1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciEnv.hpp"
  28 #include "ci/ciKlass.hpp"
  29 #include "ci/ciMethod.hpp"
  30 #include "code/dependencies.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/handles.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "utilities/copy.hpp"
  36 
  37 
  38 #ifdef ASSERT
  39 static bool must_be_in_vm() {
  40   Thread* thread = Thread::current();
  41   if (thread->is_Java_thread())
  42     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
  43   else
  44     return true;  //something like this: thread->is_VM_thread();
  45 }
  46 #endif //ASSERT
  47 
  48 void Dependencies::initialize(ciEnv* env) {
  49   Arena* arena = env->arena();
  50   _oop_recorder = env->oop_recorder();
  51   _log = env->log();
  52   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  53   DEBUG_ONLY(_deps[end_marker] = NULL);
  54   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  55     _deps[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
  56   }
  57   _content_bytes = NULL;
  58   _size_in_bytes = (size_t)-1;
  59 
  60   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  61 }
  62 
  63 void Dependencies::assert_evol_method(DepValue m) {
  64   assert_common_1(evol_method, m);
  65 }
  66 
  67 void Dependencies::assert_leaf_type(DepValue ctxk) {
  68   if (ctxk.is_array_klass()) {
  69     // As a special case, support this assertion on an array type,
  70     // which reduces to an assertion on its element type.
  71     // Note that this cannot be done with assertions that
  72     // relate to concreteness or abstractness.
  73     if (!ctxk.is_array_element_instance_klass())  return;   // Ex:  int[][]
  74     ctxk = ctxk.array_element_instance_klass();
  75     //if (ctxk->is_final())  return;            // Ex:  String[][]
  76   }
  77   check_ctxk(ctxk);
  78   assert_common_1(leaf_type, ctxk);
  79 }
  80 
  81 void Dependencies::assert_abstract_with_unique_concrete_subtype(DepValue ctxk, DepValue conck) {
  82   check_ctxk_abstract(ctxk);
  83   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
  84 }
  85 
  86 void Dependencies::assert_abstract_with_no_concrete_subtype(DepValue ctxk) {
  87   check_ctxk_abstract(ctxk);
  88   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
  89 }
  90 
  91 void Dependencies::assert_concrete_with_no_concrete_subtype(DepValue ctxk) {
  92   check_ctxk_concrete(ctxk);
  93   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
  94 }
  95 
  96 void Dependencies::assert_unique_concrete_method(DepValue ctxk, DepValue uniqm) {
  97   check_ctxk(ctxk);
  98   assert_common_2(unique_concrete_method, ctxk, uniqm);
  99 }
 100 
 101 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(DepValue ctxk, DepValue k1, DepValue k2) {
 102   check_ctxk(ctxk);
 103   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
 104 }
 105 
 106 void Dependencies::assert_exclusive_concrete_methods(DepValue ctxk, DepValue m1, DepValue m2) {
 107   check_ctxk(ctxk);
 108   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
 109 }
 110 
 111 void Dependencies::assert_has_no_finalizable_subclasses(DepValue ctxk) {
 112   check_ctxk(ctxk);
 113   assert_common_1(no_finalizable_subclasses, ctxk);
 114 }
 115 
 116 void Dependencies::assert_call_site_target_value(DepValue call_site, DepValue method_handle) {
 117   check_ctxk(call_site);
 118   assert_common_2(call_site_target_value, call_site, method_handle);
 119 }
 120 
 121 // Helper function.  If we are adding a new dep. under ctxk2,
 122 // try to find an old dep. under a broader* ctxk1.  If there is
 123 //
 124 bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 125                                     int ctxk_i, DepValue ctxk2) {
 126   DepValue ctxk1 = deps->at(ctxk_i);
 127   if (ctxk2.is_subtype_of(ctxk1)) {
 128     return true;  // success, and no need to change
 129   } else if (ctxk1.is_subtype_of(ctxk2)) {
 130     // new context class fully subsumes previous one
 131     deps->at_put(ctxk_i, ctxk2);
 132     return true;
 133   } else {
 134     return false;
 135   }
 136 }
 137 
 138 void Dependencies::assert_common_1(DepType dept, DepValue x) {
 139   assert(dep_args(dept) == 1, "sanity");
 140   log_dependency(dept, x);
 141   GrowableArray<DepValue>* deps = _deps[dept];
 142 
 143   // see if the same (or a similar) dep is already recorded
 144   if (note_dep_seen(dept, x)) {
 145     assert(deps->find(x) >= 0, "sanity");
 146   } else {
 147     deps->append(x);
 148   }
 149 }
 150 
 151 void Dependencies::assert_common_2(DepType dept,
 152                                    DepValue x0, DepValue x1) {
 153   assert(dep_args(dept) == 2, "sanity");
 154   log_dependency(dept, x0, x1);
 155   GrowableArray<DepValue>* deps = _deps[dept];
 156 
 157   // see if the same (or a similar) dep is already recorded
 158   bool has_ctxk = has_explicit_context_arg(dept);
 159   if (has_ctxk) {
 160     assert(dep_context_arg(dept) == 0, "sanity");
 161     if (note_dep_seen(dept, x1)) {
 162       // look in this bucket for redundant assertions
 163       const int stride = 2;
 164       for (int i = deps->length(); (i -= stride) >= 0; ) {
 165         DepValue y1 = deps->at(i+1);
 166         if (x1 == y1) {  // same subject; check the context
 167           if (maybe_merge_ctxk(deps, i+0, x0)) {
 168             return;
 169           }
 170         }
 171       }
 172     }
 173   } else {
 174     assert(dep_implicit_context_arg(dept) == 0, "sanity");
 175     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
 176       // look in this bucket for redundant assertions
 177       const int stride = 2;
 178       for (int i = deps->length(); (i -= stride) >= 0; ) {
 179         DepValue y0 = deps->at(i+0);
 180         DepValue y1 = deps->at(i+1);
 181         if (x0 == y0 && x1 == y1) {
 182           return;
 183         }
 184       }
 185     }
 186   }
 187 
 188   // append the assertion in the correct bucket:
 189   deps->append(x0);
 190   deps->append(x1);
 191 }
 192 
 193 void Dependencies::assert_common_3(DepType dept,
 194                                    DepValue ctxk, DepValue x, DepValue x2) {
 195   assert(dep_context_arg(dept) == 0, "sanity");
 196   assert(dep_args(dept) == 3, "sanity");
 197   log_dependency(dept, ctxk, x, x2);
 198   GrowableArray<DepValue>* deps = _deps[dept];
 199 
 200   // try to normalize an unordered pair:
 201   bool swap = false;
 202   switch (dept) {
 203   case abstract_with_exclusive_concrete_subtypes_2:
 204     swap = (x.ident() > x2.ident() && x != ctxk);
 205     break;
 206   case exclusive_concrete_methods_2:
 207     swap = (x.ident() > x2.ident() && x.method_holder() != ctxk);
 208     break;
 209   }
 210   if (swap) { DepValue t = x; x = x2; x2 = t; }
 211 
 212   // see if the same (or a similar) dep is already recorded
 213   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
 214     // look in this bucket for redundant assertions
 215     const int stride = 3;
 216     for (int i = deps->length(); (i -= stride) >= 0; ) {
 217       DepValue y  = deps->at(i+1);
 218       DepValue y2 = deps->at(i+2);
 219       if (x == y && x2 == y2) {  // same subjects; check the context
 220         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 221           return;
 222         }
 223       }
 224     }
 225   }
 226   // append the assertion in the correct bucket:
 227   deps->append(ctxk);
 228   deps->append(x);
 229   deps->append(x2);
 230 }
 231 
 232 /// Support for encoding dependencies into an nmethod:
 233 
 234 void Dependencies::copy_to(nmethod* nm) {
 235   address beg = nm->dependencies_begin();
 236   address end = nm->dependencies_end();
 237   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 238   Copy::disjoint_words((HeapWord*) content_bytes(),
 239                        (HeapWord*) beg,
 240                        size_in_bytes() / sizeof(HeapWord));
