::fields(2);
  41   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
  42   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
  43   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  44 
  45   // create result type (range)
  46   fields = TypeTuple::fields(0);
  47   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
  48 
  49   return TypeFunc::make(domain, range);
  50 }
  51 
  52 const TypeFunc *G1BarrierSetC2::write_ref_field_post_entry_Type() {
  53   const Type **fields = TypeTuple::fields(2);
  54   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
  55   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
  56   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  57 
  58   // create result type (range)
  59   fields = TypeTuple::fields(0);
  60   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  61 
  62   return TypeFunc::make(domain, range);
  63 }
  64 
  65 #define __ ideal.
  66 /*
  67  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
  68  * required by SATB to make sure all objects live at the start of the
  69  * marking are kept alive, all reference updates need to any previous
  70  * reference stored before writing.
  71  *
  72  * If the previous value is NULL there is no need to save the old value.
  73  * References that are NULL are filtered during runtime by the barrier
  74  * code to avoid unnecessary queuing.
  75  *
  76  * However in the case of newly allocated objects it might be possible to
  77  * prove that the reference about to be overwritten is NULL during compile
  78  * time and avoid adding the barrier code completely.
  79  *
  80  * The compiler needs to determine that the object in which a field is about
  81  * to be written is newly allocated, and that no prior store to the same field
  82  * has happened since the allocation.
  83  *
  84  * Returns true if the pre-barrier can be removed
  85  */
  86 bool G1BarrierSetC2::g1_can_remove_pre_barrier(GraphKit* kit,
  87                                                PhaseTransform* phase,
  88                                                Node* adr,
  89                                                BasicType bt,
  90                                                uint adr_idx) const {
  91   intptr_t offset = 0;
  92   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  93   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
  94 
  95   if (offset == Type::OffsetBot) {
  96     return false; // cannot unalias unless there are precise offsets
  97   }
  98 
  99   if (alloc == NULL) {
 100     return false; // No allocation found
 101   }
 102 
 103   intptr_t size_in_bytes = type2aelembytes(bt);
 104 
 105   Node* mem = kit->memory(adr_idx); // start searching here...
 106 
 107   for (int cnt = 0; cnt < 50; cnt++) {
 108 
 109     if (mem->is_Store()) {
 110 
 111       Node* st_adr = mem->in(MemNode::Address);
 112       intptr_t st_offset = 0;
 113       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 114 
 115       if (st_base == NULL) {
 116         break; // inscrutable pointer
 117       }
 118 
 119       // Break we have found a store with same base and offset as ours so break
 120       if (st_base == base && st_offset == offset) {
 121         break;
 122       }
 123 
 124       if (st_offset != offset && st_offset != Type::OffsetBot) {
 125         const int MAX_STORE = BytesPerLong;
 126         if (st_offset >= offset + size_in_bytes ||
 127             st_offset <= offset - MAX_STORE ||
 128             st_offset <= offset - mem->as_Store()->memory_size()) {
 129           // Success:  The offsets are provably independent.
 130           // (You may ask, why not just test st_offset != offset and be done?
 131           // The answer is that stores of different sizes can co-exist
 132           // in the same sequence of RawMem effects.  We sometimes initialize
 133           // a whole 'tile' of array elements with a single jint or jlong.)
 134           mem = mem->in(MemNode::Memory);
 135           continue; // advance through independent store memory
 136         }
 137       }
 138 
 139       if (st_base != base
 140           && MemNode::detect_ptr_independence(base, alloc, st_base,
 141                                               AllocateNode::Ideal_allocation(st_base, phase),
 142                                               phase)) {
 143         // Success:  The bases are provably independent.
 144         mem = mem->in(MemNode::Memory);
 145         continue; // advance through independent store memory
 146       }
 147     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 148 
 149       InitializeNode* st_init = mem->in(0)->as_Initialize();
 150       AllocateNode* st_alloc = st_init->allocation();
 151 
 152       // Make sure that we are looking at the same allocation site.
 153       // The alloc variable is guaranteed to not be null here from earlier check.
 154       if (alloc == st_alloc) {
 155         // Check that the initialization is storing NULL so that no previous store
 156         // has been moved up and directly write a reference
 157         Node* captured_store = st_init->find_captured_store(offset,
 158                                                             type2aelembytes(T_OBJECT),
 159                                                             phase);
 160         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
 161           return true;
 162         }
 163       }
 164     }
 165 
 166     // Unless there is an explicit 'continue', we must bail out here,
 167     // because 'mem' is an inscrutable memory state (e.g., a call).
