1 /*
   2  * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "opto/arraycopynode.hpp"
  28 #include "oops/objArrayKlass.hpp"
  29 #include "opto/convertnode.hpp"
  30 #include "opto/graphKit.hpp"
  31 #include "opto/macro.hpp"
  32 #include "opto/runtime.hpp"
  33 #include "utilities/align.hpp"
  34 
  35 
  36 void PhaseMacroExpand::insert_mem_bar(Node** ctrl, Node** mem, int opcode, Node* precedent) {
  37   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  38   mb->init_req(TypeFunc::Control, *ctrl);
  39   mb->init_req(TypeFunc::Memory, *mem);
  40   transform_later(mb);
  41   *ctrl = new ProjNode(mb,TypeFunc::Control);
  42   transform_later(*ctrl);
  43   Node* mem_proj = new ProjNode(mb,TypeFunc::Memory);
  44   transform_later(mem_proj);
  45   *mem = mem_proj;
  46 }
  47 
  48 Node* PhaseMacroExpand::array_element_address(Node* ary, Node* idx, BasicType elembt) {
  49   uint shift  = exact_log2(type2aelembytes(elembt));
  50   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
  51   Node* base =  basic_plus_adr(ary, header);
  52 #ifdef _LP64
  53   // see comment in GraphKit::array_element_address
  54   int index_max = max_jint - 1;  // array size is max_jint, index is one less
  55   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
  56   idx = transform_later( new ConvI2LNode(idx, lidxtype) );
  57 #endif
  58   Node* scale = new LShiftXNode(idx, intcon(shift));
  59   transform_later(scale);
  60   return basic_plus_adr(ary, base, scale);
  61 }
  62 
  63 Node* PhaseMacroExpand::ConvI2L(Node* offset) {
  64   return transform_later(new ConvI2LNode(offset));
  65 }
  66 
  67 Node* PhaseMacroExpand::make_leaf_call(Node* ctrl, Node* mem,
  68                                        const TypeFunc* call_type, address call_addr,
  69                                        const char* call_name,
  70                                        const TypePtr* adr_type,
  71                                        Node* parm0, Node* parm1,
  72                                        Node* parm2, Node* parm3,
  73                                        Node* parm4, Node* parm5,
  74                                        Node* parm6, Node* parm7) {
  75   int size = call_type->domain()->cnt();
  76   Node* call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
  77   call->init_req(TypeFunc::Control, ctrl);
  78   call->init_req(TypeFunc::I_O    , top());
  79   call->init_req(TypeFunc::Memory , mem);
  80   call->init_req(TypeFunc::ReturnAdr, top());
  81   call->init_req(TypeFunc::FramePtr, top());
  82 
  83   // Hook each parm in order.  Stop looking at the first NULL.
  84   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
  85   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
  86   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
  87   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
  88   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
  89   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
  90   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
  91   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
  92     /* close each nested if ===> */  } } } } } } } }
  93   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
  94 
  95   return call;
  96 }
  97 
  98 
  99 //------------------------------generate_guard---------------------------
 100 // Helper function for generating guarded fast-slow graph structures.
 101 // The given 'test', if true, guards a slow path.  If the test fails
 102 // then a fast path can be taken.  (We generally hope it fails.)
 103 // In all cases, GraphKit::control() is updated to the fast path.
 104 // The returned value represents the control for the slow path.
 105 // The return value is never 'top'; it is either a valid control
 106 // or NULL if it is obvious that the slow path can never be taken.
 107 // Also, if region and the slow control are not NULL, the slow edge
 108 // is appended to the region.
 109 Node* PhaseMacroExpand::generate_guard(Node** ctrl, Node* test, RegionNode* region, float true_prob) {
 110   if ((*ctrl)->is_top()) {
 111     // Already short circuited.
 112     return NULL;
 113   }
 114   // Build an if node and its projections.
 115   // If test is true we take the slow path, which we assume is uncommon.
 116   if (_igvn.type(test) == TypeInt::ZERO) {
 117     // The slow branch is never taken.  No need to build this guard.
 118     return NULL;
 119   }
 120 
 121   IfNode* iff = new IfNode(*ctrl, test, true_prob, COUNT_UNKNOWN);
 122   transform_later(iff);
 123 
 124   Node* if_slow = new IfTrueNode(iff);
 125   transform_later(if_slow);
 126 
 127   if (region != NULL) {
 128     region->add_req(if_slow);
 129   }
 130 
 131   Node* if_fast = new IfFalseNode(iff);
 132   transform_later(if_fast);
 133 
 134   *ctrl = if_fast;
 135 
 136   return if_slow;
 137 }
 138 
 139 inline Node* PhaseMacroExpand::generate_slow_guard(Node** ctrl, Node* test, RegionNode* region) {
 140   return generate_guard(ctrl, test, region, PROB_UNLIKELY_MAG(3));
 141 }
 142 
 143 void PhaseMacroExpand::generate_negative_guard(Node** ctrl, Node* index, RegionNode* region) {
 144   if ((*ctrl)->is_top())
 145     return;                // already stopped
 146   if (_igvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 147     return;                // index is already adequately typed
 148   Node* cmp_lt = new CmpINode(index, intcon(0));
 149   transform_later(cmp_lt);
 150   Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
 151   transform_later(bol_lt);
 152   generate_guard(ctrl, bol_lt, region, PROB_MIN);
 153 }
 154 
 155 void PhaseMacroExpand::generate_limit_guard(Node** ctrl, Node* offset, Node* subseq_length, Node* array_length, RegionNode* region) {
 156   if ((*ctrl)->is_top())
 157     return;                // already stopped
 158   bool zero_offset = _igvn.type(offset) == TypeInt::ZERO;
 159   if (zero_offset && subseq_length->eqv_uncast(array_length))
 160     return;                // common case of whole-array copy
 161   Node* last = subseq_length;
 162   if (!zero_offset) {            // last += offset
 163     last = new AddINode(last, offset);
 164     transform_later(last);
 165   }
 166   Node* cmp_lt = new CmpUNode(array_length, last);
 167   transform_later(cmp_lt);
 168   Node* bol_lt = new BoolNode(cmp_lt, BoolTest::lt);
 169   transform_later(bol_lt);
 170   generate_guard(ctrl, bol_lt, region, PROB_MIN);
 171 }
 172 
 173 Node* PhaseMacroExpand::generate_nonpositive_guard(Node** ctrl, Node* index, bool never_negative) {
 174   if ((*ctrl)->is_top())  return NULL;
 175 
 176   if (_igvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 177     return NULL;                // index is already adequately typed
 178   Node* cmp_le = new CmpINode(index, intcon(0));
 179   transform_later(cmp_le);
 180   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 181   Node* bol_le = new BoolNode(cmp_le, le_or_eq);
 182   transform_later(bol_le);
 183   Node* is_notp = generate_guard(ctrl, bol_le, NULL, PROB_MIN);
 184 
 185   return is_notp;
 186 }
 187 
 188 void PhaseMacroExpand::finish_arraycopy_call(Node* call, Node** ctrl, MergeMemNode** mem, const TypePtr* adr_type) {
 189   transform_later(call);
 190 
 191   *ctrl = new ProjNode(call,TypeFunc::Control);
 192   transform_later(*ctrl);
 193   Node* newmem = new ProjNode(call, TypeFunc::Memory);
 194   transform_later(newmem);
 195 
 196   uint alias_idx = C->get_alias_index(adr_type);
 197   if (alias_idx != Compile::AliasIdxBot) {
 198     *mem = MergeMemNode::make(*mem);
 199     (*mem)->set_memory_at(alias_idx, newmem);
 200   } else {
 201     *mem = MergeMemNode::make(newmem);
 202   }
 203   transform_later(*mem);
 204 }
 205 
 206 address PhaseMacroExpand::basictype2arraycopy(BasicType t,
 207                                               Node* src_offset,
 208                                               Node* dest_offset,
 209                                               bool disjoint_bases,
 210                                               const char* &name,
 211                                               bool dest_uninitialized) {
 212   const TypeInt* src_offset_inttype  = _igvn.find_int_type(src_offset);;
 213   const TypeInt* dest_offset_inttype = _igvn.find_int_type(dest_offset);;
 214 
 215   bool aligned = false;
 216   bool disjoint = disjoint_bases;
 217 
 218   // if the offsets are the same, we can treat the memory regions as
 219   // disjoint, because either the memory regions are in different arrays,
 220   // or they are identical (which we can treat as disjoint.)  We can also
 221   // treat a copy with a destination index  less that the source index
 222   // as disjoint since a low->high copy will work correctly in this case.
