1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_CALLNODE_HPP
  26 #define SHARE_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 // Optimization - Graph Style
  39 
  40 class Chaitin;
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class     AllocateNode;
  52 class       AllocateArrayNode;
  53 class     BoxLockNode;
  54 class     LockNode;
  55 class     UnlockNode;
  56 class JVMState;
  57 class OopMap;
  58 class State;
  59 class StartNode;
  60 class MachCallNode;
  61 class FastLockNode;
  62 
  63 //------------------------------StartNode--------------------------------------
  64 // The method start node
  65 class StartNode : public MultiNode {
  66   virtual bool cmp( const Node &n ) const;
  67   virtual uint size_of() const; // Size is bigger
  68 public:
  69   const TypeTuple *_domain;
  70   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  71     init_class_id(Class_Start);
  72     init_req(0,this);
  73     init_req(1,root);
  74   }
  75   virtual int Opcode() const;
  76   virtual bool pinned() const { return true; };
  77   virtual const Type *bottom_type() const;
  78   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  79   virtual const Type* Value(PhaseGVN* phase) const;
  80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  81   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  82   virtual const RegMask &in_RegMask(uint) const;
  83   virtual Node *match(const ProjNode *proj, const Matcher *m, const RegMask* mask);
  84   virtual uint ideal_reg() const { return 0; }
  85 #ifndef PRODUCT
  86   virtual void  dump_spec(outputStream *st) const;
  87   virtual void  dump_compact_spec(outputStream *st) const;
  88 #endif
  89 };
  90 
  91 //------------------------------StartOSRNode-----------------------------------
  92 // The method start node for on stack replacement code
  93 class StartOSRNode : public StartNode {
  94 public:
  95   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  96   virtual int   Opcode() const;
  97   static  const TypeTuple *osr_domain();
  98 };
  99 
 100 
 101 //------------------------------ParmNode---------------------------------------
 102 // Incoming parameters
 103 class ParmNode : public ProjNode {
 104   static const char * const names[TypeFunc::Parms+1];
 105 public:
 106   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 107     init_class_id(Class_Parm);
 108   }
 109   virtual int Opcode() const;
 110   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 111   virtual uint ideal_reg() const;
 112 #ifndef PRODUCT
 113   virtual void dump_spec(outputStream *st) const;
 114   virtual void dump_compact_spec(outputStream *st) const;
 115   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
 116 #endif
 117 };
 118 
 119 
 120 //------------------------------ReturnNode-------------------------------------
 121 // Return from subroutine node
 122 class ReturnNode : public Node {
 123 public:
 124   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 125   virtual int Opcode() const;
 126   virtual bool  is_CFG() const { return true; }
 127   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 128   virtual bool depends_only_on_test() const { return false; }
 129   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 130   virtual const Type* Value(PhaseGVN* phase) const;
 131   virtual uint ideal_reg() const { return NotAMachineReg; }
 132   virtual uint match_edge(uint idx) const;
 133 #ifndef PRODUCT
 134   virtual void dump_req(outputStream *st = tty) const;
 135 #endif
 136 };
 137 
 138 
 139 //------------------------------RethrowNode------------------------------------
 140 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 141 // ends the current basic block like a ReturnNode.  Restores registers and
 142 // unwinds stack.  Rethrow happens in the caller's method.
 143 class RethrowNode : public Node {
 144  public:
 145   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 146   virtual int Opcode() const;
 147   virtual bool  is_CFG() const { return true; }
 148   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 149   virtual bool depends_only_on_test() const { return false; }
 150   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 151   virtual const Type* Value(PhaseGVN* phase) const;
 152   virtual uint match_edge(uint idx) const;
 153   virtual uint ideal_reg() const { return NotAMachineReg; }
 154 #ifndef PRODUCT
 155   virtual void dump_req(outputStream *st = tty) const;
 156 #endif
 157 };
 158 
 159 
 160 //------------------------------TailCallNode-----------------------------------
 161 // Pop stack frame and jump indirect
 162 class TailCallNode : public ReturnNode {
 163 public:
 164   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 165     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 166     init_req(TypeFunc::Parms, target);
 167     init_req(TypeFunc::Parms+1, moop);
 168   }
 169 
 170   virtual int Opcode() const;
 171   virtual uint match_edge(uint idx) const;
 172 };
 173 
 174 //------------------------------TailJumpNode-----------------------------------
 175 // Pop stack frame and jump indirect
 176 class TailJumpNode : public ReturnNode {
 177 public:
 178   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 179     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 180     init_req(TypeFunc::Parms, target);
 181     init_req(TypeFunc::Parms+1, ex_oop);
 182   }
 183 
 184   virtual int Opcode() const;
 185   virtual uint match_edge(uint idx) const;
 186 };
 187 
 188 //-------------------------------JVMState-------------------------------------
 189 // A linked list of JVMState nodes captures the whole interpreter state,
 190 // plus GC roots, for all active calls at some call site in this compilation
 191 // unit.  (If there is no inlining, then the list has exactly one link.)
 192 // This provides a way to map the optimized program back into the interpreter,
 193 // or to let the GC mark the stack.