 168     break;
 169   }
 170 
 171   return false;
 172 }
 173 
 174 // G1 pre/post barriers
 175 void G1BarrierSetC2::pre_barrier(GraphKit* kit,
 176                                  bool do_load,
 177                                  Node* ctl,
 178                                  Node* obj,
 179                                  Node* adr,
 180                                  uint alias_idx,
 181                                  Node* val,
 182                                  const TypeOopPtr* val_type,
 183                                  Node* pre_val,
 184                                  BasicType bt) const {
 185   // Some sanity checks
 186   // Note: val is unused in this routine.
 187 
 188   if (do_load) {
 189     // We need to generate the load of the previous value
 190     assert(obj != NULL, "must have a base");
 191     assert(adr != NULL, "where are loading from?");
 192     assert(pre_val == NULL, "loaded already?");
 193     assert(val_type != NULL, "need a type");
 194 
 195     if (use_ReduceInitialCardMarks()
 196         && g1_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 197       return;
 198     }
 199 
 200   } else {
 201     // In this case both val_type and alias_idx are unused.
 202     assert(pre_val != NULL, "must be loaded already");
 203     // Nothing to be done if pre_val is null.
 204     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 205     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 206   }
 207   assert(bt == T_OBJECT, "or we shouldn't be here");
 208 
 209   IdealKit ideal(kit, true);
 210 
 211   Node* tls = __ thread(); // ThreadLocalStorage
 212 
 213   Node* no_base = __ top();
 214   Node* zero  = __ ConI(0);
 215   Node* zeroX = __ ConX(0);
 216 
 217   float likely  = PROB_LIKELY(0.999);
 218   float unlikely  = PROB_UNLIKELY(0.999);
 219 
 220   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
 221   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
 222 
 223   // Offsets into the thread
 224   const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
 225   const int index_offset   = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
 226   const int buffer_offset  = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
 227 
 228   // Now the actual pointers into the thread
 229   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
 230   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 231   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 232 
 233   // Now some of the values
 234   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
 235 
 236   // if (!marking)
 237   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 238     BasicType index_bt = TypeX_X->basic_type();
 239     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
 240     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 241 
 242     if (do_load) {
 243       // load original value
 244       // alias_idx correct??
 245       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 246     }
 247 
 248     // if (pre_val != NULL)
 249     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 250       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 251 
 252       // is the queue for this thread full?
 253       __ if_then(index, BoolTest::ne, zeroX, likely); {
 254 
 255         // decrement the index
 256         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 257 
 258         // Now get the buffer location we will log the previous value into and store it
 259         Node *log_addr = __ AddP(no_base, buffer, next_index);
 260         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 261         // update the index
 262         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 263 
 264       } __ else_(); {
 265 
 266         // logging buffer is full, call the runtime
 267         const TypeFunc *tf = write_ref_field_pre_entry_Type();
 268         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), "write_ref_field_pre_entry", pre_val, tls);
 269       } __ end_if();  // (!index)
 270     } __ end_if();  // (pre_val != NULL)
 271   } __ end_if();  // (!marking)
 272 
 273   // Final sync IdealKit and GraphKit.
 274   kit->final_sync(ideal);
 275 }
 276 
 277 /*
 278  * G1 similar to any GC with a Young Generation requires a way to keep track of
 279  * references from Old Generation to Young Generation to make sure all live
 280  * objects are found. G1 also requires to keep track of object references
 281  * between different regions to enable evacuation of old regions, which is done
 282  * as part of mixed collections. References are tracked in remembered sets and
 283  * is continuously updated as reference are written to with the help of the
 284  * post-barrier.
 285  *
 286  * To reduce the number of updates to the remembered set the post-barrier
 287  * filters updates to fields in objects located in the Young Generation,
 288  * the same region as the reference, when the NULL is being written or
 289  * if the card is already marked as dirty by an earlier write.
 290  *
 291  * Under certain circumstances it is possible to avoid generating the
 292  * post-barrier completely if it is possible during compile time to prove
 293  * the object is newly allocated and that no safepoint exists between the
 294  * allocation and the store.
 295  *
 296  * In the case of slow allocation the allocation code must handle the barrier
 297  * as part of the allocation in the case the allocated object is not located
 298  * in the nursery, this would happen for humongous objects. This is similar to
 299  * how CMS is required to handle this case, see the comments for the method
 300  * CollectedHeap::new_deferred_store_barrier and OptoRuntime::new_deferred_store_barrier.
