1 //
   2 // Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // AMD64 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
  64 // used as byte registers)
  65 
  66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
  67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
  69 
  70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
  71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
  72 
  73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
  74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
  75 
  76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
  77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
  78 
  79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
  80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
  81 
  82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
  83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
  84 
  85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
  86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
  87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
  88 
  89 #ifdef _WIN64
  90 
  91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
  92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
  93 
  94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
  95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
  96 
  97 #else
  98 
  99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
 100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
 101 
 102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
 103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
 104 
 105 #endif
 106 
 107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
 108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
 109 
 110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
 111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
 112 
 113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
 114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
 115 
 116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
 117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 118 
 119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
 120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
 121 
 122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
 123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
 124 
 125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
 126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
 127 
 128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
 129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
 130 
 131 
 132 // Floating Point Registers
 133 
 134 // Specify priority of register selection within phases of register
 135 // allocation.  Highest priority is first.  A useful heuristic is to
 136 // give registers a low priority when they are required by machine
 137 // instructions, like EAX and EDX on I486, and choose no-save registers
 138 // before save-on-call, & save-on-call before save-on-entry.  Registers
 139 // which participate in fixed calling sequences should come last.
 140 // Registers which are used as pairs must fall on an even boundary.
 141 
 142 alloc_class chunk0(R10,         R10_H,
 143                    R11,         R11_H,
 144                    R8,          R8_H,
 145                    R9,          R9_H,
 146                    R12,         R12_H,
 147                    RCX,         RCX_H,
 148                    RBX,         RBX_H,
 149                    RDI,         RDI_H,
 150                    RDX,         RDX_H,
 151                    RSI,         RSI_H,
 152                    RAX,         RAX_H,
 153                    RBP,         RBP_H,
 154                    R13,         R13_H,
 155                    R14,         R14_H,
 156                    R15,         R15_H,
 157                    RSP,         RSP_H);
 158 
 159 
 160 //----------Architecture Description Register Classes--------------------------
 161 // Several register classes are automatically defined based upon information in
 162 // this architecture description.
 163 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 164 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 165 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 166 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 167 //
 168 
 169 // Empty register class.
 170 reg_class no_reg();
 171 
 172 // Class for all pointer registers (including RSP and RBP)
 173 reg_class any_reg_with_rbp(RAX, RAX_H,
 174                            RDX, RDX_H,
 175                            RBP, RBP_H,
 176                            RDI, RDI_H,
 177                            RSI, RSI_H,
 178                            RCX, RCX_H,
 179                            RBX, RBX_H,
 180                            RSP, RSP_H,
 181                            R8,  R8_H,
 182                            R9,  R9_H,
 183                            R10, R10_H,
 184                            R11, R11_H,
 185                            R12, R12_H,
 186                            R13, R13_H,
 187                            R14, R14_H,
 188                            R15, R15_H);
 189 
 190 // Class for all pointer registers (including RSP, but excluding RBP)
 191 reg_class any_reg_no_rbp(RAX, RAX_H,
 192                          RDX, RDX_H,
 193                          RDI, RDI_H,
 194                          RSI, RSI_H,
 195                          RCX, RCX_H,
 196                          RBX, RBX_H,
 197                          RSP, RSP_H,
 198                          R8,  R8_H,
 199                          R9,  R9_H,
 200                          R10, R10_H,
 201                          R11, R11_H,
 202                          R12, R12_H,
 203                          R13, R13_H,
 204                          R14, R14_H,
 205                          R15, R15_H);
 206 
 207 // Dynamic register class that selects at runtime between register classes
 208 // any_reg_no_rbp and any_reg_with_rbp (depending on the value of the flag PreserveFramePointer).
 209 // Equivalent to: return PreserveFramePointer ? any_reg_no_rbp : any_reg_with_rbp;
 210 reg_class_dynamic any_reg(any_reg_no_rbp, any_reg_with_rbp, %{ PreserveFramePointer %});
 211 
 212 // Class for all pointer registers (excluding RSP)
 213 reg_class ptr_reg_with_rbp(RAX, RAX_H,
 214                            RDX, RDX_H,
 215                            RBP, RBP_H,
 216                            RDI, RDI_H,
 217                            RSI, RSI_H,
 218                            RCX, RCX_H,
 219                            RBX, RBX_H,
 220                            R8,  R8_H,
 221                            R9,  R9_H,
 222                            R10, R10_H,
 223                            R11, R11_H,
 224                            R13, R13_H,
 225                            R14, R14_H);
 226 
 227 // Class for all pointer registers (excluding RSP and RBP)
 228 reg_class ptr_reg_no_rbp(RAX, RAX_H,
 229                          RDX, RDX_H,
 230                          RDI, RDI_H,
 231                          RSI, RSI_H,
 232                          RCX, RCX_H,
 233                          RBX, RBX_H,
 234                          R8,  R8_H,
 235                          R9,  R9_H,
 236                          R10, R10_H,
 237                          R11, R11_H,
 238                          R13, R13_H,
 239                          R14, R14_H);
 240 
 241 // Dynamic register class that selects between ptr_reg_no_rbp and ptr_reg_with_rbp.
 242 reg_class_dynamic ptr_reg(ptr_reg_no_rbp, ptr_reg_with_rbp, %{ PreserveFramePointer %});
 243 
 244 // Class for all pointer registers (excluding RAX and RSP)
 245 reg_class ptr_no_rax_reg_with_rbp(RDX, RDX_H,
 246                                   RBP, RBP_H,
 247                                   RDI, RDI_H,
 248                                   RSI, RSI_H,
 249                                   RCX, RCX_H,
 250                                   RBX, RBX_H,
 251                                   R8,  R8_H,
 252                                   R9,  R9_H,
 253                                   R10, R10_H,
 254                                   R11, R11_H,
 255                                   R13, R13_H,
 256                                   R14, R14_H);
 257 
 258 // Class for all pointer registers (excluding RAX, RSP, and RBP)
 259 reg_class ptr_no_rax_reg_no_rbp(RDX, RDX_H,
 260                                 RDI, RDI_H,
 261                                 RSI, RSI_H,
 262                                 RCX, RCX_H,
 263                                 RBX, RBX_H,
 264                                 R8,  R8_H,
 265                                 R9,  R9_H,
 266                                 R10, R10_H,
 267                                 R11, R11_H,
 268                                 R13, R13_H,
 269                                 R14, R14_H);
 270 
 271 // Dynamic register class that selects between ptr_no_rax_reg_no_rbp and ptr_no_rax_reg_with_rbp.
 272 reg_class_dynamic ptr_no_rax_reg(ptr_no_rax_reg_no_rbp, ptr_no_rax_reg_with_rbp, %{ PreserveFramePointer %});
 273 
 274 // Class for all pointer registers (excluding RAX, RBX, and RSP)
 275 reg_class ptr_no_rax_rbx_reg_with_rbp(RDX, RDX_H,
 276                                       RBP, RBP_H,
 277                                       RDI, RDI_H,
 278                                       RSI, RSI_H,
 279                                       RCX, RCX_H,
 280                                       R8,  R8_H,
 281                                       R9,  R9_H,
 282                                       R10, R10_H,
 283                                       R11, R11_H,
 284                                       R13, R13_H,
 285                                       R14, R14_H);
 286 
 287 // Class for all pointer registers (excluding RAX, RBX, RSP, and RBP)
 288 reg_class ptr_no_rax_rbx_reg_no_rbp(RDX, RDX_H,
 289                                     RDI, RDI_H,
 290                                     RSI, RSI_H,
 291                                     RCX, RCX_H,
 292                                     R8,  R8_H,
 293                                     R9,  R9_H,
 294                                     R10, R10_H,
 295                                     R11, R11_H,
 296                                     R13, R13_H,
 297                                     R14, R14_H);
 298 
 299 // Dynamic register class that selects between ptr_no_rax_rbx_reg_no_rbp and ptr_no_rax_rbx_reg_with_rbp.
 300 reg_class_dynamic ptr_no_rax_rbx_reg(ptr_no_rax_rbx_reg_no_rbp, ptr_no_rax_rbx_reg_with_rbp, %{ PreserveFramePointer %});
 301 
 302 // Singleton class for RAX pointer register
 303 reg_class ptr_rax_reg(RAX, RAX_H);
 304 
 305 // Singleton class for RBX pointer register
 306 reg_class ptr_rbx_reg(RBX, RBX_H);
 307 
 308 // Singleton class for RSI pointer register
 309 reg_class ptr_rsi_reg(RSI, RSI_H);
 310 
 311 // Singleton class for RDI pointer register
 312 reg_class ptr_rdi_reg(RDI, RDI_H);
 313 
 314 // Singleton class for stack pointer
 315 reg_class ptr_rsp_reg(RSP, RSP_H);
 316 
 317 // Singleton class for TLS pointer
 318 reg_class ptr_r15_reg(R15, R15_H);
 319 
 320 // Class for all long registers (excluding RSP)
 321 reg_class long_reg_with_rbp(RAX, RAX_H,
 322                             RDX, RDX_H,
 323                             RBP, RBP_H,
 324                             RDI, RDI_H,
 325                             RSI, RSI_H,
 326                             RCX, RCX_H,
 327                             RBX, RBX_H,
 328                             R8,  R8_H,
 329                             R9,  R9_H,
 330                             R10, R10_H,
 331                             R11, R11_H,
 332                             R13, R13_H,
 333                             R14, R14_H);
 334 
 335 // Class for all long registers (excluding RSP and RBP)
 336 reg_class long_reg_no_rbp(RAX, RAX_H,
 337                           RDX, RDX_H,
 338                           RDI, RDI_H,
 339                           RSI, RSI_H,
 340                           RCX, RCX_H,
 341                           RBX, RBX_H,
 342                           R8,  R8_H,
 343                           R9,  R9_H,
 344                           R10, R10_H,
 345                           R11, R11_H,
 346                           R13, R13_H,
 347                           R14, R14_H);
 348 
 349 // Dynamic register class that selects between long_reg_no_rbp and long_reg_with_rbp.
 350 reg_class_dynamic long_reg(long_reg_no_rbp, long_reg_with_rbp, %{ PreserveFramePointer %});
 351 
 352 // Class for all long registers (excluding RAX, RDX and RSP)
 353 reg_class long_no_rax_rdx_reg_with_rbp(RBP, RBP_H,
 354                                        RDI, RDI_H,
 355                                        RSI, RSI_H,
 356                                        RCX, RCX_H,
 357                                        RBX, RBX_H,
 358                                        R8,  R8_H,
 359                                        R9,  R9_H,
 360                                        R10, R10_H,
 361                                        R11, R11_H,
 362                                        R13, R13_H,
 363                                        R14, R14_H);
 364 
 365 // Class for all long registers (excluding RAX, RDX, RSP, and RBP)
 366 reg_class long_no_rax_rdx_reg_no_rbp(RDI, RDI_H,
 367                                      RSI, RSI_H,
 368                                      RCX, RCX_H,
 369                                      RBX, RBX_H,
 370                                      R8,  R8_H,
 371                                      R9,  R9_H,
 372                                      R10, R10_H,
 373                                      R11, R11_H,
 374                                      R13, R13_H,
 375                                      R14, R14_H);
 376 
 377 // Dynamic register class that selects between long_no_rax_rdx_reg_no_rbp and long_no_rax_rdx_reg_with_rbp.
 378 reg_class_dynamic long_no_rax_rdx_reg(long_no_rax_rdx_reg_no_rbp, long_no_rax_rdx_reg_with_rbp, %{ PreserveFramePointer %});
 379 
 380 // Class for all long registers (excluding RCX and RSP)
 381 reg_class long_no_rcx_reg_with_rbp(RBP, RBP_H,
 382                                    RDI, RDI_H,
 383                                    RSI, RSI_H,
 384                                    RAX, RAX_H,
 385                                    RDX, RDX_H,
 386                                    RBX, RBX_H,
 387                                    R8,  R8_H,
 388                                    R9,  R9_H,
 389                                    R10, R10_H,
 390                                    R11, R11_H,
 391                                    R13, R13_H,
 392                                    R14, R14_H);
 393 
 394 // Class for all long registers (excluding RCX, RSP, and RBP)
 395 reg_class long_no_rcx_reg_no_rbp(RDI, RDI_H,
 396                                  RSI, RSI_H,
 397                                  RAX, RAX_H,
 398                                  RDX, RDX_H,
 399                                  RBX, RBX_H,
 400                                  R8,  R8_H,
 401                                  R9,  R9_H,
 402                                  R10, R10_H,
 403                                  R11, R11_H,
 404                                  R13, R13_H,
 405                                  R14, R14_H);
 406 
 407 // Dynamic register class that selects between long_no_rcx_reg_no_rbp and long_no_rcx_reg_with_rbp.
 408 reg_class_dynamic long_no_rcx_reg(long_no_rcx_reg_no_rbp, long_no_rcx_reg_with_rbp, %{ PreserveFramePointer %});
 409 
 410 // Singleton class for RAX long register
 411 reg_class long_rax_reg(RAX, RAX_H);
 412 
 413 // Singleton class for RCX long register
 414 reg_class long_rcx_reg(RCX, RCX_H);
 415 
 416 // Singleton class for RDX long register
 417 reg_class long_rdx_reg(RDX, RDX_H);
 418 
 419 // Class for all int registers (excluding RSP)
 420 reg_class int_reg_with_rbp(RAX,
 421                            RDX,
 422                            RBP,
 423                            RDI,
 424                            RSI,
 425                            RCX,
 426                            RBX,
 427                            R8,
 428                            R9,
 429                            R10,
 430                            R11,
 431                            R13,
 432                            R14);
 433 
 434 // Class for all int registers (excluding RSP and RBP)
 435 reg_class int_reg_no_rbp(RAX,
 436                          RDX,
 437                          RDI,
 438                          RSI,
 439                          RCX,
 440                          RBX,
 441                          R8,
 442                          R9,
 443                          R10,
 444                          R11,
 445                          R13,
 446                          R14);
 447 
 448 // Dynamic register class that selects between int_reg_no_rbp and int_reg_with_rbp.
 449 reg_class_dynamic int_reg(int_reg_no_rbp, int_reg_with_rbp, %{ PreserveFramePointer %});
 450 
 451 // Class for all int registers (excluding RCX and RSP)
 452 reg_class int_no_rcx_reg_with_rbp(RAX,
 453                                   RDX,
 454                                   RBP,
 455                                   RDI,
 456                                   RSI,
 457                                   RBX,
 458                                   R8,
 459                                   R9,
 460                                   R10,
 461                                   R11,
 462                                   R13,
 463                                   R14);
 464 
 465 // Class for all int registers (excluding RCX, RSP, and RBP)
 466 reg_class int_no_rcx_reg_no_rbp(RAX,
 467                                 RDX,
 468                                 RDI,
 469                                 RSI,
 470                                 RBX,
 471                                 R8,
 472                                 R9,
 473                                 R10,
 474                                 R11,
 475                                 R13,
 476                                 R14);
 477 
 478 // Dynamic register class that selects between int_no_rcx_reg_no_rbp and int_no_rcx_reg_with_rbp.
 479 reg_class_dynamic int_no_rcx_reg(int_no_rcx_reg_no_rbp, int_no_rcx_reg_with_rbp, %{ PreserveFramePointer %});
 480 
 481 // Class for all int registers (excluding RAX, RDX, and RSP)
 482 reg_class int_no_rax_rdx_reg_with_rbp(RBP,
 483                                       RDI,
 484                                       RSI,
 485                                       RCX,
 486                                       RBX,
 487                                       R8,
 488                                       R9,
 489                                       R10,
 490                                       R11,
 491                                       R13,
 492                                       R14);
 493 
 494 // Class for all int registers (excluding RAX, RDX, RSP, and RBP)
 495 reg_class int_no_rax_rdx_reg_no_rbp(RDI,
 496                                     RSI,
 497                                     RCX,
 498                                     RBX,
 499                                     R8,
 500                                     R9,
 501                                     R10,
 502                                     R11,
 503                                     R13,
 504                                     R14);
 505 
 506 // Dynamic register class that selects between int_no_rax_rdx_reg_no_rbp and int_no_rax_rdx_reg_with_rbp.
 507 reg_class_dynamic int_no_rax_rdx_reg(int_no_rax_rdx_reg_no_rbp, int_no_rax_rdx_reg_with_rbp, %{ PreserveFramePointer %});
 508 
 509 // Singleton class for RAX int register
 510 reg_class int_rax_reg(RAX);
 511 
 512 // Singleton class for RBX int register
 513 reg_class int_rbx_reg(RBX);
 514 
 515 // Singleton class for RCX int register
 516 reg_class int_rcx_reg(RCX);
 517 
 518 // Singleton class for RCX int register
 519 reg_class int_rdx_reg(RDX);
 520 
 521 // Singleton class for RCX int register
 522 reg_class int_rdi_reg(RDI);
 523 
 524 // Singleton class for instruction pointer
 525 // reg_class ip_reg(RIP);
 526 
 527 %}
 528 
 529 source_hpp %{
 530 #if INCLUDE_ZGC
 531 #include "gc/z/zBarrierSetAssembler.hpp"
 532 #endif
 533 %}
 534 
 535 //----------SOURCE BLOCK-------------------------------------------------------
 536 // This is a block of C++ code which provides values, functions, and
 537 // definitions necessary in the rest of the architecture description
 538 source %{
 539 #define   RELOC_IMM64    Assembler::imm_operand
 540 #define   RELOC_DISP32   Assembler::disp32_operand
 541 
 542 #define __ _masm.
 543 
 544 static bool generate_vzeroupper(Compile* C) {
 545   return (VM_Version::supports_vzeroupper() && (C->max_vector_size() > 16 || C->clear_upper_avx() == true)) ? true: false;  // Generate vzeroupper
 546 }
 547 
 548 static int clear_avx_size() {
 549   return generate_vzeroupper(Compile::current()) ? 3: 0;  // vzeroupper
 550 }
 551 
 552 // !!!!! Special hack to get all types of calls to specify the byte offset
 553 //       from the start of the call to the point where the return address
 554 //       will point.
 555 int MachCallStaticJavaNode::ret_addr_offset()
 556 {
 557   int offset = 5; // 5 bytes from start of call to where return address points
 558   offset += clear_avx_size();
 559   return offset;
 560 }
 561 
 562 int MachCallDynamicJavaNode::ret_addr_offset()
 563 {
 564   int offset = 15; // 15 bytes from start of call to where return address points
 565   offset += clear_avx_size();
 566   return offset;
 567 }
 568 
 569 int MachCallRuntimeNode::ret_addr_offset() {
 570   int offset = 13; // movq r10,#addr; callq (r10)
 571   offset += clear_avx_size();
 572   return offset;
 573 }
 574 
 575 // Indicate if the safepoint node needs the polling page as an input,
 576 // it does if the polling page is more than disp32 away.
 577 bool SafePointNode::needs_polling_address_input()
 578 {
 579   return SafepointMechanism::uses_thread_local_poll() || Assembler::is_polling_page_far();
 580 }
 581 
 582 //
 583 // Compute padding required for nodes which need alignment
 584 //
 585 
 586 // The address of the call instruction needs to be 4-byte aligned to
 587 // ensure that it does not span a cache line so that it can be patched.
 588 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 589 {
 590   current_offset += clear_avx_size(); // skip vzeroupper
 591   current_offset += 1; // skip call opcode byte
 592   return align_up(current_offset, alignment_required()) - current_offset;
 593 }
 594 
 595 // The address of the call instruction needs to be 4-byte aligned to
 596 // ensure that it does not span a cache line so that it can be patched.
 597 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 598 {
 599   current_offset += clear_avx_size(); // skip vzeroupper
 600   current_offset += 11; // skip movq instruction + call opcode byte
 601   return align_up(current_offset, alignment_required()) - current_offset;
 602 }
 603 
 604 // EMIT_RM()
 605 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 606   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
 607   cbuf.insts()->emit_int8(c);
 608 }
 609 
 610 // EMIT_CC()
 611 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 612   unsigned char c = (unsigned char) (f1 | f2);
 613   cbuf.insts()->emit_int8(c);
 614 }
 615 
 616 // EMIT_OPCODE()
 617 void emit_opcode(CodeBuffer &cbuf, int code) {
 618   cbuf.insts()->emit_int8((unsigned char) code);
 619 }
 620 
 621 // EMIT_OPCODE() w/ relocation information
 622 void emit_opcode(CodeBuffer &cbuf,
 623                  int code, relocInfo::relocType reloc, int offset, int format)
 624 {
 625   cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
 626   emit_opcode(cbuf, code);
 627 }
 628 
 629 // EMIT_D8()
 630 void emit_d8(CodeBuffer &cbuf, int d8) {
 631   cbuf.insts()->emit_int8((unsigned char) d8);
 632 }
 633 
 634 // EMIT_D16()
 635 void emit_d16(CodeBuffer &cbuf, int d16) {
 636   cbuf.insts()->emit_int16(d16);
 637 }
 638 
 639 // EMIT_D32()
 640 void emit_d32(CodeBuffer &cbuf, int d32) {
 641   cbuf.insts()->emit_int32(d32);
 642 }
 643 
 644 // EMIT_D64()
 645 void emit_d64(CodeBuffer &cbuf, int64_t d64) {
 646   cbuf.insts()->emit_int64(d64);
 647 }
 648 
 649 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 650 void emit_d32_reloc(CodeBuffer& cbuf,
 651                     int d32,
 652                     relocInfo::relocType reloc,
 653                     int format)
 654 {
 655   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
 656   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 657   cbuf.insts()->emit_int32(d32);
 658 }
 659 
 660 // emit 32 bit value and construct relocation entry from RelocationHolder
 661 void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
 662 #ifdef ASSERT
 663   if (rspec.reloc()->type() == relocInfo::oop_type &&
 664       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
 665     assert(Universe::heap()->is_in_reserved((address)(intptr_t)d32), "should be real oop");
 666     assert(oopDesc::is_oop(cast_to_oop((intptr_t)d32)) && (ScavengeRootsInCode || !Universe::heap()->is_scavengable(cast_to_oop((intptr_t)d32))), "cannot embed scavengable oops in code");
 667   }
 668 #endif
 669   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 670   cbuf.insts()->emit_int32(d32);
 671 }
 672 
 673 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
 674   address next_ip = cbuf.insts_end() + 4;
 675   emit_d32_reloc(cbuf, (int) (addr - next_ip),
 676                  external_word_Relocation::spec(addr),
 677                  RELOC_DISP32);
 678 }
 679 
 680 
 681 // emit 64 bit value and construct relocation entry from relocInfo::relocType
 682 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
 683   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 684   cbuf.insts()->emit_int64(d64);
 685 }
 686 
 687 // emit 64 bit value and construct relocation entry from RelocationHolder
 688 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
 689 #ifdef ASSERT
 690   if (rspec.reloc()->type() == relocInfo::oop_type &&
 691       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
 692     assert(Universe::heap()->is_in_reserved((address)d64), "should be real oop");
 693     assert(oopDesc::is_oop(cast_to_oop(d64)) && (ScavengeRootsInCode || !Universe::heap()->is_scavengable(cast_to_oop(d64))),
 694            "cannot embed scavengable oops in code");
 695   }
 696 #endif
 697   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 698   cbuf.insts()->emit_int64(d64);
 699 }
 700 
 701 // Access stack slot for load or store
 702 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
 703 {
 704   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
 705   if (-0x80 <= disp && disp < 0x80) {
 706     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
 707     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 708     emit_d8(cbuf, disp);     // Displacement  // R/M byte
 709   } else {
 710     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
 711     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 712     emit_d32(cbuf, disp);     // Displacement // R/M byte
 713   }
 714 }
 715 
 716    // rRegI ereg, memory mem) %{    // emit_reg_mem
 717 void encode_RegMem(CodeBuffer &cbuf,
 718                    int reg,
 719                    int base, int index, int scale, int disp, relocInfo::relocType disp_reloc)
 720 {
 721   assert(disp_reloc == relocInfo::none, "cannot have disp");
 722   int regenc = reg & 7;
 723   int baseenc = base & 7;
 724   int indexenc = index & 7;
 725 
 726   // There is no index & no scale, use form without SIB byte
 727   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
 728     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 729     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 730       emit_rm(cbuf, 0x0, regenc, baseenc); // *
 731     } else if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 732       // If 8-bit displacement, mode 0x1
 733       emit_rm(cbuf, 0x1, regenc, baseenc); // *
 734       emit_d8(cbuf, disp);
 735     } else {
 736       // If 32-bit displacement
 737       if (base == -1) { // Special flag for absolute address
 738         emit_rm(cbuf, 0x0, regenc, 0x5); // *
 739         if (disp_reloc != relocInfo::none) {
 740           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 741         } else {
 742           emit_d32(cbuf, disp);
 743         }
 744       } else {
 745         // Normal base + offset
 746         emit_rm(cbuf, 0x2, regenc, baseenc); // *
 747         if (disp_reloc != relocInfo::none) {
 748           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 749         } else {
 750           emit_d32(cbuf, disp);
 751         }
 752       }
 753     }
 754   } else {
 755     // Else, encode with the SIB byte
 756     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 757     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 758       // If no displacement
 759       emit_rm(cbuf, 0x0, regenc, 0x4); // *
 760       emit_rm(cbuf, scale, indexenc, baseenc);
 761     } else {
 762       if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 763         // If 8-bit displacement, mode 0x1
 764         emit_rm(cbuf, 0x1, regenc, 0x4); // *
 765         emit_rm(cbuf, scale, indexenc, baseenc);
 766         emit_d8(cbuf, disp);
 767       } else {
 768         // If 32-bit displacement
 769         if (base == 0x04 ) {
 770           emit_rm(cbuf, 0x2, regenc, 0x4);
 771           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
 772         } else {
 773           emit_rm(cbuf, 0x2, regenc, 0x4);
 774           emit_rm(cbuf, scale, indexenc, baseenc); // *
 775         }
 776         if (disp_reloc != relocInfo::none) {
 777           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 778         } else {
 779           emit_d32(cbuf, disp);
 780         }
 781       }
 782     }
 783   }
 784 }
 785 
 786 // This could be in MacroAssembler but it's fairly C2 specific
 787 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 788   Label exit;
 789   __ jccb(Assembler::noParity, exit);
 790   __ pushf();
 791   //
 792   // comiss/ucomiss instructions set ZF,PF,CF flags and
 793   // zero OF,AF,SF for NaN values.
 794   // Fixup flags by zeroing ZF,PF so that compare of NaN
 795   // values returns 'less than' result (CF is set).
 796   // Leave the rest of flags unchanged.
 797   //
 798   //    7 6 5 4 3 2 1 0
 799   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 800   //    0 0 1 0 1 0 1 1   (0x2B)
 801   //
 802   __ andq(Address(rsp, 0), 0xffffff2b);
 803   __ popf();
 804   __ bind(exit);
 805 }
 806 
 807 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 808   Label done;
 809   __ movl(dst, -1);
 810   __ jcc(Assembler::parity, done);
 811   __ jcc(Assembler::below, done);
 812   __ setb(Assembler::notEqual, dst);
 813   __ movzbl(dst, dst);
 814   __ bind(done);
 815 }
 816 
 817 
 818 //=============================================================================
 819 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 820 
 821 int Compile::ConstantTable::calculate_table_base_offset() const {
 822   return 0;  // absolute addressing, no offset
 823 }
 824 
 825 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 826 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 827   ShouldNotReachHere();
 828 }
 829 
 830 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 831   // Empty encoding
 832 }
 833 
 834 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 835   return 0;
 836 }
 837 
 838 #ifndef PRODUCT
 839 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 840   st->print("# MachConstantBaseNode (empty encoding)");
 841 }
 842 #endif
 843 
 844 
 845 //=============================================================================
 846 #ifndef PRODUCT
 847 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 848   Compile* C = ra_->C;
 849 
 850   int framesize = C->frame_size_in_bytes();
 851   int bangsize = C->bang_size_in_bytes();
 852   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 853   // Remove wordSize for return addr which is already pushed.
 854   framesize -= wordSize;
 855 
 856   if (C->need_stack_bang(bangsize)) {
 857     framesize -= wordSize;
 858     st->print("# stack bang (%d bytes)", bangsize);
 859     st->print("\n\t");
 860     st->print("pushq   rbp\t# Save rbp");
 861     if (PreserveFramePointer) {
 862         st->print("\n\t");
 863         st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 864     }
 865     if (framesize) {
 866       st->print("\n\t");
 867       st->print("subq    rsp, #%d\t# Create frame",framesize);
 868     }
 869   } else {
 870     st->print("subq    rsp, #%d\t# Create frame",framesize);
 871     st->print("\n\t");
 872     framesize -= wordSize;
 873     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
 874     if (PreserveFramePointer) {
 875       st->print("\n\t");
 876       st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 877       if (framesize > 0) {
 878         st->print("\n\t");
 879         st->print("addq    rbp, #%d", framesize);
 880       }
 881     }
 882   }
 883 
 884   if (VerifyStackAtCalls) {
 885     st->print("\n\t");
 886     framesize -= wordSize;
 887     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
 888 #ifdef ASSERT
 889     st->print("\n\t");
 890     st->print("# stack alignment check");
 891 #endif
 892   }
 893   st->cr();
 894 }
 895 #endif
 896 
 897 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 898   Compile* C = ra_->C;
 899   MacroAssembler _masm(&cbuf);
 900 
 901   int framesize = C->frame_size_in_bytes();
 902   int bangsize = C->bang_size_in_bytes();
 903 
 904   __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false);
 905 
 906   C->set_frame_complete(cbuf.insts_size());
 907 
 908   if (C->has_mach_constant_base_node()) {
 909     // NOTE: We set the table base offset here because users might be
 910     // emitted before MachConstantBaseNode.
