1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.hpp"
  52 #include "oops/klass.hpp"
  53 #include "oops/method.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/valueKlass.hpp"
  58 #include "prims/forte.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/methodHandles.hpp"
  61 #include "prims/nativeLookup.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/biasedLocking.hpp"
  65 #include "runtime/compilationPolicy.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/hashtable.inline.hpp"
  80 #include "utilities/macros.hpp"
  81 #include "utilities/xmlstream.hpp"
  82 #ifdef COMPILER1
  83 #include "c1/c1_Runtime1.hpp"
  84 #endif
  85 
  86 // Shared stub locations
  87 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  88 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  89 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  93 address             SharedRuntime::_resolve_static_call_entry;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 113   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 114 
 115 #if COMPILER2_OR_JVMCI
 116   // Vectors are generated only by C2 and JVMCI.
 117   bool support_wide = is_wide_vector(MaxVectorSize);
 118   if (support_wide) {
 119     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 120   }
 121 #endif // COMPILER2_OR_JVMCI
 122   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 123   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 124 
 125   generate_deopt_blob();
 126 
 127 #ifdef COMPILER2
 128   generate_uncommon_trap_blob();
 129 #endif // COMPILER2
 130 }
 131 
 132 #include <math.h>
 133 
 134 // Implementation of SharedRuntime
 135 
 136 #ifndef PRODUCT
 137 // For statistics
 138 int SharedRuntime::_ic_miss_ctr = 0;
 139 int SharedRuntime::_wrong_method_ctr = 0;
 140 int SharedRuntime::_resolve_static_ctr = 0;
 141 int SharedRuntime::_resolve_virtual_ctr = 0;
 142 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 143 int SharedRuntime::_implicit_null_throws = 0;
 144 int SharedRuntime::_implicit_div0_throws = 0;
 145 int SharedRuntime::_throw_null_ctr = 0;
 146 
 147 int SharedRuntime::_nof_normal_calls = 0;
 148 int SharedRuntime::_nof_optimized_calls = 0;
 149 int SharedRuntime::_nof_inlined_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_calls = 0;
 151 int SharedRuntime::_nof_static_calls = 0;
 152 int SharedRuntime::_nof_inlined_static_calls = 0;
 153 int SharedRuntime::_nof_interface_calls = 0;
 154 int SharedRuntime::_nof_optimized_interface_calls = 0;
 155 int SharedRuntime::_nof_inlined_interface_calls = 0;
 156 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 157 int SharedRuntime::_nof_removable_exceptions = 0;
 158 
 159 int SharedRuntime::_new_instance_ctr=0;
 160 int SharedRuntime::_new_array_ctr=0;
 161 int SharedRuntime::_multi1_ctr=0;
 162 int SharedRuntime::_multi2_ctr=0;
 163 int SharedRuntime::_multi3_ctr=0;
 164 int SharedRuntime::_multi4_ctr=0;
 165 int SharedRuntime::_multi5_ctr=0;
 166 int SharedRuntime::_mon_enter_stub_ctr=0;
 167 int SharedRuntime::_mon_exit_stub_ctr=0;
 168 int SharedRuntime::_mon_enter_ctr=0;
 169 int SharedRuntime::_mon_exit_ctr=0;
 170 int SharedRuntime::_partial_subtype_ctr=0;
 171 int SharedRuntime::_jbyte_array_copy_ctr=0;
 172 int SharedRuntime::_jshort_array_copy_ctr=0;
 173 int SharedRuntime::_jint_array_copy_ctr=0;
 174 int SharedRuntime::_jlong_array_copy_ctr=0;
 175 int SharedRuntime::_oop_array_copy_ctr=0;
 176 int SharedRuntime::_checkcast_array_copy_ctr=0;
 177 int SharedRuntime::_unsafe_array_copy_ctr=0;
 178 int SharedRuntime::_generic_array_copy_ctr=0;
 179 int SharedRuntime::_slow_array_copy_ctr=0;
 180 int SharedRuntime::_find_handler_ctr=0;
 181 int SharedRuntime::_rethrow_ctr=0;
 182 
 183 int     SharedRuntime::_ICmiss_index                    = 0;
 184 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 186 
 187 
 188 void SharedRuntime::trace_ic_miss(address at) {
 189   for (int i = 0; i < _ICmiss_index; i++) {
 190     if (_ICmiss_at[i] == at) {
 191       _ICmiss_count[i]++;
 192       return;
 193     }
 194   }
 195   int index = _ICmiss_index++;
 196   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 197   _ICmiss_at[index] = at;
 198   _ICmiss_count[index] = 1;
 199 }
 200 
 201 void SharedRuntime::print_ic_miss_histogram() {
 202   if (ICMissHistogram) {
 203     tty->print_cr("IC Miss Histogram:");
 204     int tot_misses = 0;
 205     for (int i = 0; i < _ICmiss_index; i++) {
 206       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 207       tot_misses += _ICmiss_count[i];
 208     }
 209     tty->print_cr("Total IC misses: %7d", tot_misses);
 210   }
 211 }
 212 #endif // PRODUCT
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 216   return x * y;
 217 JRT_END
 218 
 219 
 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 221   if (x == min_jlong && y == CONST64(-1)) {
 222     return x;
 223   } else {
 224     return x / y;
 225   }
 226 JRT_END
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 230   if (x == min_jlong && y == CONST64(-1)) {
 231     return 0;
 232   } else {
 233     return x % y;
 234   }
 235 JRT_END
 236 
 237 
 238 const juint  float_sign_mask  = 0x7FFFFFFF;
 239 const juint  float_infinity   = 0x7F800000;
 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 241 const julong double_infinity  = CONST64(0x7FF0000000000000);
 242 
 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 244 #ifdef _WIN64
 245   // 64-bit Windows on amd64 returns the wrong values for
 246   // infinity operands.
 247   union { jfloat f; juint i; } xbits, ybits;
 248   xbits.f = x;
 249   ybits.f = y;
 250   // x Mod Infinity == x unless x is infinity
 251   if (((xbits.i & float_sign_mask) != float_infinity) &&
 252        ((ybits.i & float_sign_mask) == float_infinity) ) {
 253     return x;
 254   }
 255   return ((jfloat)fmod_winx64((double)x, (double)y));
 256 #else
 257   return ((jfloat)fmod((double)x,(double)y));
 258 #endif
 259 JRT_END
 260 
 261 
 262 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 263 #ifdef _WIN64
 264   union { jdouble d; julong l; } xbits, ybits;
 265   xbits.d = x;
 266   ybits.d = y;
 267   // x Mod Infinity == x unless x is infinity
 268   if (((xbits.l & double_sign_mask) != double_infinity) &&
 269        ((ybits.l & double_sign_mask) == double_infinity) ) {
 270     return x;
 271   }
 272   return ((jdouble)fmod_winx64((double)x, (double)y));
 273 #else
 274   return ((jdouble)fmod((double)x,(double)y));
 275 #endif
 276 JRT_END
 277 
 278 #ifdef __SOFTFP__
 279 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 280   return x + y;
 281 JRT_END
 282 
 283 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 284   return x - y;
 285 JRT_END
 286 
 287 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 288   return x * y;
 289 JRT_END
 290 
 291 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 292   return x / y;
 293 JRT_END
 294 
 295 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 296   return x + y;
 297 JRT_END
 298 
 299 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 300   return x - y;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 304   return x * y;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 308   return x / y;
 309 JRT_END
 310 
 311 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 312   return (jfloat)x;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 316   return (jdouble)x;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 320   return (jdouble)x;
 321 JRT_END
 322 
 323 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 324   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 325 JRT_END
 326 
 327 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 328   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 329 JRT_END
 330 
 331 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 332   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 333 JRT_END
 334 
 335 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 336   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 337 JRT_END
 338 
 339 // Functions to return the opposite of the aeabi functions for nan.
 340 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 341   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 345   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 346 JRT_END
 347 
 348 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 349   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 353   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 357   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 361   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 365   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 369   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 // Intrinsics make gcc generate code for these.
 373 float  SharedRuntime::fneg(float f)   {
 374   return -f;
 375 }
 376 
 377 double SharedRuntime::dneg(double f)  {
 378   return -f;
 379 }
 380 
 381 #endif // __SOFTFP__
 382 
 383 #if defined(__SOFTFP__) || defined(E500V2)
 384 // Intrinsics make gcc generate code for these.
 385 double SharedRuntime::dabs(double f)  {
 386   return (f <= (double)0.0) ? (double)0.0 - f : f;
 387 }
 388 
 389 #endif
 390 
 391 #if defined(__SOFTFP__) || defined(PPC)
 392 double SharedRuntime::dsqrt(double f) {
 393   return sqrt(f);
 394 }
 395 #endif
 396 
 397 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 398   if (g_isnan(x))
 399     return 0;
 400   if (x >= (jfloat) max_jint)
 401     return max_jint;
 402   if (x <= (jfloat) min_jint)
 403     return min_jint;
 404   return (jint) x;
 405 JRT_END
 406 
 407 
 408 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 409   if (g_isnan(x))
 410     return 0;
 411   if (x >= (jfloat) max_jlong)
 412     return max_jlong;
 413   if (x <= (jfloat) min_jlong)
 414     return min_jlong;
 415   return (jlong) x;
 416 JRT_END
 417 
 418 
 419 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jdouble) max_jint)
 423     return max_jint;
 424   if (x <= (jdouble) min_jint)
 425     return min_jint;
 426   return (jint) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jdouble) max_jlong)
 434     return max_jlong;
 435   if (x <= (jdouble) min_jlong)
 436     return min_jlong;
 437   return (jlong) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 447   return (jfloat)x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 452   return (jdouble)x;
 453 JRT_END
 454 
 455 // Exception handling across interpreter/compiler boundaries
 456 //
 457 // exception_handler_for_return_address(...) returns the continuation address.
 458 // The continuation address is the entry point of the exception handler of the
 459 // previous frame depending on the return address.
 460 
 461 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 462   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 463   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 464 
 465   // Reset method handle flag.
 466   thread->set_is_method_handle_return(false);
 467 
 468 #if INCLUDE_JVMCI
 469   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 470   // and other exception handler continuations do not read it
 471   thread->set_exception_pc(NULL);
 472 #endif // INCLUDE_JVMCI
 473 
 474   // The fastest case first
 475   CodeBlob* blob = CodeCache::find_blob(return_address);
 476   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 477   if (nm != NULL) {
 478     // Set flag if return address is a method handle call site.
 479     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 480     // native nmethods don't have exception handlers
 481     assert(!nm->is_native_method(), "no exception handler");
 482     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 483     if (nm->is_deopt_pc(return_address)) {
 484       // If we come here because of a stack overflow, the stack may be
 485       // unguarded. Reguard the stack otherwise if we return to the
 486       // deopt blob and the stack bang causes a stack overflow we
 487       // crash.
 488       bool guard_pages_enabled = thread->stack_guards_enabled();
 489       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 490       if (thread->reserved_stack_activation() != thread->stack_base()) {
 491         thread->set_reserved_stack_activation(thread->stack_base());
 492       }
 493       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 494       return SharedRuntime::deopt_blob()->unpack_with_exception();
 495     } else {
 496       return nm->exception_begin();
 497     }
 498   }
 499 
 500   // Entry code
 501   if (StubRoutines::returns_to_call_stub(return_address)) {
 502     return StubRoutines::catch_exception_entry();
 503   }
 504   // Interpreted code
 505   if (Interpreter::contains(return_address)) {
 506     return Interpreter::rethrow_exception_entry();
 507   }
 508 
 509   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 510   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 511 
 512 #ifndef PRODUCT
 513   { ResourceMark rm;
 514     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 515     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 516     tty->print_cr("b) other problem");
 517   }
 518 #endif // PRODUCT
 519 
 520   ShouldNotReachHere();
 521   return NULL;
 522 }
 523 
 524 
 525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 526   return raw_exception_handler_for_return_address(thread, return_address);
 527 JRT_END
 528 
 529 
 530 address SharedRuntime::get_poll_stub(address pc) {
 531   address stub;
 532   // Look up the code blob
 533   CodeBlob *cb = CodeCache::find_blob(pc);
 534 
 535   // Should be an nmethod
 536   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 537 
 538   // Look up the relocation information
 539   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 540     "safepoint polling: type must be poll");
 541 
 542 #ifdef ASSERT
 543   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 544     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 545     Disassembler::decode(cb);
 546     fatal("Only polling locations are used for safepoint");
 547   }
 548 #endif
 549 
 550   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 551   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 552   if (at_poll_return) {
 553     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 554            "polling page return stub not created yet");
 555     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 556   } else if (has_wide_vectors) {
 557     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 558            "polling page vectors safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 560   } else {
 561     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 562            "polling page safepoint stub not created yet");
 563     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 564   }
 565   log_debug(safepoint)("... found polling page %s exception at pc = "
 566                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 567                        at_poll_return ? "return" : "loop",
 568                        (intptr_t)pc, (intptr_t)stub);
 569   return stub;
 570 }
 571 
 572 
 573 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 574   assert(caller.is_interpreted_frame(), "");
 575   int args_size = ArgumentSizeComputer(sig).size() + 1;
 576   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 577   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 578   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 579   return result;
 580 }
 581 
 582 
 583 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 584   if (JvmtiExport::can_post_on_exceptions()) {
 585     vframeStream vfst(thread, true);
 586     methodHandle method = methodHandle(thread, vfst.method());
 587     address bcp = method()->bcp_from(vfst.bci());
 588     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 589   }
 590   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 591 }
 592 
 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 594   Handle h_exception = Exceptions::new_exception(thread, name, message);
 595   throw_and_post_jvmti_exception(thread, h_exception);
 596 }
 597 
 598 // The interpreter code to call this tracing function is only
 599 // called/generated when UL is on for redefine, class and has the right level
 600 // and tags. Since obsolete methods are never compiled, we don't have
 601 // to modify the compilers to generate calls to this function.
