1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 143 
 144 namespace asm_util {
 145   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 146 };
 147 
 148 using namespace asm_util;
 149 
 150 
 151 class Assembler;
 152 
 153 class Instruction_aarch64 {
 154   unsigned insn;
 155 #ifdef ASSERT
 156   unsigned bits;
 157 #endif
 158   Assembler *assem;
 159 
 160 public:
 161 
 162   Instruction_aarch64(class Assembler *as) {
 163 #ifdef ASSERT
 164     bits = 0;
 165 #endif
 166     insn = 0;
 167     assem = as;
 168   }
 169 
 170   inline ~Instruction_aarch64();
 171 
 172   unsigned &get_insn() { return insn; }
 173 #ifdef ASSERT
 174   unsigned &get_bits() { return bits; }
 175 #endif
 176 
 177   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 178     union {
 179       unsigned u;
 180       int n;
 181     };
 182 
 183     u = val << (31 - hi);
 184     n = n >> (31 - hi + lo);
 185     return n;
 186   }
 187 
 188   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 189     int nbits = msb - lsb + 1;
 190     assert_cond(msb >= lsb);
 191     uint32_t mask = (1U << nbits) - 1;
 192     uint32_t result = val >> lsb;
 193     result &= mask;
 194     return result;
 195   }
 196 
 197   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 198     uint32_t uval = extract(val, msb, lsb);
 199     return extend(uval, msb - lsb);
 200   }
 201 
 202   static void patch(address a, int msb, int lsb, unsigned long val) {
 203     int nbits = msb - lsb + 1;
 204     guarantee(val < (1U << nbits), "Field too big for insn");
 205     assert_cond(msb >= lsb);
 206     unsigned mask = (1U << nbits) - 1;
 207     val <<= lsb;
 208     mask <<= lsb;
 209     unsigned target = *(unsigned *)a;
 210     target &= ~mask;
 211     target |= val;
 212     *(unsigned *)a = target;
 213   }
 214 
 215   static void spatch(address a, int msb, int lsb, long val) {
 216     int nbits = msb - lsb + 1;
 217     long chk = val >> (nbits - 1);
 218     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 219     unsigned uval = val;
 220     unsigned mask = (1U << nbits) - 1;
 221     uval &= mask;
 222     uval <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= uval;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   void f(unsigned val, int msb, int lsb) {
 231     int nbits = msb - lsb + 1;
 232     guarantee(val < (1U << nbits), "Field too big for insn");
 233     assert_cond(msb >= lsb);
 234     unsigned mask = (1U << nbits) - 1;
 235     val <<= lsb;
 236     mask <<= lsb;
 237     insn |= val;
 238     assert_cond((bits & mask) == 0);
 239 #ifdef ASSERT
 240     bits |= mask;
 241 #endif
 242   }
 243 
 244   void f(unsigned val, int bit) {
 245     f(val, bit, bit);
 246   }
 247 
 248   void sf(long val, int msb, int lsb) {
 249     int nbits = msb - lsb + 1;
 250     long chk = val >> (nbits - 1);
 251     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 252     unsigned uval = val;
 253     unsigned mask = (1U << nbits) - 1;
 254     uval &= mask;
 255     f(uval, lsb + nbits - 1, lsb);
 256   }
 257 
 258   void rf(Register r, int lsb) {
 259     f(r->encoding_nocheck(), lsb + 4, lsb);
 260   }
 261 
 262   // reg|ZR
 263   void zrf(Register r, int lsb) {
 264     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 265   }
 266 
 267   // reg|SP
 268   void srf(Register r, int lsb) {
 269     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 270   }
 271 
 272   void rf(FloatRegister r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   unsigned get(int msb = 31, int lsb = 0) {
 277     int nbits = msb - lsb + 1;
 278     unsigned mask = ((1U << nbits) - 1) << lsb;
 279     assert_cond(bits & mask == mask);
 280     return (insn & mask) >> lsb;
 281   }
 282 
 283   void fixed(unsigned value, unsigned mask) {
 284     assert_cond ((mask & bits) == 0);
 285 #ifdef ASSERT
 286     bits |= mask;
 287 #endif
 288     insn |= value;
 289   }
 290 };
 291 
 292 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 293 
 294 class PrePost {
 295   int _offset;
 296   Register _r;
 297 public:
 298   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 299   int offset() { return _offset; }
 300   Register reg() { return _r; }
 301 };
 302 
 303 class Pre : public PrePost {
 304 public:
 305   Pre(Register reg, int o) : PrePost(reg, o) { }
 306 };
 307 class Post : public PrePost {
 308   Register _idx;
 309 public:
 310   Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; }
 311   Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; }
 312   Register idx_reg() { return _idx; }
 313 };
 314 
 315 namespace ext
 316 {
 317   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 318 };
 319 
 320 // abs methods which cannot overflow and so are well-defined across
 321 // the entire domain of integer types.
 322 static inline unsigned int uabs(unsigned int n) {
 323   union {
 324     unsigned int result;
 325     int value;
 326   };
 327   result = n;
 328   if (value < 0) result = -result;
 329   return result;
 330 }
 331 static inline unsigned long uabs(unsigned long n) {
 332   union {
 333     unsigned long result;
 334     long value;
 335   };
 336   result = n;
 337   if (value < 0) result = -result;
 338   return result;
 339 }
 340 static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
 341 static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
 342 
 343 // Addressing modes
 344 class Address {
 345  public:
 346 
 347   enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
 348               base_plus_offset_reg, literal };
 349 
 350   // Shift and extend for base reg + reg offset addressing
 351   class extend {
 352     int _option, _shift;
 353     ext::operation _op;
 354   public:
 355     extend() { }
 356     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 357     int option() const{ return _option; }
 358     int shift() const { return _shift; }
 359     ext::operation op() const { return _op; }
 360   };
 361   class uxtw : public extend {
 362   public:
 363     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 364   };
 365   class lsl : public extend {
 366   public:
 367     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 368   };
 369   class sxtw : public extend {
 370   public:
 371     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 372   };
 373   class sxtx : public extend {
 374   public:
 375     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 376   };
 377 
 378  private:
 379   Register _base;
 380   Register _index;
 381   long _offset;
 382   enum mode _mode;
 383   extend _ext;
 384 
 385   RelocationHolder _rspec;
 386 
 387   // Typically we use AddressLiterals we want to use their rval
 388   // However in some situations we want the lval (effect address) of
 389   // the item.  We provide a special factory for making those lvals.
 390   bool _is_lval;
 391 
 392   // If the target is far we'll need to load the ea of this to a
 393   // register to reach it. Otherwise if near we can do PC-relative
 394   // addressing.
 395   address          _target;
 396 
 397  public:
 398   Address()
 399     : _mode(no_mode) { }
 400   Address(Register r)
 401     : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
 402   Address(Register r, int o)
 403     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 404   Address(Register r, long o)
 405     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 406   Address(Register r, unsigned long o)
 407     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 408 #ifdef ASSERT
 409   Address(Register r, ByteSize disp)
 410     : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { }
 411 #endif
 412   Address(Register r, Register r1, extend ext = lsl())
 413     : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
 414       _ext(ext), _target(0) { }
 415   Address(Pre p)
 416     : _base(p.reg()), _offset(p.offset()), _mode(pre) { }
 417   Address(Post p)
 418     : _base(p.reg()),  _index(p.idx_reg()), _offset(p.offset()),
 419       _mode(p.idx_reg() == NULL ? post : post_reg), _target(0) { }
 420   Address(address target, RelocationHolder const& rspec)
 421     : _mode(literal),
 422       _rspec(rspec),
 423       _is_lval(false),
 424       _target(target)  { }
 425   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 426   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 427     : _base (base),
 428       _offset(0), _ext(ext), _target(0) {
 429     if (index.is_register()) {
 430       _mode = base_plus_offset_reg;
 431       _index = index.as_register();
 432     } else {
 433       guarantee(ext.option() == ext::uxtx, "should be");
 434       assert(index.is_constant(), "should be");
 435       _mode = base_plus_offset;
 436       _offset = index.as_constant() << ext.shift();
 437     }
 438   }
 439 
 440   Register base() const {
 441     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 442                | _mode == post | _mode == post_reg),
 443               "wrong mode");
 444     return _base;
 445   }
 446   long offset() const {
 447     return _offset;
 448   }
 449   Register index() const {
 450     return _index;
 451   }
 452   mode getMode() const {
 453     return _mode;
 454   }
 455   bool uses(Register reg) const { return _base == reg || _index == reg; }
 456   address target() const { return _target; }
 457   const RelocationHolder& rspec() const { return _rspec; }
 458 
 459   void encode(Instruction_aarch64 *i) const {
 460     i->f(0b111, 29, 27);
 461     i->srf(_base, 5);
 462 
 463     switch(_mode) {
 464     case base_plus_offset:
 465       {
 466         unsigned size = i->get(31, 30);
 467         if (i->get(26, 26) && i->get(23, 23)) {
 468           // SIMD Q Type - Size = 128 bits
 469           assert(size == 0, "bad size");
 470           size = 0b100;
 471         }
 472         unsigned mask = (1 << size) - 1;
 473         if (_offset < 0 || _offset & mask)
 474           {
 475             i->f(0b00, 25, 24);
 476             i->f(0, 21), i->f(0b00, 11, 10);
 477             i->sf(_offset, 20, 12);
 478           } else {
 479             i->f(0b01, 25, 24);
 480             i->f(_offset >> size, 21, 10);
 481           }
 482       }
 483       break;
 484 
 485     case base_plus_offset_reg:
 486       {
 487         i->f(0b00, 25, 24);
 488         i->f(1, 21);
 489         i->rf(_index, 16);
 490         i->f(_ext.option(), 15, 13);
 491         unsigned size = i->get(31, 30);
 492         if (i->get(26, 26) && i->get(23, 23)) {
 493           // SIMD Q Type - Size = 128 bits
 494           assert(size == 0, "bad size");
 495           size = 0b100;
 496         }
 497         if (size == 0) // It's a byte
 498           i->f(_ext.shift() >= 0, 12);
 499         else {
 500           if (_ext.shift() > 0)
 501             assert(_ext.shift() == (int)size, "bad shift");
 502           i->f(_ext.shift() > 0, 12);
 503         }
 504         i->f(0b10, 11, 10);
 505       }
 506       break;
 507 
 508     case pre:
 509       i->f(0b00, 25, 24);
 510       i->f(0, 21), i->f(0b11, 11, 10);
 511       i->sf(_offset, 20, 12);
 512       break;
 513 
 514     case post:
 515       i->f(0b00, 25, 24);
 516       i->f(0, 21), i->f(0b01, 11, 10);
 517       i->sf(_offset, 20, 12);
 518       break;
 519 
 520     default:
 521       ShouldNotReachHere();
 522     }
 523   }
 524 
 525   void encode_pair(Instruction_aarch64 *i) const {
 526     switch(_mode) {
 527     case base_plus_offset:
 528       i->f(0b010, 25, 23);
 529       break;
 530     case pre:
 531       i->f(0b011, 25, 23);
 532       break;
 533     case post:
 534       i->f(0b001, 25, 23);
 535       break;
 536     default:
 537       ShouldNotReachHere();
 538     }
 539 
 540     unsigned size; // Operand shift in 32-bit words
 541 
 542     if (i->get(26, 26)) { // float
 543       switch(i->get(31, 30)) {
 544       case 0b10:
 545         size = 2; break;
 546       case 0b01:
 547         size = 1; break;
 548       case 0b00:
 549         size = 0; break;
 550       default:
 551         ShouldNotReachHere();
 552         size = 0;  // unreachable
 553       }
 554     } else {
 555       size = i->get(31, 31);
 556     }
 557 
 558     size = 4 << size;
 559     guarantee(_offset % size == 0, "bad offset");
 560     i->sf(_offset / size, 21, 15);
 561     i->srf(_base, 5);
 562   }
 563 
 564   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 565     // Only base + offset is allowed
 566     i->f(0b000, 25, 23);
 567     unsigned size = i->get(31, 31);
 568     size = 4 << size;
 569     guarantee(_offset % size == 0, "bad offset");
 570     i->sf(_offset / size, 21, 15);
 571     i->srf(_base, 5);
 572     guarantee(_mode == Address::base_plus_offset,
 573               "Bad addressing mode for non-temporal op");
 574   }
 575 
 576   void lea(MacroAssembler *, Register) const;
 577 
 578   static bool offset_ok_for_immed(long offset, int shift = 0) {
 579     unsigned mask = (1 << shift) - 1;
 580     if (offset < 0 || offset & mask) {
 581       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 582     } else {
 583       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 584     }
 585   }
 586 };
 587 
 588 // Convience classes
 589 class RuntimeAddress: public Address {
 590 
 591   public:
 592 
 593   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 594 
 595 };
 596 
 597 class OopAddress: public Address {
 598 
 599   public:
 600 
 601   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 602 
 603 };
 604 
 605 class ExternalAddress: public Address {
 606  private:
 607   static relocInfo::relocType reloc_for_target(address target) {
 608     // Sometimes ExternalAddress is used for values which aren't
 609     // exactly addresses, like the card table base.