 911     Compile::ConstantTable& constant_table = C->constant_table();
 912     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 913   }
 914 }
 915 
 916 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 917 {
 918   return MachNode::size(ra_); // too many variables; just compute it
 919                               // the hard way
 920 }
 921 
 922 int MachPrologNode::reloc() const
 923 {
 924   return 0; // a large enough number
 925 }
 926 
 927 //=============================================================================
 928 #ifndef PRODUCT
 929 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 930 {
 931   Compile* C = ra_->C;
 932   if (generate_vzeroupper(C)) {
 933     st->print("vzeroupper");
 934     st->cr(); st->print("\t");
 935   }
 936 
 937   int framesize = C->frame_size_in_bytes();
 938   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 939   // Remove word for return adr already pushed
 940   // and RBP
 941   framesize -= 2*wordSize;
 942 
 943   if (framesize) {
 944     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
 945     st->print("\t");
 946   }
 947 
 948   st->print_cr("popq   rbp");
 949   if (do_polling() && C->is_method_compilation()) {
 950     st->print("\t");
 951     if (SafepointMechanism::uses_thread_local_poll()) {
 952       st->print_cr("movq   rscratch1, poll_offset[r15_thread] #polling_page_address\n\t"
 953                    "testl  rax, [rscratch1]\t"
 954                    "# Safepoint: poll for GC");
 955     } else if (Assembler::is_polling_page_far()) {
 956       st->print_cr("movq   rscratch1, #polling_page_address\n\t"
 957                    "testl  rax, [rscratch1]\t"
 958                    "# Safepoint: poll for GC");
 959     } else {
 960       st->print_cr("testl  rax, [rip + #offset_to_poll_page]\t"
 961                    "# Safepoint: poll for GC");
 962     }
 963   }
 964 }
 965 #endif
 966 
 967 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
 968 {
 969   Compile* C = ra_->C;
 970   MacroAssembler _masm(&cbuf);
 971 
 972   if (generate_vzeroupper(C)) {
 973     // Clear upper bits of YMM registers when current compiled code uses
 974     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 975     __ vzeroupper();
 976   }
 977 
 978   int framesize = C->frame_size_in_bytes();
 979   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 980   // Remove word for return adr already pushed
 981   // and RBP
 982   framesize -= 2*wordSize;
 983 
 984   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 985 
 986   if (framesize) {
 987     emit_opcode(cbuf, Assembler::REX_W);
 988     if (framesize < 0x80) {
 989       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
 990       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 991       emit_d8(cbuf, framesize);
 992     } else {
 993       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
 994       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 995       emit_d32(cbuf, framesize);
 996     }
 997   }
 998 
 999   // popq rbp
1000   emit_opcode(cbuf, 0x58 | RBP_enc);
1001 
1002   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
1003     __ reserved_stack_check();
1004   }
1005 
1006   if (do_polling() && C->is_method_compilation()) {
1007     MacroAssembler _masm(&cbuf);
1008     if (SafepointMechanism::uses_thread_local_poll()) {
1009       __ movq(rscratch1, Address(r15_thread, Thread::polling_page_offset()));
1010       __ relocate(relocInfo::poll_return_type);
1011       __ testl(rax, Address(rscratch1, 0));
1012     } else {
1013       AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
1014       if (Assembler::is_polling_page_far()) {
1015         __ lea(rscratch1, polling_page);
1016         __ relocate(relocInfo::poll_return_type);
1017         __ testl(rax, Address(rscratch1, 0));
1018       } else {
1019         __ testl(rax, polling_page);
1020       }
1021     }
1022   }
1023 }
1024 
1025 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
1026 {
1027   return MachNode::size(ra_); // too many variables; just compute it
1028                               // the hard way
1029 }
1030 
1031 int MachEpilogNode::reloc() const
1032 {
1033   return 2; // a large enough number
1034 }
1035 
1036 const Pipeline* MachEpilogNode::pipeline() const
1037 {
1038   return MachNode::pipeline_class();
1039 }
1040 
1041 int MachEpilogNode::safepoint_offset() const
1042 {
1043   return 0;
1044 }
1045 
1046 //=============================================================================
1047 
1048 enum RC {
1049   rc_bad,
1050   rc_int,
1051   rc_float,
1052   rc_stack
1053 };
1054 
1055 static enum RC rc_class(OptoReg::Name reg)
1056 {
1057   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1058 
1059   if (OptoReg::is_stack(reg)) return rc_stack;
1060 
1061   VMReg r = OptoReg::as_VMReg(reg);
1062 
1063   if (r->is_Register()) return rc_int;
1064 
1065   assert(r->is_XMMRegister(), "must be");
1066   return rc_float;
1067 }
1068 
1069 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
1070 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
1071                           int src_hi, int dst_hi, uint ireg, outputStream* st);
1072 
1073 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
1074                             int stack_offset, int reg, uint ireg, outputStream* st);
1075 
1076 static void vec_stack_to_stack_helper(CodeBuffer *cbuf, int src_offset,
1077                                       int dst_offset, uint ireg, outputStream* st) {
1078   if (cbuf) {
1079     MacroAssembler _masm(cbuf);
1080     switch (ireg) {
1081     case Op_VecS:
1082       __ movq(Address(rsp, -8), rax);
1083       __ movl(rax, Address(rsp, src_offset));
1084       __ movl(Address(rsp, dst_offset), rax);
1085       __ movq(rax, Address(rsp, -8));
1086       break;
1087     case Op_VecD:
1088       __ pushq(Address(rsp, src_offset));
1089       __ popq (Address(rsp, dst_offset));
1090       break;
1091     case Op_VecX:
1092       __ pushq(Address(rsp, src_offset));
1093       __ popq (Address(rsp, dst_offset));
1094       __ pushq(Address(rsp, src_offset+8));
1095       __ popq (Address(rsp, dst_offset+8));
1096       break;
1097     case Op_VecY:
1098       __ vmovdqu(Address(rsp, -32), xmm0);
1099       __ vmovdqu(xmm0, Address(rsp, src_offset));
1100       __ vmovdqu(Address(rsp, dst_offset), xmm0);
1101       __ vmovdqu(xmm0, Address(rsp, -32));
1102       break;
1103     case Op_VecZ:
1104       __ evmovdquq(Address(rsp, -64), xmm0, 2);
1105       __ evmovdquq(xmm0, Address(rsp, src_offset), 2);
1106       __ evmovdquq(Address(rsp, dst_offset), xmm0, 2);
1107       __ evmovdquq(xmm0, Address(rsp, -64), 2);
1108       break;
1109     default:
1110       ShouldNotReachHere();
1111     }
1112 #ifndef PRODUCT
1113   } else {
1114     switch (ireg) {
1115     case Op_VecS:
1116       st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1117                 "movl    rax, [rsp + #%d]\n\t"
1118                 "movl    [rsp + #%d], rax\n\t"
1119                 "movq    rax, [rsp - #8]",
1120                 src_offset, dst_offset);
1121       break;
1122     case Op_VecD:
1123       st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1124                 "popq    [rsp + #%d]",
1125                 src_offset, dst_offset);
1126       break;
1127      case Op_VecX:
1128       st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
1129                 "popq    [rsp + #%d]\n\t"
1130                 "pushq   [rsp + #%d]\n\t"
1131                 "popq    [rsp + #%d]",
1132                 src_offset, dst_offset, src_offset+8, dst_offset+8);
1133       break;
1134     case Op_VecY:
1135       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1136                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1137                 "vmovdqu [rsp + #%d], xmm0\n\t"
1138                 "vmovdqu xmm0, [rsp - #32]",
1139                 src_offset, dst_offset);
1140       break;
1141     case Op_VecZ:
1142       st->print("vmovdqu [rsp - #64], xmm0\t# 512-bit mem-mem spill\n\t"
1143                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1144                 "vmovdqu [rsp + #%d], xmm0\n\t"
1145                 "vmovdqu xmm0, [rsp - #64]",
1146                 src_offset, dst_offset);
1147       break;
1148     default:
1149       ShouldNotReachHere();
1150     }
1151 #endif
1152   }
1153 }
1154 
1155 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1156                                        PhaseRegAlloc* ra_,
1157                                        bool do_size,
1158                                        outputStream* st) const {
1159   assert(cbuf != NULL || st  != NULL, "sanity");
1160   // Get registers to move
1161   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1162   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1163   OptoReg::Name dst_second = ra_->get_reg_second(this);
1164   OptoReg::Name dst_first = ra_->get_reg_first(this);
1165 
1166   enum RC src_second_rc = rc_class(src_second);
1167   enum RC src_first_rc = rc_class(src_first);
1168   enum RC dst_second_rc = rc_class(dst_second);
1169   enum RC dst_first_rc = rc_class(dst_first);
1170 
1171   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1172          "must move at least 1 register" );
1173 
1174   if (src_first == dst_first && src_second == dst_second) {
1175     // Self copy, no move
1176     return 0;
1177   }
1178   if (bottom_type()->isa_vect() != NULL) {
1179     uint ireg = ideal_reg();
1180     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1181     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ ), "sanity");
1182     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1183       // mem -> mem
1184       int src_offset = ra_->reg2offset(src_first);
1185       int dst_offset = ra_->reg2offset(dst_first);
1186       vec_stack_to_stack_helper(cbuf, src_offset, dst_offset, ireg, st);
1187     } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
1188       vec_mov_helper(cbuf, false, src_first, dst_first, src_second, dst_second, ireg, st);
1189     } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1190       int stack_offset = ra_->reg2offset(dst_first);
1191       vec_spill_helper(cbuf, false, false, stack_offset, src_first, ireg, st);
1192     } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
1193       int stack_offset = ra_->reg2offset(src_first);
1194       vec_spill_helper(cbuf, false, true,  stack_offset, dst_first, ireg, st);
1195     } else {
1196       ShouldNotReachHere();
1197     }
1198     return 0;
1199   }
1200   if (src_first_rc == rc_stack) {
1201     // mem ->
1202     if (dst_first_rc == rc_stack) {
1203       // mem -> mem
1204       assert(src_second != dst_first, "overlap");
1205       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1206           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1207         // 64-bit
1208         int src_offset = ra_->reg2offset(src_first);
1209         int dst_offset = ra_->reg2offset(dst_first);
1210         if (cbuf) {
1211           MacroAssembler _masm(cbuf);
1212           __ pushq(Address(rsp, src_offset));
1213           __ popq (Address(rsp, dst_offset));
1214 #ifndef PRODUCT
1215         } else {
1216           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1217                     "popq    [rsp + #%d]",
1218                      src_offset, dst_offset);
1219 #endif
1220         }
1221       } else {
1222         // 32-bit
1223         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1224         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1225         // No pushl/popl, so:
1226         int src_offset = ra_->reg2offset(src_first);
1227         int dst_offset = ra_->reg2offset(dst_first);
1228         if (cbuf) {
1229           MacroAssembler _masm(cbuf);
1230           __ movq(Address(rsp, -8), rax);
1231           __ movl(rax, Address(rsp, src_offset));
1232           __ movl(Address(rsp, dst_offset), rax);
1233           __ movq(rax, Address(rsp, -8));
1234 #ifndef PRODUCT
1235         } else {
1236           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1237                     "movl    rax, [rsp + #%d]\n\t"
1238                     "movl    [rsp + #%d], rax\n\t"
1239                     "movq    rax, [rsp - #8]",
1240                      src_offset, dst_offset);
1241 #endif
1242         }
1243       }
1244       return 0;
1245     } else if (dst_first_rc == rc_int) {
1246       // mem -> gpr
1247       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1248           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1249         // 64-bit
1250         int offset = ra_->reg2offset(src_first);
1251         if (cbuf) {
1252           MacroAssembler _masm(cbuf);
1253           __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1254 #ifndef PRODUCT
1255         } else {
1256           st->print("movq    %s, [rsp + #%d]\t# spill",
1257                      Matcher::regName[dst_first],
1258                      offset);
1259 #endif
1260         }
1261       } else {
1262         // 32-bit
1263         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1264         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1265         int offset = ra_->reg2offset(src_first);
1266         if (cbuf) {
1267           MacroAssembler _masm(cbuf);
1268           __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1269 #ifndef PRODUCT
1270         } else {
1271           st->print("movl    %s, [rsp + #%d]\t# spill",
1272                      Matcher::regName[dst_first],
1273                      offset);
1274 #endif
1275         }
1276       }
1277       return 0;
1278     } else if (dst_first_rc == rc_float) {
1279       // mem-> xmm
1280       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1281           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1282         // 64-bit
1283         int offset = ra_->reg2offset(src_first);
1284         if (cbuf) {
1285           MacroAssembler _masm(cbuf);
1286           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1287 #ifndef PRODUCT
1288         } else {
1289           st->print("%s  %s, [rsp + #%d]\t# spill",
1290                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1291                      Matcher::regName[dst_first],
1292                      offset);
1293 #endif
1294         }
1295       } else {
1296         // 32-bit
1297         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1298         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1299         int offset = ra_->reg2offset(src_first);
1300         if (cbuf) {
1301           MacroAssembler _masm(cbuf);
1302           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1303 #ifndef PRODUCT
1304         } else {
1305           st->print("movss   %s, [rsp + #%d]\t# spill",
1306                      Matcher::regName[dst_first],
1307                      offset);
1308 #endif
1309         }
1310       }
1311       return 0;
1312     }
1313   } else if (src_first_rc == rc_int) {
1314     // gpr ->
1315     if (dst_first_rc == rc_stack) {
1316       // gpr -> mem
1317       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1318           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1319         // 64-bit
1320         int offset = ra_->reg2offset(dst_first);
1321         if (cbuf) {
1322           MacroAssembler _masm(cbuf);
1323           __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1324 #ifndef PRODUCT
1325         } else {
1326           st->print("movq    [rsp + #%d], %s\t# spill",
1327                      offset,
1328                      Matcher::regName[src_first]);
1329 #endif
1330         }
1331       } else {
1332         // 32-bit
1333         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1334         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1335         int offset = ra_->reg2offset(dst_first);
1336         if (cbuf) {
1337           MacroAssembler _masm(cbuf);
1338           __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1339 #ifndef PRODUCT
1340         } else {
1341           st->print("movl    [rsp + #%d], %s\t# spill",
1342                      offset,
1343                      Matcher::regName[src_first]);
1344 #endif
1345         }
1346       }
1347       return 0;
1348     } else if (dst_first_rc == rc_int) {
1349       // gpr -> gpr
1350       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1351           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1352         // 64-bit
1353         if (cbuf) {
1354           MacroAssembler _masm(cbuf);
1355           __ movq(as_Register(Matcher::_regEncode[dst_first]),
1356                   as_Register(Matcher::_regEncode[src_first]));
1357 #ifndef PRODUCT
1358         } else {
1359           st->print("movq    %s, %s\t# spill",
1360                      Matcher::regName[dst_first],
1361                      Matcher::regName[src_first]);
1362 #endif
1363         }
1364         return 0;
1365       } else {
1366         // 32-bit
1367         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1368         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1369         if (cbuf) {
1370           MacroAssembler _masm(cbuf);
1371           __ movl(as_Register(Matcher::_regEncode[dst_first]),
1372                   as_Register(Matcher::_regEncode[src_first]));
1373 #ifndef PRODUCT
1374         } else {
1375           st->print("movl    %s, %s\t# spill",
1376                      Matcher::regName[dst_first],
1377                      Matcher::regName[src_first]);
1378 #endif
1379         }
1380         return 0;
1381       }
1382     } else if (dst_first_rc == rc_float) {
1383       // gpr -> xmm
1384       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1385           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1386         // 64-bit
1387         if (cbuf) {
1388           MacroAssembler _masm(cbuf);
1389           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1390 #ifndef PRODUCT
1391         } else {
1392           st->print("movdq   %s, %s\t# spill",
1393                      Matcher::regName[dst_first],
1394                      Matcher::regName[src_first]);
1395 #endif
1396         }
1397       } else {
1398         // 32-bit
1399         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1400         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1401         if (cbuf) {
1402           MacroAssembler _masm(cbuf);
1403           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1404 #ifndef PRODUCT
1405         } else {
1406           st->print("movdl   %s, %s\t# spill",
1407                      Matcher::regName[dst_first],
1408                      Matcher::regName[src_first]);
1409 #endif
1410         }
1411       }
1412       return 0;
1413     }
1414   } else if (src_first_rc == rc_float) {
1415     // xmm ->
1416     if (dst_first_rc == rc_stack) {
1417       // xmm -> mem
1418       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1419           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1420         // 64-bit
1421         int offset = ra_->reg2offset(dst_first);
1422         if (cbuf) {
1423           MacroAssembler _masm(cbuf);
1424           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1425 #ifndef PRODUCT
1426         } else {
1427           st->print("movsd   [rsp + #%d], %s\t# spill",
1428                      offset,
1429                      Matcher::regName[src_first]);
1430 #endif
1431         }
1432       } else {
1433         // 32-bit
1434         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1435         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1436         int offset = ra_->reg2offset(dst_first);
1437         if (cbuf) {
1438           MacroAssembler _masm(cbuf);
1439           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1440 #ifndef PRODUCT
1441         } else {
1442           st->print("movss   [rsp + #%d], %s\t# spill",
1443                      offset,
1444                      Matcher::regName[src_first]);
1445 #endif
1446         }
1447       }
1448       return 0;
1449     } else if (dst_first_rc == rc_int) {
1450       // xmm -> gpr
1451       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1452           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1453         // 64-bit
1454         if (cbuf) {
1455           MacroAssembler _masm(cbuf);
1456           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1457 #ifndef PRODUCT
1458         } else {
1459           st->print("movdq   %s, %s\t# spill",
1460                      Matcher::regName[dst_first],
1461                      Matcher::regName[src_first]);
1462 #endif
1463         }
1464       } else {
1465         // 32-bit
1466         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1467         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1468         if (cbuf) {
1469           MacroAssembler _masm(cbuf);
1470           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1471 #ifndef PRODUCT
1472         } else {
1473           st->print("movdl   %s, %s\t# spill",
1474                      Matcher::regName[dst_first],
1475                      Matcher::regName[src_first]);
1476 #endif
1477         }
1478       }
1479       return 0;
1480     } else if (dst_first_rc == rc_float) {
1481       // xmm -> xmm
1482       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1483           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1484         // 64-bit
1485         if (cbuf) {
1486           MacroAssembler _masm(cbuf);
1487           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1488 #ifndef PRODUCT
1489         } else {
1490           st->print("%s  %s, %s\t# spill",
1491                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1492                      Matcher::regName[dst_first],
1493                      Matcher::regName[src_first]);
1494 #endif
1495         }
1496       } else {
1497         // 32-bit
1498         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1499         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1500         if (cbuf) {
1501           MacroAssembler _masm(cbuf);
1502           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1503 #ifndef PRODUCT
1504         } else {
1505           st->print("%s  %s, %s\t# spill",
1506                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1507                      Matcher::regName[dst_first],
1508                      Matcher::regName[src_first]);
1509 #endif
1510         }
1511       }
1512       return 0;
1513     }
1514   }
1515 
1516   assert(0," foo ");
1517   Unimplemented();
1518   return 0;
1519 }
1520 
1521 #ifndef PRODUCT
1522 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1523   implementation(NULL, ra_, false, st);
1524 }
1525 #endif
1526 
1527 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1528   implementation(&cbuf, ra_, false, NULL);
1529 }
1530 
1531 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1532   return MachNode::size(ra_);
1533 }
1534 
1535 //=============================================================================
1536 #ifndef PRODUCT
1537 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1538 {
1539   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1540   int reg = ra_->get_reg_first(this);
1541   st->print("leaq    %s, [rsp + #%d]\t# box lock",
1542             Matcher::regName[reg], offset);
1543 }
1544 #endif
1545 
1546 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1547 {
1548   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1549   int reg = ra_->get_encode(this);
1550   if (offset >= 0x80) {
1551     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1552     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1553     emit_rm(cbuf, 0x2, reg & 7, 0x04);
1554     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1555     emit_d32(cbuf, offset);
1556   } else {
1557     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1558     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1559     emit_rm(cbuf, 0x1, reg & 7, 0x04);
1560     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1561     emit_d8(cbuf, offset);
1562   }
1563 }
1564 
1565 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1566 {
1567   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1568   return (offset < 0x80) ? 5 : 8; // REX
1569 }
1570 
1571 //=============================================================================
1572 #ifndef PRODUCT
1573 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1574 {
1575   if (UseCompressedClassPointers) {
1576     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1577     st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
1578     st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1579   } else {
1580     st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1581                  "# Inline cache check");
1582   }
1583   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1584   st->print_cr("\tnop\t# nops to align entry point");
1585 }
1586 #endif
1587 
1588 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1589 {
1590   MacroAssembler masm(&cbuf);
1591   uint insts_size = cbuf.insts_size();
1592   if (UseCompressedClassPointers) {
1593     masm.load_klass(rscratch1, j_rarg0);
1594     masm.cmpptr(rax, rscratch1);
1595   } else {
1596     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1597   }
1598 
1599   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1600 
1601   /* WARNING these NOPs are critical so that verified entry point is properly
1602      4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1603   int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1604   if (OptoBreakpoint) {
1605     // Leave space for int3
1606     nops_cnt -= 1;
1607   }
1608   nops_cnt &= 0x3; // Do not add nops if code is aligned.
1609   if (nops_cnt > 0)
1610     masm.nop(nops_cnt);
1611 }
1612 
1613 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1614 {
1615   return MachNode::size(ra_); // too many variables; just compute it
1616                               // the hard way
1617 }
1618 
1619 
1620 //=============================================================================
1621 
1622 int Matcher::regnum_to_fpu_offset(int regnum)
1623 {
1624   return regnum - 32; // The FP registers are in the second chunk
1625 }
1626 
1627 // This is UltraSparc specific, true just means we have fast l2f conversion
1628 const bool Matcher::convL2FSupported(void) {
1629   return true;
1630 }
1631 
1632 // Is this branch offset short enough that a short branch can be used?
1633 //
1634 // NOTE: If the platform does not provide any short branch variants, then
1635 //       this method should return false for offset 0.
1636 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1637   // The passed offset is relative to address of the branch.
1638   // On 86 a branch displacement is calculated relative to address
1639   // of a next instruction.
1640   offset -= br_size;
1641 
1642   // the short version of jmpConUCF2 contains multiple branches,
1643   // making the reach slightly less
1644   if (rule == jmpConUCF2_rule)
1645     return (-126 <= offset && offset <= 125);
1646   return (-128 <= offset && offset <= 127);
1647 }
1648 
1649 const bool Matcher::isSimpleConstant64(jlong value) {
1650   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1651   //return value == (int) value;  // Cf. storeImmL and immL32.
1652 
1653   // Probably always true, even if a temp register is required.
1654   return true;
1655 }
1656 
1657 // The ecx parameter to rep stosq for the ClearArray node is in words.
1658 const bool Matcher::init_array_count_is_in_bytes = false;
1659 
1660 // No additional cost for CMOVL.
1661 const int Matcher::long_cmove_cost() { return 0; }
1662 
1663 // No CMOVF/CMOVD with SSE2
1664 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1665 
1666 // Does the CPU require late expand (see block.cpp for description of late expand)?
1667 const bool Matcher::require_postalloc_expand = false;
1668 
1669 // Do we need to mask the count passed to shift instructions or does
1670 // the cpu only look at the lower 5/6 bits anyway?
1671 const bool Matcher::need_masked_shift_count = false;
1672 
1673 bool Matcher::narrow_oop_use_complex_address() {
1674   assert(UseCompressedOops, "only for compressed oops code");
1675   return (LogMinObjAlignmentInBytes <= 3);
1676 }
1677 
1678 bool Matcher::narrow_klass_use_complex_address() {
1679   assert(UseCompressedClassPointers, "only for compressed klass code");
1680   return (LogKlassAlignmentInBytes <= 3);
1681 }
1682 
1683 bool Matcher::const_oop_prefer_decode() {
1684   // Prefer ConN+DecodeN over ConP.
1685   return true;
1686 }
1687 
1688 bool Matcher::const_klass_prefer_decode() {
1689   // TODO: Either support matching DecodeNKlass (heap-based) in operand
1690   //       or condisider the following:
1691   // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
1692   //return Universe::narrow_klass_base() == NULL;
1693   return true;
1694 }
1695 
1696 // Is it better to copy float constants, or load them directly from
1697 // memory?  Intel can load a float constant from a direct address,
1698 // requiring no extra registers.  Most RISCs will have to materialize
1699 // an address into a register first, so they would do better to copy
1700 // the constant from stack.
1701 const bool Matcher::rematerialize_float_constants = true; // XXX
1702 
1703 // If CPU can load and store mis-aligned doubles directly then no
1704 // fixup is needed.  Else we split the double into 2 integer pieces
1705 // and move it piece-by-piece.  Only happens when passing doubles into
1706 // C code as the Java calling convention forces doubles to be aligned.
1707 const bool Matcher::misaligned_doubles_ok = true;
1708 
1709 // No-op on amd64
1710 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1711 
1712 // Advertise here if the CPU requires explicit rounding operations to
1713 // implement the UseStrictFP mode.
1714 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1715 
1716 // Are floats conerted to double when stored to stack during deoptimization?
1717 // On x64 it is stored without convertion so we can use normal access.
1718 bool Matcher::float_in_double() { return false; }
1719 
1720 // Do ints take an entire long register or just half?
1721 const bool Matcher::int_in_long = true;
1722 
1723 // Return whether or not this register is ever used as an argument.
1724 // This function is used on startup to build the trampoline stubs in
1725 // generateOptoStub.  Registers not mentioned will be killed by the VM
1726 // call in the trampoline, and arguments in those registers not be
1727 // available to the callee.
1728 bool Matcher::can_be_java_arg(int reg)
1729 {
1730   return
1731     reg ==  RDI_num || reg == RDI_H_num ||
1732     reg ==  RSI_num || reg == RSI_H_num ||
1733     reg ==  RDX_num || reg == RDX_H_num ||
1734     reg ==  RCX_num || reg == RCX_H_num ||
1735     reg ==   R8_num || reg ==  R8_H_num ||
1736     reg ==   R9_num || reg ==  R9_H_num ||
1737     reg ==  R12_num || reg == R12_H_num ||
1738     reg == XMM0_num || reg == XMM0b_num ||
1739     reg == XMM1_num || reg == XMM1b_num ||
1740     reg == XMM2_num || reg == XMM2b_num ||
1741     reg == XMM3_num || reg == XMM3b_num ||
1742     reg == XMM4_num || reg == XMM4b_num ||
1743     reg == XMM5_num || reg == XMM5b_num ||
1744     reg == XMM6_num || reg == XMM6b_num ||
1745     reg == XMM7_num || reg == XMM7b_num;
1746 }
1747 
1748 bool Matcher::is_spillable_arg(int reg)
1749 {
1750   return can_be_java_arg(reg);
1751 }
1752 
1753 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1754   // In 64 bit mode a code which use multiply when
1755   // devisor is constant is faster than hardware
1756   // DIV instruction (it uses MulHiL).
1757   return false;
1758 }
1759 
1760 // Register for DIVI projection of divmodI
1761 RegMask Matcher::divI_proj_mask() {
1762   return INT_RAX_REG_mask();
1763 }
1764 
1765 // Register for MODI projection of divmodI
1766 RegMask Matcher::modI_proj_mask() {
1767   return INT_RDX_REG_mask();
1768 }
1769 
1770 // Register for DIVL projection of divmodL
1771 RegMask Matcher::divL_proj_mask() {
1772   return LONG_RAX_REG_mask();
1773 }
1774 
1775 // Register for MODL projection of divmodL
1776 RegMask Matcher::modL_proj_mask() {
1777   return LONG_RDX_REG_mask();
1778 }
1779 
1780 // Register for saving SP into on method handle invokes. Not used on x86_64.
1781 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1782     return NO_REG_mask();
1783 }
1784 
1785 %}
1786 
1787 //----------ENCODING BLOCK-----------------------------------------------------
1788 // This block specifies the encoding classes used by the compiler to
1789 // output byte streams.  Encoding classes are parameterized macros
1790 // used by Machine Instruction Nodes in order to generate the bit
1791 // encoding of the instruction.  Operands specify their base encoding
1792 // interface with the interface keyword.  There are currently
1793 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1794 // COND_INTER.  REG_INTER causes an operand to generate a function
1795 // which returns its register number when queried.  CONST_INTER causes
1796 // an operand to generate a function which returns the value of the
1797 // constant when queried.  MEMORY_INTER causes an operand to generate
1798 // four functions which return the Base Register, the Index Register,
1799 // the Scale Value, and the Offset Value of the operand when queried.
1800 // COND_INTER causes an operand to generate six functions which return
1801 // the encoding code (ie - encoding bits for the instruction)
1802 // associated with each basic boolean condition for a conditional
1803 // instruction.
1804 //
1805 // Instructions specify two basic values for encoding.  Again, a
1806 // function is available to check if the constant displacement is an
1807 // oop. They use the ins_encode keyword to specify their encoding
1808 // classes (which must be a sequence of enc_class names, and their
1809 // parameters, specified in the encoding block), and they use the
1810 // opcode keyword to specify, in order, their primary, secondary, and
1811 // tertiary opcode.  Only the opcode sections which a particular
1812 // instruction needs for encoding need to be specified.
1813 encode %{
1814   // Build emit functions for each basic byte or larger field in the
1815   // intel encoding scheme (opcode, rm, sib, immediate), and call them
1816   // from C++ code in the enc_class source block.  Emit functions will
1817   // live in the main source block for now.  In future, we can
1818   // generalize this by adding a syntax that specifies the sizes of
1819   // fields in an order, so that the adlc can build the emit functions
1820   // automagically
1821 
1822   // Emit primary opcode
1823   enc_class OpcP
1824   %{
1825     emit_opcode(cbuf, $primary);
1826   %}
1827 
1828   // Emit secondary opcode
1829   enc_class OpcS
1830   %{
1831     emit_opcode(cbuf, $secondary);
1832   %}
1833 
1834   // Emit tertiary opcode
1835   enc_class OpcT
1836   %{
1837     emit_opcode(cbuf, $tertiary);
1838   %}
1839 
1840   // Emit opcode directly
1841   enc_class Opcode(immI d8)
1842   %{
1843     emit_opcode(cbuf, $d8$$constant);
1844   %}
1845 
1846   // Emit size prefix
1847   enc_class SizePrefix
1848   %{
1849     emit_opcode(cbuf, 0x66);
1850   %}
1851 
1852   enc_class reg(rRegI reg)
1853   %{
1854     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1855   %}
1856 
1857   enc_class reg_reg(rRegI dst, rRegI src)
1858   %{
1859     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1860   %}
1861 
1862   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1863   %{
1864     emit_opcode(cbuf, $opcode$$constant);
1865     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1866   %}
1867 
1868   enc_class cdql_enc(no_rax_rdx_RegI div)
1869   %{
1870     // Full implementation of Java idiv and irem; checks for
1871     // special case as described in JVM spec., p.243 & p.271.
1872     //
1873     //         normal case                           special case
1874     //
1875     // input : rax: dividend                         min_int
1876     //         reg: divisor                          -1
1877     //
1878     // output: rax: quotient  (= rax idiv reg)       min_int
1879     //         rdx: remainder (= rax irem reg)       0
1880     //
1881     //  Code sequnce:
1882     //
1883     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1884     //    5:   75 07/08                jne    e <normal>
1885     //    7:   33 d2                   xor    %edx,%edx
1886     //  [div >= 8 -> offset + 1]
1887     //  [REX_B]
1888     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
1889     //    c:   74 03/04                je     11 <done>
1890     // 000000000000000e <normal>:
1891     //    e:   99                      cltd
1892     //  [div >= 8 -> offset + 1]
1893     //  [REX_B]
1894     //    f:   f7 f9                   idiv   $div
1895     // 0000000000000011 <done>:
1896 
1897     // cmp    $0x80000000,%eax
1898     emit_opcode(cbuf, 0x3d);
1899     emit_d8(cbuf, 0x00);
1900     emit_d8(cbuf, 0x00);
1901     emit_d8(cbuf, 0x00);
1902     emit_d8(cbuf, 0x80);
1903 
1904     // jne    e <normal>
1905     emit_opcode(cbuf, 0x75);
1906     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
1907 
1908     // xor    %edx,%edx
1909     emit_opcode(cbuf, 0x33);
1910     emit_d8(cbuf, 0xD2);
1911 
1912     // cmp    $0xffffffffffffffff,%ecx
1913     if ($div$$reg >= 8) {
1914       emit_opcode(cbuf, Assembler::REX_B);
1915     }
1916     emit_opcode(cbuf, 0x83);
1917     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1918     emit_d8(cbuf, 0xFF);
1919 
1920     // je     11 <done>
1921     emit_opcode(cbuf, 0x74);
1922     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
1923 
1924     // <normal>
1925     // cltd
1926     emit_opcode(cbuf, 0x99);
1927 
1928     // idivl (note: must be emitted by the user of this rule)
1929     // <done>
1930   %}
1931 
1932   enc_class cdqq_enc(no_rax_rdx_RegL div)
1933   %{
1934     // Full implementation of Java ldiv and lrem; checks for
1935     // special case as described in JVM spec., p.243 & p.271.
1936     //
1937     //         normal case                           special case
1938     //
1939     // input : rax: dividend                         min_long
1940     //         reg: divisor                          -1
1941     //
1942     // output: rax: quotient  (= rax idiv reg)       min_long
1943     //         rdx: remainder (= rax irem reg)       0
1944     //
1945     //  Code sequnce:
1946     //
1947     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
1948     //    7:   00 00 80
1949     //    a:   48 39 d0                cmp    %rdx,%rax
1950     //    d:   75 08                   jne    17 <normal>
1951     //    f:   33 d2                   xor    %edx,%edx
1952     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
1953     //   15:   74 05                   je     1c <done>
1954     // 0000000000000017 <normal>:
1955     //   17:   48 99                   cqto
1956     //   19:   48 f7 f9                idiv   $div
1957     // 000000000000001c <done>:
1958 
1959     // mov    $0x8000000000000000,%rdx
1960     emit_opcode(cbuf, Assembler::REX_W);
1961     emit_opcode(cbuf, 0xBA);
1962     emit_d8(cbuf, 0x00);
1963     emit_d8(cbuf, 0x00);
1964     emit_d8(cbuf, 0x00);
1965     emit_d8(cbuf, 0x00);
1966     emit_d8(cbuf, 0x00);
1967     emit_d8(cbuf, 0x00);
1968     emit_d8(cbuf, 0x00);
1969     emit_d8(cbuf, 0x80);
1970 
1971     // cmp    %rdx,%rax
1972     emit_opcode(cbuf, Assembler::REX_W);
1973     emit_opcode(cbuf, 0x39);
1974     emit_d8(cbuf, 0xD0);
1975 
1976     // jne    17 <normal>
1977     emit_opcode(cbuf, 0x75);
1978     emit_d8(cbuf, 0x08);
1979 
1980     // xor    %edx,%edx
1981     emit_opcode(cbuf, 0x33);
1982     emit_d8(cbuf, 0xD2);
1983 
1984     // cmp    $0xffffffffffffffff,$div
1985     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
1986     emit_opcode(cbuf, 0x83);
1987     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1988     emit_d8(cbuf, 0xFF);
1989 
1990     // je     1e <done>
1991     emit_opcode(cbuf, 0x74);
1992     emit_d8(cbuf, 0x05);
1993 
1994     // <normal>
1995     // cqto
1996     emit_opcode(cbuf, Assembler::REX_W);
1997     emit_opcode(cbuf, 0x99);
1998 
1999     // idivq (note: must be emitted by the user of this rule)
2000     // <done>
2001   %}
2002 
2003   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
2004   enc_class OpcSE(immI imm)
2005   %{
2006     // Emit primary opcode and set sign-extend bit
2007     // Check for 8-bit immediate, and set sign extend bit in opcode
2008     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2009       emit_opcode(cbuf, $primary | 0x02);
2010     } else {
2011       // 32-bit immediate
2012       emit_opcode(cbuf, $primary);
2013     }
2014   %}
2015 
2016   enc_class OpcSErm(rRegI dst, immI imm)
2017   %{
2018     // OpcSEr/m
2019     int dstenc = $dst$$reg;
2020     if (dstenc >= 8) {
2021       emit_opcode(cbuf, Assembler::REX_B);
2022       dstenc -= 8;
2023     }
2024     // Emit primary opcode and set sign-extend bit
2025     // Check for 8-bit immediate, and set sign extend bit in opcode
2026     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2027       emit_opcode(cbuf, $primary | 0x02);
2028     } else {
2029       // 32-bit immediate
2030       emit_opcode(cbuf, $primary);
2031     }
2032     // Emit r/m byte with secondary opcode, after primary opcode.