 223   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
 224       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
 225     // both indices are constants
 226     int s_offs = src_offset_inttype->get_con();
 227     int d_offs = dest_offset_inttype->get_con();
 228     int element_size = type2aelembytes(t);
 229     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 230               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
 231     if (s_offs >= d_offs)  disjoint = true;
 232   } else if (src_offset == dest_offset && src_offset != NULL) {
 233     // This can occur if the offsets are identical non-constants.
 234     disjoint = true;
 235   }
 236 
 237   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
 238 }
 239 
 240 #define XTOP LP64_ONLY(COMMA top())
 241 
 242 // Generate an optimized call to arraycopy.
 243 // Caller must guard against non-arrays.
 244 // Caller must determine a common array basic-type for both arrays.
 245 // Caller must validate offsets against array bounds.
 246 // The slow_region has already collected guard failure paths
 247 // (such as out of bounds length or non-conformable array types).
 248 // The generated code has this shape, in general:
 249 //
 250 //     if (length == 0)  return   // via zero_path
 251 //     slowval = -1
 252 //     if (types unknown) {
 253 //       slowval = call generic copy loop
 254 //       if (slowval == 0)  return  // via checked_path
 255 //     } else if (indexes in bounds) {
 256 //       if ((is object array) && !(array type check)) {
 257 //         slowval = call checked copy loop
 258 //         if (slowval == 0)  return  // via checked_path
 259 //       } else {
 260 //         call bulk copy loop
 261 //         return  // via fast_path
 262 //       }
 263 //     }
 264 //     // adjust params for remaining work:
 265 //     if (slowval != -1) {
 266 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
 267 //     }
 268 //   slow_region:
 269 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
 270 //     return  // via slow_call_path
 271 //
 272 // This routine is used from several intrinsics:  System.arraycopy,
 273 // Object.clone (the array subcase), and Arrays.copyOf[Range].
 274 //
 275 Node* PhaseMacroExpand::generate_arraycopy(ArrayCopyNode *ac, AllocateArrayNode* alloc,
 276                                            Node** ctrl, MergeMemNode* mem, Node** io,
 277                                            const TypePtr* adr_type,
 278                                            BasicType basic_elem_type,
 279                                            Node* src,  Node* src_offset,
 280                                            Node* dest, Node* dest_offset,
 281                                            Node* copy_length,
 282                                            bool disjoint_bases,
 283                                            bool length_never_negative,
 284                                            RegionNode* slow_region) {
 285   if (slow_region == NULL) {
 286     slow_region = new RegionNode(1);
 287     transform_later(slow_region);
 288   }
 289 
 290   Node* original_dest      = dest;
 291   bool  dest_uninitialized = false;
 292 
 293   // See if this is the initialization of a newly-allocated array.
 294   // If so, we will take responsibility here for initializing it to zero.
 295   // (Note:  Because tightly_coupled_allocation performs checks on the
 296   // out-edges of the dest, we need to avoid making derived pointers
 297   // from it until we have checked its uses.)
 298   if (ReduceBulkZeroing
 299       && !(UseTLAB && ZeroTLAB) // pointless if already zeroed
 300       && basic_elem_type != T_CONFLICT // avoid corner case
 301       && !src->eqv_uncast(dest)
 302       && alloc != NULL
 303       && _igvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
 304       && alloc->maybe_set_complete(&_igvn)) {
 305     // "You break it, you buy it."
 306     InitializeNode* init = alloc->initialization();
 307     assert(init->is_complete(), "we just did this");
 308     init->set_complete_with_arraycopy();
 309     assert(dest->is_CheckCastPP(), "sanity");
 310     assert(dest->in(0)->in(0) == init, "dest pinned");
 311     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
 312     // From this point on, every exit path is responsible for
 313     // initializing any non-copied parts of the object to zero.
 314     // Also, if this flag is set we make sure that arraycopy interacts properly
 315     // with G1, eliding pre-barriers. See CR 6627983.
 316     dest_uninitialized = true;
 317   } else {
 318     // No zeroing elimination here.
 319     alloc             = NULL;
 320     //original_dest   = dest;
 321     //dest_uninitialized = false;
 322   }
 323 
 324   uint alias_idx = C->get_alias_index(adr_type);
 325 
 326   // Results are placed here:
 327   enum { fast_path        = 1,  // normal void-returning assembly stub
 328          checked_path     = 2,  // special assembly stub with cleanup
 329          slow_call_path   = 3,  // something went wrong; call the VM
 330          zero_path        = 4,  // bypass when length of copy is zero
 331          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
 332          PATH_LIMIT       = 6
 333   };
 334   RegionNode* result_region = new RegionNode(PATH_LIMIT);
 335   PhiNode*    result_i_o    = new PhiNode(result_region, Type::ABIO);
 336   PhiNode*    result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
 337   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
 338   transform_later(result_region);
 339   transform_later(result_i_o);
 340   transform_later(result_memory);
 341 
 342   // The slow_control path:
 343   Node* slow_control;
 344   Node* slow_i_o = *io;
 345   Node* slow_mem = mem->memory_at(alias_idx);
 346   DEBUG_ONLY(slow_control = (Node*) badAddress);
 347 
 348   // Checked control path:
 349   Node* checked_control = top();
 350   Node* checked_mem     = NULL;
 351   Node* checked_i_o     = NULL;
 352   Node* checked_value   = NULL;
 353 
 354   if (basic_elem_type == T_CONFLICT) {
 355     assert(!dest_uninitialized, "");
 356     Node* cv = generate_generic_arraycopy(ctrl, &mem,
 357                                           adr_type,
 358                                           src, src_offset, dest, dest_offset,
 359                                           copy_length, dest_uninitialized);
 360     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
 361     checked_control = *ctrl;
 362     checked_i_o     = *io;
 363     checked_mem     = mem->memory_at(alias_idx);
 364     checked_value   = cv;
 365     *ctrl = top();
 366   }
 367 
 368   Node* not_pos = generate_nonpositive_guard(ctrl, copy_length, length_never_negative);
 369   if (not_pos != NULL) {
 370     Node* local_ctrl = not_pos, *local_io = *io;
 371     MergeMemNode* local_mem = MergeMemNode::make(mem);
 372     transform_later(local_mem);
 373 
 374     // (6) length must not be negative.