 602 //
 603 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 604     JavaThread* thread, Method* method))
 605   if (method->is_obsolete()) {
 606     // We are calling an obsolete method, but this is not necessarily
 607     // an error. Our method could have been redefined just after we
 608     // fetched the Method* from the constant pool.
 609     ResourceMark rm;
 610     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 611   }
 612   return 0;
 613 JRT_END
 614 
 615 // ret_pc points into caller; we are returning caller's exception handler
 616 // for given exception
 617 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 618                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 619   assert(cm != NULL, "must exist");
 620   ResourceMark rm;
 621 
 622 #if INCLUDE_JVMCI
 623   if (cm->is_compiled_by_jvmci()) {
 624     // lookup exception handler for this pc
 625     int catch_pco = ret_pc - cm->code_begin();
 626     ExceptionHandlerTable table(cm);
 627     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 628     if (t != NULL) {
 629       return cm->code_begin() + t->pco();
 630     } else {
 631       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 632     }
 633   }
 634 #endif // INCLUDE_JVMCI
 635 
 636   nmethod* nm = cm->as_nmethod();
 637   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 638   // determine handler bci, if any
 639   EXCEPTION_MARK;
 640 
 641   int handler_bci = -1;
 642   int scope_depth = 0;
 643   if (!force_unwind) {
 644     int bci = sd->bci();
 645     bool recursive_exception = false;
 646     do {
 647       bool skip_scope_increment = false;
 648       // exception handler lookup
 649       Klass* ek = exception->klass();
 650       methodHandle mh(THREAD, sd->method());
 651       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 652       if (HAS_PENDING_EXCEPTION) {
 653         recursive_exception = true;
 654         // We threw an exception while trying to find the exception handler.
 655         // Transfer the new exception to the exception handle which will
 656         // be set into thread local storage, and do another lookup for an
 657         // exception handler for this exception, this time starting at the
 658         // BCI of the exception handler which caused the exception to be
 659         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 660         // argument to ensure that the correct exception is thrown (4870175).
 661         recursive_exception_occurred = true;
 662         exception = Handle(THREAD, PENDING_EXCEPTION);
 663         CLEAR_PENDING_EXCEPTION;
 664         if (handler_bci >= 0) {
 665           bci = handler_bci;
 666           handler_bci = -1;
 667           skip_scope_increment = true;
 668         }
 669       }
 670       else {
 671         recursive_exception = false;
 672       }
 673       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 674         sd = sd->sender();
 675         if (sd != NULL) {
 676           bci = sd->bci();
 677         }
 678         ++scope_depth;
 679       }
 680     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 681   }
 682 
 683   // found handling method => lookup exception handler
 684   int catch_pco = ret_pc - nm->code_begin();
 685 
 686   ExceptionHandlerTable table(nm);
 687   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 688   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 689     // Allow abbreviated catch tables.  The idea is to allow a method
 690     // to materialize its exceptions without committing to the exact
 691     // routing of exceptions.  In particular this is needed for adding
 692     // a synthetic handler to unlock monitors when inlining
 693     // synchronized methods since the unlock path isn't represented in
 694     // the bytecodes.
 695     t = table.entry_for(catch_pco, -1, 0);
 696   }
 697 
 698 #ifdef COMPILER1
 699   if (t == NULL && nm->is_compiled_by_c1()) {
 700     assert(nm->unwind_handler_begin() != NULL, "");
 701     return nm->unwind_handler_begin();
 702   }
 703 #endif
 704 
 705   if (t == NULL) {
 706     ttyLocker ttyl;
 707     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 708     tty->print_cr("   Exception:");
 709     exception->print();
 710     tty->cr();
 711     tty->print_cr(" Compiled exception table :");
 712     table.print();
 713     nm->print_code();
 714     guarantee(false, "missing exception handler");
 715     return NULL;
 716   }
 717 
 718   return nm->code_begin() + t->pco();
 719 }
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 727   // These errors occur only at call sites
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 737 JRT_END
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 740   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 741   // cache sites (when the callee activation is not yet set up) so we are at a call site
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 746   throw_StackOverflowError_common(thread, false);
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 750   throw_StackOverflowError_common(thread, true);
 751 JRT_END
 752 
 753 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 754   // We avoid using the normal exception construction in this case because
 755   // it performs an upcall to Java, and we're already out of stack space.
 756   Thread* THREAD = thread;
 757   Klass* k = SystemDictionary::StackOverflowError_klass();
 758   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 759   if (delayed) {
 760     java_lang_Throwable::set_message(exception_oop,
 761                                      Universe::delayed_stack_overflow_error_message());
 762   }
 763   Handle exception (thread, exception_oop);
 764   if (StackTraceInThrowable) {
 765     java_lang_Throwable::fill_in_stack_trace(exception);
 766   }
 767   // Increment counter for hs_err file reporting
 768   Atomic::inc(&Exceptions::_stack_overflow_errors);
 769   throw_and_post_jvmti_exception(thread, exception);
 770 }
 771 
 772 #if INCLUDE_JVMCI
 773 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 774   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 775   thread->set_jvmci_implicit_exception_pc(pc);
 776   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 777   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 778 }
 779 #endif // INCLUDE_JVMCI
 780 
 781 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 782                                                            address pc,
 783                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 784 {
 785   address target_pc = NULL;
 786 
 787   if (Interpreter::contains(pc)) {
 788 #ifdef CC_INTERP
 789     // C++ interpreter doesn't throw implicit exceptions
 790     ShouldNotReachHere();
 791 #else
 792     switch (exception_kind) {
 793       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 794       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 795       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 796       default:                      ShouldNotReachHere();
 797     }
 798 #endif // !CC_INTERP
 799   } else {
 800     switch (exception_kind) {
 801       case STACK_OVERFLOW: {
 802         // Stack overflow only occurs upon frame setup; the callee is
 803         // going to be unwound. Dispatch to a shared runtime stub
 804         // which will cause the StackOverflowError to be fabricated
 805         // and processed.
 806         // Stack overflow should never occur during deoptimization:
 807         // the compiled method bangs the stack by as much as the
 808         // interpreter would need in case of a deoptimization. The
 809         // deoptimization blob and uncommon trap blob bang the stack
 810         // in a debug VM to verify the correctness of the compiled
 811         // method stack banging.
 812         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 813         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 814         return StubRoutines::throw_StackOverflowError_entry();
 815       }
 816 
 817       case IMPLICIT_NULL: {
 818         if (VtableStubs::contains(pc)) {
 819           // We haven't yet entered the callee frame. Fabricate an
 820           // exception and begin dispatching it in the caller. Since
 821           // the caller was at a call site, it's safe to destroy all
 822           // caller-saved registers, as these entry points do.
 823           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 824 
 825           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 826           if (vt_stub == NULL) return NULL;
 827 
 828           if (vt_stub->is_abstract_method_error(pc)) {
 829             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 830             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 831             // Instead of throwing the abstract method error here directly, we re-resolve
 832             // and will throw the AbstractMethodError during resolve. As a result, we'll
 833             // get a more detailed error message.
 834             return SharedRuntime::get_handle_wrong_method_stub();
 835           } else {
 836             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 837             // Assert that the signal comes from the expected location in stub code.
 838             assert(vt_stub->is_null_pointer_exception(pc),
 839                    "obtained signal from unexpected location in stub code");
 840             return StubRoutines::throw_NullPointerException_at_call_entry();
 841           }
 842         } else {
 843           CodeBlob* cb = CodeCache::find_blob(pc);
 844 
 845           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 846           if (cb == NULL) return NULL;
 847 
 848           // Exception happened in CodeCache. Must be either:
 849           // 1. Inline-cache check in C2I handler blob,
 850           // 2. Inline-cache check in nmethod, or
 851           // 3. Implicit null exception in nmethod
 852 
 853           if (!cb->is_compiled()) {
 854             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 855             if (!is_in_blob) {
 856               // Allow normal crash reporting to handle this
 857               return NULL;
 858             }
 859             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 860             // There is no handler here, so we will simply unwind.
 861             return StubRoutines::throw_NullPointerException_at_call_entry();
 862           }
 863 
 864           // Otherwise, it's a compiled method.  Consult its exception handlers.
 865           CompiledMethod* cm = (CompiledMethod*)cb;
 866           if (cm->inlinecache_check_contains(pc)) {
 867             // exception happened inside inline-cache check code
 868             // => the nmethod is not yet active (i.e., the frame
 869             // is not set up yet) => use return address pushed by
 870             // caller => don't push another return address
 871             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 872             return StubRoutines::throw_NullPointerException_at_call_entry();
 873           }
 874 
 875           if (cm->method()->is_method_handle_intrinsic()) {
 876             // exception happened inside MH dispatch code, similar to a vtable stub
 877             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 878             return StubRoutines::throw_NullPointerException_at_call_entry();
 879           }
 880 
 881 #ifndef PRODUCT
 882           _implicit_null_throws++;
 883 #endif
 884 #if INCLUDE_JVMCI
 885           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 886             // If there's no PcDesc then we'll die way down inside of
 887             // deopt instead of just getting normal error reporting,
 888             // so only go there if it will succeed.
 889             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 890           } else {
 891 #endif // INCLUDE_JVMCI
 892           assert (cm->is_nmethod(), "Expect nmethod");
 893           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 894 #if INCLUDE_JVMCI
 895           }
 896 #endif // INCLUDE_JVMCI
 897           // If there's an unexpected fault, target_pc might be NULL,
 898           // in which case we want to fall through into the normal
 899           // error handling code.
 900         }
 901 
 902         break; // fall through
 903       }
 904 
 905 
 906       case IMPLICIT_DIVIDE_BY_ZERO: {
 907         CompiledMethod* cm = CodeCache::find_compiled(pc);
 908         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 909 #ifndef PRODUCT
 910         _implicit_div0_throws++;
 911 #endif
 912 #if INCLUDE_JVMCI
 913         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 914           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 915         } else {
 916 #endif // INCLUDE_JVMCI
 917         target_pc = cm->continuation_for_implicit_exception(pc);
 918 #if INCLUDE_JVMCI
 919         }
 920 #endif // INCLUDE_JVMCI
 921         // If there's an unexpected fault, target_pc might be NULL,
 922         // in which case we want to fall through into the normal
 923         // error handling code.
 924         break; // fall through
 925       }
 926 
 927       default: ShouldNotReachHere();
 928     }
 929 
 930     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 931 
 932     if (exception_kind == IMPLICIT_NULL) {
 933 #ifndef PRODUCT
 934       // for AbortVMOnException flag
 935       Exceptions::debug_check_abort("java.lang.NullPointerException");
 936 #endif //PRODUCT
 937       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 938     } else {
 939 #ifndef PRODUCT
 940       // for AbortVMOnException flag
 941       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 942 #endif //PRODUCT
 943       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 944     }
 945     return target_pc;
 946   }
 947 
 948   ShouldNotReachHere();
 949   return NULL;
 950 }
 951 
 952 
 953 /**
 954  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 955  * installed in the native function entry of all native Java methods before
 956  * they get linked to their actual native methods.
 957  *
 958  * \note
 959  * This method actually never gets called!  The reason is because
 960  * the interpreter's native entries call NativeLookup::lookup() which
 961  * throws the exception when the lookup fails.  The exception is then
 962  * caught and forwarded on the return from NativeLookup::lookup() call
 963  * before the call to the native function.  This might change in the future.
 964  */
 965 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 966 {
 967   // We return a bad value here to make sure that the exception is
 968   // forwarded before we look at the return value.
 969   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 970 }
 971 JNI_END
 972 
 973 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 974   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 975 }
 976 
 977 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 978 #if INCLUDE_JVMCI
 979   if (!obj->klass()->has_finalizer()) {
 980     return;
 981   }
 982 #endif // INCLUDE_JVMCI
 983   assert(oopDesc::is_oop(obj), "must be a valid oop");
 984   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 985   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 986 JRT_END
 987 
 988 
 989 jlong SharedRuntime::get_java_tid(Thread* thread) {
 990   if (thread != NULL) {
 991     if (thread->is_Java_thread()) {
 992       oop obj = ((JavaThread*)thread)->threadObj();
 993       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 994     }
 995   }
 996   return 0;
 997 }
 998 
 999 /**
1000  * This function ought to be a void function, but cannot be because
1001  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1002  * 6254741.  Once that is fixed we can remove the dummy return value.
1003  */
1004 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1005   return dtrace_object_alloc_base(Thread::current(), o, size);
1006 }
1007 
1008 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1009   assert(DTraceAllocProbes, "wrong call");
1010   Klass* klass = o->klass();
1011   Symbol* name = klass->name();
1012   HOTSPOT_OBJECT_ALLOC(
1013                    get_java_tid(thread),
1014                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1015   return 0;
1016 }
1017 
1018 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1019     JavaThread* thread, Method* method))
1020   assert(DTraceMethodProbes, "wrong call");
1021   Symbol* kname = method->klass_name();
1022   Symbol* name = method->name();
1023   Symbol* sig = method->signature();
1024   HOTSPOT_METHOD_ENTRY(
1025       get_java_tid(thread),
1026       (char *) kname->bytes(), kname->utf8_length(),
1027       (char *) name->bytes(), name->utf8_length(),
1028       (char *) sig->bytes(), sig->utf8_length());
1029   return 0;
1030 JRT_END
1031 
1032 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1033     JavaThread* thread, Method* method))
1034   assert(DTraceMethodProbes, "wrong call");
1035   Symbol* kname = method->klass_name();
1036   Symbol* name = method->name();
1037   Symbol* sig = method->signature();
1038   HOTSPOT_METHOD_RETURN(
1039       get_java_tid(thread),
1040       (char *) kname->bytes(), kname->utf8_length(),
1041       (char *) name->bytes(), name->utf8_length(),
1042       (char *) sig->bytes(), sig->utf8_length());
1043   return 0;
1044 JRT_END
1045 
1046 
1047 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1048 // for a call current in progress, i.e., arguments has been pushed on stack
1049 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1050 // vtable updates, etc.  Caller frame must be compiled.