 610     // external_word_type can't be used for values in the first page
 611     // so just skip the reloc in that case.
 612     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 613   }
 614 
 615  public:
 616 
 617   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 618 
 619 };
 620 
 621 class InternalAddress: public Address {
 622 
 623   public:
 624 
 625   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 626 };
 627 
 628 const int FPUStateSizeInWords = 32 * 2;
 629 typedef enum {
 630   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 631   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 632   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 633 } prfop;
 634 
 635 class Assembler : public AbstractAssembler {
 636 
 637 #ifndef PRODUCT
 638   static const unsigned long asm_bp;
 639 
 640   void emit_long(jint x) {
 641     if ((unsigned long)pc() == asm_bp)
 642       asm volatile ("nop");
 643     AbstractAssembler::emit_int32(x);
 644   }
 645 #else
 646   void emit_long(jint x) {
 647     AbstractAssembler::emit_int32(x);
 648   }
 649 #endif
 650 
 651 public:
 652 
 653   enum { instruction_size = 4 };
 654 
 655   Address adjust(Register base, int offset, bool preIncrement) {
 656     if (preIncrement)
 657       return Address(Pre(base, offset));
 658     else
 659       return Address(Post(base, offset));
 660   }
 661 
 662   Address pre(Register base, int offset) {
 663     return adjust(base, offset, true);
 664   }
 665 
 666   Address post(Register base, int offset) {
 667     return adjust(base, offset, false);
 668   }
 669 
 670   Address post(Register base, Register idx) {
 671     return Address(Post(base, idx));
 672   }
 673 
 674   Instruction_aarch64* current;
 675 
 676   void set_current(Instruction_aarch64* i) { current = i; }
 677 
 678   void f(unsigned val, int msb, int lsb) {
 679     current->f(val, msb, lsb);
 680   }
 681   void f(unsigned val, int msb) {
 682     current->f(val, msb, msb);
 683   }
 684   void sf(long val, int msb, int lsb) {
 685     current->sf(val, msb, lsb);
 686   }
 687   void rf(Register reg, int lsb) {
 688     current->rf(reg, lsb);
 689   }
 690   void srf(Register reg, int lsb) {
 691     current->srf(reg, lsb);
 692   }
 693   void zrf(Register reg, int lsb) {
 694     current->zrf(reg, lsb);
 695   }
 696   void rf(FloatRegister reg, int lsb) {
 697     current->rf(reg, lsb);
 698   }
 699   void fixed(unsigned value, unsigned mask) {
 700     current->fixed(value, mask);
 701   }
 702 
 703   void emit() {
 704     emit_long(current->get_insn());
 705     assert_cond(current->get_bits() == 0xffffffff);
 706     current = NULL;
 707   }
 708 
 709   typedef void (Assembler::* uncond_branch_insn)(address dest);
 710   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 711   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 712   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 713 
 714   void wrap_label(Label &L, uncond_branch_insn insn);
 715   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 716   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 717   void wrap_label(Label &L, prfop, prefetch_insn insn);
 718 
 719   // PC-rel. addressing
 720 
 721   void adr(Register Rd, address dest);
 722   void _adrp(Register Rd, address dest);
 723 
 724   void adr(Register Rd, const Address &dest);
 725   void _adrp(Register Rd, const Address &dest);
 726 
 727   void adr(Register Rd, Label &L) {
 728     wrap_label(Rd, L, &Assembler::Assembler::adr);
 729   }
 730   void _adrp(Register Rd, Label &L) {
 731     wrap_label(Rd, L, &Assembler::_adrp);
 732   }
 733 
 734   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 735 
 736 #undef INSN
 737 
 738   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 739                          int negated_op);
 740 
 741   // Add/subtract (immediate)
 742 #define INSN(NAME, decode, negated)                                     \
 743   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 744     starti;                                                             \
 745     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 746     zrf(Rd, 0), srf(Rn, 5);                                             \
 747   }                                                                     \
 748                                                                         \
 749   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 750     starti;                                                             \
 751     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 752   }
 753 
 754   INSN(addsw, 0b001, 0b011);
 755   INSN(subsw, 0b011, 0b001);
 756   INSN(adds,  0b101, 0b111);
 757   INSN(subs,  0b111, 0b101);
 758 
 759 #undef INSN
 760 
 761 #define INSN(NAME, decode, negated)                     \
 762   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 763     starti;                                             \
 764     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 765   }
 766 
 767   INSN(addw, 0b000, 0b010);
 768   INSN(subw, 0b010, 0b000);
 769   INSN(add,  0b100, 0b110);
 770   INSN(sub,  0b110, 0b100);
 771 
 772 #undef INSN
 773 
 774  // Logical (immediate)
 775 #define INSN(NAME, decode, is32)                                \
 776   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 777     starti;                                                     \
 778     uint32_t val = encode_logical_immediate(is32, imm);         \
 779     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 780     srf(Rd, 0), zrf(Rn, 5);                                     \
 781   }
 782 
 783   INSN(andw, 0b000, true);
 784   INSN(orrw, 0b001, true);
 785   INSN(eorw, 0b010, true);
 786   INSN(andr,  0b100, false);
 787   INSN(orr,  0b101, false);
 788   INSN(eor,  0b110, false);
 789 
 790 #undef INSN
 791 
 792 #define INSN(NAME, decode, is32)                                \
 793   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 794     starti;                                                     \
 795     uint32_t val = encode_logical_immediate(is32, imm);         \
 796     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 797     zrf(Rd, 0), zrf(Rn, 5);                                     \
 798   }
 799 
 800   INSN(ands, 0b111, false);
 801   INSN(andsw, 0b011, true);
 802 
 803 #undef INSN
 804 
 805   // Move wide (immediate)
 806 #define INSN(NAME, opcode)                                              \
 807   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 808     assert_cond((shift/16)*16 == shift);                                \
 809     starti;                                                             \
 810     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 811       f(imm, 20, 5);                                                    \
 812     rf(Rd, 0);                                                          \
 813   }
 814 
 815   INSN(movnw, 0b000);
 816   INSN(movzw, 0b010);
 817   INSN(movkw, 0b011);
 818   INSN(movn, 0b100);
 819   INSN(movz, 0b110);
 820   INSN(movk, 0b111);
 821 
 822 #undef INSN
 823 
 824   // Bitfield
 825 #define INSN(NAME, opcode)                                              \
 826   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 827     starti;                                                             \
 828     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 829     zrf(Rn, 5), rf(Rd, 0);                                              \
 830   }
 831 
 832   INSN(sbfmw, 0b0001001100);
 833   INSN(bfmw,  0b0011001100);
 834   INSN(ubfmw, 0b0101001100);
 835   INSN(sbfm,  0b1001001101);
 836   INSN(bfm,   0b1011001101);
 837   INSN(ubfm,  0b1101001101);
 838 
 839 #undef INSN
 840 
 841   // Extract
 842 #define INSN(NAME, opcode)                                              \
 843   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 844     starti;                                                             \
 845     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 846     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 847   }
 848 
 849   INSN(extrw, 0b00010011100);
 850   INSN(extr,  0b10010011110);
 851 
 852 #undef INSN
 853 
 854   // The maximum range of a branch is fixed for the AArch64
 855   // architecture.  In debug mode we shrink it in order to test
 856   // trampolines, but not so small that branches in the interpreter
 857   // are out of range.