 301  * A deferred card mark is required for these objects and handled in the above
 302  * mentioned methods.
 303  *
 304  * Returns true if the post barrier can be removed
 305  */
 306 bool G1BarrierSetC2::g1_can_remove_post_barrier(GraphKit* kit,
 307                                                 PhaseTransform* phase, Node* store,
 308                                                 Node* adr) const {
 309   intptr_t      offset = 0;
 310   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 311   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 312 
 313   if (offset == Type::OffsetBot) {
 314     return false; // cannot unalias unless there are precise offsets
 315   }
 316 
 317   if (alloc == NULL) {
 318      return false; // No allocation found
 319   }
 320 
 321   // Start search from Store node
 322   Node* mem = store->in(MemNode::Control);
 323   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 324 
 325     InitializeNode* st_init = mem->in(0)->as_Initialize();
 326     AllocateNode*  st_alloc = st_init->allocation();
 327 
 328     // Make sure we are looking at the same allocation
 329     if (alloc == st_alloc) {
 330       return true;
 331     }
 332   }
 333 
 334   return false;
 335 }
 336 
 337 //
 338 // Update the card table and add card address to the queue
 339 //
 340 void G1BarrierSetC2::g1_mark_card(GraphKit* kit,
 341                                   IdealKit& ideal,
 342                                   Node* card_adr,
 343                                   Node* oop_store,
 344                                   uint oop_alias_idx,
 345                                   Node* index,
 346                                   Node* index_adr,
 347                                   Node* buffer,
 348                                   const TypeFunc* tf) const {
 349   Node* zero  = __ ConI(0);
 350   Node* zeroX = __ ConX(0);
 351   Node* no_base = __ top();
 352   BasicType card_bt = T_BYTE;
 353   // Smash zero into card. MUST BE ORDERED WRT TO STORE
 354   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
 355 
 356   //  Now do the queue work
 357   __ if_then(index, BoolTest::ne, zeroX); {
 358 
 359     Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 360     Node* log_addr = __ AddP(no_base, buffer, next_index);
 361 
 362     // Order, see storeCM.
 363     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 364     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
 365 
 366   } __ else_(); {
 367     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry), "write_ref_field_post_entry", card_adr, __ thread());
 368   } __ end_if();
 369 
 370 }
 371 
 372 void G1BarrierSetC2::post_barrier(GraphKit* kit,
 373                                   Node* ctl,
 374                                   Node* oop_store,
 375                                   Node* obj,
 376                                   Node* adr,
 377                                   uint alias_idx,
 378                                   Node* val,
 379                                   BasicType bt,
 380                                   bool use_precise) const {
 381   // If we are writing a NULL then we need no post barrier
 382 
 383   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
 384     // Must be NULL
 385     const Type* t = val->bottom_type();
 386     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
 387     // No post barrier if writing NULLx
 388     return;
 389   }
 390 
 391   if (use_ReduceInitialCardMarks() && obj == kit->just_allocated_object(kit->control())) {
 392     // We can skip marks on a freshly-allocated object in Eden.
 393     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
 394     // That routine informs GC to take appropriate compensating steps,
 395     // upon a slow-path allocation, so as to make this card-mark
 396     // elision safe.
 397     return;
 398   }
 399 
 400   if (use_ReduceInitialCardMarks()
 401       && g1_can_remove_post_barrier(kit, &kit->gvn(), oop_store, adr)) {
 402     return;
 403   }
 404 
 405   if (!use_precise) {
 406     // All card marks for a (non-array) instance are in one place:
 407     adr = obj;
 408   }
 409   // (Else it's an array (or unknown), and we want more precise card marks.)
 410   assert(adr != NULL, "");
 411 
 412   IdealKit ideal(kit, true);
 413 
 414   Node* tls = __ thread(); // ThreadLocalStorage
 415 
 416   Node* no_base = __ top();
 417   float unlikely  = PROB_UNLIKELY(0.999);
 418   Node* young_card = __ ConI((jint)G1CardTable::g1_young_card_val());
 419   Node* dirty_card = __ ConI((jint)G1CardTable::dirty_card_val());
 420   Node* zeroX = __ ConX(0);
 421 
 422   const TypeFunc *tf = write_ref_field_post_entry_Type();
 423 
 424   // Offsets into the thread
 425   const int index_offset  = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
 426   const int buffer_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
 427 
 428   // Pointers into the thread
 429 
 430   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
 431   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
 432 
 433   // Now some values
 434   // Use ctrl to avoid hoisting these values past a safepoint, which could
 435   // potentially reset these fields in the JavaThread.
