1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.hpp"
  52 #include "oops/klass.hpp"
  53 #include "oops/method.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/valueKlass.hpp"
  58 #include "prims/forte.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/methodHandles.hpp"
  61 #include "prims/nativeLookup.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/biasedLocking.hpp"
  65 #include "runtime/compilationPolicy.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/hashtable.inline.hpp"
  80 #include "utilities/macros.hpp"
  81 #include "utilities/xmlstream.hpp"
  82 #ifdef COMPILER1
  83 #include "c1/c1_Runtime1.hpp"
  84 #endif
  85 
  86 // Shared stub locations
  87 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  88 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  89 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  93 address             SharedRuntime::_resolve_static_call_entry;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 113   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 114 
 115 #if COMPILER2_OR_JVMCI
 116   // Vectors are generated only by C2 and JVMCI.
 117   bool support_wide = is_wide_vector(MaxVectorSize);
 118   if (support_wide) {
 119     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 120   }
 121 #endif // COMPILER2_OR_JVMCI
 122   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 123   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 124 
 125   generate_deopt_blob();
 126 
 127 #ifdef COMPILER2
 128   generate_uncommon_trap_blob();
 129 #endif // COMPILER2
 130 }
 131 
 132 #include <math.h>
 133 
 134 // Implementation of SharedRuntime
 135 
 136 #ifndef PRODUCT
 137 // For statistics
 138 int SharedRuntime::_ic_miss_ctr = 0;
 139 int SharedRuntime::_wrong_method_ctr = 0;
 140 int SharedRuntime::_resolve_static_ctr = 0;
 141 int SharedRuntime::_resolve_virtual_ctr = 0;
 142 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 143 int SharedRuntime::_implicit_null_throws = 0;
 144 int SharedRuntime::_implicit_div0_throws = 0;
 145 int SharedRuntime::_throw_null_ctr = 0;
 146 
 147 int SharedRuntime::_nof_normal_calls = 0;
 148 int SharedRuntime::_nof_optimized_calls = 0;
 149 int SharedRuntime::_nof_inlined_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_calls = 0;
 151 int SharedRuntime::_nof_static_calls = 0;
 152 int SharedRuntime::_nof_inlined_static_calls = 0;
 153 int SharedRuntime::_nof_interface_calls = 0;
 154 int SharedRuntime::_nof_optimized_interface_calls = 0;
 155 int SharedRuntime::_nof_inlined_interface_calls = 0;
 156 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 157 int SharedRuntime::_nof_removable_exceptions = 0;
 158 
 159 int SharedRuntime::_new_instance_ctr=0;
 160 int SharedRuntime::_new_array_ctr=0;
 161 int SharedRuntime::_multi1_ctr=0;
 162 int SharedRuntime::_multi2_ctr=0;
 163 int SharedRuntime::_multi3_ctr=0;
 164 int SharedRuntime::_multi4_ctr=0;
 165 int SharedRuntime::_multi5_ctr=0;
 166 int SharedRuntime::_mon_enter_stub_ctr=0;
 167 int SharedRuntime::_mon_exit_stub_ctr=0;
 168 int SharedRuntime::_mon_enter_ctr=0;
 169 int SharedRuntime::_mon_exit_ctr=0;
 170 int SharedRuntime::_partial_subtype_ctr=0;
 171 int SharedRuntime::_jbyte_array_copy_ctr=0;
 172 int SharedRuntime::_jshort_array_copy_ctr=0;
 173 int SharedRuntime::_jint_array_copy_ctr=0;
 174 int SharedRuntime::_jlong_array_copy_ctr=0;
 175 int SharedRuntime::_oop_array_copy_ctr=0;
 176 int SharedRuntime::_checkcast_array_copy_ctr=0;
 177 int SharedRuntime::_unsafe_array_copy_ctr=0;
 178 int SharedRuntime::_generic_array_copy_ctr=0;
 179 int SharedRuntime::_slow_array_copy_ctr=0;
 180 int SharedRuntime::_find_handler_ctr=0;
 181 int SharedRuntime::_rethrow_ctr=0;
 182 
 183 int     SharedRuntime::_ICmiss_index                    = 0;
 184 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 186 
 187 
 188 void SharedRuntime::trace_ic_miss(address at) {
 189   for (int i = 0; i < _ICmiss_index; i++) {
 190     if (_ICmiss_at[i] == at) {
 191       _ICmiss_count[i]++;
 192       return;
 193     }
 194   }
 195   int index = _ICmiss_index++;
 196   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 197   _ICmiss_at[index] = at;
 198   _ICmiss_count[index] = 1;
 199 }
 200 
 201 void SharedRuntime::print_ic_miss_histogram() {
 202   if (ICMissHistogram) {
 203     tty->print_cr("IC Miss Histogram:");
 204     int tot_misses = 0;
 205     for (int i = 0; i < _ICmiss_index; i++) {
 206       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 207       tot_misses += _ICmiss_count[i];
 208     }
 209     tty->print_cr("Total IC misses: %7d", tot_misses);
 210   }
 211 }
 212 #endif // PRODUCT
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 216   return x * y;
 217 JRT_END
 218 
 219 
 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 221   if (x == min_jlong && y == CONST64(-1)) {
 222     return x;
 223   } else {
 224     return x / y;
 225   }
 226 JRT_END
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 230   if (x == min_jlong && y == CONST64(-1)) {
 231     return 0;
 232   } else {
 233     return x % y;
 234   }
 235 JRT_END
 236 
 237 
 238 const juint  float_sign_mask  = 0x7FFFFFFF;
 239 const juint  float_infinity   = 0x7F800000;
 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 241 const julong double_infinity  = CONST64(0x7FF0000000000000);
 242 
 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 244 #ifdef _WIN64
 245   // 64-bit Windows on amd64 returns the wrong values for
 246   // infinity operands.
 247   union { jfloat f; juint i; } xbits, ybits;
 248   xbits.f = x;
 249   ybits.f = y;
 250   // x Mod Infinity == x unless x is infinity
 251   if (((xbits.i & float_sign_mask) != float_infinity) &&
 252        ((ybits.i & float_sign_mask) == float_infinity) ) {
 253     return x;
 254   }
 255   return ((jfloat)fmod_winx64((double)x, (double)y));
 256 #else
 257   return ((jfloat)fmod((double)x,(double)y));
 258 #endif
 259 JRT_END
 260 
 261 
 262 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 263 #ifdef _WIN64
 264   union { jdouble d; julong l; } xbits, ybits;
 265   xbits.d = x;
 266   ybits.d = y;
 267   // x Mod Infinity == x unless x is infinity
 268   if (((xbits.l & double_sign_mask) != double_infinity) &&
 269        ((ybits.l & double_sign_mask) == double_infinity) ) {
 270     return x;
 271   }
 272   return ((jdouble)fmod_winx64((double)x, (double)y));
 273 #else
 274   return ((jdouble)fmod((double)x,(double)y));
 275 #endif
 276 JRT_END
 277 
 278 #ifdef __SOFTFP__
 279 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 280   return x + y;
 281 JRT_END
 282 
 283 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 284   return x - y;
 285 JRT_END
 286 
 287 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 288   return x * y;
 289 JRT_END
 290 
 291 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 292   return x / y;
 293 JRT_END
 294 
 295 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 296   return x + y;
 297 JRT_END
 298 
 299 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 300   return x - y;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 304   return x * y;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 308   return x / y;
 309 JRT_END
 310 
 311 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 312   return (jfloat)x;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 316   return (jdouble)x;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 320   return (jdouble)x;
 321 JRT_END
 322 
 323 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 324   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 325 JRT_END
 326 
 327 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 328   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 329 JRT_END
 330 
 331 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 332   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 333 JRT_END
 334 
 335 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 336   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 337 JRT_END
 338 
 339 // Functions to return the opposite of the aeabi functions for nan.
 340 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 341   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 345   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 346 JRT_END
 347 
 348 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 349   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 353   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 357   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 361   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 365   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 369   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 // Intrinsics make gcc generate code for these.
 373 float  SharedRuntime::fneg(float f)   {
 374   return -f;
 375 }
 376 
 377 double SharedRuntime::dneg(double f)  {
 378   return -f;
 379 }
 380 
 381 #endif // __SOFTFP__
 382 
 383 #if defined(__SOFTFP__) || defined(E500V2)
 384 // Intrinsics make gcc generate code for these.
 385 double SharedRuntime::dabs(double f)  {
 386   return (f <= (double)0.0) ? (double)0.0 - f : f;
 387 }
 388 
 389 #endif
 390 
 391 #if defined(__SOFTFP__) || defined(PPC)
 392 double SharedRuntime::dsqrt(double f) {
 393   return sqrt(f);
 394 }
 395 #endif
 396 
 397 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 398   if (g_isnan(x))
 399     return 0;
 400   if (x >= (jfloat) max_jint)
 401     return max_jint;
 402   if (x <= (jfloat) min_jint)
 403     return min_jint;
 404   return (jint) x;
 405 JRT_END
 406 
 407 
 408 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 409   if (g_isnan(x))
 410     return 0;
 411   if (x >= (jfloat) max_jlong)
 412     return max_jlong;
 413   if (x <= (jfloat) min_jlong)
 414     return min_jlong;
 415   return (jlong) x;
 416 JRT_END
 417 
 418 
 419 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jdouble) max_jint)
 423     return max_jint;
 424   if (x <= (jdouble) min_jint)
 425     return min_jint;
 426   return (jint) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jdouble) max_jlong)
 434     return max_jlong;
 435   if (x <= (jdouble) min_jlong)
 436     return min_jlong;
 437   return (jlong) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 447   return (jfloat)x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 452   return (jdouble)x;
 453 JRT_END
 454 
 455 // Exception handling across interpreter/compiler boundaries
 456 //
 457 // exception_handler_for_return_address(...) returns the continuation address.
 458 // The continuation address is the entry point of the exception handler of the
 459 // previous frame depending on the return address.
 460 
 461 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 462   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 463   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 464 
 465   // Reset method handle flag.
 466   thread->set_is_method_handle_return(false);
 467 
 468 #if INCLUDE_JVMCI
 469   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 470   // and other exception handler continuations do not read it
 471   thread->set_exception_pc(NULL);
 472 #endif // INCLUDE_JVMCI
 473 
 474   // The fastest case first
 475   CodeBlob* blob = CodeCache::find_blob(return_address);
 476   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 477   if (nm != NULL) {
 478     // Set flag if return address is a method handle call site.
 479     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 480     // native nmethods don't have exception handlers
 481     assert(!nm->is_native_method(), "no exception handler");
 482     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 483     if (nm->is_deopt_pc(return_address)) {
 484       // If we come here because of a stack overflow, the stack may be
 485       // unguarded. Reguard the stack otherwise if we return to the
 486       // deopt blob and the stack bang causes a stack overflow we
 487       // crash.
 488       bool guard_pages_enabled = thread->stack_guards_enabled();
 489       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 490       if (thread->reserved_stack_activation() != thread->stack_base()) {
 491         thread->set_reserved_stack_activation(thread->stack_base());
 492       }
 493       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 494       return SharedRuntime::deopt_blob()->unpack_with_exception();
 495     } else {
 496       return nm->exception_begin();
 497     }
 498   }
 499 
 500   // Entry code
 501   if (StubRoutines::returns_to_call_stub(return_address)) {
 502     return StubRoutines::catch_exception_entry();
 503   }
 504   // Interpreted code
 505   if (Interpreter::contains(return_address)) {
 506     return Interpreter::rethrow_exception_entry();
 507   }
 508 
 509   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 510   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 511 
 512 #ifndef PRODUCT
 513   { ResourceMark rm;
 514     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 515     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 516     tty->print_cr("b) other problem");
 517   }
 518 #endif // PRODUCT
 519 
 520   ShouldNotReachHere();
 521   return NULL;
 522 }
 523 
 524 
 525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 526   return raw_exception_handler_for_return_address(thread, return_address);
 527 JRT_END
 528 
 529 
 530 address SharedRuntime::get_poll_stub(address pc) {
 531   address stub;
 532   // Look up the code blob
 533   CodeBlob *cb = CodeCache::find_blob(pc);
 534 
 535   // Should be an nmethod
 536   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 537 
 538   // Look up the relocation information
 539   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 540     "safepoint polling: type must be poll");
 541 
 542 #ifdef ASSERT
 543   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 544     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 545     Disassembler::decode(cb);
 546     fatal("Only polling locations are used for safepoint");
 547   }
 548 #endif
 549 
 550   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 551   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 552   if (at_poll_return) {
 553     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 554            "polling page return stub not created yet");
 555     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 556   } else if (has_wide_vectors) {
 557     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 558            "polling page vectors safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 560   } else {
 561     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 562            "polling page safepoint stub not created yet");
 563     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 564   }
 565   log_debug(safepoint)("... found polling page %s exception at pc = "
 566                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 567                        at_poll_return ? "return" : "loop",
 568                        (intptr_t)pc, (intptr_t)stub);
 569   return stub;
 570 }
 571 
 572 
 573 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 574   assert(caller.is_interpreted_frame(), "");
 575   int args_size = ArgumentSizeComputer(sig).size() + 1;
 576   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 577   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 578   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 579   return result;
 580 }
 581 
 582 
 583 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 584   if (JvmtiExport::can_post_on_exceptions()) {
 585     vframeStream vfst(thread, true);
 586     methodHandle method = methodHandle(thread, vfst.method());
 587     address bcp = method()->bcp_from(vfst.bci());
 588     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 589   }
 590   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 591 }
 592 
 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 594   Handle h_exception = Exceptions::new_exception(thread, name, message);
 595   throw_and_post_jvmti_exception(thread, h_exception);
 596 }
 597 
 598 // The interpreter code to call this tracing function is only
 599 // called/generated when UL is on for redefine, class and has the right level
 600 // and tags. Since obsolete methods are never compiled, we don't have
 601 // to modify the compilers to generate calls to this function.