 858   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 859 
 860   static bool reachable_from_branch_at(address branch, address target) {
 861     return uabs(target - branch) < branch_range;
 862   }
 863 
 864   // Unconditional branch (immediate)
 865 #define INSN(NAME, opcode)                                              \
 866   void NAME(address dest) {                                             \
 867     starti;                                                             \
 868     long offset = (dest - pc()) >> 2;                                   \
 869     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 870     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 871   }                                                                     \
 872   void NAME(Label &L) {                                                 \
 873     wrap_label(L, &Assembler::NAME);                                    \
 874   }                                                                     \
 875   void NAME(const Address &dest);
 876 
 877   INSN(b, 0);
 878   INSN(bl, 1);
 879 
 880 #undef INSN
 881 
 882   // Compare & branch (immediate)
 883 #define INSN(NAME, opcode)                              \
 884   void NAME(Register Rt, address dest) {                \
 885     long offset = (dest - pc()) >> 2;                   \
 886     starti;                                             \
 887     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 888   }                                                     \
 889   void NAME(Register Rt, Label &L) {                    \
 890     wrap_label(Rt, L, &Assembler::NAME);                \
 891   }
 892 
 893   INSN(cbzw,  0b00110100);
 894   INSN(cbnzw, 0b00110101);
 895   INSN(cbz,   0b10110100);
 896   INSN(cbnz,  0b10110101);
 897 
 898 #undef INSN
 899 
 900   // Test & branch (immediate)
 901 #define INSN(NAME, opcode)                                              \
 902   void NAME(Register Rt, int bitpos, address dest) {                    \
 903     long offset = (dest - pc()) >> 2;                                   \
 904     int b5 = bitpos >> 5;                                               \
 905     bitpos &= 0x1f;                                                     \
 906     starti;                                                             \
 907     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 908     rf(Rt, 0);                                                          \
 909   }                                                                     \
 910   void NAME(Register Rt, int bitpos, Label &L) {                        \
 911     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 912   }
 913 
 914   INSN(tbz,  0b0110110);
 915   INSN(tbnz, 0b0110111);
 916 
 917 #undef INSN
 918 
 919   // Conditional branch (immediate)
 920   enum Condition
 921     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 922 
 923   void br(Condition  cond, address dest) {
 924     long offset = (dest - pc()) >> 2;
 925     starti;
 926     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 927   }
 928 
 929 #define INSN(NAME, cond)                        \
 930   void NAME(address dest) {                     \
 931     br(cond, dest);                             \
 932   }
 933 
 934   INSN(beq, EQ);
 935   INSN(bne, NE);
 936   INSN(bhs, HS);
 937   INSN(bcs, CS);
 938   INSN(blo, LO);
 939   INSN(bcc, CC);
 940   INSN(bmi, MI);
 941   INSN(bpl, PL);
 942   INSN(bvs, VS);
 943   INSN(bvc, VC);
 944   INSN(bhi, HI);
 945   INSN(bls, LS);
 946   INSN(bge, GE);
 947   INSN(blt, LT);
 948   INSN(bgt, GT);
 949   INSN(ble, LE);
 950   INSN(bal, AL);
 951   INSN(bnv, NV);
 952 
 953   void br(Condition cc, Label &L);
 954 
 955 #undef INSN
 956 
 957   // Exception generation
 958   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 959     starti;
 960     f(0b11010100, 31, 24);
 961     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 962   }
 963 
 964 #define INSN(NAME, opc, op2, LL)                \
 965   void NAME(unsigned imm) {                     \
 966     generate_exception(opc, op2, LL, imm);      \
 967   }
 968 
 969   INSN(svc, 0b000, 0, 0b01);
 970   INSN(hvc, 0b000, 0, 0b10);
 971   INSN(smc, 0b000, 0, 0b11);
 972   INSN(brk, 0b001, 0, 0b00);
 973   INSN(hlt, 0b010, 0, 0b00);
 974   INSN(dpcs1, 0b101, 0, 0b01);
 975   INSN(dpcs2, 0b101, 0, 0b10);
 976   INSN(dpcs3, 0b101, 0, 0b11);
 977 
 978 #undef INSN
 979 
 980   // System
 981   void system(int op0, int op1, int CRn, int CRm, int op2,
 982               Register rt = dummy_reg)
 983   {
 984     starti;
 985     f(0b11010101000, 31, 21);
 986     f(op0, 20, 19);
 987     f(op1, 18, 16);
 988     f(CRn, 15, 12);
 989     f(CRm, 11, 8);
 990     f(op2, 7, 5);
 991     rf(rt, 0);
 992   }
 993 
 994   void hint(int imm) {
 995     system(0b00, 0b011, 0b0010, 0b0000, imm);
 996   }
 997 
 998   void nop() {
 999     hint(0);
1000   }
1001 
1002   void yield() {
1003     hint(1);
1004   }
1005 
1006   void wfe() {
1007     hint(2);
1008   }
1009 
1010   void wfi() {
1011     hint(3);
1012   }
1013 
1014   void sev() {
1015     hint(4);
1016   }
1017 
1018   void sevl() {
1019     hint(5);
1020   }
1021 
1022   // we only provide mrs and msr for the special purpose system
1023   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1024   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1025 
1026   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1027     starti;
1028     f(0b1101010100011, 31, 19);
1029     f(op1, 18, 16);
1030     f(CRn, 15, 12);
1031     f(CRm, 11, 8);
1032     f(op2, 7, 5);
1033     // writing zr is ok
1034     zrf(rt, 0);
1035   }
1036 
1037   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1038     starti;
1039     f(0b1101010100111, 31, 19);
1040     f(op1, 18, 16);
1041     f(CRn, 15, 12);
1042     f(CRm, 11, 8);
1043     f(op2, 7, 5);
1044     // reading to zr is a mistake
1045     rf(rt, 0);
1046   }
1047 
1048   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1049                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1050 
1051   void dsb(barrier imm) {
1052     system(0b00, 0b011, 0b00011, imm, 0b100);
1053   }
1054 
1055   void dmb(barrier imm) {
1056     system(0b00, 0b011, 0b00011, imm, 0b101);
1057   }
1058 
1059   void isb() {
1060     system(0b00, 0b011, 0b00011, SY, 0b110);
1061   }
1062 
1063   void sys(int op1, int CRn, int CRm, int op2,
1064            Register rt = (Register)0b11111) {
1065     system(0b01, op1, CRn, CRm, op2, rt);
1066   }
1067 
1068   // Only implement operations accessible from EL0 or higher, i.e.,
1069   //            op1    CRn    CRm    op2
1070   // IC IVAU     3      7      5      1
1071   // DC CVAC     3      7      10     1
1072   // DC CVAU     3      7      11     1
1073   // DC CIVAC    3      7      14     1
1074   // DC ZVA      3      7      4      1
1075   // So only deal with the CRm field.
1076   enum icache_maintenance {IVAU = 0b0101};
1077   enum dcache_maintenance {CVAC = 0b1010, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1078 
1079   void dc(dcache_maintenance cm, Register Rt) {
1080     sys(0b011, 0b0111, cm, 0b001, Rt);
1081   }
1082 
1083   void ic(icache_maintenance cm, Register Rt) {
1084     sys(0b011, 0b0111, cm, 0b001, Rt);
1085   }
1086 
1087   // A more convenient access to dmb for our purposes
1088   enum Membar_mask_bits {
1089     // We can use ISH for a barrier because the ARM ARM says "This
1090     // architecture assumes that all Processing Elements that use the
1091     // same operating system or hypervisor are in the same Inner
1092     // Shareable shareability domain."