 436   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
 437   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 438 
 439   // Convert the store obj pointer to an int prior to doing math on it
 440   // Must use ctrl to prevent "integerized oop" existing across safepoint
 441   Node* cast =  __ CastPX(__ ctrl(), adr);
 442 
 443   // Divide pointer by card size
 444   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
 445 
 446   // Combine card table base and card offset
 447   Node* card_adr = __ AddP(no_base, byte_map_base_node(kit), card_offset );
 448 
 449   // If we know the value being stored does it cross regions?
 450 
 451   if (val != NULL) {
 452     // Does the store cause us to cross regions?
 453 
 454     // Should be able to do an unsigned compare of region_size instead of
 455     // and extra shift. Do we have an unsigned compare??
 456     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
 457     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
 458 
 459     // if (xor_res == 0) same region so skip
 460     __ if_then(xor_res, BoolTest::ne, zeroX); {
 461 
 462       // No barrier if we are storing a NULL
 463       __ if_then(val, BoolTest::ne, kit->null(), unlikely); {
 464 
 465         // Ok must mark the card if not already dirty
 466 
 467         // load the original value of the card
 468         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
 469 
 470         __ if_then(card_val, BoolTest::ne, young_card); {
 471           kit->sync_kit(ideal);
 472           kit->insert_mem_bar(Op_MemBarVolatile, oop_store);
 473           __ sync_kit(kit);
 474 
 475           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
 476           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
 477             g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
 478           } __ end_if();
 479         } __ end_if();
 480       } __ end_if();
 481     } __ end_if();
 482   } else {
 483     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
 484     // We don't need a barrier here if the destination is a newly allocated object
 485     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
 486     // are set to 'g1_young_gen' (see G1CardTable::verify_g1_young_region()).
 487     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
 488     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
 489     __ if_then(card_val, BoolTest::ne, young_card); {
 490       g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
 491     } __ end_if();
 492   }
 493 
 494   // Final sync IdealKit and GraphKit.
 495   kit->final_sync(ideal);
 496 }
 497 
 498 // Helper that guards and inserts a pre-barrier.
 499 void G1BarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 500                                         Node* pre_val, bool need_mem_bar) const {
 501   // We could be accessing the referent field of a reference object. If so, when G1
 502   // is enabled, we need to log the value in the referent field in an SATB buffer.
 503   // This routine performs some compile time filters and generates suitable
 504   // runtime filters that guard the pre-barrier code.
 505   // Also add memory barrier for non volatile load from the referent field
 506   // to prevent commoning of loads across safepoint.
 507 
 508   // Some compile time checks.
 509 
 510   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 511   const TypeX* otype = offset->find_intptr_t_type();
 512   if (otype != NULL && otype->is_con() &&
 513       otype->get_con() != java_lang_ref_Reference::referent_offset) {
 514     // Constant offset but not the reference_offset so just return
 515     return;
 516   }
 517 
 518   // We only need to generate the runtime guards for instances.
 519   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 520   if (btype != NULL) {
 521     if (btype->isa_aryptr()) {
 522       // Array type so nothing to do
 523       return;
 524     }
 525 
 526     const TypeInstPtr* itype = btype->isa_instptr();
 527     if (itype != NULL) {
 528       // Can the klass of base_oop be statically determined to be
 529       // _not_ a sub-class of Reference and _not_ Object?
 530       ciKlass* klass = itype->klass();
 531       if ( klass->is_loaded() &&
 532           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 533           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 534         return;
 535       }
 536     }
 537   }
 538 
 539   // The compile time filters did not reject base_oop/offset so
 540   // we need to generate the following runtime filters
 541   //
 542   // if (offset == java_lang_ref_Reference::_reference_offset) {
 543   //   if (instance_of(base, java.lang.ref.Reference)) {
 544   //     pre_barrier(_, pre_val, ...);
 545   //   }
 546   // }
 547 
 548   float likely   = PROB_LIKELY(  0.999);
 549   float unlikely = PROB_UNLIKELY(0.999);
 550 
 551   IdealKit ideal(kit);
 552 
 553   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
 554 
 555   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 556       // Update graphKit memory and control from IdealKit.
 557       kit->sync_kit(ideal);
 558 
 559       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 560       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 561 
 562       // Update IdealKit memory and control from graphKit.
