1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 const Type::Offset Type::Offset::top(Type::OffsetTop);
  53 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  54 
  55 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  56   // Either is 'TOP' offset?  Return the other offset!
  57   int offset = other._offset;
  58   if (_offset == OffsetTop) return Offset(offset);
  59   if (offset == OffsetTop) return Offset(_offset);
  60   // If either is different, return 'BOTTOM' offset
  61   if (_offset != offset) return bottom;
  62   return Offset(_offset);
  63 }
  64 
  65 const Type::Offset Type::Offset::dual() const {
  66   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  67   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  68   return Offset(_offset);               // Map everything else into self
  69 }
  70 
  71 const Type::Offset Type::Offset::add(intptr_t offset) const {
  72   // Adding to 'TOP' offset?  Return 'TOP'!
  73   if (_offset == OffsetTop || offset == OffsetTop) return top;
  74   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  75   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  76   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  77   offset += (intptr_t)_offset;
  78   if (offset != (int)offset || offset == OffsetTop) return bottom;
  79 
  80   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  81   // It is possible to construct a negative offset during PhaseCCP
  82 
  83   return Offset((int)offset);        // Sum valid offsets
  84 }
  85 
  86 void Type::Offset::dump2(outputStream *st) const {
  87   if (_offset == 0) {
  88     return;
  89   } else if (_offset == OffsetTop) {
  90     st->print("+top");
  91   }
  92   else if (_offset == OffsetBot) {
  93     st->print("+bot");
  94   } else if (_offset) {
  95     st->print("+%d", _offset);
  96   }
  97 }
  98 
  99 // Array which maps compiler types to Basic Types
 100 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 101   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 102   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 103   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 104   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 105   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 106   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 107   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 108   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 109   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 110   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 111 
 112 #ifdef SPARC
 113   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 114   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 115   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 116   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 117   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 118 #elif defined(PPC64) || defined(S390)
 119   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 120   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 121   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 122   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 123   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 124 #else // all other
 125   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 126   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 127   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 128   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 129   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 130 #endif
 131   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 132   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 133   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 134   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 135   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 136   { Bad,             T_OBJECT,     "valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 137   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 138   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 139   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 140   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 141   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 142   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 143   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 144   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 145   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 146   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 147   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 148   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 149   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 150   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 151 };
 152 
 153 // Map ideal registers (machine types) to ideal types
 154 const Type *Type::mreg2type[_last_machine_leaf];
 155 
 156 // Map basic types to canonical Type* pointers.
 157 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 158 
 159 // Map basic types to constant-zero Types.
 160 const Type* Type::            _zero_type[T_CONFLICT+1];
 161 
 162 // Map basic types to array-body alias types.
 163 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 164 
 165 //=============================================================================
 166 // Convenience common pre-built types.
 167 const Type *Type::ABIO;         // State-of-machine only
 168 const Type *Type::BOTTOM;       // All values
 169 const Type *Type::CONTROL;      // Control only
 170 const Type *Type::DOUBLE;       // All doubles
 171 const Type *Type::FLOAT;        // All floats
 172 const Type *Type::HALF;         // Placeholder half of doublewide type
 173 const Type *Type::MEMORY;       // Abstract store only
 174 const Type *Type::RETURN_ADDRESS;
 175 const Type *Type::TOP;          // No values in set
 176 
 177 //------------------------------get_const_type---------------------------
 178 const Type* Type::get_const_type(ciType* type) {
 179   if (type == NULL) {
 180     return NULL;
 181   } else if (type->is_primitive_type()) {
 182     return get_const_basic_type(type->basic_type());
 183   } else {
 184     return TypeOopPtr::make_from_klass(type->as_klass());
 185   }
 186 }
 187 
 188 //---------------------------array_element_basic_type---------------------------------
 189 // Mapping to the array element's basic type.
 190 BasicType Type::array_element_basic_type() const {
 191   BasicType bt = basic_type();
 192   if (bt == T_INT) {
 193     if (this == TypeInt::INT)   return T_INT;
 194     if (this == TypeInt::CHAR)  return T_CHAR;
 195     if (this == TypeInt::BYTE)  return T_BYTE;
 196     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 197     if (this == TypeInt::SHORT) return T_SHORT;
 198     return T_VOID;
 199   }
 200   return bt;
 201 }
 202 
 203 // For two instance arrays of same dimension, return the base element types.
 204 // Otherwise or if the arrays have different dimensions, return NULL.
 205 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 206                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 207 
 208   if (e1) *e1 = NULL;
 209   if (e2) *e2 = NULL;
 210   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 211   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 212 
 213   if (a1tap != NULL && a2tap != NULL) {
 214     // Handle multidimensional arrays
 215     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 216     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 217     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 218       a1tap = a1tp->is_aryptr();
 219       a2tap = a2tp->is_aryptr();
 220       a1tp = a1tap->elem()->make_ptr();
 221       a2tp = a2tap->elem()->make_ptr();
 222     }
 223     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 224       if (e1) *e1 = a1tp->is_instptr();
 225       if (e2) *e2 = a2tp->is_instptr();
 226     }
 227   }
 228 }
 229 
 230 //---------------------------get_typeflow_type---------------------------------
 231 // Import a type produced by ciTypeFlow.
 232 const Type* Type::get_typeflow_type(ciType* type) {
 233   switch (type->basic_type()) {
 234 
 235   case ciTypeFlow::StateVector::T_BOTTOM:
 236     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 237     return Type::BOTTOM;
 238 
 239   case ciTypeFlow::StateVector::T_TOP:
 240     assert(type == ciTypeFlow::StateVector::top_type(), "");
 241     return Type::TOP;
 242 
 243   case ciTypeFlow::StateVector::T_NULL:
 244     assert(type == ciTypeFlow::StateVector::null_type(), "");
 245     return TypePtr::NULL_PTR;
 246 
 247   case ciTypeFlow::StateVector::T_LONG2:
 248     // The ciTypeFlow pass pushes a long, then the half.
 249     // We do the same.
 250     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 251     return TypeInt::TOP;
 252 
 253   case ciTypeFlow::StateVector::T_DOUBLE2:
 254     // The ciTypeFlow pass pushes double, then the half.
 255     // Our convention is the same.
 256     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 257     return Type::TOP;
 258 
 259   case T_ADDRESS:
 260     assert(type->is_return_address(), "");
 261     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 262 
 263   case T_VALUETYPE:
 264     return TypeValueType::make(type->as_value_klass());
 265 
 266   default:
 267     // make sure we did not mix up the cases:
 268     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 269     assert(type != ciTypeFlow::StateVector::top_type(), "");
 270     assert(type != ciTypeFlow::StateVector::null_type(), "");
 271     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 272     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 273     assert(!type->is_return_address(), "");
 274 
 275     return Type::get_const_type(type);
 276   }
 277 }
 278 
 279 
 280 //-----------------------make_from_constant------------------------------------
 281 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 282                                      int stable_dimension, bool is_narrow_oop,
 283                                      bool is_autobox_cache) {
 284   switch (constant.basic_type()) {
 285     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 286     case T_CHAR:     return TypeInt::make(constant.as_char());
 287     case T_BYTE:     return TypeInt::make(constant.as_byte());
 288     case T_SHORT:    return TypeInt::make(constant.as_short());
 289     case T_INT:      return TypeInt::make(constant.as_int());
 290     case T_LONG:     return TypeLong::make(constant.as_long());
 291     case T_FLOAT:    return TypeF::make(constant.as_float());
 292     case T_DOUBLE:   return TypeD::make(constant.as_double());
 293     case T_ARRAY:
 294     case T_VALUETYPE:
 295     case T_OBJECT: {
 296         // cases:
 297         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 298         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 299         // An oop is not scavengable if it is in the perm gen.
 300         const Type* con_type = NULL;
 301         ciObject* oop_constant = constant.as_object();
 302         if (oop_constant->is_null_object()) {
 303           con_type = Type::get_zero_type(T_OBJECT);
 304         } else if (require_constant || oop_constant->should_be_constant()) {
 305           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 306           if (con_type != NULL) {
 307             if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 308               con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 309             }
 310             if (stable_dimension > 0) {
 311               assert(FoldStableValues, "sanity");
 312               assert(!con_type->is_zero_type(), "default value for stable field");
 313               con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 314             }
 315           }
 316         }
 317         if (is_narrow_oop) {
 318           con_type = con_type->make_narrowoop();
 319         }
 320         return con_type;
 321       }
 322     case T_ILLEGAL:
 323       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 324       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 325       return NULL;
 326   }
 327   // Fall through to failure
 328   return NULL;
 329 }
 330 
 331 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 332   BasicType conbt = con.basic_type();
 333   switch (conbt) {
 334     case T_BOOLEAN: conbt = T_BYTE;   break;
 335     case T_ARRAY:   conbt = T_OBJECT; break;
 336     case T_VALUETYPE: conbt = T_OBJECT; break;
 337   }
 338   switch (loadbt) {
 339     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 340     case T_NARROWOOP: loadbt = T_OBJECT; break;
 341     case T_ARRAY:     loadbt = T_OBJECT; break;
 342     case T_VALUETYPE: loadbt = T_OBJECT; break;
 343     case T_ADDRESS:   loadbt = T_OBJECT; break;
 344   }
 345   if (conbt == loadbt) {
 346     if (is_unsigned && conbt == T_BYTE) {
 347       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 348       return ciConstant(T_INT, con.as_int() & 0xFF);
 349     } else {
 350       return con;
 351     }
 352   }
 353   if (conbt == T_SHORT && loadbt == T_CHAR) {
 354     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 355     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 356   }
 357   return ciConstant(); // T_ILLEGAL
 358 }
 359 
 360 // Try to constant-fold a stable array element.
 361 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 362                                                    BasicType loadbt, bool is_unsigned_load) {
 363   // Decode the results of GraphKit::array_element_address.
 364   ciConstant element_value = array->element_value_by_offset(off);
 365   if (element_value.basic_type() == T_ILLEGAL) {
 366     return NULL; // wrong offset
 367   }
 368   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 369 
 370   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 371          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 372 
 373   if (con.is_valid() &&          // not a mismatched access
 374       !con.is_null_or_zero()) {  // not a default value
 375     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 376     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 377   }
 378   return NULL;
 379 }
 380 
 381 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 382   ciField* field;
 383   ciType* type = holder->java_mirror_type();
 384   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 385     // Static field
 386     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 387   } else {
 388     // Instance field
 389     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 390   }
 391   if (field == NULL) {
 392     return NULL; // Wrong offset
 393   }
 394   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 395 }
 396 
 397 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 398                                            BasicType loadbt, bool is_unsigned_load) {
 399   if (!field->is_constant()) {
 400     return NULL; // Non-constant field
 401   }
 402   ciConstant field_value;
 403   if (field->is_static()) {
 404     // final static field
 405     field_value = field->constant_value();
 406   } else if (holder != NULL) {
 407     // final or stable non-static field
 408     // Treat final non-static fields of trusted classes (classes in
 409     // java.lang.invoke and sun.invoke packages and subpackages) as
 410     // compile time constants.
 411     field_value = field->constant_value_of(holder);
 412   }
 413   if (!field_value.is_valid()) {
 414     return NULL; // Not a constant
 415   }
 416 
 417   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 418 
 419   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 420          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 421 
 422   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 423   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 424   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 425 
 426   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 427                                             stable_dimension, is_narrow_oop,
 428                                             field->is_autobox_cache());
 429   if (con_type != NULL && field->is_call_site_target()) {
 430     ciCallSite* call_site = holder->as_call_site();
 431     if (!call_site->is_constant_call_site()) {
 432       ciMethodHandle* target = con.as_object()->as_method_handle();
 433       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 434     }
 435   }
 436   return con_type;
 437 }
 438 
 439 //------------------------------make-------------------------------------------
 440 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 441 // and look for an existing copy in the type dictionary.
 442 const Type *Type::make( enum TYPES t ) {
 443   return (new Type(t))->hashcons();
 444 }
 445 
 446 //------------------------------cmp--------------------------------------------
 447 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 448   if( t1->_base != t2->_base )
 449     return 1;                   // Missed badly
 450   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 451   return !t1->eq(t2);           // Return ZERO if equal
 452 }
 453 
 454 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 455   if (!include_speculative) {
 456     return remove_speculative();
 457   }
 458   return this;
 459 }
 460 
 461 //------------------------------hash-------------------------------------------
 462 int Type::uhash( const Type *const t ) {
 463   return t->hash();
 464 }
 465 
 466 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 467 
 468 //--------------------------Initialize_shared----------------------------------
 469 void Type::Initialize_shared(Compile* current) {
 470   // This method does not need to be locked because the first system
 471   // compilations (stub compilations) occur serially.  If they are
 472   // changed to proceed in parallel, then this section will need
 473   // locking.
 474 
 475   Arena* save = current->type_arena();
 476   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 477 
 478   current->set_type_arena(shared_type_arena);
 479   _shared_type_dict =
 480     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 481                                   shared_type_arena, 128 );
 482   current->set_type_dict(_shared_type_dict);
 483 
 484   // Make shared pre-built types.
 485   CONTROL = make(Control);      // Control only
 486   TOP     = make(Top);          // No values in set
 487   MEMORY  = make(Memory);       // Abstract store only
 488   ABIO    = make(Abio);         // State-of-machine only
 489   RETURN_ADDRESS=make(Return_Address);
 490   FLOAT   = make(FloatBot);     // All floats
 491   DOUBLE  = make(DoubleBot);    // All doubles
 492   BOTTOM  = make(Bottom);       // Everything
 493   HALF    = make(Half);         // Placeholder half of doublewide type
 494 
 495   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 496   TypeF::ONE  = TypeF::make(1.0); // Float 1
 497 
 498   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 499   TypeD::ONE  = TypeD::make(1.0); // Double 1
 500 
 501   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 502   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 503   TypeInt::ONE     = TypeInt::make( 1);  //  1
 504   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 505   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 506   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 507   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 508   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 509   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 510   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 511   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 512   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 513   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 514   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 515   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 516   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 517   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 518   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 519   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 520   // CmpL is overloaded both as the bytecode computation returning
 521   // a trinary (-1,0,+1) integer result AND as an efficient long
 522   // compare returning optimizer ideal-type flags.
 523   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 524   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 525   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 526   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 527   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 528 
 529   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 530   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 531   TypeLong::ONE     = TypeLong::make( 1);        //  1
 532   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 533   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 534   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 535   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 536   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 537 
 538   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 539   fboth[0] = Type::CONTROL;
 540   fboth[1] = Type::CONTROL;
 541   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 542 
 543   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 544   ffalse[0] = Type::CONTROL;
 545   ffalse[1] = Type::TOP;
 546   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 547 
 548   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 549   fneither[0] = Type::TOP;
 550   fneither[1] = Type::TOP;
 551   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 552 
 553   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 554   ftrue[0] = Type::TOP;
 555   ftrue[1] = Type::CONTROL;
 556   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 557 
 558   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 559   floop[0] = Type::CONTROL;
 560   floop[1] = TypeInt::INT;
 561   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 562 
 563   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 564   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 565   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 566 
 567   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 568   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 569 
 570   const Type **fmembar = TypeTuple::fields(0);
 571   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 572 
 573   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 574   fsc[0] = TypeInt::CC;
 575   fsc[1] = Type::MEMORY;
 576   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 577 
 578   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 579   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 580   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 581   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 582                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 583   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 584                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 585   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 586 
 587   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 588 
 589   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 590   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 591 
 592   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 593 
 594   TypeValueTypePtr::NOTNULL = EnableValhalla ? TypeValueTypePtr::make(TypePtr::NotNull, current->env()->___Value_klass()->as_value_klass()) : NULL;
 595 
 596   mreg2type[Op_Node] = Type::BOTTOM;
 597   mreg2type[Op_Set ] = 0;
 598   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 599   mreg2type[Op_RegI] = TypeInt::INT;
 600   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 601   mreg2type[Op_RegF] = Type::FLOAT;
 602   mreg2type[Op_RegD] = Type::DOUBLE;
 603   mreg2type[Op_RegL] = TypeLong::LONG;
 604   mreg2type[Op_RegFlags] = TypeInt::CC;
 605 
 606   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 607 
 608   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 609 
 610 #ifdef _LP64
 611   if (UseCompressedOops) {
 612     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 613     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 614   } else
 615 #endif
 616   {
 617     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 618     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 619   }
 620   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 621   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 622   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 623   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 624   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 625   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 626   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 627 
 628   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 629   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 630   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 631   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 632   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 633   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 634   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 635   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 636   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 637   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 638   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 639   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 640   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 641 
 642   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 643   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 644 
 645   const Type **fi2c = TypeTuple::fields(2);
 646   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 647   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 648   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 649 
 650   const Type **intpair = TypeTuple::fields(2);
 651   intpair[0] = TypeInt::INT;
 652   intpair[1] = TypeInt::INT;
 653   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 654 
 655   const Type **longpair = TypeTuple::fields(2);
 656   longpair[0] = TypeLong::LONG;
 657   longpair[1] = TypeLong::LONG;
 658   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 659 
 660   const Type **intccpair = TypeTuple::fields(2);
 661   intccpair[0] = TypeInt::INT;
 662   intccpair[1] = TypeInt::CC;
 663   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 664 
 665   const Type **longccpair = TypeTuple::fields(2);
 666   longccpair[0] = TypeLong::LONG;
 667   longccpair[1] = TypeInt::CC;
 668   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 669 
 670   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 671   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 672   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 673   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 674   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 675   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 676   _const_basic_type[T_INT]         = TypeInt::INT;
 677   _const_basic_type[T_LONG]        = TypeLong::LONG;
 678   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 679   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 680   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 681   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 682   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 683   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 684   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 685   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 686 
 687   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 688   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 689   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 690   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 691   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 692   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 693   _zero_type[T_INT]         = TypeInt::ZERO;
 694   _zero_type[T_LONG]        = TypeLong::ZERO;
 695   _zero_type[T_FLOAT]       = TypeF::ZERO;
 696   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 697   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 698   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 699   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 700   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 701   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 702 
 703   // get_zero_type() should not happen for T_CONFLICT
 704   _zero_type[T_CONFLICT]= NULL;
 705 
 706   // Vector predefined types, it needs initialized _const_basic_type[].
 707   if (Matcher::vector_size_supported(T_BYTE,4)) {
 708     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 709   }
 710   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 711     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 712   }
 713   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 714     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 715   }
 716   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 717     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 718   }
 719   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 720     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 721   }
 722   mreg2type[Op_VecS] = TypeVect::VECTS;
 723   mreg2type[Op_VecD] = TypeVect::VECTD;
 724   mreg2type[Op_VecX] = TypeVect::VECTX;
 725   mreg2type[Op_VecY] = TypeVect::VECTY;
 726   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 727 
 728   // Restore working type arena.
 729   current->set_type_arena(save);
 730   current->set_type_dict(NULL);
 731 }
 732 
 733 //------------------------------Initialize-------------------------------------
 734 void Type::Initialize(Compile* current) {
 735   assert(current->type_arena() != NULL, "must have created type arena");
 736 
 737   if (_shared_type_dict == NULL) {
 738     Initialize_shared(current);
 739   }
 740 
 741   Arena* type_arena = current->type_arena();
 742 
 743   // Create the hash-cons'ing dictionary with top-level storage allocation
 744   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 745   current->set_type_dict(tdic);
 746 
 747   // Transfer the shared types.
 748   DictI i(_shared_type_dict);
 749   for( ; i.test(); ++i ) {
 750     Type* t = (Type*)i._value;
 751     tdic->Insert(t,t);  // New Type, insert into Type table
 752   }
 753 }
 754 
 755 //------------------------------hashcons---------------------------------------
 756 // Do the hash-cons trick.  If the Type already exists in the type table,
 757 // delete the current Type and return the existing Type.  Otherwise stick the
 758 // current Type in the Type table.
 759 const Type *Type::hashcons(void) {
 760   debug_only(base());           // Check the assertion in Type::base().
 761   // Look up the Type in the Type dictionary
 762   Dict *tdic = type_dict();
 763   Type* old = (Type*)(tdic->Insert(this, this, false));
 764   if( old ) {                   // Pre-existing Type?
 765     if( old != this )           // Yes, this guy is not the pre-existing?
 766       delete this;              // Yes, Nuke this guy
 767     assert( old->_dual, "" );
 768     return old;                 // Return pre-existing
 769   }
 770 
 771   // Every type has a dual (to make my lattice symmetric).
 772   // Since we just discovered a new Type, compute its dual right now.
 773   assert( !_dual, "" );         // No dual yet
 774   _dual = xdual();              // Compute the dual
 775   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 776     _dual = this;
 777     return this;
 778   }
 779   assert( !_dual->_dual, "" );  // No reverse dual yet
 780   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 781   // New Type, insert into Type table
 782   tdic->Insert((void*)_dual,(void*)_dual);
 783   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 784 #ifdef ASSERT
 785   Type *dual_dual = (Type*)_dual->xdual();
 786   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 787   delete dual_dual;
 788 #endif
 789   return this;                  // Return new Type
 790 }
 791 
 792 //------------------------------eq---------------------------------------------
 793 // Structural equality check for Type representations
 794 bool Type::eq( const Type * ) const {
 795   return true;                  // Nothing else can go wrong
 796 }
 797 
 798 //------------------------------hash-------------------------------------------
 799 // Type-specific hashing function.
 800 int Type::hash(void) const {
 801   return _base;
 802 }
 803 
 804 //------------------------------is_finite--------------------------------------
 805 // Has a finite value
 806 bool Type::is_finite() const {
 807   return false;
 808 }
 809 
 810 //------------------------------is_nan-----------------------------------------
 811 // Is not a number (NaN)
 812 bool Type::is_nan()    const {
 813   return false;
 814 }
 815 
 816 //----------------------interface_vs_oop---------------------------------------
 817 #ifdef ASSERT
 818 bool Type::interface_vs_oop_helper(const Type *t) const {
 819   bool result = false;
 820 
 821   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 822   const TypePtr*    t_ptr =    t->make_ptr();
 823   if( this_ptr == NULL || t_ptr == NULL )
 824     return result;
 825 
 826   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 827   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 828   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 829     bool this_interface = this_inst->klass()->is_interface();
 830     bool    t_interface =    t_inst->klass()->is_interface();
 831     result = this_interface ^ t_interface;
 832   }
 833 
 834   return result;
 835 }
 836 
 837 bool Type::interface_vs_oop(const Type *t) const {
 838   if (interface_vs_oop_helper(t)) {
 839     return true;
 840   }
 841   // Now check the speculative parts as well
 842   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 843   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 844   if (this_spec != NULL && t_spec != NULL) {
 845     if (this_spec->interface_vs_oop_helper(t_spec)) {
 846       return true;
 847     }
 848     return false;
 849   }
 850   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 851     return true;
 852   }
 853   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 854     return true;
 855   }
 856   return false;
 857 }
 858 
 859 #endif
 860 
 861 //------------------------------meet-------------------------------------------
 862 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 863 // commutative and the lattice is symmetric.