1093     StoreStore = ISHST,
1094     LoadStore  = ISHLD,
1095     LoadLoad   = ISHLD,
1096     StoreLoad  = ISH,
1097     AnyAny     = ISH
1098   };
1099 
1100   void membar(Membar_mask_bits order_constraint) {
1101     dmb(Assembler::barrier(order_constraint));
1102   }
1103 
1104   // Unconditional branch (register)
1105   void branch_reg(Register R, int opc) {
1106     starti;
1107     f(0b1101011, 31, 25);
1108     f(opc, 24, 21);
1109     f(0b11111000000, 20, 10);
1110     rf(R, 5);
1111     f(0b00000, 4, 0);
1112   }
1113 
1114 #define INSN(NAME, opc)                         \
1115   void NAME(Register R) {                       \
1116     branch_reg(R, opc);                         \
1117   }
1118 
1119   INSN(br, 0b0000);
1120   INSN(blr, 0b0001);
1121   INSN(ret, 0b0010);
1122 
1123   void ret(void *p); // This forces a compile-time error for ret(0)
1124 
1125 #undef INSN
1126 
1127 #define INSN(NAME, opc)                         \
1128   void NAME() {                 \
1129     branch_reg(dummy_reg, opc);         \
1130   }
1131 
1132   INSN(eret, 0b0100);
1133   INSN(drps, 0b0101);
1134 
1135 #undef INSN
1136 
1137   // Load/store exclusive
1138   enum operand_size { byte, halfword, word, xword };
1139 
1140   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1141     Register Rn, enum operand_size sz, int op, bool ordered) {
1142     starti;
1143     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1144     rf(Rs, 16), f(ordered, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
1145   }
1146 
1147   void load_exclusive(Register dst, Register addr,
1148                       enum operand_size sz, bool ordered) {
1149     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1150                          sz, 0b010, ordered);
1151   }
1152 
1153   void store_exclusive(Register status, Register new_val, Register addr,
1154                        enum operand_size sz, bool ordered) {
1155     load_store_exclusive(status, new_val, dummy_reg, addr,
1156                          sz, 0b000, ordered);
1157   }
1158 
1159 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1160   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1161     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1162     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1163   }
1164 
1165 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1166   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1167     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1168     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1169   }
1170 
1171 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1172   void NAME(Register Rt, Register Rn) {                                 \
1173     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1174                          Rn, sz, op, o0);                               \
1175   }
1176 
1177 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1178   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1179     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1180     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1181   }
1182 
1183   // bytes
1184   INSN3(stxrb, byte, 0b000, 0);
1185   INSN3(stlxrb, byte, 0b000, 1);
1186   INSN2(ldxrb, byte, 0b010, 0);
1187   INSN2(ldaxrb, byte, 0b010, 1);
1188   INSN2(stlrb, byte, 0b100, 1);
1189   INSN2(ldarb, byte, 0b110, 1);
1190 
1191   // halfwords
1192   INSN3(stxrh, halfword, 0b000, 0);
1193   INSN3(stlxrh, halfword, 0b000, 1);
1194   INSN2(ldxrh, halfword, 0b010, 0);
1195   INSN2(ldaxrh, halfword, 0b010, 1);
1196   INSN2(stlrh, halfword, 0b100, 1);
1197   INSN2(ldarh, halfword, 0b110, 1);
1198 
1199   // words
1200   INSN3(stxrw, word, 0b000, 0);
1201   INSN3(stlxrw, word, 0b000, 1);
1202   INSN4(stxpw, word, 0b001, 0);
1203   INSN4(stlxpw, word, 0b001, 1);
1204   INSN2(ldxrw, word, 0b010, 0);
1205   INSN2(ldaxrw, word, 0b010, 1);
1206   INSN_FOO(ldxpw, word, 0b011, 0);
1207   INSN_FOO(ldaxpw, word, 0b011, 1);
1208   INSN2(stlrw, word, 0b100, 1);
1209   INSN2(ldarw, word, 0b110, 1);
1210 
1211   // xwords
1212   INSN3(stxr, xword, 0b000, 0);
1213   INSN3(stlxr, xword, 0b000, 1);
1214   INSN4(stxp, xword, 0b001, 0);
1215   INSN4(stlxp, xword, 0b001, 1);
1216   INSN2(ldxr, xword, 0b010, 0);
1217   INSN2(ldaxr, xword, 0b010, 1);
1218   INSN_FOO(ldxp, xword, 0b011, 0);
1219   INSN_FOO(ldaxp, xword, 0b011, 1);
1220   INSN2(stlr, xword, 0b100, 1);
1221   INSN2(ldar, xword, 0b110, 1);
1222 
1223 #undef INSN2
1224 #undef INSN3
1225 #undef INSN4
1226 #undef INSN_FOO
1227 
1228   // 8.1 Compare and swap extensions
1229   void lse_cas(Register Rs, Register Rt, Register Rn,
1230                         enum operand_size sz, bool a, bool r, bool not_pair) {
1231     starti;
1232     if (! not_pair) { // Pair
1233       assert(sz == word || sz == xword, "invalid size");
1234       /* The size bit is in bit 30, not 31 */
1235       sz = (operand_size)(sz == word ? 0b00:0b01);
1236     }
1237     f(sz, 31, 30), f(0b001000, 29, 24), f(1, 23), f(a, 22), f(1, 21);
1238     rf(Rs, 16), f(r, 15), f(0b11111, 14, 10), rf(Rn, 5), rf(Rt, 0);
1239   }
1240 
1241   // CAS
1242 #define INSN(NAME, a, r)                                                \
1243   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1244     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1245     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1246   }
1247   INSN(cas,    false, false)
1248   INSN(casa,   true,  false)
1249   INSN(casl,   false, true)
1250   INSN(casal,  true,  true)
1251 #undef INSN
1252 
1253   // CASP
1254 #define INSN(NAME, a, r)                                                \
1255   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1256             Register Rt, Register Rt1, Register Rn) {                   \
1257     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1258            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1259            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1260     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1261   }
1262   INSN(casp,    false, false)
1263   INSN(caspa,   true,  false)
1264   INSN(caspl,   false, true)
1265   INSN(caspal,  true,  true)
1266 #undef INSN
1267 
1268   // 8.1 Atomic operations
1269   void lse_atomic(Register Rs, Register Rt, Register Rn,
1270                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1271     starti;
1272     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1273     rf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), rf(Rn, 5), zrf(Rt, 0);
1274   }
1275 
1276 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1277   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1278     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1279   }                                                                     \
1280   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1281     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1282   }                                                                     \
1283   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1284     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1285   }                                                                     \
1286   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1287     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1288   }
1289   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1290   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1291   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1292   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1293   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1294   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1295   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1296   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1297   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1298 #undef INSN
1299 
1300   // Load register (literal)
1301 #define INSN(NAME, opc, V)                                              \
1302   void NAME(Register Rt, address dest) {                                \
1303     long offset = (dest - pc()) >> 2;                                   \
1304     starti;                                                             \
1305     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1306       sf(offset, 23, 5);                                                \
1307     rf(Rt, 0);                                                          \
1308   }                                                                     \
1309   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1310     InstructionMark im(this);                                           \
1311     guarantee(rtype == relocInfo::internal_word_type,                   \
1312               "only internal_word_type relocs make sense here");        \
1313     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1314     NAME(Rt, dest);                                                     \
1315   }                                                                     \
1316   void NAME(Register Rt, Label &L) {                                    \
1317     wrap_label(Rt, L, &Assembler::NAME);                                \
1318   }
1319 
1320   INSN(ldrw, 0b00, 0);
1321   INSN(ldr, 0b01, 0);
1322   INSN(ldrsw, 0b10, 0);
1323 
1324 #undef INSN
1325 
1326 #define INSN(NAME, opc, V)                                              \
1327   void NAME(FloatRegister Rt, address dest) {                           \
1328     long offset = (dest - pc()) >> 2;                                   \
1329     starti;                                                             \
1330     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1331       sf(offset, 23, 5);                                                \
1332     rf((Register)Rt, 0);                                                \
1333   }
1334 
1335   INSN(ldrs, 0b00, 1);
1336   INSN(ldrd, 0b01, 1);
1337   INSN(ldrq, 0b10, 1);
1338 
1339 #undef INSN
1340 
1341 #define INSN(NAME, opc, V)                                              \
1342   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1343     long offset = (dest - pc()) >> 2;                                   \
1344     starti;                                                             \
1345     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1346       sf(offset, 23, 5);                                                \
1347     f(op, 4, 0);                                                        \
1348   }                                                                     \
1349   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1350     wrap_label(L, op, &Assembler::NAME);                                \
1351   }
1352 
1353   INSN(prfm, 0b11, 0);
1354 
1355 #undef INSN
1356 
1357   // Load/store
1358   void ld_st1(int opc, int p1, int V, int L,
1359               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1360     starti;
1361     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1362     zrf(Rt2, 10), zrf(Rt1, 0);
1363     if (no_allocate) {
1364       adr.encode_nontemporal_pair(current);
1365     } else {
1366       adr.encode_pair(current);
1367     }
1368   }
1369 
1370   // Load/store register pair (offset)
1371 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1372   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1373     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1374    }
1375 
1376   INSN(stpw, 0b00, 0b101, 0, 0, false);
1377   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1378   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1379   INSN(stp, 0b10, 0b101, 0, 0, false);
1380   INSN(ldp, 0b10, 0b101, 0, 1, false);
1381 
1382   // Load/store no-allocate pair (offset)
1383   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1384   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1385   INSN(stnp, 0b10, 0b101, 0, 0, true);
1386   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1387 
1388 #undef INSN
1389 
1390 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1391   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1392     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1393    }
1394 
1395   INSN(stps, 0b00, 0b101, 1, 0, false);
1396   INSN(ldps, 0b00, 0b101, 1, 1, false);
1397   INSN(stpd, 0b01, 0b101, 1, 0, false);
1398   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1399   INSN(stpq, 0b10, 0b101, 1, 0, false);
1400   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1401 
1402 #undef INSN
1403 
1404   // Load/store register (all modes)
1405   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1406     starti;
1407 
1408     f(V, 26); // general reg?
1409     zrf(Rt, 0);
1410 
1411     // Encoding for literal loads is done here (rather than pushed
1412     // down into Address::encode) because the encoding of this
1413     // instruction is too different from all of the other forms to
1414     // make it worth sharing.
1415     if (adr.getMode() == Address::literal) {
1416       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1417       assert(op == 0b01, "literal form can only be used with loads");
1418       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1419       long offset = (adr.target() - pc()) >> 2;
1420       sf(offset, 23, 5);
1421       code_section()->relocate(pc(), adr.rspec());
1422       return;
1423     }
1424 
1425     f(size, 31, 30);
1426     f(op, 23, 22); // str
1427     adr.encode(current);
1428   }
1429 
1430 #define INSN(NAME, size, op)                            \
1431   void NAME(Register Rt, const Address &adr) {          \
1432     ld_st2(Rt, adr, size, op);                          \
1433   }                                                     \
1434 
1435   INSN(str, 0b11, 0b00);
1436   INSN(strw, 0b10, 0b00);
1437   INSN(strb, 0b00, 0b00);
1438   INSN(strh, 0b01, 0b00);
1439 
1440   INSN(ldr, 0b11, 0b01);
1441   INSN(ldrw, 0b10, 0b01);
1442   INSN(ldrb, 0b00, 0b01);
1443   INSN(ldrh, 0b01, 0b01);
1444 
1445   INSN(ldrsb, 0b00, 0b10);
1446   INSN(ldrsbw, 0b00, 0b11);
1447   INSN(ldrsh, 0b01, 0b10);
1448   INSN(ldrshw, 0b01, 0b11);
1449   INSN(ldrsw, 0b10, 0b10);
1450 
1451 #undef INSN
1452 
1453 #define INSN(NAME, size, op)                                    \
1454   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1455     ld_st2((Register)pfop, adr, size, op);                      \
1456   }
1457 
1458   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1459                           // writeback modes, but the assembler
1460                           // doesn't enfore that.