 563       __ sync_kit(kit);
 564 
 565       Node* one = __ ConI(1);
 566       // is_instof == 0 if base_oop == NULL
 567       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 568 
 569         // Update graphKit from IdeakKit.
 570         kit->sync_kit(ideal);
 571 
 572         // Use the pre-barrier to record the value in the referent field
 573         pre_barrier(kit, false /* do_load */,
 574                     __ ctrl(),
 575                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 576                     pre_val /* pre_val */,
 577                     T_OBJECT);
 578         if (need_mem_bar) {
 579           // Add memory barrier to prevent commoning reads from this field
 580           // across safepoint since GC can change its value.
 581           kit->insert_mem_bar(Op_MemBarCPUOrder);
 582         }
 583         // Update IdealKit from graphKit.
 584         __ sync_kit(kit);
 585 
 586       } __ end_if(); // _ref_type != ref_none
 587   } __ end_if(); // offset == referent_offset
 588 
 589   // Final sync IdealKit and GraphKit.
 590   kit->final_sync(ideal);
 591 }
 592 
 593 #undef __
 594 
 595 Node* G1BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 596   DecoratorSet decorators = access.decorators();
 597   Node* adr = access.addr().node();
 598   Node* obj = access.base();
 599 
 600   bool mismatched = (decorators & C2_MISMATCHED) != 0;
 601   bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 602   bool in_heap = (decorators & IN_HEAP) != 0;
 603   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
 604   bool is_unordered = (decorators & MO_UNORDERED) != 0;
 605   bool need_cpu_mem_bar = !is_unordered || mismatched || !in_heap;
 606 
 607   Node* top = Compile::current()->top();
 608   Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 609   Node* load = CardTableBarrierSetC2::load_at_resolved(access, val_type);
 610 
 611   // If we are reading the value of the referent field of a Reference
 612   // object (either by using Unsafe directly or through reflection)
 613   // then, if G1 is enabled, we need to record the referent in an
 614   // SATB log buffer using the pre-barrier mechanism.
 615   // Also we need to add memory barrier to prevent commoning reads
 616   // from this field across safepoint since GC can change its value.
 617   bool need_read_barrier = in_heap && (on_weak ||
 618                                        (unknown && offset != top && obj != top));
 619 
 620   if (!access.is_oop() || !need_read_barrier) {
 621     return load;
 622   }
 623 
 624   assert(access.is_parse_access(), "entry not supported at optimization time");
 625   C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 626   GraphKit* kit = parse_access.kit();
 627 
 628   if (on_weak) {
 629     // Use the pre-barrier to record the value in the referent field
 630     pre_barrier(kit, false /* do_load */,
 631                 kit->control(),
 632                 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
 633                 load /* pre_val */, T_OBJECT);
 634     // Add memory barrier to prevent commoning reads from this field
 635     // across safepoint since GC can change its value.
 636     kit->insert_mem_bar(Op_MemBarCPUOrder);
 637   } else if (unknown) {
 638     // We do not require a mem bar inside pre_barrier if need_mem_bar
 639     // is set: the barriers would be emitted by us.
 640     insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 641   }
 642 
 643   return load;
 644 }
 645 
 646 bool G1BarrierSetC2::is_gc_barrier_node(Node* node) const {
 647   if (CardTableBarrierSetC2::is_gc_barrier_node(node)) {
 648     return true;
 649   }
 650   if (node->Opcode() != Op_CallLeaf) {
 651     return false;
 652   }
 653   CallLeafNode *call = node->as_CallLeaf();
 654   if (call->_name == NULL) {
 655     return false;
 656   }
 657 
 658   return strcmp(call->_name, "write_ref_field_pre_entry") == 0 || strcmp(call->_name, "write_ref_field_post_entry") == 0;
 659 }
 660 
 661 void G1BarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
 662   assert(node->Opcode() == Op_CastP2X, "ConvP2XNode required");
 663   assert(node->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
 664   // It could be only one user, URShift node, in Object.clone() intrinsic
 665   // but the new allocation is passed to arraycopy stub and it could not
 666   // be scalar replaced. So we don't check the case.
 667 
 668   // An other case of only one user (Xor) is when the value check for NULL
 669   // in G1 post barrier is folded after CCP so the code which used URShift
 670   // is removed.
 671 
 672   // Take Region node before eliminating post barrier since it also
 673   // eliminates CastP2X node when it has only one user.