 864 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 865   if (isa_narrowoop() && t->isa_narrowoop()) {
 866     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 867     return result->make_narrowoop();
 868   }
 869   if (isa_narrowklass() && t->isa_narrowklass()) {
 870     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 871     return result->make_narrowklass();
 872   }
 873 
 874   const Type *this_t = maybe_remove_speculative(include_speculative);
 875   t = t->maybe_remove_speculative(include_speculative);
 876 
 877   const Type *mt = this_t->xmeet(t);
 878   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 879   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 880 #ifdef ASSERT
 881   assert(mt == t->xmeet(this_t), "meet not commutative");
 882   const Type* dual_join = mt->_dual;
 883   const Type *t2t    = dual_join->xmeet(t->_dual);
 884   const Type *t2this = dual_join->xmeet(this_t->_dual);
 885 
 886   // Interface meet Oop is Not Symmetric:
 887   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 888   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 889 
 890   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 891     tty->print_cr("=== Meet Not Symmetric ===");
 892     tty->print("t   =                   ");              t->dump(); tty->cr();
 893     tty->print("this=                   ");         this_t->dump(); tty->cr();
 894     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 895 
 896     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 897     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 898     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 899 
 900     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 901     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 902 
 903     fatal("meet not symmetric" );
 904   }
 905 #endif
 906   return mt;
 907 }
 908 
 909 //------------------------------xmeet------------------------------------------
 910 // Compute the MEET of two types.  It returns a new Type object.
 911 const Type *Type::xmeet( const Type *t ) const {
 912   // Perform a fast test for common case; meeting the same types together.
 913   if( this == t ) return this;  // Meeting same type-rep?
 914 
 915   // Meeting TOP with anything?
 916   if( _base == Top ) return t;
 917 
 918   // Meeting BOTTOM with anything?
 919   if( _base == Bottom ) return BOTTOM;
 920 
 921   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 922   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 923   switch (t->base()) {  // Switch on original type
 924 
 925   // Cut in half the number of cases I must handle.  Only need cases for when
 926   // the given enum "t->type" is less than or equal to the local enum "type".
 927   case FloatCon:
 928   case DoubleCon:
 929   case Int:
 930   case Long:
 931     return t->xmeet(this);
 932 
 933   case OopPtr:
 934     return t->xmeet(this);
 935 
 936   case InstPtr:
 937   case ValueTypePtr:
 938     return t->xmeet(this);
 939 
 940   case MetadataPtr:
 941   case KlassPtr:
 942     return t->xmeet(this);
 943 
 944   case AryPtr:
 945     return t->xmeet(this);
 946 
 947   case NarrowOop:
 948     return t->xmeet(this);
 949 
 950   case NarrowKlass:
 951     return t->xmeet(this);
 952 
 953   case ValueType:
 954     return t->xmeet(this);
 955 
 956   case Bad:                     // Type check
 957   default:                      // Bogus type not in lattice
 958     typerr(t);
 959     return Type::BOTTOM;
 960 
 961   case Bottom:                  // Ye Olde Default
 962     return t;
 963 
 964   case FloatTop:
 965     if( _base == FloatTop ) return this;
 966   case FloatBot:                // Float
 967     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 968     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 969     typerr(t);
 970     return Type::BOTTOM;
 971 
 972   case DoubleTop:
 973     if( _base == DoubleTop ) return this;
 974   case DoubleBot:               // Double
 975     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 976     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 977     typerr(t);
 978     return Type::BOTTOM;
 979 
 980   // These next few cases must match exactly or it is a compile-time error.
 981   case Control:                 // Control of code
 982   case Abio:                    // State of world outside of program
 983   case Memory:
 984     if( _base == t->_base )  return this;
 985     typerr(t);
 986     return Type::BOTTOM;
 987 
 988   case Top:                     // Top of the lattice
 989     return this;
 990   }
 991 
 992   // The type is unchanged
 993   return this;
 994 }
 995 
 996 //-----------------------------filter------------------------------------------
 997 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 998   const Type* ft = join_helper(kills, include_speculative);
 999   if (ft->empty())
1000     return Type::TOP;           // Canonical empty value
1001   return ft;
1002 }
1003 
1004 //------------------------------xdual------------------------------------------
1005 // Compute dual right now.
1006 const Type::TYPES Type::dual_type[Type::lastype] = {
1007   Bad,          // Bad
1008   Control,      // Control
1009   Bottom,       // Top
1010   Bad,          // Int - handled in v-call
1011   Bad,          // Long - handled in v-call
1012   Half,         // Half
1013   Bad,          // NarrowOop - handled in v-call
1014   Bad,          // NarrowKlass - handled in v-call
1015 
1016   Bad,          // Tuple - handled in v-call
1017   Bad,          // Array - handled in v-call
1018   Bad,          // VectorS - handled in v-call
1019   Bad,          // VectorD - handled in v-call
1020   Bad,          // VectorX - handled in v-call
1021   Bad,          // VectorY - handled in v-call
1022   Bad,          // VectorZ - handled in v-call
1023   Bad,          // ValueType - handled in v-call
1024 
1025   Bad,          // AnyPtr - handled in v-call
1026   Bad,          // RawPtr - handled in v-call
1027   Bad,          // OopPtr - handled in v-call
1028   Bad,          // InstPtr - handled in v-call
1029   Bad,          // ValueTypePtr - handled in v-call
1030   Bad,          // AryPtr - handled in v-call
1031 
1032   Bad,          //  MetadataPtr - handled in v-call
1033   Bad,          // KlassPtr - handled in v-call
1034 
1035   Bad,          // Function - handled in v-call
1036   Abio,         // Abio
1037   Return_Address,// Return_Address
1038   Memory,       // Memory
1039   FloatBot,     // FloatTop
1040   FloatCon,     // FloatCon
1041   FloatTop,     // FloatBot
1042   DoubleBot,    // DoubleTop
1043   DoubleCon,    // DoubleCon
1044   DoubleTop,    // DoubleBot
1045   Top           // Bottom
1046 };
1047 
1048 const Type *Type::xdual() const {
1049   // Note: the base() accessor asserts the sanity of _base.
1050   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1051   return new Type(_type_info[_base].dual_type);
1052 }
1053 
1054 //------------------------------has_memory-------------------------------------
1055 bool Type::has_memory() const {
1056   Type::TYPES tx = base();
1057   if (tx == Memory) return true;
1058   if (tx == Tuple) {
1059     const TypeTuple *t = is_tuple();
1060     for (uint i=0; i < t->cnt(); i++) {
1061       tx = t->field_at(i)->base();
1062       if (tx == Memory)  return true;
1063     }
1064   }
1065   return false;
1066 }
1067 
1068 #ifndef PRODUCT
1069 //------------------------------dump2------------------------------------------
1070 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1071   st->print("%s", _type_info[_base].msg);
1072 }
1073 
1074 //------------------------------dump-------------------------------------------
1075 void Type::dump_on(outputStream *st) const {
1076   ResourceMark rm;
1077   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1078   dump2(d,1, st);
1079   if (is_ptr_to_narrowoop()) {
1080     st->print(" [narrow]");
1081   } else if (is_ptr_to_narrowklass()) {
1082     st->print(" [narrowklass]");
1083   }
1084 }
1085 
1086 //-----------------------------------------------------------------------------
1087 const char* Type::str(const Type* t) {
1088   stringStream ss;
1089   t->dump_on(&ss);
1090   return ss.as_string();
1091 }
1092 #endif
1093 
1094 //------------------------------singleton--------------------------------------
1095 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1096 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1097 bool Type::singleton(void) const {
1098   return _base == Top || _base == Half;
1099 }
1100 
1101 //------------------------------empty------------------------------------------
1102 // TRUE if Type is a type with no values, FALSE otherwise.
1103 bool Type::empty(void) const {
1104   switch (_base) {
1105   case DoubleTop:
1106   case FloatTop:
1107   case Top:
1108     return true;
1109 
1110   case Half:
1111   case Abio:
1112   case Return_Address:
1113   case Memory:
1114   case Bottom:
1115   case FloatBot:
1116   case DoubleBot:
1117     return false;  // never a singleton, therefore never empty
1118   }
1119 
1120   ShouldNotReachHere();
1121   return false;
1122 }
1123 
1124 //------------------------------dump_stats-------------------------------------
1125 // Dump collected statistics to stderr
1126 #ifndef PRODUCT
1127 void Type::dump_stats() {
1128   tty->print("Types made: %d\n", type_dict()->Size());
1129 }
1130 #endif
1131 
1132 //------------------------------typerr-----------------------------------------
1133 void Type::typerr( const Type *t ) const {
1134 #ifndef PRODUCT
1135   tty->print("\nError mixing types: ");
1136   dump();
1137   tty->print(" and ");
1138   t->dump();
1139   tty->print("\n");
1140 #endif
1141   ShouldNotReachHere();
1142 }
1143 
1144 
1145 //=============================================================================
1146 // Convenience common pre-built types.
1147 const TypeF *TypeF::ZERO;       // Floating point zero
1148 const TypeF *TypeF::ONE;        // Floating point one
1149 
1150 //------------------------------make-------------------------------------------
1151 // Create a float constant
1152 const TypeF *TypeF::make(float f) {
1153   return (TypeF*)(new TypeF(f))->hashcons();
1154 }
1155 
1156 //------------------------------meet-------------------------------------------
1157 // Compute the MEET of two types.  It returns a new Type object.
1158 const Type *TypeF::xmeet( const Type *t ) const {
1159   // Perform a fast test for common case; meeting the same types together.
1160   if( this == t ) return this;  // Meeting same type-rep?
1161 
1162   // Current "this->_base" is FloatCon
1163   switch (t->base()) {          // Switch on original type
1164   case AnyPtr:                  // Mixing with oops happens when javac
1165   case RawPtr:                  // reuses local variables
1166   case OopPtr:
1167   case InstPtr:
1168   case ValueTypePtr:
1169   case AryPtr:
1170   case MetadataPtr:
1171   case KlassPtr:
1172   case NarrowOop:
1173   case NarrowKlass:
1174   case Int:
1175   case Long:
1176   case DoubleTop:
1177   case DoubleCon:
1178   case DoubleBot:
1179   case Bottom:                  // Ye Olde Default
1180     return Type::BOTTOM;
1181 
1182   case FloatBot:
1183     return t;
1184 
1185   default:                      // All else is a mistake
1186     typerr(t);
1187 
1188   case FloatCon:                // Float-constant vs Float-constant?
1189     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1190                                 // must compare bitwise as positive zero, negative zero and NaN have
1191                                 // all the same representation in C++
1192       return FLOAT;             // Return generic float
1193                                 // Equal constants
1194   case Top:
1195   case FloatTop:
1196     break;                      // Return the float constant
1197   }
1198   return this;                  // Return the float constant
1199 }
1200 
1201 //------------------------------xdual------------------------------------------
1202 // Dual: symmetric
1203 const Type *TypeF::xdual() const {
1204   return this;
1205 }
1206 
1207 //------------------------------eq---------------------------------------------
1208 // Structural equality check for Type representations
1209 bool TypeF::eq(const Type *t) const {
1210   // Bitwise comparison to distinguish between +/-0. These values must be treated
1211   // as different to be consistent with C1 and the interpreter.
1212   return (jint_cast(_f) == jint_cast(t->getf()));
1213 }
1214 
1215 //------------------------------hash-------------------------------------------
1216 // Type-specific hashing function.
1217 int TypeF::hash(void) const {
1218   return *(int*)(&_f);
1219 }
1220 
1221 //------------------------------is_finite--------------------------------------
1222 // Has a finite value
1223 bool TypeF::is_finite() const {
1224   return g_isfinite(getf()) != 0;
1225 }
1226 
1227 //------------------------------is_nan-----------------------------------------
1228 // Is not a number (NaN)
1229 bool TypeF::is_nan()    const {
1230   return g_isnan(getf()) != 0;
1231 }
1232 
1233 //------------------------------dump2------------------------------------------
1234 // Dump float constant Type
1235 #ifndef PRODUCT
1236 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1237   Type::dump2(d,depth, st);
1238   st->print("%f", _f);
1239 }
1240 #endif
1241 
1242 //------------------------------singleton--------------------------------------
1243 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1244 // constants (Ldi nodes).  Singletons are integer, float or double constants
1245 // or a single symbol.
1246 bool TypeF::singleton(void) const {
1247   return true;                  // Always a singleton
1248 }
1249 
1250 bool TypeF::empty(void) const {
1251   return false;                 // always exactly a singleton
1252 }
1253 
1254 //=============================================================================
1255 // Convenience common pre-built types.
1256 const TypeD *TypeD::ZERO;       // Floating point zero
1257 const TypeD *TypeD::ONE;        // Floating point one
1258 
1259 //------------------------------make-------------------------------------------
1260 const TypeD *TypeD::make(double d) {
1261   return (TypeD*)(new TypeD(d))->hashcons();
1262 }
1263 
1264 //------------------------------meet-------------------------------------------
1265 // Compute the MEET of two types.  It returns a new Type object.
1266 const Type *TypeD::xmeet( const Type *t ) const {
1267   // Perform a fast test for common case; meeting the same types together.
1268   if( this == t ) return this;  // Meeting same type-rep?
1269 
1270   // Current "this->_base" is DoubleCon
1271   switch (t->base()) {          // Switch on original type
1272   case AnyPtr:                  // Mixing with oops happens when javac
1273   case RawPtr:                  // reuses local variables
1274   case OopPtr:
1275   case InstPtr:
1276   case ValueTypePtr:
1277   case AryPtr:
1278   case MetadataPtr:
1279   case KlassPtr:
1280   case NarrowOop:
1281   case NarrowKlass:
1282   case Int:
1283   case Long:
1284   case FloatTop:
1285   case FloatCon:
1286   case FloatBot:
1287   case Bottom:                  // Ye Olde Default
1288     return Type::BOTTOM;
1289 
1290   case DoubleBot:
1291     return t;
1292 
1293   default:                      // All else is a mistake
1294     typerr(t);
1295 
1296   case DoubleCon:               // Double-constant vs Double-constant?
1297     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1298       return DOUBLE;            // Return generic double
1299   case Top:
1300   case DoubleTop:
1301     break;
1302   }
1303   return this;                  // Return the double constant
1304 }
1305 
1306 //------------------------------xdual------------------------------------------
1307 // Dual: symmetric
1308 const Type *TypeD::xdual() const {
1309   return this;
1310 }
1311 
1312 //------------------------------eq---------------------------------------------
1313 // Structural equality check for Type representations
1314 bool TypeD::eq(const Type *t) const {
1315   // Bitwise comparison to distinguish between +/-0. These values must be treated
1316   // as different to be consistent with C1 and the interpreter.
1317   return (jlong_cast(_d) == jlong_cast(t->getd()));
1318 }
1319 
1320 //------------------------------hash-------------------------------------------
1321 // Type-specific hashing function.
1322 int TypeD::hash(void) const {
1323   return *(int*)(&_d);
1324 }
1325 
1326 //------------------------------is_finite--------------------------------------
1327 // Has a finite value
1328 bool TypeD::is_finite() const {
1329   return g_isfinite(getd()) != 0;
1330 }
1331 
1332 //------------------------------is_nan-----------------------------------------
1333 // Is not a number (NaN)
1334 bool TypeD::is_nan()    const {
1335   return g_isnan(getd()) != 0;
1336 }
1337 
1338 //------------------------------dump2------------------------------------------
1339 // Dump double constant Type
1340 #ifndef PRODUCT
1341 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1342   Type::dump2(d,depth,st);
1343   st->print("%f", _d);
1344 }
1345 #endif
1346 
1347 //------------------------------singleton--------------------------------------
1348 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1349 // constants (Ldi nodes).  Singletons are integer, float or double constants
1350 // or a single symbol.
1351 bool TypeD::singleton(void) const {
1352   return true;                  // Always a singleton
1353 }
1354 
1355 bool TypeD::empty(void) const {
1356   return false;                 // always exactly a singleton
1357 }
1358 
1359 //=============================================================================
1360 // Convience common pre-built types.
1361 const TypeInt *TypeInt::MINUS_1;// -1
1362 const TypeInt *TypeInt::ZERO;   // 0
1363 const TypeInt *TypeInt::ONE;    // 1
1364 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1365 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1366 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1367 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1368 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1369 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1370 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1371 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1372 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1373 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1374 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1375 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1376 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1377 const TypeInt *TypeInt::INT;    // 32-bit integers
1378 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1379 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1380 
1381 //------------------------------TypeInt----------------------------------------
1382 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1383 }
1384 
1385 //------------------------------make-------------------------------------------
1386 const TypeInt *TypeInt::make( jint lo ) {
1387   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1388 }
1389 
1390 static int normalize_int_widen( jint lo, jint hi, int w ) {
1391   // Certain normalizations keep us sane when comparing types.
1392   // The 'SMALLINT' covers constants and also CC and its relatives.
1393   if (lo <= hi) {
1394     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1395     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1396   } else {
1397     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1398     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1399   }
1400   return w;
1401 }
1402 
1403 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1404   w = normalize_int_widen(lo, hi, w);
1405   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1406 }
1407 
1408 //------------------------------meet-------------------------------------------
1409 // Compute the MEET of two types.  It returns a new Type representation object
1410 // with reference count equal to the number of Types pointing at it.
1411 // Caller should wrap a Types around it.
1412 const Type *TypeInt::xmeet( const Type *t ) const {
1413   // Perform a fast test for common case; meeting the same types together.
1414   if( this == t ) return this;  // Meeting same type?
1415 
1416   // Currently "this->_base" is a TypeInt
1417   switch (t->base()) {          // Switch on original type
1418   case AnyPtr:                  // Mixing with oops happens when javac
1419   case RawPtr:                  // reuses local variables
1420   case OopPtr:
1421   case InstPtr:
1422   case ValueTypePtr:
1423   case AryPtr:
1424   case MetadataPtr:
1425   case KlassPtr:
1426   case NarrowOop:
1427   case NarrowKlass:
1428   case Long:
1429   case FloatTop:
1430   case FloatCon:
1431   case FloatBot:
1432   case DoubleTop:
1433   case DoubleCon:
1434   case DoubleBot:
1435   case Bottom:                  // Ye Olde Default
1436     return Type::BOTTOM;
1437   default:                      // All else is a mistake
1438     typerr(t);
1439   case Top:                     // No change
1440     return this;
1441   case Int:                     // Int vs Int?
1442     break;
1443   }
1444 
1445   // Expand covered set
1446   const TypeInt *r = t->is_int();
1447   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1448 }
1449 
1450 //------------------------------xdual------------------------------------------
1451 // Dual: reverse hi & lo; flip widen
1452 const Type *TypeInt::xdual() const {
1453   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1454   return new TypeInt(_hi,_lo,w);
1455 }
1456 
1457 //------------------------------widen------------------------------------------
1458 // Only happens for optimistic top-down optimizations.
1459 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1460   // Coming from TOP or such; no widening
1461   if( old->base() != Int ) return this;
1462   const TypeInt *ot = old->is_int();
1463 
1464   // If new guy is equal to old guy, no widening
1465   if( _lo == ot->_lo && _hi == ot->_hi )
1466     return old;
1467 
1468   // If new guy contains old, then we widened
1469   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1470     // New contains old
1471     // If new guy is already wider than old, no widening
1472     if( _widen > ot->_widen ) return this;
1473     // If old guy was a constant, do not bother
1474     if (ot->_lo == ot->_hi)  return this;
1475     // Now widen new guy.
1476     // Check for widening too far
1477     if (_widen == WidenMax) {
1478       int max = max_jint;
1479       int min = min_jint;
1480       if (limit->isa_int()) {
1481         max = limit->is_int()->_hi;
1482         min = limit->is_int()->_lo;
1483       }
1484       if (min < _lo && _hi < max) {
1485         // If neither endpoint is extremal yet, push out the endpoint
1486         // which is closer to its respective limit.
1487         if (_lo >= 0 ||                 // easy common case
1488             (juint)(_lo - min) >= (juint)(max - _hi)) {
1489           // Try to widen to an unsigned range type of 31 bits:
1490           return make(_lo, max, WidenMax);
1491         } else {
1492           return make(min, _hi, WidenMax);
1493         }
1494       }
1495       return TypeInt::INT;
1496     }
1497     // Returned widened new guy
1498     return make(_lo,_hi,_widen+1);
1499   }
1500 
1501   // If old guy contains new, then we probably widened too far & dropped to
1502   // bottom.  Return the wider fellow.
1503   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1504     return old;
1505 
1506   //fatal("Integer value range is not subset");
1507   //return this;
1508   return TypeInt::INT;
1509 }
1510 
1511 //------------------------------narrow---------------------------------------
1512 // Only happens for pessimistic optimizations.
1513 const Type *TypeInt::narrow( const Type *old ) const {
1514   if (_lo >= _hi)  return this;   // already narrow enough
1515   if (old == NULL)  return this;
1516   const TypeInt* ot = old->isa_int();
1517   if (ot == NULL)  return this;
1518   jint olo = ot->_lo;
1519   jint ohi = ot->_hi;
1520 
1521   // If new guy is equal to old guy, no narrowing
1522   if (_lo == olo && _hi == ohi)  return old;
1523 
1524   // If old guy was maximum range, allow the narrowing
1525   if (olo == min_jint && ohi == max_jint)  return this;
1526 
1527   if (_lo < olo || _hi > ohi)
1528     return this;                // doesn't narrow; pretty wierd
1529 
1530   // The new type narrows the old type, so look for a "death march".
1531   // See comments on PhaseTransform::saturate.
1532   juint nrange = (juint)_hi - _lo;
1533   juint orange = (juint)ohi - olo;
1534   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1535     // Use the new type only if the range shrinks a lot.
1536     // We do not want the optimizer computing 2^31 point by point.
1537     return old;
1538   }
1539 
1540   return this;
1541 }
1542 
1543 //-----------------------------filter------------------------------------------
1544 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1545   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1546   if (ft == NULL || ft->empty())
1547     return Type::TOP;           // Canonical empty value
1548   if (ft->_widen < this->_widen) {
1549     // Do not allow the value of kill->_widen to affect the outcome.
1550     // The widen bits must be allowed to run freely through the graph.
1551     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1552   }
1553   return ft;
1554 }
1555 
1556 //------------------------------eq---------------------------------------------
1557 // Structural equality check for Type representations
1558 bool TypeInt::eq( const Type *t ) const {
1559   const TypeInt *r = t->is_int(); // Handy access
1560   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1561 }
1562 
1563 //------------------------------hash-------------------------------------------
1564 // Type-specific hashing function.