 375     if (!length_never_negative) {
 376       generate_negative_guard(&local_ctrl, copy_length, slow_region);
 377     }
 378 
 379     // copy_length is 0.
 380     if (dest_uninitialized) {
 381       assert(!local_ctrl->is_top(), "no ctrl?");
 382       Node* dest_length = alloc->in(AllocateNode::ALength);
 383       if (copy_length->eqv_uncast(dest_length)
 384           || _igvn.find_int_con(dest_length, 1) <= 0) {
 385         // There is no zeroing to do. No need for a secondary raw memory barrier.
 386       } else {
 387         // Clear the whole thing since there are no source elements to copy.
 388         generate_clear_array(local_ctrl, local_mem,
 389                              adr_type, dest, basic_elem_type,
 390                              intcon(0), NULL,
 391                              alloc->in(AllocateNode::AllocSize));
 392         // Use a secondary InitializeNode as raw memory barrier.
 393         // Currently it is needed only on this path since other
 394         // paths have stub or runtime calls as raw memory barriers.
 395         MemBarNode* mb = MemBarNode::make(C, Op_Initialize,
 396                                           Compile::AliasIdxRaw,
 397                                           top());
 398         transform_later(mb);
 399         mb->set_req(TypeFunc::Control,local_ctrl);
 400         mb->set_req(TypeFunc::Memory, local_mem->memory_at(Compile::AliasIdxRaw));
 401         local_ctrl = transform_later(new ProjNode(mb, TypeFunc::Control));
 402         local_mem->set_memory_at(Compile::AliasIdxRaw, transform_later(new ProjNode(mb, TypeFunc::Memory)));
 403 
 404         InitializeNode* init = mb->as_Initialize();
 405         init->set_complete(&_igvn);  // (there is no corresponding AllocateNode)
 406       }
 407     }
 408 
 409     // Present the results of the fast call.
 410     result_region->init_req(zero_path, local_ctrl);
 411     result_i_o   ->init_req(zero_path, local_io);
 412     result_memory->init_req(zero_path, local_mem->memory_at(alias_idx));
 413   }
 414 
 415   if (!(*ctrl)->is_top() && dest_uninitialized) {
 416     // We have to initialize the *uncopied* part of the array to zero.
 417     // The copy destination is the slice dest[off..off+len].  The other slices
 418     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
 419     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
 420     Node* dest_length = alloc->in(AllocateNode::ALength);
 421     Node* dest_tail   = transform_later( new AddINode(dest_offset, copy_length));
 422 
 423     // If there is a head section that needs zeroing, do it now.
 424     if (_igvn.find_int_con(dest_offset, -1) != 0) {
 425       generate_clear_array(*ctrl, mem,
 426                            adr_type, dest, basic_elem_type,
 427                            intcon(0), dest_offset,
 428                            NULL);
 429     }
 430 
 431     // Next, perform a dynamic check on the tail length.
 432     // It is often zero, and we can win big if we prove this.
 433     // There are two wins:  Avoid generating the ClearArray
 434     // with its attendant messy index arithmetic, and upgrade
 435     // the copy to a more hardware-friendly word size of 64 bits.
 436     Node* tail_ctl = NULL;
 437     if (!(*ctrl)->is_top() && !dest_tail->eqv_uncast(dest_length)) {
 438       Node* cmp_lt   = transform_later( new CmpINode(dest_tail, dest_length) );
 439       Node* bol_lt   = transform_later( new BoolNode(cmp_lt, BoolTest::lt) );
 440       tail_ctl = generate_slow_guard(ctrl, bol_lt, NULL);
 441       assert(tail_ctl != NULL || !(*ctrl)->is_top(), "must be an outcome");
 442     }
 443 
 444     // At this point, let's assume there is no tail.
 445     if (!(*ctrl)->is_top() && alloc != NULL && basic_elem_type != T_OBJECT) {
 446       // There is no tail.  Try an upgrade to a 64-bit copy.
 447       bool didit = false;
 448       {
 449         Node* local_ctrl = *ctrl, *local_io = *io;
 450         MergeMemNode* local_mem = MergeMemNode::make(mem);
 451         transform_later(local_mem);
 452 
 453         didit = generate_block_arraycopy(&local_ctrl, &local_mem, local_io,
 454                                          adr_type, basic_elem_type, alloc,
 455                                          src, src_offset, dest, dest_offset,
 456                                          dest_size, dest_uninitialized);
 457         if (didit) {
 458           // Present the results of the block-copying fast call.
 459           result_region->init_req(bcopy_path, local_ctrl);
 460           result_i_o   ->init_req(bcopy_path, local_io);
 461           result_memory->init_req(bcopy_path, local_mem->memory_at(alias_idx));
 462         }
 463       }
 464       if (didit) {
 465         *ctrl = top();     // no regular fast path
 466       }
 467     }
 468 
 469     // Clear the tail, if any.
 470     if (tail_ctl != NULL) {
 471       Node* notail_ctl = (*ctrl)->is_top() ? NULL : *ctrl;
 472       *ctrl = tail_ctl;
 473       if (notail_ctl == NULL) {
 474         generate_clear_array(*ctrl, mem,
 475                              adr_type, dest, basic_elem_type,
 476                              dest_tail, NULL,
 477                              dest_size);
 478       } else {
 479         // Make a local merge.
 480         Node* done_ctl = transform_later(new RegionNode(3));
 481         Node* done_mem = transform_later(new PhiNode(done_ctl, Type::MEMORY, adr_type));
 482         done_ctl->init_req(1, notail_ctl);
 483         done_mem->init_req(1, mem->memory_at(alias_idx));
 484         generate_clear_array(*ctrl, mem,
 485                              adr_type, dest, basic_elem_type,
 486                              dest_tail, NULL,
 487                              dest_size);
 488         done_ctl->init_req(2, *ctrl);
 489         done_mem->init_req(2, mem->memory_at(alias_idx));
 490         *ctrl = done_ctl;
 491         mem->set_memory_at(alias_idx, done_mem);
 492       }
 493     }
 494   }
 495 
 496   BasicType copy_type = basic_elem_type;
 497   assert(basic_elem_type != T_ARRAY, "caller must fix this");
 498   if (!(*ctrl)->is_top() && copy_type == T_OBJECT) {
 499     // If src and dest have compatible element types, we can copy bits.
 500     // Types S[] and D[] are compatible if D is a supertype of S.
 501     //
 502     // If they are not, we will use checked_oop_disjoint_arraycopy,
 503     // which performs a fast optimistic per-oop check, and backs off
 504     // further to JVM_ArrayCopy on the first per-oop check that fails.
 505     // (Actually, we don't move raw bits only; the GC requires card marks.)