 241   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 242 }
 243 
 244 static int sort_dep(DepValue* p1, DepValue* p2, int narg) {
 245   for (int i = 0; i < narg; i++) {
 246     int diff = p1[i].ident() - p2[i].ident();
 247     if (diff != 0)  return diff;
 248   }
 249   return 0;
 250 }
 251 static int sort_dep_arg_1(DepValue* p1, DepValue* p2)
 252 { return sort_dep(p1, p2, 1); }
 253 static int sort_dep_arg_2(DepValue* p1, DepValue* p2)
 254 { return sort_dep(p1, p2, 2); }
 255 static int sort_dep_arg_3(DepValue* p1, DepValue* p2)
 256 { return sort_dep(p1, p2, 3); }
 257 
 258 void Dependencies::sort_all_deps() {
 259   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 260     DepType dept = (DepType)deptv;
 261     GrowableArray<DepValue>* deps = _deps[dept];
 262     if (deps->length() <= 1)  continue;
 263     switch (dep_args(dept)) {
 264     case 1: deps->sort(sort_dep_arg_1, 1); break;
 265     case 2: deps->sort(sort_dep_arg_2, 2); break;
 266     case 3: deps->sort(sort_dep_arg_3, 3); break;
 267     default: ShouldNotReachHere();
 268     }
 269   }
 270 }
 271 
 272 size_t Dependencies::estimate_size_in_bytes() {
 273   size_t est_size = 100;
 274   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 275     DepType dept = (DepType)deptv;
 276     GrowableArray<DepValue>* deps = _deps[dept];
 277     est_size += deps->length()*2;  // tags and argument(s)
 278   }
 279   return est_size;
 280 }
 281 
 282 DepValue Dependencies::ctxk_encoded_as_null(DepType dept, DepValue x) {
 283   switch (dept) {
 284   case abstract_with_exclusive_concrete_subtypes_2:
 285     return x;
 286   case unique_concrete_method:
 287   case exclusive_concrete_methods_2:
 288     return x.method_holder();
 289   }
 290   return NULL;  // let NULL be NULL
 291 }
 292 
 293 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 294   assert(must_be_in_vm(), "raw oops here");
 295   switch (dept) {
 296   case abstract_with_exclusive_concrete_subtypes_2:
 297     assert(x->is_klass(), "sanity");
 298     return (Klass*) x;
 299   case unique_concrete_method:
 300   case exclusive_concrete_methods_2:
 301     assert(x->is_method(), "sanity");
 302     return ((Method*)x)->method_holder();
 303   }
 304   return NULL;  // let NULL be NULL
 305 }
 306 
 307 void Dependencies::encode_content_bytes() {
 308   sort_all_deps();
 309 
 310   // cast is safe, no deps can overflow INT_MAX
 311   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 312 
 313   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 314     DepType dept = (DepType)deptv;
 315     GrowableArray<DepValue>* deps = _deps[dept];
 316     if (deps->length() == 0)  continue;
 317     int stride = dep_args(dept);
 318     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 319     assert(stride > 0, "sanity");
 320     for (int i = 0; i < deps->length(); i += stride) {
 321       jbyte code_byte = (jbyte)dept;
 322       int skipj = -1;
 323       if (ctxkj >= 0 && ctxkj+1 < stride) {
 324         DepValue  ctxk = deps->at(i+ctxkj+0);
 325         DepValue x     = deps->at(i+ctxkj+1);  // following argument
 326         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 327           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 328           code_byte |= default_context_type_bit;
 329         }
 330       }
 331       bytes.write_byte(code_byte);
 332       for (int j = 0; j < stride; j++) {
 333         if (j == skipj)  continue;
 334         DepValue v = deps->at(i+j);
 335         bytes.write_int(v.idx(_oop_recorder));
 336       }
 337     }
 338   }
 339 
 340   // write a sentinel byte to mark the end
 341   bytes.write_byte(end_marker);
 342 
 343   // round it out to a word boundary
 344   while (bytes.position() % sizeof(HeapWord) != 0) {
 345     bytes.write_byte(end_marker);
 346   }
 347 
 348   // check whether the dept byte encoding really works
 349   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 350 
 351   _content_bytes = bytes.buffer();
 352   _size_in_bytes = bytes.position();
 353 }
 354 
 355 
 356 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 357   "end_marker",
 358   "evol_method",
 359   "leaf_type",
 360   "abstract_with_unique_concrete_subtype",
 361   "abstract_with_no_concrete_subtype",
 362   "concrete_with_no_concrete_subtype",
 363   "unique_concrete_method",
 364   "abstract_with_exclusive_concrete_subtypes_2",
 365   "exclusive_concrete_methods_2",
 366   "no_finalizable_subclasses",
 367   "call_site_target_value"
 368 };
 369 
 370 int Dependencies::_dep_args[TYPE_LIMIT] = {
 371   -1,// end_marker
 372   1, // evol_method m
 373   1, // leaf_type ctxk
 374   2, // abstract_with_unique_concrete_subtype ctxk, k
 375   1, // abstract_with_no_concrete_subtype ctxk
 376   1, // concrete_with_no_concrete_subtype ctxk
 377   2, // unique_concrete_method ctxk, m
 378   3, // unique_concrete_subtypes_2 ctxk, k1, k2
 379   3, // unique_concrete_methods_2 ctxk, m1, m2
 380   1, // no_finalizable_subclasses ctxk
 381   2  // call_site_target_value call_site, method_handle
 382 };
 383 
 384 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 385   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 386   return _dep_name[dept];
 387 }
 388 
 389 int Dependencies::dep_args(Dependencies::DepType dept) {
 390   if (!dept_in_mask(dept, all_types))  return -1;
 391   return _dep_args[dept];
 392 }
 393 
 394 void Dependencies::check_valid_dependency_type(DepType dept) {
 395   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
 396 }
 397 
 398 // for the sake of the compiler log, print out current dependencies:
 399 void Dependencies::log_all_dependencies() {
 400   if (log() == NULL)  return;
 401   DepValue args[max_arg_count];
 402   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 403     DepType dept = (DepType)deptv;
 404     GrowableArray<DepValue>* deps = _deps[dept];
 405     if (deps->length() == 0)  continue;
 406     int stride = dep_args(dept);
 407     for (int i = 0; i < deps->length(); i += stride) {
 408       for (int j = 0; j < stride; j++) {
 409         // flush out the identities before printing
 410         args[j] = deps->at(i+j);
 411       }
 412       write_dependency_to(log(), dept, stride, args);
 413     }
 414   }
 415 }
 416 
 417 void Dependencies::write_dependency_to(CompileLog* log,
 418                                        DepType dept,
 419                                        int nargs, DepArgument args[],
 420                                        Klass* witness) {
 421   if (log == NULL) {
 422     return;
 423   }
 424   ciEnv* env = ciEnv::current();
 425   DepValue ciargs[max_arg_count];
 426   assert(nargs <= max_arg_count, "oob");
 427   for (int j = 0; j < nargs; j++) {
 428     if (args[j].is_oop()) {
 429       ciargs[j] = DepValue(env->get_object(args[j].oop_value()));
 430     } else {
 431       ciargs[j] = DepValue(env->get_metadata(args[j].metadata_value()));
 432     }
 433   }
 434   Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
 435 }
 436 
 437 void Dependencies::write_dependency_to(CompileLog* log,
 438                                        DepType dept,
 439                                        int nargs, DepValue args[],
 440                                        Klass* witness) {
 441   if (log == NULL)  return;
 442   assert(nargs <= max_arg_count, "oob");
 443   int argids[max_arg_count];
 444   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 445   int j;
 446   for (j = 0; j < nargs; j++) {
 447     argids[j] = args[j].log_identify(log);
 448   }
 449   if (witness != NULL) {
 450     log->begin_elem("dependency_failed");
 451   } else {
 452     log->begin_elem("dependency");
 453   }
 454   log->print(" type='%s'", dep_name(dept));
 455   if (ctxkj >= 0) {
 456     log->print(" ctxk='%d'", argids[ctxkj]);
 457   }
 458   // write remaining arguments, if any.