1565 int TypeInt::hash(void) const {
1566   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1567 }
1568 
1569 //------------------------------is_finite--------------------------------------
1570 // Has a finite value
1571 bool TypeInt::is_finite() const {
1572   return true;
1573 }
1574 
1575 //------------------------------dump2------------------------------------------
1576 // Dump TypeInt
1577 #ifndef PRODUCT
1578 static const char* intname(char* buf, jint n) {
1579   if (n == min_jint)
1580     return "min";
1581   else if (n < min_jint + 10000)
1582     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1583   else if (n == max_jint)
1584     return "max";
1585   else if (n > max_jint - 10000)
1586     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1587   else
1588     sprintf(buf, INT32_FORMAT, n);
1589   return buf;
1590 }
1591 
1592 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1593   char buf[40], buf2[40];
1594   if (_lo == min_jint && _hi == max_jint)
1595     st->print("int");
1596   else if (is_con())
1597     st->print("int:%s", intname(buf, get_con()));
1598   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1599     st->print("bool");
1600   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1601     st->print("byte");
1602   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1603     st->print("char");
1604   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1605     st->print("short");
1606   else if (_hi == max_jint)
1607     st->print("int:>=%s", intname(buf, _lo));
1608   else if (_lo == min_jint)
1609     st->print("int:<=%s", intname(buf, _hi));
1610   else
1611     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1612 
1613   if (_widen != 0 && this != TypeInt::INT)
1614     st->print(":%.*s", _widen, "wwww");
1615 }
1616 #endif
1617 
1618 //------------------------------singleton--------------------------------------
1619 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1620 // constants.
1621 bool TypeInt::singleton(void) const {
1622   return _lo >= _hi;
1623 }
1624 
1625 bool TypeInt::empty(void) const {
1626   return _lo > _hi;
1627 }
1628 
1629 //=============================================================================
1630 // Convenience common pre-built types.
1631 const TypeLong *TypeLong::MINUS_1;// -1
1632 const TypeLong *TypeLong::ZERO; // 0
1633 const TypeLong *TypeLong::ONE;  // 1
1634 const TypeLong *TypeLong::POS;  // >=0
1635 const TypeLong *TypeLong::LONG; // 64-bit integers
1636 const TypeLong *TypeLong::INT;  // 32-bit subrange
1637 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1638 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1639 
1640 //------------------------------TypeLong---------------------------------------
1641 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1642 }
1643 
1644 //------------------------------make-------------------------------------------
1645 const TypeLong *TypeLong::make( jlong lo ) {
1646   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1647 }
1648 
1649 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1650   // Certain normalizations keep us sane when comparing types.
1651   // The 'SMALLINT' covers constants.
1652   if (lo <= hi) {
1653     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1654     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1655   } else {
1656     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1657     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1658   }
1659   return w;
1660 }
1661 
1662 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1663   w = normalize_long_widen(lo, hi, w);
1664   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1665 }
1666 
1667 
1668 //------------------------------meet-------------------------------------------
1669 // Compute the MEET of two types.  It returns a new Type representation object
1670 // with reference count equal to the number of Types pointing at it.
1671 // Caller should wrap a Types around it.
1672 const Type *TypeLong::xmeet( const Type *t ) const {
1673   // Perform a fast test for common case; meeting the same types together.
1674   if( this == t ) return this;  // Meeting same type?
1675 
1676   // Currently "this->_base" is a TypeLong
1677   switch (t->base()) {          // Switch on original type
1678   case AnyPtr:                  // Mixing with oops happens when javac
1679   case RawPtr:                  // reuses local variables
1680   case OopPtr:
1681   case InstPtr:
1682   case ValueTypePtr:
1683   case AryPtr:
1684   case MetadataPtr:
1685   case KlassPtr:
1686   case NarrowOop:
1687   case NarrowKlass:
1688   case Int:
1689   case FloatTop:
1690   case FloatCon:
1691   case FloatBot:
1692   case DoubleTop:
1693   case DoubleCon:
1694   case DoubleBot:
1695   case Bottom:                  // Ye Olde Default
1696     return Type::BOTTOM;
1697   default:                      // All else is a mistake
1698     typerr(t);
1699   case Top:                     // No change
1700     return this;
1701   case Long:                    // Long vs Long?
1702     break;
1703   }
1704 
1705   // Expand covered set
1706   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1707   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1708 }
1709 
1710 //------------------------------xdual------------------------------------------
1711 // Dual: reverse hi & lo; flip widen
1712 const Type *TypeLong::xdual() const {
1713   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1714   return new TypeLong(_hi,_lo,w);
1715 }
1716 
1717 //------------------------------widen------------------------------------------
1718 // Only happens for optimistic top-down optimizations.
1719 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1720   // Coming from TOP or such; no widening
1721   if( old->base() != Long ) return this;
1722   const TypeLong *ot = old->is_long();
1723 
1724   // If new guy is equal to old guy, no widening
1725   if( _lo == ot->_lo && _hi == ot->_hi )
1726     return old;
1727 
1728   // If new guy contains old, then we widened
1729   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1730     // New contains old
1731     // If new guy is already wider than old, no widening
1732     if( _widen > ot->_widen ) return this;
1733     // If old guy was a constant, do not bother
1734     if (ot->_lo == ot->_hi)  return this;
1735     // Now widen new guy.
1736     // Check for widening too far
1737     if (_widen == WidenMax) {
1738       jlong max = max_jlong;
1739       jlong min = min_jlong;
1740       if (limit->isa_long()) {
1741         max = limit->is_long()->_hi;
1742         min = limit->is_long()->_lo;
1743       }
1744       if (min < _lo && _hi < max) {
1745         // If neither endpoint is extremal yet, push out the endpoint
1746         // which is closer to its respective limit.
1747         if (_lo >= 0 ||                 // easy common case
1748             ((julong)_lo - min) >= ((julong)max - _hi)) {
1749           // Try to widen to an unsigned range type of 32/63 bits:
1750           if (max >= max_juint && _hi < max_juint)
1751             return make(_lo, max_juint, WidenMax);
1752           else
1753             return make(_lo, max, WidenMax);
1754         } else {
1755           return make(min, _hi, WidenMax);
1756         }
1757       }
1758       return TypeLong::LONG;
1759     }
1760     // Returned widened new guy
1761     return make(_lo,_hi,_widen+1);
1762   }
1763 
1764   // If old guy contains new, then we probably widened too far & dropped to
1765   // bottom.  Return the wider fellow.
1766   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1767     return old;
1768 
1769   //  fatal("Long value range is not subset");
1770   // return this;
1771   return TypeLong::LONG;
1772 }
1773 
1774 //------------------------------narrow----------------------------------------
1775 // Only happens for pessimistic optimizations.
1776 const Type *TypeLong::narrow( const Type *old ) const {
1777   if (_lo >= _hi)  return this;   // already narrow enough
1778   if (old == NULL)  return this;
1779   const TypeLong* ot = old->isa_long();
1780   if (ot == NULL)  return this;
1781   jlong olo = ot->_lo;
1782   jlong ohi = ot->_hi;
1783 
1784   // If new guy is equal to old guy, no narrowing
1785   if (_lo == olo && _hi == ohi)  return old;
1786 
1787   // If old guy was maximum range, allow the narrowing
1788   if (olo == min_jlong && ohi == max_jlong)  return this;
1789 
1790   if (_lo < olo || _hi > ohi)
1791     return this;                // doesn't narrow; pretty wierd
1792 
1793   // The new type narrows the old type, so look for a "death march".
1794   // See comments on PhaseTransform::saturate.
1795   julong nrange = _hi - _lo;
1796   julong orange = ohi - olo;
1797   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1798     // Use the new type only if the range shrinks a lot.
1799     // We do not want the optimizer computing 2^31 point by point.
1800     return old;
1801   }
1802 
1803   return this;
1804 }
1805 
1806 //-----------------------------filter------------------------------------------
1807 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1808   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1809   if (ft == NULL || ft->empty())
1810     return Type::TOP;           // Canonical empty value
1811   if (ft->_widen < this->_widen) {
1812     // Do not allow the value of kill->_widen to affect the outcome.
1813     // The widen bits must be allowed to run freely through the graph.
1814     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1815   }
1816   return ft;
1817 }
1818 
1819 //------------------------------eq---------------------------------------------
1820 // Structural equality check for Type representations
1821 bool TypeLong::eq( const Type *t ) const {
1822   const TypeLong *r = t->is_long(); // Handy access
1823   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1824 }
1825 
1826 //------------------------------hash-------------------------------------------
1827 // Type-specific hashing function.
1828 int TypeLong::hash(void) const {
1829   return (int)(_lo+_hi+_widen+(int)Type::Long);
1830 }
1831 
1832 //------------------------------is_finite--------------------------------------
1833 // Has a finite value
1834 bool TypeLong::is_finite() const {
1835   return true;
1836 }
1837 
1838 //------------------------------dump2------------------------------------------
1839 // Dump TypeLong
1840 #ifndef PRODUCT
1841 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1842   if (n > x) {
1843     if (n >= x + 10000)  return NULL;
1844     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1845   } else if (n < x) {
1846     if (n <= x - 10000)  return NULL;
1847     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1848   } else {
1849     return xname;
1850   }
1851   return buf;
1852 }
1853 
1854 static const char* longname(char* buf, jlong n) {
1855   const char* str;
1856   if (n == min_jlong)
1857     return "min";
1858   else if (n < min_jlong + 10000)
1859     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1860   else if (n == max_jlong)
1861     return "max";
1862   else if (n > max_jlong - 10000)
1863     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1864   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1865     return str;
1866   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1867     return str;
1868   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1869     return str;
1870   else
1871     sprintf(buf, JLONG_FORMAT, n);
1872   return buf;
1873 }
1874 
1875 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1876   char buf[80], buf2[80];
1877   if (_lo == min_jlong && _hi == max_jlong)
1878     st->print("long");
1879   else if (is_con())
1880     st->print("long:%s", longname(buf, get_con()));
1881   else if (_hi == max_jlong)
1882     st->print("long:>=%s", longname(buf, _lo));
1883   else if (_lo == min_jlong)
1884     st->print("long:<=%s", longname(buf, _hi));
1885   else
1886     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1887 
1888   if (_widen != 0 && this != TypeLong::LONG)
1889     st->print(":%.*s", _widen, "wwww");
1890 }
1891 #endif
1892 
1893 //------------------------------singleton--------------------------------------
1894 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1895 // constants
1896 bool TypeLong::singleton(void) const {
1897   return _lo >= _hi;
1898 }
1899 
1900 bool TypeLong::empty(void) const {
1901   return _lo > _hi;
1902 }
1903 
1904 //=============================================================================
1905 // Convenience common pre-built types.
1906 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1907 const TypeTuple *TypeTuple::IFFALSE;
1908 const TypeTuple *TypeTuple::IFTRUE;
1909 const TypeTuple *TypeTuple::IFNEITHER;
1910 const TypeTuple *TypeTuple::LOOPBODY;
1911 const TypeTuple *TypeTuple::MEMBAR;
1912 const TypeTuple *TypeTuple::STORECONDITIONAL;
1913 const TypeTuple *TypeTuple::START_I2C;
1914 const TypeTuple *TypeTuple::INT_PAIR;
1915 const TypeTuple *TypeTuple::LONG_PAIR;
1916 const TypeTuple *TypeTuple::INT_CC_PAIR;
1917 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1918 
1919 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1920   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1921     ciField* f = vk->nonstatic_field_at(j);
1922     BasicType bt = f->type()->basic_type();
1923     assert(bt < T_VALUETYPE && bt >= T_BOOLEAN, "not yet supported");
1924     field_array[pos++] = Type::get_const_type(f->type());
1925     if (bt == T_LONG || bt == T_DOUBLE) {
1926       field_array[pos++] = Type::HALF;
1927     }
1928   }
1929 }
1930 
1931 // Can a value type instance of this type be returned as multiple
1932 // returned values?
1933 static bool vt_can_be_returned_as_fields(ciValueKlass* vk) {
1934   if (vk == ciEnv::current()->___Value_klass()) {
1935     return false;
1936   }
1937 
1938   ResourceMark rm;
1939   uint args = vk->value_arg_slots() + 1 /* return vk as well */;
1940 
1941   BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, args);
1942   VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, args);
1943 
1944   sig_bt[0] = T_METADATA;
1945   for (uint i = 0, j = 1; i < (uint)vk->nof_nonstatic_fields(); i++) {
1946     BasicType bt = vk->nonstatic_field_at(i)->layout_type();
1947     assert(i+j < args, "out of bounds access");
1948     sig_bt[i+j] = bt;
1949     if (bt == T_LONG || bt == T_DOUBLE) {
1950       j++;
1951       assert(i+j < args, "out of bounds access");
1952       sig_bt[i+j] = T_VOID;
1953     }
1954   }
1955 
1956   if (SharedRuntime::java_return_convention(sig_bt, regs, args) <= 0) {
1957     return false;
1958   }
1959   
1960   return true;
1961 }
1962 
1963 
1964 //------------------------------make-------------------------------------------
1965 // Make a TypeTuple from the range of a method signature
1966 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1967   ciType* return_type = sig->return_type();
1968   uint arg_cnt = 0;
1969   if (ret_vt_fields) {
1970     ret_vt_fields = return_type->is_valuetype() && vt_can_be_returned_as_fields((ciValueKlass*)return_type);
1971   }
1972   if (ret_vt_fields) {
1973     ciValueKlass* vk = (ciValueKlass*)return_type;
1974     arg_cnt = vk->value_arg_slots()+1;
1975   } else {
1976     arg_cnt = return_type->size();
1977   }
1978 
1979   const Type **field_array = fields(arg_cnt);
1980   switch (return_type->basic_type()) {
1981   case T_LONG:
1982     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1983     field_array[TypeFunc::Parms+1] = Type::HALF;
1984     break;
1985   case T_DOUBLE:
1986     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1987     field_array[TypeFunc::Parms+1] = Type::HALF;
1988     break;
1989   case T_OBJECT:
1990   case T_ARRAY:
1991   case T_BOOLEAN:
1992   case T_CHAR:
1993   case T_FLOAT:
1994   case T_BYTE:
1995   case T_SHORT:
1996   case T_INT:
1997     field_array[TypeFunc::Parms] = get_const_type(return_type);
1998     break;
1999   case T_VALUETYPE:
2000     if (ret_vt_fields) {
2001       ciValueKlass* vk = (ciValueKlass*)return_type;
2002       uint pos = TypeFunc::Parms;
2003       field_array[pos] = TypeKlassPtr::make(vk);
2004       pos++;
2005       collect_value_fields(vk, field_array, pos);
2006     } else {
2007       field_array[TypeFunc::Parms] = get_const_type(return_type);
2008     }
2009     break;
2010   case T_VOID:
2011     break;
2012   default:
2013     ShouldNotReachHere();
2014   }
2015   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2016 }
2017 
2018 // Make a TypeTuple from the domain of a method signature
2019 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
2020   uint arg_cnt = sig->size();
2021 
2022   int vt_extra = 0;
2023   if (vt_fields_as_args) {
2024     for (int i = 0; i < sig->count(); i++) {
2025       ciType* type = sig->type_at(i);
2026       if (type->basic_type() == T_VALUETYPE) {
2027         assert(type->is_valuetype(), "inconsistent type");
2028         ciValueKlass* vk = (ciValueKlass*)type;
2029         vt_extra += vk->value_arg_slots()-1;
2030       }
2031     }
2032     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2033   }
2034 
2035   uint pos = TypeFunc::Parms;
2036   const Type **field_array;
2037   if (recv != NULL) {
2038     arg_cnt++;
2039     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype() &&
2040       recv != ciEnv::current()->___Value_klass();
2041     if (vt_fields_for_recv) {
2042       ciValueKlass* vk = (ciValueKlass*)recv;
2043       vt_extra += vk->value_arg_slots()-1;
2044     }
2045     field_array = fields(arg_cnt + vt_extra);
2046     // Use get_const_type here because it respects UseUniqueSubclasses:
2047     if (vt_fields_for_recv) {
2048       ciValueKlass* vk = (ciValueKlass*)recv;
2049       collect_value_fields(vk, field_array, pos);
2050     } else {
2051       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2052     }
2053   } else {
2054     field_array = fields(arg_cnt + vt_extra);
2055   }
2056 
2057   int i = 0;
2058   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2059     ciType* type = sig->type_at(i);
2060 
2061     switch (type->basic_type()) {
2062     case T_LONG:
2063       field_array[pos++] = TypeLong::LONG;
2064       field_array[pos++] = Type::HALF;
2065       break;
2066     case T_DOUBLE:
2067       field_array[pos++] = Type::DOUBLE;
2068       field_array[pos++] = Type::HALF;
2069       break;
2070     case T_OBJECT:
2071     case T_ARRAY:
2072     case T_FLOAT:
2073     case T_INT:
2074       field_array[pos++] = get_const_type(type);
2075       break;
2076     case T_BOOLEAN:
2077     case T_CHAR:
2078     case T_BYTE:
2079     case T_SHORT:
2080       field_array[pos++] = TypeInt::INT;
2081       break;
2082     case T_VALUETYPE: {
2083       assert(type->is_valuetype(), "inconsistent type");
2084       assert(type != ciEnv::current()->___Value_klass(), "unsupported");
2085       if (vt_fields_as_args) {
2086         ciValueKlass* vk = (ciValueKlass*)type;
2087         collect_value_fields(vk, field_array, pos);
2088       } else {
2089         field_array[pos++] = get_const_type(type);
2090       }
2091       break;
2092     }
2093     default:
2094       ShouldNotReachHere();
2095     }
2096     i++;
2097   }
2098   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2099 
2100   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2101 }
2102 
2103 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2104   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2105 }
2106 
2107 //------------------------------fields-----------------------------------------
2108 // Subroutine call type with space allocated for argument types
2109 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2110 const Type **TypeTuple::fields( uint arg_cnt ) {
2111   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2112   flds[TypeFunc::Control  ] = Type::CONTROL;
2113   flds[TypeFunc::I_O      ] = Type::ABIO;
2114   flds[TypeFunc::Memory   ] = Type::MEMORY;
2115   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2116   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2117 
2118   return flds;
2119 }
2120 
2121 //------------------------------meet-------------------------------------------
2122 // Compute the MEET of two types.  It returns a new Type object.
2123 const Type *TypeTuple::xmeet( const Type *t ) const {
2124   // Perform a fast test for common case; meeting the same types together.
2125   if( this == t ) return this;  // Meeting same type-rep?
2126 
2127   // Current "this->_base" is Tuple
2128   switch (t->base()) {          // switch on original type
2129 
2130   case Bottom:                  // Ye Olde Default
2131     return t;
2132 
2133   default:                      // All else is a mistake
2134     typerr(t);
2135 
2136   case Tuple: {                 // Meeting 2 signatures?
2137     const TypeTuple *x = t->is_tuple();
2138     assert( _cnt == x->_cnt, "" );
2139     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2140     for( uint i=0; i<_cnt; i++ )
2141       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2142     return TypeTuple::make(_cnt,fields);
2143   }
2144   case Top:
2145     break;
2146   }
2147   return this;                  // Return the double constant
2148 }
2149 
2150 //------------------------------xdual------------------------------------------
2151 // Dual: compute field-by-field dual
2152 const Type *TypeTuple::xdual() const {
2153   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2154   for( uint i=0; i<_cnt; i++ )
2155     fields[i] = _fields[i]->dual();
2156   return new TypeTuple(_cnt,fields);
2157 }
2158 
2159 //------------------------------eq---------------------------------------------
2160 // Structural equality check for Type representations
2161 bool TypeTuple::eq( const Type *t ) const {
2162   const TypeTuple *s = (const TypeTuple *)t;
2163   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2164   for (uint i = 0; i < _cnt; i++)
2165     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2166       return false;             // Missed
2167   return true;
2168 }
2169 
2170 //------------------------------hash-------------------------------------------
2171 // Type-specific hashing function.
2172 int TypeTuple::hash(void) const {
2173   intptr_t sum = _cnt;
2174   for( uint i=0; i<_cnt; i++ )
2175     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2176   return sum;
2177 }
2178 
2179 //------------------------------dump2------------------------------------------
2180 // Dump signature Type
2181 #ifndef PRODUCT
2182 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2183   st->print("{");
2184   if( !depth || d[this] ) {     // Check for recursive print
2185     st->print("...}");
2186     return;
2187   }
2188   d.Insert((void*)this, (void*)this);   // Stop recursion
2189   if( _cnt ) {
2190     uint i;
2191     for( i=0; i<_cnt-1; i++ ) {
2192       st->print("%d:", i);
2193       _fields[i]->dump2(d, depth-1, st);
2194       st->print(", ");
2195     }
2196     st->print("%d:", i);
2197     _fields[i]->dump2(d, depth-1, st);
2198   }
2199   st->print("}");
2200 }
2201 #endif
2202 
2203 //------------------------------singleton--------------------------------------
2204 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2205 // constants (Ldi nodes).  Singletons are integer, float or double constants
2206 // or a single symbol.
2207 bool TypeTuple::singleton(void) const {
2208   return false;                 // Never a singleton
2209 }
2210 
2211 bool TypeTuple::empty(void) const {
2212   for( uint i=0; i<_cnt; i++ ) {
2213     if (_fields[i]->empty())  return true;
2214   }
2215   return false;
2216 }
2217 
2218 //=============================================================================
2219 // Convenience common pre-built types.
2220 
2221 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2222   // Certain normalizations keep us sane when comparing types.
2223   // We do not want arrayOop variables to differ only by the wideness
2224   // of their index types.  Pick minimum wideness, since that is the
2225   // forced wideness of small ranges anyway.
2226   if (size->_widen != Type::WidenMin)
2227     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2228   else
2229     return size;
2230 }
2231 
2232 //------------------------------make-------------------------------------------
2233 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2234   if (UseCompressedOops && elem->isa_oopptr()) {
2235     elem = elem->make_narrowoop();
2236   }
2237   size = normalize_array_size(size);
2238   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2239 }
2240 
2241 //------------------------------meet-------------------------------------------
2242 // Compute the MEET of two types.  It returns a new Type object.
2243 const Type *TypeAry::xmeet( const Type *t ) const {
2244   // Perform a fast test for common case; meeting the same types together.
2245   if( this == t ) return this;  // Meeting same type-rep?
2246 
2247   // Current "this->_base" is Ary
2248   switch (t->base()) {          // switch on original type
2249 
2250   case Bottom:                  // Ye Olde Default
2251     return t;
2252 
2253   default:                      // All else is a mistake
2254     typerr(t);
2255 
2256   case Array: {                 // Meeting 2 arrays?
2257     const TypeAry *a = t->is_ary();
2258     return TypeAry::make(_elem->meet_speculative(a->_elem),
2259                          _size->xmeet(a->_size)->is_int(),
2260                          _stable & a->_stable);
2261   }
2262   case Top:
2263     break;
2264   }
2265   return this;                  // Return the double constant
2266 }
2267 
2268 //------------------------------xdual------------------------------------------
2269 // Dual: compute field-by-field dual
2270 const Type *TypeAry::xdual() const {
2271   const TypeInt* size_dual = _size->dual()->is_int();
2272   size_dual = normalize_array_size(size_dual);
2273   return new TypeAry(_elem->dual(), size_dual, !_stable);
2274 }
2275 
2276 //------------------------------eq---------------------------------------------
2277 // Structural equality check for Type representations
2278 bool TypeAry::eq( const Type *t ) const {
2279   const TypeAry *a = (const TypeAry*)t;
2280   return _elem == a->_elem &&
2281     _stable == a->_stable &&
2282     _size == a->_size;
2283 }
2284 
2285 //------------------------------hash-------------------------------------------
2286 // Type-specific hashing function.
2287 int TypeAry::hash(void) const {
2288   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2289 }
2290 
2291 /**
2292  * Return same type without a speculative part in the element
2293  */
2294 const Type* TypeAry::remove_speculative() const {
2295   return make(_elem->remove_speculative(), _size, _stable);
2296 }
2297 
2298 /**
2299  * Return same type with cleaned up speculative part of element
2300  */
2301 const Type* TypeAry::cleanup_speculative() const {
2302   return make(_elem->cleanup_speculative(), _size, _stable);
2303 }
2304 
2305 /**
2306  * Return same type but with a different inline depth (used for speculation)
2307  *
2308  * @param depth  depth to meet with
2309  */
2310 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2311   if (!UseInlineDepthForSpeculativeTypes) {
2312     return this;
2313   }
2314   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2315 }
2316 
2317 //----------------------interface_vs_oop---------------------------------------
2318 #ifdef ASSERT
2319 bool TypeAry::interface_vs_oop(const Type *t) const {
2320   const TypeAry* t_ary = t->is_ary();
2321   if (t_ary) {
2322     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2323     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2324     if(this_ptr != NULL && t_ptr != NULL) {
2325       return this_ptr->interface_vs_oop(t_ptr);
2326     }
2327   }
2328   return false;
2329 }
2330 #endif
2331 
2332 //------------------------------dump2------------------------------------------
2333 #ifndef PRODUCT
2334 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2335   if (_stable)  st->print("stable:");
2336   _elem->dump2(d, depth, st);
2337   st->print("[");
2338   _size->dump2(d, depth, st);
2339   st->print("]");
2340 }
2341 #endif
2342 
2343 //------------------------------singleton--------------------------------------
2344 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2345 // constants (Ldi nodes).  Singletons are integer, float or double constants
2346 // or a single symbol.
2347 bool TypeAry::singleton(void) const {
2348   return false;                 // Never a singleton
2349 }
2350 
2351 bool TypeAry::empty(void) const {
2352   return _elem->empty() || _size->empty();
2353 }
2354 
2355 //--------------------------ary_must_be_exact----------------------------------
2356 bool TypeAry::ary_must_be_exact() const {
2357   if (!UseExactTypes)       return false;
2358   // This logic looks at the element type of an array, and returns true
2359   // if the element type is either a primitive or a final instance class.
2360   // In such cases, an array built on this ary must have no subclasses.
2361   if (_elem == BOTTOM)      return false;  // general array not exact
2362   if (_elem == TOP   )      return false;  // inverted general array not exact
2363   const TypeOopPtr*  toop = NULL;
2364   if (UseCompressedOops && _elem->isa_narrowoop()) {
2365     toop = _elem->make_ptr()->isa_oopptr();
2366   } else {
2367     toop = _elem->isa_oopptr();
2368   }
2369   if (!toop)                return true;   // a primitive type, like int
2370   ciKlass* tklass = toop->klass();
2371   if (tklass == NULL)       return false;  // unloaded class
2372   if (!tklass->is_loaded()) return false;  // unloaded class
2373   const TypeInstPtr* tinst;
2374   if (_elem->isa_narrowoop())
2375     tinst = _elem->make_ptr()->isa_instptr();
2376   else
2377     tinst = _elem->isa_instptr();
2378   if (tinst)
2379     return tklass->as_instance_klass()->is_final();
2380   const TypeAryPtr*  tap;
2381   if (_elem->isa_narrowoop())
2382     tap = _elem->make_ptr()->isa_aryptr();
2383   else
2384     tap = _elem->isa_aryptr();
2385   if (tap)
2386     return tap->ary()->ary_must_be_exact();
2387   return false;
2388 }
2389 
2390 //==============================TypeValueType=======================================
2391 
2392 //------------------------------make-------------------------------------------
2393 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2394   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2395 }
2396 
2397 //------------------------------meet-------------------------------------------
2398 // Compute the MEET of two types.  It returns a new Type object.
2399 const Type* TypeValueType::xmeet(const Type* t) const {
2400   // Perform a fast test for common case; meeting the same types together.
2401   if(this == t) return this;  // Meeting same type-rep?
2402 
2403   // Current "this->_base" is ValueType
2404   switch (t->base()) {          // switch on original type
2405 
2406   case Top:
2407     break;
2408 
2409   case Bottom:
2410     return t;
2411 
2412   default:                      // All else is a mistake
2413     typerr(t);
2414 
2415   }
2416   return this;
2417 }
2418 
2419 //------------------------------xdual------------------------------------------
2420 const Type* TypeValueType::xdual() const {
2421   // FIXME
2422   return new TypeValueType(_vk);
2423 }
2424 
2425 //------------------------------eq---------------------------------------------
2426 // Structural equality check for Type representations
2427 bool TypeValueType::eq(const Type* t) const {
2428   const TypeValueType* vt = t->is_valuetype();
2429   return (_vk == vt->value_klass());
2430 }
2431 
2432 //------------------------------hash-------------------------------------------
2433 // Type-specific hashing function.
2434 int TypeValueType::hash(void) const {
2435   return (intptr_t)_vk;
2436 }
2437 
2438 //------------------------------singleton--------------------------------------
2439 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2440 bool TypeValueType::singleton(void) const {
2441   // FIXME
2442   return false;
2443 }
2444 
2445 //------------------------------empty------------------------------------------
2446 // TRUE if Type is a type with no values, FALSE otherwise.
2447 bool TypeValueType::empty(void) const {
2448   // FIXME
2449   return false;
2450 }
2451 
2452 //------------------------------dump2------------------------------------------
2453 #ifndef PRODUCT
2454 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2455   st->print("valuetype[%d]:{", _vk->field_count());
2456   st->print("%s", _vk->field_type_by_index(0)->name());
2457   for (int i = 1; i < _vk->field_count(); ++i) {
2458     st->print(", %s", _vk->field_type_by_index(i)->name());
2459   }
2460   st->print("}");
2461 }
2462 #endif
2463 
2464 //==============================TypeVect=======================================
2465 // Convenience common pre-built types.
2466 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2467 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2468 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2469 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2470 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2471 
2472 //------------------------------make-------------------------------------------
2473 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2474   BasicType elem_bt = elem->array_element_basic_type();
2475   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2476   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2477   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2478   int size = length * type2aelembytes(elem_bt);
2479   switch (Matcher::vector_ideal_reg(size)) {
2480   case Op_VecS:
2481     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2482   case Op_RegL:
2483   case Op_VecD:
2484   case Op_RegD:
2485     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2486   case Op_VecX:
2487     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2488   case Op_VecY:
2489     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2490   case Op_VecZ:
2491     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2492   }
2493  ShouldNotReachHere();
2494   return NULL;
2495 }
2496 
2497 //------------------------------meet-------------------------------------------
2498 // Compute the MEET of two types.  It returns a new Type object.
2499 const Type *TypeVect::xmeet( const Type *t ) const {
2500   // Perform a fast test for common case; meeting the same types together.
2501   if( this == t ) return this;  // Meeting same type-rep?
2502 
2503   // Current "this->_base" is Vector
2504   switch (t->base()) {          // switch on original type
2505 
2506   case Bottom:                  // Ye Olde Default
2507     return t;
2508 
2509   default:                      // All else is a mistake
2510     typerr(t);
2511 
2512   case VectorS:
2513   case VectorD:
2514   case VectorX:
2515   case VectorY:
2516   case VectorZ: {                // Meeting 2 vectors?
2517     const TypeVect* v = t->is_vect();
2518     assert(  base() == v->base(), "");
2519     assert(length() == v->length(), "");
2520     assert(element_basic_type() == v->element_basic_type(), "");
2521     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2522   }
2523   case Top:
2524     break;
2525   }
2526   return this;
2527 }
2528 
2529 //------------------------------xdual------------------------------------------
2530 // Dual: compute field-by-field dual
2531 const Type *TypeVect::xdual() const {
2532   return new TypeVect(base(), _elem->dual(), _length);
2533 }
2534 
2535 //------------------------------eq---------------------------------------------
2536 // Structural equality check for Type representations
2537 bool TypeVect::eq(const Type *t) const {
2538   const TypeVect *v = t->is_vect();
2539   return (_elem == v->_elem) && (_length == v->_length);
2540 }
2541 
2542 //------------------------------hash-------------------------------------------
2543 // Type-specific hashing function.
2544 int TypeVect::hash(void) const {
2545   return (intptr_t)_elem + (intptr_t)_length;
2546 }
2547 
2548 //------------------------------singleton--------------------------------------
2549 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2550 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2551 // constant value (when vector is created with Replicate code).
2552 bool TypeVect::singleton(void) const {
2553 // There is no Con node for vectors yet.
2554 //  return _elem->singleton();
2555   return false;
2556 }
2557 
2558 bool TypeVect::empty(void) const {
2559   return _elem->empty();
2560 }
2561 
2562 //------------------------------dump2------------------------------------------
2563 #ifndef PRODUCT
2564 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2565   switch (base()) {
2566   case VectorS:
2567     st->print("vectors["); break;
2568   case VectorD:
2569     st->print("vectord["); break;
2570   case VectorX:
2571     st->print("vectorx["); break;
2572   case VectorY:
2573     st->print("vectory["); break;
2574   case VectorZ:
2575     st->print("vectorz["); break;
2576   default:
2577     ShouldNotReachHere();
2578   }
2579   st->print("%d]:{", _length);
2580   _elem->dump2(d, depth, st);
2581   st->print("}");
2582 }
2583 #endif
2584 
2585 
2586 //=============================================================================
2587 // Convenience common pre-built types.
2588 const TypePtr *TypePtr::NULL_PTR;
2589 const TypePtr *TypePtr::NOTNULL;
2590 const TypePtr *TypePtr::BOTTOM;
2591 
2592 //------------------------------meet-------------------------------------------
2593 // Meet over the PTR enum
2594 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2595   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2596   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2597   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2598   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2599   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2600   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2601   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2602 };
2603 
2604 //------------------------------make-------------------------------------------
2605 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2606   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2607 }
2608 
2609 //------------------------------cast_to_ptr_type-------------------------------
2610 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2611   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2612   if( ptr == _ptr ) return this;
2613   return make(_base, ptr, _offset, _speculative, _inline_depth);
2614 }
2615 
2616 //------------------------------get_con----------------------------------------
2617 intptr_t TypePtr::get_con() const {
2618   assert( _ptr == Null, "" );
2619   return offset();
2620 }
2621 
2622 //------------------------------meet-------------------------------------------
2623 // Compute the MEET of two types.  It returns a new Type object.
2624 const Type *TypePtr::xmeet(const Type *t) const {
2625   const Type* res = xmeet_helper(t);
2626   if (res->isa_ptr() == NULL) {
2627     return res;
2628   }
2629 
2630   const TypePtr* res_ptr = res->is_ptr();
2631   if (res_ptr->speculative() != NULL) {
2632     // type->speculative() == NULL means that speculation is no better
2633     // than type, i.e. type->speculative() == type. So there are 2
2634     // ways to represent the fact that we have no useful speculative
2635     // data and we should use a single one to be able to test for
2636     // equality between types. Check whether type->speculative() ==
2637     // type and set speculative to NULL if it is the case.
2638     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2639       return res_ptr->remove_speculative();
2640     }
2641   }
2642 
2643   return res;
2644 }
2645 
2646 const Type *TypePtr::xmeet_helper(const Type *t) const {
2647   // Perform a fast test for common case; meeting the same types together.
2648   if( this == t ) return this;  // Meeting same type-rep?
2649 
2650   // Current "this->_base" is AnyPtr
2651   switch (t->base()) {          // switch on original type
2652   case Int:                     // Mixing ints & oops happens when javac
2653   case Long:                    // reuses local variables
2654   case FloatTop:
2655   case FloatCon:
2656   case FloatBot:
2657   case DoubleTop:
2658   case DoubleCon:
2659   case DoubleBot:
2660   case NarrowOop:
2661   case NarrowKlass:
2662   case Bottom:                  // Ye Olde Default
2663     return Type::BOTTOM;
2664   case Top:
2665     return this;
2666 
2667   case AnyPtr: {                // Meeting to AnyPtrs
2668     const TypePtr *tp = t->is_ptr();
2669     const TypePtr* speculative = xmeet_speculative(tp);
2670     int depth = meet_inline_depth(tp->inline_depth());
2671     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2672   }
2673   case RawPtr:                  // For these, flip the call around to cut down
2674   case OopPtr:
2675   case InstPtr:                 // on the cases I have to handle.
2676   case ValueTypePtr:
2677   case AryPtr:
2678   case MetadataPtr:
2679   case KlassPtr:
2680     return t->xmeet(this);      // Call in reverse direction
2681   default:                      // All else is a mistake
2682     typerr(t);
2683 
2684   }
2685   return this;
2686 }
2687 
2688 //------------------------------meet_offset------------------------------------
2689 Type::Offset TypePtr::meet_offset(int offset) const {
2690   return _offset.meet(Offset(offset));
2691 }
2692 
2693 //------------------------------dual_offset------------------------------------
2694 Type::Offset TypePtr::dual_offset() const {
2695   return _offset.dual();
2696 }
2697 
2698 //------------------------------xdual------------------------------------------
2699 // Dual: compute field-by-field dual
2700 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2701   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2702 };
2703 const Type *TypePtr::xdual() const {
2704   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2705 }
2706 
2707 //------------------------------xadd_offset------------------------------------
2708 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2709   return _offset.add(offset);
2710 }
2711 
2712 //------------------------------add_offset-------------------------------------
2713 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2714   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2715 }
2716 
2717 //------------------------------eq---------------------------------------------
2718 // Structural equality check for Type representations
2719 bool TypePtr::eq( const Type *t ) const {
2720   const TypePtr *a = (const TypePtr*)t;
2721   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2722 }
2723 
2724 //------------------------------hash-------------------------------------------
2725 // Type-specific hashing function.
2726 int TypePtr::hash(void) const {
2727   return java_add(java_add(_ptr, offset()), java_add( hash_speculative(), _inline_depth));
2728 ;
2729 }
2730 
2731 /**
2732  * Return same type without a speculative part
2733  */
2734 const Type* TypePtr::remove_speculative() const {
2735   if (_speculative == NULL) {
2736     return this;
2737   }
2738   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2739   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2740 }
2741 
2742 /**
2743  * Return same type but drop speculative part if we know we won't use
2744  * it
2745  */
2746 const Type* TypePtr::cleanup_speculative() const {
2747   if (speculative() == NULL) {
2748     return this;
2749   }
2750   const Type* no_spec = remove_speculative();
2751   // If this is NULL_PTR then we don't need the speculative type
2752   // (with_inline_depth in case the current type inline depth is
2753   // InlineDepthTop)
2754   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2755     return no_spec;
2756   }
2757   if (above_centerline(speculative()->ptr())) {
2758     return no_spec;
2759   }
2760   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2761   // If the speculative may be null and is an inexact klass then it
2762   // doesn't help
2763   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2764     return no_spec;
2765   }
2766   return this;
2767 }
2768 
2769 /**
2770  * dual of the speculative part of the type
2771  */
2772 const TypePtr* TypePtr::dual_speculative() const {
2773   if (_speculative == NULL) {
2774     return NULL;
2775   }
2776   return _speculative->dual()->is_ptr();
2777 }
2778 
2779 /**
2780  * meet of the speculative parts of 2 types
2781  *
2782  * @param other  type to meet with
2783  */
2784 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2785   bool this_has_spec = (_speculative != NULL);
2786   bool other_has_spec = (other->speculative() != NULL);
2787 
2788   if (!this_has_spec && !other_has_spec) {
2789     return NULL;
2790   }
2791 
2792   // If we are at a point where control flow meets and one branch has
2793   // a speculative type and the other has not, we meet the speculative
2794   // type of one branch with the actual type of the other. If the
2795   // actual type is exact and the speculative is as well, then the
2796   // result is a speculative type which is exact and we can continue
2797   // speculation further.
2798   const TypePtr* this_spec = _speculative;
2799   const TypePtr* other_spec = other->speculative();
2800 
2801   if (!this_has_spec) {
2802     this_spec = this;
2803   }
2804 
2805   if (!other_has_spec) {
2806     other_spec = other;
2807   }
2808 
2809   return this_spec->meet(other_spec)->is_ptr();
2810 }
2811 
2812 /**
2813  * dual of the inline depth for this type (used for speculation)
2814  */
2815 int TypePtr::dual_inline_depth() const {
2816   return -inline_depth();
2817 }
2818 
2819 /**
2820  * meet of 2 inline depths (used for speculation)
2821  *
2822  * @param depth  depth to meet with
2823  */
2824 int TypePtr::meet_inline_depth(int depth) const {
2825   return MAX2(inline_depth(), depth);
2826 }
2827 
2828 /**
2829  * Are the speculative parts of 2 types equal?
2830  *
2831  * @param other  type to compare this one to
2832  */
2833 bool TypePtr::eq_speculative(const TypePtr* other) const {
2834   if (_speculative == NULL || other->speculative() == NULL) {
2835     return _speculative == other->speculative();
2836   }
2837 
2838   if (_speculative->base() != other->speculative()->base()) {
2839     return false;
2840   }
2841 
2842   return _speculative->eq(other->speculative());
2843 }
2844 
2845 /**
2846  * Hash of the speculative part of the type
2847  */
2848 int TypePtr::hash_speculative() const {
2849   if (_speculative == NULL) {
2850     return 0;
2851   }
2852 
2853   return _speculative->hash();
2854 }
2855 
2856 /**
2857  * add offset to the speculative part of the type
2858  *
2859  * @param offset  offset to add
2860  */
2861 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2862   if (_speculative == NULL) {
2863     return NULL;
2864   }
2865   return _speculative->add_offset(offset)->is_ptr();
2866 }
2867 
2868 /**
2869  * return exact klass from the speculative type if there's one
2870  */
2871 ciKlass* TypePtr::speculative_type() const {
2872   if (_speculative != NULL && _speculative->isa_oopptr()) {
2873     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2874     if (speculative->klass_is_exact()) {
2875       return speculative->klass();
2876     }
2877   }
2878   return NULL;
2879 }
2880 
2881 /**
2882  * return true if speculative type may be null
2883  */
2884 bool TypePtr::speculative_maybe_null() const {
2885   if (_speculative != NULL) {
2886     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2887     return speculative->maybe_null();
2888   }
2889   return true;
2890 }
2891 
2892 /**
2893  * Same as TypePtr::speculative_type() but return the klass only if
2894  * the speculative tells us is not null
2895  */
2896 ciKlass* TypePtr::speculative_type_not_null() const {
2897   if (speculative_maybe_null()) {
2898     return NULL;
2899   }
2900   return speculative_type();
2901 }
2902 
2903 /**
2904  * Check whether new profiling would improve speculative type
2905  *
2906  * @param   exact_kls    class from profiling
2907  * @param   inline_depth inlining depth of profile point
2908  *
2909  * @return  true if type profile is valuable
2910  */
2911 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2912   // no profiling?
2913   if (exact_kls == NULL) {
2914     return false;
2915   }
2916   // no speculative type or non exact speculative type?
2917   if (speculative_type() == NULL) {
2918     return true;
2919   }
2920   // If the node already has an exact speculative type keep it,
2921   // unless it was provided by profiling that is at a deeper
2922   // inlining level. Profiling at a higher inlining depth is
2923   // expected to be less accurate.
2924   if (_speculative->inline_depth() == InlineDepthBottom) {
2925     return false;
2926   }
2927   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2928   return inline_depth < _speculative->inline_depth();
2929 }
2930 
2931 /**
2932  * Check whether new profiling would improve ptr (= tells us it is non
2933  * null)
2934  *
2935  * @param   maybe_null true if profiling tells the ptr may be null
2936  *
2937  * @return  true if ptr profile is valuable
2938  */
2939 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2940   // profiling doesn't tell us anything useful
2941   if (maybe_null) {
2942     return false;
2943   }
2944   // We already know this is not be null
2945   if (!this->maybe_null()) {
2946     return false;
2947   }
2948   // We already know the speculative type cannot be null
2949   if (!speculative_maybe_null()) {
2950     return false;
2951   }
2952   return true;
2953 }
2954 
2955 //------------------------------dump2------------------------------------------
2956 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2957   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2958 };
2959 
2960 #ifndef PRODUCT
2961 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2962   if( _ptr == Null ) st->print("NULL");
2963   else st->print("%s *", ptr_msg[_ptr]);
2964   _offset.dump2(st);
2965   dump_inline_depth(st);
2966   dump_speculative(st);
2967 }
2968 
2969 /**
2970  *dump the speculative part of the type
2971  */
2972 void TypePtr::dump_speculative(outputStream *st) const {
2973   if (_speculative != NULL) {
2974     st->print(" (speculative=");
2975     _speculative->dump_on(st);
2976     st->print(")");
2977   }
2978 }
2979 
2980 /**
2981  *dump the inline depth of the type
2982  */
2983 void TypePtr::dump_inline_depth(outputStream *st) const {
2984   if (_inline_depth != InlineDepthBottom) {
2985     if (_inline_depth == InlineDepthTop) {
2986       st->print(" (inline_depth=InlineDepthTop)");
2987     } else {
2988       st->print(" (inline_depth=%d)", _inline_depth);
2989     }
2990   }
2991 }
2992 #endif
2993 
2994 //------------------------------singleton--------------------------------------
2995 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2996 // constants
2997 bool TypePtr::singleton(void) const {
2998   // TopPTR, Null, AnyNull, Constant are all singletons
2999   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3000 }
3001 
3002 bool TypePtr::empty(void) const {
3003   return (_offset == Offset::top) || above_centerline(_ptr);
3004 }
3005 
3006 //=============================================================================
3007 // Convenience common pre-built types.
3008 const TypeRawPtr *TypeRawPtr::BOTTOM;
3009 const TypeRawPtr *TypeRawPtr::NOTNULL;
3010 
3011 //------------------------------make-------------------------------------------
3012 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3013   assert( ptr != Constant, "what is the constant?" );
3014   assert( ptr != Null, "Use TypePtr for NULL" );
3015   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3016 }
3017 
3018 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3019   assert( bits, "Use TypePtr for NULL" );
3020   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3021 }
3022 
3023 //------------------------------cast_to_ptr_type-------------------------------
3024 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3025   assert( ptr != Constant, "what is the constant?" );
3026   assert( ptr != Null, "Use TypePtr for NULL" );
3027   assert( _bits==0, "Why cast a constant address?");
3028   if( ptr == _ptr ) return this;
3029   return make(ptr);
3030 }
3031 
3032 //------------------------------get_con----------------------------------------
3033 intptr_t TypeRawPtr::get_con() const {
3034   assert( _ptr == Null || _ptr == Constant, "" );
3035   return (intptr_t)_bits;
3036 }
3037 
3038 //------------------------------meet-------------------------------------------
3039 // Compute the MEET of two types.  It returns a new Type object.
3040 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3041   // Perform a fast test for common case; meeting the same types together.
3042   if( this == t ) return this;  // Meeting same type-rep?
3043 
3044   // Current "this->_base" is RawPtr
3045   switch( t->base() ) {         // switch on original type
3046   case Bottom:                  // Ye Olde Default
3047     return t;
3048   case Top:
3049     return this;
3050   case AnyPtr:                  // Meeting to AnyPtrs
3051     break;
3052   case RawPtr: {                // might be top, bot, any/not or constant
3053     enum PTR tptr = t->is_ptr()->ptr();
3054     enum PTR ptr = meet_ptr( tptr );
3055     if( ptr == Constant ) {     // Cannot be equal constants, so...
3056       if( tptr == Constant && _ptr != Constant)  return t;
3057       if( _ptr == Constant && tptr != Constant)  return this;
3058       ptr = NotNull;            // Fall down in lattice
3059     }
3060     return make( ptr );
3061   }
3062 
3063   case OopPtr:
3064   case InstPtr:
3065   case ValueTypePtr:
3066   case AryPtr:
3067   case MetadataPtr:
3068   case KlassPtr:
3069     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3070   default:                      // All else is a mistake
3071     typerr(t);
3072   }
3073 
3074   // Found an AnyPtr type vs self-RawPtr type
3075   const TypePtr *tp = t->is_ptr();
3076   switch (tp->ptr()) {
3077   case TypePtr::TopPTR:  return this;
3078   case TypePtr::BotPTR:  return t;
3079   case TypePtr::Null:
3080     if( _ptr == TypePtr::TopPTR ) return t;
3081     return TypeRawPtr::BOTTOM;
3082   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3083   case TypePtr::AnyNull:
3084     if( _ptr == TypePtr::Constant) return this;
3085     return make( meet_ptr(TypePtr::AnyNull) );
3086   default: ShouldNotReachHere();
3087   }
3088   return this;
3089 }
3090 
3091 //------------------------------xdual------------------------------------------
3092 // Dual: compute field-by-field dual
3093 const Type *TypeRawPtr::xdual() const {
3094   return new TypeRawPtr( dual_ptr(), _bits );
3095 }
3096 
3097 //------------------------------add_offset-------------------------------------
3098 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3099   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3100   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3101   if( offset == 0 ) return this; // No change
3102   switch (_ptr) {
3103   case TypePtr::TopPTR:
3104   case TypePtr::BotPTR:
3105   case TypePtr::NotNull:
3106     return this;
3107   case TypePtr::Null:
3108   case TypePtr::Constant: {
3109     address bits = _bits+offset;
3110     if ( bits == 0 ) return TypePtr::NULL_PTR;
3111     return make( bits );
3112   }
3113   default:  ShouldNotReachHere();
3114   }
3115   return NULL;                  // Lint noise
3116 }
3117 
3118 //------------------------------eq---------------------------------------------
3119 // Structural equality check for Type representations
3120 bool TypeRawPtr::eq( const Type *t ) const {
3121   const TypeRawPtr *a = (const TypeRawPtr*)t;
3122   return _bits == a->_bits && TypePtr::eq(t);
3123 }
3124 
3125 //------------------------------hash-------------------------------------------
3126 // Type-specific hashing function.
3127 int TypeRawPtr::hash(void) const {
3128   return (intptr_t)_bits + TypePtr::hash();
3129 }
3130 
3131 //------------------------------dump2------------------------------------------
3132 #ifndef PRODUCT
3133 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3134   if( _ptr == Constant )
3135     st->print(INTPTR_FORMAT, p2i(_bits));
3136   else
3137     st->print("rawptr:%s", ptr_msg[_ptr]);
3138 }
3139 #endif
3140 
3141 //=============================================================================
3142 // Convenience common pre-built type.
3143 const TypeOopPtr *TypeOopPtr::BOTTOM;
3144 
3145 //------------------------------TypeOopPtr-------------------------------------
3146 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3147                        int instance_id, const TypePtr* speculative, int inline_depth)
3148   : TypePtr(t, ptr, offset, speculative, inline_depth),
3149     _const_oop(o), _klass(k),
3150     _klass_is_exact(xk),
3151     _is_ptr_to_narrowoop(false),
3152     _is_ptr_to_narrowklass(false),
3153     _is_ptr_to_boxed_value(false),
3154     _instance_id(instance_id) {
3155   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3156       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3157     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3158   }
3159 #ifdef _LP64
3160   if (this->offset() != 0) {
3161     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3162       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3163     } else if (klass() == NULL) {
3164       // Array with unknown body type
3165       assert(this->isa_aryptr(), "only arrays without klass");
3166       _is_ptr_to_narrowoop = UseCompressedOops;
3167     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3168       if (klass()->is_obj_array_klass()) {
3169         _is_ptr_to_narrowoop = true;
3170       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3171         // Check if the field of the value type array element contains oops
3172         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3173         int foffset = field_offset.get() + vk->first_field_offset();
3174         ciField* field = vk->get_field_by_offset(foffset, false);
3175         assert(field != NULL, "missing field");
3176         BasicType bt = field->layout_type();
3177         assert(bt != T_VALUETYPE, "should be flattened");
3178         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY);
3179       }
3180     } else if (klass()->is_instance_klass()) {
3181       ciInstanceKlass* ik = klass()->as_instance_klass();
3182       ciField* field = NULL;
3183       if (this->isa_klassptr()) {
3184         // Perm objects don't use compressed references
3185       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3186         // unsafe access
3187         _is_ptr_to_narrowoop = UseCompressedOops;
3188       } else { // exclude unsafe ops
3189         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3190 
3191         if (klass() == ciEnv::current()->Class_klass() &&
3192             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3193              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3194           // Special hidden fields from the Class.
3195           assert(this->isa_instptr(), "must be an instance ptr.");
3196           _is_ptr_to_narrowoop = false;
3197         } else if (klass() == ciEnv::current()->Class_klass() &&
3198                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3199           // Static fields
3200           assert(o != NULL, "must be constant");
3201           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3202           ciField* field = k->get_field_by_offset(this->offset(), true);
3203           assert(field != NULL, "missing field");
3204           BasicType basic_elem_type = field->layout_type();
3205           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3206                                                        basic_elem_type == T_ARRAY);
3207         } else {
3208           // Instance fields which contains a compressed oop references.
3209           field = ik->get_field_by_offset(this->offset(), false);
3210           if (field != NULL) {
3211             BasicType basic_elem_type = field->layout_type();
3212             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3213                                                          basic_elem_type == T_ARRAY);
3214           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3215             // Compile::find_alias_type() cast exactness on all types to verify
3216             // that it does not affect alias type.
3217             _is_ptr_to_narrowoop = UseCompressedOops;
3218           } else {
3219             // Type for the copy start in LibraryCallKit::inline_native_clone().
3220             _is_ptr_to_narrowoop = UseCompressedOops;
3221           }
3222         }
3223       }
3224     }
3225   }
3226 #endif
3227 }
3228 
3229 //------------------------------make-------------------------------------------
3230 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3231                                    const TypePtr* speculative, int inline_depth) {
3232   assert(ptr != Constant, "no constant generic pointers");
3233   ciKlass*  k = Compile::current()->env()->Object_klass();
3234   bool      xk = false;
3235   ciObject* o = NULL;
3236   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3237 }
3238 
3239 
3240 //------------------------------cast_to_ptr_type-------------------------------
3241 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3242   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3243   if( ptr == _ptr ) return this;
3244   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3245 }
3246 
3247 //-----------------------------cast_to_instance_id----------------------------
3248 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3249   // There are no instances of a general oop.
3250   // Return self unchanged.
3251   return this;
3252 }
3253 
3254 //-----------------------------cast_to_exactness-------------------------------
3255 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3256   // There is no such thing as an exact general oop.
3257   // Return self unchanged.
3258   return this;
3259 }
3260 
3261 
3262 //------------------------------as_klass_type----------------------------------
3263 // Return the klass type corresponding to this instance or array type.
3264 // It is the type that is loaded from an object of this type.
3265 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3266   ciKlass* k = klass();
3267   bool    xk = klass_is_exact();
3268   if (k == NULL)
3269     return TypeKlassPtr::OBJECT;
3270   else
3271     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3272 }
3273 
3274 //------------------------------meet-------------------------------------------
3275 // Compute the MEET of two types.  It returns a new Type object.
3276 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3277   // Perform a fast test for common case; meeting the same types together.
3278   if( this == t ) return this;  // Meeting same type-rep?
3279 
3280   // Current "this->_base" is OopPtr
3281   switch (t->base()) {          // switch on original type
3282 
3283   case Int:                     // Mixing ints & oops happens when javac
3284   case Long:                    // reuses local variables
3285   case FloatTop:
3286   case FloatCon:
3287   case FloatBot:
3288   case DoubleTop:
3289   case DoubleCon:
3290   case DoubleBot:
3291   case NarrowOop:
3292   case NarrowKlass:
3293   case Bottom:                  // Ye Olde Default
3294     return Type::BOTTOM;
3295   case Top:
3296     return this;
3297 
3298   default:                      // All else is a mistake
3299     typerr(t);
3300 
3301   case RawPtr:
3302   case MetadataPtr:
3303   case KlassPtr:
3304     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3305 
3306   case AnyPtr: {
3307     // Found an AnyPtr type vs self-OopPtr type
3308     const TypePtr *tp = t->is_ptr();
3309     Offset offset = meet_offset(tp->offset());
3310     PTR ptr = meet_ptr(tp->ptr());
3311     const TypePtr* speculative = xmeet_speculative(tp);
3312     int depth = meet_inline_depth(tp->inline_depth());
3313     switch (tp->ptr()) {
3314     case Null:
3315       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3316       // else fall through:
3317     case TopPTR:
3318     case AnyNull: {
3319       int instance_id = meet_instance_id(InstanceTop);
3320       return make(ptr, offset, instance_id, speculative, depth);
3321     }
3322     case BotPTR:
3323     case NotNull:
3324       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3325     default: typerr(t);
3326     }
3327   }
3328 
3329   case OopPtr: {                 // Meeting to other OopPtrs
3330     const TypeOopPtr *tp = t->is_oopptr();
3331     int instance_id = meet_instance_id(tp->instance_id());
3332     const TypePtr* speculative = xmeet_speculative(tp);
3333     int depth = meet_inline_depth(tp->inline_depth());
3334     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3335   }
3336 
3337   case InstPtr:                  // For these, flip the call around to cut down
3338   case ValueTypePtr:
3339   case AryPtr:
3340     return t->xmeet(this);      // Call in reverse direction
3341 
3342   } // End of switch
3343   return this;                  // Return the double constant
3344 }
3345 
3346 
3347 //------------------------------xdual------------------------------------------
3348 // Dual of a pure heap pointer.  No relevant klass or oop information.
3349 const Type *TypeOopPtr::xdual() const {
3350   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3351   assert(const_oop() == NULL,             "no constants here");
3352   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3353 }
3354 
3355 //--------------------------make_from_klass_common-----------------------------
3356 // Computes the element-type given a klass.
3357 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3358   if (klass->is_valuetype()) {
3359     return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3360   } else if (klass->is_instance_klass()) {
3361     Compile* C = Compile::current();
3362     Dependencies* deps = C->dependencies();
3363     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3364     // Element is an instance
3365     bool klass_is_exact = false;
3366     if (klass->is_loaded()) {
3367       // Try to set klass_is_exact.
3368       ciInstanceKlass* ik = klass->as_instance_klass();
3369       klass_is_exact = ik->is_final();
3370       if (!klass_is_exact && klass_change
3371           && deps != NULL && UseUniqueSubclasses) {
3372         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3373         if (sub != NULL) {
3374           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3375           klass = ik = sub;
3376           klass_is_exact = sub->is_final();
3377         }
3378       }
3379       if (!klass_is_exact && try_for_exact
3380           && deps != NULL && UseExactTypes) {
3381         if (!ik->is_interface() && !ik->has_subklass()) {
3382           // Add a dependence; if concrete subclass added we need to recompile
3383           deps->assert_leaf_type(ik);
3384           klass_is_exact = true;
3385         }
3386       }
3387     }
3388     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3389   } else if (klass->is_obj_array_klass()) {
3390     // Element is an object or value array. Recursively call ourself.
3391     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3392     bool xk = etype->klass_is_exact();
3393     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3394     // We used to pass NotNull in here, asserting that the sub-arrays
3395     // are all not-null.  This is not true in generally, as code can
3396     // slam NULLs down in the subarrays.
3397     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3398     return arr;
3399   } else if (klass->is_type_array_klass()) {
3400     // Element is an typeArray
3401     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3402     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3403     // We used to pass NotNull in here, asserting that the array pointer
3404     // is not-null. That was not true in general.
3405     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3406     return arr;
3407   } else if (klass->is_value_array_klass()) {
3408     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3409     const Type* etype = NULL;
3410     bool xk = false;
3411     if (vk->flatten_array()) {
3412       etype = TypeValueType::make(vk);
3413       xk = true;
3414     } else {
3415       const TypeOopPtr* etype_oop = TypeOopPtr::make_from_klass_common(vk, false, try_for_exact);
3416       xk = etype_oop->klass_is_exact();
3417       etype = etype_oop;
3418     }
3419     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3420     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3421     return arr;
3422   } else {
3423     ShouldNotReachHere();
3424     return NULL;
3425   }
3426 }
3427 
3428 //------------------------------make_from_constant-----------------------------
3429 // Make a java pointer from an oop constant
3430 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3431   assert(!o->is_null_object(), "null object not yet handled here.");
3432   ciKlass* klass = o->klass();
3433   if (klass->is_valuetype()) {
3434     // Element is a value type
3435     if (require_constant) {
3436       if (!o->can_be_constant())  return NULL;
3437     } else if (!o->should_be_constant()) {
3438       return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3439     }
3440     return TypeValueTypePtr::make(o);
3441   } else if (klass->is_instance_klass()) {
3442     // Element is an instance
3443     if (require_constant) {
3444       if (!o->can_be_constant())  return NULL;
3445     } else if (!o->should_be_constant()) {
3446       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3447     }
3448     return TypeInstPtr::make(o);
3449   } else if (klass->is_obj_array_klass() || klass->is_value_array_klass()) {
3450     // Element is an object array. Recursively call ourself.
3451     const TypeOopPtr *etype =
3452       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3453     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3454     // We used to pass NotNull in here, asserting that the sub-arrays
3455     // are all not-null.  This is not true in generally, as code can
3456     // slam NULLs down in the subarrays.
3457     if (require_constant) {
3458       if (!o->can_be_constant())  return NULL;
3459     } else if (!o->should_be_constant()) {
3460       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3461     }
3462     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3463     return arr;
3464   } else if (klass->is_type_array_klass()) {
3465     // Element is an typeArray
3466     const Type* etype =
3467       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3468     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3469     // We used to pass NotNull in here, asserting that the array pointer
3470     // is not-null. That was not true in general.
3471     if (require_constant) {
3472       if (!o->can_be_constant())  return NULL;
3473     } else if (!o->should_be_constant()) {
3474       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3475     }
3476     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3477     return arr;
3478   }
3479 
3480   fatal("unhandled object type");
3481   return NULL;
3482 }
3483 
3484 //------------------------------get_con----------------------------------------
3485 intptr_t TypeOopPtr::get_con() const {
3486   assert( _ptr == Null || _ptr == Constant, "" );
3487   assert(offset() >= 0, "");
3488 
3489   if (offset() != 0) {
3490     // After being ported to the compiler interface, the compiler no longer
3491     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3492     // to a handle at compile time.  This handle is embedded in the generated
3493     // code and dereferenced at the time the nmethod is made.  Until that time,
3494     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3495     // have access to the addresses!).  This does not seem to currently happen,
3496     // but this assertion here is to help prevent its occurence.
3497     tty->print_cr("Found oop constant with non-zero offset");
3498     ShouldNotReachHere();
3499   }
3500 
3501   return (intptr_t)const_oop()->constant_encoding();
3502 }
3503 
3504 
3505 //-----------------------------filter------------------------------------------
3506 // Do not allow interface-vs.-noninterface joins to collapse to top.
3507 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3508 
3509   const Type* ft = join_helper(kills, include_speculative);
3510   const TypeInstPtr* ftip = ft->isa_instptr();
3511   const TypeInstPtr* ktip = kills->isa_instptr();
3512 
3513   if (ft->empty()) {
3514     // Check for evil case of 'this' being a class and 'kills' expecting an
3515     // interface.  This can happen because the bytecodes do not contain
3516     // enough type info to distinguish a Java-level interface variable
3517     // from a Java-level object variable.  If we meet 2 classes which
3518     // both implement interface I, but their meet is at 'j/l/O' which
3519     // doesn't implement I, we have no way to tell if the result should
3520     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3521     // into a Phi which "knows" it's an Interface type we'll have to
3522     // uplift the type.
3523     if (!empty()) {
3524       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3525         return kills;           // Uplift to interface
3526       }
3527       // Also check for evil cases of 'this' being a class array
3528       // and 'kills' expecting an array of interfaces.
3529       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3530       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3531         return kills;           // Uplift to array of interface
3532       }
3533     }
3534 
3535     return Type::TOP;           // Canonical empty value
3536   }
3537 
3538   // If we have an interface-typed Phi or cast and we narrow to a class type,
3539   // the join should report back the class.  However, if we have a J/L/Object
3540   // class-typed Phi and an interface flows in, it's possible that the meet &
3541   // join report an interface back out.  This isn't possible but happens
3542   // because the type system doesn't interact well with interfaces.
3543   if (ftip != NULL && ktip != NULL &&
3544       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3545       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3546     assert(!ftip->klass_is_exact(), "interface could not be exact");
3547     return ktip->cast_to_ptr_type(ftip->ptr());
3548   }
3549 
3550   return ft;
3551 }
3552 
3553 //------------------------------eq---------------------------------------------
3554 // Structural equality check for Type representations
3555 bool TypeOopPtr::eq( const Type *t ) const {
3556   const TypeOopPtr *a = (const TypeOopPtr*)t;
3557   if (_klass_is_exact != a->_klass_is_exact ||
3558       _instance_id != a->_instance_id)  return false;
3559   ciObject* one = const_oop();
3560   ciObject* two = a->const_oop();
3561   if (one == NULL || two == NULL) {
3562     return (one == two) && TypePtr::eq(t);
3563   } else {
3564     return one->equals(two) && TypePtr::eq(t);
3565   }
3566 }
3567 
3568 //------------------------------hash-------------------------------------------
3569 // Type-specific hashing function.
3570 int TypeOopPtr::hash(void) const {
3571   return
3572     java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3573              java_add(_instance_id, TypePtr::hash()));
3574 }
3575 
3576 //------------------------------dump2------------------------------------------
3577 #ifndef PRODUCT
3578 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3579   st->print("oopptr:%s", ptr_msg[_ptr]);
3580   if( _klass_is_exact ) st->print(":exact");
3581   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3582   _offset.dump2(st);
3583   if (_instance_id == InstanceTop)
3584     st->print(",iid=top");
3585   else if (_instance_id != InstanceBot)
3586     st->print(",iid=%d",_instance_id);
3587 
3588   dump_inline_depth(st);
3589   dump_speculative(st);
3590 }
3591 #endif
3592 
3593 //------------------------------singleton--------------------------------------
3594 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3595 // constants
3596 bool TypeOopPtr::singleton(void) const {
3597   // detune optimizer to not generate constant oop + constant offset as a constant!
3598   // TopPTR, Null, AnyNull, Constant are all singletons
3599   return (offset() == 0) && !below_centerline(_ptr);
3600 }
3601 
3602 //------------------------------add_offset-------------------------------------
3603 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3604   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3605 }
3606 
3607 /**
3608  * Return same type without a speculative part
3609  */
3610 const Type* TypeOopPtr::remove_speculative() const {
3611   if (_speculative == NULL) {
3612     return this;
3613   }
3614   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3615   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3616 }
3617 
3618 /**
3619  * Return same type but drop speculative part if we know we won't use
3620  * it
3621  */
3622 const Type* TypeOopPtr::cleanup_speculative() const {
3623   // If the klass is exact and the ptr is not null then there's
3624   // nothing that the speculative type can help us with
3625   if (klass_is_exact() && !maybe_null()) {
3626     return remove_speculative();
3627   }
3628   return TypePtr::cleanup_speculative();
3629 }
3630 
3631 /**
3632  * Return same type but with a different inline depth (used for speculation)
3633  *
3634  * @param depth  depth to meet with
3635  */
3636 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3637   if (!UseInlineDepthForSpeculativeTypes) {
3638     return this;
3639   }
3640   return make(_ptr, _offset, _instance_id, _speculative, depth);
3641 }
3642 
3643 //------------------------------meet_instance_id--------------------------------
3644 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3645   // Either is 'TOP' instance?  Return the other instance!
3646   if( _instance_id == InstanceTop ) return  instance_id;
3647   if(  instance_id == InstanceTop ) return _instance_id;
3648   // If either is different, return 'BOTTOM' instance
3649   if( _instance_id != instance_id ) return InstanceBot;
3650   return _instance_id;
3651 }
3652 
3653 //------------------------------dual_instance_id--------------------------------
3654 int TypeOopPtr::dual_instance_id( ) const {
3655   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3656   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3657   return _instance_id;              // Map everything else into self
3658 }
3659 
3660 /**
3661  * Check whether new profiling would improve speculative type
3662  *
3663  * @param   exact_kls    class from profiling
3664  * @param   inline_depth inlining depth of profile point
3665  *
3666  * @return  true if type profile is valuable
3667  */
3668 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3669   // no way to improve an already exact type
3670   if (klass_is_exact()) {
3671     return false;
3672   }
3673   return TypePtr::would_improve_type(exact_kls, inline_depth);
3674 }
3675 
3676 //=============================================================================
3677 // Convenience common pre-built types.
3678 const TypeInstPtr *TypeInstPtr::NOTNULL;
3679 const TypeInstPtr *TypeInstPtr::BOTTOM;
3680 const TypeInstPtr *TypeInstPtr::MIRROR;
3681 const TypeInstPtr *TypeInstPtr::MARK;
3682 const TypeInstPtr *TypeInstPtr::KLASS;
3683 
3684 //------------------------------TypeInstPtr-------------------------------------
3685 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3686                          int instance_id, const TypePtr* speculative, int inline_depth)
3687   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3688     _name(k->name()) {
3689    assert(k != NULL &&
3690           (k->is_loaded() || o == NULL),
3691           "cannot have constants with non-loaded klass");
3692 };
3693 
3694 //------------------------------make-------------------------------------------
3695 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3696                                      ciKlass* k,
3697                                      bool xk,
3698                                      ciObject* o,
3699                                      Offset offset,
3700                                      int instance_id,
3701                                      const TypePtr* speculative,
3702                                      int inline_depth) {
3703   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3704   // Either const_oop() is NULL or else ptr is Constant
3705   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3706           "constant pointers must have a value supplied" );
3707   // Ptr is never Null
3708   assert( ptr != Null, "NULL pointers are not typed" );
3709 
3710   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3711   if (!UseExactTypes)  xk = false;
3712   if (ptr == Constant) {
3713     // Note:  This case includes meta-object constants, such as methods.