 506 
 507     // We don't need a subtype check for validated copies and Object[].clone()
 508     bool skip_subtype_check = ac->is_arraycopy_validated() || ac->is_copyof_validated() ||
 509                               ac->is_copyofrange_validated() || ac->is_cloneoop();
 510     if (!skip_subtype_check) {
 511       // Get the klass* for both src and dest
 512       Node* src_klass  = ac->in(ArrayCopyNode::SrcKlass);
 513       Node* dest_klass = ac->in(ArrayCopyNode::DestKlass);
 514 
 515       assert(src_klass != NULL && dest_klass != NULL, "should have klasses");
 516 
 517       // Generate the subtype check.
 518       // This might fold up statically, or then again it might not.
 519       //
 520       // Non-static example:  Copying List<String>.elements to a new String[].
 521       // The backing store for a List<String> is always an Object[],
 522       // but its elements are always type String, if the generic types
 523       // are correct at the source level.
 524       //
 525       // Test S[] against D[], not S against D, because (probably)
 526       // the secondary supertype cache is less busy for S[] than S.
 527       // This usually only matters when D is an interface.
 528       Node* not_subtype_ctrl = Phase::gen_subtype_check(src_klass, dest_klass, ctrl, mem, &_igvn);
 529       // Plug failing path into checked_oop_disjoint_arraycopy
 530       if (not_subtype_ctrl != top()) {
 531         Node* local_ctrl = not_subtype_ctrl;
 532         MergeMemNode* local_mem = MergeMemNode::make(mem);
 533         transform_later(local_mem);
 534 
 535         // (At this point we can assume disjoint_bases, since types differ.)
 536         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
 537         Node* p1 = basic_plus_adr(dest_klass, ek_offset);
 538         Node* n1 = LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), p1, TypeRawPtr::BOTTOM);
 539         Node* dest_elem_klass = transform_later(n1);
 540         Node* cv = generate_checkcast_arraycopy(&local_ctrl, &local_mem,
 541                                                 adr_type,
 542                                                 dest_elem_klass,
 543                                                 src, src_offset, dest, dest_offset,
 544                                                 ConvI2X(copy_length), dest_uninitialized);
 545         if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
 546         checked_control = local_ctrl;
 547         checked_i_o     = *io;
 548         checked_mem     = local_mem->memory_at(alias_idx);
 549         checked_value   = cv;
 550       }
 551     }
 552     // At this point we know we do not need type checks on oop stores.
 553 
 554     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 555     if (!bs->array_copy_requires_gc_barriers(alloc != NULL, copy_type, false, BarrierSetC2::Expansion)) {
 556       // If we do not need gc barriers, copy using the jint or jlong stub.
 557       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
 558       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
 559              "sizes agree");
 560     }
 561   }
 562 
 563   if (!(*ctrl)->is_top()) {
 564     // Generate the fast path, if possible.
 565     Node* local_ctrl = *ctrl;
 566     MergeMemNode* local_mem = MergeMemNode::make(mem);
 567     transform_later(local_mem);
 568 
 569     generate_unchecked_arraycopy(&local_ctrl, &local_mem,
 570                                  adr_type, copy_type, disjoint_bases,
 571                                  src, src_offset, dest, dest_offset,
 572                                  ConvI2X(copy_length), dest_uninitialized);
 573 
 574     // Present the results of the fast call.
 575     result_region->init_req(fast_path, local_ctrl);
 576     result_i_o   ->init_req(fast_path, *io);
 577     result_memory->init_req(fast_path, local_mem->memory_at(alias_idx));
 578   }
 579 
 580   // Here are all the slow paths up to this point, in one bundle:
 581   assert(slow_region != NULL, "allocated on entry");
 582   slow_control = slow_region;
 583   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
 584 
 585   *ctrl = checked_control;
 586   if (!(*ctrl)->is_top()) {
 587     // Clean up after the checked call.
 588     // The returned value is either 0 or -1^K,
 589     // where K = number of partially transferred array elements.
 590     Node* cmp = new CmpINode(checked_value, intcon(0));
 591     transform_later(cmp);
 592     Node* bol = new BoolNode(cmp, BoolTest::eq);
 593     transform_later(bol);
 594     IfNode* iff = new IfNode(*ctrl, bol, PROB_MAX, COUNT_UNKNOWN);
 595     transform_later(iff);
 596 
 597     // If it is 0, we are done, so transfer to the end.
 598     Node* checks_done = new IfTrueNode(iff);
 599     transform_later(checks_done);
 600     result_region->init_req(checked_path, checks_done);
 601     result_i_o   ->init_req(checked_path, checked_i_o);
 602     result_memory->init_req(checked_path, checked_mem);
 603 
 604     // If it is not zero, merge into the slow call.
 605     *ctrl = new IfFalseNode(iff);
 606     transform_later(*ctrl);
 607     RegionNode* slow_reg2 = new RegionNode(3);
 608     PhiNode*    slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
 609     PhiNode*    slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
 610     transform_later(slow_reg2);
 611     transform_later(slow_i_o2);
 612     transform_later(slow_mem2);
 613     slow_reg2  ->init_req(1, slow_control);
 614     slow_i_o2  ->init_req(1, slow_i_o);
 615     slow_mem2  ->init_req(1, slow_mem);
 616     slow_reg2  ->init_req(2, *ctrl);
 617     slow_i_o2  ->init_req(2, checked_i_o);
 618     slow_mem2  ->init_req(2, checked_mem);
 619 
 620     slow_control = slow_reg2;
 621     slow_i_o     = slow_i_o2;
 622     slow_mem     = slow_mem2;
 623 
 624     if (alloc != NULL) {
 625       // We'll restart from the very beginning, after zeroing the whole thing.
 626       // This can cause double writes, but that's OK since dest is brand new.
 627       // So we ignore the low 31 bits of the value returned from the stub.
 628     } else {
 629       // We must continue the copy exactly where it failed, or else
 630       // another thread might see the wrong number of writes to dest.
 631       Node* checked_offset = new XorINode(checked_value, intcon(-1));
 632       Node* slow_offset    = new PhiNode(slow_reg2, TypeInt::INT);
 633       transform_later(checked_offset);
 634       transform_later(slow_offset);
 635       slow_offset->init_req(1, intcon(0));
 636       slow_offset->init_req(2, checked_offset);
 637 
 638       // Adjust the arguments by the conditionally incoming offset.
 639       Node* src_off_plus  = new AddINode(src_offset,  slow_offset);
 640       transform_later(src_off_plus);
 641       Node* dest_off_plus = new AddINode(dest_offset, slow_offset);
 642       transform_later(dest_off_plus);
 643       Node* length_minus  = new SubINode(copy_length, slow_offset);
 644       transform_later(length_minus);
 645 
 646       // Tweak the node variables to adjust the code produced below:
 647       src_offset  = src_off_plus;
 648       dest_offset = dest_off_plus;
 649       copy_length = length_minus;
 650     }
 651   }
 652   *ctrl = slow_control;
 653   if (!(*ctrl)->is_top()) {
 654     Node* local_ctrl = *ctrl, *local_io = slow_i_o;
 655     MergeMemNode* local_mem = MergeMemNode::make(mem);
 656     transform_later(local_mem);
 657 
 658     // Generate the slow path, if needed.