2033     emit_rm(cbuf, 0x3, $secondary, dstenc);
2034   %}
2035 
2036   enc_class OpcSErm_wide(rRegL dst, immI imm)
2037   %{
2038     // OpcSEr/m
2039     int dstenc = $dst$$reg;
2040     if (dstenc < 8) {
2041       emit_opcode(cbuf, Assembler::REX_W);
2042     } else {
2043       emit_opcode(cbuf, Assembler::REX_WB);
2044       dstenc -= 8;
2045     }
2046     // Emit primary opcode and set sign-extend bit
2047     // Check for 8-bit immediate, and set sign extend bit in opcode
2048     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2049       emit_opcode(cbuf, $primary | 0x02);
2050     } else {
2051       // 32-bit immediate
2052       emit_opcode(cbuf, $primary);
2053     }
2054     // Emit r/m byte with secondary opcode, after primary opcode.
2055     emit_rm(cbuf, 0x3, $secondary, dstenc);
2056   %}
2057 
2058   enc_class Con8or32(immI imm)
2059   %{
2060     // Check for 8-bit immediate, and set sign extend bit in opcode
2061     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2062       $$$emit8$imm$$constant;
2063     } else {
2064       // 32-bit immediate
2065       $$$emit32$imm$$constant;
2066     }
2067   %}
2068 
2069   enc_class opc2_reg(rRegI dst)
2070   %{
2071     // BSWAP
2072     emit_cc(cbuf, $secondary, $dst$$reg);
2073   %}
2074 
2075   enc_class opc3_reg(rRegI dst)
2076   %{
2077     // BSWAP
2078     emit_cc(cbuf, $tertiary, $dst$$reg);
2079   %}
2080 
2081   enc_class reg_opc(rRegI div)
2082   %{
2083     // INC, DEC, IDIV, IMOD, JMP indirect, ...
2084     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2085   %}
2086 
2087   enc_class enc_cmov(cmpOp cop)
2088   %{
2089     // CMOV
2090     $$$emit8$primary;
2091     emit_cc(cbuf, $secondary, $cop$$cmpcode);
2092   %}
2093 
2094   enc_class enc_PartialSubtypeCheck()
2095   %{
2096     Register Rrdi = as_Register(RDI_enc); // result register
2097     Register Rrax = as_Register(RAX_enc); // super class
2098     Register Rrcx = as_Register(RCX_enc); // killed
2099     Register Rrsi = as_Register(RSI_enc); // sub class
2100     Label miss;
2101     const bool set_cond_codes = true;
2102 
2103     MacroAssembler _masm(&cbuf);
2104     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2105                                      NULL, &miss,
2106                                      /*set_cond_codes:*/ true);
2107     if ($primary) {
2108       __ xorptr(Rrdi, Rrdi);
2109     }
2110     __ bind(miss);
2111   %}
2112 
2113   enc_class clear_avx %{
2114     debug_only(int off0 = cbuf.insts_size());
2115     if (generate_vzeroupper(Compile::current())) {
2116       // Clear upper bits of YMM registers to avoid AVX <-> SSE transition penalty
2117       // Clear upper bits of YMM registers when current compiled code uses
2118       // wide vectors to avoid AVX <-> SSE transition penalty during call.
2119       MacroAssembler _masm(&cbuf);
2120       __ vzeroupper();
2121     }
2122     debug_only(int off1 = cbuf.insts_size());
2123     assert(off1 - off0 == clear_avx_size(), "correct size prediction");
2124   %}
2125 
2126   enc_class Java_To_Runtime(method meth) %{
2127     // No relocation needed
2128     MacroAssembler _masm(&cbuf);
2129     __ mov64(r10, (int64_t) $meth$$method);
2130     __ call(r10);
2131   %}
2132 
2133   enc_class Java_To_Interpreter(method meth)
2134   %{
2135     // CALL Java_To_Interpreter
2136     // This is the instruction starting address for relocation info.
2137     cbuf.set_insts_mark();
2138     $$$emit8$primary;
2139     // CALL directly to the runtime
2140     emit_d32_reloc(cbuf,
2141                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2142                    runtime_call_Relocation::spec(),
2143                    RELOC_DISP32);
2144   %}
2145 
2146   enc_class Java_Static_Call(method meth)
2147   %{
2148     // JAVA STATIC CALL
2149     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2150     // determine who we intended to call.
2151     cbuf.set_insts_mark();
2152     $$$emit8$primary;
2153 
2154     if (!_method) {
2155       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2156                      runtime_call_Relocation::spec(),
2157                      RELOC_DISP32);
2158     } else {
2159       int method_index = resolved_method_index(cbuf);
2160       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2161                                                   : static_call_Relocation::spec(method_index);
2162       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2163                      rspec, RELOC_DISP32);
2164       // Emit stubs for static call.
2165       address mark = cbuf.insts_mark();
2166       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf, mark);
2167       if (stub == NULL) {
2168         ciEnv::current()->record_failure("CodeCache is full");
2169         return;
2170       }
2171 #if INCLUDE_AOT
2172       CompiledStaticCall::emit_to_aot_stub(cbuf, mark);
2173 #endif
2174     }
2175   %}
2176 
2177   enc_class Java_Dynamic_Call(method meth) %{
2178     MacroAssembler _masm(&cbuf);
2179     __ ic_call((address)$meth$$method, resolved_method_index(cbuf));
2180   %}
2181 
2182   enc_class Java_Compiled_Call(method meth)
2183   %{
2184     // JAVA COMPILED CALL
2185     int disp = in_bytes(Method:: from_compiled_offset());
2186 
2187     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2188     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2189 
2190     // callq *disp(%rax)
2191     cbuf.set_insts_mark();
2192     $$$emit8$primary;
2193     if (disp < 0x80) {
2194       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2195       emit_d8(cbuf, disp); // Displacement
2196     } else {
2197       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2198       emit_d32(cbuf, disp); // Displacement
2199     }
2200   %}
2201 
2202   enc_class reg_opc_imm(rRegI dst, immI8 shift)
2203   %{
2204     // SAL, SAR, SHR
2205     int dstenc = $dst$$reg;
2206     if (dstenc >= 8) {
2207       emit_opcode(cbuf, Assembler::REX_B);
2208       dstenc -= 8;
2209     }
2210     $$$emit8$primary;
2211     emit_rm(cbuf, 0x3, $secondary, dstenc);
2212     $$$emit8$shift$$constant;
2213   %}
2214 
2215   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2216   %{
2217     // SAL, SAR, SHR
2218     int dstenc = $dst$$reg;
2219     if (dstenc < 8) {
2220       emit_opcode(cbuf, Assembler::REX_W);
2221     } else {
2222       emit_opcode(cbuf, Assembler::REX_WB);
2223       dstenc -= 8;
2224     }
2225     $$$emit8$primary;
2226     emit_rm(cbuf, 0x3, $secondary, dstenc);
2227     $$$emit8$shift$$constant;
2228   %}
2229 
2230   enc_class load_immI(rRegI dst, immI src)
2231   %{
2232     int dstenc = $dst$$reg;
2233     if (dstenc >= 8) {
2234       emit_opcode(cbuf, Assembler::REX_B);
2235       dstenc -= 8;
2236     }
2237     emit_opcode(cbuf, 0xB8 | dstenc);
2238     $$$emit32$src$$constant;
2239   %}
2240 
2241   enc_class load_immL(rRegL dst, immL src)
2242   %{
2243     int dstenc = $dst$$reg;
2244     if (dstenc < 8) {
2245       emit_opcode(cbuf, Assembler::REX_W);
2246     } else {
2247       emit_opcode(cbuf, Assembler::REX_WB);
2248       dstenc -= 8;
2249     }
2250     emit_opcode(cbuf, 0xB8 | dstenc);
2251     emit_d64(cbuf, $src$$constant);
2252   %}
2253 
2254   enc_class load_immUL32(rRegL dst, immUL32 src)
2255   %{
2256     // same as load_immI, but this time we care about zeroes in the high word
2257     int dstenc = $dst$$reg;
2258     if (dstenc >= 8) {
2259       emit_opcode(cbuf, Assembler::REX_B);
2260       dstenc -= 8;
2261     }
2262     emit_opcode(cbuf, 0xB8 | dstenc);
2263     $$$emit32$src$$constant;
2264   %}
2265 
2266   enc_class load_immL32(rRegL dst, immL32 src)
2267   %{
2268     int dstenc = $dst$$reg;
2269     if (dstenc < 8) {
2270       emit_opcode(cbuf, Assembler::REX_W);
2271     } else {
2272       emit_opcode(cbuf, Assembler::REX_WB);
2273       dstenc -= 8;
2274     }
2275     emit_opcode(cbuf, 0xC7);
2276     emit_rm(cbuf, 0x03, 0x00, dstenc);
2277     $$$emit32$src$$constant;
2278   %}
2279 
2280   enc_class load_immP31(rRegP dst, immP32 src)
2281   %{
2282     // same as load_immI, but this time we care about zeroes in the high word
2283     int dstenc = $dst$$reg;
2284     if (dstenc >= 8) {
2285       emit_opcode(cbuf, Assembler::REX_B);
2286       dstenc -= 8;
2287     }
2288     emit_opcode(cbuf, 0xB8 | dstenc);
2289     $$$emit32$src$$constant;
2290   %}
2291 
2292   enc_class load_immP(rRegP dst, immP src)
2293   %{
2294     int dstenc = $dst$$reg;
2295     if (dstenc < 8) {
2296       emit_opcode(cbuf, Assembler::REX_W);
2297     } else {
2298       emit_opcode(cbuf, Assembler::REX_WB);
2299       dstenc -= 8;
2300     }
2301     emit_opcode(cbuf, 0xB8 | dstenc);
2302     // This next line should be generated from ADLC
2303     if ($src->constant_reloc() != relocInfo::none) {
2304       emit_d64_reloc(cbuf, $src$$constant, $src->constant_reloc(), RELOC_IMM64);
2305     } else {
2306       emit_d64(cbuf, $src$$constant);
2307     }
2308   %}
2309 
2310   enc_class Con32(immI src)
2311   %{
2312     // Output immediate
2313     $$$emit32$src$$constant;
2314   %}
2315 
2316   enc_class Con32F_as_bits(immF src)
2317   %{
2318     // Output Float immediate bits
2319     jfloat jf = $src$$constant;
2320     jint jf_as_bits = jint_cast(jf);
2321     emit_d32(cbuf, jf_as_bits);
2322   %}
2323 
2324   enc_class Con16(immI src)
2325   %{
2326     // Output immediate
2327     $$$emit16$src$$constant;
2328   %}
2329 
2330   // How is this different from Con32??? XXX
2331   enc_class Con_d32(immI src)
2332   %{
2333     emit_d32(cbuf,$src$$constant);
2334   %}
2335 
2336   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2337     // Output immediate memory reference
2338     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2339     emit_d32(cbuf, 0x00);
2340   %}
2341 
2342   enc_class lock_prefix()
2343   %{
2344     if (os::is_MP()) {
2345       emit_opcode(cbuf, 0xF0); // lock
2346     }
2347   %}
2348 
2349   enc_class REX_mem(memory mem)
2350   %{
2351     if ($mem$$base >= 8) {
2352       if ($mem$$index < 8) {
2353         emit_opcode(cbuf, Assembler::REX_B);
2354       } else {
2355         emit_opcode(cbuf, Assembler::REX_XB);
2356       }
2357     } else {
2358       if ($mem$$index >= 8) {
2359         emit_opcode(cbuf, Assembler::REX_X);
2360       }
2361     }
2362   %}
2363 
2364   enc_class REX_mem_wide(memory mem)
2365   %{
2366     if ($mem$$base >= 8) {
2367       if ($mem$$index < 8) {
2368         emit_opcode(cbuf, Assembler::REX_WB);
2369       } else {
2370         emit_opcode(cbuf, Assembler::REX_WXB);
2371       }
2372     } else {
2373       if ($mem$$index < 8) {
2374         emit_opcode(cbuf, Assembler::REX_W);
2375       } else {
2376         emit_opcode(cbuf, Assembler::REX_WX);
2377       }
2378     }
2379   %}
2380 
2381   // for byte regs
2382   enc_class REX_breg(rRegI reg)
2383   %{
2384     if ($reg$$reg >= 4) {
2385       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2386     }
2387   %}
2388 
2389   // for byte regs
2390   enc_class REX_reg_breg(rRegI dst, rRegI src)
2391   %{
2392     if ($dst$$reg < 8) {
2393       if ($src$$reg >= 4) {
2394         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2395       }
2396     } else {
2397       if ($src$$reg < 8) {
2398         emit_opcode(cbuf, Assembler::REX_R);
2399       } else {
2400         emit_opcode(cbuf, Assembler::REX_RB);
2401       }
2402     }
2403   %}
2404 
2405   // for byte regs
2406   enc_class REX_breg_mem(rRegI reg, memory mem)
2407   %{
2408     if ($reg$$reg < 8) {
2409       if ($mem$$base < 8) {
2410         if ($mem$$index >= 8) {
2411           emit_opcode(cbuf, Assembler::REX_X);
2412         } else if ($reg$$reg >= 4) {
2413           emit_opcode(cbuf, Assembler::REX);
2414         }
2415       } else {
2416         if ($mem$$index < 8) {
2417           emit_opcode(cbuf, Assembler::REX_B);
2418         } else {
2419           emit_opcode(cbuf, Assembler::REX_XB);
2420         }
2421       }
2422     } else {
2423       if ($mem$$base < 8) {
2424         if ($mem$$index < 8) {
2425           emit_opcode(cbuf, Assembler::REX_R);
2426         } else {
2427           emit_opcode(cbuf, Assembler::REX_RX);
2428         }
2429       } else {
2430         if ($mem$$index < 8) {
2431           emit_opcode(cbuf, Assembler::REX_RB);
2432         } else {
2433           emit_opcode(cbuf, Assembler::REX_RXB);
2434         }
2435       }
2436     }
2437   %}
2438 
2439   enc_class REX_reg(rRegI reg)
2440   %{
2441     if ($reg$$reg >= 8) {
2442       emit_opcode(cbuf, Assembler::REX_B);
2443     }
2444   %}
2445 
2446   enc_class REX_reg_wide(rRegI reg)
2447   %{
2448     if ($reg$$reg < 8) {
2449       emit_opcode(cbuf, Assembler::REX_W);
2450     } else {
2451       emit_opcode(cbuf, Assembler::REX_WB);
2452     }
2453   %}
2454 
2455   enc_class REX_reg_reg(rRegI dst, rRegI src)
2456   %{
2457     if ($dst$$reg < 8) {
2458       if ($src$$reg >= 8) {
2459         emit_opcode(cbuf, Assembler::REX_B);
2460       }
2461     } else {
2462       if ($src$$reg < 8) {
2463         emit_opcode(cbuf, Assembler::REX_R);
2464       } else {
2465         emit_opcode(cbuf, Assembler::REX_RB);
2466       }
2467     }
2468   %}
2469 
2470   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2471   %{
2472     if ($dst$$reg < 8) {
2473       if ($src$$reg < 8) {
2474         emit_opcode(cbuf, Assembler::REX_W);
2475       } else {
2476         emit_opcode(cbuf, Assembler::REX_WB);
2477       }
2478     } else {
2479       if ($src$$reg < 8) {
2480         emit_opcode(cbuf, Assembler::REX_WR);
2481       } else {
2482         emit_opcode(cbuf, Assembler::REX_WRB);
2483       }
2484     }
2485   %}
2486 
2487   enc_class REX_reg_mem(rRegI reg, memory mem)
2488   %{
2489     if ($reg$$reg < 8) {
2490       if ($mem$$base < 8) {
2491         if ($mem$$index >= 8) {
2492           emit_opcode(cbuf, Assembler::REX_X);
2493         }
2494       } else {
2495         if ($mem$$index < 8) {
2496           emit_opcode(cbuf, Assembler::REX_B);
2497         } else {
2498           emit_opcode(cbuf, Assembler::REX_XB);
2499         }
2500       }
2501     } else {
2502       if ($mem$$base < 8) {
2503         if ($mem$$index < 8) {
2504           emit_opcode(cbuf, Assembler::REX_R);
2505         } else {
2506           emit_opcode(cbuf, Assembler::REX_RX);
2507         }
2508       } else {
2509         if ($mem$$index < 8) {
2510           emit_opcode(cbuf, Assembler::REX_RB);
2511         } else {
2512           emit_opcode(cbuf, Assembler::REX_RXB);
2513         }
2514       }
2515     }
2516   %}
2517 
2518   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2519   %{
2520     if ($reg$$reg < 8) {
2521       if ($mem$$base < 8) {
2522         if ($mem$$index < 8) {
2523           emit_opcode(cbuf, Assembler::REX_W);
2524         } else {
2525           emit_opcode(cbuf, Assembler::REX_WX);
2526         }
2527       } else {
2528         if ($mem$$index < 8) {
2529           emit_opcode(cbuf, Assembler::REX_WB);
2530         } else {
2531           emit_opcode(cbuf, Assembler::REX_WXB);
2532         }
2533       }
2534     } else {
2535       if ($mem$$base < 8) {
2536         if ($mem$$index < 8) {
2537           emit_opcode(cbuf, Assembler::REX_WR);
2538         } else {
2539           emit_opcode(cbuf, Assembler::REX_WRX);
2540         }
2541       } else {
2542         if ($mem$$index < 8) {
2543           emit_opcode(cbuf, Assembler::REX_WRB);
2544         } else {
2545           emit_opcode(cbuf, Assembler::REX_WRXB);
2546         }
2547       }
2548     }
2549   %}
2550 
2551   enc_class reg_mem(rRegI ereg, memory mem)
2552   %{
2553     // High registers handle in encode_RegMem
2554     int reg = $ereg$$reg;
2555     int base = $mem$$base;
2556     int index = $mem$$index;
2557     int scale = $mem$$scale;
2558     int disp = $mem$$disp;
2559     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2560 
2561     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_reloc);
2562   %}
2563 
2564   enc_class RM_opc_mem(immI rm_opcode, memory mem)
2565   %{
2566     int rm_byte_opcode = $rm_opcode$$constant;
2567 
2568     // High registers handle in encode_RegMem
2569     int base = $mem$$base;
2570     int index = $mem$$index;
2571     int scale = $mem$$scale;
2572     int displace = $mem$$disp;
2573 
2574     relocInfo::relocType disp_reloc = $mem->disp_reloc();       // disp-as-oop when
2575                                             // working with static
2576                                             // globals
2577     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2578                   disp_reloc);
2579   %}
2580 
2581   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2582   %{
2583     int reg_encoding = $dst$$reg;
2584     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2585     int index        = 0x04;            // 0x04 indicates no index
2586     int scale        = 0x00;            // 0x00 indicates no scale
2587     int displace     = $src1$$constant; // 0x00 indicates no displacement
2588     relocInfo::relocType disp_reloc = relocInfo::none;
2589     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2590                   disp_reloc);
2591   %}
2592 
2593   enc_class neg_reg(rRegI dst)
2594   %{
2595     int dstenc = $dst$$reg;
2596     if (dstenc >= 8) {
2597       emit_opcode(cbuf, Assembler::REX_B);
2598       dstenc -= 8;
2599     }
2600     // NEG $dst
2601     emit_opcode(cbuf, 0xF7);
2602     emit_rm(cbuf, 0x3, 0x03, dstenc);
2603   %}
2604 
2605   enc_class neg_reg_wide(rRegI dst)
2606   %{
2607     int dstenc = $dst$$reg;
2608     if (dstenc < 8) {
2609       emit_opcode(cbuf, Assembler::REX_W);
2610     } else {
2611       emit_opcode(cbuf, Assembler::REX_WB);
2612       dstenc -= 8;
2613     }
2614     // NEG $dst
2615     emit_opcode(cbuf, 0xF7);
2616     emit_rm(cbuf, 0x3, 0x03, dstenc);
2617   %}
2618 
2619   enc_class setLT_reg(rRegI dst)
2620   %{
2621     int dstenc = $dst$$reg;
2622     if (dstenc >= 8) {
2623       emit_opcode(cbuf, Assembler::REX_B);
2624       dstenc -= 8;
2625     } else if (dstenc >= 4) {
2626       emit_opcode(cbuf, Assembler::REX);
2627     }
2628     // SETLT $dst
2629     emit_opcode(cbuf, 0x0F);
2630     emit_opcode(cbuf, 0x9C);
2631     emit_rm(cbuf, 0x3, 0x0, dstenc);
2632   %}
2633 
2634   enc_class setNZ_reg(rRegI dst)
2635   %{
2636     int dstenc = $dst$$reg;
2637     if (dstenc >= 8) {
2638       emit_opcode(cbuf, Assembler::REX_B);
2639       dstenc -= 8;
2640     } else if (dstenc >= 4) {
2641       emit_opcode(cbuf, Assembler::REX);
2642     }
2643     // SETNZ $dst
2644     emit_opcode(cbuf, 0x0F);
2645     emit_opcode(cbuf, 0x95);
2646     emit_rm(cbuf, 0x3, 0x0, dstenc);
2647   %}
2648 
2649 
2650   // Compare the lonogs and set -1, 0, or 1 into dst
2651   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2652   %{
2653     int src1enc = $src1$$reg;
2654     int src2enc = $src2$$reg;
2655     int dstenc = $dst$$reg;
2656 
2657     // cmpq $src1, $src2
2658     if (src1enc < 8) {
2659       if (src2enc < 8) {
2660         emit_opcode(cbuf, Assembler::REX_W);
2661       } else {
2662         emit_opcode(cbuf, Assembler::REX_WB);
2663       }
2664     } else {
2665       if (src2enc < 8) {
2666         emit_opcode(cbuf, Assembler::REX_WR);
2667       } else {
2668         emit_opcode(cbuf, Assembler::REX_WRB);
2669       }
2670     }
2671     emit_opcode(cbuf, 0x3B);
2672     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2673 
2674     // movl $dst, -1
2675     if (dstenc >= 8) {
2676       emit_opcode(cbuf, Assembler::REX_B);
2677     }
2678     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2679     emit_d32(cbuf, -1);
2680 
2681     // jl,s done
2682     emit_opcode(cbuf, 0x7C);
2683     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2684 
2685     // setne $dst
2686     if (dstenc >= 4) {
2687       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2688     }
2689     emit_opcode(cbuf, 0x0F);
2690     emit_opcode(cbuf, 0x95);
2691     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2692 
2693     // movzbl $dst, $dst
2694     if (dstenc >= 4) {
2695       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2696     }
2697     emit_opcode(cbuf, 0x0F);
2698     emit_opcode(cbuf, 0xB6);
2699     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2700   %}
2701 
2702   enc_class Push_ResultXD(regD dst) %{
2703     MacroAssembler _masm(&cbuf);
2704     __ fstp_d(Address(rsp, 0));
2705     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2706     __ addptr(rsp, 8);
2707   %}
2708 
2709   enc_class Push_SrcXD(regD src) %{
2710     MacroAssembler _masm(&cbuf);
2711     __ subptr(rsp, 8);
2712     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2713     __ fld_d(Address(rsp, 0));
2714   %}
2715 
2716 
2717   enc_class enc_rethrow()
2718   %{
2719     cbuf.set_insts_mark();
2720     emit_opcode(cbuf, 0xE9); // jmp entry
2721     emit_d32_reloc(cbuf,
2722                    (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
2723                    runtime_call_Relocation::spec(),
2724                    RELOC_DISP32);
2725   %}
2726 
2727 %}
2728 
2729 
2730 
2731 //----------FRAME--------------------------------------------------------------
2732 // Definition of frame structure and management information.
2733 //
2734 //  S T A C K   L A Y O U T    Allocators stack-slot number
2735 //                             |   (to get allocators register number
2736 //  G  Owned by    |        |  v    add OptoReg::stack0())
2737 //  r   CALLER     |        |
2738 //  o     |        +--------+      pad to even-align allocators stack-slot
2739 //  w     V        |  pad0  |        numbers; owned by CALLER
2740 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2741 //  h     ^        |   in   |  5
2742 //        |        |  args  |  4   Holes in incoming args owned by SELF
2743 //  |     |        |        |  3
2744 //  |     |        +--------+
2745 //  V     |        | old out|      Empty on Intel, window on Sparc
2746 //        |    old |preserve|      Must be even aligned.
2747 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
2748 //        |        |   in   |  3   area for Intel ret address
2749 //     Owned by    |preserve|      Empty on Sparc.
2750 //       SELF      +--------+
2751 //        |        |  pad2  |  2   pad to align old SP
2752 //        |        +--------+  1
2753 //        |        | locks  |  0
2754 //        |        +--------+----> OptoReg::stack0(), even aligned
2755 //        |        |  pad1  | 11   pad to align new SP
2756 //        |        +--------+
2757 //        |        |        | 10
2758 //        |        | spills |  9   spills
2759 //        V        |        |  8   (pad0 slot for callee)
2760 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2761 //        ^        |  out   |  7
2762 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2763 //     Owned by    +--------+
2764 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2765 //        |    new |preserve|      Must be even-aligned.
2766 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2767 //        |        |        |
2768 //
2769 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2770 //         known from SELF's arguments and the Java calling convention.
2771 //         Region 6-7 is determined per call site.
2772 // Note 2: If the calling convention leaves holes in the incoming argument
2773 //         area, those holes are owned by SELF.  Holes in the outgoing area
2774 //         are owned by the CALLEE.  Holes should not be nessecary in the
2775 //         incoming area, as the Java calling convention is completely under
2776 //         the control of the AD file.  Doubles can be sorted and packed to
2777 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
2778 //         varargs C calling conventions.
2779 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2780 //         even aligned with pad0 as needed.
2781 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2782 //         region 6-11 is even aligned; it may be padded out more so that
2783 //         the region from SP to FP meets the minimum stack alignment.
2784 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
2785 //         alignment.  Region 11, pad1, may be dynamically extended so that
2786 //         SP meets the minimum alignment.
2787 
2788 frame
2789 %{
2790   // What direction does stack grow in (assumed to be same for C & Java)
2791   stack_direction(TOWARDS_LOW);
2792 
2793   // These three registers define part of the calling convention
2794   // between compiled code and the interpreter.
2795   inline_cache_reg(RAX);                // Inline Cache Register
2796   interpreter_method_oop_reg(RBX);      // Method Oop Register when
2797                                         // calling interpreter
2798 
2799   // Optional: name the operand used by cisc-spilling to access
2800   // [stack_pointer + offset]
2801   cisc_spilling_operand_name(indOffset32);
2802 
2803   // Number of stack slots consumed by locking an object
2804   sync_stack_slots(2);
2805 
2806   // Compiled code's Frame Pointer
2807   frame_pointer(RSP);
2808 
2809   // Interpreter stores its frame pointer in a register which is
2810   // stored to the stack by I2CAdaptors.
2811   // I2CAdaptors convert from interpreted java to compiled java.
2812   interpreter_frame_pointer(RBP);
2813 
2814   // Stack alignment requirement
2815   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
2816 
2817   // Number of stack slots between incoming argument block and the start of
2818   // a new frame.  The PROLOG must add this many slots to the stack.  The
2819   // EPILOG must remove this many slots.  amd64 needs two slots for
2820   // return address.
2821   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
2822 
2823   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2824   // for calls to C.  Supports the var-args backing area for register parms.
2825   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
2826 
2827   // The after-PROLOG location of the return address.  Location of
2828   // return address specifies a type (REG or STACK) and a number
2829   // representing the register number (i.e. - use a register name) or
2830   // stack slot.
2831   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
2832   // Otherwise, it is above the locks and verification slot and alignment word
2833   return_addr(STACK - 2 +
2834               align_up((Compile::current()->in_preserve_stack_slots() +
2835                         Compile::current()->fixed_slots()),
2836                        stack_alignment_in_slots()));
2837 
2838   // Body of function which returns an integer array locating
2839   // arguments either in registers or in stack slots.  Passed an array
2840   // of ideal registers called "sig" and a "length" count.  Stack-slot
2841   // offsets are based on outgoing arguments, i.e. a CALLER setting up
2842   // arguments for a CALLEE.  Incoming stack arguments are
2843   // automatically biased by the preserve_stack_slots field above.
2844 
2845   calling_convention
2846   %{
2847     // No difference between ingoing/outgoing just pass false
2848     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
2849   %}
2850 
2851   c_calling_convention
2852   %{
2853     // This is obviously always outgoing
2854     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
2855   %}
2856 
2857   // Location of compiled Java return values.  Same as C for now.
2858   return_value
2859   %{
2860     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
2861            "only return normal values");
2862 
2863     static const int lo[Op_RegL + 1] = {
2864       0,
2865       0,
2866       RAX_num,  // Op_RegN
2867       RAX_num,  // Op_RegI
2868       RAX_num,  // Op_RegP
2869       XMM0_num, // Op_RegF
2870       XMM0_num, // Op_RegD
2871       RAX_num   // Op_RegL
2872     };
2873     static const int hi[Op_RegL + 1] = {
2874       0,
2875       0,
2876       OptoReg::Bad, // Op_RegN
2877       OptoReg::Bad, // Op_RegI
2878       RAX_H_num,    // Op_RegP
2879       OptoReg::Bad, // Op_RegF
2880       XMM0b_num,    // Op_RegD
2881       RAX_H_num     // Op_RegL
2882     };
2883     // Excluded flags and vector registers.
2884     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 6, "missing type");
2885     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
2886   %}
2887 %}
2888 
2889 //----------ATTRIBUTES---------------------------------------------------------
2890 //----------Operand Attributes-------------------------------------------------
2891 op_attrib op_cost(0);        // Required cost attribute
2892 
2893 //----------Instruction Attributes---------------------------------------------
2894 ins_attrib ins_cost(100);       // Required cost attribute
2895 ins_attrib ins_size(8);         // Required size attribute (in bits)
2896 ins_attrib ins_short_branch(0); // Required flag: is this instruction
2897                                 // a non-matching short branch variant
2898                                 // of some long branch?
2899 ins_attrib ins_alignment(1);    // Required alignment attribute (must
2900                                 // be a power of 2) specifies the
2901                                 // alignment that some part of the
2902                                 // instruction (not necessarily the
2903                                 // start) requires.  If > 1, a
2904                                 // compute_padding() function must be
2905                                 // provided for the instruction
2906 
2907 //----------OPERANDS-----------------------------------------------------------
2908 // Operand definitions must precede instruction definitions for correct parsing
2909 // in the ADLC because operands constitute user defined types which are used in
2910 // instruction definitions.