 602 //
 603 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 604     JavaThread* thread, Method* method))
 605   if (method->is_obsolete()) {
 606     // We are calling an obsolete method, but this is not necessarily
 607     // an error. Our method could have been redefined just after we
 608     // fetched the Method* from the constant pool.
 609     ResourceMark rm;
 610     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 611   }
 612   return 0;
 613 JRT_END
 614 
 615 // ret_pc points into caller; we are returning caller's exception handler
 616 // for given exception
 617 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 618                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 619   assert(cm != NULL, "must exist");
 620   ResourceMark rm;
 621 
 622 #if INCLUDE_JVMCI
 623   if (cm->is_compiled_by_jvmci()) {
 624     // lookup exception handler for this pc
 625     int catch_pco = ret_pc - cm->code_begin();
 626     ExceptionHandlerTable table(cm);
 627     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 628     if (t != NULL) {
 629       return cm->code_begin() + t->pco();
 630     } else {
 631       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 632     }
 633   }
 634 #endif // INCLUDE_JVMCI
 635 
 636   nmethod* nm = cm->as_nmethod();
 637   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 638   // determine handler bci, if any
 639   EXCEPTION_MARK;
 640 
 641   int handler_bci = -1;
 642   int scope_depth = 0;
 643   if (!force_unwind) {
 644     int bci = sd->bci();
 645     bool recursive_exception = false;
 646     do {
 647       bool skip_scope_increment = false;
 648       // exception handler lookup
 649       Klass* ek = exception->klass();
 650       methodHandle mh(THREAD, sd->method());
 651       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 652       if (HAS_PENDING_EXCEPTION) {
 653         recursive_exception = true;
 654         // We threw an exception while trying to find the exception handler.
 655         // Transfer the new exception to the exception handle which will
 656         // be set into thread local storage, and do another lookup for an
 657         // exception handler for this exception, this time starting at the
 658         // BCI of the exception handler which caused the exception to be
 659         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 660         // argument to ensure that the correct exception is thrown (4870175).
 661         recursive_exception_occurred = true;
 662         exception = Handle(THREAD, PENDING_EXCEPTION);
 663         CLEAR_PENDING_EXCEPTION;
 664         if (handler_bci >= 0) {
 665           bci = handler_bci;
 666           handler_bci = -1;
 667           skip_scope_increment = true;
 668         }
 669       }
 670       else {
 671         recursive_exception = false;
 672       }
 673       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 674         sd = sd->sender();
 675         if (sd != NULL) {
 676           bci = sd->bci();
 677         }
 678         ++scope_depth;
 679       }
 680     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 681   }
 682 
 683   // found handling method => lookup exception handler
 684   int catch_pco = ret_pc - nm->code_begin();
 685 
 686   ExceptionHandlerTable table(nm);
 687   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 688   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 689     // Allow abbreviated catch tables.  The idea is to allow a method
 690     // to materialize its exceptions without committing to the exact
 691     // routing of exceptions.  In particular this is needed for adding
 692     // a synthetic handler to unlock monitors when inlining
 693     // synchronized methods since the unlock path isn't represented in
 694     // the bytecodes.
 695     t = table.entry_for(catch_pco, -1, 0);
 696   }
 697 
 698 #ifdef COMPILER1
 699   if (t == NULL && nm->is_compiled_by_c1()) {
 700     assert(nm->unwind_handler_begin() != NULL, "");
 701     return nm->unwind_handler_begin();
 702   }
 703 #endif
 704 
 705   if (t == NULL) {
 706     ttyLocker ttyl;
 707     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 708     tty->print_cr("   Exception:");
 709     exception->print();
 710     tty->cr();
 711     tty->print_cr(" Compiled exception table :");
 712     table.print();
 713     nm->print_code();
 714     guarantee(false, "missing exception handler");
 715     return NULL;
 716   }
 717 
 718   return nm->code_begin() + t->pco();
 719 }
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 727   // These errors occur only at call sites
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 737 JRT_END
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 740   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 741   // cache sites (when the callee activation is not yet set up) so we are at a call site
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 746   throw_StackOverflowError_common(thread, false);
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 750   throw_StackOverflowError_common(thread, true);
 751 JRT_END
 752 
 753 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 754   // We avoid using the normal exception construction in this case because
 755   // it performs an upcall to Java, and we're already out of stack space.
 756   Thread* THREAD = thread;
 757   Klass* k = SystemDictionary::StackOverflowError_klass();
 758   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 759   if (delayed) {
 760     java_lang_Throwable::set_message(exception_oop,
 761                                      Universe::delayed_stack_overflow_error_message());
 762   }
 763   Handle exception (thread, exception_oop);
 764   if (StackTraceInThrowable) {
 765     java_lang_Throwable::fill_in_stack_trace(exception);
 766   }
 767   // Increment counter for hs_err file reporting
 768   Atomic::inc(&Exceptions::_stack_overflow_errors);
 769   throw_and_post_jvmti_exception(thread, exception);
 770 }
 771 
 772 #if INCLUDE_JVMCI
 773 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 774   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 775   thread->set_jvmci_implicit_exception_pc(pc);
 776   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 777   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 778 }
 779 #endif // INCLUDE_JVMCI
 780 
 781 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 782                                                            address pc,
 783                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 784 {
 785   address target_pc = NULL;
 786 
 787   if (Interpreter::contains(pc)) {
 788 #ifdef CC_INTERP
 789     // C++ interpreter doesn't throw implicit exceptions
 790     ShouldNotReachHere();
 791 #else
 792     switch (exception_kind) {
 793       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 794       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 795       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 796       default:                      ShouldNotReachHere();
 797     }
 798 #endif // !CC_INTERP
 799   } else {
 800     switch (exception_kind) {
 801       case STACK_OVERFLOW: {
 802         // Stack overflow only occurs upon frame setup; the callee is
 803         // going to be unwound. Dispatch to a shared runtime stub
 804         // which will cause the StackOverflowError to be fabricated
 805         // and processed.
 806         // Stack overflow should never occur during deoptimization:
 807         // the compiled method bangs the stack by as much as the
 808         // interpreter would need in case of a deoptimization. The
 809         // deoptimization blob and uncommon trap blob bang the stack
 810         // in a debug VM to verify the correctness of the compiled
 811         // method stack banging.
 812         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 813         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 814         return StubRoutines::throw_StackOverflowError_entry();
 815       }
 816 
 817       case IMPLICIT_NULL: {
 818         if (VtableStubs::contains(pc)) {
 819           // We haven't yet entered the callee frame. Fabricate an
 820           // exception and begin dispatching it in the caller. Since
 821           // the caller was at a call site, it's safe to destroy all
 822           // caller-saved registers, as these entry points do.
 823           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 824 
 825           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 826           if (vt_stub == NULL) return NULL;
 827 
 828           if (vt_stub->is_abstract_method_error(pc)) {
 829             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 830             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 831             // Instead of throwing the abstract method error here directly, we re-resolve
 832             // and will throw the AbstractMethodError during resolve. As a result, we'll
 833             // get a more detailed error message.
 834             return SharedRuntime::get_handle_wrong_method_stub();
 835           } else {
 836             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 837             // Assert that the signal comes from the expected location in stub code.
 838             assert(vt_stub->is_null_pointer_exception(pc),
 839                    "obtained signal from unexpected location in stub code");
 840             return StubRoutines::throw_NullPointerException_at_call_entry();
 841           }
 842         } else {
 843           CodeBlob* cb = CodeCache::find_blob(pc);
 844 
 845           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 846           if (cb == NULL) return NULL;
 847 
 848           // Exception happened in CodeCache. Must be either:
 849           // 1. Inline-cache check in C2I handler blob,
 850           // 2. Inline-cache check in nmethod, or
 851           // 3. Implicit null exception in nmethod
 852 
 853           if (!cb->is_compiled()) {
 854             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 855             if (!is_in_blob) {
 856               // Allow normal crash reporting to handle this
 857               return NULL;
 858             }
 859             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 860             // There is no handler here, so we will simply unwind.
 861             return StubRoutines::throw_NullPointerException_at_call_entry();
 862           }
 863 
 864           // Otherwise, it's a compiled method.  Consult its exception handlers.
 865           CompiledMethod* cm = (CompiledMethod*)cb;
 866           if (cm->inlinecache_check_contains(pc)) {
 867             // exception happened inside inline-cache check code
 868             // => the nmethod is not yet active (i.e., the frame
 869             // is not set up yet) => use return address pushed by
 870             // caller => don't push another return address
 871             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 872             return StubRoutines::throw_NullPointerException_at_call_entry();
 873           }
 874 
 875           if (cm->method()->is_method_handle_intrinsic()) {
 876             // exception happened inside MH dispatch code, similar to a vtable stub
 877             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 878             return StubRoutines::throw_NullPointerException_at_call_entry();
 879           }
 880 
 881 #ifndef PRODUCT
 882           _implicit_null_throws++;
 883 #endif
 884 #if INCLUDE_JVMCI
 885           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 886             // If there's no PcDesc then we'll die way down inside of
 887             // deopt instead of just getting normal error reporting,
 888             // so only go there if it will succeed.
 889             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 890           } else {
 891 #endif // INCLUDE_JVMCI
 892           assert (cm->is_nmethod(), "Expect nmethod");
 893           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 894 #if INCLUDE_JVMCI
 895           }
 896 #endif // INCLUDE_JVMCI
 897           // If there's an unexpected fault, target_pc might be NULL,
 898           // in which case we want to fall through into the normal
 899           // error handling code.
 900         }
 901 
 902         break; // fall through
 903       }
 904 
 905 
 906       case IMPLICIT_DIVIDE_BY_ZERO: {
 907         CompiledMethod* cm = CodeCache::find_compiled(pc);
 908         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 909 #ifndef PRODUCT
 910         _implicit_div0_throws++;
 911 #endif
 912 #if INCLUDE_JVMCI
 913         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 914           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 915         } else {
 916 #endif // INCLUDE_JVMCI
 917         target_pc = cm->continuation_for_implicit_exception(pc);
 918 #if INCLUDE_JVMCI
 919         }
 920 #endif // INCLUDE_JVMCI
 921         // If there's an unexpected fault, target_pc might be NULL,
 922         // in which case we want to fall through into the normal
 923         // error handling code.
 924         break; // fall through
 925       }
 926 
 927       default: ShouldNotReachHere();
 928     }
 929 
 930     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 931 
 932     if (exception_kind == IMPLICIT_NULL) {
 933 #ifndef PRODUCT
 934       // for AbortVMOnException flag
 935       Exceptions::debug_check_abort("java.lang.NullPointerException");
 936 #endif //PRODUCT
 937       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 938     } else {
 939 #ifndef PRODUCT
 940       // for AbortVMOnException flag
 941       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 942 #endif //PRODUCT
 943       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 944     }
 945     return target_pc;
 946   }
 947 
 948   ShouldNotReachHere();
 949   return NULL;
 950 }
 951 
 952 
 953 /**
 954  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 955  * installed in the native function entry of all native Java methods before
 956  * they get linked to their actual native methods.
 957  *
 958  * \note
 959  * This method actually never gets called!  The reason is because
 960  * the interpreter's native entries call NativeLookup::lookup() which
 961  * throws the exception when the lookup fails.  The exception is then
 962  * caught and forwarded on the return from NativeLookup::lookup() call
 963  * before the call to the native function.  This might change in the future.
 964  */
 965 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 966 {
 967   // We return a bad value here to make sure that the exception is
 968   // forwarded before we look at the return value.
 969   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 970 }
 971 JNI_END
 972 
 973 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 974   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 975 }
 976 
 977 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 978 #if INCLUDE_JVMCI
 979   if (!obj->klass()->has_finalizer()) {
 980     return;
 981   }
 982 #endif // INCLUDE_JVMCI
 983   assert(oopDesc::is_oop(obj), "must be a valid oop");
 984   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 985   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 986 JRT_END
 987 
 988 
 989 jlong SharedRuntime::get_java_tid(Thread* thread) {
 990   if (thread != NULL) {
 991     if (thread->is_Java_thread()) {
 992       oop obj = ((JavaThread*)thread)->threadObj();
 993       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 994     }
 995   }
 996   return 0;
 997 }
 998 
 999 /**
1000  * This function ought to be a void function, but cannot be because
1001  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1002  * 6254741.  Once that is fixed we can remove the dummy return value.
1003  */
1004 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1005   return dtrace_object_alloc_base(Thread::current(), o, size);
1006 }
1007 
1008 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1009   assert(DTraceAllocProbes, "wrong call");
1010   Klass* klass = o->klass();
1011   Symbol* name = klass->name();
1012   HOTSPOT_OBJECT_ALLOC(
1013                    get_java_tid(thread),
1014                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1015   return 0;
1016 }
1017 
1018 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1019     JavaThread* thread, Method* method))
1020   assert(DTraceMethodProbes, "wrong call");
1021   Symbol* kname = method->klass_name();
1022   Symbol* name = method->name();
1023   Symbol* sig = method->signature();
1024   HOTSPOT_METHOD_ENTRY(
1025       get_java_tid(thread),
1026       (char *) kname->bytes(), kname->utf8_length(),
1027       (char *) name->bytes(), name->utf8_length(),
1028       (char *) sig->bytes(), sig->utf8_length());
1029   return 0;
1030 JRT_END
1031 
1032 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1033     JavaThread* thread, Method* method))
1034   assert(DTraceMethodProbes, "wrong call");
1035   Symbol* kname = method->klass_name();
1036   Symbol* name = method->name();
1037   Symbol* sig = method->signature();
1038   HOTSPOT_METHOD_RETURN(
1039       get_java_tid(thread),
1040       (char *) kname->bytes(), kname->utf8_length(),
1041       (char *) name->bytes(), name->utf8_length(),
1042       (char *) sig->bytes(), sig->utf8_length());
1043   return 0;
1044 JRT_END
1045 
1046 
1047 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1048 // for a call current in progress, i.e., arguments has been pushed on stack
1049 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1050 // vtable updates, etc.  Caller frame must be compiled.
