1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "runtime/atomic.hpp"
  39 #include "runtime/os.hpp"
  40 #ifdef TARGET_ARCH_MODEL_x86_32
  41 # include "adfiles/ad_x86_32.hpp"
  42 #endif
  43 #ifdef TARGET_ARCH_MODEL_x86_64
  44 # include "adfiles/ad_x86_64.hpp"
  45 #endif
  46 #ifdef TARGET_ARCH_MODEL_sparc
  47 # include "adfiles/ad_sparc.hpp"
  48 #endif
  49 #ifdef TARGET_ARCH_MODEL_zero
  50 # include "adfiles/ad_zero.hpp"
  51 #endif
  52 #ifdef TARGET_ARCH_MODEL_arm
  53 # include "adfiles/ad_arm.hpp"
  54 #endif
  55 #ifdef TARGET_ARCH_MODEL_ppc
  56 # include "adfiles/ad_ppc.hpp"
  57 #endif
  58 
  59 OptoReg::Name OptoReg::c_frame_pointer;
  60 
  61 
  62 
  63 const int Matcher::base2reg[Type::lastype] = {
  64   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  65   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  66   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  67   0, 0/*abio*/,
  68   Op_RegP /* Return address */, 0, /* the memories */
  69   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  70   0  /*bottom*/
  71 };
  72 
  73 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  74 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  75 RegMask Matcher::STACK_ONLY_mask;
  76 RegMask Matcher::c_frame_ptr_mask;
  77 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  78 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  79 
  80 //---------------------------Matcher-------------------------------------------
  81 Matcher::Matcher( Node_List &proj_list ) :
  82   PhaseTransform( Phase::Ins_Select ),
  83 #ifdef ASSERT
  84   _old2new_map(C->comp_arena()),
  85   _new2old_map(C->comp_arena()),
  86 #endif
  87   _shared_nodes(C->comp_arena()),
  88   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  89   _swallowed(swallowed),
  90   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  91   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  92   _must_clone(must_clone), _proj_list(proj_list),
  93   _register_save_policy(register_save_policy),
  94   _c_reg_save_policy(c_reg_save_policy),
  95   _register_save_type(register_save_type),
  96   _ruleName(ruleName),
  97   _allocation_started(false),
  98   _states_arena(Chunk::medium_size),
  99   _visited(&_states_arena),
 100   _shared(&_states_arena),
 101   _dontcare(&_states_arena) {
 102   C->set_matcher(this);
 103 
 104   idealreg2spillmask  [Op_RegI] = NULL;
 105   idealreg2spillmask  [Op_RegN] = NULL;
 106   idealreg2spillmask  [Op_RegL] = NULL;
 107   idealreg2spillmask  [Op_RegF] = NULL;
 108   idealreg2spillmask  [Op_RegD] = NULL;
 109   idealreg2spillmask  [Op_RegP] = NULL;
 110 
 111   idealreg2debugmask  [Op_RegI] = NULL;
 112   idealreg2debugmask  [Op_RegN] = NULL;
 113   idealreg2debugmask  [Op_RegL] = NULL;
 114   idealreg2debugmask  [Op_RegF] = NULL;
 115   idealreg2debugmask  [Op_RegD] = NULL;
 116   idealreg2debugmask  [Op_RegP] = NULL;
 117 
 118   idealreg2mhdebugmask[Op_RegI] = NULL;
 119   idealreg2mhdebugmask[Op_RegN] = NULL;
 120   idealreg2mhdebugmask[Op_RegL] = NULL;
 121   idealreg2mhdebugmask[Op_RegF] = NULL;
 122   idealreg2mhdebugmask[Op_RegD] = NULL;
 123   idealreg2mhdebugmask[Op_RegP] = NULL;
 124 
 125   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 126 }
 127 
 128 //------------------------------warp_incoming_stk_arg------------------------
 129 // This warps a VMReg into an OptoReg::Name
 130 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 131   OptoReg::Name warped;
 132   if( reg->is_stack() ) {  // Stack slot argument?
 133     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 134     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 135     if( warped >= _in_arg_limit )
 136       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 137     if (!RegMask::can_represent(warped)) {
 138       // the compiler cannot represent this method's calling sequence
 139       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 140       return OptoReg::Bad;
 141     }
 142     return warped;
 143   }
 144   return OptoReg::as_OptoReg(reg);
 145 }
 146 
 147 //---------------------------compute_old_SP------------------------------------
 148 OptoReg::Name Compile::compute_old_SP() {
 149   int fixed    = fixed_slots();
 150   int preserve = in_preserve_stack_slots();
 151   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 152 }
 153 
 154 
 155 
 156 #ifdef ASSERT
 157 void Matcher::verify_new_nodes_only(Node* xroot) {
 158   // Make sure that the new graph only references new nodes
 159   ResourceMark rm;
 160   Unique_Node_List worklist;
 161   VectorSet visited(Thread::current()->resource_area());
 162   worklist.push(xroot);
 163   while (worklist.size() > 0) {
 164     Node* n = worklist.pop();
 165     visited <<= n->_idx;
 166     assert(C->node_arena()->contains(n), "dead node");
 167     for (uint j = 0; j < n->req(); j++) {
 168       Node* in = n->in(j);
 169       if (in != NULL) {
 170         assert(C->node_arena()->contains(in), "dead node");
 171         if (!visited.test(in->_idx)) {
 172           worklist.push(in);
 173         }
 174       }
 175     }
 176   }
 177 }
 178 #endif
 179 
 180 
 181 //---------------------------match---------------------------------------------
 182 void Matcher::match( ) {
 183   if( MaxLabelRootDepth < 100 ) { // Too small?
 184     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 185     MaxLabelRootDepth = 100;
 186   }
 187   // One-time initialization of some register masks.
 188   init_spill_mask( C->root()->in(1) );
 189   _return_addr_mask = return_addr();
 190 #ifdef _LP64
 191   // Pointers take 2 slots in 64-bit land
 192   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 193 #endif
 194 
 195   // Map a Java-signature return type into return register-value
 196   // machine registers for 0, 1 and 2 returned values.
 197   const TypeTuple *range = C->tf()->range();
 198   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 199     // Get ideal-register return type
 200     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 201     // Get machine return register
 202     uint sop = C->start()->Opcode();
 203     OptoRegPair regs = return_value(ireg, false);
 204 
 205     // And mask for same
 206     _return_value_mask = RegMask(regs.first());
 207     if( OptoReg::is_valid(regs.second()) )
 208       _return_value_mask.Insert(regs.second());
 209   }
 210 
 211   // ---------------
 212   // Frame Layout
 213 
 214   // Need the method signature to determine the incoming argument types,
 215   // because the types determine which registers the incoming arguments are
 216   // in, and this affects the matched code.
 217   const TypeTuple *domain = C->tf()->domain();
 218   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 219   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 220   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 221   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 222   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 223   uint i;
 224   for( i = 0; i<argcnt; i++ ) {
 225     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 226   }
 227 
 228   // Pass array of ideal registers and length to USER code (from the AD file)
 229   // that will convert this to an array of register numbers.
 230   const StartNode *start = C->start();
 231   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 232 #ifdef ASSERT
 233   // Sanity check users' calling convention.  Real handy while trying to
 234   // get the initial port correct.
 235   { for (uint i = 0; i<argcnt; i++) {
 236       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 237         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 238         _parm_regs[i].set_bad();
 239         continue;
 240       }
 241       VMReg parm_reg = vm_parm_regs[i].first();
 242       assert(parm_reg->is_valid(), "invalid arg?");
 243       if (parm_reg->is_reg()) {
 244         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 245         assert(can_be_java_arg(opto_parm_reg) ||
 246                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 247                opto_parm_reg == inline_cache_reg(),
 248                "parameters in register must be preserved by runtime stubs");
 249       }
 250       for (uint j = 0; j < i; j++) {
 251         assert(parm_reg != vm_parm_regs[j].first(),
 252                "calling conv. must produce distinct regs");
 253       }
 254     }
 255   }
 256 #endif
 257 
 258   // Do some initial frame layout.
 259 
 260   // Compute the old incoming SP (may be called FP) as
 261   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 262   _old_SP = C->compute_old_SP();
 263   assert( is_even(_old_SP), "must be even" );
 264 
 265   // Compute highest incoming stack argument as
 266   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 267   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 268   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 269   for( i = 0; i < argcnt; i++ ) {
 270     // Permit args to have no register
 271     _calling_convention_mask[i].Clear();
 272     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 273       continue;
 274     }
 275     // calling_convention returns stack arguments as a count of
 276     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 277     // the allocators point of view, taking into account all the
 278     // preserve area, locks & pad2.
 279 
 280     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 281     if( OptoReg::is_valid(reg1))
 282       _calling_convention_mask[i].Insert(reg1);
 283 
 284     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 285     if( OptoReg::is_valid(reg2))
 286       _calling_convention_mask[i].Insert(reg2);
 287 
 288     // Saved biased stack-slot register number
 289     _parm_regs[i].set_pair(reg2, reg1);
 290   }
 291 
 292   // Finally, make sure the incoming arguments take up an even number of
 293   // words, in case the arguments or locals need to contain doubleword stack
 294   // slots.  The rest of the system assumes that stack slot pairs (in
 295   // particular, in the spill area) which look aligned will in fact be
 296   // aligned relative to the stack pointer in the target machine.  Double
 297   // stack slots will always be allocated aligned.
 298   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 299 
 300   // Compute highest outgoing stack argument as
 301   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 302   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 303   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 304 
 305   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 306     // the compiler cannot represent this method's calling sequence
 307     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 308   }
 309 
 310   if (C->failing())  return;  // bailed out on incoming arg failure
 311 
 312   // ---------------
 313   // Collect roots of matcher trees.  Every node for which
 314   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 315   // can be a valid interior of some tree.
 316   find_shared( C->root() );
 317   find_shared( C->top() );
 318 
 319   C->print_method("Before Matching");
 320 
 321   // Create new ideal node ConP #NULL even if it does exist in old space
 322   // to avoid false sharing if the corresponding mach node is not used.