1051 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1052   ResourceMark rm(THREAD);
1053 
1054   // last java frame on stack (which includes native call frames)
1055   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1056 
1057   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1058 }
1059 
1060 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1061   CompiledMethod* caller = vfst.nm();
1062 
1063   nmethodLocker caller_lock(caller);
1064 
1065   address pc = vfst.frame_pc();
1066   { // Get call instruction under lock because another thread may be busy patching it.
1067     CompiledICLocker ic_locker(caller);
1068     return caller->attached_method_before_pc(pc);
1069   }
1070   return NULL;
1071 }
1072 
1073 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1074 // for a call current in progress, i.e., arguments has been pushed on stack
1075 // but callee has not been invoked yet.  Caller frame must be compiled.
1076 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1077                                               vframeStream& vfst,
1078                                               Bytecodes::Code& bc,
1079                                               CallInfo& callinfo, TRAPS) {
1080   Handle receiver;
1081   Handle nullHandle;  //create a handy null handle for exception returns
1082 
1083   assert(!vfst.at_end(), "Java frame must exist");
1084 
1085   // Find caller and bci from vframe
1086   methodHandle caller(THREAD, vfst.method());
1087   int          bci   = vfst.bci();
1088 
1089   Bytecode_invoke bytecode(caller, bci);
1090   int bytecode_index = bytecode.index();
1091   bc = bytecode.invoke_code();
1092 
1093   methodHandle attached_method = extract_attached_method(vfst);
1094   if (attached_method.not_null()) {
1095     methodHandle callee = bytecode.static_target(CHECK_NH);
1096     vmIntrinsics::ID id = callee->intrinsic_id();
1097     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1098     // it attaches statically resolved method to the call site.
1099     if (MethodHandles::is_signature_polymorphic(id) &&
1100         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1101       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1102 
1103       // Adjust invocation mode according to the attached method.
1104       switch (bc) {
1105         case Bytecodes::_invokevirtual:
1106           if (attached_method->method_holder()->is_interface()) {
1107             bc = Bytecodes::_invokeinterface;
1108           }
1109           break;
1110         case Bytecodes::_invokeinterface:
1111           if (!attached_method->method_holder()->is_interface()) {
1112             bc = Bytecodes::_invokevirtual;
1113           }
1114           break;
1115         case Bytecodes::_invokehandle:
1116           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1117             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1118                                               : Bytecodes::_invokevirtual;
1119           }
1120           break;
1121         default:
1122           break;
1123       }
1124     } else {
1125       assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods");
1126       if (bc != Bytecodes::_invokevirtual) {
1127         // Ignore the attached method in this case to not confuse below code
1128         attached_method = NULL;
1129       }
1130     }
1131   }
1132 
1133   assert(bc != Bytecodes::_illegal, "not initialized");
1134 
1135   bool has_receiver = bc != Bytecodes::_invokestatic &&
1136                       bc != Bytecodes::_invokedynamic &&
1137                       bc != Bytecodes::_invokehandle;
1138 
1139   // Find receiver for non-static call
1140   if (has_receiver) {
1141     // This register map must be update since we need to find the receiver for
1142     // compiled frames. The receiver might be in a register.
1143     RegisterMap reg_map2(thread);
1144     frame stubFrame   = thread->last_frame();
1145     // Caller-frame is a compiled frame
1146     frame callerFrame = stubFrame.sender(&reg_map2);
1147 
1148     methodHandle callee = attached_method;
1149     if (callee.is_null()) {
1150       callee = bytecode.static_target(CHECK_NH);
1151       if (callee.is_null()) {
1152         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1153       }
1154     }
1155     // TODO for now, don't scalarize value type receivers because of interface calls
1156     if (callee->has_scalarized_args() && callee->method_holder()->is_value() && false) {
1157       // If the receiver is a value type that is passed as fields, no oop is available.
1158       // Resolve the call without receiver null checking.
1159       assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual");
1160       assert(!attached_method.is_null(), "must have attached method");
1161       constantPoolHandle constants(THREAD, caller->constants());
1162       LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1163       LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH);
1164       return receiver; // is null
1165     } else {
1166       // Retrieve from a compiled argument list
1167       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1168 
1169       if (receiver.is_null()) {
1170         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1171       }
1172     }
1173   }
1174 
1175   // Resolve method
1176   if (attached_method.not_null()) {
1177     // Parameterized by attached method.
1178     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1179   } else {
1180     // Parameterized by bytecode.
1181     constantPoolHandle constants(THREAD, caller->constants());
1182     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1183   }
1184 
1185 #ifdef ASSERT
1186   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1187   if (has_receiver) {
1188     assert(receiver.not_null(), "should have thrown exception");
1189     Klass* receiver_klass = receiver->klass();
1190     Klass* rk = NULL;
1191     if (attached_method.not_null()) {
1192       // In case there's resolved method attached, use its holder during the check.
1193       rk = attached_method->method_holder();
1194     } else {
1195       // Klass is already loaded.
1196       constantPoolHandle constants(THREAD, caller->constants());
1197       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1198     }
1199     Klass* static_receiver_klass = rk;
1200     methodHandle callee = callinfo.selected_method();
1201     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1202            "actual receiver must be subclass of static receiver klass");
1203     if (receiver_klass->is_instance_klass()) {
1204       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1205         tty->print_cr("ERROR: Klass not yet initialized!!");
1206         receiver_klass->print();
1207       }
1208       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1209     }
1210   }
1211 #endif
1212 
1213   return receiver;
1214 }
1215 
1216 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1217   ResourceMark rm(THREAD);
1218   // We need first to check if any Java activations (compiled, interpreted)
1219   // exist on the stack since last JavaCall.  If not, we need
1220   // to get the target method from the JavaCall wrapper.
1221   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1222   methodHandle callee_method;
1223   if (vfst.at_end()) {
1224     // No Java frames were found on stack since we did the JavaCall.
1225     // Hence the stack can only contain an entry_frame.  We need to
1226     // find the target method from the stub frame.
1227     RegisterMap reg_map(thread, false);
1228     frame fr = thread->last_frame();
1229     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1230     fr = fr.sender(&reg_map);
1231     assert(fr.is_entry_frame(), "must be");
1232     // fr is now pointing to the entry frame.
1233     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1234   } else {
1235     Bytecodes::Code bc;
1236     CallInfo callinfo;
1237     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1238     callee_method = callinfo.selected_method();
1239   }
1240   assert(callee_method()->is_method(), "must be");
1241   return callee_method;
1242 }
1243 
1244 // Resolves a call.
1245 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1246                                            bool is_virtual,
1247                                            bool is_optimized, TRAPS) {
1248   methodHandle callee_method;
1249   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1250   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1251     int retry_count = 0;
1252     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1253            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1254       // If has a pending exception then there is no need to re-try to
1255       // resolve this method.
1256       // If the method has been redefined, we need to try again.
1257       // Hack: we have no way to update the vtables of arrays, so don't
1258       // require that java.lang.Object has been updated.
1259 
1260       // It is very unlikely that method is redefined more than 100 times
1261       // in the middle of resolve. If it is looping here more than 100 times
1262       // means then there could be a bug here.
1263       guarantee((retry_count++ < 100),
1264                 "Could not resolve to latest version of redefined method");
1265       // method is redefined in the middle of resolve so re-try.
1266       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1267     }
1268   }
1269   return callee_method;
1270 }
1271 
1272 // This fails if resolution required refilling of IC stubs
1273 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1274                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1275                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1276   StaticCallInfo static_call_info;
1277   CompiledICInfo virtual_call_info;
1278 
1279   // Make sure the callee nmethod does not get deoptimized and removed before
1280   // we are done patching the code.
1281   CompiledMethod* callee = callee_method->code();
1282 
1283   if (callee != NULL) {
1284     assert(callee->is_compiled(), "must be nmethod for patching");
1285   }
1286 
1287   if (callee != NULL && !callee->is_in_use()) {
1288     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1289     callee = NULL;
1290   }
1291   nmethodLocker nl_callee(callee);
1292 #ifdef ASSERT
1293   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1294 #endif
1295 
1296   bool is_nmethod = caller_nm->is_nmethod();
1297 
1298   if (is_virtual) {
1299     Klass* receiver_klass = NULL;
1300     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1301       // If the receiver is a value type that is passed as fields, no oop is available
1302       receiver_klass = callee_method->method_holder();
1303     } else {
1304       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1305       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1306     }
1307     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1308     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1309                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1310                      CHECK_false);
1311   } else {
1312     // static call
1313     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1314   }
1315 
1316   // grab lock, check for deoptimization and potentially patch caller
1317   {
1318     CompiledICLocker ml(caller_nm);
1319 
1320     // Lock blocks for safepoint during which both nmethods can change state.
1321 
1322     // Now that we are ready to patch if the Method* was redefined then
1323     // don't update call site and let the caller retry.
1324     // Don't update call site if callee nmethod was unloaded or deoptimized.
1325     // Don't update call site if callee nmethod was replaced by an other nmethod
1326     // which may happen when multiply alive nmethod (tiered compilation)
1327     // will be supported.
1328     if (!callee_method->is_old() &&
1329         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1330 #ifdef ASSERT
1331       // We must not try to patch to jump to an already unloaded method.
1332       if (dest_entry_point != 0) {
1333         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1334         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1335                "should not call unloaded nmethod");
1336       }
1337 #endif
1338       if (is_virtual) {
1339         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1340         if (inline_cache->is_clean()) {
1341           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1342             return false;
1343           }
1344         }
1345       } else {
1346         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1347         if (ssc->is_clean()) ssc->set(static_call_info);
1348       }
1349     }
1350   } // unlock CompiledICLocker
1351   return true;
1352 }
1353 
1354 // Resolves a call.  The compilers generate code for calls that go here
1355 // and are patched with the real destination of the call.
1356 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1357                                                bool is_virtual,
1358                                                bool is_optimized, TRAPS) {
1359 
1360   ResourceMark rm(thread);
1361   RegisterMap cbl_map(thread, false);
1362   frame caller_frame = thread->last_frame().sender(&cbl_map);
1363 
1364   CodeBlob* caller_cb = caller_frame.cb();
1365   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1366   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1367 
1368   // make sure caller is not getting deoptimized
1369   // and removed before we are done with it.
1370   // CLEANUP - with lazy deopt shouldn't need this lock
1371   nmethodLocker caller_lock(caller_nm);
1372 
1373   // determine call info & receiver
1374   // note: a) receiver is NULL for static calls
1375   //       b) an exception is thrown if receiver is NULL for non-static calls
1376   CallInfo call_info;
1377   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1378   Handle receiver = find_callee_info(thread, invoke_code,
1379                                      call_info, CHECK_(methodHandle()));
1380   methodHandle callee_method = call_info.selected_method();
1381 
1382   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1383          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1384          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1385          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1386          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1387 
1388   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1389 
1390 #ifndef PRODUCT
1391   // tracing/debugging/statistics
1392   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1393                 (is_virtual) ? (&_resolve_virtual_ctr) :
1394                                (&_resolve_static_ctr);
1395   Atomic::inc(addr);
1396 
1397   if (TraceCallFixup) {
1398     ResourceMark rm(thread);
1399     tty->print("resolving %s%s (%s) call to",
1400       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1401       Bytecodes::name(invoke_code));
1402     callee_method->print_short_name(tty);
1403     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1404                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1405   }
1406 #endif
1407 
1408   // Do not patch call site for static call when the class is not
1409   // fully initialized.
1410   if (invoke_code == Bytecodes::_invokestatic &&
1411       !callee_method->method_holder()->is_initialized()) {
1412     assert(callee_method->method_holder()->is_linked(), "must be");
1413     return callee_method;
1414   }
1415 
1416   // JSR 292 key invariant:
1417   // If the resolved method is a MethodHandle invoke target, the call
1418   // site must be a MethodHandle call site, because the lambda form might tail-call
1419   // leaving the stack in a state unknown to either caller or callee
1420   // TODO detune for now but we might need it again
1421 //  assert(!callee_method->is_compiled_lambda_form() ||
1422 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1423 
1424   // Compute entry points. This might require generation of C2I converter
1425   // frames, so we cannot be holding any locks here. Furthermore, the
1426   // computation of the entry points is independent of patching the call.  We
1427   // always return the entry-point, but we only patch the stub if the call has
1428   // not been deoptimized.  Return values: For a virtual call this is an
1429   // (cached_oop, destination address) pair. For a static call/optimized
1430   // virtual this is just a destination address.
1431 
1432   // Patching IC caches may fail if we run out if transition stubs.
1433   // We refill the ic stubs then and try again.
1434   for (;;) {
1435     ICRefillVerifier ic_refill_verifier;
1436     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1437                                                   is_virtual, is_optimized, receiver,
1438                                                   call_info, invoke_code, CHECK_(methodHandle()));
1439     if (successful) {
1440       return callee_method;
1441     } else {
1442       InlineCacheBuffer::refill_ic_stubs();
1443     }
1444   }
1445 
1446 }
1447 
1448 
1449 // Inline caches exist only in compiled code
1450 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1451 #ifdef ASSERT
1452   RegisterMap reg_map(thread, false);
1453   frame stub_frame = thread->last_frame();
1454   assert(stub_frame.is_runtime_frame(), "sanity check");
1455   frame caller_frame = stub_frame.sender(&reg_map);
1456   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1457 #endif /* ASSERT */
1458 
1459   methodHandle callee_method;
1460   JRT_BLOCK
1461     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1462     // Return Method* through TLS
1463     thread->set_vm_result_2(callee_method());
1464   JRT_BLOCK_END
1465   // return compiled code entry point after potential safepoints
1466   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1467   return callee_method->verified_code_entry();
1468 JRT_END
1469 
1470 
1471 // Handle call site that has been made non-entrant
1472 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1473   // 6243940 We might end up in here if the callee is deoptimized
1474   // as we race to call it.  We don't want to take a safepoint if
1475   // the caller was interpreted because the caller frame will look
1476   // interpreted to the stack walkers and arguments are now
1477   // "compiled" so it is much better to make this transition
1478   // invisible to the stack walking code. The i2c path will
1479   // place the callee method in the callee_target. It is stashed
1480   // there because if we try and find the callee by normal means a
1481   // safepoint is possible and have trouble gc'ing the compiled args.