 659     local_mem->set_memory_at(alias_idx, slow_mem);
 660 
 661     if (dest_uninitialized) {
 662       generate_clear_array(local_ctrl, local_mem,
 663                            adr_type, dest, basic_elem_type,
 664                            intcon(0), NULL,
 665                            alloc->in(AllocateNode::AllocSize));
 666     }
 667 
 668     local_mem = generate_slow_arraycopy(ac,
 669                                         &local_ctrl, local_mem, &local_io,
 670                                         adr_type,
 671                                         src, src_offset, dest, dest_offset,
 672                                         copy_length, /*dest_uninitialized*/false);
 673 
 674     result_region->init_req(slow_call_path, local_ctrl);
 675     result_i_o   ->init_req(slow_call_path, local_io);
 676     result_memory->init_req(slow_call_path, local_mem->memory_at(alias_idx));
 677   } else {
 678     ShouldNotReachHere(); // no call to generate_slow_arraycopy:
 679                           // projections were not extracted
 680   }
 681 
 682   // Remove unused edges.
 683   for (uint i = 1; i < result_region->req(); i++) {
 684     if (result_region->in(i) == NULL) {
 685       result_region->init_req(i, top());
 686     }
 687   }
 688 
 689   // Finished; return the combined state.
 690   *ctrl = result_region;
 691   *io = result_i_o;
 692   mem->set_memory_at(alias_idx, result_memory);
 693 
 694   // mem no longer guaranteed to stay a MergeMemNode
 695   Node* out_mem = mem;
 696   DEBUG_ONLY(mem = NULL);
 697 
 698   // The memory edges above are precise in order to model effects around
 699   // array copies accurately to allow value numbering of field loads around
 700   // arraycopy.  Such field loads, both before and after, are common in Java
 701   // collections and similar classes involving header/array data structures.
 702   //
 703   // But with low number of register or when some registers are used or killed
 704   // by arraycopy calls it causes registers spilling on stack. See 6544710.
 705   // The next memory barrier is added to avoid it. If the arraycopy can be
 706   // optimized away (which it can, sometimes) then we can manually remove
 707   // the membar also.
 708   //
 709   // Do not let reads from the cloned object float above the arraycopy.
 710   if (alloc != NULL && !alloc->initialization()->does_not_escape()) {
 711     // Do not let stores that initialize this object be reordered with
 712     // a subsequent store that would make this object accessible by
 713     // other threads.
 714     insert_mem_bar(ctrl, &out_mem, Op_MemBarStoreStore);
 715   } else if (InsertMemBarAfterArraycopy) {
 716     insert_mem_bar(ctrl, &out_mem, Op_MemBarCPUOrder);
 717   }
 718 
 719   _igvn.replace_node(_memproj_fallthrough, out_mem);
 720   _igvn.replace_node(_ioproj_fallthrough, *io);
 721   _igvn.replace_node(_fallthroughcatchproj, *ctrl);
 722 
 723 #ifdef ASSERT
 724   const TypeOopPtr* dest_t = _igvn.type(dest)->is_oopptr();
 725   if (dest_t->is_known_instance()) {
 726     ArrayCopyNode* ac = NULL;
 727     assert(ArrayCopyNode::may_modify(dest_t, (*ctrl)->in(0)->as_MemBar(), &_igvn, ac), "dependency on arraycopy lost");
 728     assert(ac == NULL, "no arraycopy anymore");
 729   }
 730 #endif
 731 
 732   return out_mem;
 733 }
 734 
 735 // Helper for initialization of arrays, creating a ClearArray.
 736 // It writes zero bits in [start..end), within the body of an array object.
 737 // The memory effects are all chained onto the 'adr_type' alias category.
 738 //
 739 // Since the object is otherwise uninitialized, we are free
 740 // to put a little "slop" around the edges of the cleared area,
 741 // as long as it does not go back into the array's header,
 742 // or beyond the array end within the heap.
 743 //
 744 // The lower edge can be rounded down to the nearest jint and the
 745 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
 746 //
 747 // Arguments:
 748 //   adr_type           memory slice where writes are generated
 749 //   dest               oop of the destination array
 750 //   basic_elem_type    element type of the destination
 751 //   slice_idx          array index of first element to store
 752 //   slice_len          number of elements to store (or NULL)
 753 //   dest_size          total size in bytes of the array object
 754 //
 755 // Exactly one of slice_len or dest_size must be non-NULL.
 756 // If dest_size is non-NULL, zeroing extends to the end of the object.
 757 // If slice_len is non-NULL, the slice_idx value must be a constant.
 758 void PhaseMacroExpand::generate_clear_array(Node* ctrl, MergeMemNode* merge_mem,
 759                                             const TypePtr* adr_type,
 760                                             Node* dest,
 761                                             BasicType basic_elem_type,
 762                                             Node* slice_idx,
 763                                             Node* slice_len,
 764                                             Node* dest_size) {
 765   // one or the other but not both of slice_len and dest_size:
 766   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
 767   if (slice_len == NULL)  slice_len = top();
 768   if (dest_size == NULL)  dest_size = top();
 769 
 770   uint alias_idx = C->get_alias_index(adr_type);
 771 
 772   // operate on this memory slice:
 773   Node* mem = merge_mem->memory_at(alias_idx); // memory slice to operate on
 774 
 775   // scaling and rounding of indexes:
 776   int scale = exact_log2(type2aelembytes(basic_elem_type));
 777   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 778   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
 779   int bump_bit  = (-1 << scale) & BytesPerInt;
 780 
 781   // determine constant starts and ends
 782   const intptr_t BIG_NEG = -128;
 783   assert(BIG_NEG + 2*abase < 0, "neg enough");
 784   intptr_t slice_idx_con = (intptr_t) _igvn.find_int_con(slice_idx, BIG_NEG);
 785   intptr_t slice_len_con = (intptr_t) _igvn.find_int_con(slice_len, BIG_NEG);
 786   if (slice_len_con == 0) {
 787     return;                     // nothing to do here
 788   }
 789   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
 790   intptr_t end_con   = _igvn.find_intptr_t_con(dest_size, -1);
 791   if (slice_idx_con >= 0 && slice_len_con >= 0) {
 792     assert(end_con < 0, "not two cons");
 793     end_con = align_up(abase + ((slice_idx_con + slice_len_con) << scale),
 794                        BytesPerLong);
 795   }
 796 
 797   if (start_con >= 0 && end_con >= 0) {
 798     // Constant start and end.  Simple.
 799     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
 800                                        start_con, end_con, &_igvn);
 801   } else if (start_con >= 0 && dest_size != top()) {
 802     // Constant start, pre-rounded end after the tail of the array.
 803     Node* end = dest_size;
 804     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
 805                                        start_con, end, &_igvn);
 806   } else if (start_con >= 0 && slice_len != top()) {
 807     // Constant start, non-constant end.  End needs rounding up.
