1 /*
   2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/compile.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/locknode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/macro.hpp"
  36 #include "opto/memnode.hpp"
  37 #include "opto/node.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "opto/type.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 
  45 
  46 //
  47 // Replace any references to "oldref" in inputs to "use" with "newref".
  48 // Returns the number of replacements made.
  49 //
  50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  51   int nreplacements = 0;
  52   uint req = use->req();
  53   for (uint j = 0; j < use->len(); j++) {
  54     Node *uin = use->in(j);
  55     if (uin == oldref) {
  56       if (j < req)
  57         use->set_req(j, newref);
  58       else
  59         use->set_prec(j, newref);
  60       nreplacements++;
  61     } else if (j >= req && uin == NULL) {
  62       break;
  63     }
  64   }
  65   return nreplacements;
  66 }
  67 
  68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  69   // Copy debug information and adjust JVMState information
  70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  71   uint new_dbg_start = newcall->tf()->domain()->cnt();
  72   int jvms_adj  = new_dbg_start - old_dbg_start;
  73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  74 
  75   Dict* sosn_map = new Dict(cmpkey,hashkey);
  76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  77     Node* old_in = oldcall->in(i);
  78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  81       uint old_unique = C->unique();
  82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
  83       if (old_unique != C->unique()) {
  84         new_in->set_req(0, newcall->in(0)); // reset control edge
  85         new_in = transform_later(new_in); // Register new node.
  86       }
  87       old_in = new_in;
  88     }
  89     newcall->add_req(old_in);
  90   }
  91 
  92   newcall->set_jvms(oldcall->jvms());
  93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  94     jvms->set_map(newcall);
  95     jvms->set_locoff(jvms->locoff()+jvms_adj);
  96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  97     jvms->set_monoff(jvms->monoff()+jvms_adj);
  98     jvms->set_scloff(jvms->scloff()+jvms_adj);
  99     jvms->set_endoff(jvms->endoff()+jvms_adj);
 100   }
 101 }
 102 
 103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 104   Node* cmp;
 105   if (mask != 0) {
 106     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
 107     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
 108   } else {
 109     cmp = word;
 110   }
 111   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
 112   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 113   transform_later(iff);
 114 
 115   // Fast path taken.
 116   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
 117 
 118   // Fast path not-taken, i.e. slow path
 119   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
 120 
 121   if (return_fast_path) {
 122     region->init_req(edge, slow_taken); // Capture slow-control
 123     return fast_taken;
 124   } else {
 125     region->init_req(edge, fast_taken); // Capture fast-control
 126     return slow_taken;
 127   }
 128 }
 129 
 130 //--------------------copy_predefined_input_for_runtime_call--------------------
 131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 132   // Set fixed predefined input arguments
 133   call->init_req( TypeFunc::Control, ctrl );
 134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 138 }
 139 
 140 //------------------------------make_slow_call---------------------------------
 141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
 142 
 143   // Slow-path call
 144   int size = slow_call_type->domain()->cnt();
 145  CallNode *call = leaf_name
 146    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 147    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 148 
 149   // Slow path call has no side-effects, uses few values
 150   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 151   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 152   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 153   copy_call_debug_info(oldcall, call);
 154   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 155   _igvn.replace_node(oldcall, call);
 156   transform_later(call);
 157 
 158   return call;
 159 }
 160 
 161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 162   _fallthroughproj = NULL;
 163   _fallthroughcatchproj = NULL;
 164   _ioproj_fallthrough = NULL;
 165   _ioproj_catchall = NULL;
 166   _catchallcatchproj = NULL;
 167   _memproj_fallthrough = NULL;
 168   _memproj_catchall = NULL;
 169   _resproj = NULL;
 170   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 171     ProjNode *pn = call->fast_out(i)->as_Proj();
 172     switch (pn->_con) {
 173       case TypeFunc::Control:
 174       {
 175         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 176         _fallthroughproj = pn;
 177         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 178         const Node *cn = pn->fast_out(j);
 179         if (cn->is_Catch()) {
 180           ProjNode *cpn = NULL;
 181           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 182             cpn = cn->fast_out(k)->as_Proj();
 183             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 184             if (cpn->_con == CatchProjNode::fall_through_index)
 185               _fallthroughcatchproj = cpn;
 186             else {
 187               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 188               _catchallcatchproj = cpn;
 189             }
 190           }
 191         }
 192         break;
 193       }
 194       case TypeFunc::I_O:
 195         if (pn->_is_io_use)
 196           _ioproj_catchall = pn;
 197         else
 198           _ioproj_fallthrough = pn;
 199         break;
 200       case TypeFunc::Memory:
 201         if (pn->_is_io_use)
 202           _memproj_catchall = pn;
 203         else
 204           _memproj_fallthrough = pn;
 205         break;
 206       case TypeFunc::Parms:
 207         _resproj = pn;
 208         break;
 209       default:
 210         assert(false, "unexpected projection from allocation node.");
 211     }
 212   }
 213 
 214 }
 215 
 216 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 218   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 219   if (!UseG1GC) {
 220     // vanilla/CMS post barrier
 221     Node *shift = p2x->unique_out();
 222     Node *addp = shift->unique_out();
 223     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 224       Node *mem = addp->last_out(j);
 225       if (UseCondCardMark && mem->is_Load()) {
 226         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 227         // The load is checking if the card has been written so
 228         // replace it with zero to fold the test.
 229         _igvn.replace_node(mem, intcon(0));
 230         continue;
 231       }
 232       assert(mem->is_Store(), "store required");
 233       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 234     }
 235   } else {
 236     // G1 pre/post barriers
 237     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
 238     // It could be only one user, URShift node, in Object.clone() instrinsic
 239     // but the new allocation is passed to arraycopy stub and it could not
 240     // be scalar replaced. So we don't check the case.
 241 
 242     // Remove G1 post barrier.
 243 
 244     // Search for CastP2X->Xor->URShift->Cmp path which
 245     // checks if the store done to a different from the value's region.
 246     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 247     Node* xorx = NULL;
 248     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
 249       Node* u = p2x->fast_out(i);
 250       if (u->Opcode() == Op_XorX) {
 251         xorx = u;
 252         break;
 253       }
 254     }
 255     assert(xorx != NULL, "missing G1 post barrier");
 256     Node* shift = xorx->unique_out();
 257     Node* cmpx = shift->unique_out();
 258     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 259     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 260     "missing region check in G1 post barrier");
 261     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 262 
 263     // Remove G1 pre barrier.
 264 
 265     // Search "if (marking != 0)" check and set it to "false".
 266     Node* this_region = p2x->in(0);
 267     assert(this_region != NULL, "");
 268     // There is no G1 pre barrier if previous stored value is NULL
 269     // (for example, after initialization).
 270     if (this_region->is_Region() && this_region->req() == 3) {
 271       int ind = 1;
 272       if (!this_region->in(ind)->is_IfFalse()) {
 273         ind = 2;
 274       }
 275       if (this_region->in(ind)->is_IfFalse()) {
 276         Node* bol = this_region->in(ind)->in(0)->in(1);
 277         assert(bol->is_Bool(), "");
 278         cmpx = bol->in(1);
 279         if (bol->as_Bool()->_test._test == BoolTest::ne &&
 280             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 281             cmpx->in(1)->is_Load()) {
 282           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 283           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 284                                               PtrQueue::byte_offset_of_active());
 285           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 286               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 287               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 288             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 289           }
 290         }
 291       }
 292     }
 293     // Now CastP2X can be removed since it is used only on dead path
 294     // which currently still alive until igvn optimize it.
 295     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
 296     _igvn.replace_node(p2x, top());
 297   }
 298 }
 299 
 300 // Search for a memory operation for the specified memory slice.
 301 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 302   Node *orig_mem = mem;
 303   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 304   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 305   while (true) {
 306     if (mem == alloc_mem || mem == start_mem ) {
 307       return mem;  // hit one of our sentinels
 308     } else if (mem->is_MergeMem()) {
 309       mem = mem->as_MergeMem()->memory_at(alias_idx);
 310     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 311       Node *in = mem->in(0);
 312       // we can safely skip over safepoints, calls, locks and membars because we
 313       // already know that the object is safe to eliminate.
 314       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 315         return in;
 316       } else if (in->is_Call()) {
 317         CallNode *call = in->as_Call();
 318         if (!call->may_modify(tinst, phase)) {
 319           mem = call->in(TypeFunc::Memory);
 320         }
 321         mem = in->in(TypeFunc::Memory);
 322       } else if (in->is_MemBar()) {
 323         mem = in->in(TypeFunc::Memory);
 324       } else {
 325         assert(false, "unexpected projection");
 326       }
 327     } else if (mem->is_Store()) {
 328       const TypePtr* atype = mem->as_Store()->adr_type();
 329       int adr_idx = Compile::current()->get_alias_index(atype);
 330       if (adr_idx == alias_idx) {
 331         assert(atype->isa_oopptr(), "address type must be oopptr");
 332         int adr_offset = atype->offset();
 333         uint adr_iid = atype->is_oopptr()->instance_id();
 334         // Array elements references have the same alias_idx
 335         // but different offset and different instance_id.