1051 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1052   ResourceMark rm(THREAD);
1053 
1054   // last java frame on stack (which includes native call frames)
1055   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1056 
1057   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1058 }
1059 
1060 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1061   CompiledMethod* caller = vfst.nm();
1062 
1063   nmethodLocker caller_lock(caller);
1064 
1065   address pc = vfst.frame_pc();
1066   { // Get call instruction under lock because another thread may be busy patching it.
1067     CompiledICLocker ic_locker(caller);
1068     return caller->attached_method_before_pc(pc);
1069   }
1070   return NULL;
1071 }
1072 
1073 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1074 // for a call current in progress, i.e., arguments has been pushed on stack
1075 // but callee has not been invoked yet.  Caller frame must be compiled.
1076 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1077                                               vframeStream& vfst,
1078                                               Bytecodes::Code& bc,
1079                                               CallInfo& callinfo, TRAPS) {
1080   Handle receiver;
1081   Handle nullHandle;  //create a handy null handle for exception returns
1082 
1083   assert(!vfst.at_end(), "Java frame must exist");
1084 
1085   // Find caller and bci from vframe
1086   methodHandle caller(THREAD, vfst.method());
1087   int          bci   = vfst.bci();
1088 
1089   Bytecode_invoke bytecode(caller, bci);
1090   int bytecode_index = bytecode.index();
1091   bc = bytecode.invoke_code();
1092 
1093   methodHandle attached_method = extract_attached_method(vfst);
1094   if (attached_method.not_null()) {
1095     methodHandle callee = bytecode.static_target(CHECK_NH);
1096     vmIntrinsics::ID id = callee->intrinsic_id();
1097     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1098     // it attaches statically resolved method to the call site.
1099     if (MethodHandles::is_signature_polymorphic(id) &&
1100         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1101       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1102 
1103       // Adjust invocation mode according to the attached method.
1104       switch (bc) {
1105         case Bytecodes::_invokevirtual:
1106           if (attached_method->method_holder()->is_interface()) {
1107             bc = Bytecodes::_invokeinterface;
1108           }
1109           break;
1110         case Bytecodes::_invokeinterface:
1111           if (!attached_method->method_holder()->is_interface()) {
1112             bc = Bytecodes::_invokevirtual;
1113           }
1114           break;
1115         case Bytecodes::_invokehandle:
1116           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1117             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1118                                               : Bytecodes::_invokevirtual;
1119           }
1120           break;
1121         default:
1122           break;
1123       }
1124     } else {
1125       assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods");
1126       if (bc != Bytecodes::_invokevirtual) {
1127         // Ignore the attached method in this case to not confuse below code
1128         attached_method = NULL;
1129       }
1130     }
1131   }
1132 
1133   assert(bc != Bytecodes::_illegal, "not initialized");
1134 
1135   bool has_receiver = bc != Bytecodes::_invokestatic &&
1136                       bc != Bytecodes::_invokedynamic &&
1137                       bc != Bytecodes::_invokehandle;
1138 
1139   // Find receiver for non-static call
1140   if (has_receiver) {
1141     // This register map must be update since we need to find the receiver for
1142     // compiled frames. The receiver might be in a register.
1143     RegisterMap reg_map2(thread);
1144     frame stubFrame   = thread->last_frame();
1145     // Caller-frame is a compiled frame
1146     frame callerFrame = stubFrame.sender(&reg_map2);
1147 
1148     methodHandle callee = attached_method;
1149     if (callee.is_null()) {
1150       callee = bytecode.static_target(CHECK_NH);
1151       if (callee.is_null()) {
1152         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1153       }
1154     }
1155     // TODO for now, don't scalarize value type receivers because of interface calls
1156     if (callee->has_scalarized_args() && callee->method_holder()->is_value() && false) {
1157       // If the receiver is a value type that is passed as fields, no oop is available.
1158       // Resolve the call without receiver null checking.
1159       assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual");
1160       assert(!attached_method.is_null(), "must have attached method");
1161       constantPoolHandle constants(THREAD, caller->constants());
1162       LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1163       LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH);
1164       return receiver; // is null
1165     } else {
1166       // Retrieve from a compiled argument list
1167       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1168 
1169       if (receiver.is_null()) {
1170         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1171       }
1172     }
1173   }
1174 
1175   // Resolve method
1176   if (attached_method.not_null()) {
1177     // Parameterized by attached method.
1178     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1179   } else {
1180     // Parameterized by bytecode.
1181     constantPoolHandle constants(THREAD, caller->constants());
1182     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1183   }
1184 
1185 #ifdef ASSERT
1186   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1187   if (has_receiver) {
1188     assert(receiver.not_null(), "should have thrown exception");
1189     Klass* receiver_klass = receiver->klass();
1190     Klass* rk = NULL;
1191     if (attached_method.not_null()) {
1192       // In case there's resolved method attached, use its holder during the check.
1193       rk = attached_method->method_holder();
1194     } else {
1195       // Klass is already loaded.
1196       constantPoolHandle constants(THREAD, caller->constants());
1197       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1198     }
1199     Klass* static_receiver_klass = rk;
1200     methodHandle callee = callinfo.selected_method();
1201     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1202            "actual receiver must be subclass of static receiver klass");
1203     if (receiver_klass->is_instance_klass()) {
1204       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1205         tty->print_cr("ERROR: Klass not yet initialized!!");
1206         receiver_klass->print();
1207       }
1208       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1209     }
1210   }
1211 #endif
1212 
1213   return receiver;
1214 }
1215 
1216 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1217   ResourceMark rm(THREAD);
1218   // We need first to check if any Java activations (compiled, interpreted)
1219   // exist on the stack since last JavaCall.  If not, we need
1220   // to get the target method from the JavaCall wrapper.
1221   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1222   methodHandle callee_method;
1223   if (vfst.at_end()) {
1224     // No Java frames were found on stack since we did the JavaCall.
1225     // Hence the stack can only contain an entry_frame.  We need to
1226     // find the target method from the stub frame.
1227     RegisterMap reg_map(thread, false);
1228     frame fr = thread->last_frame();
1229     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1230     fr = fr.sender(&reg_map);
1231     assert(fr.is_entry_frame(), "must be");
1232     // fr is now pointing to the entry frame.
1233     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1234   } else {
1235     Bytecodes::Code bc;
1236     CallInfo callinfo;
1237     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1238     callee_method = callinfo.selected_method();
1239   }
1240   assert(callee_method()->is_method(), "must be");
1241   return callee_method;
1242 }
1243 
1244 // Resolves a call.
1245 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1246                                            bool is_virtual,
1247                                            bool is_optimized, TRAPS) {
1248   methodHandle callee_method;
1249   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1250   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1251     int retry_count = 0;
1252     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1253            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1254       // If has a pending exception then there is no need to re-try to
1255       // resolve this method.
1256       // If the method has been redefined, we need to try again.
1257       // Hack: we have no way to update the vtables of arrays, so don't
1258       // require that java.lang.Object has been updated.
1259 
1260       // It is very unlikely that method is redefined more than 100 times
1261       // in the middle of resolve. If it is looping here more than 100 times
1262       // means then there could be a bug here.
1263       guarantee((retry_count++ < 100),
1264                 "Could not resolve to latest version of redefined method");
1265       // method is redefined in the middle of resolve so re-try.
1266       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1267     }
1268   }
1269   return callee_method;
1270 }
1271 
1272 // This fails if resolution required refilling of IC stubs
1273 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1274                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1275                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1276   StaticCallInfo static_call_info;
1277   CompiledICInfo virtual_call_info;
1278 
1279   // Make sure the callee nmethod does not get deoptimized and removed before
1280   // we are done patching the code.
1281   CompiledMethod* callee = callee_method->code();
1282 
1283   if (callee != NULL) {
1284     assert(callee->is_compiled(), "must be nmethod for patching");
1285   }
1286 
1287   if (callee != NULL && !callee->is_in_use()) {
1288     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1289     callee = NULL;
1290   }
1291   nmethodLocker nl_callee(callee);
1292 #ifdef ASSERT
1293   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1294 #endif
1295 
1296   bool is_nmethod = caller_nm->is_nmethod();
1297 
1298   if (is_virtual) {
1299     Klass* receiver_klass = NULL;
1300     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1301       // If the receiver is a value type that is passed as fields, no oop is available
1302       receiver_klass = callee_method->method_holder();
1303     } else {
1304       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1305       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1306     }
1307     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1308     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1309                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1310                      CHECK_false);
1311   } else {
1312     // static call
1313     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1314   }
1315 
1316   // grab lock, check for deoptimization and potentially patch caller
1317   {
1318     CompiledICLocker ml(caller_nm);
1319 
1320     // Lock blocks for safepoint during which both nmethods can change state.
1321 
1322     // Now that we are ready to patch if the Method* was redefined then
1323     // don't update call site and let the caller retry.
1324     // Don't update call site if callee nmethod was unloaded or deoptimized.
1325     // Don't update call site if callee nmethod was replaced by an other nmethod
1326     // which may happen when multiply alive nmethod (tiered compilation)
1327     // will be supported.
1328     if (!callee_method->is_old() &&
1329         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1330 #ifdef ASSERT
1331       // We must not try to patch to jump to an already unloaded method.
1332       if (dest_entry_point != 0) {
1333         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1334         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1335                "should not call unloaded nmethod");
1336       }
1337 #endif
1338       if (is_virtual) {
1339         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1340         if (inline_cache->is_clean()) {
1341           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1342             return false;
1343           }
1344         }
1345       } else {
1346         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1347         if (ssc->is_clean()) ssc->set(static_call_info);
1348       }
1349     }
1350   } // unlock CompiledICLocker
1351   return true;
1352 }
1353 
1354 // Resolves a call.  The compilers generate code for calls that go here
1355 // and are patched with the real destination of the call.
1356 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1357                                                bool is_virtual,
1358                                                bool is_optimized, TRAPS) {
1359 
1360   ResourceMark rm(thread);
1361   RegisterMap cbl_map(thread, false);
1362   frame caller_frame = thread->last_frame().sender(&cbl_map);
1363 
1364   CodeBlob* caller_cb = caller_frame.cb();
1365   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1366   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1367 
1368   // make sure caller is not getting deoptimized
1369   // and removed before we are done with it.
1370   // CLEANUP - with lazy deopt shouldn't need this lock
1371   nmethodLocker caller_lock(caller_nm);
1372 
1373   // determine call info & receiver
1374   // note: a) receiver is NULL for static calls
1375   //       b) an exception is thrown if receiver is NULL for non-static calls
1376   CallInfo call_info;
1377   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1378   Handle receiver = find_callee_info(thread, invoke_code,
1379                                      call_info, CHECK_(methodHandle()));
1380   methodHandle callee_method = call_info.selected_method();
1381 
1382   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1383          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1384          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1385          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1386          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1387 
1388   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1389 
1390 #ifndef PRODUCT
1391   // tracing/debugging/statistics
1392   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1393                 (is_virtual) ? (&_resolve_virtual_ctr) :
1394                                (&_resolve_static_ctr);
1395   Atomic::inc(addr);
1396 
1397   if (TraceCallFixup) {
1398     ResourceMark rm(thread);
1399     tty->print("resolving %s%s (%s) call to",
1400       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1401       Bytecodes::name(invoke_code));
1402     callee_method->print_short_name(tty);
1403     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1404                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1405   }
1406 #endif
1407 
1408   // Do not patch call site for static call when the class is not
1409   // fully initialized.
1410   if (invoke_code == Bytecodes::_invokestatic &&
1411       !callee_method->method_holder()->is_initialized()) {
1412     assert(callee_method->method_holder()->is_linked(), "must be");
1413     return callee_method;
1414   }
1415 
1416   // JSR 292 key invariant:
1417   // If the resolved method is a MethodHandle invoke target, the call
1418   // site must be a MethodHandle call site, because the lambda form might tail-call
1419   // leaving the stack in a state unknown to either caller or callee
1420   // TODO detune for now but we might need it again
1421 //  assert(!callee_method->is_compiled_lambda_form() ||
1422 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1423 
1424   // Compute entry points. This might require generation of C2I converter
1425   // frames, so we cannot be holding any locks here. Furthermore, the
1426   // computation of the entry points is independent of patching the call.  We
1427   // always return the entry-point, but we only patch the stub if the call has
1428   // not been deoptimized.  Return values: For a virtual call this is an
1429   // (cached_oop, destination address) pair. For a static call/optimized
1430   // virtual this is just a destination address.
1431 
1432   // Patching IC caches may fail if we run out if transition stubs.
1433   // We refill the ic stubs then and try again.
1434   for (;;) {
1435     ICRefillVerifier ic_refill_verifier;
1436     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1437                                                   is_virtual, is_optimized, receiver,
1438                                                   call_info, invoke_code, CHECK_(methodHandle()));
1439     if (successful) {
1440       return callee_method;
1441     } else {
1442       InlineCacheBuffer::refill_ic_stubs();
1443     }
1444   }
1445 
1446 }
1447 
1448 
1449 // Inline caches exist only in compiled code
1450 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1451 #ifdef ASSERT
1452   RegisterMap reg_map(thread, false);
1453   frame stub_frame = thread->last_frame();
1454   assert(stub_frame.is_runtime_frame(), "sanity check");
1455   frame caller_frame = stub_frame.sender(&reg_map);
1456   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1457 #endif /* ASSERT */
1458 
1459   methodHandle callee_method;
1460   JRT_BLOCK
1461     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1462     // Return Method* through TLS
1463     thread->set_vm_result_2(callee_method());
1464   JRT_BLOCK_END
1465   // return compiled code entry point after potential safepoints
1466   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1467   return callee_method->verified_code_entry();
1468 JRT_END
1469 
1470 
1471 // Handle call site that has been made non-entrant
1472 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1473   // 6243940 We might end up in here if the callee is deoptimized
1474   // as we race to call it.  We don't want to take a safepoint if
1475   // the caller was interpreted because the caller frame will look
1476   // interpreted to the stack walkers and arguments are now
1477   // "compiled" so it is much better to make this transition
1478   // invisible to the stack walking code. The i2c path will
1479   // place the callee method in the callee_target. It is stashed
1480   // there because if we try and find the callee by normal means a
1481   // safepoint is possible and have trouble gc'ing the compiled args.
1482   RegisterMap reg_map(thread, false);
1483   frame stub_frame = thread->last_frame();
1484   assert(stub_frame.is_runtime_frame(), "sanity check");
1485   frame caller_frame = stub_frame.sender(&reg_map);
1486 
1487   if (caller_frame.is_interpreted_frame() ||
1488       caller_frame.is_entry_frame()) {
1489     Method* callee = thread->callee_target();
1490     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1491     thread->set_vm_result_2(callee);
1492     thread->set_callee_target(NULL);
1493     return callee->get_c2i_entry();
1494   }
1495 
1496   // Must be compiled to compiled path which is safe to stackwalk
1497   methodHandle callee_method;
1498   JRT_BLOCK
1499     // Force resolving of caller (if we called from compiled frame)
1500     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1501     thread->set_vm_result_2(callee_method());
1502   JRT_BLOCK_END
1503   // return compiled code entry point after potential safepoints
1504   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1505   return callee_method->verified_code_entry();
1506 JRT_END
1507 
1508 // Handle abstract method call
1509 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1510   // Verbose error message for AbstractMethodError.
1511   // Get the called method from the invoke bytecode.
1512   vframeStream vfst(thread, true);
1513   assert(!vfst.at_end(), "Java frame must exist");
1514   methodHandle caller(vfst.method());
1515   Bytecode_invoke invoke(caller, vfst.bci());
1516   DEBUG_ONLY( invoke.verify(); )
1517 
1518   // Find the compiled caller frame.
1519   RegisterMap reg_map(thread);
1520   frame stubFrame = thread->last_frame();
1521   assert(stubFrame.is_runtime_frame(), "must be");
1522   frame callerFrame = stubFrame.sender(&reg_map);
1523   assert(callerFrame.is_compiled_frame(), "must be");
1524 
1525   // Install exception and return forward entry.
1526   address res = StubRoutines::throw_AbstractMethodError_entry();
1527   JRT_BLOCK
1528     methodHandle callee = invoke.static_target(thread);
1529     if (!callee.is_null()) {
1530       oop recv = callerFrame.retrieve_receiver(&reg_map);
1531       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1532       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1533       res = StubRoutines::forward_exception_entry();
1534     }
1535   JRT_BLOCK_END
1536   return res;
1537 JRT_END
1538 
1539 
1540 // resolve a static call and patch code
1541 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1542   methodHandle callee_method;
1543   JRT_BLOCK {
1544     RegisterMap cbl_map(thread, false);
1545     frame caller_frame = thread->last_frame().sender(&cbl_map);
1546     CodeBlob* caller_cb = caller_frame.cb();
1547     guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1548     CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1549     SimpleScopeDesc ssd(caller_nm, caller_frame.pc());
1550     Bytecode bc(ssd.method(), ssd.method()->bcp_from(ssd.bci()));
1551     if (bc.code() == Bytecodes::_if_acmpeq || bc.code() == Bytecodes::_if_acmpne) {
1552       SystemDictionary::ValueBootstrapMethods_klass()->initialize(CHECK_NULL);
1553       callee_method = SystemDictionary::ValueBootstrapMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1554     } else {
1555       callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1556     }
1557     thread->set_vm_result_2(callee_method());
1558   } JRT_BLOCK_END
1559   // return compiled code entry point after potential safepoints
1560   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1561   return callee_method->verified_code_entry();
1562 JRT_END
1563 
1564 // resolve virtual call and update inline cache to monomorphic
1565 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1566   methodHandle callee_method;
1567   JRT_BLOCK
1568     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1569     thread->set_vm_result_2(callee_method());
1570   JRT_BLOCK_END
1571   // return compiled code entry point after potential safepoints
1572   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1573   return callee_method->verified_code_entry();
1574 JRT_END
1575 
1576 
1577 // Resolve a virtual call that can be statically bound (e.g., always
1578 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1579 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1580   methodHandle callee_method;
1581   JRT_BLOCK
1582     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1583     thread->set_vm_result_2(callee_method());
1584   JRT_BLOCK_END
1585   // return compiled code entry point after potential safepoints
1586   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1587   return callee_method->verified_code_entry();
1588 JRT_END
1589 
1590 // The handle_ic_miss_helper_internal function returns false if it failed due
1591 // to either running out of vtable stubs or ic stubs due to IC transitions
1592 // to transitional states. The needs_ic_stub_refill value will be set if
1593 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1594 // refills the IC stubs and tries again.
1595 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1596                                                    const frame& caller_frame, methodHandle callee_method,
1597                                                    Bytecodes::Code bc, CallInfo& call_info,
1598                                                    bool& needs_ic_stub_refill, TRAPS) {
1599   CompiledICLocker ml(caller_nm);
1600   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1601   bool should_be_mono = false;
1602   if (inline_cache->is_optimized()) {
1603     if (TraceCallFixup) {
1604       ResourceMark rm(THREAD);
1605       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1606       callee_method->print_short_name(tty);
1607       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1608     }
1609     should_be_mono = true;
1610   } else if (inline_cache->is_icholder_call()) {
1611     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1612     if (ic_oop != NULL) {
1613       if (!ic_oop->is_loader_alive()) {
1614         // Deferred IC cleaning due to concurrent class unloading
1615         if (!inline_cache->set_to_clean()) {
1616           needs_ic_stub_refill = true;
1617           return false;
1618         }
1619       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1620         // This isn't a real miss. We must have seen that compiled code
1621         // is now available and we want the call site converted to a
1622         // monomorphic compiled call site.
1623         // We can't assert for callee_method->code() != NULL because it
1624         // could have been deoptimized in the meantime
1625         if (TraceCallFixup) {
1626           ResourceMark rm(THREAD);
1627           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1628           callee_method->print_short_name(tty);
1629           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1630         }
1631         should_be_mono = true;
1632       }
1633     }
1634   }
1635 
1636   if (should_be_mono) {
1637     // We have a path that was monomorphic but was going interpreted
1638     // and now we have (or had) a compiled entry. We correct the IC
1639     // by using a new icBuffer.
1640     CompiledICInfo info;
1641     Klass* receiver_klass = receiver()->klass();
1642     inline_cache->compute_monomorphic_entry(callee_method,
1643                                             receiver_klass,
1644                                             inline_cache->is_optimized(),
1645                                             false, caller_nm->is_nmethod(),
1646                                             info, CHECK_false);
1647     if (!inline_cache->set_to_monomorphic(info)) {
1648       needs_ic_stub_refill = true;
1649       return false;
1650     }
1651   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1652     // Potential change to megamorphic
1653 
1654     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1655     if (needs_ic_stub_refill) {
1656       return false;
1657     }
1658     if (!successful) {
1659       if (!inline_cache->set_to_clean()) {
1660         needs_ic_stub_refill = true;
1661         return false;
1662       }
1663     }
1664   } else {
1665     // Either clean or megamorphic
1666   }
1667   return true;
1668 }
1669 
1670 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1671   ResourceMark rm(thread);
1672   CallInfo call_info;
1673   Bytecodes::Code bc;
1674 
1675   // receiver is NULL for static calls. An exception is thrown for NULL
1676   // receivers for non-static calls
1677   Handle receiver = find_callee_info(thread, bc, call_info,
1678                                      CHECK_(methodHandle()));
1679   // Compiler1 can produce virtual call sites that can actually be statically bound
1680   // If we fell thru to below we would think that the site was going megamorphic
1681   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1682   // we'd try and do a vtable dispatch however methods that can be statically bound
1683   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1684   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1685   // plain ic_miss) and the site will be converted to an optimized virtual call site
1686   // never to miss again. I don't believe C2 will produce code like this but if it
1687   // did this would still be the correct thing to do for it too, hence no ifdef.
1688   //
1689   if (call_info.resolved_method()->can_be_statically_bound()) {
1690     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1691     if (TraceCallFixup) {
1692       RegisterMap reg_map(thread, false);
1693       frame caller_frame = thread->last_frame().sender(&reg_map);
1694       ResourceMark rm(thread);
1695       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1696       callee_method->print_short_name(tty);
1697       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1698       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1699     }
1700     return callee_method;
1701   }
1702 
1703   methodHandle callee_method = call_info.selected_method();
1704 
1705 #ifndef PRODUCT
1706   Atomic::inc(&_ic_miss_ctr);
1707 
1708   // Statistics & Tracing
1709   if (TraceCallFixup) {
1710     ResourceMark rm(thread);
1711     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1712     callee_method->print_short_name(tty);
1713     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1714   }
1715 
1716   if (ICMissHistogram) {
1717     MutexLocker m(VMStatistic_lock);
1718     RegisterMap reg_map(thread, false);
1719     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1720     // produce statistics under the lock
1721     trace_ic_miss(f.pc());
1722   }
1723 #endif
1724 
1725   // install an event collector so that when a vtable stub is created the
1726   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1727   // event can't be posted when the stub is created as locks are held
1728   // - instead the event will be deferred until the event collector goes
1729   // out of scope.
1730   JvmtiDynamicCodeEventCollector event_collector;
1731 
1732   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1733   // Transitioning IC caches may require transition stubs. If we run out
1734   // of transition stubs, we have to drop locks and perform a safepoint
1735   // that refills them.
1736   RegisterMap reg_map(thread, false);
1737   frame caller_frame = thread->last_frame().sender(&reg_map);
1738   CodeBlob* cb = caller_frame.cb();
1739   CompiledMethod* caller_nm = cb->as_compiled_method();
1740 
1741   for (;;) {
1742     ICRefillVerifier ic_refill_verifier;
1743     bool needs_ic_stub_refill = false;
1744     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1745                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1746     if (successful || !needs_ic_stub_refill) {
1747       return callee_method;
1748     } else {
1749       InlineCacheBuffer::refill_ic_stubs();
1750     }
1751   }
1752 }
1753 
1754 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1755   CompiledICLocker ml(caller_nm);
1756   if (is_static_call) {
1757     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1758     if (!ssc->is_clean()) {
1759       return ssc->set_to_clean();
1760     }
1761   } else {
1762     // compiled, dispatched call (which used to call an interpreted method)
1763     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1764     if (!inline_cache->is_clean()) {
1765       return inline_cache->set_to_clean();
1766     }
1767   }
1768   return true;
1769 }
1770 
1771 //
1772 // Resets a call-site in compiled code so it will get resolved again.
1773 // This routines handles both virtual call sites, optimized virtual call
1774 // sites, and static call sites. Typically used to change a call sites
1775 // destination from compiled to interpreted.
1776 //
1777 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1778   ResourceMark rm(thread);
1779   RegisterMap reg_map(thread, false);
1780   frame stub_frame = thread->last_frame();
1781   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1782   frame caller = stub_frame.sender(&reg_map);
1783 
1784   // Do nothing if the frame isn't a live compiled frame.
1785   // nmethod could be deoptimized by the time we get here
1786   // so no update to the caller is needed.
1787 
1788   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1789 
1790     address pc = caller.pc();
1791 
1792     // Check for static or virtual call
1793     bool is_static_call = false;
1794     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1795 
1796     // Default call_addr is the location of the "basic" call.
1797     // Determine the address of the call we a reresolving. With
1798     // Inline Caches we will always find a recognizable call.
1799     // With Inline Caches disabled we may or may not find a
1800     // recognizable call. We will always find a call for static
1801     // calls and for optimized virtual calls. For vanilla virtual
1802     // calls it depends on the state of the UseInlineCaches switch.
1803     //
1804     // With Inline Caches disabled we can get here for a virtual call
1805     // for two reasons:
1806     //   1 - calling an abstract method. The vtable for abstract methods
1807     //       will run us thru handle_wrong_method and we will eventually
1808     //       end up in the interpreter to throw the ame.
1809     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1810     //       call and between the time we fetch the entry address and
1811     //       we jump to it the target gets deoptimized. Similar to 1
1812     //       we will wind up in the interprter (thru a c2i with c2).
1813     //
1814     address call_addr = NULL;
1815     {
1816       // Get call instruction under lock because another thread may be
1817       // busy patching it.
1818       CompiledICLocker ml(caller_nm);
1819       // Location of call instruction
1820       call_addr = caller_nm->call_instruction_address(pc);
1821     }
1822     // Make sure nmethod doesn't get deoptimized and removed until
1823     // this is done with it.
1824     // CLEANUP - with lazy deopt shouldn't need this lock
1825     nmethodLocker nmlock(caller_nm);
1826 
1827     if (call_addr != NULL) {
1828       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1829       int ret = iter.next(); // Get item
1830       if (ret) {
1831         assert(iter.addr() == call_addr, "must find call");
1832         if (iter.type() == relocInfo::static_call_type) {
1833           is_static_call = true;
1834         } else {
1835           assert(iter.type() == relocInfo::virtual_call_type ||
1836                  iter.type() == relocInfo::opt_virtual_call_type
1837                 , "unexpected relocInfo. type");
1838         }
1839       } else {
1840         assert(!UseInlineCaches, "relocation info. must exist for this address");
1841       }
1842 
1843       // Cleaning the inline cache will force a new resolve. This is more robust
1844       // than directly setting it to the new destination, since resolving of calls
1845       // is always done through the same code path. (experience shows that it
1846       // leads to very hard to track down bugs, if an inline cache gets updated
1847       // to a wrong method). It should not be performance critical, since the
1848       // resolve is only done once.
1849 
1850       for (;;) {
1851         ICRefillVerifier ic_refill_verifier;
1852         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1853           InlineCacheBuffer::refill_ic_stubs();
1854         } else {
1855           break;
1856         }
1857       }
1858     }
1859   }
1860 
1861   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1862 
1863 
1864 #ifndef PRODUCT
1865   Atomic::inc(&_wrong_method_ctr);
1866 
1867   if (TraceCallFixup) {
1868     ResourceMark rm(thread);
1869     tty->print("handle_wrong_method reresolving call to");
1870     callee_method->print_short_name(tty);
1871     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1872   }
1873 #endif
1874 
1875   return callee_method;
1876 }
1877 
1878 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1879   // The faulting unsafe accesses should be changed to throw the error
1880   // synchronously instead. Meanwhile the faulting instruction will be
1881   // skipped over (effectively turning it into a no-op) and an
1882   // asynchronous exception will be raised which the thread will
1883   // handle at a later point. If the instruction is a load it will
1884   // return garbage.
1885 
1886   // Request an async exception.
1887   thread->set_pending_unsafe_access_error();
1888 
1889   // Return address of next instruction to execute.
1890   return next_pc;
1891 }
1892 
1893 #ifdef ASSERT
1894 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1895                                                                 const BasicType* sig_bt,
1896                                                                 const VMRegPair* regs) {
1897   ResourceMark rm;
1898   const int total_args_passed = method->size_of_parameters();
1899   const VMRegPair*    regs_with_member_name = regs;
1900         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1901 
1902   const int member_arg_pos = total_args_passed - 1;
1903   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1904   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1905 
1906   const bool is_outgoing = method->is_method_handle_intrinsic();
1907   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1908 
1909   for (int i = 0; i < member_arg_pos; i++) {
1910     VMReg a =    regs_with_member_name[i].first();
1911     VMReg b = regs_without_member_name[i].first();
1912     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1913   }
1914   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1915 }
1916 #endif
1917 
1918 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1919   if (destination != entry_point) {
1920     CodeBlob* callee = CodeCache::find_blob(destination);
1921     // callee == cb seems weird. It means calling interpreter thru stub.
1922     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1923       // static call or optimized virtual
1924       if (TraceCallFixup) {
1925         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1926         moop->print_short_name(tty);
1927         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1928       }
1929       return true;
1930     } else {
1931       if (TraceCallFixup) {
1932         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1933         moop->print_short_name(tty);
1934         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1935       }
1936       // assert is too strong could also be resolve destinations.
1937       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1938     }
1939   } else {
1940     if (TraceCallFixup) {
1941       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1942       moop->print_short_name(tty);
1943       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1944     }
1945   }
1946   return false;
1947 }
1948 
1949 // ---------------------------------------------------------------------------
1950 // We are calling the interpreter via a c2i. Normally this would mean that
1951 // we were called by a compiled method. However we could have lost a race
1952 // where we went int -> i2c -> c2i and so the caller could in fact be
1953 // interpreted. If the caller is compiled we attempt to patch the caller
1954 // so he no longer calls into the interpreter.
1955 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1956   Method* moop(method);
1957 
1958   address entry_point = moop->from_compiled_entry_no_trampoline();
1959 
1960   // It's possible that deoptimization can occur at a call site which hasn't
1961   // been resolved yet, in which case this function will be called from
1962   // an nmethod that has been patched for deopt and we can ignore the
1963   // request for a fixup.
1964   // Also it is possible that we lost a race in that from_compiled_entry
1965   // is now back to the i2c in that case we don't need to patch and if
1966   // we did we'd leap into space because the callsite needs to use
1967   // "to interpreter" stub in order to load up the Method*. Don't
1968   // ask me how I know this...
1969 
1970   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1971   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1972     return;
1973   }
1974 
1975   // The check above makes sure this is a nmethod.
1976   CompiledMethod* nm = cb->as_compiled_method_or_null();
1977   assert(nm, "must be");
1978 
1979   // Get the return PC for the passed caller PC.
1980   address return_pc = caller_pc + frame::pc_return_offset;
1981 
1982   // There is a benign race here. We could be attempting to patch to a compiled
1983   // entry point at the same time the callee is being deoptimized. If that is
1984   // the case then entry_point may in fact point to a c2i and we'd patch the
1985   // call site with the same old data. clear_code will set code() to NULL
1986   // at the end of it. If we happen to see that NULL then we can skip trying
1987   // to patch. If we hit the window where the callee has a c2i in the
1988   // from_compiled_entry and the NULL isn't present yet then we lose the race
1989   // and patch the code with the same old data. Asi es la vida.
1990 
1991   if (moop->code() == NULL) return;
1992 
1993   if (nm->is_in_use()) {
1994     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1995     CompiledICLocker ic_locker(nm);
1996     if (NativeCall::is_call_before(return_pc)) {
1997       ResourceMark mark;
1998       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1999       //
2000       // bug 6281185. We might get here after resolving a call site to a vanilla
2001       // virtual call. Because the resolvee uses the verified entry it may then
2002       // see compiled code and attempt to patch the site by calling us. This would
2003       // then incorrectly convert the call site to optimized and its downhill from
2004       // there. If you're lucky you'll get the assert in the bugid, if not you've
2005       // just made a call site that could be megamorphic into a monomorphic site
2006       // for the rest of its life! Just another racing bug in the life of
2007       // fixup_callers_callsite ...
2008       //
2009       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2010       iter.next();
2011       assert(iter.has_current(), "must have a reloc at java call site");
2012       relocInfo::relocType typ = iter.reloc()->type();
2013       if (typ != relocInfo::static_call_type &&
2014            typ != relocInfo::opt_virtual_call_type &&
2015            typ != relocInfo::static_stub_type) {
2016         return;
2017       }
2018       address destination = call->destination();
2019       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2020         call->set_destination_mt_safe(entry_point);
2021       }
2022     }
2023   }
2024 IRT_END
2025 
2026 
2027 // same as JVM_Arraycopy, but called directly from compiled code
2028 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2029                                                 oopDesc* dest, jint dest_pos,
2030                                                 jint length,
2031                                                 JavaThread* thread)) {
2032 #ifndef PRODUCT
2033   _slow_array_copy_ctr++;
2034 #endif
2035   // Check if we have null pointers
2036   if (src == NULL || dest == NULL) {
2037     THROW(vmSymbols::java_lang_NullPointerException());
2038   }
2039   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2040   // even though the copy_array API also performs dynamic checks to ensure
2041   // that src and dest are truly arrays (and are conformable).
2042   // The copy_array mechanism is awkward and could be removed, but
2043   // the compilers don't call this function except as a last resort,
2044   // so it probably doesn't matter.
2045   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2046                                         (arrayOopDesc*)dest, dest_pos,
2047                                         length, thread);
2048 }
2049 JRT_END
2050 
2051 // The caller of generate_class_cast_message() (or one of its callers)
2052 // must use a ResourceMark in order to correctly free the result.
2053 char* SharedRuntime::generate_class_cast_message(
2054     JavaThread* thread, Klass* caster_klass) {
2055 
2056   // Get target class name from the checkcast instruction
2057   vframeStream vfst(thread, true);
2058   assert(!vfst.at_end(), "Java frame must exist");
2059   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2060   constantPoolHandle cpool(thread, vfst.method()->constants());
2061   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2062   Symbol* target_klass_name = NULL;
2063   if (target_klass == NULL) {
2064     // This klass should be resolved, but just in case, get the name in the klass slot.
2065     target_klass_name = cpool->klass_name_at(cc.index());
2066   }
2067   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2068 }
2069 
2070 
2071 // The caller of generate_class_cast_message() (or one of its callers)
2072 // must use a ResourceMark in order to correctly free the result.
2073 char* SharedRuntime::generate_class_cast_message(
2074     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2075   const char* caster_name = caster_klass->external_name();
2076 
2077   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2078   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2079                                                    target_klass->external_name();
2080 
2081   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2082 
2083   const char* caster_klass_description = "";
2084   const char* target_klass_description = "";
2085   const char* klass_separator = "";
2086   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2087     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2088   } else {
2089     caster_klass_description = caster_klass->class_in_module_of_loader();
2090     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2091     klass_separator = (target_klass != NULL) ? "; " : "";
2092   }
2093 
2094   // add 3 for parenthesis and preceeding space
2095   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2096 
2097   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2098   if (message == NULL) {
2099     // Shouldn't happen, but don't cause even more problems if it does
2100     message = const_cast<char*>(caster_klass->external_name());
2101   } else {
2102     jio_snprintf(message,
2103                  msglen,
2104                  "class %s cannot be cast to class %s (%s%s%s)",
2105                  caster_name,
2106                  target_name,
2107                  caster_klass_description,
2108                  klass_separator,
2109                  target_klass_description
2110                  );
2111   }
2112   return message;
2113 }
2114 
2115 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2116   (void) JavaThread::current()->reguard_stack();
2117 JRT_END
2118 
2119 
2120 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2121 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2122   if (!SafepointSynchronize::is_synchronizing()) {
2123     // Only try quick_enter() if we're not trying to reach a safepoint
2124     // so that the calling thread reaches the safepoint more quickly.
2125     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2126   }
2127   // NO_ASYNC required because an async exception on the state transition destructor
2128   // would leave you with the lock held and it would never be released.
2129   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2130   // and the model is that an exception implies the method failed.
2131   JRT_BLOCK_NO_ASYNC
2132   oop obj(_obj);
2133   if (PrintBiasedLockingStatistics) {
2134     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2135   }
2136   Handle h_obj(THREAD, obj);
2137   if (UseBiasedLocking) {
2138     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2139     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2140   } else {
2141     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2142   }
2143   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2144   JRT_BLOCK_END
2145 JRT_END
2146 
2147 // Handles the uncommon cases of monitor unlocking in compiled code
2148 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2149    oop obj(_obj);
2150   assert(JavaThread::current() == THREAD, "invariant");
2151   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2152   // testing was unable to ever fire the assert that guarded it so I have removed it.
2153   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2154 #undef MIGHT_HAVE_PENDING
2155 #ifdef MIGHT_HAVE_PENDING
2156   // Save and restore any pending_exception around the exception mark.
2157   // While the slow_exit must not throw an exception, we could come into
2158   // this routine with one set.
2159   oop pending_excep = NULL;
2160   const char* pending_file;
2161   int pending_line;
2162   if (HAS_PENDING_EXCEPTION) {
2163     pending_excep = PENDING_EXCEPTION;
2164     pending_file  = THREAD->exception_file();
2165     pending_line  = THREAD->exception_line();
2166     CLEAR_PENDING_EXCEPTION;
2167   }
2168 #endif /* MIGHT_HAVE_PENDING */
2169 
2170   {
2171     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2172     EXCEPTION_MARK;
2173     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2174   }
2175 
2176 #ifdef MIGHT_HAVE_PENDING
2177   if (pending_excep != NULL) {
2178     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2179   }
2180 #endif /* MIGHT_HAVE_PENDING */
2181 JRT_END
2182 
2183 #ifndef PRODUCT
2184 
2185 void SharedRuntime::print_statistics() {
2186   ttyLocker ttyl;
2187   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2188 
2189   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2190 
2191   SharedRuntime::print_ic_miss_histogram();
2192 
2193   if (CountRemovableExceptions) {
2194     if (_nof_removable_exceptions > 0) {
2195       Unimplemented(); // this counter is not yet incremented
2196       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2197     }
2198   }
2199 
2200   // Dump the JRT_ENTRY counters
2201   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2202   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2203   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2204   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2205   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2206   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2207   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2208 
2209   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2210   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2211   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2212   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2213   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2214 
2215   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2216   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2217   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2218   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2219   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2220   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2221   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2222   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2223   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2224   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2225   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2226   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2227   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2228   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2229   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2230   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2231 
2232   AdapterHandlerLibrary::print_statistics();
2233 
2234   if (xtty != NULL)  xtty->tail("statistics");
2235 }
2236 
2237 inline double percent(int x, int y) {
2238   return 100.0 * x / MAX2(y, 1);
2239 }
2240 
2241 class MethodArityHistogram {
2242  public:
2243   enum { MAX_ARITY = 256 };
2244  private:
2245   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2246   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2247   static int _max_arity;                      // max. arity seen
2248   static int _max_size;                       // max. arg size seen
2249 
2250   static void add_method_to_histogram(nmethod* nm) {
2251     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2252       Method* method = nm->method();
2253       ArgumentCount args(method->signature());
2254       int arity   = args.size() + (method->is_static() ? 0 : 1);
2255       int argsize = method->size_of_parameters();
2256       arity   = MIN2(arity, MAX_ARITY-1);
2257       argsize = MIN2(argsize, MAX_ARITY-1);
2258       int count = method->compiled_invocation_count();
2259       _arity_histogram[arity]  += count;
2260       _size_histogram[argsize] += count;
2261       _max_arity = MAX2(_max_arity, arity);
2262       _max_size  = MAX2(_max_size, argsize);
2263     }
2264   }
2265 
2266   void print_histogram_helper(int n, int* histo, const char* name) {
2267     const int N = MIN2(5, n);
2268     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2269     double sum = 0;
2270     double weighted_sum = 0;
2271     int i;
2272     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2273     double rest = sum;
2274     double percent = sum / 100;
2275     for (i = 0; i <= N; i++) {
2276       rest -= histo[i];
2277       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2278     }
2279     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2280     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2281   }
2282 
2283   void print_histogram() {
2284     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2285     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2286     tty->print_cr("\nSame for parameter size (in words):");
2287     print_histogram_helper(_max_size, _size_histogram, "size");
2288     tty->cr();
2289   }
2290 
2291  public:
2292   MethodArityHistogram() {
2293     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2294     _max_arity = _max_size = 0;
2295     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2296     CodeCache::nmethods_do(add_method_to_histogram);
2297     print_histogram();
2298   }
2299 };
2300 
2301 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2302 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2303 int MethodArityHistogram::_max_arity;
2304 int MethodArityHistogram::_max_size;
2305 
2306 void SharedRuntime::print_call_statistics(int comp_total) {
2307   tty->print_cr("Calls from compiled code:");
2308   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2309   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2310   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2311   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2312   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2313   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2314   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2315   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2316   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2317   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2318   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2319   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2320   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2321   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2322   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2323   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2324   tty->cr();
2325   tty->print_cr("Note 1: counter updates are not MT-safe.");
2326   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2327   tty->print_cr("        %% in nested categories are relative to their category");
2328   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2329   tty->cr();
2330 
2331   MethodArityHistogram h;
2332 }
2333 #endif
2334 
2335 
2336 // A simple wrapper class around the calling convention information
2337 // that allows sharing of adapters for the same calling convention.
2338 class AdapterFingerPrint : public CHeapObj<mtCode> {
2339  private:
2340   enum {
2341     _basic_type_bits = 4,
2342     _basic_type_mask = right_n_bits(_basic_type_bits),
2343     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2344     _compact_int_count = 3
2345   };
2346   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2347   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2348 
2349   union {
2350     int  _compact[_compact_int_count];
2351     int* _fingerprint;
2352   } _value;
2353   int _length; // A negative length indicates the fingerprint is in the compact form,
2354                // Otherwise _value._fingerprint is the array.
2355 
2356   // Remap BasicTypes that are handled equivalently by the adapters.
2357   // These are correct for the current system but someday it might be
2358   // necessary to make this mapping platform dependent.
2359   static int adapter_encoding(BasicType in, bool is_valuetype) {
2360     switch (in) {
2361       case T_BOOLEAN:
2362       case T_BYTE:
2363       case T_SHORT:
2364       case T_CHAR: {
2365         if (is_valuetype) {
2366           // Do not widen value type field types
2367           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2368           return in;
2369         } else {
2370           // They are all promoted to T_INT in the calling convention
2371           return T_INT;
2372         }
2373       }
2374 
2375       case T_VALUETYPE: {
2376         // If value types are passed as fields, return 'in' to differentiate
2377         // between a T_VALUETYPE and a T_OBJECT in the signature.
2378         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2379       }
2380 
2381       case T_OBJECT:
2382       case T_ARRAY:
2383         // In other words, we assume that any register good enough for
2384         // an int or long is good enough for a managed pointer.
2385 #ifdef _LP64
2386         return T_LONG;
2387 #else
2388         return T_INT;
2389 #endif
2390 
2391       case T_INT:
2392       case T_LONG:
2393       case T_FLOAT:
2394       case T_DOUBLE:
2395       case T_VOID:
2396         return in;
2397 
2398       default:
2399         ShouldNotReachHere();
2400         return T_CONFLICT;
2401     }
2402   }
2403 
2404  public:
2405   AdapterFingerPrint(int total_args_passed, const GrowableArray<SigEntry>* sig) {
2406     // The fingerprint is based on the BasicType signature encoded
2407     // into an array of ints with eight entries per int.
2408     int* ptr;
2409     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2410     if (len <= _compact_int_count) {
2411       assert(_compact_int_count == 3, "else change next line");
2412       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2413       // Storing the signature encoded as signed chars hits about 98%
2414       // of the time.
2415       _length = -len;
2416       ptr = _value._compact;
2417     } else {
2418       _length = len;
2419       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2420       ptr = _value._fingerprint;
2421     }
2422 
2423     // Now pack the BasicTypes with 8 per int
2424     int sig_index = 0;
2425     BasicType prev_sbt = T_ILLEGAL;
2426     int vt_count = 0;
2427     for (int index = 0; index < len; index++) {
2428       int value = 0;
2429       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2430         int bt = 0;
2431         if (sig_index < total_args_passed) {
2432           BasicType sbt = sig->at(sig_index++)._bt;
2433           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2434             // Found start of value type in signature
2435             vt_count++;
2436           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2437                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2438             // Found end of value type in signature
2439             vt_count--;
2440             assert(vt_count >= 0, "invalid vt_count");
2441           }
2442           bt = adapter_encoding(sbt, vt_count > 0);
2443           prev_sbt = sbt;
2444         }
2445         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2446         value = (value << _basic_type_bits) | bt;
2447       }
2448       ptr[index] = value;
2449     }
2450     assert(vt_count == 0, "invalid vt_count");
2451   }
2452 
2453   ~AdapterFingerPrint() {
2454     if (_length > 0) {
2455       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2456     }
2457   }
2458 
2459   int value(int index) {
2460     if (_length < 0) {
2461       return _value._compact[index];
2462     }
2463     return _value._fingerprint[index];
2464   }
2465   int length() {
2466     if (_length < 0) return -_length;
2467     return _length;
2468   }
2469 
2470   bool is_compact() {
2471     return _length <= 0;
2472   }
2473 
2474   unsigned int compute_hash() {
2475     int hash = 0;
2476     for (int i = 0; i < length(); i++) {
2477       int v = value(i);
2478       hash = (hash << 8) ^ v ^ (hash >> 5);
2479     }
2480     return (unsigned int)hash;
2481   }
2482 
2483   const char* as_string() {
2484     stringStream st;
2485     st.print("0x");
2486     for (int i = 0; i < length(); i++) {
2487       st.print("%08x", value(i));
2488     }
2489     return st.as_string();
2490   }
2491 
2492   bool equals(AdapterFingerPrint* other) {
2493     if (other->_length != _length) {
2494       return false;
2495     }
2496     if (_length < 0) {
2497       assert(_compact_int_count == 3, "else change next line");
2498       return _value._compact[0] == other->_value._compact[0] &&
2499              _value._compact[1] == other->_value._compact[1] &&
2500              _value._compact[2] == other->_value._compact[2];
2501     } else {
2502       for (int i = 0; i < _length; i++) {
2503         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2504           return false;
2505         }
2506       }
2507     }
2508     return true;
2509   }
2510 };
2511 
2512 
2513 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2514 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2515   friend class AdapterHandlerTableIterator;
2516 
2517  private:
2518 
2519 #ifndef PRODUCT
2520   static int _lookups; // number of calls to lookup
2521   static int _buckets; // number of buckets checked
2522   static int _equals;  // number of buckets checked with matching hash
2523   static int _hits;    // number of successful lookups
2524   static int _compact; // number of equals calls with compact signature
2525 #endif
2526 
2527   AdapterHandlerEntry* bucket(int i) {
2528     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2529   }
2530 
2531  public:
2532   AdapterHandlerTable()
2533     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2534 
2535   // Create a new entry suitable for insertion in the table
2536   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_value_entry, address c2i_unverified_entry) {
2537     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2538     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry);
2539     if (DumpSharedSpaces) {
2540       ((CDSAdapterHandlerEntry*)entry)->init();
2541     }
2542     return entry;
2543   }
2544 
2545   // Insert an entry into the table
2546   void add(AdapterHandlerEntry* entry) {
2547     int index = hash_to_index(entry->hash());
2548     add_entry(index, entry);
2549   }
2550 
2551   void free_entry(AdapterHandlerEntry* entry) {
2552     entry->deallocate();
2553     BasicHashtable<mtCode>::free_entry(entry);
2554   }
2555 
2556   // Find a entry with the same fingerprint if it exists
2557   AdapterHandlerEntry* lookup(int total_args_passed, const GrowableArray<SigEntry>* sig) {
2558     NOT_PRODUCT(_lookups++);
2559     AdapterFingerPrint fp(total_args_passed, sig);
2560     unsigned int hash = fp.compute_hash();
2561     int index = hash_to_index(hash);
2562     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2563       NOT_PRODUCT(_buckets++);
2564       if (e->hash() == hash) {
2565         NOT_PRODUCT(_equals++);
2566         if (fp.equals(e->fingerprint())) {
2567 #ifndef PRODUCT
2568           if (fp.is_compact()) _compact++;
2569           _hits++;
2570 #endif
2571           return e;
2572         }
2573       }
2574     }
2575     return NULL;
2576   }
2577 
2578 #ifndef PRODUCT
2579   void print_statistics() {
2580     ResourceMark rm;
2581     int longest = 0;
2582     int empty = 0;
2583     int total = 0;
2584     int nonempty = 0;
2585     for (int index = 0; index < table_size(); index++) {
2586       int count = 0;
2587       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2588         count++;
2589       }
2590       if (count != 0) nonempty++;
2591       if (count == 0) empty++;
2592       if (count > longest) longest = count;
2593       total += count;
2594     }
2595     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2596                   empty, longest, total, total / (double)nonempty);
2597     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2598                   _lookups, _buckets, _equals, _hits, _compact);
2599   }
2600 #endif
2601 };
2602 
2603 
2604 #ifndef PRODUCT
2605 
2606 int AdapterHandlerTable::_lookups;
2607 int AdapterHandlerTable::_buckets;
2608 int AdapterHandlerTable::_equals;
2609 int AdapterHandlerTable::_hits;
2610 int AdapterHandlerTable::_compact;
2611 
2612 #endif
2613 
2614 class AdapterHandlerTableIterator : public StackObj {
2615  private:
2616   AdapterHandlerTable* _table;
2617   int _index;
2618   AdapterHandlerEntry* _current;
2619 
2620   void scan() {
2621     while (_index < _table->table_size()) {
2622       AdapterHandlerEntry* a = _table->bucket(_index);
2623       _index++;
2624       if (a != NULL) {
2625         _current = a;
2626         return;
2627       }
2628     }
2629   }
2630 
2631  public:
2632   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2633     scan();
2634   }
2635   bool has_next() {
2636     return _current != NULL;
2637   }
2638   AdapterHandlerEntry* next() {
2639     if (_current != NULL) {
2640       AdapterHandlerEntry* result = _current;
2641       _current = _current->next();
2642       if (_current == NULL) scan();
2643       return result;
2644     } else {
2645       return NULL;
2646     }
2647   }
2648 };
2649 
2650 
2651 // ---------------------------------------------------------------------------
2652 // Implementation of AdapterHandlerLibrary
2653 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2654 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2655 const int AdapterHandlerLibrary_size = 16*K;
2656 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2657 
2658 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2659   // Should be called only when AdapterHandlerLibrary_lock is active.
2660   if (_buffer == NULL) // Initialize lazily
2661       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2662   return _buffer;
2663 }
2664 
2665 extern "C" void unexpected_adapter_call() {
2666   ShouldNotCallThis();
2667 }
2668 
2669 void AdapterHandlerLibrary::initialize() {
2670   if (_adapters != NULL) return;
2671   _adapters = new AdapterHandlerTable();
2672 
2673   // Create a special handler for abstract methods.  Abstract methods
2674   // are never compiled so an i2c entry is somewhat meaningless, but
2675   // throw AbstractMethodError just in case.
2676   // Pass wrong_method_abstract for the c2i transitions to return
2677   // AbstractMethodError for invalid invocations.
2678   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2679   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2680                                                               StubRoutines::throw_AbstractMethodError_entry(),
2681                                                               wrong_method_abstract, wrong_method_abstract, wrong_method_abstract);
2682 }
2683 
2684 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2685                                                       address i2c_entry,
2686                                                       address c2i_entry,
2687                                                       address c2i_value_entry,
2688                                                       address c2i_unverified_entry) {
2689   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry);
2690 }
2691 
2692 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2693   AdapterHandlerEntry* entry = get_adapter0(method);
2694   if (method->is_shared()) {
2695     // See comments around Method::link_method()
2696     MutexLocker mu(AdapterHandlerLibrary_lock);
2697     if (method->adapter() == NULL) {
2698       method->update_adapter_trampoline(entry);
2699     }
2700     address trampoline = method->from_compiled_entry();
2701     if (*(int*)trampoline == 0) {
2702       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2703       MacroAssembler _masm(&buffer);
2704       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2705       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2706 
2707       if (PrintInterpreter) {
2708         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2709       }
2710     }
2711   }
2712 
2713   return entry;
2714 }
2715 
2716 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2717   // Use customized signature handler.  Need to lock around updates to
2718   // the AdapterHandlerTable (it is not safe for concurrent readers
2719   // and a single writer: this could be fixed if it becomes a
2720   // problem).
2721 
2722   ResourceMark rm;
2723 
2724   NOT_PRODUCT(int insts_size = 0);
2725   AdapterBlob* new_adapter = NULL;
2726   AdapterHandlerEntry* entry = NULL;
2727   AdapterFingerPrint* fingerprint = NULL;
2728   {
2729     MutexLocker mu(AdapterHandlerLibrary_lock);
2730     // make sure data structure is initialized
2731     initialize();
2732 
2733     bool has_value_arg = false;
2734     GrowableArray<SigEntry> sig(method->size_of_parameters());
2735     if (!method->is_static()) {
2736       // TODO for now, don't scalarize value type receivers because of interface calls
2737       //has_value_arg |= method->method_holder()->is_value();
2738       SigEntry::add_entry(&sig, T_OBJECT);
2739     }
2740     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2741       BasicType bt = ss.type();
2742       if (bt == T_VALUETYPE) {
2743         has_value_arg = true;
2744         bt = T_OBJECT;
2745       }
2746       SigEntry::add_entry(&sig, bt);
2747     }
2748 
2749     // Process abstract method if it has value type args to set has_scalarized_args accordingly
2750     if (!has_value_arg && method->is_abstract()) {
2751       return _abstract_method_handler;
2752     }
2753 
2754     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2755     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sig.length());
2756     int args_on_stack = SharedRuntime::java_calling_convention(&sig, regs);
2757 
2758     // Now compute the scalarized calling convention if there are value types in the signature
2759     GrowableArray<SigEntry> sig_cc = sig;
2760     VMRegPair* regs_cc = regs;
2761     SigEntry reserved_entry;
2762     int args_on_stack_cc = args_on_stack;
2763 
2764     if (ValueTypePassFieldsAsArgs && has_value_arg) {
2765       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2766       InstanceKlass* holder = method->method_holder();
2767 
2768       sig_cc = GrowableArray<SigEntry>(method->size_of_parameters());
2769       if (!method->is_static()) {
2770         // TODO for now, don't scalarize value type receivers because of interface calls
2771         if (false && holder->is_value()) {
2772           sig_cc.appendAll(ValueKlass::cast(holder)->extended_sig());
2773         } else {
2774           SigEntry::add_entry(&sig_cc, T_OBJECT);
2775         }
2776       }
2777       Thread* THREAD = Thread::current();
2778       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2779         if (ss.type() == T_VALUETYPE) {
2780           Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2781                                  Handle(THREAD, holder->protection_domain()),
2782                                  SignatureStream::ReturnNull, THREAD);
2783           assert(k != NULL && !HAS_PENDING_EXCEPTION, "value klass should have been pre-loaded");
2784           sig_cc.appendAll(ValueKlass::cast(k)->extended_sig());
2785         } else {
2786           SigEntry::add_entry(&sig_cc, ss.type());
2787         }
2788       }
2789       regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc.length() + 2);
2790       args_on_stack_cc = SharedRuntime::java_calling_convention(&sig_cc, regs_cc);
2791 
2792       // This stack slot is occupied by the return address with the unscalarized calling
2793       // convention. Don't use it for argument with the scalarized calling convention.
2794       int ret_addr_slot = args_on_stack_cc - args_on_stack;
2795       if (ret_addr_slot > 0) {
2796         // Make sure stack of the scalarized calling convention with
2797         // the reserved entry (2 slots) is 16-byte (4 slots) aligned.
2798         int alignment = StackAlignmentInBytes/VMRegImpl::stack_slot_size;
2799         ret_addr_slot = align_up(ret_addr_slot + 2, alignment) - 2;
2800         // Find index in signature that belongs to return address slot
2801         reserved_entry._offset = 0;
2802         int sig_idx = 0;
2803         for (; sig_idx < sig_cc.length(); ++sig_idx) {
2804           if (SigEntry::skip_value_delimiters(&sig_cc, sig_idx)) {
2805             VMReg first = regs_cc[reserved_entry._offset].first();
2806             if (first->is_stack()) {
2807               // Select a type for the reserved entry that will end up on the stack
2808               reserved_entry._bt = sig_cc.at(sig_idx)._bt;
2809               if ((int)first->reg2stack() == ret_addr_slot) {
2810                 break;
2811               }
2812             }
2813             reserved_entry._offset++;
2814           }
2815         }
2816         // Insert reserved entry and re-compute calling convention
2817         SigEntry::insert_reserved_entry(&sig_cc, sig_idx, reserved_entry._bt);
2818         args_on_stack_cc = SharedRuntime::java_calling_convention(&sig_cc, regs_cc);
2819       }
2820       // Upper bound on stack arguments to avoid hitting the argument limit and
2821       // bailing out of compilation ("unsupported incoming calling sequence").
2822       // TODO we need a reasonable limit (flag?) here
2823       if (args_on_stack_cc > 50) {
2824         // Don't scalarize value type arguments
2825         sig_cc = sig;
2826         regs_cc = regs;
2827         args_on_stack_cc = args_on_stack;
2828       } else {
2829         method->set_has_scalarized_args(true);
2830       }
2831     }
2832 
2833     if (method->is_abstract()) {
2834       return _abstract_method_handler;
2835     }
2836 
2837     // Lookup method signature's fingerprint
2838     entry = _adapters->lookup(sig_cc.length(), &sig_cc);
2839 
2840 #ifdef ASSERT
2841     AdapterHandlerEntry* shared_entry = NULL;
2842     // Start adapter sharing verification only after the VM is booted.
2843     if (VerifyAdapterSharing && (entry != NULL)) {
2844       shared_entry = entry;
2845       entry = NULL;
2846     }
2847 #endif
2848 
2849     if (entry != NULL) {
2850       return entry;
2851     }
2852 
2853     // Make a C heap allocated version of the fingerprint to store in the adapter
2854     fingerprint = new AdapterFingerPrint(sig_cc.length(), &sig_cc);
2855 
2856     // StubRoutines::code2() is initialized after this function can be called. As a result,
2857     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2858     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2859     // stub that ensure that an I2C stub is called from an interpreter frame.
2860     bool contains_all_checks = StubRoutines::code2() != NULL;
2861 
2862     // Create I2C & C2I handlers
2863     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2864     if (buf != NULL) {
2865       CodeBuffer buffer(buf);
2866       short buffer_locs[20];
2867       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2868                                              sizeof(buffer_locs)/sizeof(relocInfo));
2869 
2870       MacroAssembler _masm(&buffer);
2871       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2872                                                      args_on_stack,
2873                                                      args_on_stack_cc,
2874                                                      &sig,
2875                                                      regs,
2876                                                      &sig_cc,
2877                                                      regs_cc,
2878                                                      fingerprint,
2879                                                      new_adapter);
2880 
2881       if (regs != regs_cc) {
2882         // Save a C heap allocated version of the scalarized signature and store it in the adapter
2883         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(method->size_of_parameters(), true);
2884         heap_sig->appendAll(&sig_cc);
2885         entry->set_sig_cc(heap_sig);
2886         entry->set_res_entry(reserved_entry);
2887       }
2888 
2889 #ifdef ASSERT
2890       if (VerifyAdapterSharing) {
2891         if (shared_entry != NULL) {
2892           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2893           // Release the one just created and return the original
2894           _adapters->free_entry(entry);
2895           return shared_entry;
2896         } else  {
2897           entry->save_code(buf->code_begin(), buffer.insts_size());
2898         }
2899       }
2900 #endif
2901 
2902       NOT_PRODUCT(insts_size = buffer.insts_size());
2903     }
2904     if (new_adapter == NULL) {
2905       // CodeCache is full, disable compilation
2906       // Ought to log this but compile log is only per compile thread
2907       // and we're some non descript Java thread.
2908       return NULL; // Out of CodeCache space
2909     }
2910     entry->relocate(new_adapter->content_begin());
2911 #ifndef PRODUCT
2912     // debugging suppport
2913     if (PrintAdapterHandlers || PrintStubCode) {
2914       ttyLocker ttyl;
2915       entry->print_adapter_on(tty);
2916       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2917                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2918                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2919       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2920       if (Verbose || PrintStubCode) {
2921         address first_pc = entry->base_address();
2922         if (first_pc != NULL) {
2923           Disassembler::decode(first_pc, first_pc + insts_size);
2924           tty->cr();
2925         }
2926       }
2927     }
2928 #endif
2929     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2930     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2931     if (contains_all_checks || !VerifyAdapterCalls) {
2932       _adapters->add(entry);
2933     }
2934   }
2935   // Outside of the lock
2936   if (new_adapter != NULL) {
2937     char blob_id[256];
2938     jio_snprintf(blob_id,
2939                  sizeof(blob_id),
2940                  "%s(%s)@" PTR_FORMAT,
2941                  new_adapter->name(),
2942                  fingerprint->as_string(),
2943                  new_adapter->content_begin());
2944     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2945 
2946     if (JvmtiExport::should_post_dynamic_code_generated()) {
2947       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2948     }
2949   }
2950   return entry;
2951 }
2952 
2953 address AdapterHandlerEntry::base_address() {
2954   address base = _i2c_entry;
2955   if (base == NULL)  base = _c2i_entry;
2956   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2957   assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, "");
2958   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2959   return base;
2960 }
2961 
2962 void AdapterHandlerEntry::relocate(address new_base) {
2963   address old_base = base_address();
2964   assert(old_base != NULL, "");
2965   ptrdiff_t delta = new_base - old_base;
2966   if (_i2c_entry != NULL)
2967     _i2c_entry += delta;
2968   if (_c2i_entry != NULL)
2969     _c2i_entry += delta;
2970   if (_c2i_value_entry != NULL)
2971     _c2i_value_entry += delta;
2972   if (_c2i_unverified_entry != NULL)
2973     _c2i_unverified_entry += delta;
2974   assert(base_address() == new_base, "");
2975 }
2976 
2977 
2978 void AdapterHandlerEntry::deallocate() {
2979   delete _fingerprint;
2980   if (_sig_cc != NULL) {
2981     delete _sig_cc;
2982   }
2983 #ifdef ASSERT
2984   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2985 #endif
2986 }
2987 
2988 
2989 #ifdef ASSERT
2990 // Capture the code before relocation so that it can be compared
2991 // against other versions.  If the code is captured after relocation
2992 // then relative instructions won't be equivalent.
2993 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2994   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2995   _saved_code_length = length;
2996   memcpy(_saved_code, buffer, length);
2997 }
2998 
2999 
3000 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
3001   if (length != _saved_code_length) {
3002     return false;
3003   }
3004 
3005   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
3006 }
3007 #endif
3008 
3009 
3010 /**
3011  * Create a native wrapper for this native method.  The wrapper converts the
3012  * Java-compiled calling convention to the native convention, handles
3013  * arguments, and transitions to native.  On return from the native we transition
3014  * back to java blocking if a safepoint is in progress.
3015  */
3016 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3017   ResourceMark rm;
3018   nmethod* nm = NULL;
3019 
3020   assert(method->is_native(), "must be native");
3021   assert(method->is_method_handle_intrinsic() ||
3022          method->has_native_function(), "must have something valid to call!");
3023 
3024   {
3025     // Perform the work while holding the lock, but perform any printing outside the lock
3026     MutexLocker mu(AdapterHandlerLibrary_lock);
3027     // See if somebody beat us to it
3028     if (method->code() != NULL) {
3029       return;
3030     }
3031 
3032     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3033     assert(compile_id > 0, "Must generate native wrapper");
3034 
3035 
3036     ResourceMark rm;
3037     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3038     if (buf != NULL) {
3039       CodeBuffer buffer(buf);
3040       double locs_buf[20];
3041       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3042       MacroAssembler _masm(&buffer);
3043 
3044       // Fill in the signature array, for the calling-convention call.
3045       const int total_args_passed = method->size_of_parameters();
3046 
3047       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3048       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3049       int i=0;
3050       if (!method->is_static())  // Pass in receiver first
3051         sig_bt[i++] = T_OBJECT;
3052       SignatureStream ss(method->signature());
3053       for (; !ss.at_return_type(); ss.next()) {
3054         BasicType bt = ss.type();
3055         sig_bt[i++] = bt;  // Collect remaining bits of signature
3056         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3057           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3058       }
3059       assert(i == total_args_passed, "");
3060       BasicType ret_type = ss.type();
3061 
3062       // Now get the compiled-Java layout as input (or output) arguments.
3063       // NOTE: Stubs for compiled entry points of method handle intrinsics
3064       // are just trampolines so the argument registers must be outgoing ones.
3065       const bool is_outgoing = method->is_method_handle_intrinsic();
3066       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3067 
3068       // Generate the compiled-to-native wrapper code
3069       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3070 
3071       if (nm != NULL) {
3072         method->set_code(method, nm);
3073 
3074         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3075         if (directive->PrintAssemblyOption) {
3076           nm->print_code();
3077         }
3078         DirectivesStack::release(directive);
3079       }
3080     }
3081   } // Unlock AdapterHandlerLibrary_lock
3082 
3083 
3084   // Install the generated code.
3085   if (nm != NULL) {
3086     const char *msg = method->is_static() ? "(static)" : "";
3087     CompileTask::print_ul(nm, msg);
3088     if (PrintCompilation) {
3089       ttyLocker ttyl;
3090       CompileTask::print(tty, nm, msg);
3091     }
3092     nm->post_compiled_method_load_event();
3093   }
3094 }
3095 
3096 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3097   assert(thread == JavaThread::current(), "must be");
3098   // The code is about to enter a JNI lazy critical native method and
3099   // _needs_gc is true, so if this thread is already in a critical
3100   // section then just return, otherwise this thread should block
3101   // until needs_gc has been cleared.
3102   if (thread->in_critical()) {
3103     return;
3104   }
3105   // Lock and unlock a critical section to give the system a chance to block
3106   GCLocker::lock_critical(thread);
3107   GCLocker::unlock_critical(thread);
3108 JRT_END
3109 
3110 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3111   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3112   assert(obj != NULL, "Should not be null");
3113   oop o(obj);
3114   o = Universe::heap()->pin_object(thread, o);
3115   assert(o != NULL, "Should not be null");
3116   return o;
3117 JRT_END
3118 
3119 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3120   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3121   assert(obj != NULL, "Should not be null");
3122   oop o(obj);
3123   Universe::heap()->unpin_object(thread, o);
3124 JRT_END
3125 
3126 // -------------------------------------------------------------------------
3127 // Java-Java calling convention
3128 // (what you use when Java calls Java)
3129 
3130 //------------------------------name_for_receiver----------------------------------
3131 // For a given signature, return the VMReg for parameter 0.
3132 VMReg SharedRuntime::name_for_receiver() {
3133   VMRegPair regs;
3134   BasicType sig_bt = T_OBJECT;
3135   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3136   // Return argument 0 register.  In the LP64 build pointers
3137   // take 2 registers, but the VM wants only the 'main' name.
3138   return regs.first();
3139 }
3140 
3141 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3142   // This method is returning a data structure allocating as a
3143   // ResourceObject, so do not put any ResourceMarks in here.
3144   char *s = sig->as_C_string();
3145   int len = (int)strlen(s);
3146   s++; len--;                   // Skip opening paren
3147 
3148   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3149   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3150   int cnt = 0;
3151   if (has_receiver) {
3152     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3153   }
3154 
3155   while (*s != ')') {          // Find closing right paren
3156     switch (*s++) {            // Switch on signature character
3157     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3158     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3159     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3160     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3161     case 'I': sig_bt[cnt++] = T_INT;     break;
3162     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3163     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3164     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3165     case 'V': sig_bt[cnt++] = T_VOID;    break;
3166     case 'L':                   // Oop
3167       while (*s++ != ';');   // Skip signature
3168       sig_bt[cnt++] = T_OBJECT;
3169       break;
3170     case 'Q':                // Value type
3171       while (*s++ != ';');   // Skip signature
3172       sig_bt[cnt++] = T_VALUETYPE;
3173       break;
3174     case '[': {                 // Array
3175       do {                      // Skip optional size
3176         while (*s >= '0' && *s <= '9') s++;
3177       } while (*s++ == '[');   // Nested arrays?