 808     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
 809     intptr_t end_base  = abase + (slice_idx_con << scale);
 810     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
 811     Node*    end       = ConvI2X(slice_len);
 812     if (scale != 0)
 813       end = transform_later(new LShiftXNode(end, intcon(scale) ));
 814     end_base += end_round;
 815     end = transform_later(new AddXNode(end, MakeConX(end_base)) );
 816     end = transform_later(new AndXNode(end, MakeConX(~end_round)) );
 817     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
 818                                        start_con, end, &_igvn);
 819   } else if (start_con < 0 && dest_size != top()) {
 820     // Non-constant start, pre-rounded end after the tail of the array.
 821     // This is almost certainly a "round-to-end" operation.
 822     Node* start = slice_idx;
 823     start = ConvI2X(start);
 824     if (scale != 0)
 825       start = transform_later(new LShiftXNode( start, intcon(scale) ));
 826     start = transform_later(new AddXNode(start, MakeConX(abase)) );
 827     if ((bump_bit | clear_low) != 0) {
 828       int to_clear = (bump_bit | clear_low);
 829       // Align up mod 8, then store a jint zero unconditionally
 830       // just before the mod-8 boundary.
 831       if (((abase + bump_bit) & ~to_clear) - bump_bit
 832           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
 833         bump_bit = 0;
 834         assert((abase & to_clear) == 0, "array base must be long-aligned");
 835       } else {
 836         // Bump 'start' up to (or past) the next jint boundary:
 837         start = transform_later( new AddXNode(start, MakeConX(bump_bit)) );
 838         assert((abase & clear_low) == 0, "array base must be int-aligned");
 839       }
 840       // Round bumped 'start' down to jlong boundary in body of array.
 841       start = transform_later(new AndXNode(start, MakeConX(~to_clear)) );
 842       if (bump_bit != 0) {
 843         // Store a zero to the immediately preceding jint:
 844         Node* x1 = transform_later(new AddXNode(start, MakeConX(-bump_bit)) );
 845         Node* p1 = basic_plus_adr(dest, x1);
 846         mem = StoreNode::make(_igvn, ctrl, mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
 847         mem = transform_later(mem);
 848       }
 849     }
 850     Node* end = dest_size; // pre-rounded
 851     mem = ClearArrayNode::clear_memory(ctrl, mem, dest,
 852                                        start, end, &_igvn);
 853   } else {
 854     // Non-constant start, unrounded non-constant end.
 855     // (Nobody zeroes a random midsection of an array using this routine.)
 856     ShouldNotReachHere();       // fix caller
 857   }
 858 
 859   // Done.
 860   merge_mem->set_memory_at(alias_idx, mem);
 861 }
 862 
 863 bool PhaseMacroExpand::generate_block_arraycopy(Node** ctrl, MergeMemNode** mem, Node* io,
 864                                                 const TypePtr* adr_type,
 865                                                 BasicType basic_elem_type,
 866                                                 AllocateNode* alloc,
 867                                                 Node* src,  Node* src_offset,
 868                                                 Node* dest, Node* dest_offset,
 869                                                 Node* dest_size, bool dest_uninitialized) {
 870   // See if there is an advantage from block transfer.
 871   int scale = exact_log2(type2aelembytes(basic_elem_type));
 872   if (scale >= LogBytesPerLong)
 873     return false;               // it is already a block transfer
 874 
 875   // Look at the alignment of the starting offsets.
 876   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 877 
 878   intptr_t src_off_con  = (intptr_t) _igvn.find_int_con(src_offset, -1);
 879   intptr_t dest_off_con = (intptr_t) _igvn.find_int_con(dest_offset, -1);
 880   if (src_off_con < 0 || dest_off_con < 0) {
 881     // At present, we can only understand constants.
 882     return false;
 883   }
 884 
 885   intptr_t src_off  = abase + (src_off_con  << scale);
 886   intptr_t dest_off = abase + (dest_off_con << scale);
 887 
 888   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
 889     // Non-aligned; too bad.
 890     // One more chance:  Pick off an initial 32-bit word.
 891     // This is a common case, since abase can be odd mod 8.
 892     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
 893         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
 894       Node* sptr = basic_plus_adr(src,  src_off);
 895       Node* dptr = basic_plus_adr(dest, dest_off);
 896       const TypePtr* s_adr_type = _igvn.type(sptr)->is_ptr();
 897       assert(s_adr_type->isa_aryptr(), "impossible slice");
 898       uint s_alias_idx = C->get_alias_index(s_adr_type);
 899       uint d_alias_idx = C->get_alias_index(adr_type);
 900       bool is_mismatched = (basic_elem_type != T_INT);
 901       Node* sval = transform_later(
 902           LoadNode::make(_igvn, *ctrl, (*mem)->memory_at(s_alias_idx), sptr, s_adr_type,
 903                          TypeInt::INT, T_INT, MemNode::unordered, LoadNode::DependsOnlyOnTest,
 904                          false /*unaligned*/, is_mismatched));
 905       Node* st = transform_later(
 906           StoreNode::make(_igvn, *ctrl, (*mem)->memory_at(d_alias_idx), dptr, adr_type,
 907                           sval, T_INT, MemNode::unordered));
 908       if (is_mismatched) {
 909         st->as_Store()->set_mismatched_access();
 910       }
 911       (*mem)->set_memory_at(d_alias_idx, st);
 912       src_off += BytesPerInt;
 913       dest_off += BytesPerInt;
 914     } else {
 915       return false;
 916     }
 917   }
 918   assert(src_off % BytesPerLong == 0, "");
 919   assert(dest_off % BytesPerLong == 0, "");
 920 
 921   // Do this copy by giant steps.
 922   Node* sptr  = basic_plus_adr(src,  src_off);
 923   Node* dptr  = basic_plus_adr(dest, dest_off);
 924   Node* countx = dest_size;
 925   countx = transform_later(new SubXNode(countx, MakeConX(dest_off)));
 926   countx = transform_later(new URShiftXNode(countx, intcon(LogBytesPerLong)));
 927 
 928   bool disjoint_bases = true;   // since alloc != NULL
 929   generate_unchecked_arraycopy(ctrl, mem,
 930                                adr_type, T_LONG, disjoint_bases,
 931                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
 932 
 933   return true;
 934 }
 935 
 936 // Helper function; generates code for the slow case.
 937 // We make a call to a runtime method which emulates the native method,
 938 // but without the native wrapper overhead.