 674   Node* this_region = node->in(0);
 675   assert(this_region != NULL, "");
 676 
 677   // Remove G1 post barrier.
 678 
 679   // Search for CastP2X->Xor->URShift->Cmp path which
 680   // checks if the store done to a different from the value's region.
 681   // And replace Cmp with #0 (false) to collapse G1 post barrier.
 682   Node* xorx = node->find_out_with(Op_XorX);
 683   if (xorx != NULL) {
 684     Node* shift = xorx->unique_out();
 685     Node* cmpx = shift->unique_out();
 686     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 687     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 688     "missing region check in G1 post barrier");
 689     macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
 690 
 691     // Remove G1 pre barrier.
 692 
 693     // Search "if (marking != 0)" check and set it to "false".
 694     // There is no G1 pre barrier if previous stored value is NULL
 695     // (for example, after initialization).
 696     if (this_region->is_Region() && this_region->req() == 3) {
 697       int ind = 1;
 698       if (!this_region->in(ind)->is_IfFalse()) {
 699         ind = 2;
 700       }
 701       if (this_region->in(ind)->is_IfFalse() &&
 702           this_region->in(ind)->in(0)->Opcode() == Op_If) {
 703         Node* bol = this_region->in(ind)->in(0)->in(1);
 704         assert(bol->is_Bool(), "");
 705         cmpx = bol->in(1);
 706         if (bol->as_Bool()->_test._test == BoolTest::ne &&
 707             cmpx->is_Cmp() && cmpx->in(2) == macro->intcon(0) &&
 708             cmpx->in(1)->is_Load()) {
 709           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 710           const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
 711           if (adr->is_AddP() && adr->in(AddPNode::Base) == macro->top() &&
 712               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 713               adr->in(AddPNode::Offset) == macro->MakeConX(marking_offset)) {
 714             macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
 715           }
 716         }
 717       }
 718     }
 719   } else {
 720     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
 721     // This is a G1 post barrier emitted by the Object.clone() intrinsic.
 722     // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
 723     // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
 724     Node* shift = node->find_out_with(Op_URShiftX);
 725     assert(shift != NULL, "missing G1 post barrier");
 726     Node* addp = shift->unique_out();
 727     Node* load = addp->find_out_with(Op_LoadB);
 728     assert(load != NULL, "missing G1 post barrier");
 729     Node* cmpx = load->unique_out();
 730     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 731            cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 732            "missing card value check in G1 post barrier");
 733     macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
 734     // There is no G1 pre barrier in this case
 735   }
 736   // Now CastP2X can be removed since it is used only on dead path
 737   // which currently still alive until igvn optimize it.
 738   assert(node->outcnt() == 0 || node->unique_out()->Opcode() == Op_URShiftX, "");
 739   macro->replace_node(node, macro->top());
 740 }
 741 
 742 Node* G1BarrierSetC2::step_over_gc_barrier(Node* c) const {
 743   if (!use_ReduceInitialCardMarks() &&
 744       c != NULL && c->is_Region() && c->req() == 3) {
 745     for (uint i = 1; i < c->req(); i++) {
 746       if (c->in(i) != NULL && c->in(i)->is_Region() &&
 747           c->in(i)->req() == 3) {
 748         Node* r = c->in(i);
 749         for (uint j = 1; j < r->req(); j++) {
 750           if (r->in(j) != NULL && r->in(j)->is_Proj() &&
 751               r->in(j)->in(0) != NULL &&
 752               r->in(j)->in(0)->Opcode() == Op_CallLeaf &&
 753               r->in(j)->in(0)->as_Call()->entry_point() == CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry)) {
 754             Node* call = r->in(j)->in(0);
 755             c = c->in(i == 1 ? 2 : 1);
 756             if (c != NULL) {
 757               c = c->in(0);
 758               if (c != NULL) {
 759                 c = c->in(0);
 760                 assert(call->in(0) == NULL ||
 761                        call->in(0)->in(0) == NULL ||
 762                        call->in(0)->in(0)->in(0) == NULL ||
 763                        call->in(0)->in(0)->in(0)->in(0) == NULL ||
 764                        call->in(0)->in(0)->in(0)->in(0)->in(0) == NULL ||
 765                        c == call->in(0)->in(0)->in(0)->in(0)->in(0), "bad barrier shape");
 766                 return c;
 767               }
 768             }
 769           }
 770         }
 771       }
 772     }
 773   }
 774   return c;
 775 }