3178       // Skip element type
3179       if (s[-1] == 'L' || s[-1] == 'Q')
3180         while (*s++ != ';'); // Skip signature
3181       sig_bt[cnt++] = T_ARRAY;
3182       break;
3183     }
3184     default : ShouldNotReachHere();
3185     }
3186   }
3187 
3188   if (has_appendix) {
3189     sig_bt[cnt++] = T_OBJECT;
3190   }
3191 
3192   assert(cnt < 256, "grow table size");
3193 
3194   int comp_args_on_stack;
3195   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3196 
3197   // the calling convention doesn't count out_preserve_stack_slots so
3198   // we must add that in to get "true" stack offsets.
3199 
3200   if (comp_args_on_stack) {
3201     for (int i = 0; i < cnt; i++) {
3202       VMReg reg1 = regs[i].first();
3203       if (reg1->is_stack()) {
3204         // Yuck
3205         reg1 = reg1->bias(out_preserve_stack_slots());
3206       }
3207       VMReg reg2 = regs[i].second();
3208       if (reg2->is_stack()) {
3209         // Yuck
3210         reg2 = reg2->bias(out_preserve_stack_slots());
3211       }
3212       regs[i].set_pair(reg2, reg1);
3213     }
3214   }
3215 
3216   // results
3217   *arg_size = cnt;
3218   return regs;
3219 }
3220 
3221 // OSR Migration Code
3222 //
3223 // This code is used convert interpreter frames into compiled frames.  It is
3224 // called from very start of a compiled OSR nmethod.  A temp array is
3225 // allocated to hold the interesting bits of the interpreter frame.  All
3226 // active locks are inflated to allow them to move.  The displaced headers and
3227 // active interpreter locals are copied into the temp buffer.  Then we return
3228 // back to the compiled code.  The compiled code then pops the current
3229 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3230 // copies the interpreter locals and displaced headers where it wants.
3231 // Finally it calls back to free the temp buffer.
3232 //
3233 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3234 
3235 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3236 
3237   //
3238   // This code is dependent on the memory layout of the interpreter local
3239   // array and the monitors. On all of our platforms the layout is identical
3240   // so this code is shared. If some platform lays the their arrays out
3241   // differently then this code could move to platform specific code or
3242   // the code here could be modified to copy items one at a time using
3243   // frame accessor methods and be platform independent.
3244 
3245   frame fr = thread->last_frame();
3246   assert(fr.is_interpreted_frame(), "");
3247   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3248 
3249   // Figure out how many monitors are active.
3250   int active_monitor_count = 0;
3251   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3252        kptr < fr.interpreter_frame_monitor_begin();
3253        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3254     if (kptr->obj() != NULL) active_monitor_count++;
3255   }
3256 
3257   // QQQ we could place number of active monitors in the array so that compiled code
3258   // could double check it.
3259 
3260   Method* moop = fr.interpreter_frame_method();
3261   int max_locals = moop->max_locals();
3262   // Allocate temp buffer, 1 word per local & 2 per active monitor
3263   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3264   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3265 
3266   // Copy the locals.  Order is preserved so that loading of longs works.
3267   // Since there's no GC I can copy the oops blindly.
3268   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3269   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3270                        (HeapWord*)&buf[0],
3271                        max_locals);
3272 
3273   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3274   int i = max_locals;
3275   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3276        kptr2 < fr.interpreter_frame_monitor_begin();
3277        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3278     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3279       BasicLock *lock = kptr2->lock();
3280       // Inflate so the displaced header becomes position-independent
3281       if (lock->displaced_header()->is_unlocked())
3282         ObjectSynchronizer::inflate_helper(kptr2->obj());
3283       // Now the displaced header is free to move
3284       buf[i++] = (intptr_t)lock->displaced_header();
3285       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3286     }
3287   }
3288   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3289 
3290   return buf;
3291 JRT_END
3292 
3293 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3294   FREE_C_HEAP_ARRAY(intptr_t, buf);
3295 JRT_END
3296 
3297 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3298   AdapterHandlerTableIterator iter(_adapters);
3299   while (iter.has_next()) {
3300     AdapterHandlerEntry* a = iter.next();
3301     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3302   }
3303   return false;
3304 }
3305 
3306 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3307   AdapterHandlerTableIterator iter(_adapters);
3308   while (iter.has_next()) {
3309     AdapterHandlerEntry* a = iter.next();
3310     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3311       st->print("Adapter for signature: ");
3312       a->print_adapter_on(tty);
3313       return;
3314     }
3315   }
3316   assert(false, "Should have found handler");
3317 }
3318 
3319 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3320   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iMH: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3321                p2i(this), fingerprint()->as_string(),
3322                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_value_entry()), p2i(get_c2i_unverified_entry()));
3323 
3324 }
3325 
3326 #if INCLUDE_CDS
3327 
3328 void CDSAdapterHandlerEntry::init() {
3329   assert(DumpSharedSpaces, "used during dump time only");
3330   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3331   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3332 };
3333 
3334 #endif // INCLUDE_CDS
3335 
3336 
3337 #ifndef PRODUCT
3338 
3339 void AdapterHandlerLibrary::print_statistics() {
3340   _adapters->print_statistics();
3341 }
3342 
3343 #endif /* PRODUCT */
3344 
3345 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3346   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3347   if (thread->stack_reserved_zone_disabled()) {
3348   thread->enable_stack_reserved_zone();
3349   }
3350   thread->set_reserved_stack_activation(thread->stack_base());
3351 JRT_END
3352 
3353 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3354   ResourceMark rm(thread);
3355   frame activation;
3356   CompiledMethod* nm = NULL;
3357   int count = 1;
3358 
3359   assert(fr.is_java_frame(), "Must start on Java frame");
3360 
3361   while (true) {
3362     Method* method = NULL;
3363     bool found = false;
3364     if (fr.is_interpreted_frame()) {
3365       method = fr.interpreter_frame_method();
3366       if (method != NULL && method->has_reserved_stack_access()) {
3367         found = true;
3368       }
3369     } else {
3370       CodeBlob* cb = fr.cb();
3371       if (cb != NULL && cb->is_compiled()) {
3372         nm = cb->as_compiled_method();
3373         method = nm->method();
3374         // scope_desc_near() must be used, instead of scope_desc_at() because on
3375         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3376         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3377           method = sd->method();
3378           if (method != NULL && method->has_reserved_stack_access()) {
3379             found = true;
3380       }
3381     }
3382       }
3383     }
3384     if (found) {
3385       activation = fr;
3386       warning("Potentially dangerous stack overflow in "
3387               "ReservedStackAccess annotated method %s [%d]",
3388               method->name_and_sig_as_C_string(), count++);
3389       EventReservedStackActivation event;
3390       if (event.should_commit()) {
3391         event.set_method(method);
3392         event.commit();
3393       }
3394     }
3395     if (fr.is_first_java_frame()) {
3396       break;
3397     } else {
3398       fr = fr.java_sender();
3399     }
3400   }
3401   return activation;
3402 }
3403 
3404 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3405   // After any safepoint, just before going back to compiled code,
3406   // we inform the GC that we will be doing initializing writes to
3407   // this object in the future without emitting card-marks, so
3408   // GC may take any compensating steps.
3409 
3410   oop new_obj = thread->vm_result();
3411   if (new_obj == NULL) return;
3412 
3413   BarrierSet *bs = BarrierSet::barrier_set();
3414   bs->on_slowpath_allocation_exit(thread, new_obj);
3415 }
3416 
3417 // We are at a compiled code to interpreter call. We need backing
3418 // buffers for all value type arguments. Allocate an object array to
3419 // hold them (convenient because once we're done with it we don't have
3420 // to worry about freeing it).
3421 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3422 {
3423   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3424   ResourceMark rm;
3425   JavaThread* THREAD = thread;
3426   methodHandle callee(callee_method);
3427 
3428   int nb_slots = 0;
3429   InstanceKlass* holder = callee->method_holder();
3430   // TODO for now, don't scalarize value type receivers because of interface calls
3431   //bool has_value_receiver = !callee->is_static() && holder->is_value();
3432   bool has_value_receiver = false;
3433   if (has_value_receiver) {
3434     nb_slots++;
3435   }
3436   Handle class_loader(THREAD, holder->class_loader());
3437   Handle protection_domain(THREAD, holder->protection_domain());
3438   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3439     if (ss.type() == T_VALUETYPE) {
3440       nb_slots++;
3441     }
3442   }
3443   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3444   objArrayHandle array(THREAD, array_oop);
3445   int i = 0;
3446   if (has_value_receiver) {
3447     ValueKlass* vk = ValueKlass::cast(holder);
3448     oop res = vk->allocate_instance(CHECK);
3449     array->obj_at_put(i, res);
3450     i++;
3451   }
3452   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3453     if (ss.type() == T_VALUETYPE) {
3454       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3455       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3456       ValueKlass* vk = ValueKlass::cast(k);
3457       oop res = vk->allocate_instance(CHECK);
3458       array->obj_at_put(i, res);
3459       i++;
3460     }
3461   }
3462   thread->set_vm_result(array());
3463   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3464 }
3465 JRT_END
3466 
3467 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3468 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3469 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3470 {
3471   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3472   assert(oopDesc::is_oop(array), "should be oop");
3473   for (int i = 0; i < array->length(); ++i) {
3474     instanceOop valueOop = (instanceOop)array->obj_at(i);
3475     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3476     if (vk->contains_oops()) {
3477       const address dst_oop_addr = ((address) (void*) valueOop);
3478       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3479       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3480       while (map != end) {
3481         address doop_address = dst_oop_addr + map->offset();
3482         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3483           write_ref_array((HeapWord*) doop_address, map->count());
3484         map++;
3485       }
3486     }
3487   }
3488 }
3489 JRT_END
3490 
3491 // We're returning from an interpreted method: load each field into a
3492 // register following the calling convention
3493 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3494 {
3495   assert(res->klass()->is_value(), "only value types here");
3496   ResourceMark rm;
3497   RegisterMap reg_map(thread);
3498   frame stubFrame = thread->last_frame();
3499   frame callerFrame = stubFrame.sender(&reg_map);
3500   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3501 
3502   ValueKlass* vk = ValueKlass::cast(res->klass());
3503 
3504   const Array<SigEntry>* sig_vk = vk->extended_sig();
3505   const Array<VMRegPair>* regs = vk->return_regs();
3506 
3507   if (regs == NULL) {
3508     // The fields of the value klass don't fit in registers, bail out
3509     return;
3510   }
3511 
3512   int j = 1;
3513   for (int i = 0; i < sig_vk->length(); i++) {
3514     BasicType bt = sig_vk->at(i)._bt;
3515     if (bt == T_VALUETYPE) {
3516       continue;
3517     }
3518     if (bt == T_VOID) {
3519       if (sig_vk->at(i-1)._bt == T_LONG ||
3520           sig_vk->at(i-1)._bt == T_DOUBLE) {
3521         j++;
3522       }
3523       continue;
3524     }
3525     int off = sig_vk->at(i)._offset;
3526     assert(off > 0, "offset in object should be positive");
3527     VMRegPair pair = regs->at(j);
3528     address loc = reg_map.location(pair.first());
3529     switch(bt) {
3530     case T_BOOLEAN:
3531       *(jboolean*)loc = res->bool_field(off);
3532       break;
3533     case T_CHAR:
3534       *(jchar*)loc = res->char_field(off);
3535       break;
3536     case T_BYTE:
3537       *(jbyte*)loc = res->byte_field(off);
3538       break;
3539     case T_SHORT:
3540       *(jshort*)loc = res->short_field(off);
3541       break;
3542     case T_INT: {
3543       *(jint*)loc = res->int_field(off);
3544       break;
3545     }
3546     case T_LONG:
3547 #ifdef _LP64
3548       *(intptr_t*)loc = res->long_field(off);
3549 #else
3550       Unimplemented();
3551 #endif
3552       break;
3553     case T_OBJECT:
3554     case T_ARRAY: {
3555       *(oop*)loc = res->obj_field(off);
3556       break;
3557     }
3558     case T_FLOAT:
3559       *(jfloat*)loc = res->float_field(off);
3560       break;
3561     case T_DOUBLE:
3562       *(jdouble*)loc = res->double_field(off);
3563       break;
3564     default:
3565       ShouldNotReachHere();
3566     }
3567     j++;
3568   }
3569   assert(j == regs->length(), "missed a field?");
3570 
3571 #ifdef ASSERT
3572   VMRegPair pair = regs->at(0);
3573   address loc = reg_map.location(pair.first());
3574   assert(*(oopDesc**)loc == res, "overwritten object");
3575 #endif
3576 
3577   thread->set_vm_result(res);
3578 }
3579 JRT_END
3580 
3581 // We've returned to an interpreted method, the interpreter needs a
3582 // reference to a value type instance. Allocate it and initialize it
3583 // from field's values in registers.
3584 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3585 {
3586   ResourceMark rm;
3587   RegisterMap reg_map(thread);
3588   frame stubFrame = thread->last_frame();
3589   frame callerFrame = stubFrame.sender(&reg_map);
3590 
3591 #ifdef ASSERT
3592   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3593 #endif
3594 
3595   if (!is_set_nth_bit(res, 0)) {
3596     // We're not returning with value type fields in registers (the
3597     // calling convention didn't allow it for this value klass)
3598     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3599     thread->set_vm_result((oopDesc*)res);
3600     assert(verif_vk == NULL, "broken calling convention");
3601     return;
3602   }
3603 
3604   clear_nth_bit(res, 0);
3605   ValueKlass* vk = (ValueKlass*)res;
3606   assert(verif_vk == vk, "broken calling convention");
3607   assert(Metaspace::contains((void*)res), "should be klass");
3608 
3609   // Allocate handles for every oop field so they are safe in case of
3610   // a safepoint when allocating
3611   GrowableArray<Handle> handles;
3612   vk->save_oop_fields(reg_map, handles);
3613 
3614   // It's unsafe to safepoint until we are here
3615   JRT_BLOCK;
3616   {
3617     Thread* THREAD = thread;
3618     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3619     thread->set_vm_result(vt);
3620   }
3621   JRT_BLOCK_END;
3622 }
3623 JRT_END
3624