1482   RegisterMap reg_map(thread, false);
1483   frame stub_frame = thread->last_frame();
1484   assert(stub_frame.is_runtime_frame(), "sanity check");
1485   frame caller_frame = stub_frame.sender(&reg_map);
1486 
1487   if (caller_frame.is_interpreted_frame() ||
1488       caller_frame.is_entry_frame()) {
1489     Method* callee = thread->callee_target();
1490     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1491     thread->set_vm_result_2(callee);
1492     thread->set_callee_target(NULL);
1493     return callee->get_c2i_entry();
1494   }
1495 
1496   // Must be compiled to compiled path which is safe to stackwalk
1497   methodHandle callee_method;
1498   JRT_BLOCK
1499     // Force resolving of caller (if we called from compiled frame)
1500     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1501     thread->set_vm_result_2(callee_method());
1502   JRT_BLOCK_END
1503   // return compiled code entry point after potential safepoints
1504   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1505   return callee_method->verified_code_entry();
1506 JRT_END
1507 
1508 // Handle abstract method call
1509 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1510   // Verbose error message for AbstractMethodError.
1511   // Get the called method from the invoke bytecode.
1512   vframeStream vfst(thread, true);
1513   assert(!vfst.at_end(), "Java frame must exist");
1514   methodHandle caller(vfst.method());
1515   Bytecode_invoke invoke(caller, vfst.bci());
1516   DEBUG_ONLY( invoke.verify(); )
1517 
1518   // Find the compiled caller frame.
1519   RegisterMap reg_map(thread);
1520   frame stubFrame = thread->last_frame();
1521   assert(stubFrame.is_runtime_frame(), "must be");
1522   frame callerFrame = stubFrame.sender(&reg_map);
1523   assert(callerFrame.is_compiled_frame(), "must be");
1524 
1525   // Install exception and return forward entry.
1526   address res = StubRoutines::throw_AbstractMethodError_entry();
1527   JRT_BLOCK
1528     methodHandle callee = invoke.static_target(thread);
1529     if (!callee.is_null()) {
1530       oop recv = callerFrame.retrieve_receiver(&reg_map);
1531       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1532       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1533       res = StubRoutines::forward_exception_entry();
1534     }
1535   JRT_BLOCK_END
1536   return res;
1537 JRT_END
1538 
1539 
1540 // resolve a static call and patch code
1541 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1542   methodHandle callee_method;
1543   JRT_BLOCK
1544     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1545     thread->set_vm_result_2(callee_method());
1546   JRT_BLOCK_END
1547   // return compiled code entry point after potential safepoints
1548   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1549   return callee_method->verified_code_entry();
1550 JRT_END
1551 
1552 
1553 // resolve virtual call and update inline cache to monomorphic
1554 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1555   methodHandle callee_method;
1556   JRT_BLOCK
1557     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1558     thread->set_vm_result_2(callee_method());
1559   JRT_BLOCK_END
1560   // return compiled code entry point after potential safepoints
1561   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1562   return callee_method->verified_code_entry();
1563 JRT_END
1564 
1565 
1566 // Resolve a virtual call that can be statically bound (e.g., always
1567 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1568 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1569   methodHandle callee_method;
1570   JRT_BLOCK
1571     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1572     thread->set_vm_result_2(callee_method());
1573   JRT_BLOCK_END
1574   // return compiled code entry point after potential safepoints
1575   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1576   return callee_method->verified_code_entry();
1577 JRT_END
1578 
1579 // The handle_ic_miss_helper_internal function returns false if it failed due
1580 // to either running out of vtable stubs or ic stubs due to IC transitions
1581 // to transitional states. The needs_ic_stub_refill value will be set if
1582 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1583 // refills the IC stubs and tries again.
1584 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1585                                                    const frame& caller_frame, methodHandle callee_method,
1586                                                    Bytecodes::Code bc, CallInfo& call_info,
1587                                                    bool& needs_ic_stub_refill, TRAPS) {
1588   CompiledICLocker ml(caller_nm);
1589   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1590   bool should_be_mono = false;
1591   if (inline_cache->is_optimized()) {
1592     if (TraceCallFixup) {
1593       ResourceMark rm(THREAD);
1594       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1595       callee_method->print_short_name(tty);
1596       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1597     }
1598     should_be_mono = true;
1599   } else if (inline_cache->is_icholder_call()) {
1600     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1601     if (ic_oop != NULL) {
1602       if (!ic_oop->is_loader_alive()) {
1603         // Deferred IC cleaning due to concurrent class unloading
1604         if (!inline_cache->set_to_clean()) {
1605           needs_ic_stub_refill = true;
1606           return false;
1607         }
1608       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1609         // This isn't a real miss. We must have seen that compiled code
1610         // is now available and we want the call site converted to a
1611         // monomorphic compiled call site.
1612         // We can't assert for callee_method->code() != NULL because it
1613         // could have been deoptimized in the meantime
1614         if (TraceCallFixup) {
1615           ResourceMark rm(THREAD);
1616           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1617           callee_method->print_short_name(tty);
1618           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1619         }
1620         should_be_mono = true;
1621       }
1622     }
1623   }
1624 
1625   if (should_be_mono) {
1626     // We have a path that was monomorphic but was going interpreted
1627     // and now we have (or had) a compiled entry. We correct the IC
1628     // by using a new icBuffer.
1629     CompiledICInfo info;
1630     Klass* receiver_klass = receiver()->klass();
1631     inline_cache->compute_monomorphic_entry(callee_method,
1632                                             receiver_klass,
1633                                             inline_cache->is_optimized(),
1634                                             false, caller_nm->is_nmethod(),
1635                                             info, CHECK_false);
1636     if (!inline_cache->set_to_monomorphic(info)) {
1637       needs_ic_stub_refill = true;
1638       return false;
1639     }
1640   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1641     // Potential change to megamorphic
1642 
1643     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1644     if (needs_ic_stub_refill) {
1645       return false;
1646     }
1647     if (!successful) {
1648       if (!inline_cache->set_to_clean()) {
1649         needs_ic_stub_refill = true;
1650         return false;
1651       }
1652     }
1653   } else {
1654     // Either clean or megamorphic
1655   }
1656   return true;
1657 }
1658 
1659 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1660   ResourceMark rm(thread);
1661   CallInfo call_info;
1662   Bytecodes::Code bc;
1663 
1664   // receiver is NULL for static calls. An exception is thrown for NULL
1665   // receivers for non-static calls
1666   Handle receiver = find_callee_info(thread, bc, call_info,
1667                                      CHECK_(methodHandle()));
1668   // Compiler1 can produce virtual call sites that can actually be statically bound
1669   // If we fell thru to below we would think that the site was going megamorphic
1670   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1671   // we'd try and do a vtable dispatch however methods that can be statically bound
1672   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1673   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1674   // plain ic_miss) and the site will be converted to an optimized virtual call site
1675   // never to miss again. I don't believe C2 will produce code like this but if it
1676   // did this would still be the correct thing to do for it too, hence no ifdef.
1677   //
1678   if (call_info.resolved_method()->can_be_statically_bound()) {
1679     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1680     if (TraceCallFixup) {
1681       RegisterMap reg_map(thread, false);
1682       frame caller_frame = thread->last_frame().sender(&reg_map);
1683       ResourceMark rm(thread);
1684       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1685       callee_method->print_short_name(tty);
1686       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1687       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1688     }
1689     return callee_method;
1690   }
1691 
1692   methodHandle callee_method = call_info.selected_method();
1693 
1694 #ifndef PRODUCT
1695   Atomic::inc(&_ic_miss_ctr);
1696 
1697   // Statistics & Tracing
1698   if (TraceCallFixup) {
1699     ResourceMark rm(thread);
1700     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1701     callee_method->print_short_name(tty);
1702     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1703   }
1704 
1705   if (ICMissHistogram) {
1706     MutexLocker m(VMStatistic_lock);
1707     RegisterMap reg_map(thread, false);
1708     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1709     // produce statistics under the lock
1710     trace_ic_miss(f.pc());
1711   }
1712 #endif
1713 
1714   // install an event collector so that when a vtable stub is created the
1715   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1716   // event can't be posted when the stub is created as locks are held
1717   // - instead the event will be deferred until the event collector goes
1718   // out of scope.
1719   JvmtiDynamicCodeEventCollector event_collector;
1720 
1721   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1722   // Transitioning IC caches may require transition stubs. If we run out
1723   // of transition stubs, we have to drop locks and perform a safepoint
1724   // that refills them.
1725   RegisterMap reg_map(thread, false);
1726   frame caller_frame = thread->last_frame().sender(&reg_map);
1727   CodeBlob* cb = caller_frame.cb();
1728   CompiledMethod* caller_nm = cb->as_compiled_method();
1729 
1730   for (;;) {
1731     ICRefillVerifier ic_refill_verifier;
1732     bool needs_ic_stub_refill = false;
1733     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1734                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1735     if (successful || !needs_ic_stub_refill) {
1736       return callee_method;
1737     } else {
1738       InlineCacheBuffer::refill_ic_stubs();
1739     }
1740   }
1741 }
1742 
1743 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1744   CompiledICLocker ml(caller_nm);
1745   if (is_static_call) {
1746     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1747     if (!ssc->is_clean()) {
1748       return ssc->set_to_clean();
1749     }
1750   } else {
1751     // compiled, dispatched call (which used to call an interpreted method)
1752     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1753     if (!inline_cache->is_clean()) {
1754       return inline_cache->set_to_clean();
1755     }
1756   }
1757   return true;
1758 }
1759 
1760 //
1761 // Resets a call-site in compiled code so it will get resolved again.
1762 // This routines handles both virtual call sites, optimized virtual call
1763 // sites, and static call sites. Typically used to change a call sites
1764 // destination from compiled to interpreted.
1765 //
1766 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1767   ResourceMark rm(thread);
1768   RegisterMap reg_map(thread, false);
1769   frame stub_frame = thread->last_frame();
1770   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1771   frame caller = stub_frame.sender(&reg_map);
1772 
1773   // Do nothing if the frame isn't a live compiled frame.
1774   // nmethod could be deoptimized by the time we get here
1775   // so no update to the caller is needed.
1776 
1777   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1778 
1779     address pc = caller.pc();
1780 
1781     // Check for static or virtual call
1782     bool is_static_call = false;
1783     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1784 
1785     // Default call_addr is the location of the "basic" call.
1786     // Determine the address of the call we a reresolving. With
1787     // Inline Caches we will always find a recognizable call.
1788     // With Inline Caches disabled we may or may not find a
1789     // recognizable call. We will always find a call for static
1790     // calls and for optimized virtual calls. For vanilla virtual
1791     // calls it depends on the state of the UseInlineCaches switch.
1792     //
1793     // With Inline Caches disabled we can get here for a virtual call
1794     // for two reasons:
1795     //   1 - calling an abstract method. The vtable for abstract methods
1796     //       will run us thru handle_wrong_method and we will eventually
1797     //       end up in the interpreter to throw the ame.
1798     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1799     //       call and between the time we fetch the entry address and
1800     //       we jump to it the target gets deoptimized. Similar to 1
1801     //       we will wind up in the interprter (thru a c2i with c2).
1802     //
1803     address call_addr = NULL;
1804     {
1805       // Get call instruction under lock because another thread may be
1806       // busy patching it.
1807       CompiledICLocker ml(caller_nm);
1808       // Location of call instruction
1809       call_addr = caller_nm->call_instruction_address(pc);
1810     }
1811     // Make sure nmethod doesn't get deoptimized and removed until
1812     // this is done with it.
1813     // CLEANUP - with lazy deopt shouldn't need this lock
1814     nmethodLocker nmlock(caller_nm);
1815 
1816     if (call_addr != NULL) {
1817       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1818       int ret = iter.next(); // Get item
1819       if (ret) {
1820         assert(iter.addr() == call_addr, "must find call");
1821         if (iter.type() == relocInfo::static_call_type) {
1822           is_static_call = true;
1823         } else {
1824           assert(iter.type() == relocInfo::virtual_call_type ||
1825                  iter.type() == relocInfo::opt_virtual_call_type
1826                 , "unexpected relocInfo. type");
1827         }
1828       } else {
1829         assert(!UseInlineCaches, "relocation info. must exist for this address");
1830       }
1831 
1832       // Cleaning the inline cache will force a new resolve. This is more robust
1833       // than directly setting it to the new destination, since resolving of calls
1834       // is always done through the same code path. (experience shows that it
1835       // leads to very hard to track down bugs, if an inline cache gets updated
1836       // to a wrong method). It should not be performance critical, since the
1837       // resolve is only done once.
1838 
1839       for (;;) {
1840         ICRefillVerifier ic_refill_verifier;
1841         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1842           InlineCacheBuffer::refill_ic_stubs();
1843         } else {
1844           break;
1845         }
1846       }
1847     }
1848   }
1849 
1850   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1851 
1852 
1853 #ifndef PRODUCT
1854   Atomic::inc(&_wrong_method_ctr);
1855 
1856   if (TraceCallFixup) {
1857     ResourceMark rm(thread);
1858     tty->print("handle_wrong_method reresolving call to");
1859     callee_method->print_short_name(tty);
1860     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1861   }
1862 #endif
1863 
1864   return callee_method;
1865 }
1866 
1867 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1868   // The faulting unsafe accesses should be changed to throw the error
1869   // synchronously instead. Meanwhile the faulting instruction will be
1870   // skipped over (effectively turning it into a no-op) and an
1871   // asynchronous exception will be raised which the thread will
1872   // handle at a later point. If the instruction is a load it will
1873   // return garbage.