1461 
1462 #undef INSN
1463 
1464 #define INSN(NAME, size, op)                            \
1465   void NAME(FloatRegister Rt, const Address &adr) {     \
1466     ld_st2((Register)Rt, adr, size, op, 1);             \
1467   }
1468 
1469   INSN(strd, 0b11, 0b00);
1470   INSN(strs, 0b10, 0b00);
1471   INSN(ldrd, 0b11, 0b01);
1472   INSN(ldrs, 0b10, 0b01);
1473   INSN(strq, 0b00, 0b10);
1474   INSN(ldrq, 0x00, 0b11);
1475 
1476 #undef INSN
1477 
1478   enum shift_kind { LSL, LSR, ASR, ROR };
1479 
1480   void op_shifted_reg(unsigned decode,
1481                       enum shift_kind kind, unsigned shift,
1482                       unsigned size, unsigned op) {
1483     f(size, 31);
1484     f(op, 30, 29);
1485     f(decode, 28, 24);
1486     f(shift, 15, 10);
1487     f(kind, 23, 22);
1488   }
1489 
1490   // Logical (shifted register)
1491 #define INSN(NAME, size, op, N)                                 \
1492   void NAME(Register Rd, Register Rn, Register Rm,              \
1493             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1494     starti;                                                     \
1495     f(N, 21);                                                   \
1496     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1497     op_shifted_reg(0b01010, kind, shift, size, op);             \
1498   }
1499 
1500   INSN(andr, 1, 0b00, 0);
1501   INSN(orr, 1, 0b01, 0);
1502   INSN(eor, 1, 0b10, 0);
1503   INSN(ands, 1, 0b11, 0);
1504   INSN(andw, 0, 0b00, 0);
1505   INSN(orrw, 0, 0b01, 0);
1506   INSN(eorw, 0, 0b10, 0);
1507   INSN(andsw, 0, 0b11, 0);
1508 
1509   INSN(bic, 1, 0b00, 1);
1510   INSN(orn, 1, 0b01, 1);
1511   INSN(eon, 1, 0b10, 1);
1512   INSN(bics, 1, 0b11, 1);
1513   INSN(bicw, 0, 0b00, 1);
1514   INSN(ornw, 0, 0b01, 1);
1515   INSN(eonw, 0, 0b10, 1);
1516   INSN(bicsw, 0, 0b11, 1);
1517 
1518 #undef INSN
1519 
1520   // Aliases for short forms of orn
1521 void mvn(Register Rd, Register Rm,
1522             enum shift_kind kind = LSL, unsigned shift = 0) {
1523   orn(Rd, zr, Rm, kind, shift);
1524 }
1525 
1526 void mvnw(Register Rd, Register Rm,
1527             enum shift_kind kind = LSL, unsigned shift = 0) {
1528   ornw(Rd, zr, Rm, kind, shift);
1529 }
1530 
1531   // Add/subtract (shifted register)
1532 #define INSN(NAME, size, op)                            \
1533   void NAME(Register Rd, Register Rn, Register Rm,      \
1534             enum shift_kind kind, unsigned shift = 0) { \
1535     starti;                                             \
1536     f(0, 21);                                           \
1537     assert_cond(kind != ROR);                           \
1538     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1539     op_shifted_reg(0b01011, kind, shift, size, op);     \
1540   }
1541 
1542   INSN(add, 1, 0b000);
1543   INSN(sub, 1, 0b10);
1544   INSN(addw, 0, 0b000);
1545   INSN(subw, 0, 0b10);
1546 
1547   INSN(adds, 1, 0b001);
1548   INSN(subs, 1, 0b11);
1549   INSN(addsw, 0, 0b001);
1550   INSN(subsw, 0, 0b11);
1551 
1552 #undef INSN
1553 
1554   // Add/subtract (extended register)
1555 #define INSN(NAME, op)                                                  \
1556   void NAME(Register Rd, Register Rn, Register Rm,                      \
1557            ext::operation option, int amount = 0) {                     \
1558     starti;                                                             \
1559     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1560     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1561   }
1562 
1563   void add_sub_extended_reg(unsigned op, unsigned decode,
1564     Register Rd, Register Rn, Register Rm,
1565     unsigned opt, ext::operation option, unsigned imm) {
1566     guarantee(imm <= 4, "shift amount must be < 4");
1567     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1568     f(option, 15, 13), f(imm, 12, 10);
1569   }
1570 
1571   INSN(addw, 0b000);
1572   INSN(subw, 0b010);
1573   INSN(add, 0b100);
1574   INSN(sub, 0b110);
1575 
1576 #undef INSN
1577 
1578 #define INSN(NAME, op)                                                  \
1579   void NAME(Register Rd, Register Rn, Register Rm,                      \
1580            ext::operation option, int amount = 0) {                     \
1581     starti;                                                             \
1582     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1583     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1584   }
1585 
1586   INSN(addsw, 0b001);
1587   INSN(subsw, 0b011);
1588   INSN(adds, 0b101);
1589   INSN(subs, 0b111);
1590 
1591 #undef INSN
1592 
1593   // Aliases for short forms of add and sub
1594 #define INSN(NAME)                                      \
1595   void NAME(Register Rd, Register Rn, Register Rm) {    \
1596     if (Rd == sp || Rn == sp)                           \
1597       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1598     else                                                \
1599       NAME(Rd, Rn, Rm, LSL);                            \
1600   }
1601 
1602   INSN(addw);
1603   INSN(subw);
1604   INSN(add);
1605   INSN(sub);
1606 
1607   INSN(addsw);
1608   INSN(subsw);
1609   INSN(adds);
1610   INSN(subs);
1611 
1612 #undef INSN
1613 
1614   // Add/subtract (with carry)
1615   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1616     starti;
1617     f(op, 31, 29);
1618     f(0b11010000, 28, 21);
1619     f(0b000000, 15, 10);
1620     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1621   }
1622 
1623   #define INSN(NAME, op)                                \
1624     void NAME(Register Rd, Register Rn, Register Rm) {  \
1625       add_sub_carry(op, Rd, Rn, Rm);                    \
1626     }
1627 
1628   INSN(adcw, 0b000);
1629   INSN(adcsw, 0b001);
1630   INSN(sbcw, 0b010);
1631   INSN(sbcsw, 0b011);
1632   INSN(adc, 0b100);
1633   INSN(adcs, 0b101);
1634   INSN(sbc,0b110);
1635   INSN(sbcs, 0b111);
1636 
1637 #undef INSN
1638 
1639   // Conditional compare (both kinds)
1640   void conditional_compare(unsigned op, int o1, int o2, int o3,
1641                            Register Rn, unsigned imm5, unsigned nzcv,
1642                            unsigned cond) {
1643     starti;
1644     f(op, 31, 29);
1645     f(0b11010010, 28, 21);
1646     f(cond, 15, 12);
1647     f(o1, 11);
1648     f(o2, 10);
1649     f(o3, 4);
1650     f(nzcv, 3, 0);
1651     f(imm5, 20, 16), rf(Rn, 5);
1652   }
1653 
1654 #define INSN(NAME, op)                                                  \
1655   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1656     int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm);                    \
1657     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1658   }                                                                     \
1659                                                                         \
1660   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1661     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1662   }
1663 
1664   INSN(ccmnw, 0b001);
1665   INSN(ccmpw, 0b011);
1666   INSN(ccmn, 0b101);
1667   INSN(ccmp, 0b111);
1668 
1669 #undef INSN
1670 
1671   // Conditional select
1672   void conditional_select(unsigned op, unsigned op2,
1673                           Register Rd, Register Rn, Register Rm,
1674                           unsigned cond) {
1675     starti;
1676     f(op, 31, 29);
1677     f(0b11010100, 28, 21);
1678     f(cond, 15, 12);
1679     f(op2, 11, 10);
1680     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1681   }
1682 
1683 #define INSN(NAME, op, op2)                                             \
1684   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1685     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1686   }
1687 
1688   INSN(cselw, 0b000, 0b00);
1689   INSN(csincw, 0b000, 0b01);
1690   INSN(csinvw, 0b010, 0b00);
1691   INSN(csnegw, 0b010, 0b01);
1692   INSN(csel, 0b100, 0b00);
1693   INSN(csinc, 0b100, 0b01);
1694   INSN(csinv, 0b110, 0b00);
1695   INSN(csneg, 0b110, 0b01);
1696 
1697 #undef INSN
1698 
1699   // Data processing
1700   void data_processing(unsigned op29, unsigned opcode,
1701                        Register Rd, Register Rn) {
1702     f(op29, 31, 29), f(0b11010110, 28, 21);
1703     f(opcode, 15, 10);
1704     rf(Rn, 5), rf(Rd, 0);
1705   }
1706 
1707   // (1 source)
1708 #define INSN(NAME, op29, opcode2, opcode)       \
1709   void NAME(Register Rd, Register Rn) {         \
1710     starti;                                     \
1711     f(opcode2, 20, 16);                         \
1712     data_processing(op29, opcode, Rd, Rn);      \
1713   }
1714 
1715   INSN(rbitw,  0b010, 0b00000, 0b00000);
1716   INSN(rev16w, 0b010, 0b00000, 0b00001);
1717   INSN(revw,   0b010, 0b00000, 0b00010);
1718   INSN(clzw,   0b010, 0b00000, 0b00100);
1719   INSN(clsw,   0b010, 0b00000, 0b00101);
1720 
1721   INSN(rbit,   0b110, 0b00000, 0b00000);
1722   INSN(rev16,  0b110, 0b00000, 0b00001);
1723   INSN(rev32,  0b110, 0b00000, 0b00010);
1724   INSN(rev,    0b110, 0b00000, 0b00011);
1725   INSN(clz,    0b110, 0b00000, 0b00100);
1726   INSN(cls,    0b110, 0b00000, 0b00101);
1727 
1728 #undef INSN
1729 
1730   // (2 sources)
1731 #define INSN(NAME, op29, opcode)                        \
1732   void NAME(Register Rd, Register Rn, Register Rm) {    \
1733     starti;                                             \
1734     rf(Rm, 16);                                         \
1735     data_processing(op29, opcode, Rd, Rn);              \
1736   }
1737 
1738   INSN(udivw, 0b000, 0b000010);
1739   INSN(sdivw, 0b000, 0b000011);
1740   INSN(lslvw, 0b000, 0b001000);
1741   INSN(lsrvw, 0b000, 0b001001);
1742   INSN(asrvw, 0b000, 0b001010);
1743   INSN(rorvw, 0b000, 0b001011);
1744 
1745   INSN(udiv, 0b100, 0b000010);
1746   INSN(sdiv, 0b100, 0b000011);
1747   INSN(lslv, 0b100, 0b001000);
1748   INSN(lsrv, 0b100, 0b001001);
1749   INSN(asrv, 0b100, 0b001010);
1750   INSN(rorv, 0b100, 0b001011);
1751 
1752 #undef INSN
1753 
1754   // (3 sources)
1755   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1756                        Register Rd, Register Rn, Register Rm,
1757                        Register Ra) {
1758     starti;
1759     f(op54, 31, 29), f(0b11011, 28, 24);
1760     f(op31, 23, 21), f(o0, 15);
1761     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1762   }
1763 
1764 #define INSN(NAME, op54, op31, o0)                                      \
1765   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1766     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1767   }
1768 
1769   INSN(maddw, 0b000, 0b000, 0);
1770   INSN(msubw, 0b000, 0b000, 1);
1771   INSN(madd, 0b100, 0b000, 0);
1772   INSN(msub, 0b100, 0b000, 1);
1773   INSN(smaddl, 0b100, 0b001, 0);