 459   for (j = 0; j < nargs; j++) {
 460     if (j == ctxkj)  continue;  // already logged
 461     if (j == 1) {
 462       log->print(  " x='%d'",    argids[j]);
 463     } else {
 464       log->print(" x%d='%d'", j, argids[j]);
 465     }
 466   }
 467   if (witness != NULL) {
 468     log->object("witness", witness);
 469     log->stamp();
 470   }
 471   log->end_elem();
 472 }
 473 
 474 void Dependencies::write_dependency_to(xmlStream* xtty,
 475                                        DepType dept,
 476                                        int nargs, DepArgument args[],
 477                                        Klass* witness) {
 478   if (xtty == NULL)  return;
 479   ttyLocker ttyl;
 480   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 481   if (witness != NULL) {
 482     xtty->begin_elem("dependency_failed");
 483   } else {
 484     xtty->begin_elem("dependency");
 485   }
 486   xtty->print(" type='%s'", dep_name(dept));
 487   if (ctxkj >= 0) {
 488     xtty->object("ctxk", args[ctxkj].metadata_value());
 489   }
 490   // write remaining arguments, if any.
 491   for (int j = 0; j < nargs; j++) {
 492     if (j == ctxkj)  continue;  // already logged
 493     if (j == 1) {
 494       if (args[j].is_oop()) {
 495         xtty->object("x", args[j].oop_value());
 496       } else {
 497         xtty->object("x", args[j].metadata_value());
 498       }
 499     } else {
 500       char xn[10]; sprintf(xn, "x%d", j);
 501       if (args[j].is_oop()) {
 502         xtty->object(xn, args[j].oop_value());
 503       } else {
 504         xtty->object(xn, args[j].metadata_value());
 505       }
 506     }
 507   }
 508   if (witness != NULL) {
 509     xtty->object("witness", witness);
 510     xtty->stamp();
 511   }
 512   xtty->end_elem();
 513 }
 514 
 515 void Dependencies::print_dependency(DepType dept, int nargs, DepArgument args[],
 516                                     Klass* witness) {
 517   ResourceMark rm;
 518   ttyLocker ttyl;   // keep the following output all in one block
 519   tty->print_cr("%s of type %s",
 520                 (witness == NULL)? "Dependency": "Failed dependency",
 521                 dep_name(dept));
 522   // print arguments
 523   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 524   for (int j = 0; j < nargs; j++) {
 525     DepArgument arg = args[j];
 526     bool put_star = false;
 527     if (arg.is_null())  continue;
 528     const char* what;
 529     if (j == ctxkj) {
 530       assert(arg.is_metadata(), "must be");
 531       what = "context";
 532       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 533     } else if (arg.is_method()) {
 534       what = "method ";
 535       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value());
 536     } else if (arg.is_klass()) {
 537       what = "class  ";
 538     } else {
 539       what = "object ";
 540     }
 541     tty->print("  %s = %s", what, (put_star? "*": ""));
 542     if (arg.is_klass())
 543       tty->print("%s", ((Klass*)arg.metadata_value())->external_name());
 544     else if (arg.is_method())
 545       ((Method*)arg.metadata_value())->print_value();
 546     else
 547       ShouldNotReachHere(); // Provide impl for this type.
 548     tty->cr();
 549   }
 550   if (witness != NULL) {
 551     bool put_star = !Dependencies::is_concrete_klass(witness);
 552     tty->print_cr("  witness = %s%s",
 553                   (put_star? "*": ""),
 554                   witness->external_name());
 555   }
 556 }
 557 
 558 void Dependencies::DepStream::log_dependency(Klass* witness) {
 559   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
 560   ResourceMark rm;
 561   int nargs = argument_count();
 562   DepArgument args[max_arg_count];
 563   for (int j = 0; j < nargs; j++) {
 564     if (type() == call_site_target_value) {
 565       args[j] = argument_oop(j);
 566     } else {
 567       args[j] = argument(j);
 568     }
 569   }
 570   if (_deps != NULL && _deps->log() != NULL) {
 571     Dependencies::write_dependency_to(_deps->log(),
 572                                       type(), nargs, args, witness);
 573   } else {
 574     Dependencies::write_dependency_to(xtty,
 575                                       type(), nargs, args, witness);
 576   }
 577 }
 578 
 579 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
 580   int nargs = argument_count();
 581   DepArgument args[max_arg_count];
 582   for (int j = 0; j < nargs; j++) {
 583     args[j] = argument(j);
 584   }
 585   Dependencies::print_dependency(type(), nargs, args, witness);
 586   if (verbose) {
 587     if (_code != NULL) {
 588       tty->print("  code: ");
 589       _code->print_value_on(tty);
 590       tty->cr();
 591     }
 592   }
 593 }
 594 
 595 
 596 /// Dependency stream support (decodes dependencies from an nmethod):
 597 
 598 #ifdef ASSERT
 599 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 600   assert(must_be_in_vm(), "raw oops here");
 601   _byte_limit = byte_limit;
 602   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
 603   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
 604 }
 605 #endif //ASSERT
 606 
 607 bool Dependencies::DepStream::next() {
 608   assert(_type != end_marker, "already at end");
 609   if (_bytes.position() == 0 && _code != NULL
 610       && _code->dependencies_size() == 0) {
 611     // Method has no dependencies at all.
 612     return false;
 613   }
 614   int code_byte = (_bytes.read_byte() & 0xFF);
 615   if (code_byte == end_marker) {
 616     DEBUG_ONLY(_type = end_marker);
 617     return false;
 618   } else {
 619     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 620     code_byte -= ctxk_bit;
 621     DepType dept = (DepType)code_byte;
 622     _type = dept;
 623     Dependencies::check_valid_dependency_type(dept);
 624     int stride = _dep_args[dept];
 625     assert(stride == dep_args(dept), "sanity");
 626     int skipj = -1;
 627     if (ctxk_bit != 0) {
 628       skipj = 0;  // currently the only context argument is at zero
 629       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 630     }
 631     for (int j = 0; j < stride; j++) {
 632       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 633     }
 634     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 635     return true;
 636   }
 637 }
 638 
 639 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 640   Metadata* o = NULL;
 641   if (_code != NULL) {
 642     o = _code->metadata_at(i);
 643   } else {
 644     o = _deps->oop_recorder()->metadata_at(i);
 645   }
 646   assert(o == NULL || o->is_metaspace_object(),
 647          err_msg("Should be metadata " PTR_FORMAT, o));
 648   return o;
 649 }
 650 
 651 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 652   return (_code != NULL)
 653          ? _code->oop_at(i)
 654     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 655 }
 656 
 657 Metadata* Dependencies::DepStream::argument(int i) {
 658   Metadata* result = recorded_metadata_at(argument_index(i));
 659 
 660   if (result == NULL) { // Explicit context argument can be compressed
 661     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 662     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 663       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 664     }
 665   }
 666 
 667   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
 668   return result;
 669 }
 670 
 671 oop Dependencies::DepStream::argument_oop(int i) {
 672   oop result = recorded_oop_at(argument_index(i));
 673   assert(result == NULL || result->is_oop(), "must be");
 674   return result;
 675 }
 676 
 677 Klass* Dependencies::DepStream::context_type() {
 678   assert(must_be_in_vm(), "raw oops here");
 679 
 680   // Most dependencies have an explicit context type argument.