1874 
1875   // Request an async exception.
1876   thread->set_pending_unsafe_access_error();
1877 
1878   // Return address of next instruction to execute.
1879   return next_pc;
1880 }
1881 
1882 #ifdef ASSERT
1883 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1884                                                                 const BasicType* sig_bt,
1885                                                                 const VMRegPair* regs) {
1886   ResourceMark rm;
1887   const int total_args_passed = method->size_of_parameters();
1888   const VMRegPair*    regs_with_member_name = regs;
1889         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1890 
1891   const int member_arg_pos = total_args_passed - 1;
1892   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1893   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1894 
1895   const bool is_outgoing = method->is_method_handle_intrinsic();
1896   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1897 
1898   for (int i = 0; i < member_arg_pos; i++) {
1899     VMReg a =    regs_with_member_name[i].first();
1900     VMReg b = regs_without_member_name[i].first();
1901     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1902   }
1903   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1904 }
1905 #endif
1906 
1907 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1908   if (destination != entry_point) {
1909     CodeBlob* callee = CodeCache::find_blob(destination);
1910     // callee == cb seems weird. It means calling interpreter thru stub.
1911     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1912       // static call or optimized virtual
1913       if (TraceCallFixup) {
1914         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1915         moop->print_short_name(tty);
1916         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1917       }
1918       return true;
1919     } else {
1920       if (TraceCallFixup) {
1921         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1922         moop->print_short_name(tty);
1923         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1924       }
1925       // assert is too strong could also be resolve destinations.
1926       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1927     }
1928   } else {
1929     if (TraceCallFixup) {
1930       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1931       moop->print_short_name(tty);
1932       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1933     }
1934   }
1935   return false;
1936 }
1937 
1938 // ---------------------------------------------------------------------------
1939 // We are calling the interpreter via a c2i. Normally this would mean that
1940 // we were called by a compiled method. However we could have lost a race
1941 // where we went int -> i2c -> c2i and so the caller could in fact be
1942 // interpreted. If the caller is compiled we attempt to patch the caller
1943 // so he no longer calls into the interpreter.
1944 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1945   Method* moop(method);
1946 
1947   address entry_point = moop->from_compiled_entry_no_trampoline();
1948 
1949   // It's possible that deoptimization can occur at a call site which hasn't
1950   // been resolved yet, in which case this function will be called from
1951   // an nmethod that has been patched for deopt and we can ignore the
1952   // request for a fixup.
1953   // Also it is possible that we lost a race in that from_compiled_entry
1954   // is now back to the i2c in that case we don't need to patch and if
1955   // we did we'd leap into space because the callsite needs to use
1956   // "to interpreter" stub in order to load up the Method*. Don't
1957   // ask me how I know this...
1958 
1959   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1960   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1961     return;
1962   }
1963 
1964   // The check above makes sure this is a nmethod.
1965   CompiledMethod* nm = cb->as_compiled_method_or_null();
1966   assert(nm, "must be");
1967 
1968   // Get the return PC for the passed caller PC.
1969   address return_pc = caller_pc + frame::pc_return_offset;
1970 
1971   // There is a benign race here. We could be attempting to patch to a compiled
1972   // entry point at the same time the callee is being deoptimized. If that is
1973   // the case then entry_point may in fact point to a c2i and we'd patch the
1974   // call site with the same old data. clear_code will set code() to NULL
1975   // at the end of it. If we happen to see that NULL then we can skip trying
1976   // to patch. If we hit the window where the callee has a c2i in the
1977   // from_compiled_entry and the NULL isn't present yet then we lose the race
1978   // and patch the code with the same old data. Asi es la vida.
1979 
1980   if (moop->code() == NULL) return;
1981 
1982   if (nm->is_in_use()) {
1983     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1984     CompiledICLocker ic_locker(nm);
1985     if (NativeCall::is_call_before(return_pc)) {
1986       ResourceMark mark;
1987       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1988       //
1989       // bug 6281185. We might get here after resolving a call site to a vanilla
1990       // virtual call. Because the resolvee uses the verified entry it may then
1991       // see compiled code and attempt to patch the site by calling us. This would
1992       // then incorrectly convert the call site to optimized and its downhill from
1993       // there. If you're lucky you'll get the assert in the bugid, if not you've
1994       // just made a call site that could be megamorphic into a monomorphic site
1995       // for the rest of its life! Just another racing bug in the life of
1996       // fixup_callers_callsite ...
1997       //
1998       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1999       iter.next();
2000       assert(iter.has_current(), "must have a reloc at java call site");
2001       relocInfo::relocType typ = iter.reloc()->type();
2002       if (typ != relocInfo::static_call_type &&
2003            typ != relocInfo::opt_virtual_call_type &&
2004            typ != relocInfo::static_stub_type) {
2005         return;
2006       }
2007       address destination = call->destination();
2008       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2009         call->set_destination_mt_safe(entry_point);
2010       }
2011     }
2012   }
2013 IRT_END
2014 
2015 
2016 // same as JVM_Arraycopy, but called directly from compiled code
2017 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2018                                                 oopDesc* dest, jint dest_pos,
2019                                                 jint length,
2020                                                 JavaThread* thread)) {
2021 #ifndef PRODUCT
2022   _slow_array_copy_ctr++;
2023 #endif
2024   // Check if we have null pointers
2025   if (src == NULL || dest == NULL) {
2026     THROW(vmSymbols::java_lang_NullPointerException());
2027   }
2028   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2029   // even though the copy_array API also performs dynamic checks to ensure
2030   // that src and dest are truly arrays (and are conformable).
2031   // The copy_array mechanism is awkward and could be removed, but
2032   // the compilers don't call this function except as a last resort,
2033   // so it probably doesn't matter.
2034   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2035                                         (arrayOopDesc*)dest, dest_pos,
2036                                         length, thread);
2037 }
2038 JRT_END
2039 
2040 // The caller of generate_class_cast_message() (or one of its callers)
2041 // must use a ResourceMark in order to correctly free the result.
2042 char* SharedRuntime::generate_class_cast_message(
2043     JavaThread* thread, Klass* caster_klass) {
2044 
2045   // Get target class name from the checkcast instruction
2046   vframeStream vfst(thread, true);
2047   assert(!vfst.at_end(), "Java frame must exist");
2048   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2049   constantPoolHandle cpool(thread, vfst.method()->constants());
2050   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2051   Symbol* target_klass_name = NULL;
2052   if (target_klass == NULL) {
2053     // This klass should be resolved, but just in case, get the name in the klass slot.
2054     target_klass_name = cpool->klass_name_at(cc.index());
2055   }
2056   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2057 }
2058 
2059 
2060 // The caller of generate_class_cast_message() (or one of its callers)
2061 // must use a ResourceMark in order to correctly free the result.
2062 char* SharedRuntime::generate_class_cast_message(
2063     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2064   const char* caster_name = caster_klass->external_name();
2065 
2066   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2067   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2068                                                    target_klass->external_name();
2069 
2070   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2071 
2072   const char* caster_klass_description = "";
2073   const char* target_klass_description = "";
2074   const char* klass_separator = "";
2075   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2076     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2077   } else {
2078     caster_klass_description = caster_klass->class_in_module_of_loader();
2079     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2080     klass_separator = (target_klass != NULL) ? "; " : "";
2081   }
2082 
2083   // add 3 for parenthesis and preceeding space
2084   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2085 
2086   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2087   if (message == NULL) {
2088     // Shouldn't happen, but don't cause even more problems if it does
2089     message = const_cast<char*>(caster_klass->external_name());
2090   } else {
2091     jio_snprintf(message,
2092                  msglen,
2093                  "class %s cannot be cast to class %s (%s%s%s)",
2094                  caster_name,
2095                  target_name,
2096                  caster_klass_description,
2097                  klass_separator,
2098                  target_klass_description
2099                  );
2100   }
2101   return message;
2102 }
2103 
2104 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2105   (void) JavaThread::current()->reguard_stack();
2106 JRT_END
2107 
2108 
2109 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2110 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2111   if (!SafepointSynchronize::is_synchronizing()) {
2112     // Only try quick_enter() if we're not trying to reach a safepoint
2113     // so that the calling thread reaches the safepoint more quickly.
2114     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2115   }
2116   // NO_ASYNC required because an async exception on the state transition destructor
2117   // would leave you with the lock held and it would never be released.
2118   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2119   // and the model is that an exception implies the method failed.
2120   JRT_BLOCK_NO_ASYNC
2121   oop obj(_obj);
2122   if (PrintBiasedLockingStatistics) {
2123     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2124   }
2125   Handle h_obj(THREAD, obj);
2126   if (UseBiasedLocking) {
2127     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2128     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2129   } else {
2130     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2131   }
2132   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2133   JRT_BLOCK_END
2134 JRT_END
2135 
2136 // Handles the uncommon cases of monitor unlocking in compiled code
2137 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2138    oop obj(_obj);
2139   assert(JavaThread::current() == THREAD, "invariant");
2140   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2141   // testing was unable to ever fire the assert that guarded it so I have removed it.
2142   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2143 #undef MIGHT_HAVE_PENDING
2144 #ifdef MIGHT_HAVE_PENDING
2145   // Save and restore any pending_exception around the exception mark.
2146   // While the slow_exit must not throw an exception, we could come into
2147   // this routine with one set.
2148   oop pending_excep = NULL;
2149   const char* pending_file;
2150   int pending_line;
2151   if (HAS_PENDING_EXCEPTION) {
2152     pending_excep = PENDING_EXCEPTION;
2153     pending_file  = THREAD->exception_file();
2154     pending_line  = THREAD->exception_line();
2155     CLEAR_PENDING_EXCEPTION;
2156   }
2157 #endif /* MIGHT_HAVE_PENDING */
2158 
2159   {
2160     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2161     EXCEPTION_MARK;
2162     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2163   }
2164 
2165 #ifdef MIGHT_HAVE_PENDING
2166   if (pending_excep != NULL) {
2167     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2168   }
2169 #endif /* MIGHT_HAVE_PENDING */
2170 JRT_END
2171 
2172 #ifndef PRODUCT
2173 
2174 void SharedRuntime::print_statistics() {
2175   ttyLocker ttyl;
2176   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2177 
2178   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2179 
2180   SharedRuntime::print_ic_miss_histogram();
2181 
2182   if (CountRemovableExceptions) {
2183     if (_nof_removable_exceptions > 0) {
2184       Unimplemented(); // this counter is not yet incremented
2185       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2186     }
2187   }
2188 
2189   // Dump the JRT_ENTRY counters
2190   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2191   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2192   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2193   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2194   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2195   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2196   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2197 
2198   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2199   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2200   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2201   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2202   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2203 
2204   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2205   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2206   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2207   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2208   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2209   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2210   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2211   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2212   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2213   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2214   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2215   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2216   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2217   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2218   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2219   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2220 
2221   AdapterHandlerLibrary::print_statistics();
2222 
2223   if (xtty != NULL)  xtty->tail("statistics");
2224 }
2225 
2226 inline double percent(int x, int y) {
2227   return 100.0 * x / MAX2(y, 1);
2228 }
2229 
2230 class MethodArityHistogram {
2231  public:
2232   enum { MAX_ARITY = 256 };
2233  private:
2234   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2235   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2236   static int _max_arity;                      // max. arity seen
2237   static int _max_size;                       // max. arg size seen
2238 
2239   static void add_method_to_histogram(nmethod* nm) {
2240     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2241       Method* method = nm->method();
2242       ArgumentCount args(method->signature());
2243       int arity   = args.size() + (method->is_static() ? 0 : 1);
2244       int argsize = method->size_of_parameters();
2245       arity   = MIN2(arity, MAX_ARITY-1);
2246       argsize = MIN2(argsize, MAX_ARITY-1);
2247       int count = method->compiled_invocation_count();
2248       _arity_histogram[arity]  += count;
2249       _size_histogram[argsize] += count;
2250       _max_arity = MAX2(_max_arity, arity);
2251       _max_size  = MAX2(_max_size, argsize);
2252     }
2253   }
2254 
2255   void print_histogram_helper(int n, int* histo, const char* name) {
2256     const int N = MIN2(5, n);
2257     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2258     double sum = 0;
2259     double weighted_sum = 0;
2260     int i;
2261     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2262     double rest = sum;
2263     double percent = sum / 100;
2264     for (i = 0; i <= N; i++) {
2265       rest -= histo[i];
2266       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2267     }
2268     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2269     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2270   }
2271 
2272   void print_histogram() {
2273     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2274     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2275     tty->print_cr("\nSame for parameter size (in words):");
2276     print_histogram_helper(_max_size, _size_histogram, "size");
2277     tty->cr();
2278   }
2279 
2280  public:
2281   MethodArityHistogram() {
2282     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2283     _max_arity = _max_size = 0;
2284     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2285     CodeCache::nmethods_do(add_method_to_histogram);
2286     print_histogram();
2287   }
2288 };
2289 
2290 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2291 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2292 int MethodArityHistogram::_max_arity;
2293 int MethodArityHistogram::_max_size;
2294 
2295 void SharedRuntime::print_call_statistics(int comp_total) {
2296   tty->print_cr("Calls from compiled code:");
2297   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2298   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2299   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2300   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2301   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2302   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2303   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2304   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2305   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2306   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2307   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2308   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2309   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2310   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2311   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2312   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2313   tty->cr();
2314   tty->print_cr("Note 1: counter updates are not MT-safe.");
2315   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2316   tty->print_cr("        %% in nested categories are relative to their category");
2317   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2318   tty->cr();
2319 
2320   MethodArityHistogram h;
2321 }
2322 #endif
2323 
2324 
2325 // A simple wrapper class around the calling convention information
2326 // that allows sharing of adapters for the same calling convention.
2327 class AdapterFingerPrint : public CHeapObj<mtCode> {
2328  private:
2329   enum {
2330     _basic_type_bits = 4,
2331     _basic_type_mask = right_n_bits(_basic_type_bits),
2332     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2333     _compact_int_count = 3
2334   };
2335   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2336   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2337 
2338   union {
2339     int  _compact[_compact_int_count];
2340     int* _fingerprint;
2341   } _value;
2342   int _length; // A negative length indicates the fingerprint is in the compact form,
2343                // Otherwise _value._fingerprint is the array.
2344 
2345   // Remap BasicTypes that are handled equivalently by the adapters.
2346   // These are correct for the current system but someday it might be
2347   // necessary to make this mapping platform dependent.
2348   static int adapter_encoding(BasicType in, bool is_valuetype) {
2349     switch (in) {
2350       case T_BOOLEAN:
2351       case T_BYTE:
2352       case T_SHORT:
2353       case T_CHAR: {
2354         if (is_valuetype) {
2355           // Do not widen value type field types
2356           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2357           return in;
2358         } else {
2359           // They are all promoted to T_INT in the calling convention
2360           return T_INT;
2361         }
2362       }
2363 
2364       case T_VALUETYPE: {
2365         // If value types are passed as fields, return 'in' to differentiate
2366         // between a T_VALUETYPE and a T_OBJECT in the signature.
2367         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2368       }
2369 
2370       case T_OBJECT:
2371       case T_ARRAY:
2372         // In other words, we assume that any register good enough for
2373         // an int or long is good enough for a managed pointer.
2374 #ifdef _LP64
2375         return T_LONG;
2376 #else
2377         return T_INT;
2378 #endif
2379 
2380       case T_INT:
2381       case T_LONG:
2382       case T_FLOAT:
2383       case T_DOUBLE:
2384       case T_VOID:
2385         return in;
2386 
2387       default:
2388         ShouldNotReachHere();
2389         return T_CONFLICT;
2390     }
2391   }
2392 
2393  public:
2394   AdapterFingerPrint(int total_args_passed, const GrowableArray<SigEntry>* sig) {
2395     // The fingerprint is based on the BasicType signature encoded
2396     // into an array of ints with eight entries per int.
2397     int* ptr;
2398     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2399     if (len <= _compact_int_count) {
2400       assert(_compact_int_count == 3, "else change next line");
2401       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2402       // Storing the signature encoded as signed chars hits about 98%
2403       // of the time.
2404       _length = -len;
2405       ptr = _value._compact;
2406     } else {
2407       _length = len;
2408       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2409       ptr = _value._fingerprint;
2410     }
2411 
2412     // Now pack the BasicTypes with 8 per int
2413     int sig_index = 0;
2414     BasicType prev_sbt = T_ILLEGAL;
2415     int vt_count = 0;
2416     for (int index = 0; index < len; index++) {
2417       int value = 0;
2418       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2419         int bt = 0;
2420         if (sig_index < total_args_passed) {
2421           BasicType sbt = sig->at(sig_index++)._bt;
2422           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2423             // Found start of value type in signature
2424             vt_count++;
2425           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2426                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2427             // Found end of value type in signature
2428             vt_count--;
2429             assert(vt_count >= 0, "invalid vt_count");
2430           }
2431           bt = adapter_encoding(sbt, vt_count > 0);
2432           prev_sbt = sbt;
2433         }
2434         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2435         value = (value << _basic_type_bits) | bt;
2436       }
2437       ptr[index] = value;
2438     }
2439     assert(vt_count == 0, "invalid vt_count");
2440   }
2441 
2442   ~AdapterFingerPrint() {
2443     if (_length > 0) {
2444       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2445     }
2446   }
2447 
2448   int value(int index) {
2449     if (_length < 0) {
2450       return _value._compact[index];
2451     }
2452     return _value._fingerprint[index];
2453   }
2454   int length() {
2455     if (_length < 0) return -_length;
2456     return _length;
2457   }
2458 
2459   bool is_compact() {
2460     return _length <= 0;
2461   }
2462 
2463   unsigned int compute_hash() {
2464     int hash = 0;
2465     for (int i = 0; i < length(); i++) {
2466       int v = value(i);
2467       hash = (hash << 8) ^ v ^ (hash >> 5);
2468     }
2469     return (unsigned int)hash;
2470   }
2471 
2472   const char* as_string() {
2473     stringStream st;
2474     st.print("0x");
2475     for (int i = 0; i < length(); i++) {
2476       st.print("%08x", value(i));
2477     }
2478     return st.as_string();
2479   }
2480 
2481   bool equals(AdapterFingerPrint* other) {
2482     if (other->_length != _length) {
2483       return false;
2484     }
2485     if (_length < 0) {
2486       assert(_compact_int_count == 3, "else change next line");
2487       return _value._compact[0] == other->_value._compact[0] &&
2488              _value._compact[1] == other->_value._compact[1] &&
2489              _value._compact[2] == other->_value._compact[2];
2490     } else {
2491       for (int i = 0; i < _length; i++) {
2492         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2493           return false;
2494         }
2495       }
2496     }
2497     return true;
2498   }
2499 };
2500 
2501 
2502 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2503 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2504   friend class AdapterHandlerTableIterator;
2505 
2506  private:
2507 
2508 #ifndef PRODUCT
2509   static int _lookups; // number of calls to lookup
2510   static int _buckets; // number of buckets checked
2511   static int _equals;  // number of buckets checked with matching hash
2512   static int _hits;    // number of successful lookups
2513   static int _compact; // number of equals calls with compact signature
2514 #endif
2515 
2516   AdapterHandlerEntry* bucket(int i) {
2517     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2518   }
2519 
2520  public:
2521   AdapterHandlerTable()
2522     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2523 
2524   // Create a new entry suitable for insertion in the table
2525   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_value_entry, address c2i_unverified_entry) {
2526     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2527     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry);
2528     if (DumpSharedSpaces) {
2529       ((CDSAdapterHandlerEntry*)entry)->init();
2530     }
2531     return entry;
2532   }
2533 
2534   // Insert an entry into the table
2535   void add(AdapterHandlerEntry* entry) {
2536     int index = hash_to_index(entry->hash());
2537     add_entry(index, entry);
2538   }
2539 
2540   void free_entry(AdapterHandlerEntry* entry) {
2541     entry->deallocate();
2542     BasicHashtable<mtCode>::free_entry(entry);
2543   }
2544 
2545   // Find a entry with the same fingerprint if it exists
2546   AdapterHandlerEntry* lookup(int total_args_passed, const GrowableArray<SigEntry>* sig) {
2547     NOT_PRODUCT(_lookups++);
2548     AdapterFingerPrint fp(total_args_passed, sig);
2549     unsigned int hash = fp.compute_hash();
2550     int index = hash_to_index(hash);
2551     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2552       NOT_PRODUCT(_buckets++);
2553       if (e->hash() == hash) {
2554         NOT_PRODUCT(_equals++);
2555         if (fp.equals(e->fingerprint())) {
2556 #ifndef PRODUCT
2557           if (fp.is_compact()) _compact++;
2558           _hits++;
2559 #endif
2560           return e;
2561         }
2562       }
2563     }
2564     return NULL;
2565   }
2566 
2567 #ifndef PRODUCT
2568   void print_statistics() {
2569     ResourceMark rm;
2570     int longest = 0;
2571     int empty = 0;
2572     int total = 0;
2573     int nonempty = 0;
2574     for (int index = 0; index < table_size(); index++) {
2575       int count = 0;
2576       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2577         count++;
2578       }
2579       if (count != 0) nonempty++;
2580       if (count == 0) empty++;
2581       if (count > longest) longest = count;
2582       total += count;
2583     }
2584     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2585                   empty, longest, total, total / (double)nonempty);
2586     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2587                   _lookups, _buckets, _equals, _hits, _compact);
2588   }
2589 #endif
2590 };
2591 
2592 
2593 #ifndef PRODUCT
2594 
2595 int AdapterHandlerTable::_lookups;
2596 int AdapterHandlerTable::_buckets;
2597 int AdapterHandlerTable::_equals;
2598 int AdapterHandlerTable::_hits;
2599 int AdapterHandlerTable::_compact;
2600 
2601 #endif
2602 
2603 class AdapterHandlerTableIterator : public StackObj {
2604  private:
2605   AdapterHandlerTable* _table;
2606   int _index;
2607   AdapterHandlerEntry* _current;
2608 
2609   void scan() {
2610     while (_index < _table->table_size()) {
2611       AdapterHandlerEntry* a = _table->bucket(_index);
2612       _index++;
2613       if (a != NULL) {
2614         _current = a;
2615         return;
2616       }
2617     }
2618   }
2619 
2620  public:
2621   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2622     scan();
2623   }
2624   bool has_next() {
2625     return _current != NULL;
2626   }
2627   AdapterHandlerEntry* next() {
2628     if (_current != NULL) {
2629       AdapterHandlerEntry* result = _current;
2630       _current = _current->next();
2631       if (_current == NULL) scan();
2632       return result;
2633     } else {
2634       return NULL;
2635     }
2636   }
2637 };
2638 
2639 
2640 // ---------------------------------------------------------------------------
2641 // Implementation of AdapterHandlerLibrary
2642 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2643 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2644 const int AdapterHandlerLibrary_size = 16*K;
2645 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2646 
2647 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2648   // Should be called only when AdapterHandlerLibrary_lock is active.
2649   if (_buffer == NULL) // Initialize lazily
2650       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2651   return _buffer;
2652 }
2653 
2654 extern "C" void unexpected_adapter_call() {
2655   ShouldNotCallThis();
2656 }
2657 
2658 void AdapterHandlerLibrary::initialize() {
2659   if (_adapters != NULL) return;
2660   _adapters = new AdapterHandlerTable();
2661 
2662   // Create a special handler for abstract methods.  Abstract methods
2663   // are never compiled so an i2c entry is somewhat meaningless, but
2664   // throw AbstractMethodError just in case.
2665   // Pass wrong_method_abstract for the c2i transitions to return
2666   // AbstractMethodError for invalid invocations.
2667   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2668   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2669                                                               StubRoutines::throw_AbstractMethodError_entry(),
2670                                                               wrong_method_abstract, wrong_method_abstract, wrong_method_abstract);
2671 }
2672 
2673 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2674                                                       address i2c_entry,
2675                                                       address c2i_entry,
2676                                                       address c2i_value_entry,
2677                                                       address c2i_unverified_entry) {
2678   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_unverified_entry);
2679 }
2680 
2681 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2682   AdapterHandlerEntry* entry = get_adapter0(method);
2683   if (method->is_shared()) {
2684     // See comments around Method::link_method()
2685     MutexLocker mu(AdapterHandlerLibrary_lock);
2686     if (method->adapter() == NULL) {
2687       method->update_adapter_trampoline(entry);
2688     }
2689     address trampoline = method->from_compiled_entry();
2690     if (*(int*)trampoline == 0) {
2691       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2692       MacroAssembler _masm(&buffer);
2693       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2694       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2695 
2696       if (PrintInterpreter) {
2697         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2698       }
2699     }
2700   }
2701 
2702   return entry;
2703 }
2704 
2705 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2706   // Use customized signature handler.  Need to lock around updates to
2707   // the AdapterHandlerTable (it is not safe for concurrent readers
2708   // and a single writer: this could be fixed if it becomes a
2709   // problem).
2710 
2711   ResourceMark rm;
2712 
2713   NOT_PRODUCT(int insts_size = 0);
2714   AdapterBlob* new_adapter = NULL;
2715   AdapterHandlerEntry* entry = NULL;
2716   AdapterFingerPrint* fingerprint = NULL;
2717   {
2718     MutexLocker mu(AdapterHandlerLibrary_lock);
2719     // make sure data structure is initialized
2720     initialize();
2721 
2722     bool has_value_arg = false;
2723     GrowableArray<SigEntry> sig(method->size_of_parameters());
2724     if (!method->is_static()) {
2725       // TODO for now, don't scalarize value type receivers because of interface calls
2726       //has_value_arg |= method->method_holder()->is_value();
2727       SigEntry::add_entry(&sig, T_OBJECT);
2728     }
2729     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2730       BasicType bt = ss.type();
2731       if (bt == T_VALUETYPE) {
2732         has_value_arg = true;
2733         bt = T_OBJECT;
2734       }
2735       SigEntry::add_entry(&sig, bt);
2736     }
2737 
2738     // Process abstract method if it has value type args to set has_scalarized_args accordingly
2739     if (!has_value_arg && method->is_abstract()) {
2740       return _abstract_method_handler;
2741     }
2742 
2743     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2744     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sig.length());
2745     int args_on_stack = SharedRuntime::java_calling_convention(&sig, regs);
2746 
2747     // Now compute the scalarized calling convention if there are value types in the signature
2748     GrowableArray<SigEntry> sig_cc = sig;
2749     VMRegPair* regs_cc = regs;
2750     SigEntry reserved_entry;
2751     int args_on_stack_cc = args_on_stack;
2752 
2753     if (ValueTypePassFieldsAsArgs && has_value_arg) {
2754       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2755       InstanceKlass* holder = method->method_holder();
2756 
2757       sig_cc = GrowableArray<SigEntry>(method->size_of_parameters());
2758       if (!method->is_static()) {
2759         // TODO for now, don't scalarize value type receivers because of interface calls
2760         if (false && holder->is_value()) {
2761           sig_cc.appendAll(ValueKlass::cast(holder)->extended_sig());
2762         } else {
2763           SigEntry::add_entry(&sig_cc, T_OBJECT);
2764         }
2765       }
2766       Thread* THREAD = Thread::current();
2767       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2768         if (ss.type() == T_VALUETYPE) {
2769           Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2770                                  Handle(THREAD, holder->protection_domain()),
2771                                  SignatureStream::ReturnNull, THREAD);
2772           assert(k != NULL && !HAS_PENDING_EXCEPTION, "value klass should have been pre-loaded");
2773           sig_cc.appendAll(ValueKlass::cast(k)->extended_sig());
2774         } else {
2775           SigEntry::add_entry(&sig_cc, ss.type());
2776         }
2777       }
2778       regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc.length() + 2);
2779       args_on_stack_cc = SharedRuntime::java_calling_convention(&sig_cc, regs_cc);
2780 
2781       // This stack slot is occupied by the return address with the unscalarized calling
2782       // convention. Don't use it for argument with the scalarized calling convention.