2911 
2912 //----------Simple Operands----------------------------------------------------
2913 // Immediate Operands
2914 // Integer Immediate
2915 operand immI()
2916 %{
2917   match(ConI);
2918 
2919   op_cost(10);
2920   format %{ %}
2921   interface(CONST_INTER);
2922 %}
2923 
2924 // Constant for test vs zero
2925 operand immI0()
2926 %{
2927   predicate(n->get_int() == 0);
2928   match(ConI);
2929 
2930   op_cost(0);
2931   format %{ %}
2932   interface(CONST_INTER);
2933 %}
2934 
2935 // Constant for increment
2936 operand immI1()
2937 %{
2938   predicate(n->get_int() == 1);
2939   match(ConI);
2940 
2941   op_cost(0);
2942   format %{ %}
2943   interface(CONST_INTER);
2944 %}
2945 
2946 // Constant for decrement
2947 operand immI_M1()
2948 %{
2949   predicate(n->get_int() == -1);
2950   match(ConI);
2951 
2952   op_cost(0);
2953   format %{ %}
2954   interface(CONST_INTER);
2955 %}
2956 
2957 // Valid scale values for addressing modes
2958 operand immI2()
2959 %{
2960   predicate(0 <= n->get_int() && (n->get_int() <= 3));
2961   match(ConI);
2962 
2963   format %{ %}
2964   interface(CONST_INTER);
2965 %}
2966 
2967 operand immI8()
2968 %{
2969   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
2970   match(ConI);
2971 
2972   op_cost(5);
2973   format %{ %}
2974   interface(CONST_INTER);
2975 %}
2976 
2977 operand immU8()
2978 %{
2979   predicate((0 <= n->get_int()) && (n->get_int() <= 255));
2980   match(ConI);
2981 
2982   op_cost(5);
2983   format %{ %}
2984   interface(CONST_INTER);
2985 %}
2986 
2987 operand immI16()
2988 %{
2989   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
2990   match(ConI);
2991 
2992   op_cost(10);
2993   format %{ %}
2994   interface(CONST_INTER);
2995 %}
2996 
2997 // Int Immediate non-negative
2998 operand immU31()
2999 %{
3000   predicate(n->get_int() >= 0);
3001   match(ConI);
3002 
3003   op_cost(0);
3004   format %{ %}
3005   interface(CONST_INTER);
3006 %}
3007 
3008 // Constant for long shifts
3009 operand immI_32()
3010 %{
3011   predicate( n->get_int() == 32 );
3012   match(ConI);
3013 
3014   op_cost(0);
3015   format %{ %}
3016   interface(CONST_INTER);
3017 %}
3018 
3019 // Constant for long shifts
3020 operand immI_64()
3021 %{
3022   predicate( n->get_int() == 64 );
3023   match(ConI);
3024 
3025   op_cost(0);
3026   format %{ %}
3027   interface(CONST_INTER);
3028 %}
3029 
3030 // Pointer Immediate
3031 operand immP()
3032 %{
3033   match(ConP);
3034 
3035   op_cost(10);
3036   format %{ %}
3037   interface(CONST_INTER);
3038 %}
3039 
3040 // NULL Pointer Immediate
3041 operand immP0()
3042 %{
3043   predicate(n->get_ptr() == 0);
3044   match(ConP);
3045 
3046   op_cost(5);
3047   format %{ %}
3048   interface(CONST_INTER);
3049 %}
3050 
3051 // Pointer Immediate
3052 operand immN() %{
3053   match(ConN);
3054 
3055   op_cost(10);
3056   format %{ %}
3057   interface(CONST_INTER);
3058 %}
3059 
3060 operand immNKlass() %{
3061   match(ConNKlass);
3062 
3063   op_cost(10);
3064   format %{ %}
3065   interface(CONST_INTER);
3066 %}
3067 
3068 // NULL Pointer Immediate
3069 operand immN0() %{
3070   predicate(n->get_narrowcon() == 0);
3071   match(ConN);
3072 
3073   op_cost(5);
3074   format %{ %}
3075   interface(CONST_INTER);
3076 %}
3077 
3078 operand immP31()
3079 %{
3080   predicate(n->as_Type()->type()->reloc() == relocInfo::none
3081             && (n->get_ptr() >> 31) == 0);
3082   match(ConP);
3083 
3084   op_cost(5);
3085   format %{ %}
3086   interface(CONST_INTER);
3087 %}
3088 
3089 
3090 // Long Immediate
3091 operand immL()
3092 %{
3093   match(ConL);
3094 
3095   op_cost(20);
3096   format %{ %}
3097   interface(CONST_INTER);
3098 %}
3099 
3100 // Long Immediate 8-bit
3101 operand immL8()
3102 %{
3103   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3104   match(ConL);
3105 
3106   op_cost(5);
3107   format %{ %}
3108   interface(CONST_INTER);
3109 %}
3110 
3111 // Long Immediate 32-bit unsigned
3112 operand immUL32()
3113 %{
3114   predicate(n->get_long() == (unsigned int) (n->get_long()));
3115   match(ConL);
3116 
3117   op_cost(10);
3118   format %{ %}
3119   interface(CONST_INTER);
3120 %}
3121 
3122 // Long Immediate 32-bit signed
3123 operand immL32()
3124 %{
3125   predicate(n->get_long() == (int) (n->get_long()));
3126   match(ConL);
3127 
3128   op_cost(15);
3129   format %{ %}
3130   interface(CONST_INTER);
3131 %}
3132 
3133 // Long Immediate zero
3134 operand immL0()
3135 %{
3136   predicate(n->get_long() == 0L);
3137   match(ConL);
3138 
3139   op_cost(10);
3140   format %{ %}
3141   interface(CONST_INTER);
3142 %}
3143 
3144 // Constant for increment
3145 operand immL1()
3146 %{
3147   predicate(n->get_long() == 1);
3148   match(ConL);
3149 
3150   format %{ %}
3151   interface(CONST_INTER);
3152 %}
3153 
3154 // Constant for decrement
3155 operand immL_M1()
3156 %{
3157   predicate(n->get_long() == -1);
3158   match(ConL);
3159 
3160   format %{ %}
3161   interface(CONST_INTER);
3162 %}
3163 
3164 // Long Immediate: the value 10
3165 operand immL10()
3166 %{
3167   predicate(n->get_long() == 10);
3168   match(ConL);
3169 
3170   format %{ %}
3171   interface(CONST_INTER);
3172 %}
3173 
3174 // Long immediate from 0 to 127.
3175 // Used for a shorter form of long mul by 10.
3176 operand immL_127()
3177 %{
3178   predicate(0 <= n->get_long() && n->get_long() < 0x80);
3179   match(ConL);
3180 
3181   op_cost(10);
3182   format %{ %}
3183   interface(CONST_INTER);
3184 %}
3185 
3186 // Long Immediate: low 32-bit mask
3187 operand immL_32bits()
3188 %{
3189   predicate(n->get_long() == 0xFFFFFFFFL);
3190   match(ConL);
3191   op_cost(20);
3192 
3193   format %{ %}
3194   interface(CONST_INTER);
3195 %}
3196 
3197 // Float Immediate zero
3198 operand immF0()
3199 %{
3200   predicate(jint_cast(n->getf()) == 0);
3201   match(ConF);
3202 
3203   op_cost(5);
3204   format %{ %}
3205   interface(CONST_INTER);
3206 %}
3207 
3208 // Float Immediate
3209 operand immF()
3210 %{
3211   match(ConF);
3212 
3213   op_cost(15);
3214   format %{ %}
3215   interface(CONST_INTER);
3216 %}
3217 
3218 // Double Immediate zero
3219 operand immD0()
3220 %{
3221   predicate(jlong_cast(n->getd()) == 0);
3222   match(ConD);
3223 
3224   op_cost(5);
3225   format %{ %}
3226   interface(CONST_INTER);
3227 %}
3228 
3229 // Double Immediate
3230 operand immD()
3231 %{
3232   match(ConD);
3233 
3234   op_cost(15);
3235   format %{ %}
3236   interface(CONST_INTER);
3237 %}
3238 
3239 // Immediates for special shifts (sign extend)
3240 
3241 // Constants for increment
3242 operand immI_16()
3243 %{
3244   predicate(n->get_int() == 16);
3245   match(ConI);
3246 
3247   format %{ %}
3248   interface(CONST_INTER);
3249 %}
3250 
3251 operand immI_24()
3252 %{
3253   predicate(n->get_int() == 24);
3254   match(ConI);
3255 
3256   format %{ %}
3257   interface(CONST_INTER);
3258 %}
3259 
3260 // Constant for byte-wide masking
3261 operand immI_255()
3262 %{
3263   predicate(n->get_int() == 255);
3264   match(ConI);
3265 
3266   format %{ %}
3267   interface(CONST_INTER);
3268 %}
3269 
3270 // Constant for short-wide masking
3271 operand immI_65535()
3272 %{
3273   predicate(n->get_int() == 65535);
3274   match(ConI);
3275 
3276   format %{ %}
3277   interface(CONST_INTER);
3278 %}
3279 
3280 // Constant for byte-wide masking
3281 operand immL_255()
3282 %{
3283   predicate(n->get_long() == 255);
3284   match(ConL);
3285 
3286   format %{ %}
3287   interface(CONST_INTER);
3288 %}
3289 
3290 // Constant for short-wide masking
3291 operand immL_65535()
3292 %{
3293   predicate(n->get_long() == 65535);
3294   match(ConL);
3295 
3296   format %{ %}
3297   interface(CONST_INTER);
3298 %}
3299 
3300 // Register Operands
3301 // Integer Register
3302 operand rRegI()
3303 %{
3304   constraint(ALLOC_IN_RC(int_reg));
3305   match(RegI);
3306 
3307   match(rax_RegI);
3308   match(rbx_RegI);
3309   match(rcx_RegI);
3310   match(rdx_RegI);
3311   match(rdi_RegI);
3312 
3313   format %{ %}
3314   interface(REG_INTER);
3315 %}
3316 
3317 // Special Registers
3318 operand rax_RegI()
3319 %{
3320   constraint(ALLOC_IN_RC(int_rax_reg));
3321   match(RegI);
3322   match(rRegI);
3323 
3324   format %{ "RAX" %}
3325   interface(REG_INTER);
3326 %}
3327 
3328 // Special Registers
3329 operand rbx_RegI()
3330 %{
3331   constraint(ALLOC_IN_RC(int_rbx_reg));
3332   match(RegI);
3333   match(rRegI);
3334 
3335   format %{ "RBX" %}
3336   interface(REG_INTER);
3337 %}
3338 
3339 operand rcx_RegI()
3340 %{
3341   constraint(ALLOC_IN_RC(int_rcx_reg));
3342   match(RegI);
3343   match(rRegI);
3344 
3345   format %{ "RCX" %}
3346   interface(REG_INTER);
3347 %}
3348 
3349 operand rdx_RegI()
3350 %{
3351   constraint(ALLOC_IN_RC(int_rdx_reg));
3352   match(RegI);
3353   match(rRegI);
3354 
3355   format %{ "RDX" %}
3356   interface(REG_INTER);
3357 %}
3358 
3359 operand rdi_RegI()
3360 %{
3361   constraint(ALLOC_IN_RC(int_rdi_reg));
3362   match(RegI);
3363   match(rRegI);
3364 
3365   format %{ "RDI" %}
3366   interface(REG_INTER);
3367 %}
3368 
3369 operand no_rcx_RegI()
3370 %{
3371   constraint(ALLOC_IN_RC(int_no_rcx_reg));
3372   match(RegI);
3373   match(rax_RegI);
3374   match(rbx_RegI);
3375   match(rdx_RegI);
3376   match(rdi_RegI);
3377 
3378   format %{ %}
3379   interface(REG_INTER);
3380 %}
3381 
3382 operand no_rax_rdx_RegI()
3383 %{
3384   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3385   match(RegI);
3386   match(rbx_RegI);
3387   match(rcx_RegI);
3388   match(rdi_RegI);
3389 
3390   format %{ %}
3391   interface(REG_INTER);
3392 %}
3393 
3394 // Pointer Register
3395 operand any_RegP()
3396 %{
3397   constraint(ALLOC_IN_RC(any_reg));
3398   match(RegP);
3399   match(rax_RegP);
3400   match(rbx_RegP);
3401   match(rdi_RegP);
3402   match(rsi_RegP);
3403   match(rbp_RegP);
3404   match(r15_RegP);
3405   match(rRegP);
3406 
3407   format %{ %}
3408   interface(REG_INTER);
3409 %}
3410 
3411 operand rRegP()
3412 %{
3413   constraint(ALLOC_IN_RC(ptr_reg));
3414   match(RegP);
3415   match(rax_RegP);
3416   match(rbx_RegP);
3417   match(rdi_RegP);
3418   match(rsi_RegP);
3419   match(rbp_RegP);  // See Q&A below about
3420   match(r15_RegP);  // r15_RegP and rbp_RegP.
3421 
3422   format %{ %}
3423   interface(REG_INTER);
3424 %}
3425 
3426 operand rRegN() %{
3427   constraint(ALLOC_IN_RC(int_reg));
3428   match(RegN);
3429 
3430   format %{ %}
3431   interface(REG_INTER);
3432 %}
3433 
3434 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3435 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
3436 // It's fine for an instruction input that expects rRegP to match a r15_RegP.
3437 // The output of an instruction is controlled by the allocator, which respects
3438 // register class masks, not match rules.  Unless an instruction mentions
3439 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3440 // by the allocator as an input.
3441 // The same logic applies to rbp_RegP being a match for rRegP: If PreserveFramePointer==true,
3442 // the RBP is used as a proper frame pointer and is not included in ptr_reg. As a
3443 // result, RBP is not included in the output of the instruction either.
3444 
3445 operand no_rax_RegP()
3446 %{
3447   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3448   match(RegP);
3449   match(rbx_RegP);
3450   match(rsi_RegP);
3451   match(rdi_RegP);
3452 
3453   format %{ %}
3454   interface(REG_INTER);
3455 %}
3456 
3457 // This operand is not allowed to use RBP even if
3458 // RBP is not used to hold the frame pointer.
3459 operand no_rbp_RegP()
3460 %{
3461   constraint(ALLOC_IN_RC(ptr_reg_no_rbp));
3462   match(RegP);
3463   match(rbx_RegP);
3464   match(rsi_RegP);
3465   match(rdi_RegP);
3466 
3467   format %{ %}
3468   interface(REG_INTER);
3469 %}
3470 
3471 operand no_rax_rbx_RegP()
3472 %{
3473   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3474   match(RegP);
3475   match(rsi_RegP);
3476   match(rdi_RegP);
3477 
3478   format %{ %}
3479   interface(REG_INTER);
3480 %}
3481 
3482 // Special Registers
3483 // Return a pointer value
3484 operand rax_RegP()
3485 %{
3486   constraint(ALLOC_IN_RC(ptr_rax_reg));
3487   match(RegP);
3488   match(rRegP);
3489 
3490   format %{ %}
3491   interface(REG_INTER);
3492 %}
3493 
3494 // Special Registers
3495 // Return a compressed pointer value
3496 operand rax_RegN()
3497 %{
3498   constraint(ALLOC_IN_RC(int_rax_reg));
3499   match(RegN);
3500   match(rRegN);
3501 
3502   format %{ %}
3503   interface(REG_INTER);
3504 %}
3505 
3506 // Used in AtomicAdd
3507 operand rbx_RegP()
3508 %{
3509   constraint(ALLOC_IN_RC(ptr_rbx_reg));
3510   match(RegP);
3511   match(rRegP);
3512 
3513   format %{ %}
3514   interface(REG_INTER);
3515 %}
3516 
3517 operand rsi_RegP()
3518 %{
3519   constraint(ALLOC_IN_RC(ptr_rsi_reg));
3520   match(RegP);
3521   match(rRegP);
3522 
3523   format %{ %}
3524   interface(REG_INTER);
3525 %}
3526 
3527 // Used in rep stosq
3528 operand rdi_RegP()
3529 %{
3530   constraint(ALLOC_IN_RC(ptr_rdi_reg));
3531   match(RegP);
3532   match(rRegP);
3533 
3534   format %{ %}
3535   interface(REG_INTER);
3536 %}
3537 
3538 operand r15_RegP()
3539 %{
3540   constraint(ALLOC_IN_RC(ptr_r15_reg));
3541   match(RegP);
3542   match(rRegP);
3543 
3544   format %{ %}
3545   interface(REG_INTER);
3546 %}
3547 
3548 operand rRegL()
3549 %{
3550   constraint(ALLOC_IN_RC(long_reg));
3551   match(RegL);
3552   match(rax_RegL);
3553   match(rdx_RegL);
3554 
3555   format %{ %}
3556   interface(REG_INTER);
3557 %}
3558 
3559 // Special Registers
3560 operand no_rax_rdx_RegL()
3561 %{
3562   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3563   match(RegL);
3564   match(rRegL);
3565 
3566   format %{ %}
3567   interface(REG_INTER);
3568 %}
3569 
3570 operand no_rax_RegL()
3571 %{
3572   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3573   match(RegL);
3574   match(rRegL);
3575   match(rdx_RegL);
3576 
3577   format %{ %}
3578   interface(REG_INTER);
3579 %}
3580 
3581 operand no_rcx_RegL()
3582 %{
3583   constraint(ALLOC_IN_RC(long_no_rcx_reg));
3584   match(RegL);
3585   match(rRegL);
3586 
3587   format %{ %}
3588   interface(REG_INTER);
3589 %}
3590 
3591 operand rax_RegL()
3592 %{
3593   constraint(ALLOC_IN_RC(long_rax_reg));
3594   match(RegL);
3595   match(rRegL);
3596 
3597   format %{ "RAX" %}
3598   interface(REG_INTER);
3599 %}
3600 
3601 operand rcx_RegL()
3602 %{
3603   constraint(ALLOC_IN_RC(long_rcx_reg));
3604   match(RegL);
3605   match(rRegL);
3606 
3607   format %{ %}
3608   interface(REG_INTER);
3609 %}
3610 
3611 operand rdx_RegL()
3612 %{
3613   constraint(ALLOC_IN_RC(long_rdx_reg));
3614   match(RegL);
3615   match(rRegL);
3616 
3617   format %{ %}
3618   interface(REG_INTER);
3619 %}
3620 
3621 // Flags register, used as output of compare instructions
3622 operand rFlagsReg()
3623 %{
3624   constraint(ALLOC_IN_RC(int_flags));
3625   match(RegFlags);
3626 
3627   format %{ "RFLAGS" %}
3628   interface(REG_INTER);
3629 %}
3630 
3631 // Flags register, used as output of FLOATING POINT compare instructions
3632 operand rFlagsRegU()
3633 %{
3634   constraint(ALLOC_IN_RC(int_flags));
3635   match(RegFlags);
3636 
3637   format %{ "RFLAGS_U" %}
3638   interface(REG_INTER);
3639 %}
3640 
3641 operand rFlagsRegUCF() %{
3642   constraint(ALLOC_IN_RC(int_flags));
3643   match(RegFlags);
3644   predicate(false);
3645 
3646   format %{ "RFLAGS_U_CF" %}
3647   interface(REG_INTER);
3648 %}
3649 
3650 // Float register operands
3651 operand regF() %{
3652    constraint(ALLOC_IN_RC(float_reg));
3653    match(RegF);
3654 
3655    format %{ %}
3656    interface(REG_INTER);
3657 %}
3658 
3659 // Double register operands
3660 operand regD() %{
3661    constraint(ALLOC_IN_RC(double_reg));
3662    match(RegD);
3663 
3664    format %{ %}
3665    interface(REG_INTER);
3666 %}
3667 
3668 // Vectors
3669 operand vecS() %{
3670   constraint(ALLOC_IN_RC(vectors_reg));
3671   match(VecS);
3672 
3673   format %{ %}
3674   interface(REG_INTER);
3675 %}
3676 
3677 operand vecD() %{
3678   constraint(ALLOC_IN_RC(vectord_reg));
3679   match(VecD);
3680 
3681   format %{ %}
3682   interface(REG_INTER);
3683 %}
3684 
3685 operand vecX() %{
3686   constraint(ALLOC_IN_RC(vectorx_reg));
3687   match(VecX);
3688 
3689   format %{ %}
3690   interface(REG_INTER);
3691 %}
3692 
3693 operand vecY() %{
3694   constraint(ALLOC_IN_RC(vectory_reg));
3695   match(VecY);
3696 
3697   format %{ %}
3698   interface(REG_INTER);
3699 %}
3700 
3701 //----------Memory Operands----------------------------------------------------
3702 // Direct Memory Operand
3703 // operand direct(immP addr)
3704 // %{
3705 //   match(addr);
3706 
3707 //   format %{ "[$addr]" %}
3708 //   interface(MEMORY_INTER) %{
3709 //     base(0xFFFFFFFF);
3710 //     index(0x4);
3711 //     scale(0x0);
3712 //     disp($addr);
3713 //   %}
3714 // %}
3715 
3716 // Indirect Memory Operand
3717 operand indirect(any_RegP reg)
3718 %{
3719   constraint(ALLOC_IN_RC(ptr_reg));
3720   match(reg);
3721 
3722   format %{ "[$reg]" %}
3723   interface(MEMORY_INTER) %{
3724     base($reg);
3725     index(0x4);
3726     scale(0x0);
3727     disp(0x0);
3728   %}
3729 %}
3730 
3731 // Indirect Memory Plus Short Offset Operand
3732 operand indOffset8(any_RegP reg, immL8 off)
3733 %{
3734   constraint(ALLOC_IN_RC(ptr_reg));
3735   match(AddP reg off);
3736 
3737   format %{ "[$reg + $off (8-bit)]" %}
3738   interface(MEMORY_INTER) %{
3739     base($reg);
3740     index(0x4);
3741     scale(0x0);
3742     disp($off);
3743   %}
3744 %}
3745 
3746 // Indirect Memory Plus Long Offset Operand
3747 operand indOffset32(any_RegP reg, immL32 off)
3748 %{
3749   constraint(ALLOC_IN_RC(ptr_reg));
3750   match(AddP reg off);
3751 
3752   format %{ "[$reg + $off (32-bit)]" %}
3753   interface(MEMORY_INTER) %{
3754     base($reg);
3755     index(0x4);
3756     scale(0x0);
3757     disp($off);
3758   %}
3759 %}
3760 
3761 // Indirect Memory Plus Index Register Plus Offset Operand
3762 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
3763 %{
3764   constraint(ALLOC_IN_RC(ptr_reg));
3765   match(AddP (AddP reg lreg) off);
3766 
3767   op_cost(10);
3768   format %{"[$reg + $off + $lreg]" %}
3769   interface(MEMORY_INTER) %{
3770     base($reg);
3771     index($lreg);
3772     scale(0x0);
3773     disp($off);
3774   %}
3775 %}
3776 
3777 // Indirect Memory Plus Index Register Plus Offset Operand
3778 operand indIndex(any_RegP reg, rRegL lreg)
3779 %{
3780   constraint(ALLOC_IN_RC(ptr_reg));
3781   match(AddP reg lreg);
3782 
3783   op_cost(10);
3784   format %{"[$reg + $lreg]" %}
3785   interface(MEMORY_INTER) %{
3786     base($reg);
3787     index($lreg);
3788     scale(0x0);
3789     disp(0x0);
3790   %}
3791 %}
3792 
3793 // Indirect Memory Times Scale Plus Index Register
3794 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
3795 %{
3796   constraint(ALLOC_IN_RC(ptr_reg));
3797   match(AddP reg (LShiftL lreg scale));
3798 
3799   op_cost(10);
3800   format %{"[$reg + $lreg << $scale]" %}
3801   interface(MEMORY_INTER) %{
3802     base($reg);
3803     index($lreg);
3804     scale($scale);
3805     disp(0x0);
3806   %}
3807 %}
3808 
3809 operand indPosIndexScale(any_RegP reg, rRegI idx, immI2 scale)
3810 %{
3811   constraint(ALLOC_IN_RC(ptr_reg));
3812   predicate(n->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3813   match(AddP reg (LShiftL (ConvI2L idx) scale));
3814 
3815   op_cost(10);
3816   format %{"[$reg + pos $idx << $scale]" %}
3817   interface(MEMORY_INTER) %{
3818     base($reg);
3819     index($idx);
3820     scale($scale);
3821     disp(0x0);
3822   %}
3823 %}
3824 
3825 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3826 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
3827 %{
3828   constraint(ALLOC_IN_RC(ptr_reg));
3829   match(AddP (AddP reg (LShiftL lreg scale)) off);
3830 
3831   op_cost(10);
3832   format %{"[$reg + $off + $lreg << $scale]" %}
3833   interface(MEMORY_INTER) %{
3834     base($reg);
3835     index($lreg);
3836     scale($scale);
3837     disp($off);
3838   %}
3839 %}
3840 
3841 // Indirect Memory Plus Positive Index Register Plus Offset Operand
3842 operand indPosIndexOffset(any_RegP reg, immL32 off, rRegI idx)
3843 %{
3844   constraint(ALLOC_IN_RC(ptr_reg));
3845   predicate(n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
3846   match(AddP (AddP reg (ConvI2L idx)) off);
3847 
3848   op_cost(10);
3849   format %{"[$reg + $off + $idx]" %}
3850   interface(MEMORY_INTER) %{
3851     base($reg);
3852     index($idx);
3853     scale(0x0);
3854     disp($off);
3855   %}
3856 %}
3857 
3858 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3859 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
3860 %{
3861   constraint(ALLOC_IN_RC(ptr_reg));
3862   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3863   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
3864 
3865   op_cost(10);
3866   format %{"[$reg + $off + $idx << $scale]" %}
3867   interface(MEMORY_INTER) %{
3868     base($reg);
3869     index($idx);
3870     scale($scale);
3871     disp($off);
3872   %}
3873 %}
3874 
3875 // Indirect Narrow Oop Plus Offset Operand
3876 // Note: x86 architecture doesn't support "scale * index + offset" without a base
3877 // we can't free r12 even with Universe::narrow_oop_base() == NULL.
3878 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
3879   predicate(UseCompressedOops && (Universe::narrow_oop_shift() == Address::times_8));
3880   constraint(ALLOC_IN_RC(ptr_reg));
3881   match(AddP (DecodeN reg) off);
3882 
3883   op_cost(10);
3884   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
3885   interface(MEMORY_INTER) %{
3886     base(0xc); // R12
3887     index($reg);
3888     scale(0x3);
3889     disp($off);
3890   %}
3891 %}
3892 
3893 // Indirect Memory Operand
3894 operand indirectNarrow(rRegN reg)
3895 %{
3896   predicate(Universe::narrow_oop_shift() == 0);
3897   constraint(ALLOC_IN_RC(ptr_reg));
3898   match(DecodeN reg);
3899 
3900   format %{ "[$reg]" %}
3901   interface(MEMORY_INTER) %{
3902     base($reg);
3903     index(0x4);
3904     scale(0x0);
3905     disp(0x0);
3906   %}
3907 %}
3908 
3909 // Indirect Memory Plus Short Offset Operand
3910 operand indOffset8Narrow(rRegN reg, immL8 off)
3911 %{
3912   predicate(Universe::narrow_oop_shift() == 0);
3913   constraint(ALLOC_IN_RC(ptr_reg));
3914   match(AddP (DecodeN reg) off);
3915 
3916   format %{ "[$reg + $off (8-bit)]" %}
3917   interface(MEMORY_INTER) %{
3918     base($reg);
3919     index(0x4);
3920     scale(0x0);
3921     disp($off);
3922   %}
3923 %}
3924 
3925 // Indirect Memory Plus Long Offset Operand
3926 operand indOffset32Narrow(rRegN reg, immL32 off)
3927 %{
3928   predicate(Universe::narrow_oop_shift() == 0);
3929   constraint(ALLOC_IN_RC(ptr_reg));
3930   match(AddP (DecodeN reg) off);
3931 
3932   format %{ "[$reg + $off (32-bit)]" %}
3933   interface(MEMORY_INTER) %{
3934     base($reg);
3935     index(0x4);
3936     scale(0x0);
3937     disp($off);
3938   %}
3939 %}
3940 
3941 // Indirect Memory Plus Index Register Plus Offset Operand
3942 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
3943 %{
3944   predicate(Universe::narrow_oop_shift() == 0);
3945   constraint(ALLOC_IN_RC(ptr_reg));
3946   match(AddP (AddP (DecodeN reg) lreg) off);
3947 
3948   op_cost(10);
3949   format %{"[$reg + $off + $lreg]" %}
3950   interface(MEMORY_INTER) %{
3951     base($reg);
3952     index($lreg);
3953     scale(0x0);
3954     disp($off);
3955   %}
3956 %}
3957 
3958 // Indirect Memory Plus Index Register Plus Offset Operand
3959 operand indIndexNarrow(rRegN reg, rRegL lreg)
3960 %{
3961   predicate(Universe::narrow_oop_shift() == 0);
3962   constraint(ALLOC_IN_RC(ptr_reg));
3963   match(AddP (DecodeN reg) lreg);
3964 
3965   op_cost(10);
3966   format %{"[$reg + $lreg]" %}
3967   interface(MEMORY_INTER) %{
3968     base($reg);
3969     index($lreg);
3970     scale(0x0);
3971     disp(0x0);
3972   %}
3973 %}
3974 
3975 // Indirect Memory Times Scale Plus Index Register
3976 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
3977 %{
3978   predicate(Universe::narrow_oop_shift() == 0);
3979   constraint(ALLOC_IN_RC(ptr_reg));
3980   match(AddP (DecodeN reg) (LShiftL lreg scale));
3981 
3982   op_cost(10);
3983   format %{"[$reg + $lreg << $scale]" %}
3984   interface(MEMORY_INTER) %{
3985     base($reg);
3986     index($lreg);
3987     scale($scale);
3988     disp(0x0);
3989   %}
3990 %}
3991 
3992 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3993 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
3994 %{
3995   predicate(Universe::narrow_oop_shift() == 0);
3996   constraint(ALLOC_IN_RC(ptr_reg));
3997   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
3998 
3999   op_cost(10);
4000   format %{"[$reg + $off + $lreg << $scale]" %}
4001   interface(MEMORY_INTER) %{
4002     base($reg);
4003     index($lreg);
4004     scale($scale);
4005     disp($off);
4006   %}
4007 %}
4008 
4009 // Indirect Memory Times Plus Positive Index Register Plus Offset Operand
4010 operand indPosIndexOffsetNarrow(rRegN reg, immL32 off, rRegI idx)
4011 %{
4012   constraint(ALLOC_IN_RC(ptr_reg));
4013   predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
4014   match(AddP (AddP (DecodeN reg) (ConvI2L idx)) off);
4015 
4016   op_cost(10);
4017   format %{"[$reg + $off + $idx]" %}
4018   interface(MEMORY_INTER) %{
4019     base($reg);
4020     index($idx);
4021     scale(0x0);
4022     disp($off);
4023   %}
4024 %}
4025 
4026 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
4027 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
4028 %{
4029   constraint(ALLOC_IN_RC(ptr_reg));
4030   predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
4031   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
4032 
4033   op_cost(10);
4034   format %{"[$reg + $off + $idx << $scale]" %}
4035   interface(MEMORY_INTER) %{
4036     base($reg);
4037     index($idx);
4038     scale($scale);
4039     disp($off);
4040   %}
4041 %}
4042 
4043 //----------Special Memory Operands--------------------------------------------
4044 // Stack Slot Operand - This operand is used for loading and storing temporary
4045 //                      values on the stack where a match requires a value to
4046 //                      flow through memory.
4047 operand stackSlotP(sRegP reg)
4048 %{
4049   constraint(ALLOC_IN_RC(stack_slots));
4050   // No match rule because this operand is only generated in matching
4051 
4052   format %{ "[$reg]" %}
4053   interface(MEMORY_INTER) %{
4054     base(0x4);   // RSP
4055     index(0x4);  // No Index
4056     scale(0x0);  // No Scale
4057     disp($reg);  // Stack Offset
4058   %}
4059 %}
4060 
4061 operand stackSlotI(sRegI reg)
4062 %{
4063   constraint(ALLOC_IN_RC(stack_slots));
4064   // No match rule because this operand is only generated in matching
4065 
4066   format %{ "[$reg]" %}
4067   interface(MEMORY_INTER) %{
4068     base(0x4);   // RSP
4069     index(0x4);  // No Index
4070     scale(0x0);  // No Scale
4071     disp($reg);  // Stack Offset
4072   %}
4073 %}
4074 
4075 operand stackSlotF(sRegF reg)
4076 %{
4077   constraint(ALLOC_IN_RC(stack_slots));
4078   // No match rule because this operand is only generated in matching
4079 
4080   format %{ "[$reg]" %}
4081   interface(MEMORY_INTER) %{
4082     base(0x4);   // RSP
4083     index(0x4);  // No Index
4084     scale(0x0);  // No Scale
4085     disp($reg);  // Stack Offset
4086   %}
4087 %}
4088 
4089 operand stackSlotD(sRegD reg)
4090 %{
4091   constraint(ALLOC_IN_RC(stack_slots));
4092   // No match rule because this operand is only generated in matching
4093 
4094   format %{ "[$reg]" %}
4095   interface(MEMORY_INTER) %{
4096     base(0x4);   // RSP
4097     index(0x4);  // No Index
4098     scale(0x0);  // No Scale
4099     disp($reg);  // Stack Offset
4100   %}
4101 %}
4102 operand stackSlotL(sRegL reg)
4103 %{
4104   constraint(ALLOC_IN_RC(stack_slots));
4105   // No match rule because this operand is only generated in matching
4106 
4107   format %{ "[$reg]" %}
4108   interface(MEMORY_INTER) %{
4109     base(0x4);   // RSP
4110     index(0x4);  // No Index
4111     scale(0x0);  // No Scale
4112     disp($reg);  // Stack Offset
4113   %}
4114 %}
4115 
4116 //----------Conditional Branch Operands----------------------------------------
4117 // Comparison Op  - This is the operation of the comparison, and is limited to
4118 //                  the following set of codes:
4119 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4120 //
4121 // Other attributes of the comparison, such as unsignedness, are specified
4122 // by the comparison instruction that sets a condition code flags register.
4123 // That result is represented by a flags operand whose subtype is appropriate
4124 // to the unsignedness (etc.) of the comparison.
4125 //
4126 // Later, the instruction which matches both the Comparison Op (a Bool) and
4127 // the flags (produced by the Cmp) specifies the coding of the comparison op
4128 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4129 
4130 // Comparision Code
4131 operand cmpOp()
4132 %{
4133   match(Bool);
4134 
4135   format %{ "" %}
4136   interface(COND_INTER) %{
4137     equal(0x4, "e");
4138     not_equal(0x5, "ne");
4139     less(0xC, "l");
4140     greater_equal(0xD, "ge");
4141     less_equal(0xE, "le");
4142     greater(0xF, "g");
4143     overflow(0x0, "o");
4144     no_overflow(0x1, "no");
4145   %}
4146 %}
4147 
4148 // Comparison Code, unsigned compare.  Used by FP also, with
4149 // C2 (unordered) turned into GT or LT already.  The other bits
4150 // C0 and C3 are turned into Carry & Zero flags.