1774   INSN(smsubl, 0b100, 0b001, 1);
1775   INSN(umaddl, 0b100, 0b101, 0);
1776   INSN(umsubl, 0b100, 0b101, 1);
1777 
1778 #undef INSN
1779 
1780 #define INSN(NAME, op54, op31, o0)                      \
1781   void NAME(Register Rd, Register Rn, Register Rm) {    \
1782     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1783   }
1784 
1785   INSN(smulh, 0b100, 0b010, 0);
1786   INSN(umulh, 0b100, 0b110, 0);
1787 
1788 #undef INSN
1789 
1790   // Floating-point data-processing (1 source)
1791   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1792                        FloatRegister Vd, FloatRegister Vn) {
1793     starti;
1794     f(op31, 31, 29);
1795     f(0b11110, 28, 24);
1796     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1797     rf(Vn, 5), rf(Vd, 0);
1798   }
1799 
1800 #define INSN(NAME, op31, type, opcode)                  \
1801   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1802     data_processing(op31, type, opcode, Vd, Vn);        \
1803   }
1804 
1805 private:
1806   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1807 public:
1808   INSN(fabss, 0b000, 0b00, 0b000001);
1809   INSN(fnegs, 0b000, 0b00, 0b000010);
1810   INSN(fsqrts, 0b000, 0b00, 0b000011);
1811   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1812 
1813 private:
1814   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1815 public:
1816   INSN(fabsd, 0b000, 0b01, 0b000001);
1817   INSN(fnegd, 0b000, 0b01, 0b000010);
1818   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1819   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1820 
1821   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1822     assert(Vd != Vn, "should be");
1823     i_fmovd(Vd, Vn);
1824   }
1825 
1826   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1827     assert(Vd != Vn, "should be");
1828     i_fmovs(Vd, Vn);
1829   }
1830 
1831 #undef INSN
1832 
1833   // Floating-point data-processing (2 source)
1834   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1835                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1836     starti;
1837     f(op31, 31, 29);
1838     f(0b11110, 28, 24);
1839     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1840     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1841   }
1842 
1843 #define INSN(NAME, op31, type, opcode)                  \
1844   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1845     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1846   }
1847 
1848   INSN(fmuls, 0b000, 0b00, 0b0000);
1849   INSN(fdivs, 0b000, 0b00, 0b0001);
1850   INSN(fadds, 0b000, 0b00, 0b0010);
1851   INSN(fsubs, 0b000, 0b00, 0b0011);
1852   INSN(fnmuls, 0b000, 0b00, 0b1000);
1853 
1854   INSN(fmuld, 0b000, 0b01, 0b0000);
1855   INSN(fdivd, 0b000, 0b01, 0b0001);
1856   INSN(faddd, 0b000, 0b01, 0b0010);
1857   INSN(fsubd, 0b000, 0b01, 0b0011);
1858   INSN(fnmuld, 0b000, 0b01, 0b1000);
1859 
1860 #undef INSN
1861 
1862    // Floating-point data-processing (3 source)
1863   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1864                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1865                        FloatRegister Va) {
1866     starti;
1867     f(op31, 31, 29);
1868     f(0b11111, 28, 24);
1869     f(type, 23, 22), f(o1, 21), f(o0, 15);
1870     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1871   }
1872 
1873 #define INSN(NAME, op31, type, o1, o0)                                  \
1874   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1875             FloatRegister Va) {                                         \
1876     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1877   }
1878 
1879   INSN(fmadds, 0b000, 0b00, 0, 0);
1880   INSN(fmsubs, 0b000, 0b00, 0, 1);
1881   INSN(fnmadds, 0b000, 0b00, 1, 0);
1882   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1883 
1884   INSN(fmaddd, 0b000, 0b01, 0, 0);
1885   INSN(fmsubd, 0b000, 0b01, 0, 1);
1886   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1887   INSN(fnmsub, 0b000, 0b01, 1, 1);
1888 
1889 #undef INSN
1890 
1891    // Floating-point conditional select
1892   void fp_conditional_select(unsigned op31, unsigned type,
1893                              unsigned op1, unsigned op2,
1894                              Condition cond, FloatRegister Vd,
1895                              FloatRegister Vn, FloatRegister Vm) {
1896     starti;
1897     f(op31, 31, 29);
1898     f(0b11110, 28, 24);
1899     f(type, 23, 22);
1900     f(op1, 21, 21);
1901     f(op2, 11, 10);
1902     f(cond, 15, 12);
1903     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1904   }
1905 
1906 #define INSN(NAME, op31, type, op1, op2)                                \
1907   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1908             FloatRegister Vm, Condition cond) {                         \
1909     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1910   }
1911 
1912   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1913   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1914 
1915 #undef INSN
1916 
1917    // Floating-point<->integer conversions
1918   void float_int_convert(unsigned op31, unsigned type,
1919                          unsigned rmode, unsigned opcode,
1920                          Register Rd, Register Rn) {
1921     starti;
1922     f(op31, 31, 29);
1923     f(0b11110, 28, 24);
1924     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1925     f(opcode, 18, 16), f(0b000000, 15, 10);
1926     zrf(Rn, 5), zrf(Rd, 0);
1927   }
1928 
1929 #define INSN(NAME, op31, type, rmode, opcode)                           \
1930   void NAME(Register Rd, FloatRegister Vn) {                            \
1931     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1932   }
1933 
1934   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1935   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1936   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1937   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1938 
1939   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1940   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1941 
1942   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1943 
1944 #undef INSN
1945 
1946 #define INSN(NAME, op31, type, rmode, opcode)                           \
1947   void NAME(FloatRegister Vd, Register Rn) {                            \
1948     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1949   }
1950 
1951   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1952   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1953 
1954   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1955   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1956   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1957   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1958 
1959   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1960 
1961 #undef INSN
1962 
1963   // Floating-point compare
1964   void float_compare(unsigned op31, unsigned type,
1965                      unsigned op, unsigned op2,
1966                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1967     starti;
1968     f(op31, 31, 29);
1969     f(0b11110, 28, 24);
1970     f(type, 23, 22), f(1, 21);
1971     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1972     rf(Vn, 5), rf(Vm, 16);
1973   }
1974 
1975 
1976 #define INSN(NAME, op31, type, op, op2)                 \
1977   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1978     float_compare(op31, type, op, op2, Vn, Vm);         \
1979   }
1980 
1981 #define INSN1(NAME, op31, type, op, op2)        \
1982   void NAME(FloatRegister Vn, double d) {       \
1983     assert_cond(d == 0.0);                      \
1984     float_compare(op31, type, op, op2, Vn);     \
1985   }
1986 
1987   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1988   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1989   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1990   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1991 
1992   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1993   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1994   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1995   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1996 
1997 #undef INSN
1998 #undef INSN1
1999 
2000   // Floating-point Move (immediate)
2001 private:
2002   unsigned pack(double value);
2003 
2004   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2005     starti;
2006     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2007     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2008     rf(Vn, 0);
2009   }
2010 
2011 public:
2012 
2013   void fmovs(FloatRegister Vn, double value) {
2014     if (value)
2015       fmov_imm(Vn, value, 0b00);
2016     else
2017       fmovs(Vn, zr);
2018   }
2019   void fmovd(FloatRegister Vn, double value) {
2020     if (value)
2021       fmov_imm(Vn, value, 0b01);
2022     else
2023       fmovd(Vn, zr);
2024   }
2025 
2026    // Floating-point rounding
2027    // type: half-precision = 11
2028    //       single         = 00
2029    //       double         = 01
2030    // rmode: A = Away     = 100
2031    //        I = current  = 111
2032    //        M = MinusInf = 010
2033    //        N = eveN     = 000
2034    //        P = PlusInf  = 001
2035    //        X = eXact    = 110
2036    //        Z = Zero     = 011
2037   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2038     starti;
2039     f(0b00011110, 31, 24);
2040     f(type, 23, 22);
2041     f(0b1001, 21, 18);
2042     f(rmode, 17, 15);
2043     f(0b10000, 14, 10);
2044     rf(Rn, 5), rf(Rd, 0);
2045   }
2046 #define INSN(NAME, type, rmode)                   \
2047   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2048     float_round(type, rmode, Vd, Vn);             \
2049   }
2050 
2051 public:
2052   INSN(frintah, 0b11, 0b100);
2053   INSN(frintih, 0b11, 0b111);
2054   INSN(frintmh, 0b11, 0b010);
2055   INSN(frintnh, 0b11, 0b000);
2056   INSN(frintph, 0b11, 0b001);
2057   INSN(frintxh, 0b11, 0b110);
2058   INSN(frintzh, 0b11, 0b011);
2059 
2060   INSN(frintas, 0b00, 0b100);
2061   INSN(frintis, 0b00, 0b111);
2062   INSN(frintms, 0b00, 0b010);
2063   INSN(frintns, 0b00, 0b000);
2064   INSN(frintps, 0b00, 0b001);
2065   INSN(frintxs, 0b00, 0b110);
2066   INSN(frintzs, 0b00, 0b011);
2067 
2068   INSN(frintad, 0b01, 0b100);
2069   INSN(frintid, 0b01, 0b111);
2070   INSN(frintmd, 0b01, 0b010);
2071   INSN(frintnd, 0b01, 0b000);
2072   INSN(frintpd, 0b01, 0b001);
2073   INSN(frintxd, 0b01, 0b110);
2074   INSN(frintzd, 0b01, 0b011);
2075 #undef INSN
2076 
2077 /* SIMD extensions
2078  *
2079  * We just use FloatRegister in the following. They are exactly the same
2080  * as SIMD registers.