 323   // The corresponding mach node is only used in rare cases for derived
 324   // pointers.
 325   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 326 
 327   // Swap out to old-space; emptying new-space
 328   Arena *old = C->node_arena()->move_contents(C->old_arena());
 329 
 330   // Save debug and profile information for nodes in old space:
 331   _old_node_note_array = C->node_note_array();
 332   if (_old_node_note_array != NULL) {
 333     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 334                            (C->comp_arena(), _old_node_note_array->length(),
 335                             0, NULL));
 336   }
 337 
 338   // Pre-size the new_node table to avoid the need for range checks.
 339   grow_new_node_array(C->unique());
 340 
 341   // Reset node counter so MachNodes start with _idx at 0
 342   int nodes = C->unique(); // save value
 343   C->set_unique(0);
 344 
 345   // Recursively match trees from old space into new space.
 346   // Correct leaves of new-space Nodes; they point to old-space.
 347   _visited.Clear();             // Clear visit bits for xform call
 348   C->set_cached_top_node(xform( C->top(), nodes ));
 349   if (!C->failing()) {
 350     Node* xroot =        xform( C->root(), 1 );
 351     if (xroot == NULL) {
 352       Matcher::soft_match_failure();  // recursive matching process failed
 353       C->record_method_not_compilable("instruction match failed");
 354     } else {
 355       // During matching shared constants were attached to C->root()
 356       // because xroot wasn't available yet, so transfer the uses to
 357       // the xroot.
 358       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 359         Node* n = C->root()->fast_out(j);
 360         if (C->node_arena()->contains(n)) {
 361           assert(n->in(0) == C->root(), "should be control user");
 362           n->set_req(0, xroot);
 363           --j;
 364           --jmax;
 365         }
 366       }
 367 
 368       // Generate new mach node for ConP #NULL
 369       assert(new_ideal_null != NULL, "sanity");
 370       _mach_null = match_tree(new_ideal_null);
 371       // Don't set control, it will confuse GCM since there are no uses.
 372       // The control will be set when this node is used first time
 373       // in find_base_for_derived().
 374       assert(_mach_null != NULL, "");
 375 
 376       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 377 
 378 #ifdef ASSERT
 379       verify_new_nodes_only(xroot);
 380 #endif
 381     }
 382   }
 383   if (C->top() == NULL || C->root() == NULL) {
 384     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 385   }
 386   if (C->failing()) {
 387     // delete old;
 388     old->destruct_contents();
 389     return;
 390   }
 391   assert( C->top(), "" );
 392   assert( C->root(), "" );
 393   validate_null_checks();
 394 
 395   // Now smoke old-space
 396   NOT_DEBUG( old->destruct_contents() );
 397 
 398   // ------------------------
 399   // Set up save-on-entry registers
 400   Fixup_Save_On_Entry( );
 401 }
 402 
 403 
 404 //------------------------------Fixup_Save_On_Entry----------------------------
 405 // The stated purpose of this routine is to take care of save-on-entry
 406 // registers.  However, the overall goal of the Match phase is to convert into
 407 // machine-specific instructions which have RegMasks to guide allocation.
 408 // So what this procedure really does is put a valid RegMask on each input
 409 // to the machine-specific variations of all Return, TailCall and Halt
 410 // instructions.  It also adds edgs to define the save-on-entry values (and of
 411 // course gives them a mask).
 412 
 413 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 414   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 415   // Do all the pre-defined register masks
 416   rms[TypeFunc::Control  ] = RegMask::Empty;
 417   rms[TypeFunc::I_O      ] = RegMask::Empty;
 418   rms[TypeFunc::Memory   ] = RegMask::Empty;
 419   rms[TypeFunc::ReturnAdr] = ret_adr;
 420   rms[TypeFunc::FramePtr ] = fp;
 421   return rms;
 422 }
 423 
 424 //---------------------------init_first_stack_mask-----------------------------
 425 // Create the initial stack mask used by values spilling to the stack.
 426 // Disallow any debug info in outgoing argument areas by setting the
 427 // initial mask accordingly.
 428 void Matcher::init_first_stack_mask() {
 429 
 430   // Allocate storage for spill masks as masks for the appropriate load type.
 431   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
 432 
 433   idealreg2spillmask  [Op_RegN] = &rms[0];
 434   idealreg2spillmask  [Op_RegI] = &rms[1];
 435   idealreg2spillmask  [Op_RegL] = &rms[2];
 436   idealreg2spillmask  [Op_RegF] = &rms[3];
 437   idealreg2spillmask  [Op_RegD] = &rms[4];
 438   idealreg2spillmask  [Op_RegP] = &rms[5];
 439 
 440   idealreg2debugmask  [Op_RegN] = &rms[6];
 441   idealreg2debugmask  [Op_RegI] = &rms[7];
 442   idealreg2debugmask  [Op_RegL] = &rms[8];
 443   idealreg2debugmask  [Op_RegF] = &rms[9];
 444   idealreg2debugmask  [Op_RegD] = &rms[10];
 445   idealreg2debugmask  [Op_RegP] = &rms[11];
 446 
 447   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 448   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 449   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 450   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 451   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 452   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 453 
 454   OptoReg::Name i;
 455 
 456   // At first, start with the empty mask
 457   C->FIRST_STACK_mask().Clear();
 458 
 459   // Add in the incoming argument area
 460   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 461   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 462     C->FIRST_STACK_mask().Insert(i);
 463 
 464   // Add in all bits past the outgoing argument area
 465   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 466             "must be able to represent all call arguments in reg mask");
 467   init = _out_arg_limit;
 468   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 469     C->FIRST_STACK_mask().Insert(i);
 470 
 471   // Finally, set the "infinite stack" bit.
 472   C->FIRST_STACK_mask().set_AllStack();
 473 
 474   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 475 #ifdef _LP64
 476   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 477    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 478 #endif
 479   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 480    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 481   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 482    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 483   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 484    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 485   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 486    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 487   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 488    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 489 
 490    if (UseFPUForSpilling) {
 491      // This mask logic assumes that the spill operations are
 492      // symmetric and that the registers involved are the same size.
 493      // On sparc for instance we may have to use 64 bit moves will
 494      // kill 2 registers when used with F0-F31.
 495      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 496      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 497 #ifdef _LP64
 498      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 499      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 500      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 501      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 502 #else
 503      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 504 #endif
 505    }
 506 
 507   // Make up debug masks.  Any spill slot plus callee-save registers.
 508   // Caller-save registers are assumed to be trashable by the various
 509   // inline-cache fixup routines.
 510   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 511   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 512   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 513   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 514   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 515   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 516 
 517   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 518   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 519   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 520   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 521   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 522   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 523 
 524   // Prevent stub compilations from attempting to reference
 525   // callee-saved registers from debug info
 526   bool exclude_soe = !Compile::current()->is_method_compilation();
 527 
 528   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 529     // registers the caller has to save do not work
 530     if( _register_save_policy[i] == 'C' ||
 531         _register_save_policy[i] == 'A' ||
 532         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 533       idealreg2debugmask  [Op_RegN]->Remove(i);
 534       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 535       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 536       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 537       idealreg2debugmask  [Op_RegD]->Remove(i);
 538       idealreg2debugmask  [Op_RegP]->Remove(i);
 539 
 540       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 541       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 542       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 543       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 544       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 545       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 546     }
 547   }
 548 
 549   // Subtract the register we use to save the SP for MethodHandle
 550   // invokes to from the debug mask.
 551   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 552   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 553   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 554   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 555   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 556   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 557   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 558 }
 559 
 560 //---------------------------is_save_on_entry----------------------------------
 561 bool Matcher::is_save_on_entry( int reg ) {
 562   return
 563     _register_save_policy[reg] == 'E' ||
 564     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 565     // Also save argument registers in the trampolining stubs
 566     (C->save_argument_registers() && is_spillable_arg(reg));
 567 }
 568 
 569 //---------------------------Fixup_Save_On_Entry-------------------------------
 570 void Matcher::Fixup_Save_On_Entry( ) {
 571   init_first_stack_mask();
 572 
 573   Node *root = C->root();       // Short name for root
 574   // Count number of save-on-entry registers.
 575   uint soe_cnt = number_of_saved_registers();
 576   uint i;
 577 
 578   // Find the procedure Start Node
 579   StartNode *start = C->start();
 580   assert( start, "Expect a start node" );
 581 
 582   // Save argument registers in the trampolining stubs
 583   if( C->save_argument_registers() )
 584     for( i = 0; i < _last_Mach_Reg; i++ )
 585       if( is_spillable_arg(i) )
 586         soe_cnt++;
 587 
 588   // Input RegMask array shared by all Returns.
 589   // The type for doubles and longs has a count of 2, but
 590   // there is only 1 returned value
 591   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 592   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 593   // Returns have 0 or 1 returned values depending on call signature.
 594   // Return register is specified by return_value in the AD file.
 595   if (ret_edge_cnt > TypeFunc::Parms)
 596     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 597 
 598   // Input RegMask array shared by all Rethrows.
 599   uint reth_edge_cnt = TypeFunc::Parms+1;
 600   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 601   // Rethrow takes exception oop only, but in the argument 0 slot.
 602   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 603 #ifdef _LP64
 604   // Need two slots for ptrs in 64-bit land
 605   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 606 #endif
 607 
 608   // Input RegMask array shared by all TailCalls
 609   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 610   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 611 
 612   // Input RegMask array shared by all TailJumps
 613   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 614   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 615 
 616   // TailCalls have 2 returned values (target & moop), whose masks come
 617   // from the usual MachNode/MachOper mechanism.  Find a sample
 618   // TailCall to extract these masks and put the correct masks into
 619   // the tail_call_rms array.
 620   for( i=1; i < root->req(); i++ ) {
 621     MachReturnNode *m = root->in(i)->as_MachReturn();
 622     if( m->ideal_Opcode() == Op_TailCall ) {
 623       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 624       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 625       break;
 626     }
 627   }
 628 
 629   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 630   // from the usual MachNode/MachOper mechanism.  Find a sample
 631   // TailJump to extract these masks and put the correct masks into
 632   // the tail_jump_rms array.