3714     xk = true;
3715   } else if (k->is_loaded()) {
3716     ciInstanceKlass* ik = k->as_instance_klass();
3717     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3718     if (xk && ik->is_interface())  xk = false;  // no exact interface
3719   }
3720 
3721   // Now hash this baby
3722   TypeInstPtr *result =
3723     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3724 
3725   return result;
3726 }
3727 
3728 /**
3729  *  Create constant type for a constant boxed value
3730  */
3731 const Type* TypeInstPtr::get_const_boxed_value() const {
3732   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3733   assert((const_oop() != NULL), "should be called only for constant object");
3734   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3735   BasicType bt = constant.basic_type();
3736   switch (bt) {
3737     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3738     case T_INT:      return TypeInt::make(constant.as_int());
3739     case T_CHAR:     return TypeInt::make(constant.as_char());
3740     case T_BYTE:     return TypeInt::make(constant.as_byte());
3741     case T_SHORT:    return TypeInt::make(constant.as_short());
3742     case T_FLOAT:    return TypeF::make(constant.as_float());
3743     case T_DOUBLE:   return TypeD::make(constant.as_double());
3744     case T_LONG:     return TypeLong::make(constant.as_long());
3745     default:         break;
3746   }
3747   fatal("Invalid boxed value type '%s'", type2name(bt));
3748   return NULL;
3749 }
3750 
3751 //------------------------------cast_to_ptr_type-------------------------------
3752 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3753   if( ptr == _ptr ) return this;
3754   // Reconstruct _sig info here since not a problem with later lazy
3755   // construction, _sig will show up on demand.
3756   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3757 }
3758 
3759 
3760 //-----------------------------cast_to_exactness-------------------------------
3761 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3762   if( klass_is_exact == _klass_is_exact ) return this;
3763   if (!UseExactTypes)  return this;
3764   if (!_klass->is_loaded())  return this;
3765   ciInstanceKlass* ik = _klass->as_instance_klass();
3766   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3767   if( ik->is_interface() )              return this;  // cannot set xk
3768   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3769 }
3770 
3771 //-----------------------------cast_to_instance_id----------------------------
3772 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3773   if( instance_id == _instance_id ) return this;
3774   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3775 }
3776 
3777 //------------------------------xmeet_unloaded---------------------------------
3778 // Compute the MEET of two InstPtrs when at least one is unloaded.
3779 // Assume classes are different since called after check for same name/class-loader
3780 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3781     Offset off = meet_offset(tinst->offset());
3782     PTR ptr = meet_ptr(tinst->ptr());
3783     int instance_id = meet_instance_id(tinst->instance_id());
3784     const TypePtr* speculative = xmeet_speculative(tinst);
3785     int depth = meet_inline_depth(tinst->inline_depth());
3786 
3787     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3788     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3789     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3790       //
3791       // Meet unloaded class with java/lang/Object
3792       //
3793       // Meet
3794       //          |                     Unloaded Class
3795       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3796       //  ===================================================================
3797       //   TOP    | ..........................Unloaded......................|
3798       //  AnyNull |  U-AN    |................Unloaded......................|
3799       // Constant | ... O-NN .................................. |   O-BOT   |
3800       //  NotNull | ... O-NN .................................. |   O-BOT   |
3801       //  BOTTOM  | ........................Object-BOTTOM ..................|
3802       //
3803       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3804       //
3805       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3806       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3807       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3808       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3809         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3810         else                                      { return TypeInstPtr::NOTNULL; }
3811       }
3812       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3813 
3814       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3815     }
3816 
3817     // Both are unloaded, not the same class, not Object
3818     // Or meet unloaded with a different loaded class, not java/lang/Object
3819     if( ptr != TypePtr::BotPTR ) {
3820       return TypeInstPtr::NOTNULL;
3821     }
3822     return TypeInstPtr::BOTTOM;
3823 }
3824 
3825 
3826 //------------------------------meet-------------------------------------------
3827 // Compute the MEET of two types.  It returns a new Type object.
3828 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3829   // Perform a fast test for common case; meeting the same types together.
3830   if( this == t ) return this;  // Meeting same type-rep?
3831 
3832   // Current "this->_base" is Pointer
3833   switch (t->base()) {          // switch on original type
3834 
3835   case Int:                     // Mixing ints & oops happens when javac
3836   case Long:                    // reuses local variables
3837   case FloatTop:
3838   case FloatCon:
3839   case FloatBot:
3840   case DoubleTop:
3841   case DoubleCon:
3842   case DoubleBot:
3843   case NarrowOop:
3844   case NarrowKlass:
3845   case Bottom:                  // Ye Olde Default
3846     return Type::BOTTOM;
3847   case Top:
3848     return this;
3849 
3850   default:                      // All else is a mistake
3851     typerr(t);
3852 
3853   case MetadataPtr:
3854   case KlassPtr:
3855   case RawPtr: return TypePtr::BOTTOM;
3856 
3857   case AryPtr: {                // All arrays inherit from Object class
3858     const TypeAryPtr *tp = t->is_aryptr();
3859     Offset offset = meet_offset(tp->offset());
3860     PTR ptr = meet_ptr(tp->ptr());
3861     int instance_id = meet_instance_id(tp->instance_id());
3862     const TypePtr* speculative = xmeet_speculative(tp);
3863     int depth = meet_inline_depth(tp->inline_depth());
3864     switch (ptr) {
3865     case TopPTR:
3866     case AnyNull:                // Fall 'down' to dual of object klass
3867       // For instances when a subclass meets a superclass we fall
3868       // below the centerline when the superclass is exact. We need to
3869       // do the same here.
3870       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3871         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3872       } else {
3873         // cannot subclass, so the meet has to fall badly below the centerline
3874         ptr = NotNull;
3875         instance_id = InstanceBot;
3876         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3877       }
3878     case Constant:
3879     case NotNull:
3880     case BotPTR:                // Fall down to object klass
3881       // LCA is object_klass, but if we subclass from the top we can do better
3882       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3883         // If 'this' (InstPtr) is above the centerline and it is Object class
3884         // then we can subclass in the Java class hierarchy.
3885         // For instances when a subclass meets a superclass we fall
3886         // below the centerline when the superclass is exact. We need
3887         // to do the same here.
3888         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3889           // that is, tp's array type is a subtype of my klass
3890           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3891                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3892         }
3893       }
3894       // The other case cannot happen, since I cannot be a subtype of an array.
3895       // The meet falls down to Object class below centerline.
3896       if( ptr == Constant )
3897          ptr = NotNull;
3898       instance_id = InstanceBot;
3899       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3900     default: typerr(t);
3901     }
3902   }
3903 
3904   case OopPtr: {                // Meeting to OopPtrs
3905     // Found a OopPtr type vs self-InstPtr type
3906     const TypeOopPtr *tp = t->is_oopptr();
3907     Offset offset = meet_offset(tp->offset());
3908     PTR ptr = meet_ptr(tp->ptr());
3909     switch (tp->ptr()) {
3910     case TopPTR:
3911     case AnyNull: {
3912       int instance_id = meet_instance_id(InstanceTop);
3913       const TypePtr* speculative = xmeet_speculative(tp);
3914       int depth = meet_inline_depth(tp->inline_depth());
3915       return make(ptr, klass(), klass_is_exact(),
3916                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3917     }
3918     case NotNull:
3919     case BotPTR: {
3920       int instance_id = meet_instance_id(tp->instance_id());
3921       const TypePtr* speculative = xmeet_speculative(tp);
3922       int depth = meet_inline_depth(tp->inline_depth());
3923       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3924     }
3925     default: typerr(t);
3926     }
3927   }
3928 
3929   case AnyPtr: {                // Meeting to AnyPtrs
3930     // Found an AnyPtr type vs self-InstPtr type
3931     const TypePtr *tp = t->is_ptr();
3932     Offset offset = meet_offset(tp->offset());
3933     PTR ptr = meet_ptr(tp->ptr());
3934     int instance_id = meet_instance_id(InstanceTop);
3935     const TypePtr* speculative = xmeet_speculative(tp);
3936     int depth = meet_inline_depth(tp->inline_depth());
3937     switch (tp->ptr()) {
3938     case Null:
3939       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3940       // else fall through to AnyNull
3941     case TopPTR:
3942     case AnyNull: {
3943       return make(ptr, klass(), klass_is_exact(),
3944                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3945     }
3946     case NotNull:
3947     case BotPTR:
3948       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3949     default: typerr(t);
3950     }
3951   }
3952 
3953   /*
3954                  A-top         }
3955                /   |   \       }  Tops
3956            B-top A-any C-top   }
3957               | /  |  \ |      }  Any-nulls
3958            B-any   |   C-any   }
3959               |    |    |
3960            B-con A-con C-con   } constants; not comparable across classes
3961               |    |    |
3962            B-not   |   C-not   }
3963               | \  |  / |      }  not-nulls
3964            B-bot A-not C-bot   }
3965                \   |   /       }  Bottoms
3966                  A-bot         }
3967   */
3968 
3969   case InstPtr: {                // Meeting 2 Oops?
3970     // Found an InstPtr sub-type vs self-InstPtr type
3971     const TypeInstPtr *tinst = t->is_instptr();
3972     Offset off = meet_offset( tinst->offset() );
3973     PTR ptr = meet_ptr( tinst->ptr() );
3974     int instance_id = meet_instance_id(tinst->instance_id());
3975     const TypePtr* speculative = xmeet_speculative(tinst);
3976     int depth = meet_inline_depth(tinst->inline_depth());
3977 
3978     // Check for easy case; klasses are equal (and perhaps not loaded!)
3979     // If we have constants, then we created oops so classes are loaded
3980     // and we can handle the constants further down.  This case handles
3981     // both-not-loaded or both-loaded classes
3982     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3983       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3984     }
3985 
3986     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3987     ciKlass* tinst_klass = tinst->klass();
3988     ciKlass* this_klass  = this->klass();
3989     bool tinst_xk = tinst->klass_is_exact();
3990     bool this_xk  = this->klass_is_exact();
3991     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3992       // One of these classes has not been loaded
3993       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3994 #ifndef PRODUCT
3995       if( PrintOpto && Verbose ) {
3996         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3997         tty->print("  this == "); this->dump(); tty->cr();
3998         tty->print(" tinst == "); tinst->dump(); tty->cr();
3999       }
4000 #endif
4001       return unloaded_meet;
4002     }
4003 
4004     // Handle mixing oops and interfaces first.
4005     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4006                                         tinst_klass == ciEnv::current()->Object_klass())) {
4007       ciKlass *tmp = tinst_klass; // Swap interface around
4008       tinst_klass = this_klass;
4009       this_klass = tmp;
4010       bool tmp2 = tinst_xk;
4011       tinst_xk = this_xk;
4012       this_xk = tmp2;
4013     }
4014     if (tinst_klass->is_interface() &&
4015         !(this_klass->is_interface() ||
4016           // Treat java/lang/Object as an honorary interface,
4017           // because we need a bottom for the interface hierarchy.
4018           this_klass == ciEnv::current()->Object_klass())) {
4019       // Oop meets interface!
4020 
4021       // See if the oop subtypes (implements) interface.
4022       ciKlass *k;
4023       bool xk;
4024       if( this_klass->is_subtype_of( tinst_klass ) ) {
4025         // Oop indeed subtypes.  Now keep oop or interface depending
4026         // on whether we are both above the centerline or either is
4027         // below the centerline.  If we are on the centerline
4028         // (e.g., Constant vs. AnyNull interface), use the constant.
4029         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4030         // If we are keeping this_klass, keep its exactness too.
4031         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4032       } else {                  // Does not implement, fall to Object
4033         // Oop does not implement interface, so mixing falls to Object
4034         // just like the verifier does (if both are above the
4035         // centerline fall to interface)
4036         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4037         xk = above_centerline(ptr) ? tinst_xk : false;
4038         // Watch out for Constant vs. AnyNull interface.
4039         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4040         instance_id = InstanceBot;
4041       }
4042       ciObject* o = NULL;  // the Constant value, if any
4043       if (ptr == Constant) {
4044         // Find out which constant.
4045         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4046       }
4047       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4048     }
4049 
4050     // Either oop vs oop or interface vs interface or interface vs Object
4051 
4052     // !!! Here's how the symmetry requirement breaks down into invariants:
4053     // If we split one up & one down AND they subtype, take the down man.
4054     // If we split one up & one down AND they do NOT subtype, "fall hard".
4055     // If both are up and they subtype, take the subtype class.
4056     // If both are up and they do NOT subtype, "fall hard".
4057     // If both are down and they subtype, take the supertype class.
4058     // If both are down and they do NOT subtype, "fall hard".
4059     // Constants treated as down.
4060 
4061     // Now, reorder the above list; observe that both-down+subtype is also
4062     // "fall hard"; "fall hard" becomes the default case:
4063     // If we split one up & one down AND they subtype, take the down man.
4064     // If both are up and they subtype, take the subtype class.
4065 
4066     // If both are down and they subtype, "fall hard".
4067     // If both are down and they do NOT subtype, "fall hard".
4068     // If both are up and they do NOT subtype, "fall hard".
4069     // If we split one up & one down AND they do NOT subtype, "fall hard".
4070 
4071     // If a proper subtype is exact, and we return it, we return it exactly.
4072     // If a proper supertype is exact, there can be no subtyping relationship!
4073     // If both types are equal to the subtype, exactness is and-ed below the
4074     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4075 
4076     // Check for subtyping:
4077     ciKlass *subtype = NULL;
4078     bool subtype_exact = false;
4079     if( tinst_klass->equals(this_klass) ) {
4080       subtype = this_klass;
4081       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4082     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4083       subtype = this_klass;     // Pick subtyping class
4084       subtype_exact = this_xk;
4085     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4086       subtype = tinst_klass;    // Pick subtyping class
4087       subtype_exact = tinst_xk;
4088     }
4089 
4090     if( subtype ) {
4091       if( above_centerline(ptr) ) { // both are up?
4092         this_klass = tinst_klass = subtype;
4093         this_xk = tinst_xk = subtype_exact;
4094       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4095         this_klass = tinst_klass; // tinst is down; keep down man
4096         this_xk = tinst_xk;
4097       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4098         tinst_klass = this_klass; // this is down; keep down man
4099         tinst_xk = this_xk;
4100       } else {
4101         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4102       }
4103     }
4104 
4105     // Check for classes now being equal
4106     if (tinst_klass->equals(this_klass)) {
4107       // If the klasses are equal, the constants may still differ.  Fall to
4108       // NotNull if they do (neither constant is NULL; that is a special case
4109       // handled elsewhere).
4110       ciObject* o = NULL;             // Assume not constant when done
4111       ciObject* this_oop  = const_oop();
4112       ciObject* tinst_oop = tinst->const_oop();
4113       if( ptr == Constant ) {
4114         if (this_oop != NULL && tinst_oop != NULL &&
4115             this_oop->equals(tinst_oop) )
4116           o = this_oop;
4117         else if (above_centerline(this ->_ptr))
4118           o = tinst_oop;
4119         else if (above_centerline(tinst ->_ptr))
4120           o = this_oop;
4121         else
4122           ptr = NotNull;
4123       }
4124       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4125     } // Else classes are not equal
4126 
4127     // Since klasses are different, we require a LCA in the Java
4128     // class hierarchy - which means we have to fall to at least NotNull.
4129     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4130       ptr = NotNull;
4131 
4132     instance_id = InstanceBot;
4133 
4134     // Now we find the LCA of Java classes
4135     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4136     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4137   } // End of case InstPtr
4138 
4139   } // End of switch
4140   return this;                  // Return the double constant
4141 }
4142 
4143 
4144 //------------------------java_mirror_type--------------------------------------
4145 ciType* TypeInstPtr::java_mirror_type() const {
4146   // must be a singleton type
4147   if( const_oop() == NULL )  return NULL;
4148 
4149   // must be of type java.lang.Class
4150   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4151 
4152   return const_oop()->as_instance()->java_mirror_type();
4153 }
4154 
4155 
4156 //------------------------------xdual------------------------------------------
4157 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4158 // inheritance mechanism.
4159 const Type *TypeInstPtr::xdual() const {
4160   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4161 }
4162 
4163 //------------------------------eq---------------------------------------------
4164 // Structural equality check for Type representations
4165 bool TypeInstPtr::eq( const Type *t ) const {
4166   const TypeInstPtr *p = t->is_instptr();
4167   return
4168     klass()->equals(p->klass()) &&
4169     TypeOopPtr::eq(p);          // Check sub-type stuff
4170 }
4171 
4172 //------------------------------hash-------------------------------------------
4173 // Type-specific hashing function.
4174 int TypeInstPtr::hash(void) const {
4175   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
4176   return hash;
4177 }
4178 
4179 //------------------------------dump2------------------------------------------
4180 // Dump oop Type
4181 #ifndef PRODUCT
4182 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4183   // Print the name of the klass.
4184   klass()->print_name_on(st);
4185 
4186   switch( _ptr ) {
4187   case Constant:
4188     // TO DO: Make CI print the hex address of the underlying oop.
4189     if (WizardMode || Verbose) {
4190       const_oop()->print_oop(st);
4191     }
4192   case BotPTR:
4193     if (!WizardMode && !Verbose) {
4194       if( _klass_is_exact ) st->print(":exact");
4195       break;
4196     }
4197   case TopPTR:
4198   case AnyNull:
4199   case NotNull:
4200     st->print(":%s", ptr_msg[_ptr]);
4201     if( _klass_is_exact ) st->print(":exact");
4202     break;
4203   }
4204 
4205   _offset.dump2(st);
4206 
4207   st->print(" *");
4208   if (_instance_id == InstanceTop)
4209     st->print(",iid=top");
4210   else if (_instance_id != InstanceBot)
4211     st->print(",iid=%d",_instance_id);
4212 
4213   dump_inline_depth(st);
4214   dump_speculative(st);
4215 }
4216 #endif
4217 
4218 //------------------------------add_offset-------------------------------------
4219 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4220   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4221               _instance_id, add_offset_speculative(offset), _inline_depth);
4222 }
4223 
4224 const Type *TypeInstPtr::remove_speculative() const {
4225   if (_speculative == NULL) {
4226     return this;
4227   }
4228   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4229   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4230               _instance_id, NULL, _inline_depth);
4231 }
4232 
4233 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4234   if (!UseInlineDepthForSpeculativeTypes) {
4235     return this;
4236   }
4237   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4238 }
4239 
4240 //=============================================================================
4241 // Convenience common pre-built types.
4242 const TypeAryPtr *TypeAryPtr::RANGE;
4243 const TypeAryPtr *TypeAryPtr::OOPS;
4244 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4245 const TypeAryPtr *TypeAryPtr::BYTES;
4246 const TypeAryPtr *TypeAryPtr::SHORTS;
4247 const TypeAryPtr *TypeAryPtr::CHARS;
4248 const TypeAryPtr *TypeAryPtr::INTS;
4249 const TypeAryPtr *TypeAryPtr::LONGS;
4250 const TypeAryPtr *TypeAryPtr::FLOATS;
4251 const TypeAryPtr *TypeAryPtr::DOUBLES;
4252 
4253 //------------------------------make-------------------------------------------
4254 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4255                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4256   assert(!(k == NULL && ary->_elem->isa_int()),
4257          "integral arrays must be pre-equipped with a class");
4258   if (!xk)  xk = ary->ary_must_be_exact();
4259   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4260   if (!UseExactTypes)  xk = (ptr == Constant);
4261   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4262 }
4263 
4264 //------------------------------make-------------------------------------------
4265 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4266                                    int instance_id, const TypePtr* speculative, int inline_depth,
4267                                    bool is_autobox_cache) {
4268   assert(!(k == NULL && ary->_elem->isa_int()),
4269          "integral arrays must be pre-equipped with a class");
4270   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4271   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4272   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4273   if (!UseExactTypes)  xk = (ptr == Constant);
4274   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4275 }
4276 
4277 //------------------------------cast_to_ptr_type-------------------------------
4278 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4279   if( ptr == _ptr ) return this;
4280   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4281 }
4282 
4283 
4284 //-----------------------------cast_to_exactness-------------------------------
4285 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4286   if( klass_is_exact == _klass_is_exact ) return this;
4287   if (!UseExactTypes)  return this;
4288   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4289   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4290 }
4291 
4292 //-----------------------------cast_to_instance_id----------------------------
4293 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4294   if( instance_id == _instance_id ) return this;
4295   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4296 }
4297 
4298 //-----------------------------narrow_size_type-------------------------------
4299 // Local cache for arrayOopDesc::max_array_length(etype),
4300 // which is kind of slow (and cached elsewhere by other users).
4301 static jint max_array_length_cache[T_CONFLICT+1];
4302 static jint max_array_length(BasicType etype) {
4303   jint& cache = max_array_length_cache[etype];
4304   jint res = cache;
4305   if (res == 0) {
4306     switch (etype) {
4307     case T_NARROWOOP:
4308       etype = T_OBJECT;
4309       break;
4310     case T_NARROWKLASS:
4311     case T_CONFLICT:
4312     case T_ILLEGAL:
4313     case T_VOID:
4314       etype = T_BYTE;           // will produce conservatively high value
4315     }
4316     cache = res = arrayOopDesc::max_array_length(etype);
4317   }
4318   return res;
4319 }
4320 
4321 // Narrow the given size type to the index range for the given array base type.
4322 // Return NULL if the resulting int type becomes empty.
4323 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4324   jint hi = size->_hi;
4325   jint lo = size->_lo;
4326   jint min_lo = 0;
4327   jint max_hi = max_array_length(elem()->basic_type());
4328   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4329   bool chg = false;
4330   if (lo < min_lo) {
4331     lo = min_lo;
4332     if (size->is_con()) {
4333       hi = lo;
4334     }
4335     chg = true;
4336   }
4337   if (hi > max_hi) {
4338     hi = max_hi;
4339     if (size->is_con()) {
4340       lo = hi;
4341     }
4342     chg = true;
4343   }
4344   // Negative length arrays will produce weird intermediate dead fast-path code
4345   if (lo > hi)
4346     return TypeInt::ZERO;
4347   if (!chg)
4348     return size;
4349   return TypeInt::make(lo, hi, Type::WidenMin);
4350 }
4351 
4352 //-------------------------------cast_to_size----------------------------------
4353 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4354   assert(new_size != NULL, "");
4355   new_size = narrow_size_type(new_size);
4356   if (new_size == size())  return this;
4357   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4358   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4359 }
4360 
4361 //------------------------------cast_to_stable---------------------------------
4362 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4363   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4364     return this;
4365 
4366   const Type* elem = this->elem();
4367   const TypePtr* elem_ptr = elem->make_ptr();
4368 
4369   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4370     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4371     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4372   }
4373 
4374   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4375 
4376   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4377 }
4378 
4379 //-----------------------------stable_dimension--------------------------------
4380 int TypeAryPtr::stable_dimension() const {
4381   if (!is_stable())  return 0;
4382   int dim = 1;
4383   const TypePtr* elem_ptr = elem()->make_ptr();
4384   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4385     dim += elem_ptr->is_aryptr()->stable_dimension();
4386   return dim;
4387 }
4388 
4389 //----------------------cast_to_autobox_cache-----------------------------------
4390 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4391   if (is_autobox_cache() == cache)  return this;
4392   const TypeOopPtr* etype = elem()->make_oopptr();
4393   if (etype == NULL)  return this;
4394   // The pointers in the autobox arrays are always non-null.