 336         if (adr_offset == offset && adr_iid == alloc->_idx)
 337           return mem;
 338       } else {
 339         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 340       }
 341       mem = mem->in(MemNode::Memory);
 342     } else if (mem->is_ClearArray()) {
 343       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 344         // Can not bypass initialization of the instance
 345         // we are looking.
 346         debug_only(intptr_t offset;)
 347         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 348         InitializeNode* init = alloc->as_Allocate()->initialization();
 349         // We are looking for stored value, return Initialize node
 350         // or memory edge from Allocate node.
 351         if (init != NULL)
 352           return init;
 353         else
 354           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 355       }
 356       // Otherwise skip it (the call updated 'mem' value).
 357     } else if (mem->Opcode() == Op_SCMemProj) {
 358       assert(mem->in(0)->is_LoadStore(), "sanity");
 359       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
 360       int adr_idx = Compile::current()->get_alias_index(atype);
 361       if (adr_idx == alias_idx) {
 362         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 363         return NULL;
 364       }
 365       mem = mem->in(0)->in(MemNode::Memory);
 366     } else {
 367       return mem;
 368     }
 369     assert(mem != orig_mem, "dead memory loop");
 370   }
 371 }
 372 
 373 //
 374 // Given a Memory Phi, compute a value Phi containing the values from stores
 375 // on the input paths.
 376 // Note: this function is recursive, its depth is limied by the "level" argument
 377 // Returns the computed Phi, or NULL if it cannot compute it.
 378 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 379   assert(mem->is_Phi(), "sanity");
 380   int alias_idx = C->get_alias_index(adr_t);
 381   int offset = adr_t->offset();
 382   int instance_id = adr_t->instance_id();
 383 
 384   // Check if an appropriate value phi already exists.
 385   Node* region = mem->in(0);
 386   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 387     Node* phi = region->fast_out(k);
 388     if (phi->is_Phi() && phi != mem &&
 389         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 390       return phi;
 391     }
 392   }
 393   // Check if an appropriate new value phi already exists.
 394   Node* new_phi = value_phis->find(mem->_idx);
 395   if (new_phi != NULL)
 396     return new_phi;
 397 
 398   if (level <= 0) {
 399     return NULL; // Give up: phi tree too deep
 400   }
 401   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 402   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 403 
 404   uint length = mem->req();
 405   GrowableArray <Node *> values(length, length, NULL);
 406 
 407   // create a new Phi for the value
 408   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 409   transform_later(phi);
 410   value_phis->push(phi, mem->_idx);
 411 
 412   for (uint j = 1; j < length; j++) {
 413     Node *in = mem->in(j);
 414     if (in == NULL || in->is_top()) {
 415       values.at_put(j, in);
 416     } else  {
 417       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 418       if (val == start_mem || val == alloc_mem) {
 419         // hit a sentinel, return appropriate 0 value
 420         values.at_put(j, _igvn.zerocon(ft));
 421         continue;
 422       }
 423       if (val->is_Initialize()) {
 424         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 425       }
 426       if (val == NULL) {
 427         return NULL;  // can't find a value on this path
 428       }
 429       if (val == mem) {
 430         values.at_put(j, mem);
 431       } else if (val->is_Store()) {
 432         values.at_put(j, val->in(MemNode::ValueIn));
 433       } else if(val->is_Proj() && val->in(0) == alloc) {
 434         values.at_put(j, _igvn.zerocon(ft));
 435       } else if (val->is_Phi()) {
 436         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 437         if (val == NULL) {
 438           return NULL;
 439         }
 440         values.at_put(j, val);
 441       } else if (val->Opcode() == Op_SCMemProj) {
 442         assert(val->in(0)->is_LoadStore(), "sanity");
 443         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 444         return NULL;
 445       } else {
 446 #ifdef ASSERT
 447         val->dump();
 448         assert(false, "unknown node on this path");
 449 #endif
 450         return NULL;  // unknown node on this path
 451       }
 452     }
 453   }
 454   // Set Phi's inputs
 455   for (uint j = 1; j < length; j++) {
 456     if (values.at(j) == mem) {
 457       phi->init_req(j, phi);
 458     } else {
 459       phi->init_req(j, values.at(j));
 460     }
 461   }
 462   return phi;
 463 }
 464 
 465 // Search the last value stored into the object's field.
 466 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 467   assert(adr_t->is_known_instance_field(), "instance required");
 468   int instance_id = adr_t->instance_id();
 469   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 470 
 471   int alias_idx = C->get_alias_index(adr_t);
 472   int offset = adr_t->offset();
 473   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 474   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 475   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 476   Arena *a = Thread::current()->resource_area();
 477   VectorSet visited(a);
 478 
 479 
 480   bool done = sfpt_mem == alloc_mem;
 481   Node *mem = sfpt_mem;
 482   while (!done) {
 483     if (visited.test_set(mem->_idx)) {
 484       return NULL;  // found a loop, give up
 485     }
 486     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 487     if (mem == start_mem || mem == alloc_mem) {
 488       done = true;  // hit a sentinel, return appropriate 0 value
 489     } else if (mem->is_Initialize()) {
 490       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 491       if (mem == NULL) {
 492         done = true; // Something go wrong.
 493       } else if (mem->is_Store()) {
 494         const TypePtr* atype = mem->as_Store()->adr_type();
 495         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 496         done = true;
 497       }
 498     } else if (mem->is_Store()) {
 499       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 500       assert(atype != NULL, "address type must be oopptr");
 501       assert(C->get_alias_index(atype) == alias_idx &&
 502              atype->is_known_instance_field() && atype->offset() == offset &&
 503              atype->instance_id() == instance_id, "store is correct memory slice");
 504       done = true;
 505     } else if (mem->is_Phi()) {
 506       // try to find a phi's unique input
 507       Node *unique_input = NULL;
 508       Node *top = C->top();
 509       for (uint i = 1; i < mem->req(); i++) {
 510         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 511         if (n == NULL || n == top || n == mem) {
 512           continue;
 513         } else if (unique_input == NULL) {
 514           unique_input = n;
 515         } else if (unique_input != n) {
 516           unique_input = top;
 517           break;
 518         }
 519       }
 520       if (unique_input != NULL && unique_input != top) {
 521         mem = unique_input;
 522       } else {
 523         done = true;
 524       }
 525     } else {
 526       assert(false, "unexpected node");
 527     }
 528   }
 529   if (mem != NULL) {
 530     if (mem == start_mem || mem == alloc_mem) {
 531       // hit a sentinel, return appropriate 0 value
 532       return _igvn.zerocon(ft);
 533     } else if (mem->is_Store()) {
 534       return mem->in(MemNode::ValueIn);
 535     } else if (mem->is_Phi()) {
 536       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 537       Node_Stack value_phis(a, 8);
 538       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 539       if (phi != NULL) {
 540         return phi;
 541       } else {
 542         // Kill all new Phis
 543         while(value_phis.is_nonempty()) {
 544           Node* n = value_phis.node();
 545           _igvn.replace_node(n, C->top());
 546           value_phis.pop();
 547         }
 548       }
 549     }
 550   }
 551   // Something go wrong.
 552   return NULL;
 553 }
 554 
 555 // Check the possibility of scalar replacement.
 556 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 557   //  Scan the uses of the allocation to check for anything that would
 558   //  prevent us from eliminating it.
 559   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 560   DEBUG_ONLY( Node* disq_node = NULL; )
 561   bool  can_eliminate = true;
 562 
 563   Node* res = alloc->result_cast();
 564   const TypeOopPtr* res_type = NULL;
 565   if (res == NULL) {
 566     // All users were eliminated.
 567   } else if (!res->is_CheckCastPP()) {
 568     alloc->_is_scalar_replaceable = false;  // don't try again
 569     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 570     can_eliminate = false;
 571   } else {
 572     res_type = _igvn.type(res)->isa_oopptr();
 573     if (res_type == NULL) {
 574       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 575       can_eliminate = false;
 576     } else if (res_type->isa_aryptr()) {
 577       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 578       if (length < 0) {
 579         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 580         can_eliminate = false;
 581       }
 582     }
 583   }
 584 
 585   if (can_eliminate && res != NULL) {
 586     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 587                                j < jmax && can_eliminate; j++) {
 588       Node* use = res->fast_out(j);
 589 
 590       if (use->is_AddP()) {
 591         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 592         int offset = addp_type->offset();
 593 
 594         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 595           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 596           can_eliminate = false;
 597           break;
 598         }
 599         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 600                                    k < kmax && can_eliminate; k++) {
 601           Node* n = use->fast_out(k);
 602           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 603             DEBUG_ONLY(disq_node = n;)
 604             if (n->is_Load() || n->is_LoadStore()) {
 605               NOT_PRODUCT(fail_eliminate = "Field load";)
 606             } else {
 607               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 608             }
 609             can_eliminate = false;
 610           }
 611         }
 612       } else if (use->is_SafePoint()) {
 613         SafePointNode* sfpt = use->as_SafePoint();
 614         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 615           // Object is passed as argument.