 194 class JVMState : public ResourceObj {
 195   friend class VMStructs;
 196 public:
 197   typedef enum {
 198     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 199     Reexecute_False     =  0, // false       -- do not reexecute
 200     Reexecute_True      =  1  // true        -- reexecute the bytecode
 201   } ReexecuteState; //Reexecute State
 202 
 203 private:
 204   JVMState*         _caller;    // List pointer for forming scope chains
 205   uint              _depth;     // One more than caller depth, or one.
 206   uint              _locoff;    // Offset to locals in input edge mapping
 207   uint              _stkoff;    // Offset to stack in input edge mapping
 208   uint              _monoff;    // Offset to monitors in input edge mapping
 209   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 210   uint              _endoff;    // Offset to end of input edge mapping
 211   uint              _sp;        // Jave Expression Stack Pointer for this state
 212   int               _bci;       // Byte Code Index of this JVM point
 213   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 214   ciMethod*         _method;    // Method Pointer
 215   SafePointNode*    _map;       // Map node associated with this scope
 216 public:
 217   friend class Compile;
 218   friend class PreserveReexecuteState;
 219 
 220   // Because JVMState objects live over the entire lifetime of the
 221   // Compile object, they are allocated into the comp_arena, which
 222   // does not get resource marked or reset during the compile process
 223   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 224   void operator delete( void * ) { } // fast deallocation
 225 
 226   // Create a new JVMState, ready for abstract interpretation.
 227   JVMState(ciMethod* method, JVMState* caller);
 228   JVMState(int stack_size);  // root state; has a null method
 229 
 230   // Access functions for the JVM
 231   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 232   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 233   uint              locoff() const { return _locoff; }
 234   uint              stkoff() const { return _stkoff; }
 235   uint              argoff() const { return _stkoff + _sp; }
 236   uint              monoff() const { return _monoff; }
 237   uint              scloff() const { return _scloff; }
 238   uint              endoff() const { return _endoff; }
 239   uint              oopoff() const { return debug_end(); }
 240 
 241   int            loc_size() const { return stkoff() - locoff(); }
 242   int            stk_size() const { return monoff() - stkoff(); }
 243   int            mon_size() const { return scloff() - monoff(); }
 244   int            scl_size() const { return endoff() - scloff(); }
 245 
 246   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 247   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 248   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 249   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 250 
 251   uint                      sp() const { return _sp; }
 252   int                      bci() const { return _bci; }
 253   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 254   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 255   bool              has_method() const { return _method != NULL; }
 256   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 257   JVMState*             caller() const { return _caller; }
 258   SafePointNode*           map() const { return _map; }
 259   uint                   depth() const { return _depth; }
 260   uint             debug_start() const; // returns locoff of root caller
 261   uint               debug_end() const; // returns endoff of self
 262   uint              debug_size() const {
 263     return loc_size() + sp() + mon_size() + scl_size();
 264   }
 265   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 266 
 267   // Returns the JVM state at the desired depth (1 == root).
 268   JVMState* of_depth(int d) const;
 269 
 270   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 271   bool same_calls_as(const JVMState* that) const;
 272 
 273   // Monitors (monitors are stored as (boxNode, objNode) pairs
 274   enum { logMonitorEdges = 1 };
 275   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 276   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 277   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 278   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 279   bool is_monitor_box(uint off)    const {
 280     assert(is_mon(off), "should be called only for monitor edge");
 281     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 282   }
 283   bool is_monitor_use(uint off)    const { return (is_mon(off)
 284                                                    && is_monitor_box(off))
 285                                              || (caller() && caller()->is_monitor_use(off)); }
 286 
 287   // Initialization functions for the JVM
 288   void              set_locoff(uint off) { _locoff = off; }
 289   void              set_stkoff(uint off) { _stkoff = off; }
 290   void              set_monoff(uint off) { _monoff = off; }
 291   void              set_scloff(uint off) { _scloff = off; }
 292   void              set_endoff(uint off) { _endoff = off; }
 293   void              set_offsets(uint off) {
 294     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 295   }
 296   void              set_map(SafePointNode *map) { _map = map; }
 297   void              set_sp(uint sp) { _sp = sp; }
 298                     // _reexecute is initialized to "undefined" for a new bci
 299   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 300   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 301 
 302   // Miscellaneous utility functions
 303   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 304   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 305   void      set_map_deep(SafePointNode *map);// reset map for all callers
 306   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 307   int       interpreter_frame_size() const;
 308 
 309 #ifndef PRODUCT
 310   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 311   void      dump_spec(outputStream *st) const;
 312   void      dump_on(outputStream* st) const;
 313   void      dump() const {
 314     dump_on(tty);
 315   }
 316 #endif
 317 };
 318 
 319 //------------------------------SafePointNode----------------------------------
 320 // A SafePointNode is a subclass of a MultiNode for convenience (and
 321 // potential code sharing) only - conceptually it is independent of
 322 // the Node semantics.
 323 class SafePointNode : public MultiNode {
 324   virtual bool           cmp( const Node &n ) const;
 325   virtual uint           size_of() const;       // Size is bigger
 326 
 327 public:
 328   SafePointNode(uint edges, JVMState* jvms,
 329                 // A plain safepoint advertises no memory effects (NULL):
 330                 const TypePtr* adr_type = NULL)
 331     : MultiNode( edges ),
 332       _oop_map(NULL),
 333       _jvms(jvms),
 334       _adr_type(adr_type)
 335   {
 336     init_class_id(Class_SafePoint);
 337   }
 338 
 339   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 340   JVMState* const _jvms;      // Pointer to list of JVM State objects
 341   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 342   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 343 
 344   // Many calls take *all* of memory as input,
 345   // but some produce a limited subset of that memory as output.
 346   // The adr_type reports the call's behavior as a store, not a load.
 347 
 348   virtual JVMState* jvms() const { return _jvms; }
 349   void set_jvms(JVMState* s) {
 350     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 351   }
 352   OopMap *oop_map() const { return _oop_map; }
 353   void set_oop_map(OopMap *om) { _oop_map = om; }
 354 
 355  private:
 356   void verify_input(JVMState* jvms, uint idx) const {
 357     assert(verify_jvms(jvms), "jvms must match");
 358     Node* n = in(idx);
 359     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 360            in(idx + 1)->is_top(), "2nd half of long/double");
 361   }
 362 
 363  public:
 364   // Functionality from old debug nodes which has changed
 365   Node *local(JVMState* jvms, uint idx) const {
 366     verify_input(jvms, jvms->locoff() + idx);
 367     return in(jvms->locoff() + idx);
 368   }
 369   Node *stack(JVMState* jvms, uint idx) const {
 370     verify_input(jvms, jvms->stkoff() + idx);
 371     return in(jvms->stkoff() + idx);
 372   }
 373   Node *argument(JVMState* jvms, uint idx) const {
 374     verify_input(jvms, jvms->argoff() + idx);
 375     return in(jvms->argoff() + idx);
 376   }
 377   Node *monitor_box(JVMState* jvms, uint idx) const {
 378     assert(verify_jvms(jvms), "jvms must match");
 379     return in(jvms->monitor_box_offset(idx));
 380   }
 381   Node *monitor_obj(JVMState* jvms, uint idx) const {
 382     assert(verify_jvms(jvms), "jvms must match");
 383     return in(jvms->monitor_obj_offset(idx));
 384   }
 385 
 386   void  set_local(JVMState* jvms, uint idx, Node *c);
 387 
 388   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 389     assert(verify_jvms(jvms), "jvms must match");
 390     set_req(jvms->stkoff() + idx, c);
 391   }
 392   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 393     assert(verify_jvms(jvms), "jvms must match");
 394     set_req(jvms->argoff() + idx, c);
 395   }
 396   void ensure_stack(JVMState* jvms, uint stk_size) {
 397     assert(verify_jvms(jvms), "jvms must match");
 398     int grow_by = (int)stk_size - (int)jvms->stk_size();
 399     if (grow_by > 0)  grow_stack(jvms, grow_by);
 400   }
 401   void grow_stack(JVMState* jvms, uint grow_by);
 402   // Handle monitor stack
 403   void push_monitor( const FastLockNode *lock );
 404   void pop_monitor ();
 405   Node *peek_monitor_box() const;
 406   Node *peek_monitor_obj() const;
 407 
 408   // Access functions for the JVM
 409   Node *control  () const { return in(TypeFunc::Control  ); }
 410   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 411   Node *memory   () const { return in(TypeFunc::Memory   ); }
 412   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 413   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 414 
 415   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 416   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 417   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 418 
 419   MergeMemNode* merged_memory() const {
 420     return in(TypeFunc::Memory)->as_MergeMem();
 421   }
 422 
 423   // The parser marks useless maps as dead when it's done with them:
 424   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 425 
 426   // Exception states bubbling out of subgraphs such as inlined calls
 427   // are recorded here.  (There might be more than one, hence the "next".)
 428   // This feature is used only for safepoints which serve as "maps"
 429   // for JVM states during parsing, intrinsic expansion, etc.
 430   SafePointNode*         next_exception() const;
 431   void               set_next_exception(SafePointNode* n);
 432   bool                   has_exceptions() const { return next_exception() != NULL; }
 433 
 434   // Helper methods to operate on replaced nodes
 435   ReplacedNodes replaced_nodes() const {
 436     return _replaced_nodes;
 437   }
 438 
 439   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 440     _replaced_nodes = replaced_nodes;
 441   }
 442 
 443   void clone_replaced_nodes() {
 444     _replaced_nodes.clone();
 445   }
 446   void record_replaced_node(Node* initial, Node* improved) {
 447     _replaced_nodes.record(initial, improved);
 448   }
 449   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 450     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 451   }
 452   void delete_replaced_nodes() {
 453     _replaced_nodes.reset();
 454   }
 455   void apply_replaced_nodes(uint idx) {
 456     _replaced_nodes.apply(this, idx);
 457   }
 458   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 459     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 460   }
 461   bool has_replaced_nodes() const {
 462     return !_replaced_nodes.is_empty();
 463   }
 464 
 465   void disconnect_from_root(PhaseIterGVN *igvn);
 466 
 467   // Standard Node stuff
 468   virtual int            Opcode() const;
 469   virtual bool           pinned() const { return true; }
 470   virtual const Type*    Value(PhaseGVN* phase) const;
 471   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 472   virtual const TypePtr *adr_type() const { return _adr_type; }
 473   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 474   virtual Node*          Identity(PhaseGVN* phase);
 475   virtual uint           ideal_reg() const { return 0; }
 476   virtual const RegMask &in_RegMask(uint) const;
 477   virtual const RegMask &out_RegMask() const;
 478   virtual uint           match_edge(uint idx) const;
 479 
 480   static  bool           needs_polling_address_input();
 481 
 482 #ifndef PRODUCT
 483   virtual void           dump_spec(outputStream *st) const;
 484   virtual void           related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
 485 #endif
 486 };
 487 
 488 //------------------------------SafePointScalarObjectNode----------------------
 489 // A SafePointScalarObjectNode represents the state of a scalarized object
 490 // at a safepoint.
 491 
 492 class SafePointScalarObjectNode: public TypeNode {
 493   uint _first_index; // First input edge relative index of a SafePoint node where
 494                      // states of the scalarized object fields are collected.
 495                      // It is relative to the last (youngest) jvms->_scloff.
 496   uint _n_fields;    // Number of non-static fields of the scalarized object.
 497   DEBUG_ONLY(AllocateNode* _alloc;)
 498 
 499   virtual uint hash() const ; // { return NO_HASH; }
 500   virtual bool cmp( const Node &n ) const;
 501 
 502   uint first_index() const { return _first_index; }
 503 
 504 public:
 505   SafePointScalarObjectNode(const TypeOopPtr* tp,
 506 #ifdef ASSERT
 507                             AllocateNode* alloc,
 508 #endif
 509                             uint first_index, uint n_fields);
 510   virtual int Opcode() const;
 511   virtual uint           ideal_reg() const;
 512   virtual const RegMask &in_RegMask(uint) const;
 513   virtual const RegMask &out_RegMask() const;
 514   virtual uint           match_edge(uint idx) const;
 515 
 516   uint first_index(JVMState* jvms) const {
 517     assert(jvms != NULL, "missed JVMS");
 518     return jvms->scloff() + _first_index;
 519   }
 520   uint n_fields()    const { return _n_fields; }
 521 
 522 #ifdef ASSERT
 523   AllocateNode* alloc() const { return _alloc; }
 524 #endif
 525 
 526   virtual uint size_of() const { return sizeof(*this); }
 527 
 528   // Assumes that "this" is an argument to a safepoint node "s", and that
 529   // "new_call" is being created to correspond to "s".  But the difference
 530   // between the start index of the jvmstates of "new_call" and "s" is
 531   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 532   // corresponds appropriately to "this" in "new_call".  Assumes that
 533   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 534   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 535   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
 536 
 537 #ifndef PRODUCT
 538   virtual void              dump_spec(outputStream *st) const;
 539 #endif
 540 };
 541 
 542 
 543 // Simple container for the outgoing projections of a call.  Useful
 544 // for serious surgery on calls.
 545 class CallProjections {
 546 public:
 547   Node* fallthrough_proj;
 548   Node* fallthrough_catchproj;
 549   Node* fallthrough_memproj;
 550   Node* fallthrough_ioproj;
 551   Node* catchall_catchproj;
 552   Node* catchall_memproj;
 553   Node* catchall_ioproj;
 554   Node* exobj;
 555   uint nb_resproj;
 556   Node* resproj[1]; // at least one projection
 557 
 558   CallProjections(uint nbres) {
 559     fallthrough_proj      = NULL;
 560     fallthrough_catchproj = NULL;
 561     fallthrough_memproj   = NULL;
 562     fallthrough_ioproj    = NULL;
 563     catchall_catchproj    = NULL;
 564     catchall_memproj      = NULL;
 565     catchall_ioproj       = NULL;
 566     exobj                 = NULL;
 567     nb_resproj            = nbres;
 568     resproj[0]            = NULL;
 569     for (uint i = 1; i < nb_resproj; i++) {
 570       resproj[i]          = NULL;
 571     }
 572   }
 573 
 574 };
 575 
 576 class CallGenerator;
 577 
 578 //------------------------------CallNode---------------------------------------
 579 // Call nodes now subsume the function of debug nodes at callsites, so they
 580 // contain the functionality of a full scope chain of debug nodes.
 581 class CallNode : public SafePointNode {
 582   friend class VMStructs;
 583 
 584 protected:
 585   bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase);
 586 
 587 public:
 588   const TypeFunc *_tf;        // Function type
 589   address      _entry_point;  // Address of method being called
 590   float        _cnt;          // Estimate of number of times called
 591   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 592   const char *_name;           // Printable name, if _method is NULL
 593 
 594   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 595     : SafePointNode(tf->domain_cc()->cnt(), NULL, adr_type),
 596       _tf(tf),
 597       _entry_point(addr),
 598       _cnt(COUNT_UNKNOWN),
 599       _generator(NULL),
 600       _name(NULL)
 601   {
 602     init_class_id(Class_Call);
 603   }
 604 
 605   const TypeFunc* tf()         const { return _tf; }
 606   const address  entry_point() const { return _entry_point; }
 607   const float    cnt()         const { return _cnt; }
 608   CallGenerator* generator()   const { return _generator; }
 609 
 610   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 611   void set_entry_point(address p)       { _entry_point = p; }
 612   void set_cnt(float c)                 { _cnt = c; }
 613   void set_generator(CallGenerator* cg) { _generator = cg; }
 614 
 615   virtual const Type *bottom_type() const;
 616   virtual const Type* Value(PhaseGVN* phase) const;
 617   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 618   virtual Node* Identity(PhaseGVN* phase) { return this; }
 619   virtual bool        cmp( const Node &n ) const;
 620   virtual uint        size_of() const = 0;
 621   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 622   virtual Node       *match(const ProjNode *proj, const Matcher *m, const RegMask* mask);
 623   virtual uint        ideal_reg() const { return NotAMachineReg; }
 624   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 625   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 626   virtual bool        guaranteed_safepoint()  { return true; }
 627   // For macro nodes, the JVMState gets modified during expansion. If calls
 628   // use MachConstantBase, it gets modified during matching. So when cloning
 629   // the node the JVMState must be cloned. Default is not to clone.
 630   virtual void clone_jvms(Compile* C) {
 631     if (C->needs_clone_jvms() && jvms() != NULL) {
 632       set_jvms(jvms()->clone_deep(C));
 633       jvms()->set_map_deep(this);
 634     }
 635   }
 636 
 637   // Returns true if the call may modify n
 638   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 639   // Does this node have a use of n other than in debug information?
 640   bool                has_non_debug_use(Node *n);
 641   bool                has_debug_use(Node *n);
 642   // Returns the unique CheckCastPP of a call
 643   // or result projection is there are several CheckCastPP
 644   // or returns NULL if there is no one.
 645   Node *result_cast();
 646   // Does this node returns pointer?
 647   bool returns_pointer() const {
 648     const TypeTuple *r = tf()->range_sig();
 649     return (!tf()->returns_value_type_as_fields() &&
 650             r->cnt() > TypeFunc::Parms &&
 651             r->field_at(TypeFunc::Parms)->isa_ptr());
 652   }
 653 
 654   // Collect all the interesting edges from a call for use in
 655   // replacing the call by something else.  Used by macro expansion
 656   // and the late inlining support.
 657   CallProjections* extract_projections(bool separate_io_proj, bool do_asserts = true);
 658 
 659   virtual uint match_edge(uint idx) const;
 660 
 661   bool is_call_to_arraycopystub() const;
 662 
 663   virtual void copy_call_debug_info(PhaseIterGVN* phase, CallNode *oldcall) {}
 664   
 665 #ifndef PRODUCT
 666   virtual void        dump_req(outputStream *st = tty) const;
 667   virtual void        dump_spec(outputStream *st) const;
 668 #endif
 669 };
 670 
 671 
 672 //------------------------------CallJavaNode-----------------------------------
 673 // Make a static or dynamic subroutine call node using Java calling
 674 // convention.  (The "Java" calling convention is the compiler's calling
 675 // convention, as opposed to the interpreter's or that of native C.)
 676 class CallJavaNode : public CallNode {
 677   friend class VMStructs;
 678 protected:
 679   virtual bool cmp( const Node &n ) const;
 680   virtual uint size_of() const; // Size is bigger
 681 
 682   bool    _optimized_virtual;
 683   bool    _method_handle_invoke;
 684   bool    _override_symbolic_info; // Override symbolic call site info from bytecode
 685   ciMethod* _method;               // Method being direct called
 686 public:
 687   const int       _bci;         // Byte Code Index of call byte code
 688   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 689     : CallNode(tf, addr, TypePtr::BOTTOM),
 690       _optimized_virtual(false),
 691       _method_handle_invoke(false),
 692       _override_symbolic_info(false),
 693       _method(method), _bci(bci)
 694   {
 695     init_class_id(Class_CallJava);
 696   }
 697 
 698   virtual int   Opcode() const;
 699   ciMethod* method() const                 { return _method; }
 700   void  set_method(ciMethod *m)            { _method = m; }
 701   void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
 702   bool  is_optimized_virtual() const       { return _optimized_virtual; }
 703   void  set_method_handle_invoke(bool f)   { _method_handle_invoke = f; }
 704   bool  is_method_handle_invoke() const    { return _method_handle_invoke; }
 705   void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
 706   bool  override_symbolic_info() const     { return _override_symbolic_info; }
 707 
 708   void copy_call_debug_info(PhaseIterGVN* phase, CallNode *oldcall);
 709 
 710   DEBUG_ONLY( bool validate_symbolic_info() const; )
 711 
 712 #ifndef PRODUCT
 713   virtual void  dump_spec(outputStream *st) const;
 714   virtual void  dump_compact_spec(outputStream *st) const;
 715 #endif
 716 };
 717 
 718 //------------------------------CallStaticJavaNode-----------------------------
 719 // Make a direct subroutine call using Java calling convention (for static
 720 // calls and optimized virtual calls, plus calls to wrappers for run-time
 721 // routines); generates static stub.