4151 operand cmpOpU()
4152 %{
4153   match(Bool);
4154 
4155   format %{ "" %}
4156   interface(COND_INTER) %{
4157     equal(0x4, "e");
4158     not_equal(0x5, "ne");
4159     less(0x2, "b");
4160     greater_equal(0x3, "nb");
4161     less_equal(0x6, "be");
4162     greater(0x7, "nbe");
4163     overflow(0x0, "o");
4164     no_overflow(0x1, "no");
4165   %}
4166 %}
4167 
4168 
4169 // Floating comparisons that don't require any fixup for the unordered case
4170 operand cmpOpUCF() %{
4171   match(Bool);
4172   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4173             n->as_Bool()->_test._test == BoolTest::ge ||
4174             n->as_Bool()->_test._test == BoolTest::le ||
4175             n->as_Bool()->_test._test == BoolTest::gt);
4176   format %{ "" %}
4177   interface(COND_INTER) %{
4178     equal(0x4, "e");
4179     not_equal(0x5, "ne");
4180     less(0x2, "b");
4181     greater_equal(0x3, "nb");
4182     less_equal(0x6, "be");
4183     greater(0x7, "nbe");
4184     overflow(0x0, "o");
4185     no_overflow(0x1, "no");
4186   %}
4187 %}
4188 
4189 
4190 // Floating comparisons that can be fixed up with extra conditional jumps
4191 operand cmpOpUCF2() %{
4192   match(Bool);
4193   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4194             n->as_Bool()->_test._test == BoolTest::eq);
4195   format %{ "" %}
4196   interface(COND_INTER) %{
4197     equal(0x4, "e");
4198     not_equal(0x5, "ne");
4199     less(0x2, "b");
4200     greater_equal(0x3, "nb");
4201     less_equal(0x6, "be");
4202     greater(0x7, "nbe");
4203     overflow(0x0, "o");
4204     no_overflow(0x1, "no");
4205   %}
4206 %}
4207 
4208 // Operands for bound floating pointer register arguments
4209 operand rxmm0() %{
4210   constraint(ALLOC_IN_RC(xmm0_reg));  match(VecX);
4211   predicate((UseSSE > 0) && (UseAVX<= 2));  format%{%}  interface(REG_INTER);
4212 %}
4213 operand rxmm1() %{
4214   constraint(ALLOC_IN_RC(xmm1_reg));  match(VecX);
4215   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4216 %}
4217 operand rxmm2() %{
4218   constraint(ALLOC_IN_RC(xmm2_reg));  match(VecX);
4219   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4220 %}
4221 operand rxmm3() %{
4222   constraint(ALLOC_IN_RC(xmm3_reg));  match(VecX);
4223   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4224 %}
4225 operand rxmm4() %{
4226   constraint(ALLOC_IN_RC(xmm4_reg));  match(VecX);
4227   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4228 %}
4229 operand rxmm5() %{
4230   constraint(ALLOC_IN_RC(xmm5_reg));  match(VecX);
4231   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4232 %}
4233 operand rxmm6() %{
4234   constraint(ALLOC_IN_RC(xmm6_reg));  match(VecX);
4235   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4236 %}
4237 operand rxmm7() %{
4238   constraint(ALLOC_IN_RC(xmm7_reg));  match(VecX);
4239   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4240 %}
4241 operand rxmm8() %{
4242   constraint(ALLOC_IN_RC(xmm8_reg));  match(VecX);
4243   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4244 %}
4245 operand rxmm9() %{
4246   constraint(ALLOC_IN_RC(xmm9_reg));  match(VecX);
4247   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4248 %}
4249 operand rxmm10() %{
4250   constraint(ALLOC_IN_RC(xmm10_reg));  match(VecX);
4251   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4252 %}
4253 operand rxmm11() %{
4254   constraint(ALLOC_IN_RC(xmm11_reg));  match(VecX);
4255   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4256 %}
4257 operand rxmm12() %{
4258   constraint(ALLOC_IN_RC(xmm12_reg));  match(VecX);
4259   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4260 %}
4261 operand rxmm13() %{
4262   constraint(ALLOC_IN_RC(xmm13_reg));  match(VecX);
4263   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4264 %}
4265 operand rxmm14() %{
4266   constraint(ALLOC_IN_RC(xmm14_reg));  match(VecX);
4267   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4268 %}
4269 operand rxmm15() %{
4270   constraint(ALLOC_IN_RC(xmm15_reg));  match(VecX);
4271   predicate((UseSSE > 0) && (UseAVX <= 2));  format%{%}  interface(REG_INTER);
4272 %}
4273 operand rxmm16() %{
4274   constraint(ALLOC_IN_RC(xmm16_reg));  match(VecX);
4275   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4276 %}
4277 operand rxmm17() %{
4278   constraint(ALLOC_IN_RC(xmm17_reg));  match(VecX);
4279   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4280 %}
4281 operand rxmm18() %{
4282   constraint(ALLOC_IN_RC(xmm18_reg));  match(VecX);
4283   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4284 %}
4285 operand rxmm19() %{
4286   constraint(ALLOC_IN_RC(xmm19_reg));  match(VecX);
4287   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4288 %}
4289 operand rxmm20() %{
4290   constraint(ALLOC_IN_RC(xmm20_reg));  match(VecX);
4291   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4292 %}
4293 operand rxmm21() %{
4294   constraint(ALLOC_IN_RC(xmm21_reg));  match(VecX);
4295   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4296 %}
4297 operand rxmm22() %{
4298   constraint(ALLOC_IN_RC(xmm22_reg));  match(VecX);
4299   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4300 %}
4301 operand rxmm23() %{
4302   constraint(ALLOC_IN_RC(xmm23_reg));  match(VecX);
4303   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4304 %}
4305 operand rxmm24() %{
4306   constraint(ALLOC_IN_RC(xmm24_reg));  match(VecX);
4307   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4308 %}
4309 operand rxmm25() %{
4310   constraint(ALLOC_IN_RC(xmm25_reg));  match(VecX);
4311   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4312 %}
4313 operand rxmm26() %{
4314   constraint(ALLOC_IN_RC(xmm26_reg));  match(VecX);
4315   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4316 %}
4317 operand rxmm27() %{
4318   constraint(ALLOC_IN_RC(xmm27_reg));  match(VecX);
4319   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4320 %}
4321 operand rxmm28() %{
4322   constraint(ALLOC_IN_RC(xmm28_reg));  match(VecX);
4323   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4324 %}
4325 operand rxmm29() %{
4326   constraint(ALLOC_IN_RC(xmm29_reg));  match(VecX);
4327   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4328 %}
4329 operand rxmm30() %{
4330   constraint(ALLOC_IN_RC(xmm30_reg));  match(VecX);
4331   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4332 %}
4333 operand rxmm31() %{
4334   constraint(ALLOC_IN_RC(xmm31_reg));  match(VecX);
4335   predicate(UseAVX == 3);  format%{%}  interface(REG_INTER);
4336 %}
4337 
4338 //----------OPERAND CLASSES----------------------------------------------------
4339 // Operand Classes are groups of operands that are used as to simplify
4340 // instruction definitions by not requiring the AD writer to specify separate
4341 // instructions for every form of operand when the instruction accepts
4342 // multiple operand types with the same basic encoding and format.  The classic
4343 // case of this is memory operands.
4344 
4345 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4346                indIndexScale, indPosIndexScale, indIndexScaleOffset, indPosIndexOffset, indPosIndexScaleOffset,
4347                indCompressedOopOffset,
4348                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4349                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4350                indIndexScaleOffsetNarrow, indPosIndexOffsetNarrow, indPosIndexScaleOffsetNarrow);
4351 
4352 //----------PIPELINE-----------------------------------------------------------
4353 // Rules which define the behavior of the target architectures pipeline.
4354 pipeline %{
4355 
4356 //----------ATTRIBUTES---------------------------------------------------------
4357 attributes %{
4358   variable_size_instructions;        // Fixed size instructions
4359   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4360   instruction_unit_size = 1;         // An instruction is 1 bytes long
4361   instruction_fetch_unit_size = 16;  // The processor fetches one line
4362   instruction_fetch_units = 1;       // of 16 bytes
4363 
4364   // List of nop instructions
4365   nops( MachNop );
4366 %}
4367 
4368 //----------RESOURCES----------------------------------------------------------
4369 // Resources are the functional units available to the machine
4370 
4371 // Generic P2/P3 pipeline
4372 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4373 // 3 instructions decoded per cycle.
4374 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4375 // 3 ALU op, only ALU0 handles mul instructions.
4376 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4377            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4378            BR, FPU,
4379            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4380 
4381 //----------PIPELINE DESCRIPTION-----------------------------------------------
4382 // Pipeline Description specifies the stages in the machine's pipeline
4383 
4384 // Generic P2/P3 pipeline
4385 pipe_desc(S0, S1, S2, S3, S4, S5);
4386 
4387 //----------PIPELINE CLASSES---------------------------------------------------
4388 // Pipeline Classes describe the stages in which input and output are
4389 // referenced by the hardware pipeline.
4390 
4391 // Naming convention: ialu or fpu
4392 // Then: _reg
4393 // Then: _reg if there is a 2nd register
4394 // Then: _long if it's a pair of instructions implementing a long
4395 // Then: _fat if it requires the big decoder
4396 //   Or: _mem if it requires the big decoder and a memory unit.
4397 
4398 // Integer ALU reg operation
4399 pipe_class ialu_reg(rRegI dst)
4400 %{
4401     single_instruction;
4402     dst    : S4(write);
4403     dst    : S3(read);
4404     DECODE : S0;        // any decoder
4405     ALU    : S3;        // any alu
4406 %}
4407 
4408 // Long ALU reg operation
4409 pipe_class ialu_reg_long(rRegL dst)
4410 %{
4411     instruction_count(2);
4412     dst    : S4(write);
4413     dst    : S3(read);
4414     DECODE : S0(2);     // any 2 decoders
4415     ALU    : S3(2);     // both alus
4416 %}
4417 
4418 // Integer ALU reg operation using big decoder
4419 pipe_class ialu_reg_fat(rRegI dst)
4420 %{
4421     single_instruction;
4422     dst    : S4(write);
4423     dst    : S3(read);
4424     D0     : S0;        // big decoder only
4425     ALU    : S3;        // any alu
4426 %}
4427 
4428 // Long ALU reg operation using big decoder
4429 pipe_class ialu_reg_long_fat(rRegL dst)
4430 %{
4431     instruction_count(2);
4432     dst    : S4(write);
4433     dst    : S3(read);
4434     D0     : S0(2);     // big decoder only; twice
4435     ALU    : S3(2);     // any 2 alus
4436 %}
4437 
4438 // Integer ALU reg-reg operation
4439 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4440 %{
4441     single_instruction;
4442     dst    : S4(write);
4443     src    : S3(read);
4444     DECODE : S0;        // any decoder
4445     ALU    : S3;        // any alu
4446 %}
4447 
4448 // Long ALU reg-reg operation
4449 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4450 %{
4451     instruction_count(2);
4452     dst    : S4(write);
4453     src    : S3(read);
4454     DECODE : S0(2);     // any 2 decoders
4455     ALU    : S3(2);     // both alus
4456 %}
4457 
4458 // Integer ALU reg-reg operation
4459 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4460 %{
4461     single_instruction;
4462     dst    : S4(write);
4463     src    : S3(read);
4464     D0     : S0;        // big decoder only
4465     ALU    : S3;        // any alu
4466 %}
4467 
4468 // Long ALU reg-reg operation
4469 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4470 %{
4471     instruction_count(2);
4472     dst    : S4(write);
4473     src    : S3(read);
4474     D0     : S0(2);     // big decoder only; twice
4475     ALU    : S3(2);     // both alus
4476 %}
4477 
4478 // Integer ALU reg-mem operation
4479 pipe_class ialu_reg_mem(rRegI dst, memory mem)
4480 %{
4481     single_instruction;
4482     dst    : S5(write);
4483     mem    : S3(read);
4484     D0     : S0;        // big decoder only
4485     ALU    : S4;        // any alu
4486     MEM    : S3;        // any mem
4487 %}
4488 
4489 // Integer mem operation (prefetch)
4490 pipe_class ialu_mem(memory mem)
4491 %{
4492     single_instruction;
4493     mem    : S3(read);
4494     D0     : S0;        // big decoder only
4495     MEM    : S3;        // any mem
4496 %}
4497 
4498 // Integer Store to Memory
4499 pipe_class ialu_mem_reg(memory mem, rRegI src)
4500 %{
4501     single_instruction;
4502     mem    : S3(read);
4503     src    : S5(read);
4504     D0     : S0;        // big decoder only
4505     ALU    : S4;        // any alu
4506     MEM    : S3;
4507 %}
4508 
4509 // // Long Store to Memory
4510 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4511 // %{
4512 //     instruction_count(2);
4513 //     mem    : S3(read);
4514 //     src    : S5(read);
4515 //     D0     : S0(2);          // big decoder only; twice
4516 //     ALU    : S4(2);     // any 2 alus
4517 //     MEM    : S3(2);  // Both mems
4518 // %}
4519 
4520 // Integer Store to Memory
4521 pipe_class ialu_mem_imm(memory mem)
4522 %{
4523     single_instruction;
4524     mem    : S3(read);
4525     D0     : S0;        // big decoder only
4526     ALU    : S4;        // any alu
4527     MEM    : S3;
4528 %}
4529 
4530 // Integer ALU0 reg-reg operation
4531 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4532 %{
4533     single_instruction;
4534     dst    : S4(write);
4535     src    : S3(read);
4536     D0     : S0;        // Big decoder only
4537     ALU0   : S3;        // only alu0
4538 %}
4539 
4540 // Integer ALU0 reg-mem operation
4541 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4542 %{
4543     single_instruction;
4544     dst    : S5(write);
4545     mem    : S3(read);
4546     D0     : S0;        // big decoder only
4547     ALU0   : S4;        // ALU0 only
4548     MEM    : S3;        // any mem
4549 %}
4550 
4551 // Integer ALU reg-reg operation
4552 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4553 %{
4554     single_instruction;
4555     cr     : S4(write);
4556     src1   : S3(read);
4557     src2   : S3(read);
4558     DECODE : S0;        // any decoder
4559     ALU    : S3;        // any alu
4560 %}
4561 
4562 // Integer ALU reg-imm operation
4563 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4564 %{
4565     single_instruction;
4566     cr     : S4(write);
4567     src1   : S3(read);
4568     DECODE : S0;        // any decoder
4569     ALU    : S3;        // any alu
4570 %}
4571 
4572 // Integer ALU reg-mem operation
4573 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4574 %{
4575     single_instruction;
4576     cr     : S4(write);
4577     src1   : S3(read);
4578     src2   : S3(read);
4579     D0     : S0;        // big decoder only
4580     ALU    : S4;        // any alu
4581     MEM    : S3;
4582 %}
4583 
4584 // Conditional move reg-reg
4585 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4586 %{
4587     instruction_count(4);
4588     y      : S4(read);
4589     q      : S3(read);
4590     p      : S3(read);
4591     DECODE : S0(4);     // any decoder
4592 %}
4593 
4594 // Conditional move reg-reg
4595 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4596 %{
4597     single_instruction;
4598     dst    : S4(write);
4599     src    : S3(read);
4600     cr     : S3(read);
4601     DECODE : S0;        // any decoder
4602 %}
4603 
4604 // Conditional move reg-mem
4605 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4606 %{
4607     single_instruction;
4608     dst    : S4(write);
4609     src    : S3(read);
4610     cr     : S3(read);
4611     DECODE : S0;        // any decoder
4612     MEM    : S3;
4613 %}
4614 
4615 // Conditional move reg-reg long
4616 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4617 %{
4618     single_instruction;
4619     dst    : S4(write);
4620     src    : S3(read);
4621     cr     : S3(read);
4622     DECODE : S0(2);     // any 2 decoders
4623 %}
4624 
4625 // XXX
4626 // // Conditional move double reg-reg
4627 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4628 // %{
4629 //     single_instruction;
4630 //     dst    : S4(write);
4631 //     src    : S3(read);
4632 //     cr     : S3(read);
4633 //     DECODE : S0;     // any decoder
4634 // %}
4635 
4636 // Float reg-reg operation
4637 pipe_class fpu_reg(regD dst)
4638 %{
4639     instruction_count(2);
4640     dst    : S3(read);
4641     DECODE : S0(2);     // any 2 decoders
4642     FPU    : S3;
4643 %}
4644 
4645 // Float reg-reg operation
4646 pipe_class fpu_reg_reg(regD dst, regD src)
4647 %{
4648     instruction_count(2);
4649     dst    : S4(write);
4650     src    : S3(read);
4651     DECODE : S0(2);     // any 2 decoders
4652     FPU    : S3;
4653 %}
4654 
4655 // Float reg-reg operation
4656 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4657 %{
4658     instruction_count(3);
4659     dst    : S4(write);
4660     src1   : S3(read);
4661     src2   : S3(read);
4662     DECODE : S0(3);     // any 3 decoders
4663     FPU    : S3(2);
4664 %}
4665 
4666 // Float reg-reg operation
4667 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4668 %{
4669     instruction_count(4);
4670     dst    : S4(write);
4671     src1   : S3(read);
4672     src2   : S3(read);
4673     src3   : S3(read);
4674     DECODE : S0(4);     // any 3 decoders
4675     FPU    : S3(2);
4676 %}
4677 
4678 // Float reg-reg operation
4679 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4680 %{
4681     instruction_count(4);
4682     dst    : S4(write);
4683     src1   : S3(read);
4684     src2   : S3(read);
4685     src3   : S3(read);
4686     DECODE : S1(3);     // any 3 decoders
4687     D0     : S0;        // Big decoder only
4688     FPU    : S3(2);
4689     MEM    : S3;
4690 %}
4691 
4692 // Float reg-mem operation
4693 pipe_class fpu_reg_mem(regD dst, memory mem)
4694 %{
4695     instruction_count(2);
4696     dst    : S5(write);
4697     mem    : S3(read);
4698     D0     : S0;        // big decoder only
4699     DECODE : S1;        // any decoder for FPU POP
4700     FPU    : S4;
4701     MEM    : S3;        // any mem
4702 %}
4703 
4704 // Float reg-mem operation
4705 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4706 %{
4707     instruction_count(3);
4708     dst    : S5(write);
4709     src1   : S3(read);
4710     mem    : S3(read);
4711     D0     : S0;        // big decoder only
4712     DECODE : S1(2);     // any decoder for FPU POP
4713     FPU    : S4;
4714     MEM    : S3;        // any mem
4715 %}
4716 
4717 // Float mem-reg operation
4718 pipe_class fpu_mem_reg(memory mem, regD src)
4719 %{
4720     instruction_count(2);
4721     src    : S5(read);
4722     mem    : S3(read);
4723     DECODE : S0;        // any decoder for FPU PUSH
4724     D0     : S1;        // big decoder only
4725     FPU    : S4;
4726     MEM    : S3;        // any mem
4727 %}
4728 
4729 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4730 %{
4731     instruction_count(3);
4732     src1   : S3(read);
4733     src2   : S3(read);
4734     mem    : S3(read);
4735     DECODE : S0(2);     // any decoder for FPU PUSH
4736     D0     : S1;        // big decoder only
4737     FPU    : S4;
4738     MEM    : S3;        // any mem
4739 %}
4740 
4741 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4742 %{
4743     instruction_count(3);
4744     src1   : S3(read);
4745     src2   : S3(read);
4746     mem    : S4(read);
4747     DECODE : S0;        // any decoder for FPU PUSH
4748     D0     : S0(2);     // big decoder only
4749     FPU    : S4;
4750     MEM    : S3(2);     // any mem
4751 %}
4752 
4753 pipe_class fpu_mem_mem(memory dst, memory src1)
4754 %{
4755     instruction_count(2);
4756     src1   : S3(read);
4757     dst    : S4(read);
4758     D0     : S0(2);     // big decoder only
4759     MEM    : S3(2);     // any mem
4760 %}
4761 
4762 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4763 %{
4764     instruction_count(3);
4765     src1   : S3(read);
4766     src2   : S3(read);
4767     dst    : S4(read);
4768     D0     : S0(3);     // big decoder only
4769     FPU    : S4;
4770     MEM    : S3(3);     // any mem
4771 %}
4772 
4773 pipe_class fpu_mem_reg_con(memory mem, regD src1)
4774 %{
4775     instruction_count(3);
4776     src1   : S4(read);
4777     mem    : S4(read);
4778     DECODE : S0;        // any decoder for FPU PUSH
4779     D0     : S0(2);     // big decoder only
4780     FPU    : S4;
4781     MEM    : S3(2);     // any mem
4782 %}
4783 
4784 // Float load constant
4785 pipe_class fpu_reg_con(regD dst)
4786 %{
4787     instruction_count(2);
4788     dst    : S5(write);
4789     D0     : S0;        // big decoder only for the load
4790     DECODE : S1;        // any decoder for FPU POP
4791     FPU    : S4;
4792     MEM    : S3;        // any mem
4793 %}
4794 
4795 // Float load constant
4796 pipe_class fpu_reg_reg_con(regD dst, regD src)
4797 %{
4798     instruction_count(3);
4799     dst    : S5(write);
4800     src    : S3(read);
4801     D0     : S0;        // big decoder only for the load
4802     DECODE : S1(2);     // any decoder for FPU POP
4803     FPU    : S4;
4804     MEM    : S3;        // any mem
4805 %}
4806 
4807 // UnConditional branch
4808 pipe_class pipe_jmp(label labl)
4809 %{
4810     single_instruction;
4811     BR   : S3;
4812 %}
4813 
4814 // Conditional branch
4815 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4816 %{
4817     single_instruction;
4818     cr    : S1(read);
4819     BR    : S3;
4820 %}
4821 
4822 // Allocation idiom
4823 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4824 %{
4825     instruction_count(1); force_serialization;
4826     fixed_latency(6);
4827     heap_ptr : S3(read);
4828     DECODE   : S0(3);
4829     D0       : S2;
4830     MEM      : S3;
4831     ALU      : S3(2);
4832     dst      : S5(write);
4833     BR       : S5;
4834 %}
4835 
4836 // Generic big/slow expanded idiom
4837 pipe_class pipe_slow()
4838 %{
4839     instruction_count(10); multiple_bundles; force_serialization;
4840     fixed_latency(100);
4841     D0  : S0(2);
4842     MEM : S3(2);
4843 %}
4844 
4845 // The real do-nothing guy
4846 pipe_class empty()
4847 %{
4848     instruction_count(0);
4849 %}
4850 
4851 // Define the class for the Nop node
4852 define
4853 %{
4854    MachNop = empty;
4855 %}
4856 
4857 %}
4858 
4859 //----------INSTRUCTIONS-------------------------------------------------------
4860 //
4861 // match      -- States which machine-independent subtree may be replaced
4862 //               by this instruction.
4863 // ins_cost   -- The estimated cost of this instruction is used by instruction
4864 //               selection to identify a minimum cost tree of machine
4865 //               instructions that matches a tree of machine-independent
4866 //               instructions.
4867 // format     -- A string providing the disassembly for this instruction.
4868 //               The value of an instruction's operand may be inserted
4869 //               by referring to it with a '$' prefix.
4870 // opcode     -- Three instruction opcodes may be provided.  These are referred
4871 //               to within an encode class as $primary, $secondary, and $tertiary
4872 //               rrspectively.  The primary opcode is commonly used to
4873 //               indicate the type of machine instruction, while secondary
4874 //               and tertiary are often used for prefix options or addressing
4875 //               modes.
4876 // ins_encode -- A list of encode classes with parameters. The encode class
4877 //               name must have been defined in an 'enc_class' specification
4878 //               in the encode section of the architecture description.
4879 
4880 
4881 //----------Load/Store/Move Instructions---------------------------------------
4882 //----------Load Instructions--------------------------------------------------
4883 
4884 // Load Byte (8 bit signed)
4885 instruct loadB(rRegI dst, memory mem)
4886 %{
4887   match(Set dst (LoadB mem));
4888 
4889   ins_cost(125);
4890   format %{ "movsbl  $dst, $mem\t# byte" %}
4891 
4892   ins_encode %{
4893     __ movsbl($dst$$Register, $mem$$Address);
4894   %}
4895 
4896   ins_pipe(ialu_reg_mem);
4897 %}
4898 
4899 // Load Byte (8 bit signed) into Long Register
4900 instruct loadB2L(rRegL dst, memory mem)
4901 %{
4902   match(Set dst (ConvI2L (LoadB mem)));
4903 
4904   ins_cost(125);
4905   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
4906 
4907   ins_encode %{
4908     __ movsbq($dst$$Register, $mem$$Address);
4909   %}
4910 
4911   ins_pipe(ialu_reg_mem);
4912 %}
4913 
4914 // Load Unsigned Byte (8 bit UNsigned)
4915 instruct loadUB(rRegI dst, memory mem)
4916 %{
4917   match(Set dst (LoadUB mem));
4918 
4919   ins_cost(125);
4920   format %{ "movzbl  $dst, $mem\t# ubyte" %}
4921 
4922   ins_encode %{
4923     __ movzbl($dst$$Register, $mem$$Address);
4924   %}
4925 
4926   ins_pipe(ialu_reg_mem);
4927 %}
4928 
4929 // Load Unsigned Byte (8 bit UNsigned) into Long Register
4930 instruct loadUB2L(rRegL dst, memory mem)
4931 %{
4932   match(Set dst (ConvI2L (LoadUB mem)));
4933 
4934   ins_cost(125);
4935   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
4936 
4937   ins_encode %{
4938     __ movzbq($dst$$Register, $mem$$Address);
4939   %}
4940 
4941   ins_pipe(ialu_reg_mem);
4942 %}
4943 
4944 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
4945 instruct loadUB2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4946   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
4947   effect(KILL cr);
4948 
4949   format %{ "movzbq  $dst, $mem\t# ubyte & 32-bit mask -> long\n\t"
4950             "andl    $dst, right_n_bits($mask, 8)" %}
4951   ins_encode %{
4952     Register Rdst = $dst$$Register;
4953     __ movzbq(Rdst, $mem$$Address);
4954     __ andl(Rdst, $mask$$constant & right_n_bits(8));
4955   %}
4956   ins_pipe(ialu_reg_mem);
4957 %}
4958 
4959 // Load Short (16 bit signed)
4960 instruct loadS(rRegI dst, memory mem)
4961 %{
4962   match(Set dst (LoadS mem));
4963 
4964   ins_cost(125);
4965   format %{ "movswl $dst, $mem\t# short" %}
4966 
4967   ins_encode %{
4968     __ movswl($dst$$Register, $mem$$Address);
4969   %}
4970 
4971   ins_pipe(ialu_reg_mem);
4972 %}
4973 
4974 // Load Short (16 bit signed) to Byte (8 bit signed)
4975 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4976   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
4977 
4978   ins_cost(125);
4979   format %{ "movsbl $dst, $mem\t# short -> byte" %}
4980   ins_encode %{
4981     __ movsbl($dst$$Register, $mem$$Address);
4982   %}
4983   ins_pipe(ialu_reg_mem);
4984 %}
4985 
4986 // Load Short (16 bit signed) into Long Register
4987 instruct loadS2L(rRegL dst, memory mem)
4988 %{
4989   match(Set dst (ConvI2L (LoadS mem)));
4990 
4991   ins_cost(125);
4992   format %{ "movswq $dst, $mem\t# short -> long" %}
4993 
4994   ins_encode %{
4995     __ movswq($dst$$Register, $mem$$Address);
4996   %}
4997 
4998   ins_pipe(ialu_reg_mem);
4999 %}
5000 
5001 // Load Unsigned Short/Char (16 bit UNsigned)
5002 instruct loadUS(rRegI dst, memory mem)
5003 %{
5004   match(Set dst (LoadUS mem));
5005 
5006   ins_cost(125);
5007   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
5008 
5009   ins_encode %{
5010     __ movzwl($dst$$Register, $mem$$Address);
5011   %}
5012 
5013   ins_pipe(ialu_reg_mem);
5014 %}
5015 
5016 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5017 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5018   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5019 
5020   ins_cost(125);
5021   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
5022   ins_encode %{
5023     __ movsbl($dst$$Register, $mem$$Address);
5024   %}
5025   ins_pipe(ialu_reg_mem);
5026 %}
5027 
5028 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5029 instruct loadUS2L(rRegL dst, memory mem)
5030 %{
5031   match(Set dst (ConvI2L (LoadUS mem)));
5032 
5033   ins_cost(125);
5034   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
5035 
5036   ins_encode %{
5037     __ movzwq($dst$$Register, $mem$$Address);
5038   %}
5039 
5040   ins_pipe(ialu_reg_mem);
5041 %}
5042 
5043 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5044 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5045   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5046 
5047   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
5048   ins_encode %{
5049     __ movzbq($dst$$Register, $mem$$Address);
5050   %}
5051   ins_pipe(ialu_reg_mem);
5052 %}
5053 
5054 // Load Unsigned Short/Char (16 bit UNsigned) with 32-bit mask into Long Register
5055 instruct loadUS2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
5056   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5057   effect(KILL cr);
5058 
5059   format %{ "movzwq  $dst, $mem\t# ushort/char & 32-bit mask -> long\n\t"
5060             "andl    $dst, right_n_bits($mask, 16)" %}
5061   ins_encode %{
5062     Register Rdst = $dst$$Register;
5063     __ movzwq(Rdst, $mem$$Address);
5064     __ andl(Rdst, $mask$$constant & right_n_bits(16));
5065   %}
5066   ins_pipe(ialu_reg_mem);
5067 %}
5068 
5069 // Load Integer
5070 instruct loadI(rRegI dst, memory mem)
5071 %{
5072   match(Set dst (LoadI mem));
5073 
5074   ins_cost(125);
5075   format %{ "movl    $dst, $mem\t# int" %}
5076 
5077   ins_encode %{
5078     __ movl($dst$$Register, $mem$$Address);
5079   %}
5080 
5081   ins_pipe(ialu_reg_mem);
5082 %}
5083 
5084 // Load Integer (32 bit signed) to Byte (8 bit signed)
5085 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5086   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5087 
5088   ins_cost(125);
5089   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
5090   ins_encode %{
5091     __ movsbl($dst$$Register, $mem$$Address);
5092   %}
5093   ins_pipe(ialu_reg_mem);
5094 %}
5095 
5096 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
5097 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
5098   match(Set dst (AndI (LoadI mem) mask));
5099 
5100   ins_cost(125);
5101   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
5102   ins_encode %{
5103     __ movzbl($dst$$Register, $mem$$Address);
5104   %}
5105   ins_pipe(ialu_reg_mem);
5106 %}
5107 
5108 // Load Integer (32 bit signed) to Short (16 bit signed)
5109 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
5110   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5111 
5112   ins_cost(125);
5113   format %{ "movswl  $dst, $mem\t# int -> short" %}
5114   ins_encode %{
5115     __ movswl($dst$$Register, $mem$$Address);
5116   %}
5117   ins_pipe(ialu_reg_mem);
5118 %}
5119 
5120 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
5121 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
5122   match(Set dst (AndI (LoadI mem) mask));
5123 
5124   ins_cost(125);
5125   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
5126   ins_encode %{
5127     __ movzwl($dst$$Register, $mem$$Address);
5128   %}
5129   ins_pipe(ialu_reg_mem);
5130 %}
5131 
5132 // Load Integer into Long Register
5133 instruct loadI2L(rRegL dst, memory mem)
5134 %{
5135   match(Set dst (ConvI2L (LoadI mem)));
5136 
5137   ins_cost(125);
5138   format %{ "movslq  $dst, $mem\t# int -> long" %}
5139 
5140   ins_encode %{
5141     __ movslq($dst$$Register, $mem$$Address);
5142   %}
5143 
5144   ins_pipe(ialu_reg_mem);
5145 %}
5146 
5147 // Load Integer with mask 0xFF into Long Register
5148 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5149   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5150 
5151   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
5152   ins_encode %{
5153     __ movzbq($dst$$Register, $mem$$Address);
5154   %}
5155   ins_pipe(ialu_reg_mem);
5156 %}
5157 
5158 // Load Integer with mask 0xFFFF into Long Register
5159 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
5160   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5161 
5162   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
5163   ins_encode %{
5164     __ movzwq($dst$$Register, $mem$$Address);
5165   %}
5166   ins_pipe(ialu_reg_mem);
5167 %}
5168 
5169 // Load Integer with a 31-bit mask into Long Register
5170 instruct loadI2L_immU31(rRegL dst, memory mem, immU31 mask, rFlagsReg cr) %{
5171   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5172   effect(KILL cr);
5173 
5174   format %{ "movl    $dst, $mem\t# int & 31-bit mask -> long\n\t"
5175             "andl    $dst, $mask" %}
5176   ins_encode %{
5177     Register Rdst = $dst$$Register;
5178     __ movl(Rdst, $mem$$Address);
5179     __ andl(Rdst, $mask$$constant);
5180   %}
5181   ins_pipe(ialu_reg_mem);
5182 %}
5183 
5184 // Load Unsigned Integer into Long Register
5185 instruct loadUI2L(rRegL dst, memory mem, immL_32bits mask)
5186 %{
5187   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5188 
5189   ins_cost(125);
5190   format %{ "movl    $dst, $mem\t# uint -> long" %}
5191 
5192   ins_encode %{
5193     __ movl($dst$$Register, $mem$$Address);
5194   %}
5195 
5196   ins_pipe(ialu_reg_mem);
5197 %}
5198 
5199 // Load Long
5200 instruct loadL(rRegL dst, memory mem)
5201 %{
5202   match(Set dst (LoadL mem));
5203 
5204   ins_cost(125);
5205   format %{ "movq    $dst, $mem\t# long" %}
5206 
5207   ins_encode %{
5208     __ movq($dst$$Register, $mem$$Address);
5209   %}
5210 
5211   ins_pipe(ialu_reg_mem); // XXX
5212 %}
5213 
5214 // Load Range
5215 instruct loadRange(rRegI dst, memory mem)
5216 %{
5217   match(Set dst (LoadRange mem));
5218 
5219   ins_cost(125); // XXX
5220   format %{ "movl    $dst, $mem\t# range" %}
5221   opcode(0x8B);
5222   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5223   ins_pipe(ialu_reg_mem);
5224 %}
5225 
5226 // Load Pointer
5227 instruct loadP(rRegP dst, memory mem)
5228 %{
5229   match(Set dst (LoadP mem));
5230 
5231   ins_cost(125); // XXX
5232   format %{ "movq    $dst, $mem\t# ptr" %}
5233   opcode(0x8B);
5234   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5235   ins_pipe(ialu_reg_mem); // XXX
5236 %}
5237 
5238 // Load Compressed Pointer
5239 instruct loadN(rRegN dst, memory mem)