4395   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4396   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4397   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4398   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4399 }
4400 
4401 //------------------------------eq---------------------------------------------
4402 // Structural equality check for Type representations
4403 bool TypeAryPtr::eq( const Type *t ) const {
4404   const TypeAryPtr *p = t->is_aryptr();
4405   return
4406     _ary == p->_ary &&  // Check array
4407     TypeOopPtr::eq(p) &&// Check sub-parts
4408     _field_offset == p->_field_offset;
4409 }
4410 
4411 //------------------------------hash-------------------------------------------
4412 // Type-specific hashing function.
4413 int TypeAryPtr::hash(void) const {
4414   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4415 }
4416 
4417 //------------------------------meet-------------------------------------------
4418 // Compute the MEET of two types.  It returns a new Type object.
4419 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4420   // Perform a fast test for common case; meeting the same types together.
4421   if( this == t ) return this;  // Meeting same type-rep?
4422   // Current "this->_base" is Pointer
4423   switch (t->base()) {          // switch on original type
4424 
4425   // Mixing ints & oops happens when javac reuses local variables
4426   case Int:
4427   case Long:
4428   case FloatTop:
4429   case FloatCon:
4430   case FloatBot:
4431   case DoubleTop:
4432   case DoubleCon:
4433   case DoubleBot:
4434   case NarrowOop:
4435   case NarrowKlass:
4436   case Bottom:                  // Ye Olde Default
4437     return Type::BOTTOM;
4438   case Top:
4439     return this;
4440 
4441   default:                      // All else is a mistake
4442     typerr(t);
4443 
4444   case OopPtr: {                // Meeting to OopPtrs
4445     // Found a OopPtr type vs self-AryPtr type
4446     const TypeOopPtr *tp = t->is_oopptr();
4447     Offset offset = meet_offset(tp->offset());
4448     PTR ptr = meet_ptr(tp->ptr());
4449     int depth = meet_inline_depth(tp->inline_depth());
4450     const TypePtr* speculative = xmeet_speculative(tp);
4451     switch (tp->ptr()) {
4452     case TopPTR:
4453     case AnyNull: {
4454       int instance_id = meet_instance_id(InstanceTop);
4455       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4456                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4457     }
4458     case BotPTR:
4459     case NotNull: {
4460       int instance_id = meet_instance_id(tp->instance_id());
4461       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4462     }
4463     default: ShouldNotReachHere();
4464     }
4465   }
4466 
4467   case AnyPtr: {                // Meeting two AnyPtrs
4468     // Found an AnyPtr type vs self-AryPtr type
4469     const TypePtr *tp = t->is_ptr();
4470     Offset offset = meet_offset(tp->offset());
4471     PTR ptr = meet_ptr(tp->ptr());
4472     const TypePtr* speculative = xmeet_speculative(tp);
4473     int depth = meet_inline_depth(tp->inline_depth());
4474     switch (tp->ptr()) {
4475     case TopPTR:
4476       return this;
4477     case BotPTR:
4478     case NotNull:
4479       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4480     case Null:
4481       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4482       // else fall through to AnyNull
4483     case AnyNull: {
4484       int instance_id = meet_instance_id(InstanceTop);
4485       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4486                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4487     }
4488     default: ShouldNotReachHere();
4489     }
4490   }
4491 
4492   case MetadataPtr:
4493   case KlassPtr:
4494   case RawPtr: return TypePtr::BOTTOM;
4495 
4496   case AryPtr: {                // Meeting 2 references?
4497     const TypeAryPtr *tap = t->is_aryptr();
4498     Offset off = meet_offset(tap->offset());
4499     Offset field_off = meet_field_offset(tap->field_offset());
4500     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4501     PTR ptr = meet_ptr(tap->ptr());
4502     int instance_id = meet_instance_id(tap->instance_id());
4503     const TypePtr* speculative = xmeet_speculative(tap);
4504     int depth = meet_inline_depth(tap->inline_depth());
4505     ciKlass* lazy_klass = NULL;
4506     if (tary->_elem->isa_int()) {
4507       // Integral array element types have irrelevant lattice relations.
4508       // It is the klass that determines array layout, not the element type.
4509       if (_klass == NULL)
4510         lazy_klass = tap->_klass;
4511       else if (tap->_klass == NULL || tap->_klass == _klass) {
4512         lazy_klass = _klass;
4513       } else {
4514         // Something like byte[int+] meets char[int+].
4515         // This must fall to bottom, not (int[-128..65535])[int+].
4516         instance_id = InstanceBot;
4517         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4518       }
4519     } else // Non integral arrays.
4520       // Must fall to bottom if exact klasses in upper lattice
4521       // are not equal or super klass is exact.
4522       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4523           // meet with top[] and bottom[] are processed further down:
4524           tap->_klass != NULL  && this->_klass != NULL   &&
4525           // both are exact and not equal:
4526           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4527            // 'tap'  is exact and super or unrelated:
4528            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4529            // 'this' is exact and super or unrelated:
4530            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4531       if (above_centerline(ptr)) {
4532         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4533       }
4534       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4535     }
4536 
4537     bool xk = false;
4538     switch (tap->ptr()) {
4539     case AnyNull:
4540     case TopPTR:
4541       // Compute new klass on demand, do not use tap->_klass
4542       if (below_centerline(this->_ptr)) {
4543         xk = this->_klass_is_exact;
4544       } else {
4545         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4546       }
4547       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4548     case Constant: {
4549       ciObject* o = const_oop();
4550       if( _ptr == Constant ) {
4551         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4552           xk = (klass() == tap->klass());
4553           ptr = NotNull;
4554           o = NULL;
4555           instance_id = InstanceBot;
4556         } else {
4557           xk = true;
4558         }
4559       } else if(above_centerline(_ptr)) {
4560         o = tap->const_oop();
4561         xk = true;
4562       } else {
4563         // Only precise for identical arrays
4564         xk = this->_klass_is_exact && (klass() == tap->klass());
4565       }
4566       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4567     }
4568     case NotNull:
4569     case BotPTR:
4570       // Compute new klass on demand, do not use tap->_klass
4571       if (above_centerline(this->_ptr))
4572             xk = tap->_klass_is_exact;
4573       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4574               (klass() == tap->klass()); // Only precise for identical arrays
4575       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4576     default: ShouldNotReachHere();
4577     }
4578   }
4579 
4580   // All arrays inherit from Object class
4581   case InstPtr: {
4582     const TypeInstPtr *tp = t->is_instptr();
4583     Offset offset = meet_offset(tp->offset());
4584     PTR ptr = meet_ptr(tp->ptr());
4585     int instance_id = meet_instance_id(tp->instance_id());
4586     const TypePtr* speculative = xmeet_speculative(tp);
4587     int depth = meet_inline_depth(tp->inline_depth());
4588     switch (ptr) {
4589     case TopPTR:
4590     case AnyNull:                // Fall 'down' to dual of object klass
4591       // For instances when a subclass meets a superclass we fall
4592       // below the centerline when the superclass is exact. We need to
4593       // do the same here.
4594       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4595         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4596       } else {
4597         // cannot subclass, so the meet has to fall badly below the centerline
4598         ptr = NotNull;
4599         instance_id = InstanceBot;
4600         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4601       }
4602     case Constant:
4603     case NotNull:
4604     case BotPTR:                // Fall down to object klass
4605       // LCA is object_klass, but if we subclass from the top we can do better
4606       if (above_centerline(tp->ptr())) {
4607         // If 'tp'  is above the centerline and it is Object class
4608         // then we can subclass in the Java class hierarchy.
4609         // For instances when a subclass meets a superclass we fall
4610         // below the centerline when the superclass is exact. We need
4611         // to do the same here.
4612         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4613           // that is, my array type is a subtype of 'tp' klass
4614           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4615                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4616         }
4617       }
4618       // The other case cannot happen, since t cannot be a subtype of an array.
4619       // The meet falls down to Object class below centerline.
4620       if( ptr == Constant )
4621          ptr = NotNull;
4622       instance_id = InstanceBot;
4623       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4624     default: typerr(t);
4625     }
4626   }
4627   }
4628   return this;                  // Lint noise
4629 }
4630 
4631 //------------------------------xdual------------------------------------------
4632 // Dual: compute field-by-field dual
4633 const Type *TypeAryPtr::xdual() const {
4634   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4635 }
4636 
4637 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4638   return _field_offset.meet(offset);
4639 }
4640 
4641 //------------------------------dual_offset------------------------------------
4642 Type::Offset TypeAryPtr::dual_field_offset() const {
4643   return _field_offset.dual();
4644 }
4645 
4646 //----------------------interface_vs_oop---------------------------------------
4647 #ifdef ASSERT
4648 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4649   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4650   if (t_aryptr) {
4651     return _ary->interface_vs_oop(t_aryptr->_ary);
4652   }
4653   return false;
4654 }
4655 #endif
4656 
4657 //------------------------------dump2------------------------------------------
4658 #ifndef PRODUCT
4659 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4660   _ary->dump2(d,depth,st);
4661   switch( _ptr ) {
4662   case Constant:
4663     const_oop()->print(st);
4664     break;
4665   case BotPTR:
4666     if (!WizardMode && !Verbose) {
4667       if( _klass_is_exact ) st->print(":exact");
4668       break;
4669     }
4670   case TopPTR:
4671   case AnyNull:
4672   case NotNull:
4673     st->print(":%s", ptr_msg[_ptr]);
4674     if( _klass_is_exact ) st->print(":exact");
4675     break;
4676   }
4677 
4678   if (elem()->isa_valuetype()) {
4679     st->print("(");
4680     _field_offset.dump2(st);
4681     st->print(")");
4682   }
4683   if (offset() != 0) {
4684     int header_size = objArrayOopDesc::header_size() * wordSize;
4685     if( _offset == Offset::top )       st->print("+undefined");
4686     else if( _offset == Offset::bottom )  st->print("+any");
4687     else if( offset() < header_size ) st->print("+%d", offset());
4688     else {
4689       BasicType basic_elem_type = elem()->basic_type();
4690       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4691       int elem_size = type2aelembytes(basic_elem_type);
4692       st->print("[%d]", (offset() - array_base)/elem_size);
4693     }
4694   }
4695   st->print(" *");
4696   if (_instance_id == InstanceTop)
4697     st->print(",iid=top");
4698   else if (_instance_id != InstanceBot)
4699     st->print(",iid=%d",_instance_id);
4700 
4701   dump_inline_depth(st);
4702   dump_speculative(st);
4703 }
4704 #endif
4705 
4706 bool TypeAryPtr::empty(void) const {
4707   if (_ary->empty())       return true;
4708   return TypeOopPtr::empty();
4709 }
4710 
4711 //------------------------------add_offset-------------------------------------
4712 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4713   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4714 }
4715 
4716 const Type *TypeAryPtr::remove_speculative() const {
4717   if (_speculative == NULL) {
4718     return this;
4719   }
4720   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4721   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4722 }
4723 
4724 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4725   if (!UseInlineDepthForSpeculativeTypes) {
4726     return this;
4727   }
4728   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4729 }
4730 
4731 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4732   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4733 }
4734 
4735 const TypePtr* TypeAryPtr::with_field_offset_and_offset(intptr_t offset) const {
4736   if (offset != Type::OffsetBot) {
4737     const Type* elemtype = elem();
4738     if (elemtype->isa_valuetype()) {
4739       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4740       if (offset >= (intptr_t)header) {
4741         ciKlass* arytype_klass = klass();
4742         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4743         int shift = vak->log2_element_size();
4744         intptr_t field_offset = ((offset - header) & ((1 << shift) - 1));
4745 
4746         return with_field_offset(field_offset)->add_offset(offset - field_offset);
4747       }
4748     }
4749   }
4750   return add_offset(offset);
4751 }
4752 
4753 //=============================================================================
4754 
4755 
4756 //=============================================================================
4757 
4758 const TypeValueTypePtr* TypeValueTypePtr::NOTNULL;
4759 //------------------------------make-------------------------------------------
4760 const TypeValueTypePtr* TypeValueTypePtr::make(const TypeValueType* vt, PTR ptr, ciObject* o, Offset offset, int instance_id, const TypePtr* speculative, int inline_depth) {
4761   return (TypeValueTypePtr*)(new TypeValueTypePtr(vt, ptr, o, offset, instance_id, speculative, inline_depth))->hashcons();
4762 }
4763 
4764 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4765   return make(_vt, _ptr, _const_oop, Offset(offset), _instance_id, _speculative, _inline_depth);
4766 }
4767 
4768 //------------------------------cast_to_ptr_type-------------------------------
4769 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4770   if (ptr == _ptr) return this;
4771   return make(_vt, ptr, _const_oop, _offset, _instance_id, _speculative, _inline_depth);
4772 }
4773 
4774 //-----------------------------cast_to_instance_id----------------------------
4775 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4776   if (instance_id == _instance_id) return this;
4777   return make(_vt, _ptr, _const_oop, _offset, instance_id, _speculative, _inline_depth);
4778 }
4779 
4780 //------------------------------meet-------------------------------------------
4781 // Compute the MEET of two types.  It returns a new Type object.
4782 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4783   // Perform a fast test for common case; meeting the same types together.
4784   if (this == t) return this;  // Meeting same type-rep?
4785 
4786   switch (t->base()) {          // switch on original type
4787     case Int:                     // Mixing ints & oops happens when javac
4788     case Long:                    // reuses local variables
4789     case FloatTop:
4790     case FloatCon:
4791     case FloatBot:
4792     case DoubleTop:
4793     case DoubleCon:
4794     case DoubleBot:
4795     case NarrowOop:
4796     case NarrowKlass:
4797     case MetadataPtr:
4798     case KlassPtr:
4799     case RawPtr:
4800     case AryPtr:
4801     case InstPtr:
4802     case Bottom:                  // Ye Olde Default
4803       return Type::BOTTOM;
4804     case Top:
4805       return this;
4806 
4807     default:                      // All else is a mistake
4808       typerr(t);
4809 
4810     case OopPtr: {
4811       // Found a OopPtr type vs self-ValueTypePtr type
4812       const TypeOopPtr* tp = t->is_oopptr();
4813       Offset offset = meet_offset(tp->offset());
4814       PTR ptr = meet_ptr(tp->ptr());
4815       int instance_id = meet_instance_id(tp->instance_id());
4816       const TypePtr* speculative = xmeet_speculative(tp);
4817       int depth = meet_inline_depth(tp->inline_depth());
4818       switch (tp->ptr()) {
4819       case TopPTR:
4820       case AnyNull: {
4821         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4822       }
4823       case NotNull:
4824       case BotPTR: {
4825         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4826       }
4827       default: typerr(t);
4828       }
4829     }
4830 
4831     case AnyPtr: {
4832       // Found an AnyPtr type vs self-ValueTypePtr type
4833       const TypePtr* tp = t->is_ptr();
4834       Offset offset = meet_offset(tp->offset());
4835       PTR ptr = meet_ptr(tp->ptr());
4836       int instance_id = meet_instance_id(InstanceTop);
4837       const TypePtr* speculative = xmeet_speculative(tp);
4838       int depth = meet_inline_depth(tp->inline_depth());
4839       switch (tp->ptr()) {
4840       case Null:
4841         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4842         // else fall through to AnyNull
4843       case TopPTR:
4844       case AnyNull: {
4845         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4846       }
4847       case NotNull:
4848       case BotPTR:
4849         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4850       default: typerr(t);
4851       }
4852     }
4853 
4854     case ValueTypePtr: {
4855       // Found an ValueTypePtr type vs self-ValueTypePtr type
4856       const TypeValueTypePtr* tp = t->is_valuetypeptr();
4857       Offset offset = meet_offset(tp->offset());
4858       PTR ptr = meet_ptr(tp->ptr());
4859       int instance_id = meet_instance_id(InstanceTop);
4860       const TypePtr* speculative = xmeet_speculative(tp);
4861       int depth = meet_inline_depth(tp->inline_depth());
4862       // Compute constant oop
4863       ciObject* o = NULL;
4864       ciObject* this_oop  = const_oop();
4865       ciObject* tp_oop = tp->const_oop();
4866       const TypeValueType* vt = NULL;
4867       if (_vt != tp->_vt) {
4868         ciKlass* __value_klass = ciEnv::current()->___Value_klass();
4869         assert(klass() == __value_klass || tp->klass() == __value_klass, "impossible meet");
4870         if (above_centerline(ptr)) {
4871           vt = klass() == __value_klass ? tp->_vt : _vt;
4872         } else if (above_centerline(this->_ptr) && !above_centerline(tp->_ptr)) {
4873           vt = tp->_vt;
4874         } else if (above_centerline(tp->_ptr) && !above_centerline(this->_ptr)) {
4875           vt = _vt;
4876         } else {
4877           vt = klass() == __value_klass ? _vt : tp->_vt;
4878         }
4879       } else {
4880         vt = _vt;
4881       }
4882       if (ptr == Constant) {
4883         if (this_oop != NULL && tp_oop != NULL &&
4884             this_oop->equals(tp_oop) ) {
4885           o = this_oop;
4886         } else if (above_centerline(this ->_ptr)) {
4887           o = tp_oop;
4888         } else if (above_centerline(tp ->_ptr)) {
4889           o = this_oop;
4890         } else {
4891           ptr = NotNull;
4892         }
4893       }
4894       return make(vt, ptr, o, offset, instance_id, speculative, depth);
4895     }
4896     }
4897 }
4898 
4899 // Dual: compute field-by-field dual
4900 const Type* TypeValueTypePtr::xdual() const {
4901   return new TypeValueTypePtr(_vt, dual_ptr(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4902 }
4903 
4904 //------------------------------eq---------------------------------------------
4905 // Structural equality check for Type representations
4906 bool TypeValueTypePtr::eq(const Type* t) const {
4907   const TypeValueTypePtr* p = t->is_valuetypeptr();
4908   return _vt->eq(p->value_type()) && TypeOopPtr::eq(p);
4909 }
4910 
4911 //------------------------------hash-------------------------------------------
4912 // Type-specific hashing function.
4913 int TypeValueTypePtr::hash(void) const {
4914   return java_add(_vt->hash(), TypeOopPtr::hash());
4915 }
4916 
4917 //------------------------------empty------------------------------------------
4918 // TRUE if Type is a type with no values, FALSE otherwise.
4919 bool TypeValueTypePtr::empty(void) const {
4920   // FIXME
4921   return false;
4922 }
4923 
4924 //------------------------------dump2------------------------------------------
4925 #ifndef PRODUCT
4926 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
4927   st->print("valuetype* ");
4928   klass()->print_name_on(st);
4929   st->print(":%s", ptr_msg[_ptr]);
4930   _offset.dump2(st);
4931 }
4932 #endif
4933 
4934 //=============================================================================
4935 
4936 //------------------------------hash-------------------------------------------
4937 // Type-specific hashing function.
4938 int TypeNarrowPtr::hash(void) const {
4939   return _ptrtype->hash() + 7;
4940 }
4941 
4942 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4943   return _ptrtype->singleton();
4944 }
4945 
4946 bool TypeNarrowPtr::empty(void) const {
4947   return _ptrtype->empty();
4948 }
4949 
4950 intptr_t TypeNarrowPtr::get_con() const {
4951   return _ptrtype->get_con();
4952 }
4953 
4954 bool TypeNarrowPtr::eq( const Type *t ) const {
4955   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4956   if (tc != NULL) {
4957     if (_ptrtype->base() != tc->_ptrtype->base()) {
4958       return false;
4959     }
4960     return tc->_ptrtype->eq(_ptrtype);
4961   }
4962   return false;
4963 }
4964 
4965 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4966   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4967   return make_same_narrowptr(odual);
4968 }
4969 
4970 
4971 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4972   if (isa_same_narrowptr(kills)) {
4973     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4974     if (ft->empty())
4975       return Type::TOP;           // Canonical empty value
4976     if (ft->isa_ptr()) {
4977       return make_hash_same_narrowptr(ft->isa_ptr());
4978     }
4979     return ft;
4980   } else if (kills->isa_ptr()) {
4981     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4982     if (ft->empty())
4983       return Type::TOP;           // Canonical empty value
4984     return ft;
4985   } else {
4986     return Type::TOP;
4987   }
4988 }
4989 
4990 //------------------------------xmeet------------------------------------------
4991 // Compute the MEET of two types.  It returns a new Type object.
4992 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4993   // Perform a fast test for common case; meeting the same types together.
4994   if( this == t ) return this;  // Meeting same type-rep?
4995 
4996   if (t->base() == base()) {
4997     const Type* result = _ptrtype->xmeet(t->make_ptr());
4998     if (result->isa_ptr()) {
4999       return make_hash_same_narrowptr(result->is_ptr());
5000     }
5001     return result;
5002   }
5003 
5004   // Current "this->_base" is NarrowKlass or NarrowOop
5005   switch (t->base()) {          // switch on original type
5006 
5007   case Int:                     // Mixing ints & oops happens when javac
5008   case Long:                    // reuses local variables
5009   case FloatTop:
5010   case FloatCon:
5011   case FloatBot:
5012   case DoubleTop:
5013   case DoubleCon:
5014   case DoubleBot:
5015   case AnyPtr:
5016   case RawPtr:
5017   case OopPtr:
5018   case InstPtr:
5019   case ValueTypePtr:
5020   case AryPtr:
5021   case MetadataPtr:
5022   case KlassPtr:
5023   case NarrowOop:
5024   case NarrowKlass:
5025 
5026   case Bottom:                  // Ye Olde Default
5027     return Type::BOTTOM;
5028   case Top:
5029     return this;
5030 
5031   default:                      // All else is a mistake
5032     typerr(t);
5033 
5034   } // End of switch
5035 
5036   return this;
5037 }
5038 
5039 #ifndef PRODUCT
5040 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5041   _ptrtype->dump2(d, depth, st);
5042 }
5043 #endif
5044 
5045 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5046 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5047 
5048 
5049 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5050   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5051 }
5052 
5053 const Type* TypeNarrowOop::remove_speculative() const {
5054   return make(_ptrtype->remove_speculative()->is_ptr());
5055 }
5056 
5057 const Type* TypeNarrowOop::cleanup_speculative() const {
5058   return make(_ptrtype->cleanup_speculative()->is_ptr());
5059 }
5060 
5061 #ifndef PRODUCT
5062 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5063   st->print("narrowoop: ");
5064   TypeNarrowPtr::dump2(d, depth, st);
5065 }
5066 #endif
5067 
5068 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5069 
5070 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5071   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5072 }
5073 
5074 #ifndef PRODUCT
5075 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5076   st->print("narrowklass: ");
5077   TypeNarrowPtr::dump2(d, depth, st);
5078 }
5079 #endif
5080 
5081 
5082 //------------------------------eq---------------------------------------------
5083 // Structural equality check for Type representations
5084 bool TypeMetadataPtr::eq( const Type *t ) const {
5085   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5086   ciMetadata* one = metadata();
5087   ciMetadata* two = a->metadata();
5088   if (one == NULL || two == NULL) {
5089     return (one == two) && TypePtr::eq(t);
5090   } else {
5091     return one->equals(two) && TypePtr::eq(t);
5092   }
5093 }
5094 
5095 //------------------------------hash-------------------------------------------
5096 // Type-specific hashing function.