 722 class CallStaticJavaNode : public CallJavaNode {
 723   virtual bool cmp( const Node &n ) const;
 724   virtual uint size_of() const; // Size is bigger
 725 
 726   bool remove_useless_allocation(PhaseGVN *phase, Node* ctl, Node* mem, Node* unc_arg);
 727 
 728 public:
 729   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 730     : CallJavaNode(tf, addr, method, bci) {
 731     init_class_id(Class_CallStaticJava);
 732     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
 733       init_flags(Flag_is_macro);
 734       C->add_macro_node(this);
 735     }
 736     const TypeTuple *r = tf->range_sig();
 737     if (ValueTypeReturnedAsFields &&
 738         method != NULL &&
 739         method->is_method_handle_intrinsic() &&
 740         r->cnt() > TypeFunc::Parms &&
 741         r->field_at(TypeFunc::Parms)->isa_oopptr() &&
 742         r->field_at(TypeFunc::Parms)->is_oopptr()->can_be_value_type()) {
 743       // Make sure this call is processed by PhaseMacroExpand::expand_mh_intrinsic_return
 744       init_flags(Flag_is_macro);
 745       C->add_macro_node(this);
 746     }
 747 
 748     _is_scalar_replaceable = false;
 749     _is_non_escaping = false;
 750   }
 751   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 752                      const TypePtr* adr_type)
 753     : CallJavaNode(tf, addr, NULL, bci) {
 754     init_class_id(Class_CallStaticJava);
 755     // This node calls a runtime stub, which often has narrow memory effects.
 756     _adr_type = adr_type;
 757     _is_scalar_replaceable = false;
 758     _is_non_escaping = false;
 759     _name = name;
 760   }
 761 
 762   // Result of Escape Analysis
 763   bool _is_scalar_replaceable;
 764   bool _is_non_escaping;
 765 
 766   // If this is an uncommon trap, return the request code, else zero.
 767   int uncommon_trap_request() const;
 768   static int extract_uncommon_trap_request(const Node* call);
 769 
 770   bool is_boxing_method() const {
 771     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 772   }
 773   // Later inlining modifies the JVMState, so we need to clone it
 774   // when the call node is cloned (because it is macro node).
 775   virtual void  clone_jvms(Compile* C) {
 776     if ((jvms() != NULL) && is_boxing_method()) {
 777       set_jvms(jvms()->clone_deep(C));
 778       jvms()->set_map_deep(this);
 779     }
 780   }
 781 
 782   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 783 
 784   virtual int         Opcode() const;
 785 #ifndef PRODUCT
 786   virtual void        dump_spec(outputStream *st) const;
 787   virtual void        dump_compact_spec(outputStream *st) const;
 788 #endif
 789 };
 790 
 791 //------------------------------CallDynamicJavaNode----------------------------
 792 // Make a dispatched call using Java calling convention.
 793 class CallDynamicJavaNode : public CallJavaNode {
 794   virtual bool cmp( const Node &n ) const;
 795   virtual uint size_of() const; // Size is bigger
 796 public:
 797   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 798     init_class_id(Class_CallDynamicJava);
 799   }
 800 
 801   int _vtable_index;
 802   virtual int   Opcode() const;
 803 #ifndef PRODUCT
 804   virtual void  dump_spec(outputStream *st) const;
 805 #endif
 806 };
 807 
 808 //------------------------------CallRuntimeNode--------------------------------
 809 // Make a direct subroutine call node into compiled C++ code.
 810 class CallRuntimeNode : public CallNode {
 811   virtual bool cmp( const Node &n ) const;
 812   virtual uint size_of() const; // Size is bigger
 813 public:
 814   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 815                   const TypePtr* adr_type)
 816     : CallNode(tf, addr, adr_type)
 817   {
 818     init_class_id(Class_CallRuntime);
 819     _name = name;
 820   }
 821 
 822   virtual int   Opcode() const;
 823   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 824 
 825 #ifndef PRODUCT
 826   virtual void  dump_spec(outputStream *st) const;
 827 #endif
 828 };
 829 
 830 //------------------------------CallLeafNode-----------------------------------
 831 // Make a direct subroutine call node into compiled C++ code, without
 832 // safepoints
 833 class CallLeafNode : public CallRuntimeNode {
 834 public:
 835   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 836                const TypePtr* adr_type)
 837     : CallRuntimeNode(tf, addr, name, adr_type)
 838   {
 839     init_class_id(Class_CallLeaf);
 840   }
 841   virtual int   Opcode() const;
 842   virtual bool        guaranteed_safepoint()  { return false; }
 843 #ifndef PRODUCT
 844   virtual void  dump_spec(outputStream *st) const;
 845 #endif
 846 };
 847 
 848 //------------------------------CallLeafNoFPNode-------------------------------
 849 // CallLeafNode, not using floating point or using it in the same manner as
 850 // the generated code
 851 class CallLeafNoFPNode : public CallLeafNode {
 852 public:
 853   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 854                    const TypePtr* adr_type)
 855     : CallLeafNode(tf, addr, name, adr_type)
 856   {
 857   }
 858   virtual int   Opcode() const;
 859   virtual uint match_edge(uint idx) const;
 860 };
 861 
 862 
 863 //------------------------------Allocate---------------------------------------
 864 // High-level memory allocation
 865 //
 866 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 867 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 868 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 869 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 870 //  order to differentiate the uses of the projection on the normal control path from
 871 //  those on the exception return path.
 872 //
 873 class AllocateNode : public CallNode {
 874 public:
 875   enum {
 876     // Output:
 877     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 878     // Inputs:
 879     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 880     KlassNode,                        // type (maybe dynamic) of the obj.