5240 %{
5241    match(Set dst (LoadN mem));
5242 
5243    ins_cost(125); // XXX
5244    format %{ "movl    $dst, $mem\t# compressed ptr" %}
5245    ins_encode %{
5246      __ movl($dst$$Register, $mem$$Address);
5247    %}
5248    ins_pipe(ialu_reg_mem); // XXX
5249 %}
5250 
5251 
5252 // Load Klass Pointer
5253 instruct loadKlass(rRegP dst, memory mem)
5254 %{
5255   match(Set dst (LoadKlass mem));
5256 
5257   ins_cost(125); // XXX
5258   format %{ "movq    $dst, $mem\t# class" %}
5259   opcode(0x8B);
5260   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5261   ins_pipe(ialu_reg_mem); // XXX
5262 %}
5263 
5264 // Load narrow Klass Pointer
5265 instruct loadNKlass(rRegN dst, memory mem)
5266 %{
5267   match(Set dst (LoadNKlass mem));
5268 
5269   ins_cost(125); // XXX
5270   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5271   ins_encode %{
5272     __ movl($dst$$Register, $mem$$Address);
5273   %}
5274   ins_pipe(ialu_reg_mem); // XXX
5275 %}
5276 
5277 // Load Float
5278 instruct loadF(regF dst, memory mem)
5279 %{
5280   match(Set dst (LoadF mem));
5281 
5282   ins_cost(145); // XXX
5283   format %{ "movss   $dst, $mem\t# float" %}
5284   ins_encode %{
5285     __ movflt($dst$$XMMRegister, $mem$$Address);
5286   %}
5287   ins_pipe(pipe_slow); // XXX
5288 %}
5289 
5290 // Load Double
5291 instruct loadD_partial(regD dst, memory mem)
5292 %{
5293   predicate(!UseXmmLoadAndClearUpper);
5294   match(Set dst (LoadD mem));
5295 
5296   ins_cost(145); // XXX
5297   format %{ "movlpd  $dst, $mem\t# double" %}
5298   ins_encode %{
5299     __ movdbl($dst$$XMMRegister, $mem$$Address);
5300   %}
5301   ins_pipe(pipe_slow); // XXX
5302 %}
5303 
5304 instruct loadD(regD dst, memory mem)
5305 %{
5306   predicate(UseXmmLoadAndClearUpper);
5307   match(Set dst (LoadD mem));
5308 
5309   ins_cost(145); // XXX
5310   format %{ "movsd   $dst, $mem\t# double" %}
5311   ins_encode %{
5312     __ movdbl($dst$$XMMRegister, $mem$$Address);
5313   %}
5314   ins_pipe(pipe_slow); // XXX
5315 %}
5316 
5317 // Load Effective Address
5318 instruct leaP8(rRegP dst, indOffset8 mem)
5319 %{
5320   match(Set dst mem);
5321 
5322   ins_cost(110); // XXX
5323   format %{ "leaq    $dst, $mem\t# ptr 8" %}
5324   opcode(0x8D);
5325   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5326   ins_pipe(ialu_reg_reg_fat);
5327 %}
5328 
5329 instruct leaP32(rRegP dst, indOffset32 mem)
5330 %{
5331   match(Set dst mem);
5332 
5333   ins_cost(110);
5334   format %{ "leaq    $dst, $mem\t# ptr 32" %}
5335   opcode(0x8D);
5336   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5337   ins_pipe(ialu_reg_reg_fat);
5338 %}
5339 
5340 // instruct leaPIdx(rRegP dst, indIndex mem)
5341 // %{
5342 //   match(Set dst mem);
5343 
5344 //   ins_cost(110);
5345 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5346 //   opcode(0x8D);
5347 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5348 //   ins_pipe(ialu_reg_reg_fat);
5349 // %}
5350 
5351 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5352 %{
5353   match(Set dst mem);
5354 
5355   ins_cost(110);
5356   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5357   opcode(0x8D);
5358   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5359   ins_pipe(ialu_reg_reg_fat);
5360 %}
5361 
5362 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5363 %{
5364   match(Set dst mem);
5365 
5366   ins_cost(110);
5367   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5368   opcode(0x8D);
5369   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5370   ins_pipe(ialu_reg_reg_fat);
5371 %}
5372 
5373 instruct leaPPosIdxScale(rRegP dst, indPosIndexScale mem)
5374 %{
5375   match(Set dst mem);
5376 
5377   ins_cost(110);
5378   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5379   opcode(0x8D);
5380   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5381   ins_pipe(ialu_reg_reg_fat);
5382 %}
5383 
5384 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5385 %{
5386   match(Set dst mem);
5387 
5388   ins_cost(110);
5389   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5390   opcode(0x8D);
5391   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5392   ins_pipe(ialu_reg_reg_fat);
5393 %}
5394 
5395 instruct leaPPosIdxOff(rRegP dst, indPosIndexOffset mem)
5396 %{
5397   match(Set dst mem);
5398 
5399   ins_cost(110);
5400   format %{ "leaq    $dst, $mem\t# ptr posidxoff" %}
5401   opcode(0x8D);
5402   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5403   ins_pipe(ialu_reg_reg_fat);
5404 %}
5405 
5406 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5407 %{
5408   match(Set dst mem);
5409 
5410   ins_cost(110);
5411   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5412   opcode(0x8D);
5413   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5414   ins_pipe(ialu_reg_reg_fat);
5415 %}
5416 
5417 // Load Effective Address which uses Narrow (32-bits) oop
5418 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5419 %{
5420   predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
5421   match(Set dst mem);
5422 
5423   ins_cost(110);
5424   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5425   opcode(0x8D);
5426   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5427   ins_pipe(ialu_reg_reg_fat);
5428 %}
5429 
5430 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5431 %{
5432   predicate(Universe::narrow_oop_shift() == 0);
5433   match(Set dst mem);
5434 
5435   ins_cost(110); // XXX
5436   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5437   opcode(0x8D);
5438   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5439   ins_pipe(ialu_reg_reg_fat);
5440 %}
5441 
5442 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5443 %{
5444   predicate(Universe::narrow_oop_shift() == 0);
5445   match(Set dst mem);
5446 
5447   ins_cost(110);
5448   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5449   opcode(0x8D);
5450   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5451   ins_pipe(ialu_reg_reg_fat);
5452 %}
5453 
5454 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5455 %{
5456   predicate(Universe::narrow_oop_shift() == 0);
5457   match(Set dst mem);
5458 
5459   ins_cost(110);
5460   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5461   opcode(0x8D);
5462   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5463   ins_pipe(ialu_reg_reg_fat);
5464 %}
5465 
5466 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5467 %{
5468   predicate(Universe::narrow_oop_shift() == 0);
5469   match(Set dst mem);
5470 
5471   ins_cost(110);
5472   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5473   opcode(0x8D);
5474   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5475   ins_pipe(ialu_reg_reg_fat);
5476 %}
5477 
5478 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5479 %{
5480   predicate(Universe::narrow_oop_shift() == 0);
5481   match(Set dst mem);
5482 
5483   ins_cost(110);
5484   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5485   opcode(0x8D);
5486   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5487   ins_pipe(ialu_reg_reg_fat);
5488 %}
5489 
5490 instruct leaPPosIdxOffNarrow(rRegP dst, indPosIndexOffsetNarrow mem)
5491 %{
5492   predicate(Universe::narrow_oop_shift() == 0);
5493   match(Set dst mem);
5494 
5495   ins_cost(110);
5496   format %{ "leaq    $dst, $mem\t# ptr posidxoffnarrow" %}
5497   opcode(0x8D);
5498   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5499   ins_pipe(ialu_reg_reg_fat);
5500 %}
5501 
5502 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5503 %{
5504   predicate(Universe::narrow_oop_shift() == 0);
5505   match(Set dst mem);
5506 
5507   ins_cost(110);
5508   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5509   opcode(0x8D);
5510   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5511   ins_pipe(ialu_reg_reg_fat);
5512 %}
5513 
5514 instruct loadConI(rRegI dst, immI src)
5515 %{
5516   match(Set dst src);
5517 
5518   format %{ "movl    $dst, $src\t# int" %}
5519   ins_encode(load_immI(dst, src));
5520   ins_pipe(ialu_reg_fat); // XXX
5521 %}
5522 
5523 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5524 %{
5525   match(Set dst src);
5526   effect(KILL cr);
5527 
5528   ins_cost(50);
5529   format %{ "xorl    $dst, $dst\t# int" %}
5530   opcode(0x33); /* + rd */
5531   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5532   ins_pipe(ialu_reg);
5533 %}
5534 
5535 instruct loadConL(rRegL dst, immL src)
5536 %{
5537   match(Set dst src);
5538 
5539   ins_cost(150);
5540   format %{ "movq    $dst, $src\t# long" %}
5541   ins_encode(load_immL(dst, src));
5542   ins_pipe(ialu_reg);
5543 %}
5544 
5545 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5546 %{
5547   match(Set dst src);
5548   effect(KILL cr);
5549 
5550   ins_cost(50);
5551   format %{ "xorl    $dst, $dst\t# long" %}
5552   opcode(0x33); /* + rd */
5553   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5554   ins_pipe(ialu_reg); // XXX
5555 %}
5556 
5557 instruct loadConUL32(rRegL dst, immUL32 src)
5558 %{
5559   match(Set dst src);
5560 
5561   ins_cost(60);
5562   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5563   ins_encode(load_immUL32(dst, src));
5564   ins_pipe(ialu_reg);
5565 %}
5566 
5567 instruct loadConL32(rRegL dst, immL32 src)
5568 %{
5569   match(Set dst src);
5570 
5571   ins_cost(70);
5572   format %{ "movq    $dst, $src\t# long (32-bit)" %}
5573   ins_encode(load_immL32(dst, src));
5574   ins_pipe(ialu_reg);
5575 %}
5576 
5577 instruct loadConP(rRegP dst, immP con) %{
5578   match(Set dst con);
5579 
5580   format %{ "movq    $dst, $con\t# ptr" %}
5581   ins_encode(load_immP(dst, con));
5582   ins_pipe(ialu_reg_fat); // XXX
5583 %}
5584 
5585 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5586 %{
5587   match(Set dst src);
5588   effect(KILL cr);
5589 
5590   ins_cost(50);
5591   format %{ "xorl    $dst, $dst\t# ptr" %}
5592   opcode(0x33); /* + rd */
5593   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5594   ins_pipe(ialu_reg);
5595 %}
5596 
5597 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5598 %{
5599   match(Set dst src);
5600   effect(KILL cr);
5601 
5602   ins_cost(60);
5603   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5604   ins_encode(load_immP31(dst, src));
5605   ins_pipe(ialu_reg);
5606 %}
5607 
5608 instruct loadConF(regF dst, immF con) %{
5609   match(Set dst con);
5610   ins_cost(125);
5611   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5612   ins_encode %{
5613     __ movflt($dst$$XMMRegister, $constantaddress($con));
5614   %}
5615   ins_pipe(pipe_slow);
5616 %}
5617 
5618 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5619   match(Set dst src);
5620   effect(KILL cr);
5621   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5622   ins_encode %{
5623     __ xorq($dst$$Register, $dst$$Register);
5624   %}
5625   ins_pipe(ialu_reg);
5626 %}
5627 
5628 instruct loadConN(rRegN dst, immN src) %{
5629   match(Set dst src);
5630 
5631   ins_cost(125);
5632   format %{ "movl    $dst, $src\t# compressed ptr" %}
5633   ins_encode %{
5634     address con = (address)$src$$constant;
5635     if (con == NULL) {
5636       ShouldNotReachHere();
5637     } else {
5638       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5639     }
5640   %}
5641   ins_pipe(ialu_reg_fat); // XXX
5642 %}
5643 
5644 instruct loadConNKlass(rRegN dst, immNKlass src) %{
5645   match(Set dst src);
5646 
5647   ins_cost(125);
5648   format %{ "movl    $dst, $src\t# compressed klass ptr" %}
5649   ins_encode %{
5650     address con = (address)$src$$constant;
5651     if (con == NULL) {
5652       ShouldNotReachHere();
5653     } else {
5654       __ set_narrow_klass($dst$$Register, (Klass*)$src$$constant);
5655     }
5656   %}
5657   ins_pipe(ialu_reg_fat); // XXX
5658 %}
5659 
5660 instruct loadConF0(regF dst, immF0 src)
5661 %{
5662   match(Set dst src);
5663   ins_cost(100);
5664 
5665   format %{ "xorps   $dst, $dst\t# float 0.0" %}
5666   ins_encode %{
5667     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5668   %}
5669   ins_pipe(pipe_slow);
5670 %}
5671 
5672 // Use the same format since predicate() can not be used here.
5673 instruct loadConD(regD dst, immD con) %{
5674   match(Set dst con);
5675   ins_cost(125);
5676   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5677   ins_encode %{
5678     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5679   %}
5680   ins_pipe(pipe_slow);
5681 %}
5682 
5683 instruct loadConD0(regD dst, immD0 src)
5684 %{
5685   match(Set dst src);
5686   ins_cost(100);
5687 
5688   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5689   ins_encode %{
5690     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5691   %}
5692   ins_pipe(pipe_slow);
5693 %}
5694 
5695 instruct loadSSI(rRegI dst, stackSlotI src)
5696 %{
5697   match(Set dst src);
5698 
5699   ins_cost(125);
5700   format %{ "movl    $dst, $src\t# int stk" %}
5701   opcode(0x8B);
5702   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5703   ins_pipe(ialu_reg_mem);
5704 %}
5705 
5706 instruct loadSSL(rRegL dst, stackSlotL src)
5707 %{
5708   match(Set dst src);
5709 
5710   ins_cost(125);
5711   format %{ "movq    $dst, $src\t# long stk" %}
5712   opcode(0x8B);
5713   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5714   ins_pipe(ialu_reg_mem);
5715 %}
5716 
5717 instruct loadSSP(rRegP dst, stackSlotP src)
5718 %{
5719   match(Set dst src);
5720 
5721   ins_cost(125);
5722   format %{ "movq    $dst, $src\t# ptr stk" %}
5723   opcode(0x8B);
5724   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5725   ins_pipe(ialu_reg_mem);
5726 %}
5727 
5728 instruct loadSSF(regF dst, stackSlotF src)
5729 %{
5730   match(Set dst src);
5731 
5732   ins_cost(125);
5733   format %{ "movss   $dst, $src\t# float stk" %}
5734   ins_encode %{
5735     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5736   %}
5737   ins_pipe(pipe_slow); // XXX
5738 %}
5739 
5740 // Use the same format since predicate() can not be used here.
5741 instruct loadSSD(regD dst, stackSlotD src)
5742 %{
5743   match(Set dst src);
5744 
5745   ins_cost(125);
5746   format %{ "movsd   $dst, $src\t# double stk" %}
5747   ins_encode  %{
5748     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5749   %}
5750   ins_pipe(pipe_slow); // XXX
5751 %}
5752 
5753 // Prefetch instructions for allocation.
5754 // Must be safe to execute with invalid address (cannot fault).
5755 
5756 instruct prefetchAlloc( memory mem ) %{
5757   predicate(AllocatePrefetchInstr==3);
5758   match(PrefetchAllocation mem);
5759   ins_cost(125);
5760 
5761   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5762   ins_encode %{
5763     __ prefetchw($mem$$Address);
5764   %}
5765   ins_pipe(ialu_mem);
5766 %}
5767 
5768 instruct prefetchAllocNTA( memory mem ) %{
5769   predicate(AllocatePrefetchInstr==0);
5770   match(PrefetchAllocation mem);
5771   ins_cost(125);
5772 
5773   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5774   ins_encode %{
5775     __ prefetchnta($mem$$Address);
5776   %}
5777   ins_pipe(ialu_mem);
5778 %}
5779 
5780 instruct prefetchAllocT0( memory mem ) %{
5781   predicate(AllocatePrefetchInstr==1);
5782   match(PrefetchAllocation mem);
5783   ins_cost(125);
5784 
5785   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5786   ins_encode %{
5787     __ prefetcht0($mem$$Address);
5788   %}
5789   ins_pipe(ialu_mem);
5790 %}
5791 
5792 instruct prefetchAllocT2( memory mem ) %{
5793   predicate(AllocatePrefetchInstr==2);
5794   match(PrefetchAllocation mem);
5795   ins_cost(125);
5796 
5797   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5798   ins_encode %{
5799     __ prefetcht2($mem$$Address);
5800   %}
5801   ins_pipe(ialu_mem);
5802 %}
5803 
5804 //----------Store Instructions-------------------------------------------------
5805 
5806 // Store Byte
5807 instruct storeB(memory mem, rRegI src)
5808 %{
5809   match(Set mem (StoreB mem src));
5810 
5811   ins_cost(125); // XXX
5812   format %{ "movb    $mem, $src\t# byte" %}
5813   opcode(0x88);
5814   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5815   ins_pipe(ialu_mem_reg);
5816 %}
5817 
5818 // Store Char/Short
5819 instruct storeC(memory mem, rRegI src)
5820 %{
5821   match(Set mem (StoreC mem src));
5822 
5823   ins_cost(125); // XXX
5824   format %{ "movw    $mem, $src\t# char/short" %}
5825   opcode(0x89);
5826   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5827   ins_pipe(ialu_mem_reg);
5828 %}
5829 
5830 // Store Integer
5831 instruct storeI(memory mem, rRegI src)
5832 %{
5833   match(Set mem (StoreI mem src));
5834 
5835   ins_cost(125); // XXX
5836   format %{ "movl    $mem, $src\t# int" %}
5837   opcode(0x89);
5838   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5839   ins_pipe(ialu_mem_reg);
5840 %}
5841 
5842 // Store Long
5843 instruct storeL(memory mem, rRegL src)
5844 %{
5845   match(Set mem (StoreL mem src));
5846 
5847   ins_cost(125); // XXX
5848   format %{ "movq    $mem, $src\t# long" %}
5849   opcode(0x89);
5850   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5851   ins_pipe(ialu_mem_reg); // XXX
5852 %}
5853 
5854 // Store Pointer
5855 instruct storeP(memory mem, any_RegP src)
5856 %{
5857   match(Set mem (StoreP mem src));
5858 
5859   ins_cost(125); // XXX
5860   format %{ "movq    $mem, $src\t# ptr" %}
5861   opcode(0x89);
5862   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5863   ins_pipe(ialu_mem_reg);
5864 %}
5865 
5866 instruct storeImmP0(memory mem, immP0 zero)
5867 %{
5868   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5869   match(Set mem (StoreP mem zero));
5870 
5871   ins_cost(125); // XXX
5872   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
5873   ins_encode %{
5874     __ movq($mem$$Address, r12);
5875   %}
5876   ins_pipe(ialu_mem_reg);
5877 %}
5878 
5879 // Store NULL Pointer, mark word, or other simple pointer constant.
5880 instruct storeImmP(memory mem, immP31 src)
5881 %{
5882   match(Set mem (StoreP mem src));
5883 
5884   ins_cost(150); // XXX
5885   format %{ "movq    $mem, $src\t# ptr" %}
5886   opcode(0xC7); /* C7 /0 */
5887   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5888   ins_pipe(ialu_mem_imm);
5889 %}
5890 
5891 // Store Compressed Pointer
5892 instruct storeN(memory mem, rRegN src)
5893 %{
5894   match(Set mem (StoreN mem src));
5895 
5896   ins_cost(125); // XXX
5897   format %{ "movl    $mem, $src\t# compressed ptr" %}
5898   ins_encode %{
5899     __ movl($mem$$Address, $src$$Register);
5900   %}
5901   ins_pipe(ialu_mem_reg);
5902 %}
5903 
5904 instruct storeNKlass(memory mem, rRegN src)
5905 %{
5906   match(Set mem (StoreNKlass mem src));
5907 
5908   ins_cost(125); // XXX
5909   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
5910   ins_encode %{
5911     __ movl($mem$$Address, $src$$Register);
5912   %}
5913   ins_pipe(ialu_mem_reg);
5914 %}
5915 
5916 instruct storeImmN0(memory mem, immN0 zero)
5917 %{
5918   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_klass_base() == NULL);
5919   match(Set mem (StoreN mem zero));
5920 
5921   ins_cost(125); // XXX
5922   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
5923   ins_encode %{
5924     __ movl($mem$$Address, r12);
5925   %}
5926   ins_pipe(ialu_mem_reg);
5927 %}
5928 
5929 instruct storeImmN(memory mem, immN src)
5930 %{
5931   match(Set mem (StoreN mem src));
5932 
5933   ins_cost(150); // XXX
5934   format %{ "movl    $mem, $src\t# compressed ptr" %}
5935   ins_encode %{
5936     address con = (address)$src$$constant;
5937     if (con == NULL) {
5938       __ movl($mem$$Address, (int32_t)0);
5939     } else {
5940       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
5941     }
5942   %}
5943   ins_pipe(ialu_mem_imm);
5944 %}
5945 
5946 instruct storeImmNKlass(memory mem, immNKlass src)
5947 %{
5948   match(Set mem (StoreNKlass mem src));
5949 
5950   ins_cost(150); // XXX
5951   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
5952   ins_encode %{
5953     __ set_narrow_klass($mem$$Address, (Klass*)$src$$constant);
5954   %}
5955   ins_pipe(ialu_mem_imm);
5956 %}
5957 
5958 // Store Integer Immediate
5959 instruct storeImmI0(memory mem, immI0 zero)
5960 %{
5961   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5962   match(Set mem (StoreI mem zero));
5963 
5964   ins_cost(125); // XXX
5965   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
5966   ins_encode %{
5967     __ movl($mem$$Address, r12);
5968   %}
5969   ins_pipe(ialu_mem_reg);
5970 %}
5971 
5972 instruct storeImmI(memory mem, immI src)
5973 %{
5974   match(Set mem (StoreI mem src));
5975 
5976   ins_cost(150);
5977   format %{ "movl    $mem, $src\t# int" %}
5978   opcode(0xC7); /* C7 /0 */
5979   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5980   ins_pipe(ialu_mem_imm);
5981 %}
5982 
5983 // Store Long Immediate
5984 instruct storeImmL0(memory mem, immL0 zero)
5985 %{
5986   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5987   match(Set mem (StoreL mem zero));
5988 
5989   ins_cost(125); // XXX
5990   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
5991   ins_encode %{
5992     __ movq($mem$$Address, r12);
5993   %}
5994   ins_pipe(ialu_mem_reg);
5995 %}
5996 
5997 instruct storeImmL(memory mem, immL32 src)
5998 %{
5999   match(Set mem (StoreL mem src));
6000 
6001   ins_cost(150);
6002   format %{ "movq    $mem, $src\t# long" %}
6003   opcode(0xC7); /* C7 /0 */
6004   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6005   ins_pipe(ialu_mem_imm);
6006 %}
6007 
6008 // Store Short/Char Immediate
6009 instruct storeImmC0(memory mem, immI0 zero)
6010 %{
6011   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6012   match(Set mem (StoreC mem zero));
6013 
6014   ins_cost(125); // XXX
6015   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
6016   ins_encode %{
6017     __ movw($mem$$Address, r12);
6018   %}
6019   ins_pipe(ialu_mem_reg);
6020 %}
6021 
6022 instruct storeImmI16(memory mem, immI16 src)
6023 %{
6024   predicate(UseStoreImmI16);
6025   match(Set mem (StoreC mem src));
6026 
6027   ins_cost(150);
6028   format %{ "movw    $mem, $src\t# short/char" %}
6029   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
6030   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
6031   ins_pipe(ialu_mem_imm);
6032 %}
6033 
6034 // Store Byte Immediate
6035 instruct storeImmB0(memory mem, immI0 zero)
6036 %{
6037   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6038   match(Set mem (StoreB mem zero));
6039 
6040   ins_cost(125); // XXX
6041   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
6042   ins_encode %{
6043     __ movb($mem$$Address, r12);
6044   %}
6045   ins_pipe(ialu_mem_reg);
6046 %}
6047 
6048 instruct storeImmB(memory mem, immI8 src)
6049 %{
6050   match(Set mem (StoreB mem src));
6051 
6052   ins_cost(150); // XXX
6053   format %{ "movb    $mem, $src\t# byte" %}
6054   opcode(0xC6); /* C6 /0 */
6055   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6056   ins_pipe(ialu_mem_imm);
6057 %}
6058 
6059 // Store CMS card-mark Immediate
6060 instruct storeImmCM0_reg(memory mem, immI0 zero)
6061 %{
6062   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6063   match(Set mem (StoreCM mem zero));
6064 
6065   ins_cost(125); // XXX
6066   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
6067   ins_encode %{
6068     __ movb($mem$$Address, r12);
6069   %}
6070   ins_pipe(ialu_mem_reg);
6071 %}
6072 
6073 instruct storeImmCM0(memory mem, immI0 src)
6074 %{
6075   match(Set mem (StoreCM mem src));
6076 
6077   ins_cost(150); // XXX
6078   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
6079   opcode(0xC6); /* C6 /0 */
6080   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6081   ins_pipe(ialu_mem_imm);
6082 %}
6083 
6084 // Store Float
6085 instruct storeF(memory mem, regF src)
6086 %{
6087   match(Set mem (StoreF mem src));
6088 
6089   ins_cost(95); // XXX
6090   format %{ "movss   $mem, $src\t# float" %}
6091   ins_encode %{
6092     __ movflt($mem$$Address, $src$$XMMRegister);
6093   %}
6094   ins_pipe(pipe_slow); // XXX
6095 %}
6096 
6097 // Store immediate Float value (it is faster than store from XMM register)
6098 instruct storeF0(memory mem, immF0 zero)
6099 %{
6100   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6101   match(Set mem (StoreF mem zero));
6102 
6103   ins_cost(25); // XXX
6104   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
6105   ins_encode %{
6106     __ movl($mem$$Address, r12);
6107   %}
6108   ins_pipe(ialu_mem_reg);
6109 %}
6110 
6111 instruct storeF_imm(memory mem, immF src)
6112 %{
6113   match(Set mem (StoreF mem src));
6114 
6115   ins_cost(50);
6116   format %{ "movl    $mem, $src\t# float" %}
6117   opcode(0xC7); /* C7 /0 */
6118   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6119   ins_pipe(ialu_mem_imm);
6120 %}
6121 
6122 // Store Double
6123 instruct storeD(memory mem, regD src)
6124 %{
6125   match(Set mem (StoreD mem src));
6126 
6127   ins_cost(95); // XXX
6128   format %{ "movsd   $mem, $src\t# double" %}
6129   ins_encode %{
6130     __ movdbl($mem$$Address, $src$$XMMRegister);
6131   %}
6132   ins_pipe(pipe_slow); // XXX
6133 %}
6134 
6135 // Store immediate double 0.0 (it is faster than store from XMM register)
6136 instruct storeD0_imm(memory mem, immD0 src)
6137 %{
6138   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
6139   match(Set mem (StoreD mem src));
6140 
6141   ins_cost(50);
6142   format %{ "movq    $mem, $src\t# double 0." %}
6143   opcode(0xC7); /* C7 /0 */
6144   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6145   ins_pipe(ialu_mem_imm);
6146 %}
6147 
6148 instruct storeD0(memory mem, immD0 zero)
6149 %{
6150   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
6151   match(Set mem (StoreD mem zero));
6152 
6153   ins_cost(25); // XXX
6154   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
6155   ins_encode %{
6156     __ movq($mem$$Address, r12);
6157   %}
6158   ins_pipe(ialu_mem_reg);
6159 %}
6160 
6161 instruct storeSSI(stackSlotI dst, rRegI src)
6162 %{
6163   match(Set dst src);
6164 
6165   ins_cost(100);
6166   format %{ "movl    $dst, $src\t# int stk" %}
6167   opcode(0x89);
6168   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6169   ins_pipe( ialu_mem_reg );
6170 %}
6171 
6172 instruct storeSSL(stackSlotL dst, rRegL src)
6173 %{
6174   match(Set dst src);
6175 
6176   ins_cost(100);
6177   format %{ "movq    $dst, $src\t# long stk" %}
6178   opcode(0x89);
6179   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6180   ins_pipe(ialu_mem_reg);
6181 %}
6182 
6183 instruct storeSSP(stackSlotP dst, rRegP src)
6184 %{
6185   match(Set dst src);
6186 
6187   ins_cost(100);
6188   format %{ "movq    $dst, $src\t# ptr stk" %}
6189   opcode(0x89);
6190   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6191   ins_pipe(ialu_mem_reg);
6192 %}
6193 
6194 instruct storeSSF(stackSlotF dst, regF src)
6195 %{
6196   match(Set dst src);
6197 
6198   ins_cost(95); // XXX
6199   format %{ "movss   $dst, $src\t# float stk" %}
6200   ins_encode %{
6201     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
6202   %}
6203   ins_pipe(pipe_slow); // XXX
6204 %}
6205 
6206 instruct storeSSD(stackSlotD dst, regD src)
6207 %{
6208   match(Set dst src);
6209 
6210   ins_cost(95); // XXX
6211   format %{ "movsd   $dst, $src\t# double stk" %}
6212   ins_encode %{
6213     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
6214   %}
6215   ins_pipe(pipe_slow); // XXX
6216 %}
6217 
6218 //----------BSWAP Instructions-------------------------------------------------
6219 instruct bytes_reverse_int(rRegI dst) %{
6220   match(Set dst (ReverseBytesI dst));
6221 
6222   format %{ "bswapl  $dst" %}
6223   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
6224   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6225   ins_pipe( ialu_reg );
6226 %}
6227 
6228 instruct bytes_reverse_long(rRegL dst) %{
6229   match(Set dst (ReverseBytesL dst));
6230 
6231   format %{ "bswapq  $dst" %}
6232   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6233   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6234   ins_pipe( ialu_reg);
6235 %}
6236 
6237 instruct bytes_reverse_unsigned_short(rRegI dst, rFlagsReg cr) %{
6238   match(Set dst (ReverseBytesUS dst));
6239   effect(KILL cr);
6240 
6241   format %{ "bswapl  $dst\n\t"
6242             "shrl    $dst,16\n\t" %}
6243   ins_encode %{
6244     __ bswapl($dst$$Register);
6245     __ shrl($dst$$Register, 16);
6246   %}
6247   ins_pipe( ialu_reg );
6248 %}
6249 
6250 instruct bytes_reverse_short(rRegI dst, rFlagsReg cr) %{
6251   match(Set dst (ReverseBytesS dst));
6252   effect(KILL cr);
6253 
6254   format %{ "bswapl  $dst\n\t"
6255             "sar     $dst,16\n\t" %}
6256   ins_encode %{
6257     __ bswapl($dst$$Register);
6258     __ sarl($dst$$Register, 16);
6259   %}
6260   ins_pipe( ialu_reg );
6261 %}
6262 
6263 //---------- Zeros Count Instructions ------------------------------------------
6264 
6265 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6266   predicate(UseCountLeadingZerosInstruction);
6267   match(Set dst (CountLeadingZerosI src));
6268   effect(KILL cr);
6269 
6270   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6271   ins_encode %{
6272     __ lzcntl($dst$$Register, $src$$Register);
6273   %}
6274   ins_pipe(ialu_reg);
6275 %}
6276 
6277 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6278   predicate(!UseCountLeadingZerosInstruction);
6279   match(Set dst (CountLeadingZerosI src));
6280   effect(KILL cr);
6281 
6282   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6283             "jnz     skip\n\t"
6284             "movl    $dst, -1\n"
6285       "skip:\n\t"
6286             "negl    $dst\n\t"
6287             "addl    $dst, 31" %}
6288   ins_encode %{
6289     Register Rdst = $dst$$Register;
6290     Register Rsrc = $src$$Register;
6291     Label skip;
6292     __ bsrl(Rdst, Rsrc);
6293     __ jccb(Assembler::notZero, skip);
6294     __ movl(Rdst, -1);
6295     __ bind(skip);
6296     __ negl(Rdst);
6297     __ addl(Rdst, BitsPerInt - 1);
6298   %}
6299   ins_pipe(ialu_reg);
6300 %}
6301 
6302 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6303   predicate(UseCountLeadingZerosInstruction);
6304   match(Set dst (CountLeadingZerosL src));
6305   effect(KILL cr);
6306 
6307   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6308   ins_encode %{
6309     __ lzcntq($dst$$Register, $src$$Register);
6310   %}
6311   ins_pipe(ialu_reg);
6312 %}
6313 
6314 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6315   predicate(!UseCountLeadingZerosInstruction);
6316   match(Set dst (CountLeadingZerosL src));
6317   effect(KILL cr);
6318 
6319   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6320             "jnz     skip\n\t"
6321             "movl    $dst, -1\n"
6322       "skip:\n\t"
6323             "negl    $dst\n\t"
6324             "addl    $dst, 63" %}
6325   ins_encode %{
6326     Register Rdst = $dst$$Register;
6327     Register Rsrc = $src$$Register;
6328     Label skip;
6329     __ bsrq(Rdst, Rsrc);
6330     __ jccb(Assembler::notZero, skip);
6331     __ movl(Rdst, -1);
6332     __ bind(skip);
6333     __ negl(Rdst);
6334     __ addl(Rdst, BitsPerLong - 1);
6335   %}
6336   ins_pipe(ialu_reg);
6337 %}
6338 
6339 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6340   predicate(UseCountTrailingZerosInstruction);
6341   match(Set dst (CountTrailingZerosI src));
6342   effect(KILL cr);
6343 
6344   format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
6345   ins_encode %{
6346     __ tzcntl($dst$$Register, $src$$Register);
6347   %}
6348   ins_pipe(ialu_reg);
6349 %}
6350 
6351 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, rFlagsReg cr) %{
6352   predicate(!UseCountTrailingZerosInstruction);
6353   match(Set dst (CountTrailingZerosI src));
6354   effect(KILL cr);
6355 
6356   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6357             "jnz     done\n\t"
6358             "movl    $dst, 32\n"
6359       "done:" %}
6360   ins_encode %{
6361     Register Rdst = $dst$$Register;
6362     Label done;
6363     __ bsfl(Rdst, $src$$Register);
6364     __ jccb(Assembler::notZero, done);
6365     __ movl(Rdst, BitsPerInt);
6366     __ bind(done);
6367   %}
6368   ins_pipe(ialu_reg);
6369 %}
6370 
6371 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6372   predicate(UseCountTrailingZerosInstruction);
6373   match(Set dst (CountTrailingZerosL src));
6374   effect(KILL cr);
6375 
6376   format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
6377   ins_encode %{
6378     __ tzcntq($dst$$Register, $src$$Register);
6379   %}
6380   ins_pipe(ialu_reg);
6381 %}
6382 
6383 instruct countTrailingZerosL_bsf(rRegI dst, rRegL src, rFlagsReg cr) %{
6384   predicate(!UseCountTrailingZerosInstruction);
6385   match(Set dst (CountTrailingZerosL src));
6386   effect(KILL cr);
6387 
6388   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6389             "jnz     done\n\t"
6390             "movl    $dst, 64\n"
6391       "done:" %}
6392   ins_encode %{
6393     Register Rdst = $dst$$Register;
6394     Label done;
6395     __ bsfq(Rdst, $src$$Register);
6396     __ jccb(Assembler::notZero, done);
6397     __ movl(Rdst, BitsPerLong);
6398     __ bind(done);
6399   %}
6400   ins_pipe(ialu_reg);
6401 %}
6402 
6403 
6404 //---------- Population Count Instructions -------------------------------------
6405 
6406 instruct popCountI(rRegI dst, rRegI src, rFlagsReg cr) %{
6407   predicate(UsePopCountInstruction);
6408   match(Set dst (PopCountI src));
6409   effect(KILL cr);
6410 
6411   format %{ "popcnt  $dst, $src" %}
6412   ins_encode %{
6413     __ popcntl($dst$$Register, $src$$Register);
6414   %}
6415   ins_pipe(ialu_reg);
6416 %}
6417 
6418 instruct popCountI_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6419   predicate(UsePopCountInstruction);
6420   match(Set dst (PopCountI (LoadI mem)));
6421   effect(KILL cr);
6422 
6423   format %{ "popcnt  $dst, $mem" %}
6424   ins_encode %{
6425     __ popcntl($dst$$Register, $mem$$Address);
6426   %}
6427   ins_pipe(ialu_reg);
6428 %}
6429 
6430 // Note: Long.bitCount(long) returns an int.
6431 instruct popCountL(rRegI dst, rRegL src, rFlagsReg cr) %{
6432   predicate(UsePopCountInstruction);
6433   match(Set dst (PopCountL src));
6434   effect(KILL cr);
6435 
6436   format %{ "popcnt  $dst, $src" %}
6437   ins_encode %{
6438     __ popcntq($dst$$Register, $src$$Register);
6439   %}
6440   ins_pipe(ialu_reg);
6441 %}
6442 
6443 // Note: Long.bitCount(long) returns an int.
6444 instruct popCountL_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6445   predicate(UsePopCountInstruction);
6446   match(Set dst (PopCountL (LoadL mem)));
6447   effect(KILL cr);
6448 
6449   format %{ "popcnt  $dst, $mem" %}
6450   ins_encode %{
6451     __ popcntq($dst$$Register, $mem$$Address);
6452   %}
6453   ins_pipe(ialu_reg);
6454 %}
6455 
6456 
6457 //----------MemBar Instructions-----------------------------------------------
6458 // Memory barrier flavors
6459 
6460 instruct membar_acquire()
6461 %{
6462   match(MemBarAcquire);
6463   match(LoadFence);
6464   ins_cost(0);
6465 
6466   size(0);
6467   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6468   ins_encode();
6469   ins_pipe(empty);
6470 %}
6471 
6472 instruct membar_acquire_lock()
6473 %{
6474   match(MemBarAcquireLock);
6475   ins_cost(0);
6476 
6477   size(0);
6478   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6479   ins_encode();
6480   ins_pipe(empty);
6481 %}
6482 
6483 instruct membar_release()
6484 %{
6485   match(MemBarRelease);
6486   match(StoreFence);
6487   ins_cost(0);
6488 
6489   size(0);
6490   format %{ "MEMBAR-release ! (empty encoding)" %}
6491   ins_encode();
6492   ins_pipe(empty);
6493 %}
6494 
6495 instruct membar_release_lock()
6496 %{
6497   match(MemBarReleaseLock);
6498   ins_cost(0);
6499 
6500   size(0);
6501   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6502   ins_encode();
6503   ins_pipe(empty);
6504 %}
6505 
6506 instruct membar_volatile(rFlagsReg cr) %{
6507   match(MemBarVolatile);
6508   effect(KILL cr);
6509   ins_cost(400);
6510 
6511   format %{
6512     $$template
6513     if (os::is_MP()) {
6514       $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6515     } else {
6516       $$emit$$"MEMBAR-volatile ! (empty encoding)"
6517     }
6518   %}
6519   ins_encode %{
6520     __ membar(Assembler::StoreLoad);
6521   %}
6522   ins_pipe(pipe_slow);
6523 %}
6524 
6525 instruct unnecessary_membar_volatile()
6526 %{
6527   match(MemBarVolatile);
6528   predicate(Matcher::post_store_load_barrier(n));
6529   ins_cost(0);
6530 
6531   size(0);
6532   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6533   ins_encode();
6534   ins_pipe(empty);
6535 %}
6536 
6537 instruct membar_storestore() %{
6538   match(MemBarStoreStore);
6539   ins_cost(0);
6540 
6541   size(0);
6542   format %{ "MEMBAR-storestore (empty encoding)" %}
6543   ins_encode( );
6544   ins_pipe(empty);
6545 %}
6546 
6547 //----------Move Instructions--------------------------------------------------
6548 
6549 instruct castX2P(rRegP dst, rRegL src)
6550 %{
6551   match(Set dst (CastX2P src));
6552 
6553   format %{ "movq    $dst, $src\t# long->ptr" %}
6554   ins_encode %{
6555     if ($dst$$reg != $src$$reg) {
6556       __ movptr($dst$$Register, $src$$Register);
6557     }
6558   %}
6559   ins_pipe(ialu_reg_reg); // XXX
6560 %}
6561 
6562 instruct castN2X(rRegL dst, rRegN src)
6563 %{
6564   match(Set dst (CastP2X src));
6565 
6566   format %{ "movq    $dst, $src\t# ptr -> long" %}
6567   ins_encode %{
6568     if ($dst$$reg != $src$$reg) {
6569       __ movptr($dst$$Register, $src$$Register);
6570     }
6571   %}
6572   ins_pipe(ialu_reg_reg); // XXX
6573 %}
6574 
6575 instruct castP2X(rRegL dst, rRegP src)
6576 %{
6577   match(Set dst (CastP2X src));
6578 
6579   format %{ "movq    $dst, $src\t# ptr -> long" %}
6580   ins_encode %{
6581     if ($dst$$reg != $src$$reg) {
6582       __ movptr($dst$$Register, $src$$Register);
6583     }
6584   %}
6585   ins_pipe(ialu_reg_reg); // XXX
6586 %}
6587 
6588 // Convert oop into int for vectors alignment masking
6589 instruct convP2I(rRegI dst, rRegP src)
6590 %{
6591   match(Set dst (ConvL2I (CastP2X src)));
6592 
6593   format %{ "movl    $dst, $src\t# ptr -> int" %}
6594   ins_encode %{
6595     __ movl($dst$$Register, $src$$Register);
6596   %}
6597   ins_pipe(ialu_reg_reg); // XXX
6598 %}
6599 
6600 // Convert compressed oop into int for vectors alignment masking
6601 // in case of 32bit oops (heap < 4Gb).
6602 instruct convN2I(rRegI dst, rRegN src)
6603 %{
6604   predicate(Universe::narrow_oop_shift() == 0);
6605   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6606 
6607   format %{ "movl    $dst, $src\t# compressed ptr -> int" %}
6608   ins_encode %{
6609     __ movl($dst$$Register, $src$$Register);
6610   %}
6611   ins_pipe(ialu_reg_reg); // XXX
6612 %}
6613 
6614 // Convert oop pointer into compressed form
6615 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6616   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6617   match(Set dst (EncodeP src));
6618   effect(KILL cr);
6619   format %{ "encode_heap_oop $dst,$src" %}
6620   ins_encode %{
6621     Register s = $src$$Register;
6622     Register d = $dst$$Register;
6623     if (s != d) {
6624       __ movq(d, s);
6625     }
6626     __ encode_heap_oop(d);
6627   %}
6628   ins_pipe(ialu_reg_long);
6629 %}
6630 
6631 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6632   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6633   match(Set dst (EncodeP src));
6634   effect(KILL cr);
6635   format %{ "encode_heap_oop_not_null $dst,$src" %}
6636   ins_encode %{
6637     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6638   %}
6639   ins_pipe(ialu_reg_long);
6640 %}
6641 
6642 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6643   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
6644             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
6645   match(Set dst (DecodeN src));
6646   effect(KILL cr);
6647   format %{ "decode_heap_oop $dst,$src" %}
6648   ins_encode %{
6649     Register s = $src$$Register;
6650     Register d = $dst$$Register;
6651     if (s != d) {
6652       __ movq(d, s);
6653     }
6654     __ decode_heap_oop(d);
6655   %}
6656   ins_pipe(ialu_reg_long);
6657 %}
6658 
6659 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6660   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
6661             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
6662   match(Set dst (DecodeN src));
6663   effect(KILL cr);
6664   format %{ "decode_heap_oop_not_null $dst,$src" %}
6665   ins_encode %{
6666     Register s = $src$$Register;
6667     Register d = $dst$$Register;
6668     if (s != d) {
6669       __ decode_heap_oop_not_null(d, s);
6670     } else {
6671       __ decode_heap_oop_not_null(d);
6672     }
6673   %}
6674   ins_pipe(ialu_reg_long);
6675 %}
6676 
6677 instruct encodeKlass_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6678   match(Set dst (EncodePKlass src));
6679   effect(KILL cr);
6680   format %{ "encode_klass_not_null $dst,$src" %}
6681   ins_encode %{
6682     __ encode_klass_not_null($dst$$Register, $src$$Register);
6683   %}
6684   ins_pipe(ialu_reg_long);
6685 %}
6686 
6687 instruct decodeKlass_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6688   match(Set dst (DecodeNKlass src));
6689   effect(KILL cr);
6690   format %{ "decode_klass_not_null $dst,$src" %}
6691   ins_encode %{
6692     Register s = $src$$Register;
6693     Register d = $dst$$Register;
6694     if (s != d) {
6695       __ decode_klass_not_null(d, s);
6696     } else {
6697       __ decode_klass_not_null(d);
6698     }
6699   %}
6700   ins_pipe(ialu_reg_long);
6701 %}
6702 
6703 
6704 //----------Conditional Move---------------------------------------------------
6705 // Jump
6706 // dummy instruction for generating temp registers
6707 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6708   match(Jump (LShiftL switch_val shift));
6709   ins_cost(350);
6710   predicate(false);
6711   effect(TEMP dest);
6712 
6713   format %{ "leaq    $dest, [$constantaddress]\n\t"
6714             "jmp     [$dest + $switch_val << $shift]\n\t" %}
6715   ins_encode %{
6716     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6717     // to do that and the compiler is using that register as one it can allocate.
6718     // So we build it all by hand.
6719     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6720     // ArrayAddress dispatch(table, index);
6721     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6722     __ lea($dest$$Register, $constantaddress);
6723     __ jmp(dispatch);
6724   %}
6725   ins_pipe(pipe_jmp);
6726 %}
6727 
6728 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6729   match(Jump (AddL (LShiftL switch_val shift) offset));
6730   ins_cost(350);
6731   effect(TEMP dest);
6732 
6733   format %{ "leaq    $dest, [$constantaddress]\n\t"
6734             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6735   ins_encode %{
6736     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6737     // to do that and the compiler is using that register as one it can allocate.
6738     // So we build it all by hand.
6739     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6740     // ArrayAddress dispatch(table, index);
6741     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6742     __ lea($dest$$Register, $constantaddress);
6743     __ jmp(dispatch);
6744   %}
6745   ins_pipe(pipe_jmp);
6746 %}
6747 
6748 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6749   match(Jump switch_val);
6750   ins_cost(350);
6751   effect(TEMP dest);
6752 
6753   format %{ "leaq    $dest, [$constantaddress]\n\t"
6754             "jmp     [$dest + $switch_val]\n\t" %}
6755   ins_encode %{
6756     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6757     // to do that and the compiler is using that register as one it can allocate.
6758     // So we build it all by hand.
6759     // Address index(noreg, switch_reg, Address::times_1);
6760     // ArrayAddress dispatch(table, index);
6761     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6762     __ lea($dest$$Register, $constantaddress);
6763     __ jmp(dispatch);
6764   %}
6765   ins_pipe(pipe_jmp);
6766 %}
6767 
6768 // Conditional move
6769 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6770 %{
6771   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6772 
6773   ins_cost(200); // XXX
6774   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6775   opcode(0x0F, 0x40);
6776   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6777   ins_pipe(pipe_cmov_reg);
6778 %}
6779 
6780 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6781   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6782 
6783   ins_cost(200); // XXX
6784   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6785   opcode(0x0F, 0x40);
6786   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6787   ins_pipe(pipe_cmov_reg);
6788 %}
6789 
6790 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6791   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6792   ins_cost(200);
6793   expand %{
6794     cmovI_regU(cop, cr, dst, src);
6795   %}
6796 %}
6797 
6798 // Conditional move
6799 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6800   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6801 
6802   ins_cost(250); // XXX
6803   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6804   opcode(0x0F, 0x40);
6805   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6806   ins_pipe(pipe_cmov_mem);
6807 %}
6808 
6809 // Conditional move
6810 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6811 %{
6812   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6813 
6814   ins_cost(250); // XXX
6815   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6816   opcode(0x0F, 0x40);
6817   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6818   ins_pipe(pipe_cmov_mem);
6819 %}
6820 
6821 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6822   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6823   ins_cost(250);
6824   expand %{
6825     cmovI_memU(cop, cr, dst, src);
6826   %}
6827 %}
6828 
6829 // Conditional move
6830 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6831 %{
6832   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6833 
6834   ins_cost(200); // XXX
6835   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6836   opcode(0x0F, 0x40);
6837   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6838   ins_pipe(pipe_cmov_reg);
6839 %}
6840 
6841 // Conditional move
6842 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6843 %{
6844   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6845 
6846   ins_cost(200); // XXX
6847   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6848   opcode(0x0F, 0x40);
6849   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6850   ins_pipe(pipe_cmov_reg);
6851 %}
6852 
6853 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
6854   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6855   ins_cost(200);
6856   expand %{
6857     cmovN_regU(cop, cr, dst, src);
6858   %}
6859 %}
6860 
6861 // Conditional move
6862 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
6863 %{
6864   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6865 
6866   ins_cost(200); // XXX
6867   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
6868   opcode(0x0F, 0x40);
6869   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6870   ins_pipe(pipe_cmov_reg);  // XXX
6871 %}
6872 
6873 // Conditional move
6874 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
6875 %{
6876   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6877 
6878   ins_cost(200); // XXX
6879   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
6880   opcode(0x0F, 0x40);
6881   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6882   ins_pipe(pipe_cmov_reg); // XXX
6883 %}
6884 
6885 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
6886   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6887   ins_cost(200);
6888   expand %{
6889     cmovP_regU(cop, cr, dst, src);
6890   %}
6891 %}
6892 
6893 // DISABLED: Requires the ADLC to emit a bottom_type call that
6894 // correctly meets the two pointer arguments; one is an incoming
6895 // register but the other is a memory operand.  ALSO appears to
6896 // be buggy with implicit null checks.
6897 //
6898 //// Conditional move
6899 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
6900 //%{
6901 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6902 //  ins_cost(250);
6903 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6904 //  opcode(0x0F,0x40);
6905 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6906 //  ins_pipe( pipe_cmov_mem );
6907 //%}
6908 //
6909 //// Conditional move
6910 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
6911 //%{
6912 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6913 //  ins_cost(250);
6914 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6915 //  opcode(0x0F,0x40);
6916 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6917 //  ins_pipe( pipe_cmov_mem );
6918 //%}
6919 
6920 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
6921 %{
6922   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6923 
6924   ins_cost(200); // XXX
6925   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
6926   opcode(0x0F, 0x40);
6927   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6928   ins_pipe(pipe_cmov_reg);  // XXX
6929 %}
6930 
6931 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
6932 %{
6933   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6934 
6935   ins_cost(200); // XXX
6936   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
6937   opcode(0x0F, 0x40);
6938   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
6939   ins_pipe(pipe_cmov_mem);  // XXX
6940 %}
6941 
6942 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
6943 %{
6944   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6945 
6946   ins_cost(200); // XXX
6947   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
6948   opcode(0x0F, 0x40);
6949   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6950   ins_pipe(pipe_cmov_reg); // XXX
6951 %}
6952 
6953 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
6954   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6955   ins_cost(200);
6956   expand %{
6957     cmovL_regU(cop, cr, dst, src);
6958   %}
6959 %}
6960 
6961 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
6962 %{
6963   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6964 
6965   ins_cost(200); // XXX
6966   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
6967   opcode(0x0F, 0x40);
6968   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
6969   ins_pipe(pipe_cmov_mem); // XXX
6970 %}
6971 
6972 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
6973   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6974   ins_cost(200);
6975   expand %{
6976     cmovL_memU(cop, cr, dst, src);
6977   %}
6978 %}
6979 
6980 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
6981 %{
6982   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6983 
6984   ins_cost(200); // XXX
6985   format %{ "jn$cop    skip\t# signed cmove float\n\t"
6986             "movss     $dst, $src\n"
6987     "skip:" %}
6988   ins_encode %{
6989     Label Lskip;
6990     // Invert sense of branch from sense of CMOV
6991     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6992     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6993     __ bind(Lskip);
6994   %}
6995   ins_pipe(pipe_slow);
6996 %}
6997 
6998 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
6999 // %{
7000 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
7001 
7002 //   ins_cost(200); // XXX
7003 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7004 //             "movss     $dst, $src\n"
7005 //     "skip:" %}
7006 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
7007 //   ins_pipe(pipe_slow);
7008 // %}
7009 
7010 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
7011 %{
7012   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7013 
7014   ins_cost(200); // XXX
7015   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
7016             "movss     $dst, $src\n"
7017     "skip:" %}
7018   ins_encode %{
7019     Label Lskip;
7020     // Invert sense of branch from sense of CMOV
7021     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7022     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7023     __ bind(Lskip);
7024   %}
7025   ins_pipe(pipe_slow);
7026 %}
7027 
7028 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
7029   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7030   ins_cost(200);
7031   expand %{
7032     cmovF_regU(cop, cr, dst, src);
7033   %}
7034 %}
7035 
7036 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
7037 %{
7038   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7039 
7040   ins_cost(200); // XXX
7041   format %{ "jn$cop    skip\t# signed cmove double\n\t"
7042             "movsd     $dst, $src\n"
7043     "skip:" %}
7044   ins_encode %{
7045     Label Lskip;
7046     // Invert sense of branch from sense of CMOV
7047     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7048     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7049     __ bind(Lskip);
7050   %}
7051   ins_pipe(pipe_slow);
7052 %}
7053 
7054 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
7055 %{
7056   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7057 
7058   ins_cost(200); // XXX
7059   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
7060             "movsd     $dst, $src\n"
7061     "skip:" %}
7062   ins_encode %{
7063     Label Lskip;
7064     // Invert sense of branch from sense of CMOV
7065     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7066     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7067     __ bind(Lskip);
7068   %}
7069   ins_pipe(pipe_slow);
7070 %}
7071 
7072 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
7073   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7074   ins_cost(200);
7075   expand %{
7076     cmovD_regU(cop, cr, dst, src);
7077   %}
7078 %}
7079 
7080 //----------Arithmetic Instructions--------------------------------------------
7081 //----------Addition Instructions----------------------------------------------
7082 
7083 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7084 %{
7085   match(Set dst (AddI dst src));
7086   effect(KILL cr);
7087 
7088   format %{ "addl    $dst, $src\t# int" %}
7089   opcode(0x03);
7090   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7091   ins_pipe(ialu_reg_reg);
7092 %}
7093 
7094 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7095 %{
7096   match(Set dst (AddI dst src));
7097   effect(KILL cr);
7098 
7099   format %{ "addl    $dst, $src\t# int" %}
7100   opcode(0x81, 0x00); /* /0 id */
7101   ins_encode(OpcSErm(dst, src), Con8or32(src));
7102   ins_pipe( ialu_reg );
7103 %}
7104 
7105 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7106 %{
7107   match(Set dst (AddI dst (LoadI src)));
7108   effect(KILL cr);
7109 
7110   ins_cost(125); // XXX
7111   format %{ "addl    $dst, $src\t# int" %}
7112   opcode(0x03);
7113   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7114   ins_pipe(ialu_reg_mem);
7115 %}
7116 
7117 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7118 %{
7119   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7120   effect(KILL cr);
7121 
7122   ins_cost(150); // XXX
7123   format %{ "addl    $dst, $src\t# int" %}
7124   opcode(0x01); /* Opcode 01 /r */
7125   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7126   ins_pipe(ialu_mem_reg);
7127 %}
7128 
7129 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
7130 %{
7131   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7132   effect(KILL cr);
7133 
7134   ins_cost(125); // XXX
7135   format %{ "addl    $dst, $src\t# int" %}
7136   opcode(0x81); /* Opcode 81 /0 id */
7137   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7138   ins_pipe(ialu_mem_imm);
7139 %}
7140 
7141 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
7142 %{
7143   predicate(UseIncDec);
7144   match(Set dst (AddI dst src));
7145   effect(KILL cr);
7146 
7147   format %{ "incl    $dst\t# int" %}
7148   opcode(0xFF, 0x00); // FF /0
7149   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7150   ins_pipe(ialu_reg);
7151 %}
7152 
7153 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
7154 %{
7155   predicate(UseIncDec);
7156   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7157   effect(KILL cr);
7158 
7159   ins_cost(125); // XXX
7160   format %{ "incl    $dst\t# int" %}
7161   opcode(0xFF); /* Opcode FF /0 */
7162   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
7163   ins_pipe(ialu_mem_imm);
7164 %}
7165 
7166 // XXX why does that use AddI
7167 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
7168 %{
7169   predicate(UseIncDec);
7170   match(Set dst (AddI dst src));
7171   effect(KILL cr);
7172 
7173   format %{ "decl    $dst\t# int" %}
7174   opcode(0xFF, 0x01); // FF /1
7175   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7176   ins_pipe(ialu_reg);
7177 %}
7178 
7179 // XXX why does that use AddI
7180 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
7181 %{
7182   predicate(UseIncDec);
7183   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7184   effect(KILL cr);
7185 
7186   ins_cost(125); // XXX
7187   format %{ "decl    $dst\t# int" %}
7188   opcode(0xFF); /* Opcode FF /1 */
7189   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
7190   ins_pipe(ialu_mem_imm);
7191 %}
7192 
7193 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
7194 %{
7195   match(Set dst (AddI src0 src1));
7196 
7197   ins_cost(110);
7198   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
7199   opcode(0x8D); /* 0x8D /r */
7200   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7201   ins_pipe(ialu_reg_reg);
7202 %}
7203 
7204 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7205 %{
7206   match(Set dst (AddL dst src));
7207   effect(KILL cr);
7208 
7209   format %{ "addq    $dst, $src\t# long" %}
7210   opcode(0x03);
7211   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7212   ins_pipe(ialu_reg_reg);
7213 %}
7214 
7215 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7216 %{
7217   match(Set dst (AddL dst src));
7218   effect(KILL cr);
7219 
7220   format %{ "addq    $dst, $src\t# long" %}
7221   opcode(0x81, 0x00); /* /0 id */
7222   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7223   ins_pipe( ialu_reg );
7224 %}
7225 
7226 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7227 %{
7228   match(Set dst (AddL dst (LoadL src)));
7229   effect(KILL cr);
7230 
7231   ins_cost(125); // XXX
7232   format %{ "addq    $dst, $src\t# long" %}
7233   opcode(0x03);
7234   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7235   ins_pipe(ialu_reg_mem);
7236 %}
7237 
7238 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7239 %{
7240   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7241   effect(KILL cr);
7242 
7243   ins_cost(150); // XXX
7244   format %{ "addq    $dst, $src\t# long" %}
7245   opcode(0x01); /* Opcode 01 /r */
7246   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7247   ins_pipe(ialu_mem_reg);
7248 %}
7249 
7250 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7251 %{
7252   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7253   effect(KILL cr);
7254 
7255   ins_cost(125); // XXX
7256   format %{ "addq    $dst, $src\t# long" %}
7257   opcode(0x81); /* Opcode 81 /0 id */
7258   ins_encode(REX_mem_wide(dst),
7259              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7260   ins_pipe(ialu_mem_imm);
7261 %}
7262 
7263 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7264 %{
7265   predicate(UseIncDec);
7266   match(Set dst (AddL dst src));
7267   effect(KILL cr);
7268 
7269   format %{ "incq    $dst\t# long" %}
7270   opcode(0xFF, 0x00); // FF /0
7271   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7272   ins_pipe(ialu_reg);
7273 %}
7274 
7275 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7276 %{
7277   predicate(UseIncDec);
7278   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7279   effect(KILL cr);
7280 
7281   ins_cost(125); // XXX
7282   format %{ "incq    $dst\t# long" %}
7283   opcode(0xFF); /* Opcode FF /0 */
7284   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7285   ins_pipe(ialu_mem_imm);
7286 %}
7287 
7288 // XXX why does that use AddL
7289 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7290 %{
7291   predicate(UseIncDec);
7292   match(Set dst (AddL dst src));
7293   effect(KILL cr);
7294 
7295   format %{ "decq    $dst\t# long" %}
7296   opcode(0xFF, 0x01); // FF /1
7297   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7298   ins_pipe(ialu_reg);
7299 %}
7300 
7301 // XXX why does that use AddL
7302 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7303 %{
7304   predicate(UseIncDec);
7305   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7306   effect(KILL cr);
7307 
7308   ins_cost(125); // XXX
7309   format %{ "decq    $dst\t# long" %}
7310   opcode(0xFF); /* Opcode FF /1 */
7311   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7312   ins_pipe(ialu_mem_imm);
7313 %}
7314 
7315 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7316 %{
7317   match(Set dst (AddL src0 src1));
7318 
7319   ins_cost(110);
7320   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7321   opcode(0x8D); /* 0x8D /r */
7322   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7323   ins_pipe(ialu_reg_reg);
7324 %}
7325 
7326 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7327 %{
7328   match(Set dst (AddP dst src));
7329   effect(KILL cr);
7330 
7331   format %{ "addq    $dst, $src\t# ptr" %}
7332   opcode(0x03);
7333   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7334   ins_pipe(ialu_reg_reg);
7335 %}
7336 
7337 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7338 %{
7339   match(Set dst (AddP dst src));
7340   effect(KILL cr);
7341 
7342   format %{ "addq    $dst, $src\t# ptr" %}
7343   opcode(0x81, 0x00); /* /0 id */
7344   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7345   ins_pipe( ialu_reg );
7346 %}
7347 
7348 // XXX addP mem ops ????
7349 
7350 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7351 %{
7352   match(Set dst (AddP src0 src1));
7353 
7354   ins_cost(110);
7355   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7356   opcode(0x8D); /* 0x8D /r */
7357   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7358   ins_pipe(ialu_reg_reg);
7359 %}
7360 
7361 instruct checkCastPP(rRegP dst)
7362 %{
7363   match(Set dst (CheckCastPP dst));
7364 
7365   size(0);
7366   format %{ "# checkcastPP of $dst" %}
7367   ins_encode(/* empty encoding */);
7368   ins_pipe(empty);
7369 %}
7370 
7371 instruct castPP(rRegP dst)
7372 %{
7373   match(Set dst (CastPP dst));
7374 
7375   size(0);
7376   format %{ "# castPP of $dst" %}
7377   ins_encode(/* empty encoding */);
7378   ins_pipe(empty);
7379 %}
7380 
7381 instruct castII(rRegI dst)
7382 %{
7383   match(Set dst (CastII dst));
7384 
7385   size(0);
7386   format %{ "# castII of $dst" %}
7387   ins_encode(/* empty encoding */);
7388   ins_cost(0);
7389   ins_pipe(empty);
7390 %}
7391 
7392 // LoadP-locked same as a regular LoadP when used with compare-swap
7393 instruct loadPLocked(rRegP dst, memory mem)
7394 %{
7395   match(Set dst (LoadPLocked mem));
7396 
7397   ins_cost(125); // XXX
7398   format %{ "movq    $dst, $mem\t# ptr locked" %}
7399   opcode(0x8B);
7400   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7401   ins_pipe(ialu_reg_mem); // XXX
7402 %}
7403 
7404 // Conditional-store of the updated heap-top.
7405 // Used during allocation of the shared heap.
7406 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7407 
7408 instruct storePConditional(memory heap_top_ptr,
7409                            rax_RegP oldval, rRegP newval,
7410                            rFlagsReg cr)
7411 %{
7412   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7413 
7414   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7415             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7416   opcode(0x0F, 0xB1);
7417   ins_encode(lock_prefix,
7418              REX_reg_mem_wide(newval, heap_top_ptr),
7419              OpcP, OpcS,
7420              reg_mem(newval, heap_top_ptr));
7421   ins_pipe(pipe_cmpxchg);
7422 %}
7423 
7424 // Conditional-store of an int value.
7425 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7426 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7427 %{
7428   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7429   effect(KILL oldval);
7430 
7431   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7432   opcode(0x0F, 0xB1);
7433   ins_encode(lock_prefix,
7434              REX_reg_mem(newval, mem),
7435              OpcP, OpcS,
7436              reg_mem(newval, mem));
7437   ins_pipe(pipe_cmpxchg);
7438 %}
7439 
7440 // Conditional-store of a long value.