 681   {
 682     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 683     if (ctxkj >= 0) {
 684       Metadata* k = argument(ctxkj);
 685       assert(k != NULL && k->is_klass(), "type check");
 686       return (Klass*)k;
 687     }
 688   }
 689 
 690   // Some dependencies are using the klass of the first object
 691   // argument as implicit context type (e.g. call_site_target_value).
 692   {
 693     int ctxkj = dep_implicit_context_arg(type());
 694     if (ctxkj >= 0) {
 695       Klass* k = argument_oop(ctxkj)->klass();
 696       assert(k != NULL && k->is_klass(), "type check");
 697       return (Klass*) k;
 698     }
 699   }
 700 
 701   // And some dependencies don't have a context type at all,
 702   // e.g. evol_method.
 703   return NULL;
 704 }
 705 
 706 /// Checking dependencies:
 707 
 708 // This hierarchy walker inspects subtypes of a given type,
 709 // trying to find a "bad" class which breaks a dependency.
 710 // Such a class is called a "witness" to the broken dependency.
 711 // While searching around, we ignore "participants", which
 712 // are already known to the dependency.
 713 class ClassHierarchyWalker {
 714  public:
 715   enum { PARTICIPANT_LIMIT = 3 };
 716 
 717  private:
 718   // optional method descriptor to check for:
 719   Symbol* _name;
 720   Symbol* _signature;
 721 
 722   // special classes which are not allowed to be witnesses:
 723   Klass*    _participants[PARTICIPANT_LIMIT+1];
 724   int       _num_participants;
 725 
 726   // cache of method lookups
 727   Method* _found_methods[PARTICIPANT_LIMIT+1];
 728 
 729   // if non-zero, tells how many witnesses to convert to participants
 730   int       _record_witnesses;
 731 
 732   void initialize(Klass* participant) {
 733     _record_witnesses = 0;
 734     _participants[0]  = participant;
 735     _found_methods[0] = NULL;
 736     _num_participants = 0;
 737     if (participant != NULL) {
 738       // Terminating NULL.
 739       _participants[1] = NULL;
 740       _found_methods[1] = NULL;
 741       _num_participants = 1;
 742     }
 743   }
 744 
 745   void initialize_from_method(Method* m) {
 746     assert(m != NULL && m->is_method(), "sanity");
 747     _name      = m->name();
 748     _signature = m->signature();
 749   }
 750 
 751  public:
 752   // The walker is initialized to recognize certain methods and/or types
 753   // as friendly participants.
 754   ClassHierarchyWalker(Klass* participant, Method* m) {
 755     initialize_from_method(m);
 756     initialize(participant);
 757   }
 758   ClassHierarchyWalker(Method* m) {
 759     initialize_from_method(m);
 760     initialize(NULL);
 761   }
 762   ClassHierarchyWalker(Klass* participant = NULL) {
 763     _name      = NULL;
 764     _signature = NULL;
 765     initialize(participant);
 766   }
 767 
 768   // This is common code for two searches:  One for concrete subtypes,
 769   // the other for concrete method implementations and overrides.
 770   bool doing_subtype_search() {
 771     return _name == NULL;
 772   }
 773 
 774   int num_participants() { return _num_participants; }
 775   Klass* participant(int n) {
 776     assert((uint)n <= (uint)_num_participants, "oob");
 777     return _participants[n];
 778   }
 779 
 780   // Note:  If n==num_participants, returns NULL.
 781   Method* found_method(int n) {
 782     assert((uint)n <= (uint)_num_participants, "oob");
 783     Method* fm = _found_methods[n];
 784     assert(n == _num_participants || fm != NULL, "proper usage");
 785     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
 786     return fm;
 787   }
 788 
 789 #ifdef ASSERT
 790   // Assert that m is inherited into ctxk, without intervening overrides.
 791   // (May return true even if this is not true, in corner cases where we punt.)
 792   bool check_method_context(Klass* ctxk, Method* m) {
 793     if (m->method_holder() == ctxk)
 794       return true;  // Quick win.
 795     if (m->is_private())
 796       return false; // Quick lose.  Should not happen.
 797     if (!(m->is_public() || m->is_protected()))
 798       // The override story is complex when packages get involved.
 799       return true;  // Must punt the assertion to true.
 800     Klass* k = ctxk;
 801     Method* lm = k->lookup_method(m->name(), m->signature());
 802     if (lm == NULL && k->oop_is_instance()) {
 803       // It might be an interface method
 804         lm = ((InstanceKlass*)k)->lookup_method_in_ordered_interfaces(m->name(),
 805                                                                 m->signature());
 806     }
 807     if (lm == m)
 808       // Method m is inherited into ctxk.
 809       return true;
 810     if (lm != NULL) {
 811       if (!(lm->is_public() || lm->is_protected())) {
 812         // Method is [package-]private, so the override story is complex.
 813         return true;  // Must punt the assertion to true.
 814       }
 815       if (lm->is_static()) {
 816         // Static methods don't override non-static so punt
 817         return true;
 818       }
 819       if (   !Dependencies::is_concrete_method(lm)
 820           && !Dependencies::is_concrete_method(m)
 821           && lm->method_holder()->is_subtype_of(m->method_holder()))
 822         // Method m is overridden by lm, but both are non-concrete.
 823         return true;
 824     }
 825     ResourceMark rm;
 826     tty->print_cr("Dependency method not found in the associated context:");
 827     tty->print_cr("  context = %s", ctxk->external_name());
 828     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
 829     if (lm != NULL) {
 830       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
 831     }
 832     return false;
 833   }
 834 #endif
 835 
 836   void add_participant(Klass* participant) {
 837     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
 838     int np = _num_participants++;
 839     _participants[np] = participant;
 840     _participants[np+1] = NULL;
 841     _found_methods[np+1] = NULL;
 842   }
 843 
 844   void record_witnesses(int add) {
 845     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
 846     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
 847     _record_witnesses = add;
 848   }
 849 
 850   bool is_witness(Klass* k) {
 851     if (doing_subtype_search()) {
 852       return Dependencies::is_concrete_klass(k);
 853     } else {
 854       Method* m = InstanceKlass::cast(k)->find_method(_name, _signature);
 855       if (m == NULL || !Dependencies::is_concrete_method(m))  return false;
 856       _found_methods[_num_participants] = m;
 857       // Note:  If add_participant(k) is called,
 858       // the method m will already be memoized for it.
 859       return true;
 860     }
 861   }
 862 
 863   bool is_participant(Klass* k) {
 864     if (k == _participants[0]) {
 865       return true;
 866     } else if (_num_participants <= 1) {
 867       return false;
 868     } else {
 869       return in_list(k, &_participants[1]);
 870     }
 871   }
 872   bool ignore_witness(Klass* witness) {
 873     if (_record_witnesses == 0) {
 874       return false;
 875     } else {
 876       --_record_witnesses;
 877       add_participant(witness);
 878       return true;
 879     }
 880   }
 881   static bool in_list(Klass* x, Klass** list) {
 882     for (int i = 0; ; i++) {
 883       Klass* y = list[i];
 884       if (y == NULL)  break;
 885       if (y == x)  return true;
 886     }
 887     return false;  // not in list
 888   }
 889 
 890  private:
 891   // the actual search method:
 892   Klass* find_witness_anywhere(Klass* context_type,
 893                                  bool participants_hide_witnesses,
 894                                  bool top_level_call = true);
 895   // the spot-checking version:
 896   Klass* find_witness_in(KlassDepChange& changes,
 897                          Klass* context_type,
 898                            bool participants_hide_witnesses);
 899  public:
 900   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
 901     assert(doing_subtype_search(), "must set up a subtype search");
 902     // When looking for unexpected concrete types,
 903     // do not look beneath expected ones.
 904     const bool participants_hide_witnesses = true;
 905     // CX > CC > C' is OK, even if C' is new.
 906     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
 907     if (changes != NULL) {
 908       return find_witness_in(*changes, context_type, participants_hide_witnesses);
 909     } else {
 910       return find_witness_anywhere(context_type, participants_hide_witnesses);
 911     }
 912   }
 913   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
 914     assert(!doing_subtype_search(), "must set up a method definer search");
 915     // When looking for unexpected concrete methods,
 916     // look beneath expected ones, to see if there are overrides.
 917     const bool participants_hide_witnesses = true;
 918     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
 919     if (changes != NULL) {
 920       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
 921     } else {
 922       return find_witness_anywhere(context_type, !participants_hide_witnesses);
 923     }
 924   }
 925 };
 926 
 927 #ifndef PRODUCT
 928 static int deps_find_witness_calls = 0;
 929 static int deps_find_witness_steps = 0;
 930 static int deps_find_witness_recursions = 0;
 931 static int deps_find_witness_singles = 0;
 932 static int deps_find_witness_print = 0; // set to -1 to force a final print
 933 static bool count_find_witness_calls() {
 934   if (TraceDependencies || LogCompilation) {
 935     int pcount = deps_find_witness_print + 1;
 936     bool final_stats      = (pcount == 0);
 937     bool initial_call     = (pcount == 1);
 938     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
 939     if (pcount < 0)  pcount = 1; // crude overflow protection
 940     deps_find_witness_print = pcount;
 941     if (VerifyDependencies && initial_call) {
 942       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
 943     }
 944     if (occasional_print || final_stats) {
 945       // Every now and then dump a little info about dependency searching.
 946       if (xtty != NULL) {
 947        ttyLocker ttyl;
 948        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
 949                    deps_find_witness_calls,
 950                    deps_find_witness_steps,
 951                    deps_find_witness_recursions,
 952                    deps_find_witness_singles);
 953       }
 954       if (final_stats || (TraceDependencies && WizardMode)) {
 955         ttyLocker ttyl;
 956         tty->print_cr("Dependency check (find_witness) "
 957                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
 958                       deps_find_witness_calls,
 959                       deps_find_witness_steps,
 960                       (double)deps_find_witness_steps / deps_find_witness_calls,
 961                       deps_find_witness_recursions,
 962                       deps_find_witness_singles);
 963       }
 964     }
 965     return true;
 966   }
 967   return false;
 968 }
 969 #else
 970 #define count_find_witness_calls() (0)
 971 #endif //PRODUCT
 972 
 973 
 974 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
 975                                                Klass* context_type,
 976                                                bool participants_hide_witnesses) {
 977   assert(changes.involves_context(context_type), "irrelevant dependency");
 978   Klass* new_type = changes.new_type();
 979 
 980   (void)count_find_witness_calls();
 981   NOT_PRODUCT(deps_find_witness_singles++);
 982 
 983   // Current thread must be in VM (not native mode, as in CI):
 984   assert(must_be_in_vm(), "raw oops here");
 985   // Must not move the class hierarchy during this check:
 986   assert_locked_or_safepoint(Compile_lock);
 987 
 988   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
 989   if (nof_impls > 1) {
 990     // Avoid this case: *I.m > { A.m, C }; B.m > C
 991     // %%% Until this is fixed more systematically, bail out.
 992     // See corresponding comment in find_witness_anywhere.
 993     return context_type;
 994   }
 995 
 996   assert(!is_participant(new_type), "only old classes are participants");
 997   if (participants_hide_witnesses) {
 998     // If the new type is a subtype of a participant, we are done.
 999     for (int i = 0; i < num_participants(); i++) {
1000       Klass* part = participant(i);
1001       if (part == NULL)  continue;
1002       assert(changes.involves_context(part) == new_type->is_subtype_of(part),
1003              "correct marking of participants, b/c new_type is unique");
1004       if (changes.involves_context(part)) {
1005         // new guy is protected from this check by previous participant
1006         return NULL;
1007       }
1008     }
1009   }
1010 
1011   if (is_witness(new_type) &&
1012       !ignore_witness(new_type)) {
1013     return new_type;
1014   }
1015 
1016   return NULL;
1017 }
1018 
1019 
1020 // Walk hierarchy under a context type, looking for unexpected types.
1021 // Do not report participant types, and recursively walk beneath
1022 // them only if participants_hide_witnesses is false.
1023 // If top_level_call is false, skip testing the context type,
1024 // because the caller has already considered it.
1025 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
1026                                                      bool participants_hide_witnesses,
1027                                                      bool top_level_call) {
1028   // Current thread must be in VM (not native mode, as in CI):
1029   assert(must_be_in_vm(), "raw oops here");
1030   // Must not move the class hierarchy during this check:
1031   assert_locked_or_safepoint(Compile_lock);
1032 
1033   bool do_counts = count_find_witness_calls();
1034 
1035   // Check the root of the sub-hierarchy first.
1036   if (top_level_call) {
1037     if (do_counts) {
1038       NOT_PRODUCT(deps_find_witness_calls++);
1039       NOT_PRODUCT(deps_find_witness_steps++);
1040     }
1041     if (is_participant(context_type)) {
1042       if (participants_hide_witnesses)  return NULL;
1043       // else fall through to search loop...
1044     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
1045       // The context is an abstract class or interface, to start with.
1046       return context_type;
1047     }
1048   }
1049 
1050   // Now we must check each implementor and each subclass.
1051   // Use a short worklist to avoid blowing the stack.
1052   // Each worklist entry is a *chain* of subklass siblings to process.
1053   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
1054   Klass* chains[CHAINMAX];
1055   int    chaini = 0;  // index into worklist
1056   Klass* chain;       // scratch variable
1057 #define ADD_SUBCLASS_CHAIN(k)                     {  \
1058     assert(chaini < CHAINMAX, "oob");                \
1059     chain = InstanceKlass::cast(k)->subklass();      \
1060     if (chain != NULL)  chains[chaini++] = chain;    }
1061 
1062   // Look for non-abstract subclasses.
1063   // (Note:  Interfaces do not have subclasses.)
1064   ADD_SUBCLASS_CHAIN(context_type);
1065 
1066   // If it is an interface, search its direct implementors.
1067   // (Their subclasses are additional indirect implementors.
1068   // See InstanceKlass::add_implementor.)
1069   // (Note:  nof_implementors is always zero for non-interfaces.)
1070   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1071   if (nof_impls > 1) {
1072     // Avoid this case: *I.m > { A.m, C }; B.m > C
1073     // Here, I.m has 2 concrete implementations, but m appears unique
1074     // as A.m, because the search misses B.m when checking C.
1075     // The inherited method B.m was getting missed by the walker
1076     // when interface 'I' was the starting point.
1077     // %%% Until this is fixed more systematically, bail out.
1078     // (Old CHA had the same limitation.)
1079     return context_type;
1080   }
1081   if (nof_impls > 0) {
1082     Klass* impl = InstanceKlass::cast(context_type)->implementor();
1083     assert(impl != NULL, "just checking");
1084     // If impl is the same as the context_type, then more than one
1085     // implementor has seen. No exact info in this case.
1086     if (impl == context_type) {
1087       return context_type;  // report an inexact witness to this sad affair
1088     }
1089     if (do_counts)
1090       { NOT_PRODUCT(deps_find_witness_steps++); }
1091     if (is_participant(impl)) {
1092       if (!participants_hide_witnesses) {
1093         ADD_SUBCLASS_CHAIN(impl);
1094       }
1095     } else if (is_witness(impl) && !ignore_witness(impl)) {
1096       return impl;
1097     } else {
1098       ADD_SUBCLASS_CHAIN(impl);
1099     }
1100   }
1101 
1102   // Recursively process each non-trivial sibling chain.
1103   while (chaini > 0) {
1104     Klass* chain = chains[--chaini];
1105     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
1106       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
1107       if (is_participant(sub)) {
1108         if (participants_hide_witnesses)  continue;
1109         // else fall through to process this guy's subclasses
1110       } else if (is_witness(sub) && !ignore_witness(sub)) {
1111         return sub;
1112       }
1113       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
1114         // Fast path.  (Partially disabled if VerifyDependencies.)
1115         ADD_SUBCLASS_CHAIN(sub);
1116       } else {
1117         // Worklist overflow.  Do a recursive call.  Should be rare.
1118         // The recursive call will have its own worklist, of course.
1119         // (Note that sub has already been tested, so that there is
1120         // no need for the recursive call to re-test.  That's handy,
1121         // since the recursive call sees sub as the context_type.)
1122         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
1123         Klass* witness = find_witness_anywhere(sub,
1124                                                  participants_hide_witnesses,
1125                                                  /*top_level_call=*/ false);
1126         if (witness != NULL)  return witness;
1127       }
1128     }
1129   }
1130 
1131   // No witness found.  The dependency remains unbroken.
1132   return NULL;
1133 #undef ADD_SUBCLASS_CHAIN
1134 }
1135 
1136 
1137 bool Dependencies::is_concrete_klass(Klass* k) {
1138   if (k->is_abstract())  return false;
1139   // %%% We could treat classes which are concrete but
1140   // have not yet been instantiated as virtually abstract.
1141   // This would require a deoptimization barrier on first instantiation.
1142   //if (k->is_not_instantiated())  return false;
1143   return true;
1144 }
1145 
1146 bool Dependencies::is_concrete_method(Method* m) {
1147   // Statics are irrelevant to virtual call sites.
1148   if (m->is_static())  return false;
1149 
1150   // We could also return false if m does not yet appear to be
1151   // executed, if the VM version supports this distinction also.
1152   return !m->is_abstract() &&
1153          !InstanceKlass::cast(m->method_holder())->is_interface();
1154          // TODO: investigate whether default methods should be
1155          // considered as "concrete" in this situation.  For now they
1156          // are not.
1157 }
1158 
1159 
1160 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
1161   if (k->is_interface())  return NULL;
1162   if (k->has_finalizer()) return k;
1163   k = k->subklass();
1164   while (k != NULL) {
1165     Klass* result = find_finalizable_subclass(k);
1166     if (result != NULL) return result;
1167     k = k->next_sibling();
1168   }
1169   return NULL;
1170 }
1171 
1172 
1173 bool Dependencies::is_concrete_klass(DepValue k) {
1174   if (k.is_abstract_klass())  return false;
1175   // We could also return false if k does not yet appear to be
1176   // instantiated, if the VM version supports this distinction also.
1177   //if (k->is_not_instantiated())  return false;
1178   return true;
1179 }
1180 
1181 bool Dependencies::is_concrete_method(DepValue m) {
1182   // Statics are irrelevant to virtual call sites.
1183   if (m.is_static_method())  return false;
1184 
1185   // We could also return false if m does not yet appear to be
1186   // executed, if the VM version supports this distinction also.
1187   return !m.is_abstract_method();
1188 }
1189 
1190 
1191 bool Dependencies::has_finalizable_subclass(DepValue k) {
1192   return k.instance_klass_has_finalizable_subclass();
1193 }
1194 
1195 
1196 // Any use of the contents (bytecodes) of a method must be
1197 // marked by an "evol_method" dependency, if those contents
1198 // can change.  (Note: A method is always dependent on itself.)
1199 Klass* Dependencies::check_evol_method(Method* m) {
1200   assert(must_be_in_vm(), "raw oops here");
1201   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1202   // Or is there a now a breakpoint?
1203   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1204   if (m->is_old()
1205       || m->number_of_breakpoints() > 0) {
1206     return m->method_holder();
1207   } else {
1208     return NULL;
1209   }
1210 }
1211 
1212 // This is a strong assertion:  It is that the given type
1213 // has no subtypes whatever.  It is most useful for
1214 // optimizing checks on reflected types or on array types.
1215 // (Checks on types which are derived from real instances
1216 // can be optimized more strongly than this, because we
1217 // know that the checked type comes from a concrete type,
1218 // and therefore we can disregard abstract types.)
1219 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
1220   assert(must_be_in_vm(), "raw oops here");
1221   assert_locked_or_safepoint(Compile_lock);
1222   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
1223   Klass* sub = ctx->subklass();
1224   if (sub != NULL) {
1225     return sub;
1226   } else if (ctx->nof_implementors() != 0) {
1227     // if it is an interface, it must be unimplemented
1228     // (if it is not an interface, nof_implementors is always zero)
1229     Klass* impl = ctx->implementor();
1230     assert(impl != NULL, "must be set");
1231     return impl;
1232   } else {
1233     return NULL;
1234   }
1235 }
1236 
1237 // Test the assertion that conck is the only concrete subtype* of ctxk.
1238 // The type conck itself is allowed to have have further concrete subtypes.
1239 // This allows the compiler to narrow occurrences of ctxk by conck,
1240 // when dealing with the types of actual instances.
1241 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
1242                                                                    Klass* conck,
1243                                                                    KlassDepChange* changes) {
1244   ClassHierarchyWalker wf(conck);
1245   return wf.find_witness_subtype(ctxk, changes);
1246 }
1247 
1248 // If a non-concrete class has no concrete subtypes, it is not (yet)
1249 // instantiatable.  This can allow the compiler to make some paths go
1250 // dead, if they are gated by a test of the type.
1251 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
1252                                                                KlassDepChange* changes) {
1253   // Find any concrete subtype, with no participants:
1254   ClassHierarchyWalker wf;
1255   return wf.find_witness_subtype(ctxk, changes);
1256 }
1257 
1258 
1259 // If a concrete class has no concrete subtypes, it can always be
1260 // exactly typed.  This allows the use of a cheaper type test.