 616           DEBUG_ONLY(disq_node = use;)
 617           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 618           can_eliminate = false;
 619         }
 620         Node* sfptMem = sfpt->memory();
 621         if (sfptMem == NULL || sfptMem->is_top()) {
 622           DEBUG_ONLY(disq_node = use;)
 623           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 624           can_eliminate = false;
 625         } else {
 626           safepoints.append_if_missing(sfpt);
 627         }
 628       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 629         if (use->is_Phi()) {
 630           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 631             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 632           } else {
 633             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 634           }
 635           DEBUG_ONLY(disq_node = use;)
 636         } else {
 637           if (use->Opcode() == Op_Return) {
 638             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 639           }else {
 640             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 641           }
 642           DEBUG_ONLY(disq_node = use;)
 643         }
 644         can_eliminate = false;
 645       }
 646     }
 647   }
 648 
 649 #ifndef PRODUCT
 650   if (PrintEliminateAllocations) {
 651     if (can_eliminate) {
 652       tty->print("Scalar ");
 653       if (res == NULL)
 654         alloc->dump();
 655       else
 656         res->dump();
 657     } else {
 658       tty->print("NotScalar (%s)", fail_eliminate);
 659       if (res == NULL)
 660         alloc->dump();
 661       else
 662         res->dump();
 663 #ifdef ASSERT
 664       if (disq_node != NULL) {
 665           tty->print("  >>>> ");
 666           disq_node->dump();
 667       }
 668 #endif /*ASSERT*/
 669     }
 670   }
 671 #endif
 672   return can_eliminate;
 673 }
 674 
 675 // Do scalar replacement.
 676 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 677   GrowableArray <SafePointNode *> safepoints_done;
 678 
 679   ciKlass* klass = NULL;
 680   ciInstanceKlass* iklass = NULL;
 681   int nfields = 0;
 682   int array_base;
 683   int element_size;
 684   BasicType basic_elem_type;
 685   ciType* elem_type;
 686 
 687   Node* res = alloc->result_cast();
 688   const TypeOopPtr* res_type = NULL;
 689   if (res != NULL) { // Could be NULL when there are no users
 690     res_type = _igvn.type(res)->isa_oopptr();
 691   }
 692 
 693   if (res != NULL) {
 694     klass = res_type->klass();
 695     if (res_type->isa_instptr()) {
 696       // find the fields of the class which will be needed for safepoint debug information
 697       assert(klass->is_instance_klass(), "must be an instance klass.");
 698       iklass = klass->as_instance_klass();
 699       nfields = iklass->nof_nonstatic_fields();
 700     } else {
 701       // find the array's elements which will be needed for safepoint debug information
 702       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 703       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 704       elem_type = klass->as_array_klass()->element_type();
 705       basic_elem_type = elem_type->basic_type();
 706       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 707       element_size = type2aelembytes(basic_elem_type);
 708     }
 709   }
 710   //
 711   // Process the safepoint uses
 712   //
 713   while (safepoints.length() > 0) {
 714     SafePointNode* sfpt = safepoints.pop();
 715     Node* mem = sfpt->memory();
 716     uint first_ind = sfpt->req();
 717     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
 718 #ifdef ASSERT
 719                                                  alloc,
 720 #endif
 721                                                  first_ind, nfields);
 722     sobj->init_req(0, sfpt->in(TypeFunc::Control));
 723     transform_later(sobj);
 724 
 725     // Scan object's fields adding an input to the safepoint for each field.
 726     for (int j = 0; j < nfields; j++) {
 727       intptr_t offset;
 728       ciField* field = NULL;
 729       if (iklass != NULL) {
 730         field = iklass->nonstatic_field_at(j);
 731         offset = field->offset();
 732         elem_type = field->type();
 733         basic_elem_type = field->layout_type();
 734       } else {
 735         offset = array_base + j * (intptr_t)element_size;
 736       }
 737 
 738       const Type *field_type;
 739       // The next code is taken from Parse::do_get_xxx().
 740       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 741         if (!elem_type->is_loaded()) {
 742           field_type = TypeInstPtr::BOTTOM;
 743         } else if (field != NULL && field->is_constant() && field->is_static()) {
 744           // This can happen if the constant oop is non-perm.
 745           ciObject* con = field->constant_value().as_object();
 746           // Do not "join" in the previous type; it doesn't add value,
 747           // and may yield a vacuous result if the field is of interface type.
 748           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 749           assert(field_type != NULL, "field singleton type must be consistent");
 750         } else {
 751           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 752         }
 753         if (UseCompressedOops) {
 754           field_type = field_type->make_narrowoop();
 755           basic_elem_type = T_NARROWOOP;
 756         }
 757       } else {
 758         field_type = Type::get_const_basic_type(basic_elem_type);
 759       }
 760 
 761       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 762 
 763       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 764       if (field_val == NULL) {
 765         // we weren't able to find a value for this field,
 766         // give up on eliminating this allocation
 767         alloc->_is_scalar_replaceable = false;  // don't try again
 768         // remove any extra entries we added to the safepoint
 769         uint last = sfpt->req() - 1;
 770         for (int k = 0;  k < j; k++) {
 771           sfpt->del_req(last--);
 772         }
 773         // rollback processed safepoints
 774         while (safepoints_done.length() > 0) {
 775           SafePointNode* sfpt_done = safepoints_done.pop();
 776           // remove any extra entries we added to the safepoint
 777           last = sfpt_done->req() - 1;
 778           for (int k = 0;  k < nfields; k++) {
 779             sfpt_done->del_req(last--);
 780           }
 781           JVMState *jvms = sfpt_done->jvms();
 782           jvms->set_endoff(sfpt_done->req());
 783           // Now make a pass over the debug information replacing any references
 784           // to SafePointScalarObjectNode with the allocated object.
 785           int start = jvms->debug_start();
 786           int end   = jvms->debug_end();
 787           for (int i = start; i < end; i++) {
 788             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 789               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 790               if (scobj->first_index() == sfpt_done->req() &&
 791                   scobj->n_fields() == (uint)nfields) {
 792                 assert(scobj->alloc() == alloc, "sanity");
 793                 sfpt_done->set_req(i, res);
 794               }
 795             }
 796           }
 797         }
 798 #ifndef PRODUCT
 799         if (PrintEliminateAllocations) {
 800           if (field != NULL) {
 801             tty->print("=== At SafePoint node %d can't find value of Field: ",
 802                        sfpt->_idx);
 803             field->print();
 804             int field_idx = C->get_alias_index(field_addr_type);
 805             tty->print(" (alias_idx=%d)", field_idx);
 806           } else { // Array's element
 807             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 808                        sfpt->_idx, j);
 809           }
 810           tty->print(", which prevents elimination of: ");
 811           if (res == NULL)
 812             alloc->dump();
 813           else
 814             res->dump();
 815         }
 816 #endif
 817         return false;
 818       }
 819       if (UseCompressedOops && field_type->isa_narrowoop()) {
 820         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 821         // to be able scalar replace the allocation.
 822         if (field_val->is_EncodeP()) {
 823           field_val = field_val->in(1);
 824         } else {
 825           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
 826         }
 827       }
 828       sfpt->add_req(field_val);
 829     }
 830     JVMState *jvms = sfpt->jvms();
 831     jvms->set_endoff(sfpt->req());
 832     // Now make a pass over the debug information replacing any references
 833     // to the allocated object with "sobj"
 834     int start = jvms->debug_start();
 835     int end   = jvms->debug_end();
 836     for (int i = start; i < end; i++) {
 837       if (sfpt->in(i) == res) {
 838         sfpt->set_req(i, sobj);
 839       }
 840     }
 841     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 842   }
 843   return true;
 844 }
 845 
 846 // Process users of eliminated allocation.
 847 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
 848   Node* res = alloc->result_cast();
 849   if (res != NULL) {
 850     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 851       Node *use = res->last_out(j);
 852       uint oc1 = res->outcnt();
 853 
 854       if (use->is_AddP()) {
 855         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 856           Node *n = use->last_out(k);
 857           uint oc2 = use->outcnt();
 858           if (n->is_Store()) {
 859 #ifdef ASSERT
 860             // Verify that there is no dependent MemBarVolatile nodes,
 861             // they should be removed during IGVN, see MemBarNode::Ideal().
 862             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 863                                        p < pmax; p++) {
 864               Node* mb = n->fast_out(p);
 865               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 866                      mb->req() <= MemBarNode::Precedent ||
 867                      mb->in(MemBarNode::Precedent) != n,
 868                      "MemBarVolatile should be eliminated for non-escaping object");
 869             }
 870 #endif
 871             _igvn.replace_node(n, n->in(MemNode::Memory));
 872           } else {
 873             eliminate_card_mark(n);
 874           }
 875           k -= (oc2 - use->outcnt());
 876         }
 877       } else {
 878         eliminate_card_mark(use);
 879       }
 880       j -= (oc1 - res->outcnt());
 881     }
 882     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 883     _igvn.remove_dead_node(res);
 884   }
 885 
 886   //
 887   // Process other users of allocation's projections
 888   //
 889   if (_resproj != NULL && _resproj->outcnt() != 0) {
 890     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 891       Node *use = _resproj->last_out(j);
 892       uint oc1 = _resproj->outcnt();
 893       if (use->is_Initialize()) {
 894         // Eliminate Initialize node.
