1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class PhaseIdealLoop;
  41 class CountedLoopReserveKit;
  42 class VectorSet;
  43 class Invariance;
  44 struct small_cache;
  45 
  46 //
  47 //                  I D E A L I Z E D   L O O P S
  48 //
  49 // Idealized loops are the set of loops I perform more interesting
  50 // transformations on, beyond simple hoisting.
  51 
  52 //------------------------------LoopNode---------------------------------------
  53 // Simple loop header.  Fall in path on left, loop-back path on right.
  54 class LoopNode : public RegionNode {
  55   // Size is bigger to hold the flags.  However, the flags do not change
  56   // the semantics so it does not appear in the hash & cmp functions.
  57   virtual uint size_of() const { return sizeof(*this); }
  58 protected:
  59   uint _loop_flags;
  60   // Names for flag bitfields
  61   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  62          MainHasNoPreLoop=4,
  63          HasExactTripCount=8,
  64          InnerLoop=16,
  65          PartialPeelLoop=32,
  66          PartialPeelFailed=64,
  67          HasReductions=128,
  68          WasSlpAnalyzed=256,
  69          PassedSlpAnalysis=512,
  70          DoUnrollOnly=1024,
  71          VectorizedLoop=2048,
  72          HasAtomicPostLoop=4096,
  73          HasRangeChecks=8192,
  74          IsMultiversioned=16384,
  75          StripMined=32768};
  76   char _unswitch_count;
  77   enum { _unswitch_max=3 };
  78   char _postloop_flags;
  79   enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 };
  80 
  81 public:
  82   // Names for edge indices
  83   enum { Self=0, EntryControl, LoopBackControl };
  84 
  85   uint is_inner_loop() const { return _loop_flags & InnerLoop; }
  86   void set_inner_loop() { _loop_flags |= InnerLoop; }
  87 
  88   uint range_checks_present() const { return _loop_flags & HasRangeChecks; }
  89   uint is_multiversioned() const { return _loop_flags & IsMultiversioned; }
  90   uint is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
  91   uint is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  92   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  93   uint partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  94   uint is_strip_mined() const { return _loop_flags & StripMined; }
  95 
  96   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
  97   void mark_has_reductions() { _loop_flags |= HasReductions; }
  98   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
  99   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 100   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 101   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 102   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 103   void mark_has_range_checks() { _loop_flags |=  HasRangeChecks; }
 104   void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
 105   void mark_strip_mined() { _loop_flags |= StripMined; }
 106   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 107 
 108   int unswitch_max() { return _unswitch_max; }
 109   int unswitch_count() { return _unswitch_count; }
 110 
 111   int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; }
 112   void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; }
 113   int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; }
 114   void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; }
 115 
 116   void set_unswitch_count(int val) {
 117     assert (val <= unswitch_max(), "too many unswitches");
 118     _unswitch_count = val;
 119   }
 120 
 121   LoopNode(Node *entry, Node *backedge) : RegionNode(3), _loop_flags(0), _unswitch_count(0), _postloop_flags(0) {
 122     init_class_id(Class_Loop);
 123     init_req(EntryControl, entry);
 124     init_req(LoopBackControl, backedge);
 125   }
 126 
 127   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 128   virtual int Opcode() const;
 129   bool can_be_counted_loop(PhaseTransform* phase) const {
 130     return req() == 3 && in(0) != NULL &&
 131       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 132       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 133   }
 134   bool is_valid_counted_loop() const;
 135 #ifndef PRODUCT
 136   virtual void dump_spec(outputStream *st) const;
 137 #endif
 138 
 139   void verify_strip_mined(int expect_opaq) const;
 140   virtual LoopNode* skip_strip_mined(int expect_opaq = 1) { return this; }
 141 };
 142 
 143 //------------------------------Counted Loops----------------------------------
 144 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 145 // path (and maybe some other exit paths).  The trip-counter exit is always
 146 // last in the loop.  The trip-counter have to stride by a constant;
 147 // the exit value is also loop invariant.
 148 
 149 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 150 // CountedLoopNode has the incoming loop control and the loop-back-control
 151 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 152 // CountedLoopEndNode has an incoming control (possibly not the
 153 // CountedLoopNode if there is control flow in the loop), the post-increment
 154 // trip-counter value, and the limit.  The trip-counter value is always of
 155 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 156 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 157 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 158 // CountedLoopEndNode also takes in the loop-invariant limit value.
 159 
 160 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 161 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 162 // via the old-trip-counter from the Op node.
 163 
 164 //------------------------------CountedLoopNode--------------------------------
 165 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 166 // inputs the incoming loop-start control and the loop-back control, so they
 167 // act like RegionNodes.  They also take in the initial trip counter, the
 168 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 169 // produce a loop-body control and the trip counter value.  Since
 170 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 171 
 172 class CountedLoopNode : public LoopNode {
 173   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 174   // the semantics so it does not appear in the hash & cmp functions.
 175   virtual uint size_of() const { return sizeof(*this); }
 176 
 177   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 178   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 179   node_idx_t _main_idx;
 180 
 181   // Known trip count calculated by compute_exact_trip_count()
 182   uint  _trip_count;
 183 
 184   // Expected trip count from profile data
 185   float _profile_trip_cnt;
 186 
 187   // Log2 of original loop bodies in unrolled loop
 188   int _unrolled_count_log2;
 189 
 190   // Node count prior to last unrolling - used to decide if
 191   // unroll,optimize,unroll,optimize,... is making progress
 192   int _node_count_before_unroll;
 193 
 194   // If slp analysis is performed we record the maximum
 195   // vector mapped unroll factor here
 196   int _slp_maximum_unroll_factor;
 197 
 198 public:
 199   CountedLoopNode( Node *entry, Node *backedge )
 200     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 201       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 202       _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
 203     init_class_id(Class_CountedLoop);
 204     // Initialize _trip_count to the largest possible value.
 205     // Will be reset (lower) if the loop's trip count is known.
 206   }
 207 
 208   virtual int Opcode() const;
 209   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 210 
 211   Node *init_control() const { return in(EntryControl); }
 212   Node *back_control() const { return in(LoopBackControl); }
 213   CountedLoopEndNode *loopexit() const;
 214   Node *init_trip() const;
 215   Node *stride() const;
 216   int   stride_con() const;
 217   bool  stride_is_con() const;
 218   Node *limit() const;
 219   Node *incr() const;
 220   Node *phi() const;
 221 
 222   // Match increment with optional truncation
 223   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 224 
 225   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 226   // can run short a few iterations and may start a few iterations in.
 227   // It will be RCE'd and unrolled and aligned.
 228 
 229   // A following 'post' loop will run any remaining iterations.  Used
 230   // during Range Check Elimination, the 'post' loop will do any final
 231   // iterations with full checks.  Also used by Loop Unrolling, where
 232   // the 'post' loop will do any epilog iterations needed.  Basically,
 233   // a 'post' loop can not profitably be further unrolled or RCE'd.
 234 
 235   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 236   // it may do under-flow checks for RCE and may do alignment iterations
 237   // so the following main loop 'knows' that it is striding down cache
 238   // lines.
 239 
 240   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 241   // Aligned, may be missing it's pre-loop.
 242   uint is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 243   uint is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 244   uint is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 245   uint is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 246   uint is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 247   uint was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 248   uint has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 249   uint do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 250   uint is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 251   uint has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 252   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 253 
 254   int main_idx() const { return _main_idx; }
 255 
 256 
 257   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 258   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 259   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 260   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 261 
 262   void set_trip_count(uint tc) { _trip_count = tc; }
 263   uint trip_count()            { return _trip_count; }
 264 
 265   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 266   void set_exact_trip_count(uint tc) {
 267     _trip_count = tc;
 268     _loop_flags |= HasExactTripCount;
 269   }
 270   void set_nonexact_trip_count() {
 271     _loop_flags &= ~HasExactTripCount;
 272   }
 273   void set_notpassed_slp() {
 274     _loop_flags &= ~PassedSlpAnalysis;
 275   }
 276 
 277   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 278   float profile_trip_cnt()             { return _profile_trip_cnt; }
 279 
 280   void double_unrolled_count() { _unrolled_count_log2++; }
 281   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 282 
 283   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 284   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 285   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 286   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 287 
 288   virtual LoopNode* skip_strip_mined(int expect_opaq = 1);
 289 
 290 #ifndef PRODUCT
 291   virtual void dump_spec(outputStream *st) const;
 292 #endif
 293 };
 294 
 295 //------------------------------CountedLoopEndNode-----------------------------
 296 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 297 // IfNodes.
 298 class CountedLoopEndNode : public IfNode {
 299 public:
 300   enum { TestControl, TestValue };
 301 
 302   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 303     : IfNode( control, test, prob, cnt) {
 304     init_class_id(Class_CountedLoopEnd);
 305   }
 306   virtual int Opcode() const;
 307 
 308   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 309   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 310   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 311   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 312   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 313   int stride_con() const;
 314   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 315   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 316   PhiNode *phi() const {
 317     Node *tmp = incr();
 318     if (tmp && tmp->req() == 3) {
 319       Node* phi = tmp->in(1);
 320       if (phi->is_Phi()) {
 321         return phi->as_Phi();
 322       }
 323     }
 324     return NULL;
 325   }
 326   CountedLoopNode *loopnode() const {
 327     // The CountedLoopNode that goes with this CountedLoopEndNode may
 328     // have been optimized out by the IGVN so be cautious with the
 329     // pattern matching on the graph
 330     PhiNode* iv_phi = phi();
 331     if (iv_phi == NULL) {
 332       return NULL;
 333     }
 334     Node *ln = iv_phi->in(0);
 335     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
 336       return (CountedLoopNode*)ln;
 337     }
 338     return NULL;
 339   }
 340 
 341 #ifndef PRODUCT
 342   virtual void dump_spec(outputStream *st) const;
 343 #endif
 344 };
 345 
 346 
 347 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 348   Node *bc = back_control();
 349   if( bc == NULL ) return NULL;
 350   Node *le = bc->in(0);
 351   if( le->Opcode() != Op_CountedLoopEnd )
 352     return NULL;
 353   return (CountedLoopEndNode*)le;
 354 }
 355 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 356 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 357 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 358 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 359 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 360 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 361 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 362 
 363 //------------------------------LoopLimitNode-----------------------------
 364 // Counted Loop limit node which represents exact final iterator value:
 365 // trip_count = (limit - init_trip + stride - 1)/stride
 366 // final_value= trip_count * stride + init_trip.
 367 // Use HW instructions to calculate it when it can overflow in integer.
 368 // Note, final_value should fit into integer since counted loop has
 369 // limit check: limit <= max_int-stride.
 370 class LoopLimitNode : public Node {
 371   enum { Init=1, Limit=2, Stride=3 };
 372  public:
 373   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 374     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 375     init_flags(Flag_is_macro);
 376     C->add_macro_node(this);
 377   }
 378   virtual int Opcode() const;
 379   virtual const Type *bottom_type() const { return TypeInt::INT; }
 380   virtual uint ideal_reg() const { return Op_RegI; }
 381   virtual const Type* Value(PhaseGVN* phase) const;
 382   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 383   virtual Node* Identity(PhaseGVN* phase);
 384 };
 385 
 386 // -----------------------------IdealLoopTree----------------------------------
 387 class IdealLoopTree : public ResourceObj {
 388 public:
 389   IdealLoopTree *_parent;       // Parent in loop tree
 390   IdealLoopTree *_next;         // Next sibling in loop tree
 391   IdealLoopTree *_child;        // First child in loop tree
 392 
 393   // The head-tail backedge defines the loop.
 394   // If tail is NULL then this loop has multiple backedges as part of the
 395   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 396   // them at the loop bottom and flow 1 real backedge into the loop.
 397   Node *_head;                  // Head of loop
 398   Node *_tail;                  // Tail of loop
 399   inline Node *tail();          // Handle lazy update of _tail field
 400   PhaseIdealLoop* _phase;
 401   int _local_loop_unroll_limit;
 402   int _local_loop_unroll_factor;
 403 
 404   Node_List _body;              // Loop body for inner loops
 405 
 406   uint8_t _nest;                // Nesting depth
 407   uint8_t _irreducible:1,       // True if irreducible
 408           _has_call:1,          // True if has call safepoint
 409           _has_sfpt:1,          // True if has non-call safepoint
 410           _rce_candidate:1;     // True if candidate for range check elimination
 411 
 412   Node_List* _safepts;          // List of safepoints in this loop
 413   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 414   bool  _allow_optimizations;   // Allow loop optimizations
 415 
 416   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 417     : _parent(0), _next(0), _child(0),
 418       _head(head), _tail(tail),
 419       _phase(phase),
 420       _safepts(NULL),
 421       _required_safept(NULL),
 422       _allow_optimizations(true),
 423       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 424       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 425   { }
 426 
 427   // Is 'l' a member of 'this'?
 428   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 429 
 430   // Set loop nesting depth.  Accumulate has_call bits.
 431   int set_nest( uint depth );
 432 
 433   // Split out multiple fall-in edges from the loop header.  Move them to a
 434   // private RegionNode before the loop.  This becomes the loop landing pad.
 435   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 436 
 437   // Split out the outermost loop from this shared header.
 438   void split_outer_loop( PhaseIdealLoop *phase );
 439 
 440   // Merge all the backedges from the shared header into a private Region.
 441   // Feed that region as the one backedge to this loop.
 442   void merge_many_backedges( PhaseIdealLoop *phase );
 443 
 444   // Split shared headers and insert loop landing pads.
 445   // Insert a LoopNode to replace the RegionNode.
 446   // Returns TRUE if loop tree is structurally changed.
 447   bool beautify_loops( PhaseIdealLoop *phase );
 448 
 449   // Perform optimization to use the loop predicates for null checks and range checks.
 450   // Applies to any loop level (not just the innermost one)
 451   bool loop_predication( PhaseIdealLoop *phase);
 452 
 453   // Perform iteration-splitting on inner loops.  Split iterations to
 454   // avoid range checks or one-shot null checks.  Returns false if the
 455   // current round of loop opts should stop.
 456   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 457 
 458   // Driver for various flavors of iteration splitting.  Returns false
 459   // if the current round of loop opts should stop.
 460   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 461 
 462   // Given dominators, try to find loops with calls that must always be
 463   // executed (call dominates loop tail).  These loops do not need non-call
 464   // safepoints (ncsfpt).
 465   void check_safepts(VectorSet &visited, Node_List &stack);
 466 
 467   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 468   // encountered.
 469   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 470 
 471   // Remove safepoints from loop. Optionally keeping one.
 472   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 473 
 474   // Convert to counted loops where possible
 475   void counted_loop( PhaseIdealLoop *phase );
 476 
 477   // Check for Node being a loop-breaking test
 478   Node *is_loop_exit(Node *iff) const;
 479 
 480   // Remove simplistic dead code from loop body
 481   void DCE_loop_body();
 482 
 483   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 484   // Replace with a 1-in-10 exit guess.
 485   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 486 
 487   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 488   // Useful for unrolling loops with NO array accesses.
 489   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 490 
 491   // Return TRUE or FALSE if the loop should be unswitched -- clone
 492   // loop with an invariant test
 493   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 494 
 495   // Micro-benchmark spamming.  Remove empty loops.
 496   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 497 
 498   // Convert one iteration loop into normal code.
 499   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 500 
 501   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 502   // make some loop-invariant test (usually a null-check) happen before the
 503   // loop.
 504   bool policy_peeling( PhaseIdealLoop *phase ) const;
 505 
 506   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 507   // known trip count in the counted loop node.
 508   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 509 
 510   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 511   // the loop is a CountedLoop and the body is small enough.
 512   bool policy_unroll(PhaseIdealLoop *phase);
 513 
 514   // Loop analyses to map to a maximal superword unrolling for vectorization.
 515   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 516 
 517   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 518   // Gather a list of IF tests that are dominated by iteration splitting;
 519   // also gather the end of the first split and the start of the 2nd split.
 520   bool policy_range_check( PhaseIdealLoop *phase ) const;
 521 
 522   // Return TRUE or FALSE if the loop should be cache-line aligned.
 523   // Gather the expression that does the alignment.  Note that only
 524   // one array base can be aligned in a loop (unless the VM guarantees
 525   // mutual alignment).  Note that if we vectorize short memory ops
 526   // into longer memory ops, we may want to increase alignment.
 527   bool policy_align( PhaseIdealLoop *phase ) const;
 528 
 529   // Return TRUE if "iff" is a range check.
 530   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 531 
 532   // Compute loop trip count if possible
 533   void compute_trip_count(PhaseIdealLoop* phase);
 534 
 535   // Compute loop trip count from profile data
 536   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 537 
 538   // Reassociate invariant expressions.
 539   void reassociate_invariants(PhaseIdealLoop *phase);
 540   // Reassociate invariant add and subtract expressions.
 541   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 542   // Return nonzero index of invariant operand if invariant and variant
 543   // are combined with an Add or Sub. Helper for reassociate_invariants.
 544   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 545 
 546   // Return true if n is invariant
 547   bool is_invariant(Node* n) const;
 548 
 549   // Put loop body on igvn work list
 550   void record_for_igvn();
 551 
 552   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 553   bool is_inner()   { return is_loop() && _child == NULL; }
 554   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 555 
 556   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 557 
 558 #ifndef PRODUCT
 559   void dump_head( ) const;      // Dump loop head only
 560   void dump() const;            // Dump this loop recursively
 561   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 562 #endif
 563 
 564 };
 565 
 566 // -----------------------------PhaseIdealLoop---------------------------------
 567 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 568 // loop tree.  Drives the loop-based transformations on the ideal graph.
 569 class PhaseIdealLoop : public PhaseTransform {
 570   friend class IdealLoopTree;
 571   friend class SuperWord;
 572   friend class CountedLoopReserveKit;
 573 
 574   // Pre-computed def-use info
 575   PhaseIterGVN &_igvn;
 576 
 577   // Head of loop tree
 578   IdealLoopTree *_ltree_root;
 579 
 580   // Array of pre-order numbers, plus post-visited bit.
 581   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 582   // ODD for post-visited.  Other bits are the pre-order number.
 583   uint *_preorders;
 584   uint _max_preorder;
 585 
 586   const PhaseIdealLoop* _verify_me;
 587   bool _verify_only;
 588 
 589   // Allocate _preorders[] array
 590   void allocate_preorders() {
 591     _max_preorder = C->unique()+8;
 592     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 593     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 594   }
 595 
 596   // Allocate _preorders[] array
 597   void reallocate_preorders() {
 598     if ( _max_preorder < C->unique() ) {
 599       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 600       _max_preorder = C->unique();
 601     }
 602     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 603   }
 604 
 605   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 606   // adds new nodes.
 607   void check_grow_preorders( ) {
 608     if ( _max_preorder < C->unique() ) {
 609       uint newsize = _max_preorder<<1;  // double size of array
 610       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 611       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 612       _max_preorder = newsize;
 613     }
 614   }
 615   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 616   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 617   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 618   void set_preorder_visited( Node *n, int pre_order ) {
 619     assert( !is_visited( n ), "already set" );
 620     _preorders[n->_idx] = (pre_order<<1);
 621   };
 622   // Return pre-order number.
 623   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 624 
 625   // Check for being post-visited.
 626   // Should be previsited already (checked with assert(is_visited(n))).
 627   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 628 
 629   // Mark as post visited
 630   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 631 
 632 public:
 633   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 634   // Returns true if "n" is a data node, false if it's a control node.
 635   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 636 
 637 private:
 638   // clear out dead code after build_loop_late
 639   Node_List _deadlist;
 640 
 641   // Support for faster execution of get_late_ctrl()/dom_lca()
 642   // when a node has many uses and dominator depth is deep.
 643   Node_Array _dom_lca_tags;
 644   void   init_dom_lca_tags();
 645   void   clear_dom_lca_tags();
 646 
 647   // Helper for debugging bad dominance relationships
 648   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 649 
 650   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 651 
 652   // Inline wrapper for frequent cases:
 653   // 1) only one use
 654   // 2) a use is the same as the current LCA passed as 'n1'
 655   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 656     assert( n->is_CFG(), "" );
 657     // Fast-path NULL lca
 658     if( lca != NULL && lca != n ) {
 659       assert( lca->is_CFG(), "" );
 660       // find LCA of all uses
 661       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 662     }
 663     return find_non_split_ctrl(n);
 664   }
 665   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 666 
 667   // Helper function for directing control inputs away from CFG split
 668   // points.
 669   Node *find_non_split_ctrl( Node *ctrl ) const {
 670     if (ctrl != NULL) {
 671       if (ctrl->is_MultiBranch()) {
 672         ctrl = ctrl->in(0);
 673       }
 674       assert(ctrl->is_CFG(), "CFG");
 675     }
 676     return ctrl;
 677   }
 678 
 679   bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 680 
 681 public:
 682 
 683   static bool is_canonical_loop_entry(CountedLoopNode* cl);
 684 
 685   bool has_node( Node* n ) const {
 686     guarantee(n != NULL, "No Node.");
 687     return _nodes[n->_idx] != NULL;
 688   }
 689   // check if transform created new nodes that need _ctrl recorded
 690   Node *get_late_ctrl( Node *n, Node *early );
 691   Node *get_early_ctrl( Node *n );
 692   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 693   void set_early_ctrl( Node *n );
 694   void set_subtree_ctrl( Node *root );
 695   void set_ctrl( Node *n, Node *ctrl ) {
 696     assert( !has_node(n) || has_ctrl(n), "" );
 697     assert( ctrl->in(0), "cannot set dead control node" );
 698     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 699     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 700   }
 701   // Set control and update loop membership
 702   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 703     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 704     IdealLoopTree* new_loop = get_loop(ctrl);
 705     if (old_loop != new_loop) {
 706       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 707       if (new_loop->_child == NULL) new_loop->_body.push(n);
 708     }
 709     set_ctrl(n, ctrl);
 710   }
 711   // Control nodes can be replaced or subsumed.  During this pass they
 712   // get their replacement Node in slot 1.  Instead of updating the block
 713   // location of all Nodes in the subsumed block, we lazily do it.  As we
 714   // pull such a subsumed block out of the array, we write back the final
 715   // correct block.
 716   Node *get_ctrl( Node *i ) {
 717     assert(has_node(i), "");
 718     Node *n = get_ctrl_no_update(i);
 719     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 720     assert(has_node(i) && has_ctrl(i), "");
 721     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 722     return n;
 723   }
 724   // true if CFG node d dominates CFG node n
 725   bool is_dominator(Node *d, Node *n);
 726   // return get_ctrl for a data node and self(n) for a CFG node
 727   Node* ctrl_or_self(Node* n) {
 728     if (has_ctrl(n))
 729       return get_ctrl(n);
 730     else {
 731       assert (n->is_CFG(), "must be a CFG node");
 732       return n;
 733     }
 734   }
 735 
 736 private:
 737   Node *get_ctrl_no_update_helper(Node *i) const {
 738     assert(has_ctrl(i), "should be control, not loop");
 739     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 740   }
 741 
 742   Node *get_ctrl_no_update(Node *i) const {
 743     assert( has_ctrl(i), "" );
 744     Node *n = get_ctrl_no_update_helper(i);
 745     if (!n->in(0)) {
 746       // Skip dead CFG nodes
 747       do {
 748         n = get_ctrl_no_update_helper(n);
 749       } while (!n->in(0));
 750       n = find_non_split_ctrl(n);
 751     }
 752     return n;
 753   }
 754 
 755   // Check for loop being set
 756   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 757   bool has_loop( Node *n ) const {
 758     assert(!has_node(n) || !has_ctrl(n), "");
 759     return has_node(n);
 760   }
 761   // Set loop
 762   void set_loop( Node *n, IdealLoopTree *loop ) {
 763     _nodes.map(n->_idx, (Node*)loop);
 764   }
 765   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 766   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 767   // from old_node to new_node to support the lazy update.  Reference
 768   // replaces loop reference, since that is not needed for dead node.
 769 public:
 770   void lazy_update(Node *old_node, Node *new_node) {
 771     assert(old_node != new_node, "no cycles please");
 772     // Re-use the side array slot for this node to provide the
 773     // forwarding pointer.
 774     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
 775   }
 776   void lazy_replace(Node *old_node, Node *new_node) {
 777     _igvn.replace_node(old_node, new_node);
 778     lazy_update(old_node, new_node);
 779   }
 780 
 781 private:
 782 
 783   // Place 'n' in some loop nest, where 'n' is a CFG node
 784   void build_loop_tree();
 785   int build_loop_tree_impl( Node *n, int pre_order );
 786   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 787   // loop tree, not the root.
 788   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 789 
 790   // Place Data nodes in some loop nest
 791   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 792   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 793   void build_loop_late_post ( Node* n );
 794 
 795   // Array of immediate dominance info for each CFG node indexed by node idx
 796 private:
 797   uint _idom_size;
 798   Node **_idom;                 // Array of immediate dominators
 799   uint *_dom_depth;           // Used for fast LCA test
 800   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 801 
 802   Node* idom_no_update(Node* d) const {
 803     assert(d->_idx < _idom_size, "oob");
 804     Node* n = _idom[d->_idx];
 805     assert(n != NULL,"Bad immediate dominator info.");
 806     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 807       //n = n->in(1);
 808       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 809       assert(n != NULL,"Bad immediate dominator info.");
 810     }
 811     return n;
 812   }
 813 public:
 814   Node *idom(Node* d) const {
 815     uint didx = d->_idx;
 816     Node *n = idom_no_update(d);
 817     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 818     return n;
 819   }
 820   uint dom_depth(Node* d) const {
 821     guarantee(d != NULL, "Null dominator info.");
 822     guarantee(d->_idx < _idom_size, "");
 823     return _dom_depth[d->_idx];
 824   }
 825   void set_idom(Node* d, Node* n, uint dom_depth);
 826 
 827 private:
 828   // Locally compute IDOM using dom_lca call
 829   Node *compute_idom( Node *region ) const;
 830   // Recompute dom_depth
 831   void recompute_dom_depth();
 832 
 833   // Is safept not required by an outer loop?
 834   bool is_deleteable_safept(Node* sfpt);
 835 
 836   // Replace parallel induction variable (parallel to trip counter)
 837   void replace_parallel_iv(IdealLoopTree *loop);
 838 
 839   // Perform verification that the graph is valid.
 840   PhaseIdealLoop( PhaseIterGVN &igvn) :
 841     PhaseTransform(Ideal_Loop),
 842     _igvn(igvn),
 843     _dom_lca_tags(arena()), // Thread::resource_area
 844     _verify_me(NULL),
 845     _verify_only(true) {
 846     build_and_optimize(LoopOptsVerify);
 847   }
 848 
 849   // build the loop tree and perform any requested optimizations
 850   void build_and_optimize(LoopOptsMode mode);
 851 
 852 public:
 853   // Dominators for the sea of nodes
 854   void Dominators();
 855   Node *dom_lca( Node *n1, Node *n2 ) const {
 856     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 857   }
 858   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 859 
 860   // Compute the Ideal Node to Loop mapping
 861   PhaseIdealLoop( PhaseIterGVN &igvn, LoopOptsMode mode) :
 862     PhaseTransform(Ideal_Loop),
 863     _igvn(igvn),
 864     _dom_lca_tags(arena()), // Thread::resource_area
 865     _verify_me(NULL),
 866     _verify_only(false) {
 867     build_and_optimize(mode);
 868   }
 869 
 870   // Verify that verify_me made the same decisions as a fresh run.
 871   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 872     PhaseTransform(Ideal_Loop),
 873     _igvn(igvn),
 874     _dom_lca_tags(arena()), // Thread::resource_area
 875     _verify_me(verify_me),
 876     _verify_only(false) {
 877     build_and_optimize(LoopOptsVerify);
 878   }
 879 
 880   // Build and verify the loop tree without modifying the graph.  This
 881   // is useful to verify that all inputs properly dominate their uses.
 882   static void verify(PhaseIterGVN& igvn) {
 883 #ifdef ASSERT
 884     PhaseIdealLoop v(igvn);
 885 #endif
 886   }
 887 
 888   // True if the method has at least 1 irreducible loop
 889   bool _has_irreducible_loops;
 890 
 891   // Per-Node transform
 892   virtual Node *transform( Node *a_node ) { return 0; }
 893 
 894   bool is_counted_loop(Node* x, IdealLoopTree*& loop);
 895   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 896                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
 897                                                Node*& entry_control, Node*& iffalse);
 898 
 899   Node* exact_limit( IdealLoopTree *loop );
 900 
 901   // Return a post-walked LoopNode
 902   IdealLoopTree *get_loop( Node *n ) const {
 903     // Dead nodes have no loop, so return the top level loop instead
 904     if (!has_node(n))  return _ltree_root;
 905     assert(!has_ctrl(n), "");
 906     return (IdealLoopTree*)_nodes[n->_idx];
 907   }
 908 
 909   // Is 'n' a (nested) member of 'loop'?
 910   int is_member( const IdealLoopTree *loop, Node *n ) const {
 911     return loop->is_member(get_loop(n)); }
 912 
 913   // This is the basic building block of the loop optimizations.  It clones an
 914   // entire loop body.  It makes an old_new loop body mapping; with this
 915   // mapping you can find the new-loop equivalent to an old-loop node.  All
 916   // new-loop nodes are exactly equal to their old-loop counterparts, all
 917   // edges are the same.  All exits from the old-loop now have a RegionNode
 918   // that merges the equivalent new-loop path.  This is true even for the
 919   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 920   // now come from (one or more) Phis that merge their new-loop equivalents.
 921   // Parameter side_by_side_idom:
 922   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 923   //      the clone loop to dominate the original.  Used in construction of
 924   //      pre-main-post loop sequence.
 925   //   When nonnull, the clone and original are side-by-side, both are
 926   //      dominated by the passed in side_by_side_idom node.  Used in
 927   //      construction of unswitched loops.
 928   enum CloneLoopMode {
 929     IgnoreStripMined = 0,        // Only clone inner strip mined loop
 930     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
 931     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
 932                                  // result control flow branches
 933                                  // either to inner clone or outer
 934                                  // strip mined loop.
 935   };
 936   void clone_loop(IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 937                   CloneLoopMode mode, Node* side_by_side_idom = NULL);
 938   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
 939                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
 940                                    Node_List*& split_if_set, Node_List*& split_bool_set,
 941                                    Node_List*& split_cex_set, Node_List& worklist,
 942                                    uint new_counter, CloneLoopMode mode);
 943   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
 944                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
 945                         Node_List& extra_data_nodes);
 946 
 947   // If we got the effect of peeling, either by actually peeling or by
 948   // making a pre-loop which must execute at least once, we can remove
 949   // all loop-invariant dominated tests in the main body.
 950   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 951 
 952   // Generate code to do a loop peel for the given loop (and body).
 953   // old_new is a temp array.
 954   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 955 
 956   // Add pre and post loops around the given loop.  These loops are used
 957   // during RCE, unrolling and aligning loops.
 958   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 959 
 960   // Add post loop after the given loop.
 961   Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
 962                          CountedLoopNode *main_head, CountedLoopEndNode *main_end,
 963                          Node *incr, Node *limit, CountedLoopNode *&post_head);
 964 
 965   // Add an RCE'd post loop which we will multi-version adapt for run time test path usage
 966   void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
 967 
 968   // Add a vector post loop between a vector main loop and the current post loop
 969   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
 970   // If Node n lives in the back_ctrl block, we clone a private version of n
 971   // in preheader_ctrl block and return that, otherwise return n.
 972   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
 973 
 974   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 975   // unroll to do double iterations.  The next round of major loop transforms
 976   // will repeat till the doubled loop body does all remaining iterations in 1
 977   // pass.
 978   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 979 
 980   // Unroll the loop body one step - make each trip do 2 iterations.
 981   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 982 
 983   // Mark vector reduction candidates before loop unrolling
 984   void mark_reductions( IdealLoopTree *loop );
 985 
 986   // Return true if exp is a constant times an induction var
 987   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 988 
 989   // Return true if exp is a scaled induction var plus (or minus) constant
 990   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 991 
 992   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
 993   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
 994                                         Deoptimization::DeoptReason reason,
 995                                         int opcode);
 996   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
 997 
 998   // Clone loop predicates to cloned loops (peeled, unswitched)
 999   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
1000                                    Deoptimization::DeoptReason reason,
1001                                    PhaseIdealLoop* loop_phase,
1002                                    PhaseIterGVN* igvn);
1003 
1004   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
1005                                          bool clone_limit_check,
1006                                          PhaseIdealLoop* loop_phase,
1007                                          PhaseIterGVN* igvn);
1008   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
1009 
1010   static Node* skip_loop_predicates(Node* entry);
1011 
1012   // Find a good location to insert a predicate
1013   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
1014   // Find a predicate
1015   static Node* find_predicate(Node* entry);
1016   // Construct a range check for a predicate if
1017   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
1018                          int scale, Node* offset,
1019                          Node* init, Node* limit, Node* stride,
1020                          Node* range, bool upper);
1021 
1022   // Implementation of the loop predication to promote checks outside the loop
1023   bool loop_predication_impl(IdealLoopTree *loop);
1024 
1025   // Helper function to collect predicate for eliminating the useless ones
1026   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
1027   void eliminate_useless_predicates();
1028 
1029   // Change the control input of expensive nodes to allow commoning by
1030   // IGVN when it is guaranteed to not result in a more frequent
1031   // execution of the expensive node. Return true if progress.
1032   bool process_expensive_nodes();
1033 
1034   // Check whether node has become unreachable
1035   bool is_node_unreachable(Node *n) const {
1036     return !has_node(n) || n->is_unreachable(_igvn);
1037   }
1038 
1039   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1040   int do_range_check( IdealLoopTree *loop, Node_List &old_new );
1041 
1042   // Check to see if do_range_check(...) cleaned the main loop of range-checks
1043   void has_range_checks(IdealLoopTree *loop);
1044 
1045   // Process post loops which have range checks and try to build a multi-version
1046   // guard to safely determine if we can execute the post loop which was RCE'd.
1047   bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
1048 
1049   // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
1050   void poison_rce_post_loop(IdealLoopTree *rce_loop);
1051 
1052   // Create a slow version of the loop by cloning the loop
1053   // and inserting an if to select fast-slow versions.
1054   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
1055                                         Node_List &old_new,
1056                                         int opcode,
1057                                         CloneLoopMode mode);
1058 
1059   // Clone a loop and return the clone head (clone_loop_head).
1060   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
1061   // This routine was created for usage in CountedLoopReserveKit.
1062   //
1063   //    int(1) -> If -> IfTrue -> original_loop_head
1064   //              |
1065   //              V
1066   //           IfFalse -> clone_loop_head (returned by function pointer)
1067   //
1068   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1069   // Clone loop with an invariant test (that does not exit) and
1070   // insert a clone of the test that selects which version to
1071   // execute.
1072   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1073 
1074   // Find candidate "if" for unswitching
1075   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1076 
1077   // Range Check Elimination uses this function!
1078   // Constrain the main loop iterations so the affine function:
1079   //    low_limit <= scale_con * I + offset  <  upper_limit
1080   // always holds true.  That is, either increase the number of iterations in
1081   // the pre-loop or the post-loop until the condition holds true in the main
1082   // loop.  Scale_con, offset and limit are all loop invariant.
1083   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
1084   // Helper function for add_constraint().
1085   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
1086 
1087   // Partially peel loop up through last_peel node.
1088   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1089 
1090   // Create a scheduled list of nodes control dependent on ctrl set.
1091   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1092   // Has a use in the vector set
1093   bool has_use_in_set( Node* n, VectorSet& vset );
1094   // Has use internal to the vector set (ie. not in a phi at the loop head)
1095   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1096   // clone "n" for uses that are outside of loop
1097   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1098   // clone "n" for special uses that are in the not_peeled region
1099   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1100                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1101   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1102   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1103 #ifdef ASSERT
1104   // Validate the loop partition sets: peel and not_peel
1105   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1106   // Ensure that uses outside of loop are of the right form
1107   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1108                                  uint orig_exit_idx, uint clone_exit_idx);
1109   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1110 #endif
1111 
1112   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1113   int stride_of_possible_iv( Node* iff );
1114   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1115   // Return the (unique) control output node that's in the loop (if it exists.)
1116   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1117   // Insert a signed compare loop exit cloned from an unsigned compare.
1118   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1119   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1120   // Utility to register node "n" with PhaseIdealLoop
1121   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1122   // Utility to create an if-projection
1123   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1124   // Force the iff control output to be the live_proj
1125   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1126   // Insert a region before an if projection
1127   RegionNode* insert_region_before_proj(ProjNode* proj);
1128   // Insert a new if before an if projection
1129   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1130 
1131   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1132   // "Nearly" because all Nodes have been cloned from the original in the loop,
1133   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1134   // through the Phi recursively, and return a Bool.
1135   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1136   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1137 
1138 
1139   // Rework addressing expressions to get the most loop-invariant stuff
1140   // moved out.  We'd like to do all associative operators, but it's especially
1141   // important (common) to do address expressions.
1142   Node *remix_address_expressions( Node *n );
1143 
1144   // Attempt to use a conditional move instead of a phi/branch
1145   Node *conditional_move( Node *n );
1146 
1147   // Reorganize offset computations to lower register pressure.
1148   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1149   // (which are then alive with the post-incremented trip counter
1150   // forcing an extra register move)
1151   void reorg_offsets( IdealLoopTree *loop );
1152 
1153   // Check for aggressive application of 'split-if' optimization,
1154   // using basic block level info.
1155   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1156   Node *split_if_with_blocks_pre ( Node *n );
1157   void  split_if_with_blocks_post( Node *n );
1158   Node *has_local_phi_input( Node *n );
1159   // Mark an IfNode as being dominated by a prior test,
1160   // without actually altering the CFG (and hence IDOM info).
1161   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1162 
1163   // Split Node 'n' through merge point
1164   Node *split_thru_region( Node *n, Node *region );
1165   // Split Node 'n' through merge point if there is enough win.
1166   Node *split_thru_phi( Node *n, Node *region, int policy );
1167   void split_mem_thru_phi(Node*, Node* r, Node* phi);
1168 
1169   // Found an If getting its condition-code input from a Phi in the
1170   // same block.  Split thru the Region.
1171   void do_split_if( Node *iff );
1172 
1173   // Conversion of fill/copy patterns into intrisic versions
1174   bool do_intrinsify_fill();
1175   bool intrinsify_fill(IdealLoopTree* lpt);
1176   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1177                        Node*& shift, Node*& offset);
1178 
1179 private:
1180   // Return a type based on condition control flow
1181   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1182   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1183  // Helpers for filtered type
1184   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1185 
1186   // Helper functions
1187   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1188   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1189   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1190   bool split_up( Node *n, Node *blk1, Node *blk2 );
1191   void sink_use( Node *use, Node *post_loop );
1192   Node *place_near_use( Node *useblock ) const;
1193   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1194   void try_move_store_after_loop(Node* n);
1195 public:
1196   bool identical_backtoback_ifs(Node *n);
1197   bool can_split_if(Node *n_ctrl);
1198 private:
1199 
1200   Unique_Node_List _shenandoah_evacuation_tests;
1201 
1202   bool _created_loop_node;
1203 public:
1204   void set_created_loop_node() { _created_loop_node = true; }
1205   bool created_loop_node()     { return _created_loop_node; }
1206   void register_new_node( Node *n, Node *blk );
1207 
1208 #ifdef ASSERT
1209   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1210 #endif
1211 
1212 #ifndef PRODUCT
1213   void dump( ) const;
1214   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1215   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1216   void verify() const;          // Major slow  :-)
1217   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1218   IdealLoopTree *get_loop_idx(Node* n) const {
1219     // Dead nodes have no loop, so return the top level loop instead
1220     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1221   }
1222   // Print some stats
1223   static void print_statistics();
1224   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1225   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1226 #endif
1227 
1228   PhaseIterGVN& igvn() { return _igvn; }
1229   IdealLoopTree* ltree_root() const { return _ltree_root; }
1230 };
1231 
1232 // This kit may be used for making of a reserved copy of a loop before this loop
1233 //  goes under non-reversible changes.
1234 //
1235 // Function create_reserve() creates a reserved copy (clone) of the loop.
1236 // The reserved copy is created by calling
1237 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1238 // the original and reserved loops are connected in the outer graph.
1239 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1240 //
1241 // By default the reserved copy (clone) of the loop is created as dead code - it is
1242 // dominated in the outer loop by this node chain:
1243 //   intcon(1)->If->IfFalse->reserved_copy.
1244 // The original loop is dominated by the the same node chain but IfTrue projection:
1245 //   intcon(0)->If->IfTrue->original_loop.
1246 //
1247 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1248 // and the dtor, checks _use_new value.
1249 // If _use_new == false, it "switches" control to reserved copy of the loop
1250 // by simple replacing of node intcon(1) with node intcon(0).
1251 //
1252 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1253 //
1254 // void CountedLoopReserveKit_example()
1255 // {
1256 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1257 //    if (DoReserveCopy && !lrk.has_reserved()) {
1258 //      return; //failed to create reserved loop copy
1259 //    }
1260 //    ...
1261 //    //something is wrong, switch to original loop
1262 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1263 //    ...
1264 //    //everything worked ok, return with the newly modified loop
1265 //    lrk.use_new();
1266 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1267 //  }
1268 //
1269 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1270 // the dtor will "switch to the original" loop.
1271 // NOTE. You you modify outside of the original loop this class is no help.
1272 //
1273 class CountedLoopReserveKit {
1274   private:
1275     PhaseIdealLoop* _phase;
1276     IdealLoopTree*  _lpt;
1277     LoopNode*       _lp;
1278     IfNode*         _iff;
1279     LoopNode*       _lp_reserved;
1280     bool            _has_reserved;
1281     bool            _use_new;
1282     const bool      _active; //may be set to false in ctor, then the object is dummy
1283 
1284   public:
1285     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1286     ~CountedLoopReserveKit();
1287     void use_new()                {_use_new = true;}
1288     void set_iff(IfNode* x)       {_iff = x;}
1289     bool has_reserved()     const { return _active && _has_reserved;}
1290   private:
1291     bool create_reserve();
1292 };// class CountedLoopReserveKit
1293 
1294 inline Node* IdealLoopTree::tail() {
1295 // Handle lazy update of _tail field
1296   Node *n = _tail;
1297   //while( !n->in(0) )  // Skip dead CFG nodes
1298     //n = n->in(1);
1299   if (n->in(0) == NULL)
1300     n = _phase->get_ctrl(n);
1301   _tail = n;
1302   return n;
1303 }
1304 
1305 
1306 // Iterate over the loop tree using a preorder, left-to-right traversal.
1307 //
1308 // Example that visits all counted loops from within PhaseIdealLoop
1309 //
1310 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1311 //   IdealLoopTree* lpt = iter.current();
1312 //   if (!lpt->is_counted()) continue;
1313 //   ...
1314 class LoopTreeIterator : public StackObj {
1315 private:
1316   IdealLoopTree* _root;
1317   IdealLoopTree* _curnt;
1318 
1319 public:
1320   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1321 
1322   bool done() { return _curnt == NULL; }       // Finished iterating?
1323 
1324   void next();                                 // Advance to next loop tree
1325 
1326   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1327 };
1328 
1329 #endif // SHARE_VM_OPTO_LOOPNODE_HPP