2081  */
2082  public:
2083 
2084   enum SIMD_Arrangement {
2085        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
2086   };
2087 
2088   enum SIMD_RegVariant {
2089        B, H, S, D, Q
2090   };
2091 
2092 private:
2093   static short SIMD_Size_in_bytes[];
2094 
2095 public:
2096 #define INSN(NAME, op)                                            \
2097   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2098     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2099   }                                                                      \
2100 
2101   INSN(ldr, 1);
2102   INSN(str, 0);
2103 
2104 #undef INSN
2105 
2106  private:
2107 
2108   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2109     starti;
2110     f(0,31), f((int)T & 1, 30);
2111     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2112     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2113   }
2114   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2115              int imm, int op1, int op2, int regs) {
2116     guarantee(T <= T1Q && imm == SIMD_Size_in_bytes[T] * regs, "bad offset");
2117     starti;
2118     f(0,31), f((int)T & 1, 30);
2119     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2120     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2121   }
2122   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2123              Register Xm, int op1, int op2) {
2124     starti;
2125     f(0,31), f((int)T & 1, 30);
2126     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2127     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2128   }
2129 
2130   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2131     switch (a.getMode()) {
2132     case Address::base_plus_offset:
2133       guarantee(a.offset() == 0, "no offset allowed here");
2134       ld_st(Vt, T, a.base(), op1, op2);
2135       break;
2136     case Address::post:
2137       ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2138       break;
2139     case Address::post_reg:
2140       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2141       break;
2142     default:
2143       ShouldNotReachHere();
2144     }
2145   }
2146 
2147  public:
2148 
2149 #define INSN1(NAME, op1, op2)                                           \
2150   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2151     ld_st(Vt, T, a, op1, op2, 1);                                       \
2152  }
2153 
2154 #define INSN2(NAME, op1, op2)                                           \
2155   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2156     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2157     ld_st(Vt, T, a, op1, op2, 2);                                       \
2158   }
2159 
2160 #define INSN3(NAME, op1, op2)                                           \
2161   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2162             SIMD_Arrangement T, const Address &a) {                     \
2163     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2164            "Registers must be ordered");                                \
2165     ld_st(Vt, T, a, op1, op2, 3);                                       \
2166   }
2167 
2168 #define INSN4(NAME, op1, op2)                                           \
2169   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2170             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2171     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2172            Vt3->successor() == Vt4, "Registers must be ordered");       \
2173     ld_st(Vt, T, a, op1, op2, 4);                                       \
2174   }
2175 
2176   INSN1(ld1,  0b001100010, 0b0111);
2177   INSN2(ld1,  0b001100010, 0b1010);
2178   INSN3(ld1,  0b001100010, 0b0110);
2179   INSN4(ld1,  0b001100010, 0b0010);
2180 
2181   INSN2(ld2,  0b001100010, 0b1000);
2182   INSN3(ld3,  0b001100010, 0b0100);
2183   INSN4(ld4,  0b001100010, 0b0000);
2184 
2185   INSN1(st1,  0b001100000, 0b0111);
2186   INSN2(st1,  0b001100000, 0b1010);
2187   INSN3(st1,  0b001100000, 0b0110);
2188   INSN4(st1,  0b001100000, 0b0010);
2189 
2190   INSN2(st2,  0b001100000, 0b1000);
2191   INSN3(st3,  0b001100000, 0b0100);
2192   INSN4(st4,  0b001100000, 0b0000);
2193 
2194   INSN1(ld1r, 0b001101010, 0b1100);
2195   INSN2(ld2r, 0b001101011, 0b1100);
2196   INSN3(ld3r, 0b001101010, 0b1110);
2197   INSN4(ld4r, 0b001101011, 0b1110);
2198 
2199 #undef INSN1
2200 #undef INSN2
2201 #undef INSN3
2202 #undef INSN4
2203 
2204 #define INSN(NAME, opc)                                                                 \
2205   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2206     starti;                                                                             \
2207     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2208     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2209     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2210   }
2211 
2212   INSN(eor,  0b101110001);
2213   INSN(orr,  0b001110101);
2214   INSN(andr, 0b001110001);
2215   INSN(bic,  0b001110011);
2216   INSN(bif,  0b101110111);
2217   INSN(bit,  0b101110101);
2218   INSN(bsl,  0b101110011);
2219   INSN(orn,  0b001110111);
2220 
2221 #undef INSN
2222 
2223 #define INSN(NAME, opc, opc2)                                                                 \
2224   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2225     starti;                                                                             \
2226     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2227     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2228     rf(Vn, 5), rf(Vd, 0);                                                               \
2229   }
2230 
2231   INSN(addv, 0, 0b100001);
2232   INSN(subv, 1, 0b100001);
2233   INSN(mulv, 0, 0b100111);
2234   INSN(mlav, 0, 0b100101);
2235   INSN(mlsv, 1, 0b100101);
2236   INSN(sshl, 0, 0b010001);
2237   INSN(ushl, 1, 0b010001);
2238 
2239 #undef INSN
2240 
2241 #define INSN(NAME, opc, opc2) \
2242   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2243     starti;                                                                             \
2244     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2245     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2246     rf(Vn, 5), rf(Vd, 0);                                                               \
2247   }
2248 
2249   INSN(absr,  0, 0b100000101110);
2250   INSN(negr,  1, 0b100000101110);
2251   INSN(notr,  1, 0b100000010110);
2252   INSN(addv,  0, 0b110001101110);
2253   INSN(cls,   0, 0b100000010010);
2254   INSN(clz,   1, 0b100000010010);
2255   INSN(cnt,   0, 0b100000010110);
2256 
2257 #undef INSN
2258 
2259 #define INSN(NAME, op0, cmode0) \
2260   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2261     unsigned cmode = cmode0;                                                           \
2262     unsigned op = op0;                                                                 \
2263     starti;                                                                            \
2264     assert(lsl == 0 ||                                                                 \
2265            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2266            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2267     cmode |= lsl >> 2;                                                                 \
2268     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2269     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2270       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2271       cmode = 0b1110;                                                                  \
2272       if (T == T1D || T == T2D) op = 1;                                                \
2273     }                                                                                  \
2274     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2275     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2276     rf(Vd, 0);                                                                         \
2277   }
2278 
2279   INSN(movi, 0, 0);
2280   INSN(orri, 0, 1);
2281   INSN(mvni, 1, 0);
2282   INSN(bici, 1, 1);
2283 
2284 #undef INSN
2285 
2286 #define INSN(NAME, op1, op2, op3) \
2287   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2288     starti;                                                                             \
2289     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2290     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2291     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2292   }
2293 
2294   INSN(fadd, 0, 0, 0b110101);
2295   INSN(fdiv, 1, 0, 0b111111);
2296   INSN(fmul, 1, 0, 0b110111);
2297   INSN(fsub, 0, 1, 0b110101);
2298   INSN(fmla, 0, 0, 0b110011);
2299   INSN(fmls, 0, 1, 0b110011);
2300 
2301 #undef INSN
2302 
2303 #define INSN(NAME, opc)                                                                 \
2304   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2305     starti;                                                                             \
2306     assert(T == T4S, "arrangement must be T4S");                                        \
2307     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2308   }
2309 
2310   INSN(sha1c,     0b000000);
2311   INSN(sha1m,     0b001000);
2312   INSN(sha1p,     0b000100);
2313   INSN(sha1su0,   0b001100);
2314   INSN(sha256h2,  0b010100);
2315   INSN(sha256h,   0b010000);
2316   INSN(sha256su1, 0b011000);
2317 
2318 #undef INSN
2319 
2320 #define INSN(NAME, opc)                                                                 \
2321   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2322     starti;                                                                             \
2323     assert(T == T4S, "arrangement must be T4S");                                        \
2324     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2325   }
2326 
2327   INSN(sha1h,     0b000010);
2328   INSN(sha1su1,   0b000110);
2329   INSN(sha256su0, 0b001010);
2330 
2331 #undef INSN
2332 
2333 #define INSN(NAME, opc)                           \
2334   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2335     starti;                                       \
2336     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2337   }
2338 
2339   INSN(aese, 0b0100111000101000010010);
2340   INSN(aesd, 0b0100111000101000010110);
2341   INSN(aesmc, 0b0100111000101000011010);
2342   INSN(aesimc, 0b0100111000101000011110);
2343 
2344 #undef INSN
2345 
2346 #define INSN(NAME, op1, op2) \
2347   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2348     starti;                                                                                            \
2349     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2350     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2351     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2352     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2353     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2354     rf(Vn, 5), rf(Vd, 0);                                                                              \
2355   }
2356 
2357   // FMLA/FMLS - Vector - Scalar
2358   INSN(fmlavs, 0, 0b0001);
2359   INSN(fmlsvs, 0, 0b0101);
2360   // FMULX - Vector - Scalar
2361   INSN(fmulxvs, 1, 0b1001);
2362 
2363 #undef INSN
2364 
2365   // Floating-point Reciprocal Estimate
2366   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2367     assert(type == D || type == S, "Wrong type for frecpe");
2368     starti;
2369     f(0b010111101, 31, 23);
2370     f(type == D ? 1 : 0, 22);
2371     f(0b100001110110, 21, 10);
2372     rf(Vn, 5), rf(Vd, 0);
2373   }
2374 
2375   // (double) {a, b} -> (a + b)
2376   void faddpd(FloatRegister Vd, FloatRegister Vn) {
2377     starti;
2378     f(0b0111111001110000110110, 31, 10);
2379     rf(Vn, 5), rf(Vd, 0);
2380   }
2381 
2382   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2383     starti;
2384     assert(T != Q, "invalid register variant");
2385     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2386     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2387   }
2388 
2389   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2390     starti;
2391     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2392     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2393     rf(Vn, 5), rf(Rd, 0);
2394   }
2395 
2396 #define INSN(NAME, opc, opc2, isSHR)                                    \
2397   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2398     starti;                                                             \
2399     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2400      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2401      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2402      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2403      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2404      *   (1D is RESERVED)                                               \
2405      * for SHL shift is calculated as:                                  \