 895         InitializeNode *init = use->as_Initialize();
 896         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 897         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 898         if (ctrl_proj != NULL) {
 899            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 900           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 901         }
 902         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 903         if (mem_proj != NULL) {
 904           Node *mem = init->in(TypeFunc::Memory);
 905 #ifdef ASSERT
 906           if (mem->is_MergeMem()) {
 907             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 908           } else {
 909             assert(mem == _memproj_fallthrough, "allocation memory projection");
 910           }
 911 #endif
 912           _igvn.replace_node(mem_proj, mem);
 913         }
 914       } else if (use->is_AddP()) {
 915         // raw memory addresses used only by the initialization
 916         _igvn.replace_node(use, C->top());
 917       } else  {
 918         assert(false, "only Initialize or AddP expected");
 919       }
 920       j -= (oc1 - _resproj->outcnt());
 921     }
 922   }
 923   if (_fallthroughcatchproj != NULL) {
 924     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 925   }
 926   if (_memproj_fallthrough != NULL) {
 927     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 928   }
 929   if (_memproj_catchall != NULL) {
 930     _igvn.replace_node(_memproj_catchall, C->top());
 931   }
 932   if (_ioproj_fallthrough != NULL) {
 933     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 934   }
 935   if (_ioproj_catchall != NULL) {
 936     _igvn.replace_node(_ioproj_catchall, C->top());
 937   }
 938   if (_catchallcatchproj != NULL) {
 939     _igvn.replace_node(_catchallcatchproj, C->top());
 940   }
 941 }
 942 
 943 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 944 
 945   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
 946     return false;
 947   }
 948 
 949   extract_call_projections(alloc);
 950 
 951   GrowableArray <SafePointNode *> safepoints;
 952   if (!can_eliminate_allocation(alloc, safepoints)) {
 953     return false;
 954   }
 955 
 956   if (!scalar_replacement(alloc, safepoints)) {
 957     return false;
 958   }
 959 
 960   CompileLog* log = C->log();
 961   if (log != NULL) {
 962     Node* klass = alloc->in(AllocateNode::KlassNode);
 963     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
 964     log->head("eliminate_allocation type='%d'",
 965               log->identify(tklass->klass()));
 966     JVMState* p = alloc->jvms();
 967     while (p != NULL) {
 968       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 969       p = p->caller();
 970     }
 971     log->tail("eliminate_allocation");
 972   }
 973 
 974   process_users_of_allocation(alloc);
 975 
 976 #ifndef PRODUCT
 977   if (PrintEliminateAllocations) {
 978     if (alloc->is_AllocateArray())
 979       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
 980     else
 981       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
 982   }
 983 #endif
 984 
 985   return true;
 986 }
 987 
 988 
 989 //---------------------------set_eden_pointers-------------------------
 990 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
 991   if (UseTLAB) {                // Private allocation: load from TLS
 992     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
 993     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
 994     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
 995     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
 996     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
 997   } else {                      // Shared allocation: load from globals
 998     CollectedHeap* ch = Universe::heap();
 999     address top_adr = (address)ch->top_addr();
1000     address end_adr = (address)ch->end_addr();
1001     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1002     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1003   }
1004 }
1005 
1006 
1007 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1008   Node* adr = basic_plus_adr(base, offset);
1009   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1010   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
1011   transform_later(value);
1012   return value;
1013 }
1014 
1015 
1016 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1017   Node* adr = basic_plus_adr(base, offset);
1018   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
1019   transform_later(mem);
1020   return mem;
1021 }
1022 
1023 //=============================================================================
1024 //
1025 //                              A L L O C A T I O N
1026 //
1027 // Allocation attempts to be fast in the case of frequent small objects.
1028 // It breaks down like this:
1029 //
1030 // 1) Size in doublewords is computed.  This is a constant for objects and
1031 // variable for most arrays.  Doubleword units are used to avoid size
1032 // overflow of huge doubleword arrays.  We need doublewords in the end for
1033 // rounding.
1034 //
1035 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1036 // the slow path into the VM.  The slow path can throw any required
1037 // exceptions, and does all the special checks for very large arrays.  The
1038 // size test can constant-fold away for objects.  For objects with
1039 // finalizers it constant-folds the otherway: you always go slow with
1040 // finalizers.
1041 //
1042 // 3) If NOT using TLABs, this is the contended loop-back point.
1043 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1044 //
1045 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1046 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1047 // "size*8" we always enter the VM, where "largish" is a constant picked small
1048 // enough that there's always space between the eden max and 4Gig (old space is
1049 // there so it's quite large) and large enough that the cost of entering the VM
1050 // is dwarfed by the cost to initialize the space.
1051 //
1052 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1053 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1054 // adjusted heap top back down; there is no contention.
1055 //
1056 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1057 // fields.
1058 //
1059 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1060 // oop flavor.
1061 //
1062 //=============================================================================
1063 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1064 // Allocations bigger than this always go the slow route.
1065 // This value must be small enough that allocation attempts that need to
1066 // trigger exceptions go the slow route.  Also, it must be small enough so
1067 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1068 //=============================================================================j//
1069 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1070 // The allocator will coalesce int->oop copies away.  See comment in
1071 // coalesce.cpp about how this works.  It depends critically on the exact
1072 // code shape produced here, so if you are changing this code shape
1073 // make sure the GC info for the heap-top is correct in and around the
1074 // slow-path call.
1075 //
1076 
1077 void PhaseMacroExpand::expand_allocate_common(
1078             AllocateNode* alloc, // allocation node to be expanded
1079             Node* length,  // array length for an array allocation
1080             const TypeFunc* slow_call_type, // Type of slow call
1081             address slow_call_address  // Address of slow call
1082     )
1083 {
1084 
1085   Node* ctrl = alloc->in(TypeFunc::Control);
1086   Node* mem  = alloc->in(TypeFunc::Memory);
1087   Node* i_o  = alloc->in(TypeFunc::I_O);
1088   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1089   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1090   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1091 
1092   assert(ctrl != NULL, "must have control");
1093   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1094   // they will not be used if "always_slow" is set
1095   enum { slow_result_path = 1, fast_result_path = 2 };
1096   Node *result_region;
1097   Node *result_phi_rawmem;
1098   Node *result_phi_rawoop;
1099   Node *result_phi_i_o;
1100 
1101   // The initial slow comparison is a size check, the comparison
1102   // we want to do is a BoolTest::gt
1103   bool always_slow = false;
1104   int tv = _igvn.find_int_con(initial_slow_test, -1);
1105   if (tv >= 0) {
1106     always_slow = (tv == 1);
1107     initial_slow_test = NULL;
1108   } else {
1109     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1110   }
1111 
1112   if (C->env()->dtrace_alloc_probes() ||
1113       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1114                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
1115     // Force slow-path allocation
1116     always_slow = true;
1117     initial_slow_test = NULL;
1118   }
1119 
1120 
1121   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1122   Node *slow_region = NULL;
1123   Node *toobig_false = ctrl;
1124 
1125   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1126   // generate the initial test if necessary
1127   if (initial_slow_test != NULL ) {
1128     slow_region = new (C, 3) RegionNode(3);
1129 
1130     // Now make the initial failure test.  Usually a too-big test but
1131     // might be a TRUE for finalizers or a fancy class check for
1132     // newInstance0.
1133     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1134     transform_later(toobig_iff);
1135     // Plug the failing-too-big test into the slow-path region
1136     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1137     transform_later(toobig_true);
1138     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1139     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1140     transform_later(toobig_false);
1141   } else {         // No initial test, just fall into next case
1142     toobig_false = ctrl;
1143     debug_only(slow_region = NodeSentinel);
1144   }
1145 
1146   Node *slow_mem = mem;  // save the current memory state for slow path
1147   // generate the fast allocation code unless we know that the initial test will always go slow
1148   if (!always_slow) {
1149     // Fast path modifies only raw memory.
1150     if (mem->is_MergeMem()) {
1151       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1152     }
1153 
1154     Node* eden_top_adr;
1155     Node* eden_end_adr;
1156 
1157     set_eden_pointers(eden_top_adr, eden_end_adr);
1158 
1159     // Load Eden::end.  Loop invariant and hoisted.
1160     //
1161     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1162     //       a TLAB to work around a bug where these values were being moved across
1163     //       a safepoint.  These are not oops, so they cannot be include in the oop
1164     //       map, but they can be changed by a GC.   The proper way to fix this would
1165     //       be to set the raw memory state when generating a  SafepointNode.  However
1166     //       this will require extensive changes to the loop optimization in order to
1167     //       prevent a degradation of the optimization.
1168     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1169     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1170 
1171     // allocate the Region and Phi nodes for the result
1172     result_region = new (C, 3) RegionNode(3);
1173     result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1174     result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
1175     result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1176 
1177     // We need a Region for the loop-back contended case.
1178     enum { fall_in_path = 1, contended_loopback_path = 2 };
1179     Node *contended_region;
1180     Node *contended_phi_rawmem;
1181     if (UseTLAB) {
1182       contended_region = toobig_false;
1183       contended_phi_rawmem = mem;
1184     } else {
1185       contended_region = new (C, 3) RegionNode(3);
1186       contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1187       // Now handle the passing-too-big test.  We fall into the contended
1188       // loop-back merge point.