 633   for( i=1; i < root->req(); i++ ) {
 634     MachReturnNode *m = root->in(i)->as_MachReturn();
 635     if( m->ideal_Opcode() == Op_TailJump ) {
 636       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 637       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 638       break;
 639     }
 640   }
 641 
 642   // Input RegMask array shared by all Halts
 643   uint halt_edge_cnt = TypeFunc::Parms;
 644   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 645 
 646   // Capture the return input masks into each exit flavor
 647   for( i=1; i < root->req(); i++ ) {
 648     MachReturnNode *exit = root->in(i)->as_MachReturn();
 649     switch( exit->ideal_Opcode() ) {
 650       case Op_Return   : exit->_in_rms = ret_rms;  break;
 651       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 652       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 653       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 654       case Op_Halt     : exit->_in_rms = halt_rms; break;
 655       default          : ShouldNotReachHere();
 656     }
 657   }
 658 
 659   // Next unused projection number from Start.
 660   int proj_cnt = C->tf()->domain()->cnt();
 661 
 662   // Do all the save-on-entry registers.  Make projections from Start for
 663   // them, and give them a use at the exit points.  To the allocator, they
 664   // look like incoming register arguments.
 665   for( i = 0; i < _last_Mach_Reg; i++ ) {
 666     if( is_save_on_entry(i) ) {
 667 
 668       // Add the save-on-entry to the mask array
 669       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 670       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 671       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 672       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 673       // Halts need the SOE registers, but only in the stack as debug info.
 674       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 675       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 676 
 677       Node *mproj;
 678 
 679       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 680       // into a single RegD.
 681       if( (i&1) == 0 &&
 682           _register_save_type[i  ] == Op_RegF &&
 683           _register_save_type[i+1] == Op_RegF &&
 684           is_save_on_entry(i+1) ) {
 685         // Add other bit for double
 686         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 687         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 688         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 689         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 690         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 691         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 692         proj_cnt += 2;          // Skip 2 for doubles
 693       }
 694       else if( (i&1) == 1 &&    // Else check for high half of double
 695                _register_save_type[i-1] == Op_RegF &&
 696                _register_save_type[i  ] == Op_RegF &&
 697                is_save_on_entry(i-1) ) {
 698         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 699         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 700         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 701         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 702         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 703         mproj = C->top();
 704       }
 705       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 706       // into a single RegL.
 707       else if( (i&1) == 0 &&
 708           _register_save_type[i  ] == Op_RegI &&
 709           _register_save_type[i+1] == Op_RegI &&
 710         is_save_on_entry(i+1) ) {
 711         // Add other bit for long
 712         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 713         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 714         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 715         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 716         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 717         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 718         proj_cnt += 2;          // Skip 2 for longs
 719       }
 720       else if( (i&1) == 1 &&    // Else check for high half of long
 721                _register_save_type[i-1] == Op_RegI &&
 722                _register_save_type[i  ] == Op_RegI &&
 723                is_save_on_entry(i-1) ) {
 724         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 725         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 726         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 727         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 728         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 729         mproj = C->top();
 730       } else {
 731         // Make a projection for it off the Start
 732         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 733       }
 734 
 735       ret_edge_cnt ++;
 736       reth_edge_cnt ++;
 737       tail_call_edge_cnt ++;
 738       tail_jump_edge_cnt ++;
 739       halt_edge_cnt ++;
 740 
 741       // Add a use of the SOE register to all exit paths
 742       for( uint j=1; j < root->req(); j++ )
 743         root->in(j)->add_req(mproj);
 744     } // End of if a save-on-entry register
 745   } // End of for all machine registers
 746 }
 747 
 748 //------------------------------init_spill_mask--------------------------------
 749 void Matcher::init_spill_mask( Node *ret ) {
 750   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 751 
 752   OptoReg::c_frame_pointer = c_frame_pointer();
 753   c_frame_ptr_mask = c_frame_pointer();
 754 #ifdef _LP64
 755   // pointers are twice as big
 756   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 757 #endif
 758 
 759   // Start at OptoReg::stack0()
 760   STACK_ONLY_mask.Clear();
 761   OptoReg::Name init = OptoReg::stack2reg(0);
 762   // STACK_ONLY_mask is all stack bits
 763   OptoReg::Name i;
 764   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 765     STACK_ONLY_mask.Insert(i);
 766   // Also set the "infinite stack" bit.
 767   STACK_ONLY_mask.set_AllStack();
 768 
 769   // Copy the register names over into the shared world
 770   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 771     // SharedInfo::regName[i] = regName[i];
 772     // Handy RegMasks per machine register
 773     mreg2regmask[i].Insert(i);
 774   }
 775 
 776   // Grab the Frame Pointer
 777   Node *fp  = ret->in(TypeFunc::FramePtr);
 778   Node *mem = ret->in(TypeFunc::Memory);
 779   const TypePtr* atp = TypePtr::BOTTOM;
 780   // Share frame pointer while making spill ops
 781   set_shared(fp);
 782 
 783   // Compute generic short-offset Loads
 784 #ifdef _LP64
 785   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 786 #endif
 787   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 788   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 789   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 790   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 791   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 792   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 793          spillD != NULL && spillP != NULL, "");
 794 
 795   // Get the ADLC notion of the right regmask, for each basic type.
 796 #ifdef _LP64
 797   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 798 #endif
 799   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 800   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 801   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 802   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 803   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 804 }
 805 
 806 #ifdef ASSERT
 807 static void match_alias_type(Compile* C, Node* n, Node* m) {
 808   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 809   const TypePtr* nat = n->adr_type();
 810   const TypePtr* mat = m->adr_type();
 811   int nidx = C->get_alias_index(nat);
 812   int midx = C->get_alias_index(mat);
 813   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 814   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 815     for (uint i = 1; i < n->req(); i++) {
 816       Node* n1 = n->in(i);
 817       const TypePtr* n1at = n1->adr_type();
 818       if (n1at != NULL) {
 819         nat = n1at;
 820         nidx = C->get_alias_index(n1at);
 821       }
 822     }
 823   }
 824   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 825   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 826     switch (n->Opcode()) {
 827     case Op_PrefetchRead:
 828     case Op_PrefetchWrite:
 829       nidx = Compile::AliasIdxRaw;
 830       nat = TypeRawPtr::BOTTOM;
 831       break;
 832     }
 833   }
 834   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 835     switch (n->Opcode()) {
 836     case Op_ClearArray:
 837       midx = Compile::AliasIdxRaw;
 838       mat = TypeRawPtr::BOTTOM;
 839       break;
 840     }
 841   }
 842   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 843     switch (n->Opcode()) {
 844     case Op_Return:
 845     case Op_Rethrow:
 846     case Op_Halt:
 847     case Op_TailCall:
 848     case Op_TailJump:
 849       nidx = Compile::AliasIdxBot;
 850       nat = TypePtr::BOTTOM;
 851       break;
 852     }
 853   }
 854   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 855     switch (n->Opcode()) {
 856     case Op_StrComp:
 857     case Op_StrEquals:
 858     case Op_StrIndexOf:
 859     case Op_AryEq:
 860     case Op_MemBarVolatile:
 861     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 862       nidx = Compile::AliasIdxTop;
 863       nat = NULL;
 864       break;
 865     }
 866   }
 867   if (nidx != midx) {
 868     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 869       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 870       n->dump();
 871       m->dump();
 872     }
 873     assert(C->subsume_loads() && C->must_alias(nat, midx),
 874            "must not lose alias info when matching");
 875   }
 876 }
 877 #endif
 878 
 879 
 880 //------------------------------MStack-----------------------------------------
 881 // State and MStack class used in xform() and find_shared() iterative methods.
 882 enum Node_State { Pre_Visit,  // node has to be pre-visited
 883                       Visit,  // visit node
 884                  Post_Visit,  // post-visit node
 885              Alt_Post_Visit   // alternative post-visit path
 886                 };
 887 
 888 class MStack: public Node_Stack {
 889   public:
 890     MStack(int size) : Node_Stack(size) { }
 891 
 892     void push(Node *n, Node_State ns) {
 893       Node_Stack::push(n, (uint)ns);
 894     }
 895     void push(Node *n, Node_State ns, Node *parent, int indx) {
 896       ++_inode_top;
 897       if ((_inode_top + 1) >= _inode_max) grow();
 898       _inode_top->node = parent;
 899       _inode_top->indx = (uint)indx;
 900       ++_inode_top;
 901       _inode_top->node = n;
 902       _inode_top->indx = (uint)ns;
 903     }
 904     Node *parent() {
 905       pop();
 906       return node();
 907     }
 908     Node_State state() const {
 909       return (Node_State)index();
 910     }
 911     void set_state(Node_State ns) {
 912       set_index((uint)ns);
 913     }
 914 };
 915 
 916 
 917 //------------------------------xform------------------------------------------
 918 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 919 // Node in new-space.  Given a new-space Node, recursively walk his children.
 920 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 921 Node *Matcher::xform( Node *n, int max_stack ) {
 922   // Use one stack to keep both: child's node/state and parent's node/index
 923   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 924   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 925 
 926   while (mstack.is_nonempty()) {
 927     n = mstack.node();          // Leave node on stack
 928     Node_State nstate = mstack.state();
 929     if (nstate == Visit) {
 930       mstack.set_state(Post_Visit);
 931       Node *oldn = n;
 932       // Old-space or new-space check
 933       if (!C->node_arena()->contains(n)) {
 934         // Old space!
 935         Node* m;
 936         if (has_new_node(n)) {  // Not yet Label/Reduced
 937           m = new_node(n);
 938         } else {
 939           if (!is_dontcare(n)) { // Matcher can match this guy
 940             // Calls match special.  They match alone with no children.
 941             // Their children, the incoming arguments, match normally.