 881     InitialTest,                      // slow-path test (may be constant)
 882     ALength,                          // array length (or TOP if none)
 883     ValueNode,
 884     DefaultValue,                     // default value in case of non flattened value array
 885     RawDefaultValue,                  // same as above but as raw machine word
 886     StorageProperties,                // storage properties for arrays
 887     ParmLimit
 888   };
 889 
 890   static const TypeFunc* alloc_type(const Type* t) {
 891     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 892     fields[AllocSize]   = TypeInt::POS;
 893     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 894     fields[InitialTest] = TypeInt::BOOL;
 895     fields[ALength]     = t;  // length (can be a bad length)
 896     fields[ValueNode]   = Type::BOTTOM;
 897     fields[DefaultValue] = TypeInstPtr::NOTNULL;
 898     fields[RawDefaultValue] = TypeX_X;
 899     fields[StorageProperties] = TypeX_X;
 900 
 901     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 902 
 903     // create result type (range)
 904     fields = TypeTuple::fields(1);
 905     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 906 
 907     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 908 
 909     return TypeFunc::make(domain, range);
 910   }
 911 
 912   // Result of Escape Analysis
 913   bool _is_scalar_replaceable;
 914   bool _is_non_escaping;
 915   // True when MemBar for new is redundant with MemBar at initialzer exit
 916   bool _is_allocation_MemBar_redundant;
 917   bool _larval;
 918 
 919   virtual uint size_of() const; // Size is bigger
 920   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 921                Node *size, Node *klass_node, Node *initial_test,
 922                ValueTypeBaseNode* value_node = NULL);
 923   // Expansion modifies the JVMState, so we need to clone it
 924   virtual void  clone_jvms(Compile* C) {
 925     if (jvms() != NULL) {
 926       set_jvms(jvms()->clone_deep(C));
 927       jvms()->set_map_deep(this);
 928     }
 929   }
 930   virtual int Opcode() const;
 931   virtual uint ideal_reg() const { return Op_RegP; }
 932   virtual bool        guaranteed_safepoint()  { return false; }
 933 
 934   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 935 
 936   // allocations do not modify their arguments
 937   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 938 
 939   // Pattern-match a possible usage of AllocateNode.
 940   // Return null if no allocation is recognized.
 941   // The operand is the pointer produced by the (possible) allocation.
 942   // It must be a projection of the Allocate or its subsequent CastPP.
 943   // (Note:  This function is defined in file graphKit.cpp, near
 944   // GraphKit::new_instance/new_array, whose output it recognizes.)
 945   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 946   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 947 
 948   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 949   // an offset, which is reported back to the caller.
 950   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 951   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 952                                         intptr_t& offset);
 953 
 954   // Dig the klass operand out of a (possible) allocation site.
 955   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 956     AllocateNode* allo = Ideal_allocation(ptr, phase);
 957     return (allo == NULL) ? NULL : allo->in(KlassNode);
 958   }
 959 
 960   // Conservatively small estimate of offset of first non-header byte.
 961   int minimum_header_size() {
 962     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 963                                 instanceOopDesc::base_offset_in_bytes();
 964   }
 965 
 966   // Return the corresponding initialization barrier (or null if none).
 967   // Walks out edges to find it...
 968   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 969   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 970   InitializeNode* initialization();
 971 
 972   // Convenience for initialization->maybe_set_complete(phase)
 973   bool maybe_set_complete(PhaseGVN* phase);
 974 
 975   // Return true if allocation doesn't escape thread, its escape state
 976   // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
 977   // is true when its allocation's escape state is noEscape or
 978   // ArgEscape. In case allocation's InitializeNode is NULL, check
 979   // AlllocateNode._is_non_escaping flag.
 980   // AlllocateNode._is_non_escaping is true when its escape state is
 981   // noEscape.
 982   bool does_not_escape_thread() {
 983     InitializeNode* init = NULL;
 984     return _is_non_escaping || (((init = initialization()) != NULL) && init->does_not_escape());
 985   }
 986 
 987   // If object doesn't escape in <.init> method and there is memory barrier
 988   // inserted at exit of its <.init>, memory barrier for new is not necessary.
 989   // Inovke this method when MemBar at exit of initializer and post-dominate
 990   // allocation node.
 991   void compute_MemBar_redundancy(ciMethod* initializer);
 992   bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; }
 993 
 994   Node* make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem, Node* klass_node);
 995 };
 996 
 997 //------------------------------AllocateArray---------------------------------
 998 //
 999 // High-level array allocation
1000 //
1001 class AllocateArrayNode : public AllocateNode {
1002 public:
1003   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
1004                     Node* size, Node* klass_node, Node* initial_test,
1005                     Node* count_val, Node* default_value, Node* raw_default_value, Node* storage_properties)
1006     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node, initial_test)
1007   {
1008     init_class_id(Class_AllocateArray);
1009     set_req(AllocateNode::ALength,        count_val);
1010     init_req(AllocateNode::DefaultValue,  default_value);
1011     init_req(AllocateNode::RawDefaultValue, raw_default_value);
1012     init_req(AllocateNode::StorageProperties, storage_properties);
1013   }
1014   virtual int Opcode() const;
1015   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1016 
1017   // Dig the length operand out of a array allocation site.
1018   Node* Ideal_length() {
1019     return in(AllocateNode::ALength);
1020   }
1021 
1022   // Dig the length operand out of a array allocation site and narrow the
1023   // type with a CastII, if necesssary
1024   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
1025 
1026   // Pattern-match a possible usage of AllocateArrayNode.