5097 int TypeMetadataPtr::hash(void) const {
5098   return
5099     (metadata() ? metadata()->hash() : 0) +
5100     TypePtr::hash();
5101 }
5102 
5103 //------------------------------singleton--------------------------------------
5104 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5105 // constants
5106 bool TypeMetadataPtr::singleton(void) const {
5107   // detune optimizer to not generate constant metadata + constant offset as a constant!
5108   // TopPTR, Null, AnyNull, Constant are all singletons
5109   return (offset() == 0) && !below_centerline(_ptr);
5110 }
5111 
5112 //------------------------------add_offset-------------------------------------
5113 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5114   return make( _ptr, _metadata, xadd_offset(offset));
5115 }
5116 
5117 //-----------------------------filter------------------------------------------
5118 // Do not allow interface-vs.-noninterface joins to collapse to top.
5119 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5120   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5121   if (ft == NULL || ft->empty())
5122     return Type::TOP;           // Canonical empty value
5123   return ft;
5124 }
5125 
5126  //------------------------------get_con----------------------------------------
5127 intptr_t TypeMetadataPtr::get_con() const {
5128   assert( _ptr == Null || _ptr == Constant, "" );
5129   assert(offset() >= 0, "");
5130 
5131   if (offset() != 0) {
5132     // After being ported to the compiler interface, the compiler no longer
5133     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5134     // to a handle at compile time.  This handle is embedded in the generated
5135     // code and dereferenced at the time the nmethod is made.  Until that time,
5136     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5137     // have access to the addresses!).  This does not seem to currently happen,
5138     // but this assertion here is to help prevent its occurence.
5139     tty->print_cr("Found oop constant with non-zero offset");
5140     ShouldNotReachHere();
5141   }
5142 
5143   return (intptr_t)metadata()->constant_encoding();
5144 }
5145 
5146 //------------------------------cast_to_ptr_type-------------------------------
5147 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5148   if( ptr == _ptr ) return this;
5149   return make(ptr, metadata(), _offset);
5150 }
5151 
5152 //------------------------------meet-------------------------------------------
5153 // Compute the MEET of two types.  It returns a new Type object.
5154 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5155   // Perform a fast test for common case; meeting the same types together.
5156   if( this == t ) return this;  // Meeting same type-rep?
5157 
5158   // Current "this->_base" is OopPtr
5159   switch (t->base()) {          // switch on original type
5160 
5161   case Int:                     // Mixing ints & oops happens when javac
5162   case Long:                    // reuses local variables
5163   case FloatTop:
5164   case FloatCon:
5165   case FloatBot:
5166   case DoubleTop:
5167   case DoubleCon:
5168   case DoubleBot:
5169   case NarrowOop:
5170   case NarrowKlass:
5171   case Bottom:                  // Ye Olde Default
5172     return Type::BOTTOM;
5173   case Top:
5174     return this;
5175 
5176   default:                      // All else is a mistake
5177     typerr(t);
5178 
5179   case AnyPtr: {
5180     // Found an AnyPtr type vs self-OopPtr type
5181     const TypePtr *tp = t->is_ptr();
5182     Offset offset = meet_offset(tp->offset());
5183     PTR ptr = meet_ptr(tp->ptr());
5184     switch (tp->ptr()) {
5185     case Null:
5186       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5187       // else fall through:
5188     case TopPTR:
5189     case AnyNull: {
5190       return make(ptr, _metadata, offset);
5191     }
5192     case BotPTR:
5193     case NotNull:
5194       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5195     default: typerr(t);
5196     }
5197   }
5198 
5199   case RawPtr:
5200   case KlassPtr:
5201   case OopPtr:
5202   case InstPtr:
5203   case ValueTypePtr:
5204   case AryPtr:
5205     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5206 
5207   case MetadataPtr: {
5208     const TypeMetadataPtr *tp = t->is_metadataptr();
5209     Offset offset = meet_offset(tp->offset());
5210     PTR tptr = tp->ptr();
5211     PTR ptr = meet_ptr(tptr);
5212     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5213     if (tptr == TopPTR || _ptr == TopPTR ||
5214         metadata()->equals(tp->metadata())) {
5215       return make(ptr, md, offset);
5216     }
5217     // metadata is different
5218     if( ptr == Constant ) {  // Cannot be equal constants, so...
5219       if( tptr == Constant && _ptr != Constant)  return t;
5220       if( _ptr == Constant && tptr != Constant)  return this;
5221       ptr = NotNull;            // Fall down in lattice
5222     }
5223     return make(ptr, NULL, offset);
5224     break;
5225   }
5226   } // End of switch
5227   return this;                  // Return the double constant
5228 }
5229 
5230 
5231 //------------------------------xdual------------------------------------------
5232 // Dual of a pure metadata pointer.
5233 const Type *TypeMetadataPtr::xdual() const {
5234   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5235 }
5236 
5237 //------------------------------dump2------------------------------------------
5238 #ifndef PRODUCT
5239 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5240   st->print("metadataptr:%s", ptr_msg[_ptr]);
5241   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5242   switch (offset()) {
5243   case OffsetTop: st->print("+top"); break;
5244   case OffsetBot: st->print("+any"); break;
5245   case         0: break;
5246   default:        st->print("+%d",offset()); break;
5247   }
5248 }
5249 #endif
5250 
5251 
5252 //=============================================================================
5253 // Convenience common pre-built type.
5254 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5255 
5256 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5257   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5258 }
5259 
5260 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5261   return make(Constant, m, Offset(0));
5262 }
5263 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5264   return make(Constant, m, Offset(0));
5265 }
5266 
5267 //------------------------------make-------------------------------------------
5268 // Create a meta data constant
5269 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5270   assert(m == NULL || !m->is_klass(), "wrong type");
5271   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5272 }
5273 
5274 
5275 //=============================================================================
5276 // Convenience common pre-built types.
5277 
5278 // Not-null object klass or below
5279 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5280 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5281 
5282 //------------------------------TypeKlassPtr-----------------------------------
5283 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5284   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5285 }
5286 
5287 //------------------------------make-------------------------------------------
5288 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5289 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5290   assert( k != NULL, "Expect a non-NULL klass");
5291   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5292   TypeKlassPtr *r =
5293     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5294 
5295   return r;
5296 }
5297 
5298 //------------------------------eq---------------------------------------------
5299 // Structural equality check for Type representations
5300 bool TypeKlassPtr::eq( const Type *t ) const {
5301   const TypeKlassPtr *p = t->is_klassptr();
5302   return
5303     klass()->equals(p->klass()) &&
5304     TypePtr::eq(p);
5305 }
5306 
5307 //------------------------------hash-------------------------------------------
5308 // Type-specific hashing function.
5309 int TypeKlassPtr::hash(void) const {
5310   return java_add(klass()->hash(), TypePtr::hash());
5311 }
5312 
5313 //------------------------------singleton--------------------------------------
5314 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5315 // constants
5316 bool TypeKlassPtr::singleton(void) const {
5317   // detune optimizer to not generate constant klass + constant offset as a constant!
5318   // TopPTR, Null, AnyNull, Constant are all singletons
5319   return (offset() == 0) && !below_centerline(_ptr);
5320 }
5321 
5322 // Do not allow interface-vs.-noninterface joins to collapse to top.
5323 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5324   // logic here mirrors the one from TypeOopPtr::filter. See comments
5325   // there.
5326   const Type* ft = join_helper(kills, include_speculative);
5327   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5328   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5329 
5330   if (ft->empty()) {
5331     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
5332       return kills;             // Uplift to interface
5333 
5334     return Type::TOP;           // Canonical empty value
5335   }
5336 
5337   // Interface klass type could be exact in opposite to interface type,
5338   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5339   if (ftkp != NULL && ktkp != NULL &&
5340       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5341       !ftkp->klass_is_exact() && // Keep exact interface klass
5342       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5343     return ktkp->cast_to_ptr_type(ftkp->ptr());
5344   }
5345 
5346   return ft;
5347 }
5348 
5349 //----------------------compute_klass------------------------------------------
5350 // Compute the defining klass for this class
5351 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5352   // Compute _klass based on element type.
5353   ciKlass* k_ary = NULL;
5354   const TypeAryPtr *tary;
5355   const Type* el = elem();
5356   if (el->isa_narrowoop()) {
5357     el = el->make_ptr();
5358   }
5359 
5360   // Get element klass
5361   if (el->isa_instptr() || el->isa_valuetypeptr()) {
5362     // Compute object array klass from element klass
5363     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5364   } else if (el->isa_valuetype()) {
5365     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5366   } else if ((tary = el->isa_aryptr()) != NULL) {
5367     // Compute array klass from element klass
5368     ciKlass* k_elem = tary->klass();
5369     // If element type is something like bottom[], k_elem will be null.
5370     if (k_elem != NULL)
5371       k_ary = ciObjArrayKlass::make(k_elem);
5372   } else if ((el->base() == Type::Top) ||
5373              (el->base() == Type::Bottom)) {
5374     // element type of Bottom occurs from meet of basic type
5375     // and object; Top occurs when doing join on Bottom.
5376     // Leave k_ary at NULL.
5377   } else {
5378     // Cannot compute array klass directly from basic type,
5379     // since subtypes of TypeInt all have basic type T_INT.
5380 #ifdef ASSERT
5381     if (verify && el->isa_int()) {
5382       // Check simple cases when verifying klass.
5383       BasicType bt = T_ILLEGAL;
5384       if (el == TypeInt::BYTE) {
5385         bt = T_BYTE;
5386       } else if (el == TypeInt::SHORT) {
5387         bt = T_SHORT;
5388       } else if (el == TypeInt::CHAR) {
5389         bt = T_CHAR;
5390       } else if (el == TypeInt::INT) {
5391         bt = T_INT;
5392       } else {
5393         return _klass; // just return specified klass
5394       }
5395       return ciTypeArrayKlass::make(bt);
5396     }
5397 #endif
5398     assert(!el->isa_int(),
5399            "integral arrays must be pre-equipped with a class");
5400     // Compute array klass directly from basic type
5401     k_ary = ciTypeArrayKlass::make(el->basic_type());
5402   }
5403   return k_ary;
5404 }
5405 
5406 //------------------------------klass------------------------------------------
5407 // Return the defining klass for this class
5408 ciKlass* TypeAryPtr::klass() const {
5409   if( _klass ) return _klass;   // Return cached value, if possible
5410 
5411   // Oops, need to compute _klass and cache it
5412   ciKlass* k_ary = compute_klass();
5413 
5414   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5415     // The _klass field acts as a cache of the underlying
5416     // ciKlass for this array type.  In order to set the field,
5417     // we need to cast away const-ness.
5418     //
5419     // IMPORTANT NOTE: we *never* set the _klass field for the
5420     // type TypeAryPtr::OOPS.  This Type is shared between all
5421     // active compilations.  However, the ciKlass which represents
5422     // this Type is *not* shared between compilations, so caching
5423     // this value would result in fetching a dangling pointer.
5424     //
5425     // Recomputing the underlying ciKlass for each request is
5426     // a bit less efficient than caching, but calls to
5427     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5428     ((TypeAryPtr*)this)->_klass = k_ary;
5429     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5430         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5431       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5432     }
5433   }
5434   return k_ary;
5435 }
5436 
5437 
5438 //------------------------------add_offset-------------------------------------
5439 // Access internals of klass object
5440 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5441   return make( _ptr, klass(), xadd_offset(offset) );
5442 }
5443 
5444 //------------------------------cast_to_ptr_type-------------------------------
5445 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5446   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5447   if( ptr == _ptr ) return this;
5448   return make(ptr, _klass, _offset);
5449 }
5450 
5451 
5452 //-----------------------------cast_to_exactness-------------------------------
5453 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5454   if( klass_is_exact == _klass_is_exact ) return this;
5455   if (!UseExactTypes)  return this;
5456   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5457 }
5458 
5459 
5460 //-----------------------------as_instance_type--------------------------------
5461 // Corresponding type for an instance of the given class.
5462 // It will be NotNull, and exact if and only if the klass type is exact.
5463 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5464   ciKlass* k = klass();
5465   bool    xk = klass_is_exact();
5466   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5467   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5468   guarantee(toop != NULL, "need type for given klass");
5469   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5470   return toop->cast_to_exactness(xk)->is_oopptr();
5471 }
5472 
5473 
5474 //------------------------------xmeet------------------------------------------
5475 // Compute the MEET of two types, return a new Type object.
5476 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5477   // Perform a fast test for common case; meeting the same types together.
5478   if( this == t ) return this;  // Meeting same type-rep?
5479 
5480   // Current "this->_base" is Pointer
5481   switch (t->base()) {          // switch on original type
5482 
5483   case Int:                     // Mixing ints & oops happens when javac
5484   case Long:                    // reuses local variables
5485   case FloatTop:
5486   case FloatCon:
5487   case FloatBot:
5488   case DoubleTop:
5489   case DoubleCon:
5490   case DoubleBot:
5491   case NarrowOop:
5492   case NarrowKlass:
5493   case Bottom:                  // Ye Olde Default
5494     return Type::BOTTOM;
5495   case Top:
5496     return this;
5497 
5498   default:                      // All else is a mistake
5499     typerr(t);
5500 
5501   case AnyPtr: {                // Meeting to AnyPtrs
5502     // Found an AnyPtr type vs self-KlassPtr type
5503     const TypePtr *tp = t->is_ptr();
5504     Offset offset = meet_offset(tp->offset());
5505     PTR ptr = meet_ptr(tp->ptr());
5506     switch (tp->ptr()) {
5507     case TopPTR:
5508       return this;
5509     case Null:
5510       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5511     case AnyNull:
5512       return make( ptr, klass(), offset );
5513     case BotPTR:
5514     case NotNull:
5515       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5516     default: typerr(t);
5517     }
5518   }
5519 
5520   case RawPtr:
5521   case MetadataPtr:
5522   case OopPtr:
5523   case AryPtr:                  // Meet with AryPtr
5524   case InstPtr:                 // Meet with InstPtr
5525   case ValueTypePtr:
5526     return TypePtr::BOTTOM;
5527 
5528   //
5529   //             A-top         }
5530   //           /   |   \       }  Tops
5531   //       B-top A-any C-top   }
5532   //          | /  |  \ |      }  Any-nulls
5533   //       B-any   |   C-any   }
5534   //          |    |    |
5535   //       B-con A-con C-con   } constants; not comparable across classes
5536   //          |    |    |
5537   //       B-not   |   C-not   }
5538   //          | \  |  / |      }  not-nulls
5539   //       B-bot A-not C-bot   }
5540   //           \   |   /       }  Bottoms
5541   //             A-bot         }
5542   //
5543 
5544   case KlassPtr: {  // Meet two KlassPtr types
5545     const TypeKlassPtr *tkls = t->is_klassptr();
5546     Offset  off  = meet_offset(tkls->offset());
5547     PTR  ptr     = meet_ptr(tkls->ptr());
5548 
5549     // Check for easy case; klasses are equal (and perhaps not loaded!)
5550     // If we have constants, then we created oops so classes are loaded
5551     // and we can handle the constants further down.  This case handles
5552     // not-loaded classes
5553     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5554       return make( ptr, klass(), off );
5555     }
5556 
5557     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5558     ciKlass* tkls_klass = tkls->klass();
5559     ciKlass* this_klass = this->klass();
5560     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5561     assert( this_klass->is_loaded(), "This class should have been loaded.");
5562 
5563     // If 'this' type is above the centerline and is a superclass of the
5564     // other, we can treat 'this' as having the same type as the other.
5565     if ((above_centerline(this->ptr())) &&
5566         tkls_klass->is_subtype_of(this_klass)) {
5567       this_klass = tkls_klass;
5568     }
5569     // If 'tinst' type is above the centerline and is a superclass of the
5570     // other, we can treat 'tinst' as having the same type as the other.
5571     if ((above_centerline(tkls->ptr())) &&
5572         this_klass->is_subtype_of(tkls_klass)) {
5573       tkls_klass = this_klass;
5574     }
5575 
5576     // Check for classes now being equal
5577     if (tkls_klass->equals(this_klass)) {
5578       // If the klasses are equal, the constants may still differ.  Fall to
5579       // NotNull if they do (neither constant is NULL; that is a special case
5580       // handled elsewhere).
5581       if( ptr == Constant ) {
5582         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5583             this->klass()->equals(tkls->klass()));
5584         else if (above_centerline(this->ptr()));
5585         else if (above_centerline(tkls->ptr()));
5586         else
5587           ptr = NotNull;
5588       }
5589       return make( ptr, this_klass, off );
5590     } // Else classes are not equal
5591 
5592     // Since klasses are different, we require the LCA in the Java
5593     // class hierarchy - which means we have to fall to at least NotNull.
5594     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5595       ptr = NotNull;
5596     // Now we find the LCA of Java classes
5597     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5598     return   make( ptr, k, off );
5599   } // End of case KlassPtr
5600 
5601   } // End of switch
5602   return this;                  // Return the double constant
5603 }
5604 
5605 //------------------------------xdual------------------------------------------
5606 // Dual: compute field-by-field dual
5607 const Type    *TypeKlassPtr::xdual() const {
5608   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5609 }
5610 
5611 //------------------------------get_con----------------------------------------
5612 intptr_t TypeKlassPtr::get_con() const {
5613   assert( _ptr == Null || _ptr == Constant, "" );
5614   assert(offset() >= 0, "");
5615 
5616   if (offset() != 0) {
5617     // After being ported to the compiler interface, the compiler no longer
5618     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5619     // to a handle at compile time.  This handle is embedded in the generated
5620     // code and dereferenced at the time the nmethod is made.  Until that time,
5621     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5622     // have access to the addresses!).  This does not seem to currently happen,
5623     // but this assertion here is to help prevent its occurence.
5624     tty->print_cr("Found oop constant with non-zero offset");
5625     ShouldNotReachHere();
5626   }
5627 
5628   return (intptr_t)klass()->constant_encoding();
5629 }
5630 //------------------------------dump2------------------------------------------
5631 // Dump Klass Type
5632 #ifndef PRODUCT
5633 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5634   switch( _ptr ) {
5635   case Constant:
5636     st->print("precise ");
5637   case NotNull:
5638     {
5639       const char *name = klass()->name()->as_utf8();
5640       if( name ) {
5641         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5642       } else {
5643         ShouldNotReachHere();
5644       }
5645     }
5646   case BotPTR:
5647     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5648   case TopPTR:
5649   case AnyNull:
5650     st->print(":%s", ptr_msg[_ptr]);
5651     if( _klass_is_exact ) st->print(":exact");
5652     break;
5653   }
5654 
5655   _offset.dump2(st);
5656 
5657   st->print(" *");
5658 }
5659 #endif
5660 
5661 
5662 
5663 //=============================================================================
5664 // Convenience common pre-built types.
5665 
5666 //------------------------------make-------------------------------------------
5667 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5668                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5669   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5670 }
5671 
5672 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5673   return make(domain, domain, range, range);
5674 }
5675 
5676 //------------------------------make-------------------------------------------
5677 const TypeFunc *TypeFunc::make(ciMethod* method) {
5678   Compile* C = Compile::current();
5679   const TypeFunc* tf = C->last_tf(method); // check cache
5680   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5681   const TypeTuple *domain_sig, *domain_cc;
5682   // Value type arguments are not passed by reference, instead each
5683   // field of the value type is passed as an argument. We maintain 2
5684   // views of the argument list here: one based on the signature (with
5685   // a value type argument as a single slot), one based on the actual
5686   // calling convention (with a value type argument as a list of its
5687   // fields).
5688   if (method->is_static()) {
5689     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5690     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5691   } else {
5692     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5693     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5694   }
5695   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5696   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5697   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5698   C->set_last_tf(method, tf);  // fill cache
5699   return tf;
5700 }
5701 
5702 //------------------------------meet-------------------------------------------
5703 // Compute the MEET of two types.  It returns a new Type object.
5704 const Type *TypeFunc::xmeet( const Type *t ) const {
5705   // Perform a fast test for common case; meeting the same types together.
5706   if( this == t ) return this;  // Meeting same type-rep?
5707 
5708   // Current "this->_base" is Func
5709   switch (t->base()) {          // switch on original type
5710 
5711   case Bottom:                  // Ye Olde Default
5712     return t;
5713 
5714   default:                      // All else is a mistake
5715     typerr(t);
5716 
5717   case Top:
5718     break;
5719   }
5720   return this;                  // Return the double constant
5721 }
5722 
5723 //------------------------------xdual------------------------------------------
5724 // Dual: compute field-by-field dual
5725 const Type *TypeFunc::xdual() const {
5726   return this;
5727 }
5728 
5729 //------------------------------eq---------------------------------------------
5730 // Structural equality check for Type representations
5731 bool TypeFunc::eq( const Type *t ) const {
5732   const TypeFunc *a = (const TypeFunc*)t;
5733   return _domain_sig == a->_domain_sig &&
5734     _domain_cc == a->_domain_cc &&
5735     _range_sig == a->_range_sig &&
5736     _range_cc == a->_range_cc;
5737 }
5738 
5739 //------------------------------hash-------------------------------------------
5740 // Type-specific hashing function.
5741 int TypeFunc::hash(void) const {
5742   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5743 }
5744 
5745 //------------------------------dump2------------------------------------------
5746 // Dump Function Type
5747 #ifndef PRODUCT
5748 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5749   if( _range_sig->cnt() <= Parms )
5750     st->print("void");
5751   else {
5752     uint i;
5753     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5754       _range_sig->field_at(i)->dump2(d,depth,st);
5755       st->print("/");
5756     }
5757     _range_sig->field_at(i)->dump2(d,depth,st);
5758   }
5759   st->print(" ");
5760   st->print("( ");
5761   if( !depth || d[this] ) {     // Check for recursive dump
5762     st->print("...)");
5763     return;
5764   }
5765   d.Insert((void*)this,(void*)this);    // Stop recursion
5766   if (Parms < _domain_sig->cnt())
5767     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5768   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5769     st->print(", ");
5770     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5771   }
5772   st->print(" )");
5773 }
5774 #endif
5775 
5776 //------------------------------singleton--------------------------------------
5777 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5778 // constants (Ldi nodes).  Singletons are integer, float or double constants
5779 // or a single symbol.
5780 bool TypeFunc::singleton(void) const {
5781   return false;                 // Never a singleton
5782 }
5783 
5784 bool TypeFunc::empty(void) const {
5785   return false;                 // Never empty
5786 }
5787 
5788 
5789 BasicType TypeFunc::return_type() const{
5790   if (range_sig()->cnt() == TypeFunc::Parms) {
5791     return T_VOID;
5792   }
5793   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5794 }