2406      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2407      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2408      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2409      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2410      *   (1D is RESERVED)                                               \
2411      */                                                                 \
2412     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2413     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2414     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2415     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2416     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2417   }
2418 
2419   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2420   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2421   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2422 
2423 #undef INSN
2424 
2425   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2426     starti;
2427     /* The encodings for the immh:immb fields (bits 22:16) are
2428      *   0001 xxx       8H, 8B/16b shift = xxx
2429      *   001x xxx       4S, 4H/8H  shift = xxxx
2430      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2431      *   1xxx xxx       RESERVED
2432      */
2433     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2434     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2435     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2436     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2437   }
2438   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2439     ushll(Vd, Ta, Vn, Tb, shift);
2440   }
2441 
2442   // Move from general purpose register
2443   //   mov  Vd.T[index], Rn
2444   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2445     starti;
2446     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2447     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2448   }
2449 
2450   // Move to general purpose register
2451   //   mov  Rd, Vn.T[index]
2452   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2453     starti;
2454     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2455     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2456     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2457   }
2458 
2459   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2460     starti;
2461     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2462            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2463     int size = (Ta == T1Q) ? 0b11 : 0b00;
2464     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2465     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2466   }
2467   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2468     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2469     pmull(Vd, Ta, Vn, Vm, Tb);
2470   }
2471 
2472   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2473     starti;
2474     int size_b = (int)Tb >> 1;
2475     int size_a = (int)Ta >> 1;
2476     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2477     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2478     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2479   }
2480 
2481   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2482   {
2483     starti;
2484     assert(T != T1D, "reserved encoding");
2485     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2486     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2487   }
2488 
2489   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2490   {
2491     starti;
2492     assert(T != T1D, "reserved encoding");
2493     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2494     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2495     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2496   }
2497 
2498   // AdvSIMD ZIP/UZP/TRN
2499 #define INSN(NAME, opcode)                                              \
2500   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2501     starti;                                                             \
2502     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2503     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2504     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2505     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2506   }
2507 
2508   INSN(uzp1, 0b001);
2509   INSN(trn1, 0b010);
2510   INSN(zip1, 0b011);
2511   INSN(uzp2, 0b101);
2512   INSN(trn2, 0b110);
2513   INSN(zip2, 0b111);
2514 
2515 #undef INSN
2516 
2517   // CRC32 instructions
2518 #define INSN(NAME, c, sf, sz)                                             \
2519   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2520     starti;                                                               \
2521     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2522     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2523   }
2524 
2525   INSN(crc32b,  0, 0, 0b00);
2526   INSN(crc32h,  0, 0, 0b01);
2527   INSN(crc32w,  0, 0, 0b10);
2528   INSN(crc32x,  0, 1, 0b11);
2529   INSN(crc32cb, 1, 0, 0b00);
2530   INSN(crc32ch, 1, 0, 0b01);
2531   INSN(crc32cw, 1, 0, 0b10);
2532   INSN(crc32cx, 1, 1, 0b11);
2533 
2534 #undef INSN
2535 
2536   // Table vector lookup
2537 #define INSN(NAME, op)                                                  \
2538   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2539     starti;                                                             \
2540     assert(T == T8B || T == T16B, "invalid arrangement");               \
2541     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2542     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2543     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2544   }
2545 
2546   INSN(tbl, 0);
2547   INSN(tbx, 1);
2548 
2549 #undef INSN
2550 
2551   // AdvSIMD two-reg misc
2552 #define INSN(NAME, U, opcode)                                                       \
2553   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2554        starti;                                                                      \
2555        assert((ASSERTION), MSG);                                                    \
2556        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2557        f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12);             \
2558        f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                                       \
2559  }
2560 
2561 #define MSG "invalid arrangement"
2562 
2563 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2564   INSN(fsqrt, 1, 0b11111);
2565   INSN(fabs,  0, 0b01111);
2566   INSN(fneg,  1, 0b01111);
2567 #undef ASSERTION
2568 
2569 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2570   INSN(rev64, 0, 0b00000);
2571 #undef ASSERTION
2572 
2573 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2574   INSN(rev32, 1, 0b00000);
2575 private:
2576   INSN(_rbit, 1, 0b00101);
2577 public:
2578 
2579 #undef ASSERTION
2580 
2581 #define ASSERTION (T == T8B || T == T16B)
2582   INSN(rev16, 0, 0b00001);
2583   // RBIT only allows T8B and T16B but encodes them oddly.  Argh...
2584   void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
2585     assert((ASSERTION), MSG);
2586     _rbit(Vd, SIMD_Arrangement(T & 1 | 0b010), Vn);
2587   }
2588 #undef ASSERTION
2589 
2590 #undef MSG
2591 
2592 #undef INSN
2593 
2594 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2595   {
2596     starti;
2597     assert(T == T8B || T == T16B, "invalid arrangement");
2598     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2599     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2600     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2601     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2602   }
2603 
2604 /* Simulator extensions to the ISA
2605 
2606    haltsim
2607 
2608    takes no arguments, causes the sim to enter a debug break and then
2609    return from the simulator run() call with STATUS_HALT? The linking
2610    code will call fatal() when it sees STATUS_HALT.
2611 
2612    blrt Xn, Wm
2613    blrt Xn, #gpargs, #fpargs, #type
2614    Xn holds the 64 bit x86 branch_address
2615    call format is encoded either as immediate data in the call
2616    or in register Wm. In the latter case
2617      Wm[13..6] = #gpargs,
2618      Wm[5..2] = #fpargs,
2619      Wm[1,0] = #type
2620 
2621    calls the x86 code address 'branch_address' supplied in Xn passing
2622    arguments taken from the general and floating point registers according
2623    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2624    or v0 according to the the return type #type' where
2625 
2626    address branch_address;
2627    uimm4 gpargs;
2628    uimm4 fpargs;
2629    enum ReturnType type;
2630 
2631    enum ReturnType
2632      {
2633        void_ret = 0,
2634        int_ret = 1,
2635        long_ret = 1,
2636        obj_ret = 1, // i.e. same as long
2637        float_ret = 2,
2638        double_ret = 3
2639      }
2640 
2641    notify
2642 
2643    notifies the simulator of a transfer of control. instr[14:0]
2644    identifies the type of change of control.
2645 
2646    0 ==> initial entry to a method.
2647 
2648    1 ==> return into a method from a submethod call.
2649 
2650    2 ==> exit out of Java method code.
2651 
2652    3 ==> start execution for a new bytecode.
2653 
2654    in cases 1 and 2 the simulator is expected to use a JVM callback to
2655    identify the name of the specific method being executed. in case 4
2656    the simulator is expected to use a JVM callback to identify the
2657    bytecode index.
2658 
2659    Instruction encodings
2660    ---------------------
2661 
2662    These are encoded in the space with instr[28:25] = 00 which is
2663    unallocated. Encodings are
2664 
2665                      10987654321098765432109876543210
2666    PSEUDO_HALT   = 0x11100000000000000000000000000000
2667    PSEUDO_BLRT  = 0x11000000000000000_______________
2668    PSEUDO_BLRTR = 0x1100000000000000100000__________
2669    PSEUDO_NOTIFY = 0x10100000000000000_______________
2670 
2671    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2672 
2673    for BLRT
2674      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2675      instr[6,5] = #type, instr[4,0] = Rn
2676    for BLRTR
2677      instr[9,5] = Rm, instr[4,0] = Rn
2678    for NOTIFY
2679      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2680 */
2681 
2682   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2683 
2684   virtual void notify(int type) {
2685     if (UseBuiltinSim) {
2686       starti;
2687       //  109
2688       f(0b101, 31, 29);
2689       //  87654321098765
2690       f(0b00000000000000, 28, 15);
2691       f(type, 14, 0);
2692     }
2693   }
2694 
2695   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2696     if (UseBuiltinSim) {
2697       starti;
2698       f(0b110, 31 ,29);
2699       f(0b00, 28, 25);
2700       //  4321098765
2701       f(0b0000000000, 24, 15);
2702       f(gpargs, 14, 11);
2703       f(fpargs, 10, 7);
2704       f(type, 6, 5);
2705       rf(Rn, 0);
2706     } else {
2707       blr(Rn);
2708     }
2709   }
2710 
2711   void blrt(Register Rn, Register Rm) {
2712     if (UseBuiltinSim) {
2713       starti;
2714       f(0b110, 31 ,29);
2715       f(0b00, 28, 25);
2716       //  4321098765
2717       f(0b0000000001, 24, 15);
2718       //  43210
2719       f(0b00000, 14, 10);
2720       rf(Rm, 5);
2721       rf(Rn, 0);
2722     } else {
2723       blr(Rn);
2724     }
2725   }
2726 
2727   void haltsim() {
2728     starti;
2729     f(0b111, 31 ,29);
2730     f(0b00, 28, 27);
2731     //  654321098765432109876543210
2732     f(0b000000000000000000000000000, 26, 0);
2733   }
2734 
2735   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2736   }
2737 
2738   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2739                                                 Register tmp,
2740                                                 int offset) {
2741     ShouldNotCallThis();
2742     return RegisterOrConstant();
2743   }
2744 
2745   // Stack overflow checking
2746   virtual void bang_stack_with_offset(int offset);
2747 
2748   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2749   static bool operand_valid_for_add_sub_immediate(long imm);
2750   static bool operand_valid_for_float_immediate(double imm);
2751 
2752   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2753   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2754 };
2755 
2756 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2757                                              Assembler::Membar_mask_bits b) {
2758   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2759 }
2760 
2761 Instruction_aarch64::~Instruction_aarch64() {
2762   assem->emit();
2763 }
2764 
2765 #undef starti
2766 
2767 // Invert a condition
2768 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2769   return Assembler::Condition(int(cond) ^ 1);
2770 }
2771 
2772 class BiasedLockingCounters;
2773 
2774 extern "C" void das(uint64_t start, int len);
2775 
2776 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP