< prev index next >

src/hotspot/share/opto/loopUnswitch.cpp

Print this page




 113               unswitch_iff = iff;
 114             }
 115           }
 116         }
 117       }
 118     }
 119     n = n_dom;
 120   }
 121 
 122   Node* array;
 123   if (unswitch_iff == NULL || unswitch_iff->is_flattened_array_check(&_igvn, array)) {
 124     // collect all flattened array checks
 125     for (uint i = 0; i < loop->_body.size(); i++) {
 126       Node* n = loop->_body.at(i);
 127       if (n->is_If() && n->as_If()->is_flattened_array_check(&_igvn, array) &&
 128           loop->is_invariant(n->in(1)) &&
 129           !loop->is_loop_exit(n)) {
 130         flattened_checks.push(n);
 131       }
 132     }

 133     unswitch_iff = NULL;



 134   }
 135 
 136   return unswitch_iff;
 137 }
 138 
 139 //------------------------------do_unswitching-----------------------------
 140 // Clone loop with an invariant test (that does not exit) and
 141 // insert a clone of the test that selects which version to
 142 // execute.
 143 void PhaseIdealLoop::do_unswitching(IdealLoopTree *loop, Node_List &old_new) {
 144 
 145   // Find first invariant test that doesn't exit the loop
 146   LoopNode *head = loop->_head->as_Loop();
 147 
 148   Node_List flattened_checks;
 149   IfNode* unswitch_iff = find_unswitching_candidate((const IdealLoopTree *)loop, flattened_checks);
 150   assert(unswitch_iff != NULL || flattened_checks.size() > 0, "should be at least one");
 151   if (unswitch_iff == NULL) {
 152     unswitch_iff = flattened_checks.at(0)->as_If();
 153   }


 179     if (n != NULL) {
 180       predicate = n;
 181       entry = skip_loop_predicates(entry);
 182     }
 183   }
 184   if (predicate != NULL && UseProfiledLoopPredicate) {
 185     entry = find_predicate(entry);
 186     if (entry != NULL) predicate = entry;
 187   }
 188   if (predicate != NULL) predicate = predicate->in(0);
 189   assert(proj_true->is_IfTrue() &&
 190          (predicate == NULL && uniqc == head && !head->is_strip_mined() ||
 191           predicate == NULL && uniqc == head->in(LoopNode::EntryControl) && head->is_strip_mined() ||
 192           predicate != NULL && uniqc == predicate), "by construction");
 193 #endif
 194   // Increment unswitch count
 195   LoopNode* head_clone = old_new[head->_idx]->as_Loop();
 196   int nct = head->unswitch_count() + 1;
 197   head->set_unswitch_count(nct);
 198   head_clone->set_unswitch_count(nct);
 199   head_clone->mark_flattened_arrays();


 200 
 201   // Add test to new "if" outside of loop
 202   IfNode* invar_iff   = proj_true->in(0)->as_If();
 203   Node* invar_iff_c   = invar_iff->in(0);
 204   invar_iff->_prob    = unswitch_iff->_prob;
 205   if (flattened_checks.size() > 0) {
 206     // Flattened array checks are used in
 207     // Parse::array_store()/Parse::array_load() to switch between a
 208     // legacy object array access and a flattened value array
 209     // access. We want the performance impact on legacy accesses to be
 210     // as small as possible so we make 2 copies of the loops: a fast
 211     // one where all accesses are known to be legacy, a slow one where
 212     // some accesses are to flattened arrays. Flattened array checks
 213     // can be removed from the first one but not from the second one
 214     // as it can have a mix of flattened/legacy accesses.
 215     BoolNode* bol       = unswitch_iff->in(1)->clone()->as_Bool();
 216     register_new_node(bol, invar_iff->in(0));
 217     Node* cmp = bol->in(1)->clone();
 218     register_new_node(cmp, invar_iff->in(0));
 219     bol->set_req(1, cmp);
 220     Node* in1 = NULL;
 221     for (uint i = 0; i < flattened_checks.size(); i++) {
 222       Node* v = flattened_checks.at(i)->in(1)->in(1)->in(1);
 223       v = new AndINode(v, _igvn.intcon(Klass::_lh_array_tag_vt_value));
 224       register_new_node(v, invar_iff->in(0));
 225       if (in1 == NULL) {
 226         in1 = v;
 227       } else {



 228         in1 = new OrINode(in1, v);

 229         register_new_node(in1, invar_iff->in(0));
 230       }
 231     }
 232     cmp->set_req(1, in1);
 233     invar_iff->set_req(1, bol);
 234   } else {
 235     BoolNode* bol       = unswitch_iff->in(1)->as_Bool();
 236     invar_iff->set_req(1, bol);
 237   }
 238 
 239   ProjNode* proj_false = invar_iff->proj_out(0)->as_Proj();
 240 
 241   // Hoist invariant casts out of each loop to the appropriate
 242   // control projection.
 243 
 244   Node_List worklist;
 245 
























 246   for (DUIterator_Fast imax, i = unswitch_iff->fast_outs(imax); i < imax; i++) {
 247     ProjNode* proj= unswitch_iff->fast_out(i)->as_Proj();
 248     // Copy to a worklist for easier manipulation
 249     for (DUIterator_Fast jmax, j = proj->fast_outs(jmax); j < jmax; j++) {
 250       Node* use = proj->fast_out(j);
 251       if (use->Opcode() == Op_CheckCastPP && loop->is_invariant(use->in(1))) {
 252         worklist.push(use);
 253       }
 254     }
 255     ProjNode* invar_proj = invar_iff->proj_out(proj->_con)->as_Proj();
 256     while (worklist.size() > 0) {
 257       Node* use = worklist.pop();
 258       Node* nuse = use->clone();
 259       nuse->set_req(0, invar_proj);
 260       _igvn.replace_input_of(use, 1, nuse);
 261       register_new_node(nuse, invar_proj);
 262       // Same for the clone
 263       Node* use_clone = old_new[use->_idx];
 264       _igvn.replace_input_of(use_clone, 1, nuse);
 265     }
 266   }

 267 
 268   IfNode* unswitch_iff_clone = old_new[unswitch_iff->_idx]->as_If();
 269   if (flattened_checks.size() > 0) {
 270     for (uint i = 0; i < flattened_checks.size(); i++) {
 271       IfNode* iff = flattened_checks.at(i)->as_If();
 272       _igvn.rehash_node_delayed(iff);
 273       short_circuit_if(iff, proj_true);
 274     }
 275   } else {
 276     // Hardwire the control paths in the loops into if(true) and if(false)
 277     _igvn.rehash_node_delayed(unswitch_iff);
 278     short_circuit_if(unswitch_iff, proj_true);
 279 
 280     _igvn.rehash_node_delayed(unswitch_iff_clone);
 281     short_circuit_if(unswitch_iff_clone, proj_false);
 282   }
 283 
 284   // Reoptimize loops
 285   loop->record_for_igvn();
 286   for(int i = loop->_body.size() - 1; i >= 0 ; i--) {
 287     Node *n = loop->_body[i];
 288     Node *n_clone = old_new[n->_idx];
 289     _igvn._worklist.push(n_clone);
 290   }
 291 
 292 #ifndef PRODUCT
 293   if (TraceLoopUnswitching) {




 113               unswitch_iff = iff;
 114             }
 115           }
 116         }
 117       }
 118     }
 119     n = n_dom;
 120   }
 121 
 122   Node* array;
 123   if (unswitch_iff == NULL || unswitch_iff->is_flattened_array_check(&_igvn, array)) {
 124     // collect all flattened array checks
 125     for (uint i = 0; i < loop->_body.size(); i++) {
 126       Node* n = loop->_body.at(i);
 127       if (n->is_If() && n->as_If()->is_flattened_array_check(&_igvn, array) &&
 128           loop->is_invariant(n->in(1)) &&
 129           !loop->is_loop_exit(n)) {
 130         flattened_checks.push(n);
 131       }
 132     }
 133     if (flattened_checks.size() > 1) {
 134       unswitch_iff = NULL;
 135     } else {
 136       flattened_checks.clear();
 137     }
 138   }
 139 
 140   return unswitch_iff;
 141 }
 142 
 143 //------------------------------do_unswitching-----------------------------
 144 // Clone loop with an invariant test (that does not exit) and
 145 // insert a clone of the test that selects which version to
 146 // execute.
 147 void PhaseIdealLoop::do_unswitching(IdealLoopTree *loop, Node_List &old_new) {
 148 
 149   // Find first invariant test that doesn't exit the loop
 150   LoopNode *head = loop->_head->as_Loop();
 151 
 152   Node_List flattened_checks;
 153   IfNode* unswitch_iff = find_unswitching_candidate((const IdealLoopTree *)loop, flattened_checks);
 154   assert(unswitch_iff != NULL || flattened_checks.size() > 0, "should be at least one");
 155   if (unswitch_iff == NULL) {
 156     unswitch_iff = flattened_checks.at(0)->as_If();
 157   }


 183     if (n != NULL) {
 184       predicate = n;
 185       entry = skip_loop_predicates(entry);
 186     }
 187   }
 188   if (predicate != NULL && UseProfiledLoopPredicate) {
 189     entry = find_predicate(entry);
 190     if (entry != NULL) predicate = entry;
 191   }
 192   if (predicate != NULL) predicate = predicate->in(0);
 193   assert(proj_true->is_IfTrue() &&
 194          (predicate == NULL && uniqc == head && !head->is_strip_mined() ||
 195           predicate == NULL && uniqc == head->in(LoopNode::EntryControl) && head->is_strip_mined() ||
 196           predicate != NULL && uniqc == predicate), "by construction");
 197 #endif
 198   // Increment unswitch count
 199   LoopNode* head_clone = old_new[head->_idx]->as_Loop();
 200   int nct = head->unswitch_count() + 1;
 201   head->set_unswitch_count(nct);
 202   head_clone->set_unswitch_count(nct);
 203   if (flattened_checks.size() > 0) {
 204     head->mark_flattened_arrays();
 205   }
 206 
 207   // Add test to new "if" outside of loop
 208   IfNode* invar_iff   = proj_true->in(0)->as_If();
 209   Node* invar_iff_c   = invar_iff->in(0);
 210   invar_iff->_prob    = unswitch_iff->_prob;
 211   if (flattened_checks.size() > 0) {
 212     // Flattened array checks are used in
 213     // Parse::array_store()/Parse::array_load() to switch between a
 214     // legacy object array access and a flattened value array
 215     // access. We want the performance impact on legacy accesses to be
 216     // as small as possible so we make 2 copies of the loops: a fast
 217     // one where all accesses are known to be legacy, a slow one where
 218     // some accesses are to flattened arrays. Flattened array checks
 219     // can be removed from the first one but not from the second one
 220     // as it can have a mix of flattened/legacy accesses.
 221     BoolNode* bol       = unswitch_iff->in(1)->clone()->as_Bool();
 222     register_new_node(bol, invar_iff->in(0));
 223     Node* cmp = bol->in(1)->clone();
 224     register_new_node(cmp, invar_iff->in(0));
 225     bol->set_req(1, cmp);
 226     Node* in1 = NULL;
 227     for (uint i = 0; i < flattened_checks.size(); i++) {
 228       Node* v = flattened_checks.at(i)->in(1)->in(1)->in(1);


 229       if (in1 == NULL) {
 230         in1 = v;
 231       } else {
 232         if (cmp->Opcode() == Op_CmpL) {
 233           in1 = new OrLNode(in1, v);
 234         } else {
 235           in1 = new OrINode(in1, v);
 236         }
 237         register_new_node(in1, invar_iff->in(0));
 238       }
 239     }
 240     cmp->set_req(1, in1);
 241     invar_iff->set_req(1, bol);
 242   } else {
 243     BoolNode* bol       = unswitch_iff->in(1)->as_Bool();
 244     invar_iff->set_req(1, bol);
 245   }
 246 
 247   ProjNode* proj_false = invar_iff->proj_out(0)->as_Proj();
 248 
 249   // Hoist invariant casts out of each loop to the appropriate
 250   // control projection.
 251 
 252   Node_List worklist;
 253 
 254   if (flattened_checks.size() > 0) {
 255     for (uint i = 0; i < flattened_checks.size(); i++) {
 256       IfNode* iff = flattened_checks.at(i)->as_If();
 257       ProjNode* proj= iff->proj_out(0)->as_Proj();
 258       // Copy to a worklist for easier manipulation
 259       for (DUIterator_Fast jmax, j = proj->fast_outs(jmax); j < jmax; j++) {
 260         Node* use = proj->fast_out(j);
 261         if (use->Opcode() == Op_CheckCastPP && loop->is_invariant(use->in(1))) {
 262           worklist.push(use);
 263         }
 264       }
 265       ProjNode* invar_proj = invar_iff->proj_out(proj->_con)->as_Proj();
 266       while (worklist.size() > 0) {
 267         Node* use = worklist.pop();
 268         Node* nuse = use->clone();
 269         nuse->set_req(0, invar_proj);
 270         _igvn.replace_input_of(use, 1, nuse);
 271         register_new_node(nuse, invar_proj);
 272         // Same for the clone
 273         Node* use_clone = old_new[use->_idx];
 274         _igvn.replace_input_of(use_clone, 1, nuse);
 275       }
 276     }
 277   } else {
 278     for (DUIterator_Fast imax, i = unswitch_iff->fast_outs(imax); i < imax; i++) {
 279       ProjNode* proj= unswitch_iff->fast_out(i)->as_Proj();
 280       // Copy to a worklist for easier manipulation
 281       for (DUIterator_Fast jmax, j = proj->fast_outs(jmax); j < jmax; j++) {
 282         Node* use = proj->fast_out(j);
 283         if (use->Opcode() == Op_CheckCastPP && loop->is_invariant(use->in(1))) {
 284           worklist.push(use);
 285         }
 286       }
 287       ProjNode* invar_proj = invar_iff->proj_out(proj->_con)->as_Proj();
 288       while (worklist.size() > 0) {
 289         Node* use = worklist.pop();
 290         Node* nuse = use->clone();
 291         nuse->set_req(0, invar_proj);
 292         _igvn.replace_input_of(use, 1, nuse);
 293         register_new_node(nuse, invar_proj);
 294         // Same for the clone
 295         Node* use_clone = old_new[use->_idx];
 296         _igvn.replace_input_of(use_clone, 1, nuse);
 297       }
 298     }
 299   }
 300 
 301   IfNode* unswitch_iff_clone = old_new[unswitch_iff->_idx]->as_If();
 302   if (flattened_checks.size() > 0) {
 303     for (uint i = 0; i < flattened_checks.size(); i++) {
 304       IfNode* iff = flattened_checks.at(i)->as_If();
 305       _igvn.rehash_node_delayed(iff);
 306       short_circuit_if(old_new[iff->_idx]->as_If(), proj_false);
 307     }
 308   } else {
 309     // Hardwire the control paths in the loops into if(true) and if(false)
 310     _igvn.rehash_node_delayed(unswitch_iff);
 311     short_circuit_if(unswitch_iff, proj_true);
 312 
 313     _igvn.rehash_node_delayed(unswitch_iff_clone);
 314     short_circuit_if(unswitch_iff_clone, proj_false);
 315   }
 316 
 317   // Reoptimize loops
 318   loop->record_for_igvn();
 319   for(int i = loop->_body.size() - 1; i >= 0 ; i--) {
 320     Node *n = loop->_body[i];
 321     Node *n_clone = old_new[n->_idx];
 322     _igvn._worklist.push(n_clone);
 323   }
 324 
 325 #ifndef PRODUCT
 326   if (TraceLoopUnswitching) {


< prev index next >