 939 MergeMemNode* PhaseMacroExpand::generate_slow_arraycopy(ArrayCopyNode *ac,
 940                                                         Node** ctrl, Node* mem, Node** io,
 941                                                         const TypePtr* adr_type,
 942                                                         Node* src,  Node* src_offset,
 943                                                         Node* dest, Node* dest_offset,
 944                                                         Node* copy_length, bool dest_uninitialized) {
 945   assert(!dest_uninitialized, "Invariant");
 946 
 947   const TypeFunc* call_type = OptoRuntime::slow_arraycopy_Type();
 948   CallNode* call = new CallStaticJavaNode(call_type, OptoRuntime::slow_arraycopy_Java(),
 949                                           "slow_arraycopy",
 950                                           ac->jvms()->bci(), TypePtr::BOTTOM);
 951 
 952   call->init_req(TypeFunc::Control, *ctrl);
 953   call->init_req(TypeFunc::I_O    , *io);
 954   call->init_req(TypeFunc::Memory , mem);
 955   call->init_req(TypeFunc::ReturnAdr, top());
 956   call->init_req(TypeFunc::FramePtr, top());
 957   call->init_req(TypeFunc::Parms+0, src);
 958   call->init_req(TypeFunc::Parms+1, src_offset);
 959   call->init_req(TypeFunc::Parms+2, dest);
 960   call->init_req(TypeFunc::Parms+3, dest_offset);
 961   call->init_req(TypeFunc::Parms+4, copy_length);
 962   copy_call_debug_info(ac, call);
 963 
 964   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 965   _igvn.replace_node(ac, call);
 966   transform_later(call);
 967 
 968   extract_call_projections(call);
 969   *ctrl = _fallthroughcatchproj->clone();
 970   transform_later(*ctrl);
 971 
 972   Node* m = _memproj_fallthrough->clone();
 973   transform_later(m);
 974 
 975   uint alias_idx = C->get_alias_index(adr_type);
 976   MergeMemNode* out_mem;
 977   if (alias_idx != Compile::AliasIdxBot) {
 978     out_mem = MergeMemNode::make(mem);
 979     out_mem->set_memory_at(alias_idx, m);
 980   } else {
 981     out_mem = MergeMemNode::make(m);
 982   }
 983   transform_later(out_mem);
 984 
 985   *io = _ioproj_fallthrough->clone();
 986   transform_later(*io);
 987 
 988   return out_mem;
 989 }
 990 
 991 // Helper function; generates code for cases requiring runtime checks.
 992 Node* PhaseMacroExpand::generate_checkcast_arraycopy(Node** ctrl, MergeMemNode** mem,
 993                                                      const TypePtr* adr_type,
 994                                                      Node* dest_elem_klass,
 995                                                      Node* src,  Node* src_offset,
 996                                                      Node* dest, Node* dest_offset,
 997                                                      Node* copy_length, bool dest_uninitialized) {
 998   if ((*ctrl)->is_top())  return NULL;
 999 
1000   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
1001   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
1002     return NULL;
1003   }
1004 
1005   // Pick out the parameters required to perform a store-check
1006   // for the target array.  This is an optimistic check.  It will
1007   // look in each non-null element's class, at the desired klass's
1008   // super_check_offset, for the desired klass.
1009   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1010   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
1011   Node* n3 = new LoadINode(NULL, *mem /*memory(p3)*/, p3, _igvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
1012   Node* check_offset = ConvI2X(transform_later(n3));
1013   Node* check_value  = dest_elem_klass;
1014 
1015   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
1016   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
1017 
1018   const TypeFunc* call_type = OptoRuntime::checkcast_arraycopy_Type();
1019   Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "checkcast_arraycopy", adr_type,
1020                               src_start, dest_start, copy_length XTOP, check_offset XTOP, check_value);
1021 
1022   finish_arraycopy_call(call, ctrl, mem, adr_type);
1023 
1024   Node* proj =  new ProjNode(call, TypeFunc::Parms);
1025   transform_later(proj);
1026 
1027   return proj;
1028 }
1029 
1030 // Helper function; generates code for cases requiring runtime checks.
1031 Node* PhaseMacroExpand::generate_generic_arraycopy(Node** ctrl, MergeMemNode** mem,
1032                                                    const TypePtr* adr_type,
1033                                                    Node* src,  Node* src_offset,
1034                                                    Node* dest, Node* dest_offset,
1035                                                    Node* copy_length, bool dest_uninitialized) {
1036   if ((*ctrl)->is_top()) return NULL;
1037   assert(!dest_uninitialized, "Invariant");
1038 
1039   address copyfunc_addr = StubRoutines::generic_arraycopy();
1040   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
1041     return NULL;
1042   }
1043 
1044   const TypeFunc* call_type = OptoRuntime::generic_arraycopy_Type();
1045   Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, "generic_arraycopy", adr_type,
1046                               src, src_offset, dest, dest_offset, copy_length);
1047 
1048   finish_arraycopy_call(call, ctrl, mem, adr_type);
1049 
1050   Node* proj =  new ProjNode(call, TypeFunc::Parms);
1051   transform_later(proj);
1052 
1053   return proj;
1054 }
1055 
1056 // Helper function; generates the fast out-of-line call to an arraycopy stub.
1057 void PhaseMacroExpand::generate_unchecked_arraycopy(Node** ctrl, MergeMemNode** mem,
1058                                                     const TypePtr* adr_type,
1059                                                     BasicType basic_elem_type,
1060                                                     bool disjoint_bases,
1061                                                     Node* src,  Node* src_offset,
1062                                                     Node* dest, Node* dest_offset,
1063                                                     Node* copy_length, bool dest_uninitialized) {
1064   if ((*ctrl)->is_top()) return;
1065 
1066   Node* src_start  = src;
1067   Node* dest_start = dest;
1068   if (src_offset != NULL || dest_offset != NULL) {
1069     src_start =  array_element_address(src, src_offset, basic_elem_type);
1070     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
1071   }
1072 
1073   // Figure out which arraycopy runtime method to call.
1074   const char* copyfunc_name = "arraycopy";
1075   address     copyfunc_addr =
1076       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
1077                           disjoint_bases, copyfunc_name, dest_uninitialized);
1078 
1079   const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
1080   Node* call = make_leaf_call(*ctrl, *mem, call_type, copyfunc_addr, copyfunc_name, adr_type,
1081                               src_start, dest_start, copy_length XTOP);
1082 
1083   finish_arraycopy_call(call, ctrl, mem, adr_type);
1084 }
1085 
1086 void PhaseMacroExpand::expand_arraycopy_node(ArrayCopyNode *ac) {
1087   Node* ctrl = ac->in(TypeFunc::Control);
1088   Node* io = ac->in(TypeFunc::I_O);
1089   Node* src = ac->in(ArrayCopyNode::Src);
1090   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
1091   Node* dest = ac->in(ArrayCopyNode::Dest);
1092   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
1093   Node* length = ac->in(ArrayCopyNode::Length);
1094   MergeMemNode* merge_mem = NULL;
1095 
1096   if (ac->is_clonebasic()) {
1097     assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null");
1098     Node* mem = ac->in(TypeFunc::Memory);
1099     const char* copyfunc_name = "arraycopy";
1100     address     copyfunc_addr =
1101       basictype2arraycopy(T_LONG, NULL, NULL,
1102                           true, copyfunc_name, true);
1103 
1104     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
1105     const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
1106 
1107     Node* call = make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, src, dest, length XTOP);
1108     transform_later(call);
1109 
1110     _igvn.replace_node(ac, call);
1111     return;
1112   } else if (ac->is_copyof() || ac->is_copyofrange() || ac->is_cloneoop()) {
1113     Node* mem = ac->in(TypeFunc::Memory);
1114     merge_mem = MergeMemNode::make(mem);
1115     transform_later(merge_mem);
1116 
1117     RegionNode* slow_region = new RegionNode(1);
1118     transform_later(slow_region);
1119 
1120     AllocateArrayNode* alloc = NULL;
1121     if (ac->is_alloc_tightly_coupled()) {
1122       alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
1123       assert(alloc != NULL, "expect alloc");
1124     }
1125 
1126     const TypePtr* adr_type = _igvn.type(dest)->is_oopptr()->add_offset(Type::OffsetBot);
1127     if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1128       adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1129     }
1130     generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1131                        adr_type, T_OBJECT,
1132                        src, src_offset, dest, dest_offset, length,
1133                        true, !ac->is_copyofrange());
1134 
1135     return;
1136   }
1137 
1138   AllocateArrayNode* alloc = NULL;
1139   if (ac->is_alloc_tightly_coupled()) {
1140     alloc = AllocateArrayNode::Ideal_array_allocation(dest, &_igvn);
1141     assert(alloc != NULL, "expect alloc");
1142   }
1143 
1144   assert(ac->is_arraycopy() || ac->is_arraycopy_validated(), "should be an arraycopy");
1145 
1146   // Compile time checks.  If any of these checks cannot be verified at compile time,
1147   // we do not make a fast path for this call.  Instead, we let the call remain as it
1148   // is.  The checks we choose to mandate at compile time are:
1149   //
1150   // (1) src and dest are arrays.