 942             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 943             if (C->failing())  return NULL;
 944             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 945           } else {                  // Nothing the matcher cares about
 946             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 947               // Convert to machine-dependent projection
 948               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 949 #ifdef ASSERT
 950               _new2old_map.map(m->_idx, n);
 951 #endif
 952               if (m->in(0) != NULL) // m might be top
 953                 collect_null_checks(m, n);
 954             } else {                // Else just a regular 'ol guy
 955               m = n->clone();       // So just clone into new-space
 956 #ifdef ASSERT
 957               _new2old_map.map(m->_idx, n);
 958 #endif
 959               // Def-Use edges will be added incrementally as Uses
 960               // of this node are matched.
 961               assert(m->outcnt() == 0, "no Uses of this clone yet");
 962             }
 963           }
 964 
 965           set_new_node(n, m);       // Map old to new
 966           if (_old_node_note_array != NULL) {
 967             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 968                                                   n->_idx);
 969             C->set_node_notes_at(m->_idx, nn);
 970           }
 971           debug_only(match_alias_type(C, n, m));
 972         }
 973         n = m;    // n is now a new-space node
 974         mstack.set_node(n);
 975       }
 976 
 977       // New space!
 978       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 979 
 980       int i;
 981       // Put precedence edges on stack first (match them last).
 982       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 983         Node *m = oldn->in(i);
 984         if (m == NULL) break;
 985         // set -1 to call add_prec() instead of set_req() during Step1
 986         mstack.push(m, Visit, n, -1);
 987       }
 988 
 989       // For constant debug info, I'd rather have unmatched constants.
 990       int cnt = n->req();
 991       JVMState* jvms = n->jvms();
 992       int debug_cnt = jvms ? jvms->debug_start() : cnt;
 993 
 994       // Now do only debug info.  Clone constants rather than matching.
 995       // Constants are represented directly in the debug info without
 996       // the need for executable machine instructions.
 997       // Monitor boxes are also represented directly.
 998       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
 999         Node *m = n->in(i);          // Get input
1000         int op = m->Opcode();
1001         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1002         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
1003             op == Op_ConF || op == Op_ConD || op == Op_ConL
1004             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1005             ) {
1006           m = m->clone();
1007 #ifdef ASSERT
1008           _new2old_map.map(m->_idx, n);
1009 #endif
1010           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1011           mstack.push(m->in(0), Visit, m, 0);
1012         } else {
1013           mstack.push(m, Visit, n, i);
1014         }
1015       }
1016 
1017       // And now walk his children, and convert his inputs to new-space.
1018       for( ; i >= 0; --i ) { // For all normal inputs do
1019         Node *m = n->in(i);  // Get input
1020         if(m != NULL)
1021           mstack.push(m, Visit, n, i);
1022       }
1023 
1024     }
1025     else if (nstate == Post_Visit) {
1026       // Set xformed input
1027       Node *p = mstack.parent();
1028       if (p != NULL) { // root doesn't have parent
1029         int i = (int)mstack.index();
1030         if (i >= 0)
1031           p->set_req(i, n); // required input
1032         else if (i == -1)
1033           p->add_prec(n);   // precedence input
1034         else
1035           ShouldNotReachHere();
1036       }
1037       mstack.pop(); // remove processed node from stack
1038     }
1039     else {
1040       ShouldNotReachHere();
1041     }
1042   } // while (mstack.is_nonempty())
1043   return n; // Return new-space Node
1044 }
1045 
1046 //------------------------------warp_outgoing_stk_arg------------------------
1047 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1048   // Convert outgoing argument location to a pre-biased stack offset
1049   if (reg->is_stack()) {
1050     OptoReg::Name warped = reg->reg2stack();
1051     // Adjust the stack slot offset to be the register number used
1052     // by the allocator.
1053     warped = OptoReg::add(begin_out_arg_area, warped);
1054     // Keep track of the largest numbered stack slot used for an arg.
1055     // Largest used slot per call-site indicates the amount of stack
1056     // that is killed by the call.
1057     if( warped >= out_arg_limit_per_call )
1058       out_arg_limit_per_call = OptoReg::add(warped,1);
1059     if (!RegMask::can_represent(warped)) {
1060       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1061       return OptoReg::Bad;
1062     }
1063     return warped;
1064   }
1065   return OptoReg::as_OptoReg(reg);
1066 }
1067 
1068 
1069 //------------------------------match_sfpt-------------------------------------
1070 // Helper function to match call instructions.  Calls match special.
1071 // They match alone with no children.  Their children, the incoming
1072 // arguments, match normally.
1073 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1074   MachSafePointNode *msfpt = NULL;
1075   MachCallNode      *mcall = NULL;
1076   uint               cnt;
1077   // Split out case for SafePoint vs Call
1078   CallNode *call;
1079   const TypeTuple *domain;
1080   ciMethod*        method = NULL;
1081   bool             is_method_handle_invoke = false;  // for special kill effects
1082   if( sfpt->is_Call() ) {
1083     call = sfpt->as_Call();
1084     domain = call->tf()->domain();
1085     cnt = domain->cnt();
1086 
1087     // Match just the call, nothing else
1088     MachNode *m = match_tree(call);
1089     if (C->failing())  return NULL;
1090     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1091 
1092     // Copy data from the Ideal SafePoint to the machine version
1093     mcall = m->as_MachCall();
1094 
1095     mcall->set_tf(         call->tf());
1096     mcall->set_entry_point(call->entry_point());
1097     mcall->set_cnt(        call->cnt());
1098 
1099     if( mcall->is_MachCallJava() ) {
1100       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1101       const CallJavaNode *call_java =  call->as_CallJava();
1102       method = call_java->method();
1103       mcall_java->_method = method;
1104       mcall_java->_bci = call_java->_bci;
1105       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1106       is_method_handle_invoke = call_java->is_method_handle_invoke();
1107       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1108       if( mcall_java->is_MachCallStaticJava() )
1109         mcall_java->as_MachCallStaticJava()->_name =
1110          call_java->as_CallStaticJava()->_name;
1111       if( mcall_java->is_MachCallDynamicJava() )
1112         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1113          call_java->as_CallDynamicJava()->_vtable_index;
1114     }
1115     else if( mcall->is_MachCallRuntime() ) {
1116       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1117     }
1118     msfpt = mcall;
1119   }
1120   // This is a non-call safepoint
1121   else {
1122     call = NULL;
1123     domain = NULL;
1124     MachNode *mn = match_tree(sfpt);
1125     if (C->failing())  return NULL;
1126     msfpt = mn->as_MachSafePoint();
1127     cnt = TypeFunc::Parms;
1128   }
1129 
1130   // Advertise the correct memory effects (for anti-dependence computation).
1131   msfpt->set_adr_type(sfpt->adr_type());
1132 
1133   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1134   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1135   // Empty them all.
1136   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1137 
1138   // Do all the pre-defined non-Empty register masks
1139   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1140   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1141 
1142   // Place first outgoing argument can possibly be put.
1143   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1144   assert( is_even(begin_out_arg_area), "" );
1145   // Compute max outgoing register number per call site.
1146   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1147   // Calls to C may hammer extra stack slots above and beyond any arguments.
1148   // These are usually backing store for register arguments for varargs.
1149   if( call != NULL && call->is_CallRuntime() )
1150     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1151 
1152 
1153   // Do the normal argument list (parameters) register masks
1154   int argcnt = cnt - TypeFunc::Parms;
1155   if( argcnt > 0 ) {          // Skip it all if we have no args
1156     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1157     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1158     int i;
1159     for( i = 0; i < argcnt; i++ ) {
1160       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1161     }
1162     // V-call to pick proper calling convention
1163     call->calling_convention( sig_bt, parm_regs, argcnt );
1164 
1165 #ifdef ASSERT
1166     // Sanity check users' calling convention.  Really handy during
1167     // the initial porting effort.  Fairly expensive otherwise.
1168     { for (int i = 0; i<argcnt; i++) {
1169       if( !parm_regs[i].first()->is_valid() &&
1170           !parm_regs[i].second()->is_valid() ) continue;
1171       VMReg reg1 = parm_regs[i].first();
1172       VMReg reg2 = parm_regs[i].second();
1173       for (int j = 0; j < i; j++) {
1174         if( !parm_regs[j].first()->is_valid() &&
1175             !parm_regs[j].second()->is_valid() ) continue;
1176         VMReg reg3 = parm_regs[j].first();
1177         VMReg reg4 = parm_regs[j].second();
1178         if( !reg1->is_valid() ) {
1179           assert( !reg2->is_valid(), "valid halvsies" );
1180         } else if( !reg3->is_valid() ) {
1181           assert( !reg4->is_valid(), "valid halvsies" );
1182         } else {
1183           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1184           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1185           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1186           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1187           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1188           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1189         }
1190       }
1191     }
1192     }
1193 #endif
1194 
1195     // Visit each argument.  Compute its outgoing register mask.
1196     // Return results now can have 2 bits returned.
1197     // Compute max over all outgoing arguments both per call-site
1198     // and over the entire method.
1199     for( i = 0; i < argcnt; i++ ) {
1200       // Address of incoming argument mask to fill in
1201       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1202       if( !parm_regs[i].first()->is_valid() &&
1203           !parm_regs[i].second()->is_valid() ) {
1204         continue;               // Avoid Halves
1205       }
1206       // Grab first register, adjust stack slots and insert in mask.
1207       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1208       if (OptoReg::is_valid(reg1))
1209         rm->Insert( reg1 );
1210       // Grab second register (if any), adjust stack slots and insert in mask.
1211       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1212       if (OptoReg::is_valid(reg2))
1213         rm->Insert( reg2 );
1214     } // End of for all arguments
1215 
1216     // Compute number of stack slots needed to restore stack in case of
1217     // Pascal-style argument popping.
1218     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1219   }
1220 
1221   if (is_method_handle_invoke) {
1222     // Kill some extra stack space in case method handles want to do
1223     // a little in-place argument insertion.
1224     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1225     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
1226     // Do not update mcall->_argsize because (a) the extra space is not
1227     // pushed as arguments and (b) _argsize is dead (not used anywhere).
1228   }
1229 
1230   // Compute the max stack slot killed by any call.  These will not be
1231   // available for debug info, and will be used to adjust FIRST_STACK_mask
1232   // after all call sites have been visited.