1189       contended_region    ->init_req(fall_in_path, toobig_false);
1190       contended_phi_rawmem->init_req(fall_in_path, mem);
1191       transform_later(contended_region);
1192       transform_later(contended_phi_rawmem);
1193     }
1194 
1195     // Load(-locked) the heap top.
1196     // See note above concerning the control input when using a TLAB
1197     Node *old_eden_top = UseTLAB
1198       ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
1199       : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
1200 
1201     transform_later(old_eden_top);
1202     // Add to heap top to get a new heap top
1203     Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
1204     transform_later(new_eden_top);
1205     // Check for needing a GC; compare against heap end
1206     Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
1207     transform_later(needgc_cmp);
1208     Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
1209     transform_later(needgc_bol);
1210     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1211     transform_later(needgc_iff);
1212 
1213     // Plug the failing-heap-space-need-gc test into the slow-path region
1214     Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
1215     transform_later(needgc_true);
1216     if (initial_slow_test) {
1217       slow_region->init_req(need_gc_path, needgc_true);
1218       // This completes all paths into the slow merge point
1219       transform_later(slow_region);
1220     } else {                      // No initial slow path needed!
1221       // Just fall from the need-GC path straight into the VM call.
1222       slow_region = needgc_true;
1223     }
1224     // No need for a GC.  Setup for the Store-Conditional
1225     Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
1226     transform_later(needgc_false);
1227 
1228     // Grab regular I/O before optional prefetch may change it.
1229     // Slow-path does no I/O so just set it to the original I/O.
1230     result_phi_i_o->init_req(slow_result_path, i_o);
1231 
1232     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1233                               old_eden_top, new_eden_top, length);
1234 
1235     // Name successful fast-path variables
1236     Node* fast_oop = old_eden_top;
1237     Node* fast_oop_ctrl;
1238     Node* fast_oop_rawmem;
1239 
1240     // Store (-conditional) the modified eden top back down.
1241     // StorePConditional produces flags for a test PLUS a modified raw
1242     // memory state.
1243     if (UseTLAB) {
1244       Node* store_eden_top =
1245         new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1246                               TypeRawPtr::BOTTOM, new_eden_top);
1247       transform_later(store_eden_top);
1248       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1249       fast_oop_rawmem = store_eden_top;
1250     } else {
1251       Node* store_eden_top =
1252         new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1253                                          new_eden_top, fast_oop/*old_eden_top*/);
1254       transform_later(store_eden_top);
1255       Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
1256       transform_later(contention_check);
1257       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1258       transform_later(store_eden_top);
1259 
1260       // If not using TLABs, check to see if there was contention.
1261       IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1262       transform_later(contention_iff);
1263       Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
1264       transform_later(contention_true);
1265       // If contention, loopback and try again.
1266       contended_region->init_req(contended_loopback_path, contention_true);
1267       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1268 
1269       // Fast-path succeeded with no contention!
1270       Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
1271       transform_later(contention_false);
1272       fast_oop_ctrl = contention_false;
1273 
1274       // Bump total allocated bytes for this thread
1275       Node* thread = new (C, 1) ThreadLocalNode();
1276       transform_later(thread);
1277       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1278                                              in_bytes(JavaThread::allocated_bytes_offset()));
1279       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1280                                     0, TypeLong::LONG, T_LONG);
1281 #ifdef _LP64
1282       Node* alloc_size = size_in_bytes;
1283 #else
1284       Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
1285       transform_later(alloc_size);
1286 #endif
1287       Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
1288       transform_later(new_alloc_bytes);
1289       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1290                                    0, new_alloc_bytes, T_LONG);
1291     }
1292 
1293     fast_oop_rawmem = initialize_object(alloc,
1294                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1295                                         klass_node, length, size_in_bytes);
1296 
1297     if (C->env()->dtrace_extended_probes()) {
1298       // Slow-path call
1299       int size = TypeFunc::Parms + 2;
1300       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1301                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1302                                                       "dtrace_object_alloc",
1303                                                       TypeRawPtr::BOTTOM);
1304 
1305       // Get base of thread-local storage area
1306       Node* thread = new (C, 1) ThreadLocalNode();
1307       transform_later(thread);
1308 
1309       call->init_req(TypeFunc::Parms+0, thread);
1310       call->init_req(TypeFunc::Parms+1, fast_oop);
1311       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1312       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1313       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1314       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1315       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1316       transform_later(call);
1317       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1318       transform_later(fast_oop_ctrl);
1319       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1320       transform_later(fast_oop_rawmem);
1321     }
1322 
1323     // Plug in the successful fast-path into the result merge point
1324     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1325     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1326     result_phi_i_o   ->init_req(fast_result_path, i_o);
1327     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1328   } else {
1329     slow_region = ctrl;
1330   }
1331 
1332   // Generate slow-path call
1333   CallNode *call = new (C, slow_call_type->domain()->cnt())
1334     CallStaticJavaNode(slow_call_type, slow_call_address,
1335                        OptoRuntime::stub_name(slow_call_address),
1336                        alloc->jvms()->bci(),
1337                        TypePtr::BOTTOM);
1338   call->init_req( TypeFunc::Control, slow_region );
1339   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1340   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1341   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1342   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1343 
1344   call->init_req(TypeFunc::Parms+0, klass_node);
1345   if (length != NULL) {
1346     call->init_req(TypeFunc::Parms+1, length);
1347   }
1348 
1349   // Copy debug information and adjust JVMState information, then replace
1350   // allocate node with the call
1351   copy_call_debug_info((CallNode *) alloc,  call);
1352   if (!always_slow) {
1353     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1354   }
1355   _igvn.replace_node(alloc, call);
1356   transform_later(call);
1357 
1358   // Identify the output projections from the allocate node and
1359   // adjust any references to them.
1360   // The control and io projections look like:
1361   //
1362   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1363   //  Allocate                   Catch
1364   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1365   //
1366   //  We are interested in the CatchProj nodes.
1367   //
1368   extract_call_projections(call);
1369 
1370   // An allocate node has separate memory projections for the uses on the control and i_o paths
1371   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
1372   if (!always_slow && _memproj_fallthrough != NULL) {
1373     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1374       Node *use = _memproj_fallthrough->fast_out(i);
1375       _igvn.hash_delete(use);
1376       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1377       _igvn._worklist.push(use);
1378       // back up iterator
1379       --i;
1380     }
1381   }
1382   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
1383   // we end up with a call that has only 1 memory projection
1384   if (_memproj_catchall != NULL ) {
1385     if (_memproj_fallthrough == NULL) {
1386       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1387       transform_later(_memproj_fallthrough);
1388     }
1389     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1390       Node *use = _memproj_catchall->fast_out(i);
1391       _igvn.hash_delete(use);
1392       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1393       _igvn._worklist.push(use);
1394       // back up iterator
1395       --i;
1396     }
1397   }
1398 
1399   // An allocate node has separate i_o projections for the uses on the control and i_o paths
1400   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
1401   if (_ioproj_fallthrough == NULL) {
1402     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1403     transform_later(_ioproj_fallthrough);
1404   } else if (!always_slow) {
1405     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1406       Node *use = _ioproj_fallthrough->fast_out(i);
1407 
1408       _igvn.hash_delete(use);
1409       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1410       _igvn._worklist.push(use);
1411       // back up iterator
1412       --i;
1413     }
1414   }
1415   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
1416   // we end up with a call that has only 1 control projection
1417   if (_ioproj_catchall != NULL ) {
1418     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1419       Node *use = _ioproj_catchall->fast_out(i);
1420       _igvn.hash_delete(use);
1421       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1422       _igvn._worklist.push(use);
1423       // back up iterator
1424       --i;
1425     }
1426   }
1427 
1428   // if we generated only a slow call, we are done
1429   if (always_slow)
1430     return;
1431 
1432 
1433   if (_fallthroughcatchproj != NULL) {
1434     ctrl = _fallthroughcatchproj->clone();
1435     transform_later(ctrl);
1436     _igvn.replace_node(_fallthroughcatchproj, result_region);
1437   } else {
1438     ctrl = top();
1439   }
1440   Node *slow_result;
1441   if (_resproj == NULL) {
1442     // no uses of the allocation result
1443     slow_result = top();
1444   } else {
1445     slow_result = _resproj->clone();
1446     transform_later(slow_result);
1447     _igvn.replace_node(_resproj, result_phi_rawoop);
1448   }
1449 
1450   // Plug slow-path into result merge point
1451   result_region    ->init_req( slow_result_path, ctrl );
1452   result_phi_rawoop->init_req( slow_result_path, slow_result);
1453   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1454   transform_later(result_region);
1455   transform_later(result_phi_rawoop);
1456   transform_later(result_phi_rawmem);
1457   transform_later(result_phi_i_o);
1458   // This completes all paths into the result merge point
1459 }
1460 
1461 
1462 // Helper for PhaseMacroExpand::expand_allocate_common.
1463 // Initializes the newly-allocated storage.