2783       int ret_addr_slot = args_on_stack_cc - args_on_stack;
2784       if (ret_addr_slot > 0) {
2785         // Make sure stack of the scalarized calling convention with
2786         // the reserved entry (2 slots) is 16-byte (4 slots) aligned.
2787         int alignment = StackAlignmentInBytes/VMRegImpl::stack_slot_size;
2788         ret_addr_slot = align_up(ret_addr_slot + 2, alignment) - 2;
2789         // Find index in signature that belongs to return address slot
2790         reserved_entry._offset = 0;
2791         int sig_idx = 0;
2792         for (; sig_idx < sig_cc.length(); ++sig_idx) {
2793           if (SigEntry::skip_value_delimiters(&sig_cc, sig_idx)) {
2794             VMReg first = regs_cc[reserved_entry._offset].first();
2795             if (first->is_stack()) {
2796               // Select a type for the reserved entry that will end up on the stack
2797               reserved_entry._bt = sig_cc.at(sig_idx)._bt;
2798               if ((int)first->reg2stack() == ret_addr_slot) {
2799                 break;
2800               }
2801             }
2802             reserved_entry._offset++;
2803           }
2804         }
2805         // Insert reserved entry and re-compute calling convention
2806         SigEntry::insert_reserved_entry(&sig_cc, sig_idx, reserved_entry._bt);
2807         args_on_stack_cc = SharedRuntime::java_calling_convention(&sig_cc, regs_cc);
2808       }
2809       // Upper bound on stack arguments to avoid hitting the argument limit and
2810       // bailing out of compilation ("unsupported incoming calling sequence").
2811       // TODO we need a reasonable limit (flag?) here
2812       if (args_on_stack_cc > 50) {
2813         // Don't scalarize value type arguments
2814         sig_cc = sig;
2815         regs_cc = regs;
2816         args_on_stack_cc = args_on_stack;
2817       } else {
2818         method->set_has_scalarized_args(true);
2819       }
2820     }
2821 
2822     if (method->is_abstract()) {
2823       return _abstract_method_handler;
2824     }
2825 
2826     // Lookup method signature's fingerprint
2827     entry = _adapters->lookup(sig_cc.length(), &sig_cc);
2828 
2829 #ifdef ASSERT
2830     AdapterHandlerEntry* shared_entry = NULL;
2831     // Start adapter sharing verification only after the VM is booted.
2832     if (VerifyAdapterSharing && (entry != NULL)) {
2833       shared_entry = entry;
2834       entry = NULL;
2835     }
2836 #endif
2837 
2838     if (entry != NULL) {
2839       return entry;
2840     }
2841 
2842     // Make a C heap allocated version of the fingerprint to store in the adapter
2843     fingerprint = new AdapterFingerPrint(sig_cc.length(), &sig_cc);
2844 
2845     // StubRoutines::code2() is initialized after this function can be called. As a result,
2846     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2847     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2848     // stub that ensure that an I2C stub is called from an interpreter frame.
2849     bool contains_all_checks = StubRoutines::code2() != NULL;
2850 
2851     // Create I2C & C2I handlers
2852     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2853     if (buf != NULL) {
2854       CodeBuffer buffer(buf);
2855       short buffer_locs[20];
2856       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2857                                              sizeof(buffer_locs)/sizeof(relocInfo));
2858 
2859       MacroAssembler _masm(&buffer);
2860       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2861                                                      args_on_stack,
2862                                                      args_on_stack_cc,
2863                                                      &sig,
2864                                                      regs,
2865                                                      &sig_cc,
2866                                                      regs_cc,
2867                                                      fingerprint,
2868                                                      new_adapter);
2869 
2870       if (regs != regs_cc) {
2871         // Save a C heap allocated version of the scalarized signature and store it in the adapter
2872         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(method->size_of_parameters(), true);
2873         heap_sig->appendAll(&sig_cc);
2874         entry->set_sig_cc(heap_sig);
2875         entry->set_res_entry(reserved_entry);
2876       }
2877 
2878 #ifdef ASSERT
2879       if (VerifyAdapterSharing) {
2880         if (shared_entry != NULL) {
2881           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2882           // Release the one just created and return the original
2883           _adapters->free_entry(entry);
2884           return shared_entry;
2885         } else  {
2886           entry->save_code(buf->code_begin(), buffer.insts_size());
2887         }
2888       }
2889 #endif
2890 
2891       NOT_PRODUCT(insts_size = buffer.insts_size());
2892     }
2893     if (new_adapter == NULL) {
2894       // CodeCache is full, disable compilation
2895       // Ought to log this but compile log is only per compile thread
2896       // and we're some non descript Java thread.
2897       return NULL; // Out of CodeCache space
2898     }
2899     entry->relocate(new_adapter->content_begin());
2900 #ifndef PRODUCT
2901     // debugging suppport
2902     if (PrintAdapterHandlers || PrintStubCode) {
2903       ttyLocker ttyl;
2904       entry->print_adapter_on(tty);
2905       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2906                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2907                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2908       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2909       if (Verbose || PrintStubCode) {
2910         address first_pc = entry->base_address();
2911         if (first_pc != NULL) {
2912           Disassembler::decode(first_pc, first_pc + insts_size);
2913           tty->cr();
2914         }
2915       }
2916     }
2917 #endif
2918     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2919     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2920     if (contains_all_checks || !VerifyAdapterCalls) {
2921       _adapters->add(entry);
2922     }
2923   }
2924   // Outside of the lock
2925   if (new_adapter != NULL) {
2926     char blob_id[256];
2927     jio_snprintf(blob_id,
2928                  sizeof(blob_id),
2929                  "%s(%s)@" PTR_FORMAT,
2930                  new_adapter->name(),
2931                  fingerprint->as_string(),
2932                  new_adapter->content_begin());
2933     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2934 
2935     if (JvmtiExport::should_post_dynamic_code_generated()) {
2936       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2937     }
2938   }
2939   return entry;
2940 }
2941 
2942 address AdapterHandlerEntry::base_address() {
2943   address base = _i2c_entry;
2944   if (base == NULL)  base = _c2i_entry;
2945   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2946   assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, "");
2947   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2948   return base;
2949 }
2950 
2951 void AdapterHandlerEntry::relocate(address new_base) {
2952   address old_base = base_address();
2953   assert(old_base != NULL, "");
2954   ptrdiff_t delta = new_base - old_base;
2955   if (_i2c_entry != NULL)
2956     _i2c_entry += delta;
2957   if (_c2i_entry != NULL)
2958     _c2i_entry += delta;
2959   if (_c2i_value_entry != NULL)
2960     _c2i_value_entry += delta;
2961   if (_c2i_unverified_entry != NULL)
2962     _c2i_unverified_entry += delta;
2963   assert(base_address() == new_base, "");
2964 }
2965 
2966 
2967 void AdapterHandlerEntry::deallocate() {
2968   delete _fingerprint;
2969   if (_sig_cc != NULL) {
2970     delete _sig_cc;
2971   }
2972 #ifdef ASSERT
2973   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2974 #endif
2975 }
2976 
2977 
2978 #ifdef ASSERT
2979 // Capture the code before relocation so that it can be compared
2980 // against other versions.  If the code is captured after relocation
2981 // then relative instructions won't be equivalent.
2982 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2983   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2984   _saved_code_length = length;
2985   memcpy(_saved_code, buffer, length);
2986 }
2987 
2988 
2989 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2990   if (length != _saved_code_length) {
2991     return false;
2992   }
2993 
2994   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2995 }
2996 #endif
2997 
2998 
2999 /**
3000  * Create a native wrapper for this native method.  The wrapper converts the
3001  * Java-compiled calling convention to the native convention, handles
3002  * arguments, and transitions to native.  On return from the native we transition
3003  * back to java blocking if a safepoint is in progress.
3004  */
3005 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3006   ResourceMark rm;
3007   nmethod* nm = NULL;
3008 
3009   assert(method->is_native(), "must be native");
3010   assert(method->is_method_handle_intrinsic() ||
3011          method->has_native_function(), "must have something valid to call!");
3012 
3013   {
3014     // Perform the work while holding the lock, but perform any printing outside the lock
3015     MutexLocker mu(AdapterHandlerLibrary_lock);
3016     // See if somebody beat us to it
3017     if (method->code() != NULL) {
3018       return;
3019     }
3020 
3021     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3022     assert(compile_id > 0, "Must generate native wrapper");
3023 
3024 
3025     ResourceMark rm;
3026     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3027     if (buf != NULL) {
3028       CodeBuffer buffer(buf);
3029       double locs_buf[20];
3030       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3031       MacroAssembler _masm(&buffer);
3032 
3033       // Fill in the signature array, for the calling-convention call.
3034       const int total_args_passed = method->size_of_parameters();
3035 
3036       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3037       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3038       int i=0;
3039       if (!method->is_static())  // Pass in receiver first
3040         sig_bt[i++] = T_OBJECT;
3041       SignatureStream ss(method->signature());
3042       for (; !ss.at_return_type(); ss.next()) {
3043         BasicType bt = ss.type();
3044         sig_bt[i++] = bt;  // Collect remaining bits of signature
3045         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3046           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3047       }
3048       assert(i == total_args_passed, "");
3049       BasicType ret_type = ss.type();
3050 
3051       // Now get the compiled-Java layout as input (or output) arguments.
3052       // NOTE: Stubs for compiled entry points of method handle intrinsics
3053       // are just trampolines so the argument registers must be outgoing ones.
3054       const bool is_outgoing = method->is_method_handle_intrinsic();
3055       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3056 
3057       // Generate the compiled-to-native wrapper code
3058       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3059 
3060       if (nm != NULL) {
3061         method->set_code(method, nm);
3062 
3063         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3064         if (directive->PrintAssemblyOption) {
3065           nm->print_code();
3066         }
3067         DirectivesStack::release(directive);
3068       }
3069     }
3070   } // Unlock AdapterHandlerLibrary_lock
3071 
3072 
3073   // Install the generated code.
3074   if (nm != NULL) {
3075     const char *msg = method->is_static() ? "(static)" : "";
3076     CompileTask::print_ul(nm, msg);
3077     if (PrintCompilation) {
3078       ttyLocker ttyl;
3079       CompileTask::print(tty, nm, msg);
3080     }
3081     nm->post_compiled_method_load_event();
3082   }
3083 }
3084 
3085 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3086   assert(thread == JavaThread::current(), "must be");
3087   // The code is about to enter a JNI lazy critical native method and
3088   // _needs_gc is true, so if this thread is already in a critical
3089   // section then just return, otherwise this thread should block
3090   // until needs_gc has been cleared.
3091   if (thread->in_critical()) {
3092     return;
3093   }
3094   // Lock and unlock a critical section to give the system a chance to block
3095   GCLocker::lock_critical(thread);
3096   GCLocker::unlock_critical(thread);
3097 JRT_END
3098 
3099 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3100   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3101   assert(obj != NULL, "Should not be null");
3102   oop o(obj);
3103   o = Universe::heap()->pin_object(thread, o);
3104   assert(o != NULL, "Should not be null");
3105   return o;
3106 JRT_END
3107 
3108 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3109   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3110   assert(obj != NULL, "Should not be null");
3111   oop o(obj);
3112   Universe::heap()->unpin_object(thread, o);
3113 JRT_END
3114 
3115 // -------------------------------------------------------------------------
3116 // Java-Java calling convention
3117 // (what you use when Java calls Java)
3118 
3119 //------------------------------name_for_receiver----------------------------------
3120 // For a given signature, return the VMReg for parameter 0.
3121 VMReg SharedRuntime::name_for_receiver() {
3122   VMRegPair regs;
3123   BasicType sig_bt = T_OBJECT;
3124   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3125   // Return argument 0 register.  In the LP64 build pointers
3126   // take 2 registers, but the VM wants only the 'main' name.
3127   return regs.first();
3128 }
3129 
3130 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3131   // This method is returning a data structure allocating as a
3132   // ResourceObject, so do not put any ResourceMarks in here.
3133   char *s = sig->as_C_string();
3134   int len = (int)strlen(s);
3135   s++; len--;                   // Skip opening paren
3136 
3137   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3138   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3139   int cnt = 0;
3140   if (has_receiver) {
3141     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3142   }
3143 
3144   while (*s != ')') {          // Find closing right paren
3145     switch (*s++) {            // Switch on signature character
3146     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3147     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3148     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3149     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3150     case 'I': sig_bt[cnt++] = T_INT;     break;
3151     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3152     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3153     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3154     case 'V': sig_bt[cnt++] = T_VOID;    break;
3155     case 'L':                   // Oop
3156       while (*s++ != ';');   // Skip signature
3157       sig_bt[cnt++] = T_OBJECT;
3158       break;
3159     case 'Q':                // Value type
3160       while (*s++ != ';');   // Skip signature
3161       sig_bt[cnt++] = T_VALUETYPE;
3162       break;
3163     case '[': {                 // Array
3164       do {                      // Skip optional size
3165         while (*s >= '0' && *s <= '9') s++;
3166       } while (*s++ == '[');   // Nested arrays?