1151   const Type* src_type = src->Value(&_igvn);
1152   const Type* dest_type = dest->Value(&_igvn);
1153   const TypeAryPtr* top_src = src_type->isa_aryptr();
1154   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
1155 
1156   BasicType src_elem = T_CONFLICT;
1157   BasicType dest_elem = T_CONFLICT;
1158 
1159   if (top_dest != NULL && top_dest->klass() != NULL) {
1160     dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
1161   }
1162   if (top_src != NULL && top_src->klass() != NULL) {
1163     src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
1164   }
1165   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
1166   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
1167 
1168   if (ac->is_arraycopy_validated() &&
1169       dest_elem != T_CONFLICT &&
1170       src_elem == T_CONFLICT) {
1171     src_elem = dest_elem;
1172   }
1173 
1174   if (src_elem == T_CONFLICT || dest_elem == T_CONFLICT) {
1175     // Conservatively insert a memory barrier on all memory slices.
1176     // Do not let writes into the source float below the arraycopy.
1177     {
1178       Node* mem = ac->in(TypeFunc::Memory);
1179       insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1180 
1181       merge_mem = MergeMemNode::make(mem);
1182       transform_later(merge_mem);
1183     }
1184 
1185     // Call StubRoutines::generic_arraycopy stub.
1186     Node* mem = generate_arraycopy(ac, NULL, &ctrl, merge_mem, &io,
1187                                    TypeRawPtr::BOTTOM, T_CONFLICT,
1188                                    src, src_offset, dest, dest_offset, length,
1189                                    // If a  negative length guard was generated for the ArrayCopyNode,
1190                                    // the length of the array can never be negative.
1191                                    false, ac->has_negative_length_guard());
1192 
1193     // Do not let reads from the destination float above the arraycopy.
1194     // Since we cannot type the arrays, we don't know which slices
1195     // might be affected.  We could restrict this barrier only to those
1196     // memory slices which pertain to array elements--but don't bother.
1197     if (!InsertMemBarAfterArraycopy) {
1198       // (If InsertMemBarAfterArraycopy, there is already one in place.)
1199       insert_mem_bar(&ctrl, &mem, Op_MemBarCPUOrder);
1200     }
1201     return;
1202   }
1203 
1204   assert(!ac->is_arraycopy_validated() || (src_elem == dest_elem && dest_elem != T_VOID), "validated but different basic types");
1205 
1206   // (2) src and dest arrays must have elements of the same BasicType
1207   // Figure out the size and type of the elements we will be copying.
1208   if (src_elem != dest_elem || dest_elem == T_VOID) {
1209     // The component types are not the same or are not recognized.  Punt.
1210     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
1211     {
1212       Node* mem = ac->in(TypeFunc::Memory);
1213       merge_mem = generate_slow_arraycopy(ac, &ctrl, mem, &io, TypePtr::BOTTOM, src, src_offset, dest, dest_offset, length, false);
1214     }
1215 
1216     _igvn.replace_node(_memproj_fallthrough, merge_mem);
1217     _igvn.replace_node(_ioproj_fallthrough, io);
1218     _igvn.replace_node(_fallthroughcatchproj, ctrl);
1219     return;
1220   }
1221 
1222   //---------------------------------------------------------------------------
1223   // We will make a fast path for this call to arraycopy.
1224 
1225   // We have the following tests left to perform:
1226   //
1227   // (3) src and dest must not be null.
1228   // (4) src_offset must not be negative.
1229   // (5) dest_offset must not be negative.
1230   // (6) length must not be negative.
1231   // (7) src_offset + length must not exceed length of src.
1232   // (8) dest_offset + length must not exceed length of dest.
1233   // (9) each element of an oop array must be assignable
1234 
1235   {
1236     Node* mem = ac->in(TypeFunc::Memory);
1237     merge_mem = MergeMemNode::make(mem);
1238     transform_later(merge_mem);
1239   }
1240 
1241   RegionNode* slow_region = new RegionNode(1);
1242   transform_later(slow_region);
1243 
1244   if (!ac->is_arraycopy_validated()) {
1245     // (3) operands must not be null
1246     // We currently perform our null checks with the null_check routine.
1247     // This means that the null exceptions will be reported in the caller
1248     // rather than (correctly) reported inside of the native arraycopy call.
1249     // This should be corrected, given time.  We do our null check with the
1250     // stack pointer restored.
1251     // null checks done library_call.cpp
1252 
1253     // (4) src_offset must not be negative.
1254     generate_negative_guard(&ctrl, src_offset, slow_region);
1255 
1256     // (5) dest_offset must not be negative.
1257     generate_negative_guard(&ctrl, dest_offset, slow_region);
1258 
1259     // (6) length must not be negative (moved to generate_arraycopy()).
1260     // generate_negative_guard(length, slow_region);
1261 
1262     // (7) src_offset + length must not exceed length of src.
1263     Node* alen = ac->in(ArrayCopyNode::SrcLen);
1264     assert(alen != NULL, "need src len");
1265     generate_limit_guard(&ctrl,
1266                          src_offset, length,
1267                          alen,
1268                          slow_region);
1269 
1270     // (8) dest_offset + length must not exceed length of dest.
1271     alen = ac->in(ArrayCopyNode::DestLen);
1272     assert(alen != NULL, "need dest len");
1273     generate_limit_guard(&ctrl,
1274                          dest_offset, length,
1275                          alen,
1276                          slow_region);
1277 
1278     // (9) each element of an oop array must be assignable
1279     // The generate_arraycopy subroutine checks this.
1280   }
1281   // This is where the memory effects are placed:
1282   const TypePtr* adr_type = NULL;
1283   if (ac->_dest_type != TypeOopPtr::BOTTOM) {
1284     adr_type = ac->_dest_type->add_offset(Type::OffsetBot)->is_ptr();
1285   } else {
1286     adr_type = TypeAryPtr::get_array_body_type(dest_elem);
1287   }
1288 
1289   generate_arraycopy(ac, alloc, &ctrl, merge_mem, &io,
1290                      adr_type, dest_elem,
1291                      src, src_offset, dest, dest_offset, length,
1292                      // If a  negative length guard was generated for the ArrayCopyNode,
1293                      // the length of the array can never be negative.
1294                      false, ac->has_negative_length_guard(), slow_region);
1295 }