1233   if( _out_arg_limit < out_arg_limit_per_call)
1234     _out_arg_limit = out_arg_limit_per_call;
1235 
1236   if (mcall) {
1237     // Kill the outgoing argument area, including any non-argument holes and
1238     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1239     // Since the max-per-method covers the max-per-call-site and debug info
1240     // is excluded on the max-per-method basis, debug info cannot land in
1241     // this killed area.
1242     uint r_cnt = mcall->tf()->range()->cnt();
1243     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1244     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1245       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1246     } else {
1247       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1248         proj->_rout.Insert(OptoReg::Name(i));
1249     }
1250     if( proj->_rout.is_NotEmpty() )
1251       _proj_list.push(proj);
1252   }
1253   // Transfer the safepoint information from the call to the mcall
1254   // Move the JVMState list
1255   msfpt->set_jvms(sfpt->jvms());
1256   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1257     jvms->set_map(sfpt);
1258   }
1259 
1260   // Debug inputs begin just after the last incoming parameter
1261   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1262           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1263 
1264   // Move the OopMap
1265   msfpt->_oop_map = sfpt->_oop_map;
1266 
1267   // Registers killed by the call are set in the local scheduling pass
1268   // of Global Code Motion.
1269   return msfpt;
1270 }
1271 
1272 //---------------------------match_tree----------------------------------------
1273 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1274 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1275 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1276 // a Load's result RegMask for memoization in idealreg2regmask[]
1277 MachNode *Matcher::match_tree( const Node *n ) {
1278   assert( n->Opcode() != Op_Phi, "cannot match" );
1279   assert( !n->is_block_start(), "cannot match" );
1280   // Set the mark for all locally allocated State objects.
1281   // When this call returns, the _states_arena arena will be reset
1282   // freeing all State objects.
1283   ResourceMark rm( &_states_arena );
1284 
1285   LabelRootDepth = 0;
1286 
1287   // StoreNodes require their Memory input to match any LoadNodes
1288   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1289 #ifdef ASSERT
1290   Node* save_mem_node = _mem_node;
1291   _mem_node = n->is_Store() ? (Node*)n : NULL;
1292 #endif
1293   // State object for root node of match tree
1294   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1295   State *s = new (&_states_arena) State;
1296   s->_kids[0] = NULL;
1297   s->_kids[1] = NULL;
1298   s->_leaf = (Node*)n;
1299   // Label the input tree, allocating labels from top-level arena
1300   Label_Root( n, s, n->in(0), mem );
1301   if (C->failing())  return NULL;
1302 
1303   // The minimum cost match for the whole tree is found at the root State
1304   uint mincost = max_juint;
1305   uint cost = max_juint;
1306   uint i;
1307   for( i = 0; i < NUM_OPERANDS; i++ ) {
1308     if( s->valid(i) &&                // valid entry and
1309         s->_cost[i] < cost &&         // low cost and
1310         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1311       cost = s->_cost[mincost=i];
1312   }
1313   if (mincost == max_juint) {
1314 #ifndef PRODUCT
1315     tty->print("No matching rule for:");
1316     s->dump();
1317 #endif
1318     Matcher::soft_match_failure();
1319     return NULL;
1320   }
1321   // Reduce input tree based upon the state labels to machine Nodes
1322   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1323 #ifdef ASSERT
1324   _old2new_map.map(n->_idx, m);
1325   _new2old_map.map(m->_idx, (Node*)n);
1326 #endif
1327 
1328   // Add any Matcher-ignored edges
1329   uint cnt = n->req();
1330   uint start = 1;
1331   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1332   if( n->is_AddP() ) {
1333     assert( mem == (Node*)1, "" );
1334     start = AddPNode::Base+1;
1335   }
1336   for( i = start; i < cnt; i++ ) {
1337     if( !n->match_edge(i) ) {
1338       if( i < m->req() )
1339         m->ins_req( i, n->in(i) );
1340       else
1341         m->add_req( n->in(i) );
1342     }
1343   }
1344 
1345   debug_only( _mem_node = save_mem_node; )
1346   return m;
1347 }
1348 
1349 
1350 //------------------------------match_into_reg---------------------------------
1351 // Choose to either match this Node in a register or part of the current
1352 // match tree.  Return true for requiring a register and false for matching
1353 // as part of the current match tree.
1354 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1355 
1356   const Type *t = m->bottom_type();
1357 
1358   if( t->singleton() ) {
1359     // Never force constants into registers.  Allow them to match as
1360     // constants or registers.  Copies of the same value will share
1361     // the same register.  See find_shared_node.
1362     return false;
1363   } else {                      // Not a constant
1364     // Stop recursion if they have different Controls.
1365     // Slot 0 of constants is not really a Control.
1366     if( control && m->in(0) && control != m->in(0) ) {
1367 
1368       // Actually, we can live with the most conservative control we
1369       // find, if it post-dominates the others.  This allows us to
1370       // pick up load/op/store trees where the load can float a little
1371       // above the store.
1372       Node *x = control;
1373       const uint max_scan = 6;   // Arbitrary scan cutoff
1374       uint j;
1375       for( j=0; j<max_scan; j++ ) {
1376         if( x->is_Region() )    // Bail out at merge points
1377           return true;
1378         x = x->in(0);
1379         if( x == m->in(0) )     // Does 'control' post-dominate
1380           break;                // m->in(0)?  If so, we can use it
1381       }
1382       if( j == max_scan )       // No post-domination before scan end?
1383         return true;            // Then break the match tree up
1384     }
1385     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
1386       // These are commonly used in address expressions and can
1387       // efficiently fold into them on X64 in some cases.
1388       return false;
1389     }
1390   }
1391 
1392   // Not forceable cloning.  If shared, put it into a register.
1393   return shared;
1394 }
1395 
1396 
1397 //------------------------------Instruction Selection--------------------------
1398 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1399 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1400 // things the Matcher does not match (e.g., Memory), and things with different
1401 // Controls (hence forced into different blocks).  We pass in the Control
1402 // selected for this entire State tree.
1403 
1404 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1405 // Store and the Load must have identical Memories (as well as identical
1406 // pointers).  Since the Matcher does not have anything for Memory (and
1407 // does not handle DAGs), I have to match the Memory input myself.  If the
1408 // Tree root is a Store, I require all Loads to have the identical memory.
1409 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1410   // Since Label_Root is a recursive function, its possible that we might run
1411   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1412   LabelRootDepth++;
1413   if (LabelRootDepth > MaxLabelRootDepth) {
1414     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1415     return NULL;
1416   }
1417   uint care = 0;                // Edges matcher cares about
1418   uint cnt = n->req();
1419   uint i = 0;
1420 
1421   // Examine children for memory state
1422   // Can only subsume a child into your match-tree if that child's memory state
1423   // is not modified along the path to another input.
1424   // It is unsafe even if the other inputs are separate roots.
1425   Node *input_mem = NULL;
1426   for( i = 1; i < cnt; i++ ) {
1427     if( !n->match_edge(i) ) continue;
1428     Node *m = n->in(i);         // Get ith input
1429     assert( m, "expect non-null children" );
1430     if( m->is_Load() ) {
1431       if( input_mem == NULL ) {
1432         input_mem = m->in(MemNode::Memory);
1433       } else if( input_mem != m->in(MemNode::Memory) ) {
1434         input_mem = NodeSentinel;
1435       }
1436     }
1437   }
1438 
1439   for( i = 1; i < cnt; i++ ){// For my children
1440     if( !n->match_edge(i) ) continue;
1441     Node *m = n->in(i);         // Get ith input
1442     // Allocate states out of a private arena
1443     State *s = new (&_states_arena) State;
1444     svec->_kids[care++] = s;
1445     assert( care <= 2, "binary only for now" );
1446 
1447     // Recursively label the State tree.
1448     s->_kids[0] = NULL;
1449     s->_kids[1] = NULL;
1450     s->_leaf = m;
1451 
1452     // Check for leaves of the State Tree; things that cannot be a part of
1453     // the current tree.  If it finds any, that value is matched as a
1454     // register operand.  If not, then the normal matching is used.
1455     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1456         //
1457         // Stop recursion if this is LoadNode and the root of this tree is a
1458         // StoreNode and the load & store have different memories.
1459         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1460         // Can NOT include the match of a subtree when its memory state
1461         // is used by any of the other subtrees
1462         (input_mem == NodeSentinel) ) {
1463 #ifndef PRODUCT
1464       // Print when we exclude matching due to different memory states at input-loads
1465       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1466         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1467         tty->print_cr("invalid input_mem");
1468       }
1469 #endif
1470       // Switch to a register-only opcode; this value must be in a register
1471       // and cannot be subsumed as part of a larger instruction.
1472       s->DFA( m->ideal_reg(), m );
1473 
1474     } else {
1475       // If match tree has no control and we do, adopt it for entire tree
1476       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1477         control = m->in(0);         // Pick up control
1478       // Else match as a normal part of the match tree.
1479       control = Label_Root(m,s,control,mem);
1480       if (C->failing()) return NULL;
1481     }
1482   }
1483 
1484 
1485   // Call DFA to match this node, and return
1486   svec->DFA( n->Opcode(), n );
1487 
1488 #ifdef ASSERT
1489   uint x;
1490   for( x = 0; x < _LAST_MACH_OPER; x++ )
1491     if( svec->valid(x) )
1492       break;
1493 
1494   if (x >= _LAST_MACH_OPER) {
1495     n->dump();
1496     svec->dump();
1497     assert( false, "bad AD file" );
1498   }
1499 #endif
1500   return control;
1501 }
1502 
1503 
1504 // Con nodes reduced using the same rule can share their MachNode
1505 // which reduces the number of copies of a constant in the final
1506 // program.  The register allocator is free to split uses later to
1507 // split live ranges.
1508 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1509   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1510 
1511   // See if this Con has already been reduced using this rule.
1512   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1513   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1514   if (last != NULL && rule == last->rule()) {
1515     // Don't expect control change for DecodeN
1516     if (leaf->is_DecodeN())
1517       return last;
1518     // Get the new space root.
1519     Node* xroot = new_node(C->root());
1520     if (xroot == NULL) {
1521       // This shouldn't happen give the order of matching.
1522       return NULL;
1523     }
1524 
1525     // Shared constants need to have their control be root so they
1526     // can be scheduled properly.
1527     Node* control = last->in(0);
1528     if (control != xroot) {
1529       if (control == NULL || control == C->root()) {
1530         last->set_req(0, xroot);
1531       } else {
1532         assert(false, "unexpected control");
1533         return NULL;
1534       }
1535     }
1536     return last;
1537   }
1538   return NULL;
1539 }
1540 
1541 
1542 //------------------------------ReduceInst-------------------------------------
1543 // Reduce a State tree (with given Control) into a tree of MachNodes.
1544 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1545 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1546 // Each MachNode has a number of complicated MachOper operands; each
1547 // MachOper also covers a further tree of Ideal Nodes.
1548 
1549 // The root of the Ideal match tree is always an instruction, so we enter
1550 // the recursion here.  After building the MachNode, we need to recurse
1551 // the tree checking for these cases:
1552 // (1) Child is an instruction -
1553 //     Build the instruction (recursively), add it as an edge.
1554 //     Build a simple operand (register) to hold the result of the instruction.
1555 // (2) Child is an interior part of an instruction -
1556 //     Skip over it (do nothing)
1557 // (3) Child is the start of a operand -
1558 //     Build the operand, place it inside the instruction
1559 //     Call ReduceOper.
1560 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1561   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1562 
1563   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1564   if (shared_node != NULL) {
1565     return shared_node;
1566   }
1567 
1568   // Build the object to represent this state & prepare for recursive calls
1569   MachNode *mach = s->MachNodeGenerator( rule, C );
1570   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1571   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1572   Node *leaf = s->_leaf;
1573   // Check for instruction or instruction chain rule
1574   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1575     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1576            "duplicating node that's already been matched");
1577     // Instruction
1578     mach->add_req( leaf->in(0) ); // Set initial control
1579     // Reduce interior of complex instruction
1580     ReduceInst_Interior( s, rule, mem, mach, 1 );
1581   } else {
1582     // Instruction chain rules are data-dependent on their inputs
1583     mach->add_req(0);             // Set initial control to none
1584     ReduceInst_Chain_Rule( s, rule, mem, mach );
1585   }
1586 
1587   // If a Memory was used, insert a Memory edge
1588   if( mem != (Node*)1 ) {
1589     mach->ins_req(MemNode::Memory,mem);
1590 #ifdef ASSERT
1591     // Verify adr type after matching memory operation
1592     const MachOper* oper = mach->memory_operand();
1593     if (oper != NULL && oper != (MachOper*)-1) {
1594       // It has a unique memory operand.  Find corresponding ideal mem node.
1595       Node* m = NULL;
1596       if (leaf->is_Mem()) {
1597         m = leaf;
1598       } else {
1599         m = _mem_node;
1600         assert(m != NULL && m->is_Mem(), "expecting memory node");
1601       }
1602       const Type* mach_at = mach->adr_type();
1603       // DecodeN node consumed by an address may have different type
1604       // then its input. Don't compare types for such case.
1605       if (m->adr_type() != mach_at &&
1606           (m->in(MemNode::Address)->is_DecodeN() ||
1607            m->in(MemNode::Address)->is_AddP() &&
1608            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1609            m->in(MemNode::Address)->is_AddP() &&
1610            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1611            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1612         mach_at = m->adr_type();
1613       }
1614       if (m->adr_type() != mach_at) {
1615         m->dump();
1616         tty->print_cr("mach:");
1617         mach->dump(1);
1618       }
1619       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1620     }
1621 #endif
1622   }
1623 
1624   // If the _leaf is an AddP, insert the base edge
1625   if( leaf->is_AddP() )
1626     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1627 
1628   uint num_proj = _proj_list.size();
1629 
1630   // Perform any 1-to-many expansions required
1631   MachNode *ex = mach->Expand(s,_proj_list, mem);
1632   if( ex != mach ) {
1633     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1634     if( ex->in(1)->is_Con() )
1635       ex->in(1)->set_req(0, C->root());
1636     // Remove old node from the graph
1637     for( uint i=0; i<mach->req(); i++ ) {
1638       mach->set_req(i,NULL);
1639     }
1640 #ifdef ASSERT
1641     _new2old_map.map(ex->_idx, s->_leaf);
1642 #endif
1643   }
1644 
1645   // PhaseChaitin::fixup_spills will sometimes generate spill code
1646   // via the matcher.  By the time, nodes have been wired into the CFG,
1647   // and any further nodes generated by expand rules will be left hanging
1648   // in space, and will not get emitted as output code.  Catch this.
1649   // Also, catch any new register allocation constraints ("projections")
1650   // generated belatedly during spill code generation.
1651   if (_allocation_started) {
1652     guarantee(ex == mach, "no expand rules during spill generation");
1653     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1654   }
1655 
1656   if (leaf->is_Con() || leaf->is_DecodeN()) {
1657     // Record the con for sharing
1658     _shared_nodes.map(leaf->_idx, ex);
1659   }
1660 
1661   return ex;
1662 }
1663 
1664 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1665   // 'op' is what I am expecting to receive
1666   int op = _leftOp[rule];
1667   // Operand type to catch childs result
1668   // This is what my child will give me.
1669   int opnd_class_instance = s->_rule[op];
1670   // Choose between operand class or not.
1671   // This is what I will receive.
1672   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1673   // New rule for child.  Chase operand classes to get the actual rule.
1674   int newrule = s->_rule[catch_op];
1675 
1676   if( newrule < NUM_OPERANDS ) {
1677     // Chain from operand or operand class, may be output of shared node
1678     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1679             "Bad AD file: Instruction chain rule must chain from operand");
1680     // Insert operand into array of operands for this instruction
1681     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1682 
1683     ReduceOper( s, newrule, mem, mach );
1684   } else {
1685     // Chain from the result of an instruction
1686     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1687     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1688     Node *mem1 = (Node*)1;
1689     debug_only(Node *save_mem_node = _mem_node;)
1690     mach->add_req( ReduceInst(s, newrule, mem1) );
1691     debug_only(_mem_node = save_mem_node;)
1692   }
1693   return;
1694 }
1695 
1696 
1697 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1698   if( s->_leaf->is_Load() ) {
1699     Node *mem2 = s->_leaf->in(MemNode::Memory);
1700     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1701     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1702     mem = mem2;
1703   }
1704   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1705     if( mach->in(0) == NULL )
1706       mach->set_req(0, s->_leaf->in(0));
1707   }
1708 
1709   // Now recursively walk the state tree & add operand list.
1710   for( uint i=0; i<2; i++ ) {   // binary tree
1711     State *newstate = s->_kids[i];
1712     if( newstate == NULL ) break;      // Might only have 1 child
1713     // 'op' is what I am expecting to receive
1714     int op;
1715     if( i == 0 ) {
1716       op = _leftOp[rule];
1717     } else {
1718       op = _rightOp[rule];
1719     }
1720     // Operand type to catch childs result
1721     // This is what my child will give me.
1722     int opnd_class_instance = newstate->_rule[op];
1723     // Choose between operand class or not.
1724     // This is what I will receive.
1725     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1726     // New rule for child.  Chase operand classes to get the actual rule.
1727     int newrule = newstate->_rule[catch_op];
1728 
1729     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1730       // Operand/operandClass
1731       // Insert operand into array of operands for this instruction
1732       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1733       ReduceOper( newstate, newrule, mem, mach );
1734 
1735     } else {                    // Child is internal operand or new instruction
1736       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1737         // internal operand --> call ReduceInst_Interior
1738         // Interior of complex instruction.  Do nothing but recurse.
1739         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1740       } else {
1741         // instruction --> call build operand(  ) to catch result
1742         //             --> ReduceInst( newrule )
1743         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1744         Node *mem1 = (Node*)1;
1745         debug_only(Node *save_mem_node = _mem_node;)
1746         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1747         debug_only(_mem_node = save_mem_node;)
1748       }
1749     }
1750     assert( mach->_opnds[num_opnds-1], "" );
1751   }
1752   return num_opnds;
1753 }
1754 
1755 // This routine walks the interior of possible complex operands.
1756 // At each point we check our children in the match tree:
1757 // (1) No children -
1758 //     We are a leaf; add _leaf field as an input to the MachNode
1759 // (2) Child is an internal operand -
1760 //     Skip over it ( do nothing )
1761 // (3) Child is an instruction -
1762 //     Call ReduceInst recursively and
1763 //     and instruction as an input to the MachNode
1764 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1765   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1766   State *kid = s->_kids[0];
1767   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1768 
1769   // Leaf?  And not subsumed?
1770   if( kid == NULL && !_swallowed[rule] ) {
1771     mach->add_req( s->_leaf );  // Add leaf pointer
1772     return;                     // Bail out
1773   }
1774 
1775   if( s->_leaf->is_Load() ) {
1776     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1777     mem = s->_leaf->in(MemNode::Memory);
1778     debug_only(_mem_node = s->_leaf;)
1779   }
1780   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1781     if( !mach->in(0) )
1782       mach->set_req(0,s->_leaf->in(0));
1783     else {
1784       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1785     }
1786   }
1787 
1788   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1789     int newrule;
1790     if( i == 0 )
1791       newrule = kid->_rule[_leftOp[rule]];
1792     else
1793       newrule = kid->_rule[_rightOp[rule]];
1794 
1795     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1796       // Internal operand; recurse but do nothing else
1797       ReduceOper( kid, newrule, mem, mach );
1798 
1799     } else {                    // Child is a new instruction
1800       // Reduce the instruction, and add a direct pointer from this
1801       // machine instruction to the newly reduced one.
1802       Node *mem1 = (Node*)1;
1803       debug_only(Node *save_mem_node = _mem_node;)
1804       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1805       debug_only(_mem_node = save_mem_node;)
1806     }
1807   }
1808 }
1809 
1810 
1811 // -------------------------------------------------------------------------
1812 // Java-Java calling convention
1813 // (what you use when Java calls Java)
1814 
1815 //------------------------------find_receiver----------------------------------
1816 // For a given signature, return the OptoReg for parameter 0.
1817 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1818   VMRegPair regs;
1819   BasicType sig_bt = T_OBJECT;
1820   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1821   // Return argument 0 register.  In the LP64 build pointers
1822   // take 2 registers, but the VM wants only the 'main' name.
1823   return OptoReg::as_OptoReg(regs.first());
1824 }
1825 
1826 // A method-klass-holder may be passed in the inline_cache_reg
1827 // and then expanded into the inline_cache_reg and a method_oop register
1828 //   defined in ad_<arch>.cpp
1829 
1830 
1831 //------------------------------find_shared------------------------------------
1832 // Set bits if Node is shared or otherwise a root
1833 void Matcher::find_shared( Node *n ) {
1834   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1835   MStack mstack(C->unique() * 2);
1836   // Mark nodes as address_visited if they are inputs to an address expression
1837   VectorSet address_visited(Thread::current()->resource_area());
1838   mstack.push(n, Visit);     // Don't need to pre-visit root node
1839   while (mstack.is_nonempty()) {
1840     n = mstack.node();       // Leave node on stack
1841     Node_State nstate = mstack.state();
1842     uint nop = n->Opcode();
1843     if (nstate == Pre_Visit) {
1844       if (address_visited.test(n->_idx)) { // Visited in address already?
1845         // Flag as visited and shared now.
1846         set_visited(n);
1847       }
1848       if (is_visited(n)) {   // Visited already?
1849         // Node is shared and has no reason to clone.  Flag it as shared.
1850         // This causes it to match into a register for the sharing.
1851         set_shared(n);       // Flag as shared and
1852         mstack.pop();        // remove node from stack
1853         continue;
1854       }
1855       nstate = Visit; // Not already visited; so visit now
1856     }
1857     if (nstate == Visit) {
1858       mstack.set_state(Post_Visit);
1859       set_visited(n);   // Flag as visited now
1860       bool mem_op = false;
1861 
1862       switch( nop ) {  // Handle some opcodes special
1863       case Op_Phi:             // Treat Phis as shared roots
1864       case Op_Parm:
1865       case Op_Proj:            // All handled specially during matching
1866       case Op_SafePointScalarObject:
1867         set_shared(n);
1868         set_dontcare(n);
1869         break;
1870       case Op_If:
1871       case Op_CountedLoopEnd:
1872         mstack.set_state(Alt_Post_Visit); // Alternative way
1873         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1874         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1875         // Bool and CmpX side-by-side, because it can only get at constants
1876         // that are at the leaves of Match trees, and the Bool's condition acts
1877         // as a constant here.
1878         mstack.push(n->in(1), Visit);         // Clone the Bool
1879         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1880         continue; // while (mstack.is_nonempty())
1881       case Op_ConvI2D:         // These forms efficiently match with a prior
1882       case Op_ConvI2F:         //   Load but not a following Store
1883         if( n->in(1)->is_Load() &&        // Prior load
1884             n->outcnt() == 1 &&           // Not already shared
1885             n->unique_out()->is_Store() ) // Following store
1886           set_shared(n);       // Force it to be a root
1887         break;
1888       case Op_ReverseBytesI:
1889       case Op_ReverseBytesL:
1890         if( n->in(1)->is_Load() &&        // Prior load
1891             n->outcnt() == 1 )            // Not already shared
1892           set_shared(n);                  // Force it to be a root
1893         break;
1894       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1895       case Op_IfFalse:
1896       case Op_IfTrue:
1897       case Op_MachProj:
1898       case Op_MergeMem:
1899       case Op_Catch:
1900       case Op_CatchProj:
1901       case Op_CProj:
1902       case Op_JumpProj:
1903       case Op_JProj:
1904       case Op_NeverBranch:
1905         set_dontcare(n);
1906         break;
1907       case Op_Jump:
1908         mstack.push(n->in(1), Visit);         // Switch Value
1909         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1910         continue;                             // while (mstack.is_nonempty())
1911       case Op_StrComp:
1912       case Op_StrEquals:
1913       case Op_StrIndexOf:
1914       case Op_AryEq:
1915         set_shared(n); // Force result into register (it will be anyways)
1916         break;
1917       case Op_ConP: {  // Convert pointers above the centerline to NUL
1918         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1919         const TypePtr* tp = tn->type()->is_ptr();
1920         if (tp->_ptr == TypePtr::AnyNull) {
1921           tn->set_type(TypePtr::NULL_PTR);
1922         }
1923         break;
1924       }
1925       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1926         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1927         const TypePtr* tp = tn->type()->make_ptr();
1928         if (tp && tp->_ptr == TypePtr::AnyNull) {
1929           tn->set_type(TypeNarrowOop::NULL_PTR);
1930         }
1931         break;
1932       }
1933       case Op_Binary:         // These are introduced in the Post_Visit state.
1934         ShouldNotReachHere();
1935         break;
1936       case Op_ClearArray:
1937       case Op_SafePoint:
1938         mem_op = true;
1939         break;
1940       default:
1941         if( n->is_Store() ) {
1942           // Do match stores, despite no ideal reg
1943           mem_op = true;
1944           break;
1945         }
1946         if( n->is_Mem() ) { // Loads and LoadStores
1947           mem_op = true;
1948           // Loads must be root of match tree due to prior load conflict
1949           if( C->subsume_loads() == false )
1950             set_shared(n);
1951         }
1952         // Fall into default case
1953         if( !n->ideal_reg() )
1954           set_dontcare(n);  // Unmatchable Nodes
1955       } // end_switch
1956 
1957       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1958         Node *m = n->in(i); // Get ith input
1959         if (m == NULL) continue;  // Ignore NULLs
1960         uint mop = m->Opcode();
1961 
1962         // Must clone all producers of flags, or we will not match correctly.
1963         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1964         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1965         // are also there, so we may match a float-branch to int-flags and
1966         // expect the allocator to haul the flags from the int-side to the
1967         // fp-side.  No can do.
1968         if( _must_clone[mop] ) {
1969           mstack.push(m, Visit);
1970           continue; // for(int i = ...)
1971         }
1972 
1973         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
1974           // Bases used in addresses must be shared but since
1975           // they are shared through a DecodeN they may appear
1976           // to have a single use so force sharing here.
1977           set_shared(m->in(AddPNode::Base)->in(1));
1978         }
1979 
1980         // Clone addressing expressions as they are "free" in memory access instructions
1981         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1982           // Some inputs for address expression are not put on stack
1983           // to avoid marking them as shared and forcing them into register
1984           // if they are used only in address expressions.
1985           // But they should be marked as shared if there are other uses
1986           // besides address expressions.
1987 
1988           Node *off = m->in(AddPNode::Offset);
1989           if( off->is_Con() &&
1990               // When there are other uses besides address expressions
1991               // put it on stack and mark as shared.
1992               !is_visited(m) ) {
1993             address_visited.test_set(m->_idx); // Flag as address_visited
1994             Node *adr = m->in(AddPNode::Address);
1995 
1996             // Intel, ARM and friends can handle 2 adds in addressing mode
1997             if( clone_shift_expressions && adr->is_AddP() &&
1998                 // AtomicAdd is not an addressing expression.
1999                 // Cheap to find it by looking for screwy base.
2000                 !adr->in(AddPNode::Base)->is_top() &&
2001                 // Are there other uses besides address expressions?
2002                 !is_visited(adr) ) {
2003               address_visited.set(adr->_idx); // Flag as address_visited
2004               Node *shift = adr->in(AddPNode::Offset);
2005               // Check for shift by small constant as well
2006               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2007                   shift->in(2)->get_int() <= 3 &&
2008                   // Are there other uses besides address expressions?
2009                   !is_visited(shift) ) {
2010                 address_visited.set(shift->_idx); // Flag as address_visited
2011                 mstack.push(shift->in(2), Visit);
2012                 Node *conv = shift->in(1);
2013 #ifdef _LP64
2014                 // Allow Matcher to match the rule which bypass
2015                 // ConvI2L operation for an array index on LP64
2016                 // if the index value is positive.
2017                 if( conv->Opcode() == Op_ConvI2L &&
2018                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2019                     // Are there other uses besides address expressions?
2020                     !is_visited(conv) ) {
2021                   address_visited.set(conv->_idx); // Flag as address_visited
2022                   mstack.push(conv->in(1), Pre_Visit);
2023                 } else
2024 #endif
2025                 mstack.push(conv, Pre_Visit);
2026               } else {
2027                 mstack.push(shift, Pre_Visit);
2028               }
2029               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2030               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2031             } else {  // Sparc, Alpha, PPC and friends
2032               mstack.push(adr, Pre_Visit);
2033             }
2034 
2035             // Clone X+offset as it also folds into most addressing expressions
2036             mstack.push(off, Visit);
2037             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2038             continue; // for(int i = ...)
2039           } // if( off->is_Con() )
2040         }   // if( mem_op &&
2041         mstack.push(m, Pre_Visit);
2042       }     // for(int i = ...)
2043     }
2044     else if (nstate == Alt_Post_Visit) {
2045       mstack.pop(); // Remove node from stack
2046       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2047       // shared and all users of the Bool need to move the Cmp in parallel.
2048       // This leaves both the Bool and the If pointing at the Cmp.  To
2049       // prevent the Matcher from trying to Match the Cmp along both paths
2050       // BoolNode::match_edge always returns a zero.
2051 
2052       // We reorder the Op_If in a pre-order manner, so we can visit without
2053       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2054       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2055     }
2056     else if (nstate == Post_Visit) {
2057       mstack.pop(); // Remove node from stack
2058 
2059       // Now hack a few special opcodes
2060       switch( n->Opcode() ) {       // Handle some opcodes special
2061       case Op_StorePConditional:
2062       case Op_StoreIConditional:
2063       case Op_StoreLConditional:
2064       case Op_CompareAndSwapI:
2065       case Op_CompareAndSwapL:
2066       case Op_CompareAndSwapP:
2067       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2068         Node *newval = n->in(MemNode::ValueIn );
2069         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2070         Node *pair = new (C, 3) BinaryNode( oldval, newval );
2071         n->set_req(MemNode::ValueIn,pair);
2072         n->del_req(LoadStoreNode::ExpectedIn);
2073         break;
2074       }
2075       case Op_CMoveD:              // Convert trinary to binary-tree
2076       case Op_CMoveF:
2077       case Op_CMoveI:
2078       case Op_CMoveL:
2079       case Op_CMoveN:
2080       case Op_CMoveP: {
2081         // Restructure into a binary tree for Matching.  It's possible that
2082         // we could move this code up next to the graph reshaping for IfNodes
2083         // or vice-versa, but I do not want to debug this for Ladybird.