1261 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
1262                                                                KlassDepChange* changes) {
1263   // Find any concrete subtype, with only the ctxk as participant:
1264   ClassHierarchyWalker wf(ctxk);
1265   return wf.find_witness_subtype(ctxk, changes);
1266 }
1267 
1268 
1269 // Find the unique concrete proper subtype of ctxk, or NULL if there
1270 // is more than one concrete proper subtype.  If there are no concrete
1271 // proper subtypes, return ctxk itself, whether it is concrete or not.
1272 // The returned subtype is allowed to have have further concrete subtypes.
1273 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
1274 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
1275   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
1276   wf.record_witnesses(1);          // Record one other witness when walking.
1277   Klass* wit = wf.find_witness_subtype(ctxk);
1278   if (wit != NULL)  return NULL;   // Too many witnesses.
1279   Klass* conck = wf.participant(0);
1280   if (conck == NULL) {
1281 #ifndef PRODUCT
1282     // Make sure the dependency mechanism will pass this discovery:
1283     if (VerifyDependencies) {
1284       // Turn off dependency tracing while actually testing deps.
1285       FlagSetting fs(TraceDependencies, false);
1286       if (!Dependencies::is_concrete_klass(ctxk)) {
1287         guarantee(NULL ==
1288                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
1289                   "verify dep.");
1290       } else {
1291         guarantee(NULL ==
1292                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
1293                   "verify dep.");
1294       }
1295     }
1296 #endif //PRODUCT
1297     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1298   } else {
1299 #ifndef PRODUCT
1300     // Make sure the dependency mechanism will pass this discovery:
1301     if (VerifyDependencies) {
1302       // Turn off dependency tracing while actually testing deps.
1303       FlagSetting fs(TraceDependencies, false);
1304       if (!Dependencies::is_concrete_klass(ctxk)) {
1305         guarantee(NULL == (void *)
1306                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1307                   "verify dep.");
1308       }
1309     }
1310 #endif //PRODUCT
1311     return conck;
1312   }
1313 }
1314 
1315 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
1316 // except possibly for further subtypes of k[12] themselves.
1317 // The context type must be abstract.  The types k1 and k2 are themselves
1318 // allowed to have further concrete subtypes.
1319 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
1320                                                 Klass* ctxk,
1321                                                 Klass* k1,
1322                                                 Klass* k2,
1323                                                 KlassDepChange* changes) {
1324   ClassHierarchyWalker wf;
1325   wf.add_participant(k1);
1326   wf.add_participant(k2);
1327   return wf.find_witness_subtype(ctxk, changes);
1328 }
1329 
1330 // Search ctxk for concrete implementations.  If there are klen or fewer,
1331 // pack them into the given array and return the number.
1332 // Otherwise, return -1, meaning the given array would overflow.
1333 // (Note that a return of 0 means there are exactly no concrete subtypes.)
1334 // In this search, if ctxk is concrete, it will be reported alone.
1335 // For any type CC reported, no proper subtypes of CC will be reported.
1336 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
1337                                                    int klen,
1338                                                    Klass* karray[]) {
1339   ClassHierarchyWalker wf;
1340   wf.record_witnesses(klen);
1341   Klass* wit = wf.find_witness_subtype(ctxk);
1342   if (wit != NULL)  return -1;  // Too many witnesses.
1343   int num = wf.num_participants();
1344   assert(num <= klen, "oob");
1345   // Pack the result array with the good news.
1346   for (int i = 0; i < num; i++)
1347     karray[i] = wf.participant(i);
1348 #ifndef PRODUCT
1349   // Make sure the dependency mechanism will pass this discovery:
1350   if (VerifyDependencies) {
1351     // Turn off dependency tracing while actually testing deps.
1352     FlagSetting fs(TraceDependencies, false);
1353     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
1354     case -1: // ctxk was itself concrete
1355       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
1356       break;
1357     case 0:
1358       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
1359                 "verify dep.");
1360       break;
1361     case 1:
1362       guarantee(NULL == (void *)
1363                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
1364                 "verify dep.");
1365       break;
1366     case 2:
1367       guarantee(NULL == (void *)
1368                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
1369                                                                 karray[0],
1370                                                                 karray[1]),
1371                 "verify dep.");
1372       break;
1373     default:
1374       ShouldNotReachHere();  // klen > 2 yet supported
1375     }
1376   }
1377 #endif //PRODUCT
1378   return num;
1379 }
1380 
1381 // If a class (or interface) has a unique concrete method uniqm, return NULL.
1382 // Otherwise, return a class that contains an interfering method.
1383 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
1384                                                     KlassDepChange* changes) {
1385   // Here is a missing optimization:  If uniqm->is_final(),
1386   // we don't really need to search beneath it for overrides.
1387   // This is probably not important, since we don't use dependencies
1388   // to track final methods.  (They can't be "definalized".)
1389   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
1390   return wf.find_witness_definer(ctxk, changes);
1391 }
1392 
1393 // Find the set of all non-abstract methods under ctxk that match m.
1394 // (The method m must be defined or inherited in ctxk.)
1395 // Include m itself in the set, unless it is abstract.
1396 // If this set has exactly one element, return that element.
1397 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
1398   ClassHierarchyWalker wf(m);
1399   assert(wf.check_method_context(ctxk, m), "proper context");
1400   wf.record_witnesses(1);
1401   Klass* wit = wf.find_witness_definer(ctxk);
1402   if (wit != NULL)  return NULL;  // Too many witnesses.
1403   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
1404   if (Dependencies::is_concrete_method(m)) {
1405     if (fm == NULL) {
1406       // It turns out that m was always the only implementation.
1407       fm = m;
1408     } else if (fm != m) {
1409       // Two conflicting implementations after all.
1410       // (This can happen if m is inherited into ctxk and fm overrides it.)
1411       return NULL;
1412     }
1413   }
1414 #ifndef PRODUCT
1415   // Make sure the dependency mechanism will pass this discovery:
1416   if (VerifyDependencies && fm != NULL) {
1417     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
1418               "verify dep.");
1419   }
1420 #endif //PRODUCT
1421   return fm;
1422 }
1423 
1424 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
1425                                                         Method* m1,
1426                                                         Method* m2,
1427                                                         KlassDepChange* changes) {
1428   ClassHierarchyWalker wf(m1);
1429   wf.add_participant(m1->method_holder());
1430   wf.add_participant(m2->method_holder());
1431   return wf.find_witness_definer(ctxk, changes);
1432 }
1433 
1434 // Find the set of all non-abstract methods under ctxk that match m[0].
1435 // (The method m[0] must be defined or inherited in ctxk.)
1436 // Include m itself in the set, unless it is abstract.
1437 // Fill the given array m[0..(mlen-1)] with this set, and return the length.
1438 // (The length may be zero if no concrete methods are found anywhere.)
1439 // If there are too many concrete methods to fit in marray, return -1.
1440 int Dependencies::find_exclusive_concrete_methods(Klass* ctxk,
1441                                                   int mlen,
1442                                                   Method* marray[]) {
1443   Method* m0 = marray[0];
1444   ClassHierarchyWalker wf(m0);
1445   assert(wf.check_method_context(ctxk, m0), "proper context");
1446   wf.record_witnesses(mlen);
1447   bool participants_hide_witnesses = true;
1448   Klass* wit = wf.find_witness_definer(ctxk);
1449   if (wit != NULL)  return -1;  // Too many witnesses.
1450   int num = wf.num_participants();
1451   assert(num <= mlen, "oob");
1452   // Keep track of whether m is also part of the result set.