3167       // Skip element type
3168       if (s[-1] == 'L' || s[-1] == 'Q')
3169         while (*s++ != ';'); // Skip signature
3170       sig_bt[cnt++] = T_ARRAY;
3171       break;
3172     }
3173     default : ShouldNotReachHere();
3174     }
3175   }
3176 
3177   if (has_appendix) {
3178     sig_bt[cnt++] = T_OBJECT;
3179   }
3180 
3181   assert(cnt < 256, "grow table size");
3182 
3183   int comp_args_on_stack;
3184   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3185 
3186   // the calling convention doesn't count out_preserve_stack_slots so
3187   // we must add that in to get "true" stack offsets.
3188 
3189   if (comp_args_on_stack) {
3190     for (int i = 0; i < cnt; i++) {
3191       VMReg reg1 = regs[i].first();
3192       if (reg1->is_stack()) {
3193         // Yuck
3194         reg1 = reg1->bias(out_preserve_stack_slots());
3195       }
3196       VMReg reg2 = regs[i].second();
3197       if (reg2->is_stack()) {
3198         // Yuck
3199         reg2 = reg2->bias(out_preserve_stack_slots());
3200       }
3201       regs[i].set_pair(reg2, reg1);
3202     }
3203   }
3204 
3205   // results
3206   *arg_size = cnt;
3207   return regs;
3208 }
3209 
3210 // OSR Migration Code
3211 //
3212 // This code is used convert interpreter frames into compiled frames.  It is
3213 // called from very start of a compiled OSR nmethod.  A temp array is
3214 // allocated to hold the interesting bits of the interpreter frame.  All
3215 // active locks are inflated to allow them to move.  The displaced headers and
3216 // active interpreter locals are copied into the temp buffer.  Then we return
3217 // back to the compiled code.  The compiled code then pops the current
3218 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3219 // copies the interpreter locals and displaced headers where it wants.
3220 // Finally it calls back to free the temp buffer.
3221 //
3222 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3223 
3224 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3225 
3226   //
3227   // This code is dependent on the memory layout of the interpreter local
3228   // array and the monitors. On all of our platforms the layout is identical
3229   // so this code is shared. If some platform lays the their arrays out
3230   // differently then this code could move to platform specific code or
3231   // the code here could be modified to copy items one at a time using
3232   // frame accessor methods and be platform independent.
3233 
3234   frame fr = thread->last_frame();
3235   assert(fr.is_interpreted_frame(), "");
3236   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3237 
3238   // Figure out how many monitors are active.
3239   int active_monitor_count = 0;
3240   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3241        kptr < fr.interpreter_frame_monitor_begin();
3242        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3243     if (kptr->obj() != NULL) active_monitor_count++;
3244   }
3245 
3246   // QQQ we could place number of active monitors in the array so that compiled code
3247   // could double check it.
3248 
3249   Method* moop = fr.interpreter_frame_method();
3250   int max_locals = moop->max_locals();
3251   // Allocate temp buffer, 1 word per local & 2 per active monitor
3252   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3253   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3254 
3255   // Copy the locals.  Order is preserved so that loading of longs works.
3256   // Since there's no GC I can copy the oops blindly.
3257   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3258   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3259                        (HeapWord*)&buf[0],
3260                        max_locals);
3261 
3262   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3263   int i = max_locals;
3264   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3265        kptr2 < fr.interpreter_frame_monitor_begin();
3266        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3267     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3268       BasicLock *lock = kptr2->lock();
3269       // Inflate so the displaced header becomes position-independent
3270       if (lock->displaced_header()->is_unlocked())
3271         ObjectSynchronizer::inflate_helper(kptr2->obj());
3272       // Now the displaced header is free to move
3273       buf[i++] = (intptr_t)lock->displaced_header();
3274       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3275     }
3276   }
3277   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3278 
3279   return buf;
3280 JRT_END
3281 
3282 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3283   FREE_C_HEAP_ARRAY(intptr_t, buf);
3284 JRT_END
3285 
3286 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3287   AdapterHandlerTableIterator iter(_adapters);
3288   while (iter.has_next()) {
3289     AdapterHandlerEntry* a = iter.next();
3290     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3291   }
3292   return false;
3293 }
3294 
3295 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3296   AdapterHandlerTableIterator iter(_adapters);
3297   while (iter.has_next()) {
3298     AdapterHandlerEntry* a = iter.next();
3299     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3300       st->print("Adapter for signature: ");
3301       a->print_adapter_on(tty);
3302       return;
3303     }
3304   }
3305   assert(false, "Should have found handler");
3306 }
3307 
3308 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3309   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iMH: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3310                p2i(this), fingerprint()->as_string(),
3311                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_value_entry()), p2i(get_c2i_unverified_entry()));
3312 
3313 }
3314 
3315 #if INCLUDE_CDS
3316 
3317 void CDSAdapterHandlerEntry::init() {
3318   assert(DumpSharedSpaces, "used during dump time only");
3319   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3320   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3321 };
3322 
3323 #endif // INCLUDE_CDS
3324 
3325 
3326 #ifndef PRODUCT
3327 
3328 void AdapterHandlerLibrary::print_statistics() {
3329   _adapters->print_statistics();
3330 }
3331 
3332 #endif /* PRODUCT */
3333 
3334 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3335   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3336   if (thread->stack_reserved_zone_disabled()) {
3337   thread->enable_stack_reserved_zone();
3338   }
3339   thread->set_reserved_stack_activation(thread->stack_base());
3340 JRT_END
3341 
3342 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3343   ResourceMark rm(thread);
3344   frame activation;
3345   CompiledMethod* nm = NULL;
3346   int count = 1;
3347 
3348   assert(fr.is_java_frame(), "Must start on Java frame");
3349 
3350   while (true) {
3351     Method* method = NULL;
3352     bool found = false;
3353     if (fr.is_interpreted_frame()) {
3354       method = fr.interpreter_frame_method();
3355       if (method != NULL && method->has_reserved_stack_access()) {
3356         found = true;
3357       }
3358     } else {
3359       CodeBlob* cb = fr.cb();
3360       if (cb != NULL && cb->is_compiled()) {
3361         nm = cb->as_compiled_method();
3362         method = nm->method();
3363         // scope_desc_near() must be used, instead of scope_desc_at() because on
3364         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3365         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3366           method = sd->method();
3367           if (method != NULL && method->has_reserved_stack_access()) {
3368             found = true;
3369       }
3370     }
3371       }
3372     }
3373     if (found) {
3374       activation = fr;
3375       warning("Potentially dangerous stack overflow in "
3376               "ReservedStackAccess annotated method %s [%d]",
3377               method->name_and_sig_as_C_string(), count++);
3378       EventReservedStackActivation event;
3379       if (event.should_commit()) {
3380         event.set_method(method);
3381         event.commit();
3382       }
3383     }
3384     if (fr.is_first_java_frame()) {
3385       break;
3386     } else {
3387       fr = fr.java_sender();
3388     }
3389   }
3390   return activation;
3391 }
3392 
3393 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3394   // After any safepoint, just before going back to compiled code,
3395   // we inform the GC that we will be doing initializing writes to
3396   // this object in the future without emitting card-marks, so
3397   // GC may take any compensating steps.
3398 
3399   oop new_obj = thread->vm_result();
3400   if (new_obj == NULL) return;
3401 
3402   BarrierSet *bs = BarrierSet::barrier_set();
3403   bs->on_slowpath_allocation_exit(thread, new_obj);
3404 }
3405 
3406 // We are at a compiled code to interpreter call. We need backing
3407 // buffers for all value type arguments. Allocate an object array to
3408 // hold them (convenient because once we're done with it we don't have
3409 // to worry about freeing it).
3410 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3411 {
3412   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3413   ResourceMark rm;
3414   JavaThread* THREAD = thread;
3415   methodHandle callee(callee_method);
3416 
3417   int nb_slots = 0;
3418   InstanceKlass* holder = callee->method_holder();
3419   // TODO for now, don't scalarize value type receivers because of interface calls
3420   //bool has_value_receiver = !callee->is_static() && holder->is_value();
3421   bool has_value_receiver = false;
3422   if (has_value_receiver) {
3423     nb_slots++;
3424   }
3425   Handle class_loader(THREAD, holder->class_loader());
3426   Handle protection_domain(THREAD, holder->protection_domain());
3427   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3428     if (ss.type() == T_VALUETYPE) {
3429       nb_slots++;
3430     }
3431   }
3432   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3433   objArrayHandle array(THREAD, array_oop);
3434   int i = 0;
3435   if (has_value_receiver) {
3436     ValueKlass* vk = ValueKlass::cast(holder);
3437     oop res = vk->allocate_instance(CHECK);
3438     array->obj_at_put(i, res);
3439     i++;
3440   }
3441   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3442     if (ss.type() == T_VALUETYPE) {
3443       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3444       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3445       ValueKlass* vk = ValueKlass::cast(k);
3446       oop res = vk->allocate_instance(CHECK);
3447       array->obj_at_put(i, res);
3448       i++;
3449     }
3450   }
3451   thread->set_vm_result(array());
3452   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3453 }
3454 JRT_END
3455 
3456 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3457 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3458 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3459 {
3460   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3461   assert(oopDesc::is_oop(array), "should be oop");
3462   for (int i = 0; i < array->length(); ++i) {
3463     instanceOop valueOop = (instanceOop)array->obj_at(i);
3464     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3465     if (vk->contains_oops()) {
3466       const address dst_oop_addr = ((address) (void*) valueOop);
3467       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3468       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3469       while (map != end) {
3470         address doop_address = dst_oop_addr + map->offset();
3471         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3472           write_ref_array((HeapWord*) doop_address, map->count());
3473         map++;
3474       }
3475     }
3476   }
3477 }
3478 JRT_END
3479 
3480 // We're returning from an interpreted method: load each field into a
3481 // register following the calling convention
3482 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3483 {
3484   assert(res->klass()->is_value(), "only value types here");
3485   ResourceMark rm;
3486   RegisterMap reg_map(thread);
3487   frame stubFrame = thread->last_frame();
3488   frame callerFrame = stubFrame.sender(&reg_map);
3489   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3490 
3491   ValueKlass* vk = ValueKlass::cast(res->klass());
3492 
3493   const Array<SigEntry>* sig_vk = vk->extended_sig();
3494   const Array<VMRegPair>* regs = vk->return_regs();
3495 
3496   if (regs == NULL) {
3497     // The fields of the value klass don't fit in registers, bail out
3498     return;
3499   }
3500 
3501   int j = 1;
3502   for (int i = 0; i < sig_vk->length(); i++) {
3503     BasicType bt = sig_vk->at(i)._bt;
3504     if (bt == T_VALUETYPE) {
3505       continue;
3506     }
3507     if (bt == T_VOID) {
3508       if (sig_vk->at(i-1)._bt == T_LONG ||
3509           sig_vk->at(i-1)._bt == T_DOUBLE) {
3510         j++;
3511       }
3512       continue;
3513     }
3514     int off = sig_vk->at(i)._offset;
3515     assert(off > 0, "offset in object should be positive");
3516     VMRegPair pair = regs->at(j);
3517     address loc = reg_map.location(pair.first());
3518     switch(bt) {
3519     case T_BOOLEAN:
3520       *(jboolean*)loc = res->bool_field(off);
3521       break;
3522     case T_CHAR:
3523       *(jchar*)loc = res->char_field(off);
3524       break;
3525     case T_BYTE:
3526       *(jbyte*)loc = res->byte_field(off);
3527       break;
3528     case T_SHORT:
3529       *(jshort*)loc = res->short_field(off);
3530       break;
3531     case T_INT: {
3532       *(jint*)loc = res->int_field(off);
3533       break;
3534     }
3535     case T_LONG:
3536 #ifdef _LP64
3537       *(intptr_t*)loc = res->long_field(off);
3538 #else
3539       Unimplemented();
3540 #endif
3541       break;
3542     case T_OBJECT:
3543     case T_ARRAY: {
3544       *(oop*)loc = res->obj_field(off);
3545       break;
3546     }
3547     case T_FLOAT:
3548       *(jfloat*)loc = res->float_field(off);
3549       break;
3550     case T_DOUBLE:
3551       *(jdouble*)loc = res->double_field(off);
3552       break;
3553     default:
3554       ShouldNotReachHere();
3555     }
3556     j++;
3557   }
3558   assert(j == regs->length(), "missed a field?");
3559 
3560 #ifdef ASSERT
3561   VMRegPair pair = regs->at(0);
3562   address loc = reg_map.location(pair.first());
3563   assert(*(oopDesc**)loc == res, "overwritten object");
3564 #endif
3565 
3566   thread->set_vm_result(res);
3567 }
3568 JRT_END
3569 
3570 // We've returned to an interpreted method, the interpreter needs a
3571 // reference to a value type instance. Allocate it and initialize it
3572 // from field's values in registers.
3573 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3574 {
3575   ResourceMark rm;
3576   RegisterMap reg_map(thread);
3577   frame stubFrame = thread->last_frame();
3578   frame callerFrame = stubFrame.sender(&reg_map);
3579 
3580 #ifdef ASSERT
3581   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3582 #endif
3583 
3584   if (!is_set_nth_bit(res, 0)) {
3585     // We're not returning with value type fields in registers (the
3586     // calling convention didn't allow it for this value klass)
3587     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3588     thread->set_vm_result((oopDesc*)res);
3589     assert(verif_vk == NULL, "broken calling convention");
3590     return;
3591   }
3592 
3593   clear_nth_bit(res, 0);
3594   ValueKlass* vk = (ValueKlass*)res;
3595   assert(verif_vk == vk, "broken calling convention");
3596   assert(Metaspace::contains((void*)res), "should be klass");
3597 
3598   // Allocate handles for every oop field so they are safe in case of
3599   // a safepoint when allocating
3600   GrowableArray<Handle> handles;
3601   vk->save_oop_fields(reg_map, handles);
3602 
3603   // It's unsafe to safepoint until we are here
3604   JRT_BLOCK;
3605   {
3606     Thread* THREAD = thread;
3607     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3608     thread->set_vm_result(vt);
3609   }
3610   JRT_BLOCK_END;
3611 }
3612 JRT_END
3613