2084         // 10/2/2000 CNC.
2085         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2086         n->set_req(1,pair1);
2087         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2088         n->set_req(2,pair2);
2089         n->del_req(3);
2090         break;
2091       }
2092       case Op_LoopLimit: {
2093         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(2));
2094         n->set_req(1,pair1);
2095         n->set_req(2,n->in(3));
2096         n->del_req(3);
2097         break;
2098       }
2099       case Op_StrEquals: {
2100         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2101         n->set_req(2,pair1);
2102         n->set_req(3,n->in(4));
2103         n->del_req(4);
2104         break;
2105       }
2106       case Op_StrComp:
2107       case Op_StrIndexOf: {
2108         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2109         n->set_req(2,pair1);
2110         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2111         n->set_req(3,pair2);
2112         n->del_req(5);
2113         n->del_req(4);
2114         break;
2115       }
2116       default:
2117         break;
2118       }
2119     }
2120     else {
2121       ShouldNotReachHere();
2122     }
2123   } // end of while (mstack.is_nonempty())
2124 }
2125 
2126 #ifdef ASSERT
2127 // machine-independent root to machine-dependent root
2128 void Matcher::dump_old2new_map() {
2129   _old2new_map.dump();
2130 }
2131 #endif
2132 
2133 //---------------------------collect_null_checks-------------------------------
2134 // Find null checks in the ideal graph; write a machine-specific node for
2135 // it.  Used by later implicit-null-check handling.  Actually collects
2136 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2137 // value being tested.
2138 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2139   Node *iff = proj->in(0);
2140   if( iff->Opcode() == Op_If ) {
2141     // During matching If's have Bool & Cmp side-by-side
2142     BoolNode *b = iff->in(1)->as_Bool();
2143     Node *cmp = iff->in(2);
2144     int opc = cmp->Opcode();
2145     if (opc != Op_CmpP && opc != Op_CmpN) return;
2146 
2147     const Type* ct = cmp->in(2)->bottom_type();
2148     if (ct == TypePtr::NULL_PTR ||
2149         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2150 
2151       bool push_it = false;
2152       if( proj->Opcode() == Op_IfTrue ) {
2153         extern int all_null_checks_found;
2154         all_null_checks_found++;
2155         if( b->_test._test == BoolTest::ne ) {
2156           push_it = true;
2157         }
2158       } else {
2159         assert( proj->Opcode() == Op_IfFalse, "" );
2160         if( b->_test._test == BoolTest::eq ) {
2161           push_it = true;
2162         }
2163       }
2164       if( push_it ) {
2165         _null_check_tests.push(proj);
2166         Node* val = cmp->in(1);
2167 #ifdef _LP64
2168         if (val->bottom_type()->isa_narrowoop() &&
2169             !Matcher::narrow_oop_use_complex_address()) {
2170           //
2171           // Look for DecodeN node which should be pinned to orig_proj.
2172           // On platforms (Sparc) which can not handle 2 adds
2173           // in addressing mode we have to keep a DecodeN node and
2174           // use it to do implicit NULL check in address.
2175           //
2176           // DecodeN node was pinned to non-null path (orig_proj) during
2177           // CastPP transformation in final_graph_reshaping_impl().
2178           //
2179           uint cnt = orig_proj->outcnt();
2180           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2181             Node* d = orig_proj->raw_out(i);
2182             if (d->is_DecodeN() && d->in(1) == val) {
2183               val = d;
2184               val->set_req(0, NULL); // Unpin now.
2185               // Mark this as special case to distinguish from
2186               // a regular case: CmpP(DecodeN, NULL).
2187               val = (Node*)(((intptr_t)val) | 1);
2188               break;
2189             }
2190           }
2191         }
2192 #endif
2193         _null_check_tests.push(val);
2194       }
2195     }
2196   }
2197 }
2198 
2199 //---------------------------validate_null_checks------------------------------
2200 // Its possible that the value being NULL checked is not the root of a match
2201 // tree.  If so, I cannot use the value in an implicit null check.
2202 void Matcher::validate_null_checks( ) {
2203   uint cnt = _null_check_tests.size();
2204   for( uint i=0; i < cnt; i+=2 ) {
2205     Node *test = _null_check_tests[i];
2206     Node *val = _null_check_tests[i+1];
2207     bool is_decoden = ((intptr_t)val) & 1;
2208     val = (Node*)(((intptr_t)val) & ~1);
2209     if (has_new_node(val)) {
2210       Node* new_val = new_node(val);
2211       if (is_decoden) {
2212         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
2213         // Note: new_val may have a control edge if
2214         // the original ideal node DecodeN was matched before
2215         // it was unpinned in Matcher::collect_null_checks().
2216         // Unpin the mach node and mark it.
2217         new_val->set_req(0, NULL);
2218         new_val = (Node*)(((intptr_t)new_val) | 1);
2219       }
2220       // Is a match-tree root, so replace with the matched value
2221       _null_check_tests.map(i+1, new_val);
2222     } else {
2223       // Yank from candidate list
2224       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2225       _null_check_tests.map(i,_null_check_tests[--cnt]);
2226       _null_check_tests.pop();
2227       _null_check_tests.pop();
2228       i-=2;
2229     }
2230   }
2231 }
2232 
2233 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2234 // atomic instruction acting as a store_load barrier without any
2235 // intervening volatile load, and thus we don't need a barrier here.
2236 // We retain the Node to act as a compiler ordering barrier.
2237 bool Matcher::post_store_load_barrier(const Node *vmb) {
2238   Compile *C = Compile::current();
2239   assert( vmb->is_MemBar(), "" );
2240   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2241   const MemBarNode *mem = (const MemBarNode*)vmb;
2242 
2243   // Get the Proj node, ctrl, that can be used to iterate forward
2244   Node *ctrl = NULL;
2245   DUIterator_Fast imax, i = mem->fast_outs(imax);
2246   while( true ) {
2247     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2248     assert( ctrl->is_Proj(), "only projections here" );
2249     ProjNode *proj = (ProjNode*)ctrl;
2250     if( proj->_con == TypeFunc::Control &&
2251         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2252       break;
2253     i++;
2254   }
2255 
2256   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2257     Node *x = ctrl->fast_out(j);
2258     int xop = x->Opcode();
2259 
2260     // We don't need current barrier if we see another or a lock
2261     // before seeing volatile load.
2262     //
2263     // Op_Fastunlock previously appeared in the Op_* list below.
2264     // With the advent of 1-0 lock operations we're no longer guaranteed
2265     // that a monitor exit operation contains a serializing instruction.
2266 
2267     if (xop == Op_MemBarVolatile ||
2268         xop == Op_FastLock ||
2269         xop == Op_CompareAndSwapL ||
2270         xop == Op_CompareAndSwapP ||
2271         xop == Op_CompareAndSwapN ||
2272         xop == Op_CompareAndSwapI)
2273       return true;
2274 
2275     if (x->is_MemBar()) {
2276       // We must retain this membar if there is an upcoming volatile
2277       // load, which will be preceded by acquire membar.
2278       if (xop == Op_MemBarAcquire)
2279         return false;
2280       // For other kinds of barriers, check by pretending we
2281       // are them, and seeing if we can be removed.
2282       else
2283         return post_store_load_barrier((const MemBarNode*)x);
2284     }
2285 
2286     // Delicate code to detect case of an upcoming fastlock block
2287     if( x->is_If() && x->req() > 1 &&
2288         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2289       Node *iff = x;
2290       Node *bol = iff->in(1);
2291       // The iff might be some random subclass of If or bol might be Con-Top
2292       if (!bol->is_Bool())  return false;
2293       assert( bol->req() > 1, "" );
2294       return (bol->in(1)->Opcode() == Op_FastUnlock);
2295     }
2296     // probably not necessary to check for these
2297     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2298       return false;
2299   }
2300   return false;
2301 }
2302 
2303 //=============================================================================
2304 //---------------------------State---------------------------------------------
2305 State::State(void) {
2306 #ifdef ASSERT
2307   _id = 0;
2308   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2309   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2310   //memset(_cost, -1, sizeof(_cost));
2311   //memset(_rule, -1, sizeof(_rule));
2312 #endif
2313   memset(_valid, 0, sizeof(_valid));
2314 }
2315 
2316 #ifdef ASSERT
2317 State::~State() {
2318   _id = 99;
2319   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2320   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2321   memset(_cost, -3, sizeof(_cost));
2322   memset(_rule, -3, sizeof(_rule));
2323 }
2324 #endif
2325 
2326 #ifndef PRODUCT
2327 //---------------------------dump----------------------------------------------
2328 void State::dump() {
2329   tty->print("\n");
2330   dump(0);
2331 }
2332 
2333 void State::dump(int depth) {
2334   for( int j = 0; j < depth; j++ )
2335     tty->print("   ");
2336   tty->print("--N: ");
2337   _leaf->dump();
2338   uint i;
2339   for( i = 0; i < _LAST_MACH_OPER; i++ )
2340     // Check for valid entry
2341     if( valid(i) ) {
2342       for( int j = 0; j < depth; j++ )
2343         tty->print("   ");
2344         assert(_cost[i] != max_juint, "cost must be a valid value");
2345         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2346         tty->print_cr("%s  %d  %s",
2347                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2348       }
2349   tty->print_cr("");
2350 
2351   for( i=0; i<2; i++ )
2352     if( _kids[i] )
2353       _kids[i]->dump(depth+1);
2354 }
2355 #endif