1453   int mfill = 0;
1454   assert(marray[mfill] == m0, "sanity");
1455   if (Dependencies::is_concrete_method(m0))
1456     mfill++;  // keep m0 as marray[0], the first result
1457   for (int i = 0; i < num; i++) {
1458     Method* fm = wf.found_method(i);
1459     if (fm == m0)  continue;  // Already put this guy in the list.
1460     if (mfill == mlen) {
1461       return -1;              // Oops.  Too many methods after all!
1462     }
1463     marray[mfill++] = fm;
1464   }
1465 #ifndef PRODUCT
1466   // Make sure the dependency mechanism will pass this discovery:
1467   if (VerifyDependencies) {
1468     // Turn off dependency tracing while actually testing deps.
1469     FlagSetting fs(TraceDependencies, false);
1470     switch (mfill) {
1471     case 1:
1472       guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]),
1473                 "verify dep.");
1474       break;
1475     case 2:
1476       guarantee(NULL == (void *)
1477                 check_exclusive_concrete_methods(ctxk, marray[0], marray[1]),
1478                 "verify dep.");
1479       break;
1480     default:
1481       ShouldNotReachHere();  // mlen > 2 yet supported
1482     }
1483   }
1484 #endif //PRODUCT
1485   return mfill;
1486 }
1487 
1488 
1489 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
1490   Klass* search_at = ctxk;
1491   if (changes != NULL)
1492     search_at = changes->new_type(); // just look at the new bit
1493   return find_finalizable_subclass(search_at);
1494 }
1495 
1496 
1497 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
1498   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
1499   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
1500   if (changes == NULL) {
1501     // Validate all CallSites
1502     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
1503       return call_site->klass();  // assertion failed
1504   } else {
1505     // Validate the given CallSite
1506     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
1507       assert(method_handle != changes->method_handle(), "must be");
1508       return call_site->klass();  // assertion failed
1509     }
1510   }
1511   return NULL;  // assertion still valid
1512 }
1513 
1514 
1515 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
1516   if (witness != NULL) {
1517     if (TraceDependencies) {
1518       print_dependency(witness, /*verbose=*/ true);
1519     }
1520     // The following is a no-op unless logging is enabled:
1521     log_dependency(witness);
1522   }
1523 }
1524 
1525 
1526 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
1527   assert_locked_or_safepoint(Compile_lock);
1528   Dependencies::check_valid_dependency_type(type());
1529 
1530   Klass* witness = NULL;
1531   switch (type()) {
1532   case evol_method:
1533     witness = check_evol_method(method_argument(0));
1534     break;
1535   case leaf_type:
1536     witness = check_leaf_type(context_type());
1537     break;
1538   case abstract_with_unique_concrete_subtype:
1539     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
1540     break;
1541   case abstract_with_no_concrete_subtype:
1542     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
1543     break;
1544   case concrete_with_no_concrete_subtype:
1545     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
1546     break;
1547   case unique_concrete_method:
1548     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
1549     break;
1550   case abstract_with_exclusive_concrete_subtypes_2:
1551     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
1552     break;
1553   case exclusive_concrete_methods_2:
1554     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
1555     break;
1556   case no_finalizable_subclasses:
1557     witness = check_has_no_finalizable_subclasses(context_type(), changes);
1558     break;
1559   default:
1560     witness = NULL;
1561     break;
1562   }
1563   trace_and_log_witness(witness);
1564   return witness;
1565 }
1566 
1567 
1568 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
1569   assert_locked_or_safepoint(Compile_lock);
1570   Dependencies::check_valid_dependency_type(type());
1571 
1572   Klass* witness = NULL;
1573   switch (type()) {
1574   case call_site_target_value:
1575     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
1576     break;
1577   default:
1578     witness = NULL;
1579     break;
1580   }
1581   trace_and_log_witness(witness);
1582   return witness;
1583 }
1584 
1585 
1586 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
1587   // Handle klass dependency
1588   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
1589     return check_klass_dependency(changes.as_klass_change());
1590 
1591   // Handle CallSite dependency
1592   if (changes.is_call_site_change())
1593     return check_call_site_dependency(changes.as_call_site_change());
1594 
1595   // irrelevant dependency; skip it
1596   return NULL;
1597 }
1598 
1599 
1600 void DepChange::print() {
1601   int nsup = 0, nint = 0;
1602   for (ContextStream str(*this); str.next(); ) {
1603     Klass* k = str.klass();
1604     switch (str.change_type()) {
1605     case Change_new_type:
1606       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
1607       break;
1608     case Change_new_sub:
1609       if (!WizardMode) {
1610         ++nsup;
1611       } else {
1612         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
1613       }
1614       break;
1615     case Change_new_impl:
1616       if (!WizardMode) {
1617         ++nint;
1618       } else {
1619         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
1620       }
1621       break;
1622     }
1623   }
1624   if (nsup + nint != 0) {
1625     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
1626   }
1627 }
1628 
1629 void DepChange::ContextStream::start() {
1630   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
1631   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
1632   _klass = new_type;
1633   _ti_base = NULL;
1634   _ti_index = 0;
1635   _ti_limit = 0;
1636 }
1637 
1638 bool DepChange::ContextStream::next() {
1639   switch (_change_type) {
1640   case Start_Klass:             // initial state; _klass is the new type
1641     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
1642     _ti_index = 0;
1643     _change_type = Change_new_type;
1644     return true;
1645   case Change_new_type:
1646     // fall through:
1647     _change_type = Change_new_sub;
1648   case Change_new_sub:
1649     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
1650     {
1651       _klass = InstanceKlass::cast(_klass)->super();
1652       if (_klass != NULL) {
1653         return true;
1654       }
1655     }
1656     // else set up _ti_limit and fall through:
1657     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
1658     _change_type = Change_new_impl;
1659   case Change_new_impl:
1660     if (_ti_index < _ti_limit) {
1661       _klass = _ti_base->at(_ti_index++);
1662       return true;
1663     }
1664     // fall through:
1665     _change_type = NO_CHANGE;  // iterator is exhausted
1666   case NO_CHANGE:
1667     break;
1668   default:
1669     ShouldNotReachHere();
1670   }
1671   return false;
1672 }
1673 
1674 void KlassDepChange::initialize() {
1675   // entire transaction must be under this lock:
1676   assert_lock_strong(Compile_lock);
1677 
1678   // Mark all dependee and all its superclasses
1679   // Mark transitive interfaces
1680   for (ContextStream str(*this); str.next(); ) {
1681     Klass* d = str.klass();
1682     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
1683     InstanceKlass::cast(d)->set_is_marked_dependent(true);
1684   }
1685 }
1686 
1687 KlassDepChange::~KlassDepChange() {
1688   // Unmark all dependee and all its superclasses
1689   // Unmark transitive interfaces
1690   for (ContextStream str(*this); str.next(); ) {
1691     Klass* d = str.klass();
1692     InstanceKlass::cast(d)->set_is_marked_dependent(false);
1693   }
1694 }
1695 
1696 bool KlassDepChange::involves_context(Klass* k) {
1697   if (k == NULL || !k->oop_is_instance()) {
1698     return false;
1699   }
1700   InstanceKlass* ik = InstanceKlass::cast(k);
1701   bool is_contained = ik->is_marked_dependent();
1702   assert(is_contained == new_type()->is_subtype_of(k),
1703          "correct marking of potential context types");
1704   return is_contained;
1705 }
1706 
1707 #ifndef PRODUCT
1708 void Dependencies::print_statistics() {
1709   if (deps_find_witness_print != 0) {
1710     // Call one final time, to flush out the data.
1711     deps_find_witness_print = -1;
1712     count_find_witness_calls();
1713   }
1714 }
1715 #endif