1027   // Return null if no allocation is recognized.
1028   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
1029     AllocateNode* allo = Ideal_allocation(ptr, phase);
1030     return (allo == NULL || !allo->is_AllocateArray())
1031            ? NULL : allo->as_AllocateArray();
1032   }
1033 };
1034 
1035 //------------------------------AbstractLockNode-----------------------------------
1036 class AbstractLockNode: public CallNode {
1037 private:
1038   enum {
1039     Regular = 0,  // Normal lock
1040     NonEscObj,    // Lock is used for non escaping object
1041     Coarsened,    // Lock was coarsened
1042     Nested        // Nested lock
1043   } _kind;
1044 #ifndef PRODUCT
1045   NamedCounter* _counter;
1046   static const char* _kind_names[Nested+1];
1047 #endif
1048 
1049 protected:
1050   // helper functions for lock elimination
1051   //
1052 
1053   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
1054                             GrowableArray<AbstractLockNode*> &lock_ops);
1055   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1056                                        GrowableArray<AbstractLockNode*> &lock_ops);
1057   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1058                                GrowableArray<AbstractLockNode*> &lock_ops);
1059   LockNode *find_matching_lock(UnlockNode* unlock);
1060 
1061   // Update the counter to indicate that this lock was eliminated.
1062   void set_eliminated_lock_counter() PRODUCT_RETURN;
1063 
1064 public:
1065   AbstractLockNode(const TypeFunc *tf)
1066     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
1067       _kind(Regular)
1068   {
1069 #ifndef PRODUCT
1070     _counter = NULL;
1071 #endif
1072   }
1073   virtual int Opcode() const = 0;
1074   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1075   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1076   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1077   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1078 
1079   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1080 
1081   virtual uint size_of() const { return sizeof(*this); }
1082 
1083   bool is_eliminated()  const { return (_kind != Regular); }
1084   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1085   bool is_coarsened()   const { return (_kind == Coarsened); }
1086   bool is_nested()      const { return (_kind == Nested); }
1087 
1088   const char * kind_as_string() const;
1089   void log_lock_optimization(Compile* c, const char * tag) const;
1090 
1091   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1092   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1093   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1094 
1095   // locking does not modify its arguments
1096   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
1097 
1098 #ifndef PRODUCT
1099   void create_lock_counter(JVMState* s);
1100   NamedCounter* counter() const { return _counter; }
1101   virtual void dump_spec(outputStream* st) const;
1102   virtual void dump_compact_spec(outputStream* st) const;
1103   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1104 #endif
1105 };
1106 
1107 //------------------------------Lock---------------------------------------
1108 // High-level lock operation
1109 //
1110 // This is a subclass of CallNode because it is a macro node which gets expanded
1111 // into a code sequence containing a call.  This node takes 3 "parameters":
1112 //    0  -  object to lock
1113 //    1 -   a BoxLockNode
1114 //    2 -   a FastLockNode
1115 //
1116 class LockNode : public AbstractLockNode {
1117 public:
1118 
1119   static const TypeFunc *lock_type() {
1120     // create input type (domain)
1121     const Type **fields = TypeTuple::fields(3);
1122     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1123     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1124     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1125     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1126 
1127     // create result type (range)
1128     fields = TypeTuple::fields(0);
1129 
1130     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1131 
1132     return TypeFunc::make(domain, range);
1133   }
1134 
1135   virtual int Opcode() const;
1136   virtual uint size_of() const; // Size is bigger
1137   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1138     init_class_id(Class_Lock);
1139     init_flags(Flag_is_macro);
1140     C->add_macro_node(this);
1141   }
1142   virtual bool        guaranteed_safepoint()  { return false; }
1143 
1144   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1145   // Expansion modifies the JVMState, so we need to clone it
1146   virtual void  clone_jvms(Compile* C) {
1147     if (jvms() != NULL) {
1148       set_jvms(jvms()->clone_deep(C));
1149       jvms()->set_map_deep(this);
1150     }
1151   }
1152 
1153   bool is_nested_lock_region(); // Is this Lock nested?
1154   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1155 };
1156 
1157 //------------------------------Unlock---------------------------------------
1158 // High-level unlock operation
1159 class UnlockNode : public AbstractLockNode {
1160 private:
1161 #ifdef ASSERT
1162   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1163 #endif
1164 public:
1165   virtual int Opcode() const;
1166   virtual uint size_of() const; // Size is bigger
1167   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1168 #ifdef ASSERT
1169     , _dbg_jvms(NULL)
1170 #endif
1171   {
1172     init_class_id(Class_Unlock);
1173     init_flags(Flag_is_macro);
1174     C->add_macro_node(this);
1175   }
1176   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1177   // unlock is never a safepoint
1178   virtual bool        guaranteed_safepoint()  { return false; }
1179 #ifdef ASSERT
1180   void set_dbg_jvms(JVMState* s) {
1181     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1182   }
1183   JVMState* dbg_jvms() const { return _dbg_jvms; }
1184 #else
1185   JVMState* dbg_jvms() const { return NULL; }
1186 #endif
1187 };
1188 #endif // SHARE_OPTO_CALLNODE_HPP