1464 Node*
1465 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1466                                     Node* control, Node* rawmem, Node* object,
1467                                     Node* klass_node, Node* length,
1468                                     Node* size_in_bytes) {
1469   InitializeNode* init = alloc->initialization();
1470   // Store the klass & mark bits
1471   Node* mark_node = NULL;
1472   // For now only enable fast locking for non-array types
1473   if (UseBiasedLocking && (length == NULL)) {
1474     mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
1475   } else {
1476     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1477   }
1478   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1479 
1480   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1481   int header_size = alloc->minimum_header_size();  // conservatively small
1482 
1483   // Array length
1484   if (length != NULL) {         // Arrays need length field
1485     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1486     // conservatively small header size:
1487     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1488     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1489     if (k->is_array_klass())    // we know the exact header size in most cases:
1490       header_size = Klass::layout_helper_header_size(k->layout_helper());
1491   }
1492 
1493   // Clear the object body, if necessary.
1494   if (init == NULL) {
1495     // The init has somehow disappeared; be cautious and clear everything.
1496     //
1497     // This can happen if a node is allocated but an uncommon trap occurs
1498     // immediately.  In this case, the Initialize gets associated with the
1499     // trap, and may be placed in a different (outer) loop, if the Allocate
1500     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1501     // there can be two Allocates to one Initialize.  The answer in all these
1502     // edge cases is safety first.  It is always safe to clear immediately
1503     // within an Allocate, and then (maybe or maybe not) clear some more later.
1504     if (!ZeroTLAB)
1505       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1506                                             header_size, size_in_bytes,
1507                                             &_igvn);
1508   } else {
1509     if (!init->is_complete()) {
1510       // Try to win by zeroing only what the init does not store.
1511       // We can also try to do some peephole optimizations,
1512       // such as combining some adjacent subword stores.
1513       rawmem = init->complete_stores(control, rawmem, object,
1514                                      header_size, size_in_bytes, &_igvn);
1515     }
1516     // We have no more use for this link, since the AllocateNode goes away:
1517     init->set_req(InitializeNode::RawAddress, top());
1518     // (If we keep the link, it just confuses the register allocator,
1519     // who thinks he sees a real use of the address by the membar.)
1520   }
1521 
1522   return rawmem;
1523 }
1524 
1525 // Generate prefetch instructions for next allocations.
1526 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1527                                         Node*& contended_phi_rawmem,
1528                                         Node* old_eden_top, Node* new_eden_top,
1529                                         Node* length) {
1530    enum { fall_in_path = 1, pf_path = 2 };
1531    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1532       // Generate prefetch allocation with watermark check.
1533       // As an allocation hits the watermark, we will prefetch starting
1534       // at a "distance" away from watermark.
1535 
1536       Node *pf_region = new (C, 3) RegionNode(3);
1537       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1538                                                 TypeRawPtr::BOTTOM );
1539       // I/O is used for Prefetch
1540       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1541 
1542       Node *thread = new (C, 1) ThreadLocalNode();
1543       transform_later(thread);
1544 
1545       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1546                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1547       transform_later(eden_pf_adr);
1548 
1549       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1550                                    contended_phi_rawmem, eden_pf_adr,
1551                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1552       transform_later(old_pf_wm);
1553 
1554       // check against new_eden_top
1555       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1556       transform_later(need_pf_cmp);
1557       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1558       transform_later(need_pf_bol);
1559       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1560                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1561       transform_later(need_pf_iff);
1562 
1563       // true node, add prefetchdistance
1564       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1565       transform_later(need_pf_true);
1566 
1567       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1568       transform_later(need_pf_false);
1569 
1570       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1571                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1572       transform_later(new_pf_wmt );
1573       new_pf_wmt->set_req(0, need_pf_true);
1574 
1575       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1576                                        contended_phi_rawmem, eden_pf_adr,
1577                                        TypeRawPtr::BOTTOM, new_pf_wmt );
1578       transform_later(store_new_wmt);
1579 
1580       // adding prefetches
1581       pf_phi_abio->init_req( fall_in_path, i_o );
1582 
1583       Node *prefetch_adr;
1584       Node *prefetch;
1585       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1586       uint step_size = AllocatePrefetchStepSize;
1587       uint distance = 0;
1588 
1589       for ( uint i = 0; i < lines; i++ ) {
1590         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1591                                             _igvn.MakeConX(distance) );
1592         transform_later(prefetch_adr);
1593         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1594         transform_later(prefetch);
1595         distance += step_size;
1596         i_o = prefetch;
1597       }
1598       pf_phi_abio->set_req( pf_path, i_o );
1599 
1600       pf_region->init_req( fall_in_path, need_pf_false );
1601       pf_region->init_req( pf_path, need_pf_true );
1602 
1603       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1604       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1605 
1606       transform_later(pf_region);
1607       transform_later(pf_phi_rawmem);
1608       transform_later(pf_phi_abio);
1609 
1610       needgc_false = pf_region;
1611       contended_phi_rawmem = pf_phi_rawmem;
1612       i_o = pf_phi_abio;
1613    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1614       // Insert a prefetch for each allocation only on the fast-path
1615       Node *pf_region = new (C, 3) RegionNode(3);
1616       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1617                                                 TypeRawPtr::BOTTOM );
1618 
1619       // Generate several prefetch instructions only for arrays.
1620       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1621       uint step_size = AllocatePrefetchStepSize;
1622       uint distance = AllocatePrefetchDistance;
1623 
1624       // Next cache address.
1625       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
1626                                             _igvn.MakeConX(distance));
1627       transform_later(cache_adr);
1628       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
1629       transform_later(cache_adr);
1630       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1631       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
1632       transform_later(cache_adr);
1633       cache_adr = new (C, 2) CastX2PNode(cache_adr);
1634       transform_later(cache_adr);
1635 
1636       // Prefetch
1637       Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
1638       prefetch->set_req(0, needgc_false);
1639       transform_later(prefetch);
1640       contended_phi_rawmem = prefetch;
1641       Node *prefetch_adr;
1642       distance = step_size;
1643       for ( uint i = 1; i < lines; i++ ) {
1644         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
1645                                             _igvn.MakeConX(distance) );
1646         transform_later(prefetch_adr);
1647         prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
1648         transform_later(prefetch);
1649         distance += step_size;
1650         contended_phi_rawmem = prefetch;
1651       }
1652    } else if( AllocatePrefetchStyle > 0 ) {
1653       // Insert a prefetch for each allocation only on the fast-path
1654       Node *prefetch_adr;
1655       Node *prefetch;
1656       // Generate several prefetch instructions only for arrays.
1657       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1658       uint step_size = AllocatePrefetchStepSize;
1659       uint distance = AllocatePrefetchDistance;
1660       for ( uint i = 0; i < lines; i++ ) {
1661         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1662                                             _igvn.MakeConX(distance) );
1663         transform_later(prefetch_adr);
1664         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1665         // Do not let it float too high, since if eden_top == eden_end,
1666         // both might be null.
1667         if( i == 0 ) { // Set control for first prefetch, next follows it
1668           prefetch->init_req(0, needgc_false);
1669         }
1670         transform_later(prefetch);
1671         distance += step_size;
1672         i_o = prefetch;
1673       }
1674    }
1675    return i_o;
1676 }
1677 
1678 
1679 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1680   expand_allocate_common(alloc, NULL,
1681                          OptoRuntime::new_instance_Type(),
1682                          OptoRuntime::new_instance_Java());
1683 }
1684 
1685 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1686   Node* length = alloc->in(AllocateNode::ALength);
1687   expand_allocate_common(alloc, length,
1688                          OptoRuntime::new_array_Type(),
1689                          OptoRuntime::new_array_Java());
1690 }
1691 
1692 //-----------------------mark_eliminated_locking_nodes-----------------------
1693 // During EA obj may point to several objects but after few ideal graph
1694 // transformations (CCP) it may point to only one non escaping object
1695 // (but still using phi), corresponding locks and unlocks will be marked
1696 // for elimination. Later obj could be replaced with a new node (new phi)
1697 // and which does not have escape information. And later after some graph
1698 // reshape other locks and unlocks (which were not marked for elimination
1699 // before) are connected to this new obj (phi) but they still will not be
1700 // marked for elimination since new obj has no escape information.
1701 // Mark all associated (same box and obj) lock and unlock nodes for
1702 // elimination if some of them marked already.
1703 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
1704   if (!alock->is_eliminated()) {
1705     return;
1706   }
1707   if (!alock->is_coarsened()) { // Eliminated by EA
1708       // Create new "eliminated" BoxLock node and use it
1709       // in monitor debug info for the same object.
1710       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1711       Node* obj = alock->obj_node();
1712       if (!oldbox->is_eliminated()) {
1713         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1714         // Note: BoxLock node is marked eliminated only here
1715         // and it is used to indicate that all associated lock
1716         // and unlock nodes are marked for elimination.
1717         newbox->set_eliminated();
1718         transform_later(newbox);
1719         // Replace old box node with new box for all users
1720         // of the same object.
1721         for (uint i = 0; i < oldbox->outcnt();) {
1722 
1723           bool next_edge = true;
1724           Node* u = oldbox->raw_out(i);
1725           if (u->is_AbstractLock() &&
1726               u->as_AbstractLock()->obj_node() == obj &&
1727               u->as_AbstractLock()->box_node() == oldbox) {
1728             // Mark all associated locks and unlocks.
1729             u->as_AbstractLock()->set_eliminated();
1730             _igvn.hash_delete(u);
1731             u->set_req(TypeFunc::Parms + 1, newbox);
1732             next_edge = false;
1733           }
1734           // Replace old box in monitor debug info.
1735           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1736             SafePointNode* sfn = u->as_SafePoint();
1737             JVMState* youngest_jvms = sfn->jvms();
1738             int max_depth = youngest_jvms->depth();
1739             for (int depth = 1; depth <= max_depth; depth++) {
1740               JVMState* jvms = youngest_jvms->of_depth(depth);
1741               int num_mon  = jvms->nof_monitors();
1742               // Loop over monitors
1743               for (int idx = 0; idx < num_mon; idx++) {
1744                 Node* obj_node = sfn->monitor_obj(jvms, idx);
1745                 Node* box_node = sfn->monitor_box(jvms, idx);
1746                 if (box_node == oldbox && obj_node == obj) {
1747                   int j = jvms->monitor_box_offset(idx);
1748                   _igvn.hash_delete(u);
1749                   u->set_req(j, newbox);
1750                   next_edge = false;
1751                 }
1752               } // for (int idx = 0;
1753             } // for (int depth = 1;
1754           } // if (u->is_SafePoint()
1755           if (next_edge) i++;
1756         } // for (uint i = 0; i < oldbox->outcnt();)
1757       } // if (!oldbox->is_eliminated())
1758   } // if (!alock->is_coarsened())
1759 }
1760 
1761 // we have determined that this lock/unlock can be eliminated, we simply
1762 // eliminate the node without expanding it.
1763 //
1764 // Note:  The membar's associated with the lock/unlock are currently not
1765 //        eliminated.  This should be investigated as a future enhancement.
1766 //
1767 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1768 
1769   if (!alock->is_eliminated()) {
1770     return false;
1771   }
1772 #ifdef ASSERT
1773   if (alock->is_Lock() && !alock->is_coarsened()) {
1774     // Check that new "eliminated" BoxLock node is created.
1775     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1776     assert(oldbox->is_eliminated(), "should be done already");
1777   }
1778 #endif
1779   CompileLog* log = C->log();
1780   if (log != NULL) {
1781     log->head("eliminate_lock lock='%d'",
1782               alock->is_Lock());
1783     JVMState* p = alock->jvms();
1784     while (p != NULL) {
1785       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1786       p = p->caller();
1787     }
1788     log->tail("eliminate_lock");
1789   }
1790 
1791   #ifndef PRODUCT
1792   if (PrintEliminateLocks) {
1793     if (alock->is_Lock()) {
1794       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
1795     } else {
1796       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
1797     }
1798   }
1799   #endif
1800 
1801   Node* mem  = alock->in(TypeFunc::Memory);
1802   Node* ctrl = alock->in(TypeFunc::Control);
1803 
1804   extract_call_projections(alock);
1805   // There are 2 projections from the lock.  The lock node will
1806   // be deleted when its last use is subsumed below.
1807   assert(alock->outcnt() == 2 &&
1808          _fallthroughproj != NULL &&
1809          _memproj_fallthrough != NULL,
1810          "Unexpected projections from Lock/Unlock");
1811 
1812   Node* fallthroughproj = _fallthroughproj;
1813   Node* memproj_fallthrough = _memproj_fallthrough;
1814 
1815   // The memory projection from a lock/unlock is RawMem
1816   // The input to a Lock is merged memory, so extract its RawMem input
1817   // (unless the MergeMem has been optimized away.)
1818   if (alock->is_Lock()) {
1819     // Seach for MemBarAcquire node and delete it also.
1820     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1821     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
1822     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1823     Node* memproj = membar->proj_out(TypeFunc::Memory);
1824     _igvn.replace_node(ctrlproj, fallthroughproj);
1825     _igvn.replace_node(memproj, memproj_fallthrough);
1826 
1827     // Delete FastLock node also if this Lock node is unique user
1828     // (a loop peeling may clone a Lock node).
1829     Node* flock = alock->as_Lock()->fastlock_node();
1830     if (flock->outcnt() == 1) {
1831       assert(flock->unique_out() == alock, "sanity");
1832       _igvn.replace_node(flock, top());
1833     }
1834   }
1835 
1836   // Seach for MemBarRelease node and delete it also.
1837   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1838       ctrl->in(0)->is_MemBar()) {
1839     MemBarNode* membar = ctrl->in(0)->as_MemBar();
1840     assert(membar->Opcode() == Op_MemBarRelease &&
1841            mem->is_Proj() && membar == mem->in(0), "");
1842     _igvn.replace_node(fallthroughproj, ctrl);
1843     _igvn.replace_node(memproj_fallthrough, mem);
1844     fallthroughproj = ctrl;
1845     memproj_fallthrough = mem;
1846     ctrl = membar->in(TypeFunc::Control);
1847     mem  = membar->in(TypeFunc::Memory);
1848   }
1849 
1850   _igvn.replace_node(fallthroughproj, ctrl);
1851   _igvn.replace_node(memproj_fallthrough, mem);
1852   return true;
1853 }
1854 
1855 
1856 //------------------------------expand_lock_node----------------------
1857 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1858 
1859   Node* ctrl = lock->in(TypeFunc::Control);
1860   Node* mem = lock->in(TypeFunc::Memory);
1861   Node* obj = lock->obj_node();
1862   Node* box = lock->box_node();
1863   Node* flock = lock->fastlock_node();
1864 
1865   // Make the merge point
1866   Node *region;
1867   Node *mem_phi;
1868   Node *slow_path;
1869 
1870   if (UseOptoBiasInlining) {
1871     /*
1872      *  See the full description in MacroAssembler::biased_locking_enter().
1873      *
1874      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1875      *    // The object is biased.
1876      *    proto_node = klass->prototype_header;
1877      *    o_node = thread | proto_node;
1878      *    x_node = o_node ^ mark_word;
1879      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1880      *      // Done.
1881      *    } else {
1882      *      if( (x_node & biased_lock_mask) != 0 ) {
1883      *        // The klass's prototype header is no longer biased.
1884      *        cas(&mark_word, mark_word, proto_node)
1885      *        goto cas_lock;
1886      *      } else {
1887      *        // The klass's prototype header is still biased.
1888      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1889      *          old = mark_word;
1890      *          new = o_node;
1891      *        } else {
1892      *          // Different thread or anonymous biased.
1893      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1894      *          new = thread | old;
1895      *        }
1896      *        // Try to rebias.
1897      *        if( cas(&mark_word, old, new) == 0 ) {
1898      *          // Done.
1899      *        } else {
1900      *          goto slow_path; // Failed.
1901      *        }
1902      *      }
1903      *    }
1904      *  } else {
1905      *    // The object is not biased.
1906      *    cas_lock:
1907      *    if( FastLock(obj) == 0 ) {
1908      *      // Done.
1909      *    } else {
1910      *      slow_path:
1911      *      OptoRuntime::complete_monitor_locking_Java(obj);
1912      *    }
1913      *  }
1914      */
1915 
1916     region  = new (C, 5) RegionNode(5);
1917     // create a Phi for the memory state
1918     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1919 
1920     Node* fast_lock_region  = new (C, 3) RegionNode(3);
1921     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1922 
1923     // First, check mark word for the biased lock pattern.
1924     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1925 
1926     // Get fast path - mark word has the biased lock pattern.
1927     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
1928                          markOopDesc::biased_lock_mask_in_place,
1929                          markOopDesc::biased_lock_pattern, true);
1930     // fast_lock_region->in(1) is set to slow path.
1931     fast_lock_mem_phi->init_req(1, mem);
1932 
1933     // Now check that the lock is biased to the current thread and has
1934     // the same epoch and bias as Klass::_prototype_header.
1935 
1936     // Special-case a fresh allocation to avoid building nodes:
1937     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
1938     if (klass_node == NULL) {
1939       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1940       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
1941 #ifdef _LP64
1942       if (UseCompressedOops && klass_node->is_DecodeN()) {
1943         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
1944         klass_node->in(1)->init_req(0, ctrl);
1945       } else
1946 #endif
1947       klass_node->init_req(0, ctrl);
1948     }
1949     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
1950 
1951     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
1952     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1953     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
1954     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
1955 
1956     // Get slow path - mark word does NOT match the value.
1957     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
1958                                       (~markOopDesc::age_mask_in_place), 0);
1959     // region->in(3) is set to fast path - the object is biased to the current thread.
1960     mem_phi->init_req(3, mem);
1961 
1962 
1963     // Mark word does NOT match the value (thread | Klass::_prototype_header).
1964 
1965 
1966     // First, check biased pattern.
1967     // Get fast path - _prototype_header has the same biased lock pattern.
1968     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
1969                           markOopDesc::biased_lock_mask_in_place, 0, true);
1970 
1971     not_biased_ctrl = fast_lock_region->in(2); // Slow path
1972     // fast_lock_region->in(2) - the prototype header is no longer biased
1973     // and we have to revoke the bias on this object.
1974     // We are going to try to reset the mark of this object to the prototype
1975     // value and fall through to the CAS-based locking scheme.
1976     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1977     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
1978                                                  proto_node, mark_node);
1979     transform_later(cas);
1980     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
1981     fast_lock_mem_phi->init_req(2, proj);
1982 
1983 
1984     // Second, check epoch bits.
1985     Node* rebiased_region  = new (C, 3) RegionNode(3);
1986     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1987     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1988 
1989     // Get slow path - mark word does NOT match epoch bits.
1990     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
1991                                       markOopDesc::epoch_mask_in_place, 0);
1992     // The epoch of the current bias is not valid, attempt to rebias the object
1993     // toward the current thread.
1994     rebiased_region->init_req(2, epoch_ctrl);
1995     old_phi->init_req(2, mark_node);
1996     new_phi->init_req(2, o_node);
1997 
1998     // rebiased_region->in(1) is set to fast path.
1999     // The epoch of the current bias is still valid but we know
2000     // nothing about the owner; it might be set or it might be clear.
2001     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2002                              markOopDesc::age_mask_in_place |
2003                              markOopDesc::epoch_mask_in_place);
2004     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
2005     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
2006     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
2007     old_phi->init_req(1, old);
2008     new_phi->init_req(1, new_mark);
2009 
2010     transform_later(rebiased_region);
2011     transform_later(old_phi);
2012     transform_later(new_phi);
2013 
2014     // Try to acquire the bias of the object using an atomic operation.
2015     // If this fails we will go in to the runtime to revoke the object's bias.
2016     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
2017                                            new_phi, old_phi);
2018     transform_later(cas);
2019     proj = transform_later( new (C, 1) SCMemProjNode(cas));
2020 
2021     // Get slow path - Failed to CAS.
2022     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2023     mem_phi->init_req(4, proj);
2024     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2025 
2026     // Failed to CAS.
2027     slow_path  = new (C, 3) RegionNode(3);
2028     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2029 
2030     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2031     slow_mem->init_req(1, proj);
2032 
2033     // Call CAS-based locking scheme (FastLock node).
2034 
2035     transform_later(fast_lock_region);
2036     transform_later(fast_lock_mem_phi);
2037 
2038     // Get slow path - FastLock failed to lock the object.
2039     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2040     mem_phi->init_req(2, fast_lock_mem_phi);
2041     // region->in(2) is set to fast path - the object is locked to the current thread.
2042 
2043     slow_path->init_req(2, ctrl); // Capture slow-control
2044     slow_mem->init_req(2, fast_lock_mem_phi);
2045 
2046     transform_later(slow_path);
2047     transform_later(slow_mem);
2048     // Reset lock's memory edge.
2049     lock->set_req(TypeFunc::Memory, slow_mem);
2050 
2051   } else {
2052     region  = new (C, 3) RegionNode(3);
2053     // create a Phi for the memory state
2054     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2055 
2056     // Optimize test; set region slot 2
2057     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2058     mem_phi->init_req(2, mem);
2059   }
2060 
2061   // Make slow path call
2062   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2063 
2064   extract_call_projections(call);
2065 
2066   // Slow path can only throw asynchronous exceptions, which are always
2067   // de-opted.  So the compiler thinks the slow-call can never throw an
2068   // exception.  If it DOES throw an exception we would need the debug
2069   // info removed first (since if it throws there is no monitor).
2070   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2071            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2072 
2073   // Capture slow path
2074   // disconnect fall-through projection from call and create a new one
2075   // hook up users of fall-through projection to region
2076   Node *slow_ctrl = _fallthroughproj->clone();
2077   transform_later(slow_ctrl);
2078   _igvn.hash_delete(_fallthroughproj);
2079   _fallthroughproj->disconnect_inputs(NULL);
2080   region->init_req(1, slow_ctrl);
2081   // region inputs are now complete
2082   transform_later(region);
2083   _igvn.replace_node(_fallthroughproj, region);
2084 
2085   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2086   mem_phi->init_req(1, memproj );
2087   transform_later(mem_phi);
2088   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2089 }
2090 
2091 //------------------------------expand_unlock_node----------------------
2092 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2093 
2094   Node* ctrl = unlock->in(TypeFunc::Control);
2095   Node* mem = unlock->in(TypeFunc::Memory);
2096   Node* obj = unlock->obj_node();
2097   Node* box = unlock->box_node();
2098 
2099   // No need for a null check on unlock
2100 
2101   // Make the merge point
2102   Node *region;
2103   Node *mem_phi;
2104 
2105   if (UseOptoBiasInlining) {
2106     // Check for biased locking unlock case, which is a no-op.
2107     // See the full description in MacroAssembler::biased_locking_exit().
2108     region  = new (C, 4) RegionNode(4);
2109     // create a Phi for the memory state
2110     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2111     mem_phi->init_req(3, mem);
2112 
2113     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2114     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2115                          markOopDesc::biased_lock_mask_in_place,
2116                          markOopDesc::biased_lock_pattern);
2117   } else {
2118     region  = new (C, 3) RegionNode(3);
2119     // create a Phi for the memory state
2120     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2121   }
2122 
2123   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
2124   funlock = transform_later( funlock )->as_FastUnlock();
2125   // Optimize test; set region slot 2
2126   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2127 
2128   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2129 
2130   extract_call_projections(call);
2131 
2132   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2133            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2134 
2135   // No exceptions for unlocking
2136   // Capture slow path
2137   // disconnect fall-through projection from call and create a new one
2138   // hook up users of fall-through projection to region
2139   Node *slow_ctrl = _fallthroughproj->clone();
2140   transform_later(slow_ctrl);
2141   _igvn.hash_delete(_fallthroughproj);
2142   _fallthroughproj->disconnect_inputs(NULL);
2143   region->init_req(1, slow_ctrl);
2144   // region inputs are now complete
2145   transform_later(region);
2146   _igvn.replace_node(_fallthroughproj, region);
2147 
2148   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2149   mem_phi->init_req(1, memproj );
2150   mem_phi->init_req(2, mem);
2151   transform_later(mem_phi);
2152   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2153 }
2154 
2155 //------------------------------expand_macro_nodes----------------------
2156 //  Returns true if a failure occurred.
2157 bool PhaseMacroExpand::expand_macro_nodes() {
2158   if (C->macro_count() == 0)
2159     return false;
2160   // First, attempt to eliminate locks
2161   int cnt = C->macro_count();
2162   for (int i=0; i < cnt; i++) {
2163     Node *n = C->macro_node(i);
2164     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2165       // Before elimination mark all associated (same box and obj)
2166       // lock and unlock nodes.
2167       mark_eliminated_locking_nodes(n->as_AbstractLock());
2168     }
2169   }
2170   bool progress = true;
2171   while (progress) {
2172     progress = false;
2173     for (int i = C->macro_count(); i > 0; i--) {
2174       Node * n = C->macro_node(i-1);
2175       bool success = false;
2176       debug_only(int old_macro_count = C->macro_count(););
2177       if (n->is_AbstractLock()) {
2178         success = eliminate_locking_node(n->as_AbstractLock());
2179       } else if (n->Opcode() == Op_LoopLimit) {
2180         // Remove it from macro list and put on IGVN worklist to optimize.
2181         C->remove_macro_node(n);
2182         _igvn._worklist.push(n);
2183         success = true;
2184       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2185         _igvn.replace_node(n, n->in(1));
2186         success = true;
2187       }
2188       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2189       progress = progress || success;
2190     }
2191   }
2192   // Next, attempt to eliminate allocations
2193   progress = true;
2194   while (progress) {
2195     progress = false;
2196     for (int i = C->macro_count(); i > 0; i--) {
2197       Node * n = C->macro_node(i-1);
2198       bool success = false;
2199       debug_only(int old_macro_count = C->macro_count(););
2200       switch (n->class_id()) {
2201       case Node::Class_Allocate:
2202       case Node::Class_AllocateArray:
2203         success = eliminate_allocate_node(n->as_Allocate());
2204         break;
2205       case Node::Class_Lock:
2206       case Node::Class_Unlock:
2207         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2208         break;
2209       default:
2210         assert(false, "unknown node type in macro list");
2211       }
2212       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2213       progress = progress || success;
2214     }
2215   }
2216   // Make sure expansion will not cause node limit to be exceeded.
2217   // Worst case is a macro node gets expanded into about 50 nodes.
2218   // Allow 50% more for optimization.
2219   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2220     return true;
2221 
2222   // expand "macro" nodes
2223   // nodes are removed from the macro list as they are processed
2224   while (C->macro_count() > 0) {
2225     int macro_count = C->macro_count();
2226     Node * n = C->macro_node(macro_count-1);
2227     assert(n->is_macro(), "only macro nodes expected here");
2228     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2229       // node is unreachable, so don't try to expand it
2230       C->remove_macro_node(n);
2231       continue;
2232     }
2233     switch (n->class_id()) {
2234     case Node::Class_Allocate:
2235       expand_allocate(n->as_Allocate());
2236       break;
2237     case Node::Class_AllocateArray:
2238       expand_allocate_array(n->as_AllocateArray());
2239       break;
2240     case Node::Class_Lock:
2241       expand_lock_node(n->as_Lock());
2242       break;
2243     case Node::Class_Unlock:
2244       expand_unlock_node(n->as_Unlock());
2245       break;
2246     default:
2247       assert(false, "unknown node type in macro list");
2248     }
2249     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2250     if (C->failing())  return true;
2251   }
2252 
2253   _igvn.set_delay_transform(false);
2254   _igvn.optimize();
2255   return false;
2256 }