7441 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7442 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7443 %{
7444   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7445   effect(KILL oldval);
7446 
7447   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7448   opcode(0x0F, 0xB1);
7449   ins_encode(lock_prefix,
7450              REX_reg_mem_wide(newval, mem),
7451              OpcP, OpcS,
7452              reg_mem(newval, mem));
7453   ins_pipe(pipe_cmpxchg);
7454 %}
7455 
7456 
7457 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7458 instruct compareAndSwapP(rRegI res,
7459                          memory mem_ptr,
7460                          rax_RegP oldval, rRegP newval,
7461                          rFlagsReg cr)
7462 %{
7463   predicate(VM_Version::supports_cx8());
7464   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7465   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
7466   effect(KILL cr, KILL oldval);
7467 
7468   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7469             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7470             "sete    $res\n\t"
7471             "movzbl  $res, $res" %}
7472   opcode(0x0F, 0xB1);
7473   ins_encode(lock_prefix,
7474              REX_reg_mem_wide(newval, mem_ptr),
7475              OpcP, OpcS,
7476              reg_mem(newval, mem_ptr),
7477              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7478              REX_reg_breg(res, res), // movzbl
7479              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7480   ins_pipe( pipe_cmpxchg );
7481 %}
7482 
7483 instruct compareAndSwapL(rRegI res,
7484                          memory mem_ptr,
7485                          rax_RegL oldval, rRegL newval,
7486                          rFlagsReg cr)
7487 %{
7488   predicate(VM_Version::supports_cx8());
7489   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7490   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
7491   effect(KILL cr, KILL oldval);
7492 
7493   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7494             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7495             "sete    $res\n\t"
7496             "movzbl  $res, $res" %}
7497   opcode(0x0F, 0xB1);
7498   ins_encode(lock_prefix,
7499              REX_reg_mem_wide(newval, mem_ptr),
7500              OpcP, OpcS,
7501              reg_mem(newval, mem_ptr),
7502              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7503              REX_reg_breg(res, res), // movzbl
7504              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7505   ins_pipe( pipe_cmpxchg );
7506 %}
7507 
7508 instruct compareAndSwapI(rRegI res,
7509                          memory mem_ptr,
7510                          rax_RegI oldval, rRegI newval,
7511                          rFlagsReg cr)
7512 %{
7513   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7514   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
7515   effect(KILL cr, KILL oldval);
7516 
7517   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7518             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7519             "sete    $res\n\t"
7520             "movzbl  $res, $res" %}
7521   opcode(0x0F, 0xB1);
7522   ins_encode(lock_prefix,
7523              REX_reg_mem(newval, mem_ptr),
7524              OpcP, OpcS,
7525              reg_mem(newval, mem_ptr),
7526              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7527              REX_reg_breg(res, res), // movzbl
7528              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7529   ins_pipe( pipe_cmpxchg );
7530 %}
7531 
7532 instruct compareAndSwapB(rRegI res,
7533                          memory mem_ptr,
7534                          rax_RegI oldval, rRegI newval,
7535                          rFlagsReg cr)
7536 %{
7537   match(Set res (CompareAndSwapB mem_ptr (Binary oldval newval)));
7538   match(Set res (WeakCompareAndSwapB mem_ptr (Binary oldval newval)));
7539   effect(KILL cr, KILL oldval);
7540 
7541   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7542             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7543             "sete    $res\n\t"
7544             "movzbl  $res, $res" %}
7545   opcode(0x0F, 0xB0);
7546   ins_encode(lock_prefix,
7547              REX_breg_mem(newval, mem_ptr),
7548              OpcP, OpcS,
7549              reg_mem(newval, mem_ptr),
7550              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7551              REX_reg_breg(res, res), // movzbl
7552              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7553   ins_pipe( pipe_cmpxchg );
7554 %}
7555 
7556 instruct compareAndSwapS(rRegI res,
7557                          memory mem_ptr,
7558                          rax_RegI oldval, rRegI newval,
7559                          rFlagsReg cr)
7560 %{
7561   match(Set res (CompareAndSwapS mem_ptr (Binary oldval newval)));
7562   match(Set res (WeakCompareAndSwapS mem_ptr (Binary oldval newval)));
7563   effect(KILL cr, KILL oldval);
7564 
7565   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7566             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7567             "sete    $res\n\t"
7568             "movzbl  $res, $res" %}
7569   opcode(0x0F, 0xB1);
7570   ins_encode(lock_prefix,
7571              SizePrefix,
7572              REX_reg_mem(newval, mem_ptr),
7573              OpcP, OpcS,
7574              reg_mem(newval, mem_ptr),
7575              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7576              REX_reg_breg(res, res), // movzbl
7577              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7578   ins_pipe( pipe_cmpxchg );
7579 %}
7580 
7581 instruct compareAndSwapN(rRegI res,
7582                           memory mem_ptr,
7583                           rax_RegN oldval, rRegN newval,
7584                           rFlagsReg cr) %{
7585   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7586   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
7587   effect(KILL cr, KILL oldval);
7588 
7589   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7590             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7591             "sete    $res\n\t"
7592             "movzbl  $res, $res" %}
7593   opcode(0x0F, 0xB1);
7594   ins_encode(lock_prefix,
7595              REX_reg_mem(newval, mem_ptr),
7596              OpcP, OpcS,
7597              reg_mem(newval, mem_ptr),
7598              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7599              REX_reg_breg(res, res), // movzbl
7600              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7601   ins_pipe( pipe_cmpxchg );
7602 %}
7603 
7604 instruct compareAndExchangeB(
7605                          memory mem_ptr,
7606                          rax_RegI oldval, rRegI newval,
7607                          rFlagsReg cr)
7608 %{
7609   match(Set oldval (CompareAndExchangeB mem_ptr (Binary oldval newval)));
7610   effect(KILL cr);
7611 
7612   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7613             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7614   opcode(0x0F, 0xB0);
7615   ins_encode(lock_prefix,
7616              REX_breg_mem(newval, mem_ptr),
7617              OpcP, OpcS,
7618              reg_mem(newval, mem_ptr) // lock cmpxchg
7619              );
7620   ins_pipe( pipe_cmpxchg );
7621 %}
7622 
7623 instruct compareAndExchangeS(
7624                          memory mem_ptr,
7625                          rax_RegI oldval, rRegI newval,
7626                          rFlagsReg cr)
7627 %{
7628   match(Set oldval (CompareAndExchangeS mem_ptr (Binary oldval newval)));
7629   effect(KILL cr);
7630 
7631   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7632             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7633   opcode(0x0F, 0xB1);
7634   ins_encode(lock_prefix,
7635              SizePrefix,
7636              REX_reg_mem(newval, mem_ptr),
7637              OpcP, OpcS,
7638              reg_mem(newval, mem_ptr) // lock cmpxchg
7639              );
7640   ins_pipe( pipe_cmpxchg );
7641 %}
7642 
7643 instruct compareAndExchangeI(
7644                          memory mem_ptr,
7645                          rax_RegI oldval, rRegI newval,
7646                          rFlagsReg cr)
7647 %{
7648   match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
7649   effect(KILL cr);
7650 
7651   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7652             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7653   opcode(0x0F, 0xB1);
7654   ins_encode(lock_prefix,
7655              REX_reg_mem(newval, mem_ptr),
7656              OpcP, OpcS,
7657              reg_mem(newval, mem_ptr) // lock cmpxchg
7658              );
7659   ins_pipe( pipe_cmpxchg );
7660 %}
7661 
7662 instruct compareAndExchangeL(
7663                          memory mem_ptr,
7664                          rax_RegL oldval, rRegL newval,
7665                          rFlagsReg cr)
7666 %{
7667   predicate(VM_Version::supports_cx8());
7668   match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
7669   effect(KILL cr);
7670 
7671   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7672             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7673   opcode(0x0F, 0xB1);
7674   ins_encode(lock_prefix,
7675              REX_reg_mem_wide(newval, mem_ptr),
7676              OpcP, OpcS,
7677              reg_mem(newval, mem_ptr)  // lock cmpxchg
7678             );
7679   ins_pipe( pipe_cmpxchg );
7680 %}
7681 
7682 instruct compareAndExchangeN(
7683                           memory mem_ptr,
7684                           rax_RegN oldval, rRegN newval,
7685                           rFlagsReg cr) %{
7686   match(Set oldval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
7687   effect(KILL cr);
7688 
7689   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7690             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7691   opcode(0x0F, 0xB1);
7692   ins_encode(lock_prefix,
7693              REX_reg_mem(newval, mem_ptr),
7694              OpcP, OpcS,
7695              reg_mem(newval, mem_ptr)  // lock cmpxchg
7696           );
7697   ins_pipe( pipe_cmpxchg );
7698 %}
7699 
7700 instruct compareAndExchangeP(
7701                          memory mem_ptr,
7702                          rax_RegP oldval, rRegP newval,
7703                          rFlagsReg cr)
7704 %{
7705   predicate(VM_Version::supports_cx8());
7706   match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
7707   effect(KILL cr);
7708 
7709   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7710             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7711   opcode(0x0F, 0xB1);
7712   ins_encode(lock_prefix,
7713              REX_reg_mem_wide(newval, mem_ptr),
7714              OpcP, OpcS,
7715              reg_mem(newval, mem_ptr)  // lock cmpxchg
7716           );
7717   ins_pipe( pipe_cmpxchg );
7718 %}
7719 
7720 instruct xaddB_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7721   predicate(n->as_LoadStore()->result_not_used());
7722   match(Set dummy (GetAndAddB mem add));
7723   effect(KILL cr);
7724   format %{ "ADDB  [$mem],$add" %}
7725   ins_encode %{
7726     if (os::is_MP()) { __ lock(); }
7727     __ addb($mem$$Address, $add$$constant);
7728   %}
7729   ins_pipe( pipe_cmpxchg );
7730 %}
7731 
7732 instruct xaddB( memory mem, rRegI newval, rFlagsReg cr) %{
7733   match(Set newval (GetAndAddB mem newval));
7734   effect(KILL cr);
7735   format %{ "XADDB  [$mem],$newval" %}
7736   ins_encode %{
7737     if (os::is_MP()) { __ lock(); }
7738     __ xaddb($mem$$Address, $newval$$Register);
7739   %}
7740   ins_pipe( pipe_cmpxchg );
7741 %}
7742 
7743 instruct xaddS_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7744   predicate(n->as_LoadStore()->result_not_used());
7745   match(Set dummy (GetAndAddS mem add));
7746   effect(KILL cr);
7747   format %{ "ADDW  [$mem],$add" %}
7748   ins_encode %{
7749     if (os::is_MP()) { __ lock(); }
7750     __ addw($mem$$Address, $add$$constant);
7751   %}
7752   ins_pipe( pipe_cmpxchg );
7753 %}
7754 
7755 instruct xaddS( memory mem, rRegI newval, rFlagsReg cr) %{
7756   match(Set newval (GetAndAddS mem newval));
7757   effect(KILL cr);
7758   format %{ "XADDW  [$mem],$newval" %}
7759   ins_encode %{
7760     if (os::is_MP()) { __ lock(); }
7761     __ xaddw($mem$$Address, $newval$$Register);
7762   %}
7763   ins_pipe( pipe_cmpxchg );
7764 %}
7765 
7766 instruct xaddI_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7767   predicate(n->as_LoadStore()->result_not_used());
7768   match(Set dummy (GetAndAddI mem add));
7769   effect(KILL cr);
7770   format %{ "ADDL  [$mem],$add" %}
7771   ins_encode %{
7772     if (os::is_MP()) { __ lock(); }
7773     __ addl($mem$$Address, $add$$constant);
7774   %}
7775   ins_pipe( pipe_cmpxchg );
7776 %}
7777 
7778 instruct xaddI( memory mem, rRegI newval, rFlagsReg cr) %{
7779   match(Set newval (GetAndAddI mem newval));
7780   effect(KILL cr);
7781   format %{ "XADDL  [$mem],$newval" %}
7782   ins_encode %{
7783     if (os::is_MP()) { __ lock(); }
7784     __ xaddl($mem$$Address, $newval$$Register);
7785   %}
7786   ins_pipe( pipe_cmpxchg );
7787 %}
7788 
7789 instruct xaddL_no_res( memory mem, Universe dummy, immL32 add, rFlagsReg cr) %{
7790   predicate(n->as_LoadStore()->result_not_used());
7791   match(Set dummy (GetAndAddL mem add));
7792   effect(KILL cr);
7793   format %{ "ADDQ  [$mem],$add" %}
7794   ins_encode %{
7795     if (os::is_MP()) { __ lock(); }
7796     __ addq($mem$$Address, $add$$constant);
7797   %}
7798   ins_pipe( pipe_cmpxchg );
7799 %}
7800 
7801 instruct xaddL( memory mem, rRegL newval, rFlagsReg cr) %{
7802   match(Set newval (GetAndAddL mem newval));
7803   effect(KILL cr);
7804   format %{ "XADDQ  [$mem],$newval" %}
7805   ins_encode %{
7806     if (os::is_MP()) { __ lock(); }
7807     __ xaddq($mem$$Address, $newval$$Register);
7808   %}
7809   ins_pipe( pipe_cmpxchg );
7810 %}
7811 
7812 instruct xchgB( memory mem, rRegI newval) %{
7813   match(Set newval (GetAndSetB mem newval));
7814   format %{ "XCHGB  $newval,[$mem]" %}
7815   ins_encode %{
7816     __ xchgb($newval$$Register, $mem$$Address);
7817   %}
7818   ins_pipe( pipe_cmpxchg );
7819 %}
7820 
7821 instruct xchgS( memory mem, rRegI newval) %{
7822   match(Set newval (GetAndSetS mem newval));
7823   format %{ "XCHGW  $newval,[$mem]" %}
7824   ins_encode %{
7825     __ xchgw($newval$$Register, $mem$$Address);
7826   %}
7827   ins_pipe( pipe_cmpxchg );
7828 %}
7829 
7830 instruct xchgI( memory mem, rRegI newval) %{
7831   match(Set newval (GetAndSetI mem newval));
7832   format %{ "XCHGL  $newval,[$mem]" %}
7833   ins_encode %{
7834     __ xchgl($newval$$Register, $mem$$Address);
7835   %}
7836   ins_pipe( pipe_cmpxchg );
7837 %}
7838 
7839 instruct xchgL( memory mem, rRegL newval) %{
7840   match(Set newval (GetAndSetL mem newval));
7841   format %{ "XCHGL  $newval,[$mem]" %}
7842   ins_encode %{
7843     __ xchgq($newval$$Register, $mem$$Address);
7844   %}
7845   ins_pipe( pipe_cmpxchg );
7846 %}
7847 
7848 instruct xchgP( memory mem, rRegP newval) %{
7849   match(Set newval (GetAndSetP mem newval));
7850   format %{ "XCHGQ  $newval,[$mem]" %}
7851   ins_encode %{
7852     __ xchgq($newval$$Register, $mem$$Address);
7853   %}
7854   ins_pipe( pipe_cmpxchg );
7855 %}
7856 
7857 instruct xchgN( memory mem, rRegN newval) %{
7858   match(Set newval (GetAndSetN mem newval));
7859   format %{ "XCHGL  $newval,$mem]" %}
7860   ins_encode %{
7861     __ xchgl($newval$$Register, $mem$$Address);
7862   %}
7863   ins_pipe( pipe_cmpxchg );
7864 %}
7865 
7866 //----------Subtraction Instructions-------------------------------------------
7867 
7868 // Integer Subtraction Instructions
7869 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7870 %{
7871   match(Set dst (SubI dst src));
7872   effect(KILL cr);
7873 
7874   format %{ "subl    $dst, $src\t# int" %}
7875   opcode(0x2B);
7876   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7877   ins_pipe(ialu_reg_reg);
7878 %}
7879 
7880 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7881 %{
7882   match(Set dst (SubI dst src));
7883   effect(KILL cr);
7884 
7885   format %{ "subl    $dst, $src\t# int" %}
7886   opcode(0x81, 0x05);  /* Opcode 81 /5 */
7887   ins_encode(OpcSErm(dst, src), Con8or32(src));
7888   ins_pipe(ialu_reg);
7889 %}
7890 
7891 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7892 %{
7893   match(Set dst (SubI dst (LoadI src)));
7894   effect(KILL cr);
7895 
7896   ins_cost(125);
7897   format %{ "subl    $dst, $src\t# int" %}
7898   opcode(0x2B);
7899   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7900   ins_pipe(ialu_reg_mem);
7901 %}
7902 
7903 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7904 %{
7905   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7906   effect(KILL cr);
7907 
7908   ins_cost(150);
7909   format %{ "subl    $dst, $src\t# int" %}
7910   opcode(0x29); /* Opcode 29 /r */
7911   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7912   ins_pipe(ialu_mem_reg);
7913 %}
7914 
7915 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
7916 %{
7917   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7918   effect(KILL cr);
7919 
7920   ins_cost(125); // XXX
7921   format %{ "subl    $dst, $src\t# int" %}
7922   opcode(0x81); /* Opcode 81 /5 id */
7923   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7924   ins_pipe(ialu_mem_imm);
7925 %}
7926 
7927 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7928 %{
7929   match(Set dst (SubL dst src));
7930   effect(KILL cr);
7931 
7932   format %{ "subq    $dst, $src\t# long" %}
7933   opcode(0x2B);
7934   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7935   ins_pipe(ialu_reg_reg);
7936 %}
7937 
7938 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
7939 %{
7940   match(Set dst (SubL dst src));
7941   effect(KILL cr);
7942 
7943   format %{ "subq    $dst, $src\t# long" %}
7944   opcode(0x81, 0x05);  /* Opcode 81 /5 */
7945   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7946   ins_pipe(ialu_reg);
7947 %}
7948 
7949 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7950 %{
7951   match(Set dst (SubL dst (LoadL src)));
7952   effect(KILL cr);
7953 
7954   ins_cost(125);
7955   format %{ "subq    $dst, $src\t# long" %}
7956   opcode(0x2B);
7957   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7958   ins_pipe(ialu_reg_mem);
7959 %}
7960 
7961 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7962 %{
7963   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7964   effect(KILL cr);
7965 
7966   ins_cost(150);
7967   format %{ "subq    $dst, $src\t# long" %}
7968   opcode(0x29); /* Opcode 29 /r */
7969   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7970   ins_pipe(ialu_mem_reg);
7971 %}
7972 
7973 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7974 %{
7975   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7976   effect(KILL cr);
7977 
7978   ins_cost(125); // XXX
7979   format %{ "subq    $dst, $src\t# long" %}
7980   opcode(0x81); /* Opcode 81 /5 id */
7981   ins_encode(REX_mem_wide(dst),
7982              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7983   ins_pipe(ialu_mem_imm);
7984 %}
7985 
7986 // Subtract from a pointer
7987 // XXX hmpf???
7988 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
7989 %{
7990   match(Set dst (AddP dst (SubI zero src)));
7991   effect(KILL cr);
7992 
7993   format %{ "subq    $dst, $src\t# ptr - int" %}
7994   opcode(0x2B);
7995   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7996   ins_pipe(ialu_reg_reg);
7997 %}
7998 
7999 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
8000 %{
8001   match(Set dst (SubI zero dst));
8002   effect(KILL cr);
8003 
8004   format %{ "negl    $dst\t# int" %}
8005   opcode(0xF7, 0x03);  // Opcode F7 /3
8006   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8007   ins_pipe(ialu_reg);
8008 %}
8009 
8010 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
8011 %{
8012   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
8013   effect(KILL cr);
8014 
8015   format %{ "negl    $dst\t# int" %}
8016   opcode(0xF7, 0x03);  // Opcode F7 /3
8017   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8018   ins_pipe(ialu_reg);
8019 %}
8020 
8021 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
8022 %{
8023   match(Set dst (SubL zero dst));
8024   effect(KILL cr);
8025 
8026   format %{ "negq    $dst\t# long" %}
8027   opcode(0xF7, 0x03);  // Opcode F7 /3
8028   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8029   ins_pipe(ialu_reg);
8030 %}
8031 
8032 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
8033 %{
8034   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
8035   effect(KILL cr);
8036 
8037   format %{ "negq    $dst\t# long" %}
8038   opcode(0xF7, 0x03);  // Opcode F7 /3
8039   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8040   ins_pipe(ialu_reg);
8041 %}
8042 
8043 //----------Multiplication/Division Instructions-------------------------------
8044 // Integer Multiplication Instructions
8045 // Multiply Register
8046 
8047 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8048 %{
8049   match(Set dst (MulI dst src));
8050   effect(KILL cr);
8051 
8052   ins_cost(300);
8053   format %{ "imull   $dst, $src\t# int" %}
8054   opcode(0x0F, 0xAF);
8055   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8056   ins_pipe(ialu_reg_reg_alu0);
8057 %}
8058 
8059 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
8060 %{
8061   match(Set dst (MulI src imm));
8062   effect(KILL cr);
8063 
8064   ins_cost(300);
8065   format %{ "imull   $dst, $src, $imm\t# int" %}
8066   opcode(0x69); /* 69 /r id */
8067   ins_encode(REX_reg_reg(dst, src),
8068              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8069   ins_pipe(ialu_reg_reg_alu0);
8070 %}
8071 
8072 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
8073 %{
8074   match(Set dst (MulI dst (LoadI src)));
8075   effect(KILL cr);
8076 
8077   ins_cost(350);
8078   format %{ "imull   $dst, $src\t# int" %}
8079   opcode(0x0F, 0xAF);
8080   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
8081   ins_pipe(ialu_reg_mem_alu0);
8082 %}
8083 
8084 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
8085 %{
8086   match(Set dst (MulI (LoadI src) imm));
8087   effect(KILL cr);
8088 
8089   ins_cost(300);
8090   format %{ "imull   $dst, $src, $imm\t# int" %}
8091   opcode(0x69); /* 69 /r id */
8092   ins_encode(REX_reg_mem(dst, src),
8093              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8094   ins_pipe(ialu_reg_mem_alu0);
8095 %}
8096 
8097 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8098 %{
8099   match(Set dst (MulL dst src));
8100   effect(KILL cr);
8101 
8102   ins_cost(300);
8103   format %{ "imulq   $dst, $src\t# long" %}
8104   opcode(0x0F, 0xAF);
8105   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
8106   ins_pipe(ialu_reg_reg_alu0);
8107 %}
8108 
8109 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
8110 %{
8111   match(Set dst (MulL src imm));
8112   effect(KILL cr);
8113 
8114   ins_cost(300);
8115   format %{ "imulq   $dst, $src, $imm\t# long" %}
8116   opcode(0x69); /* 69 /r id */
8117   ins_encode(REX_reg_reg_wide(dst, src),
8118              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8119   ins_pipe(ialu_reg_reg_alu0);
8120 %}
8121 
8122 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
8123 %{
8124   match(Set dst (MulL dst (LoadL src)));
8125   effect(KILL cr);
8126 
8127   ins_cost(350);
8128   format %{ "imulq   $dst, $src\t# long" %}
8129   opcode(0x0F, 0xAF);
8130   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
8131   ins_pipe(ialu_reg_mem_alu0);
8132 %}
8133 
8134 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
8135 %{
8136   match(Set dst (MulL (LoadL src) imm));
8137   effect(KILL cr);
8138 
8139   ins_cost(300);
8140   format %{ "imulq   $dst, $src, $imm\t# long" %}
8141   opcode(0x69); /* 69 /r id */
8142   ins_encode(REX_reg_mem_wide(dst, src),
8143              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8144   ins_pipe(ialu_reg_mem_alu0);
8145 %}
8146 
8147 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8148 %{
8149   match(Set dst (MulHiL src rax));
8150   effect(USE_KILL rax, KILL cr);
8151 
8152   ins_cost(300);
8153   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
8154   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8155   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8156   ins_pipe(ialu_reg_reg_alu0);
8157 %}
8158 
8159 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8160                    rFlagsReg cr)
8161 %{
8162   match(Set rax (DivI rax div));
8163   effect(KILL rdx, KILL cr);
8164 
8165   ins_cost(30*100+10*100); // XXX
8166   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8167             "jne,s   normal\n\t"
8168             "xorl    rdx, rdx\n\t"
8169             "cmpl    $div, -1\n\t"
8170             "je,s    done\n"
8171     "normal: cdql\n\t"
8172             "idivl   $div\n"
8173     "done:"        %}
8174   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8175   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8176   ins_pipe(ialu_reg_reg_alu0);
8177 %}
8178 
8179 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8180                    rFlagsReg cr)
8181 %{
8182   match(Set rax (DivL rax div));
8183   effect(KILL rdx, KILL cr);
8184 
8185   ins_cost(30*100+10*100); // XXX
8186   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8187             "cmpq    rax, rdx\n\t"
8188             "jne,s   normal\n\t"
8189             "xorl    rdx, rdx\n\t"
8190             "cmpq    $div, -1\n\t"
8191             "je,s    done\n"
8192     "normal: cdqq\n\t"
8193             "idivq   $div\n"
8194     "done:"        %}
8195   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8196   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8197   ins_pipe(ialu_reg_reg_alu0);
8198 %}
8199 
8200 // Integer DIVMOD with Register, both quotient and mod results
8201 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8202                              rFlagsReg cr)
8203 %{
8204   match(DivModI rax div);
8205   effect(KILL cr);
8206 
8207   ins_cost(30*100+10*100); // XXX
8208   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8209             "jne,s   normal\n\t"
8210             "xorl    rdx, rdx\n\t"
8211             "cmpl    $div, -1\n\t"
8212             "je,s    done\n"
8213     "normal: cdql\n\t"
8214             "idivl   $div\n"
8215     "done:"        %}
8216   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8217   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8218   ins_pipe(pipe_slow);
8219 %}
8220 
8221 // Long DIVMOD with Register, both quotient and mod results
8222 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8223                              rFlagsReg cr)
8224 %{
8225   match(DivModL rax div);
8226   effect(KILL cr);
8227 
8228   ins_cost(30*100+10*100); // XXX
8229   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8230             "cmpq    rax, rdx\n\t"
8231             "jne,s   normal\n\t"
8232             "xorl    rdx, rdx\n\t"
8233             "cmpq    $div, -1\n\t"
8234             "je,s    done\n"
8235     "normal: cdqq\n\t"
8236             "idivq   $div\n"
8237     "done:"        %}
8238   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8239   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8240   ins_pipe(pipe_slow);
8241 %}
8242 
8243 //----------- DivL-By-Constant-Expansions--------------------------------------
8244 // DivI cases are handled by the compiler
8245 
8246 // Magic constant, reciprocal of 10
8247 instruct loadConL_0x6666666666666667(rRegL dst)
8248 %{
8249   effect(DEF dst);
8250 
8251   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
8252   ins_encode(load_immL(dst, 0x6666666666666667));
8253   ins_pipe(ialu_reg);
8254 %}
8255 
8256 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8257 %{
8258   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
8259 
8260   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
8261   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8262   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8263   ins_pipe(ialu_reg_reg_alu0);
8264 %}
8265 
8266 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
8267 %{
8268   effect(USE_DEF dst, KILL cr);
8269 
8270   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
8271   opcode(0xC1, 0x7); /* C1 /7 ib */
8272   ins_encode(reg_opc_imm_wide(dst, 0x3F));
8273   ins_pipe(ialu_reg);
8274 %}
8275 
8276 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
8277 %{
8278   effect(USE_DEF dst, KILL cr);
8279 
8280   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
8281   opcode(0xC1, 0x7); /* C1 /7 ib */
8282   ins_encode(reg_opc_imm_wide(dst, 0x2));
8283   ins_pipe(ialu_reg);
8284 %}
8285 
8286 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
8287 %{
8288   match(Set dst (DivL src div));
8289 
8290   ins_cost((5+8)*100);
8291   expand %{
8292     rax_RegL rax;                     // Killed temp
8293     rFlagsReg cr;                     // Killed
8294     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
8295     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
8296     sarL_rReg_63(src, cr);            // sarq  src, 63
8297     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
8298     subL_rReg(dst, src, cr);          // subl  rdx, src
8299   %}
8300 %}
8301 
8302 //-----------------------------------------------------------------------------
8303 
8304 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
8305                    rFlagsReg cr)
8306 %{
8307   match(Set rdx (ModI rax div));
8308   effect(KILL rax, KILL cr);
8309 
8310   ins_cost(300); // XXX
8311   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
8312             "jne,s   normal\n\t"
8313             "xorl    rdx, rdx\n\t"
8314             "cmpl    $div, -1\n\t"
8315             "je,s    done\n"
8316     "normal: cdql\n\t"
8317             "idivl   $div\n"
8318     "done:"        %}
8319   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8320   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8321   ins_pipe(ialu_reg_reg_alu0);
8322 %}
8323 
8324 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
8325                    rFlagsReg cr)
8326 %{
8327   match(Set rdx (ModL rax div));
8328   effect(KILL rax, KILL cr);
8329 
8330   ins_cost(300); // XXX
8331   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
8332             "cmpq    rax, rdx\n\t"
8333             "jne,s   normal\n\t"
8334             "xorl    rdx, rdx\n\t"
8335             "cmpq    $div, -1\n\t"
8336             "je,s    done\n"
8337     "normal: cdqq\n\t"
8338             "idivq   $div\n"
8339     "done:"        %}
8340   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8341   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8342   ins_pipe(ialu_reg_reg_alu0);
8343 %}
8344 
8345 // Integer Shift Instructions
8346 // Shift Left by one
8347 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8348 %{
8349   match(Set dst (LShiftI dst shift));
8350   effect(KILL cr);
8351 
8352   format %{ "sall    $dst, $shift" %}
8353   opcode(0xD1, 0x4); /* D1 /4 */
8354   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8355   ins_pipe(ialu_reg);
8356 %}
8357 
8358 // Shift Left by one
8359 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8360 %{
8361   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8362   effect(KILL cr);
8363 
8364   format %{ "sall    $dst, $shift\t" %}
8365   opcode(0xD1, 0x4); /* D1 /4 */
8366   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8367   ins_pipe(ialu_mem_imm);
8368 %}
8369 
8370 // Shift Left by 8-bit immediate
8371 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8372 %{
8373   match(Set dst (LShiftI dst shift));
8374   effect(KILL cr);
8375 
8376   format %{ "sall    $dst, $shift" %}
8377   opcode(0xC1, 0x4); /* C1 /4 ib */
8378   ins_encode(reg_opc_imm(dst, shift));
8379   ins_pipe(ialu_reg);
8380 %}
8381 
8382 // Shift Left by 8-bit immediate
8383 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8384 %{
8385   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8386   effect(KILL cr);
8387 
8388   format %{ "sall    $dst, $shift" %}
8389   opcode(0xC1, 0x4); /* C1 /4 ib */
8390   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8391   ins_pipe(ialu_mem_imm);
8392 %}
8393 
8394 // Shift Left by variable
8395 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8396 %{
8397   match(Set dst (LShiftI dst shift));
8398   effect(KILL cr);
8399 
8400   format %{ "sall    $dst, $shift" %}
8401   opcode(0xD3, 0x4); /* D3 /4 */
8402   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8403   ins_pipe(ialu_reg_reg);
8404 %}
8405 
8406 // Shift Left by variable
8407 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8408 %{
8409   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8410   effect(KILL cr);
8411 
8412   format %{ "sall    $dst, $shift" %}
8413   opcode(0xD3, 0x4); /* D3 /4 */
8414   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8415   ins_pipe(ialu_mem_reg);
8416 %}
8417 
8418 // Arithmetic shift right by one
8419 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8420 %{
8421   match(Set dst (RShiftI dst shift));
8422   effect(KILL cr);
8423 
8424   format %{ "sarl    $dst, $shift" %}
8425   opcode(0xD1, 0x7); /* D1 /7 */
8426   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8427   ins_pipe(ialu_reg);
8428 %}
8429 
8430 // Arithmetic shift right by one
8431 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8432 %{
8433   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8434   effect(KILL cr);
8435 
8436   format %{ "sarl    $dst, $shift" %}
8437   opcode(0xD1, 0x7); /* D1 /7 */
8438   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8439   ins_pipe(ialu_mem_imm);
8440 %}
8441 
8442 // Arithmetic Shift Right by 8-bit immediate
8443 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8444 %{
8445   match(Set dst (RShiftI dst shift));
8446   effect(KILL cr);
8447 
8448   format %{ "sarl    $dst, $shift" %}
8449   opcode(0xC1, 0x7); /* C1 /7 ib */
8450   ins_encode(reg_opc_imm(dst, shift));
8451   ins_pipe(ialu_mem_imm);
8452 %}
8453 
8454 // Arithmetic Shift Right by 8-bit immediate
8455 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8456 %{
8457   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8458   effect(KILL cr);
8459 
8460   format %{ "sarl    $dst, $shift" %}
8461   opcode(0xC1, 0x7); /* C1 /7 ib */
8462   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8463   ins_pipe(ialu_mem_imm);
8464 %}
8465 
8466 // Arithmetic Shift Right by variable
8467 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8468 %{
8469   match(Set dst (RShiftI dst shift));
8470   effect(KILL cr);
8471 
8472   format %{ "sarl    $dst, $shift" %}
8473   opcode(0xD3, 0x7); /* D3 /7 */
8474   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8475   ins_pipe(ialu_reg_reg);
8476 %}
8477 
8478 // Arithmetic Shift Right by variable
8479 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8480 %{
8481   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8482   effect(KILL cr);
8483 
8484   format %{ "sarl    $dst, $shift" %}
8485   opcode(0xD3, 0x7); /* D3 /7 */
8486   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8487   ins_pipe(ialu_mem_reg);
8488 %}
8489 
8490 // Logical shift right by one
8491 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8492 %{
8493   match(Set dst (URShiftI dst shift));
8494   effect(KILL cr);
8495 
8496   format %{ "shrl    $dst, $shift" %}
8497   opcode(0xD1, 0x5); /* D1 /5 */
8498   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8499   ins_pipe(ialu_reg);
8500 %}
8501 
8502 // Logical shift right by one
8503 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8504 %{
8505   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8506   effect(KILL cr);
8507 
8508   format %{ "shrl    $dst, $shift" %}
8509   opcode(0xD1, 0x5); /* D1 /5 */
8510   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8511   ins_pipe(ialu_mem_imm);
8512 %}
8513 
8514 // Logical Shift Right by 8-bit immediate
8515 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8516 %{
8517   match(Set dst (URShiftI dst shift));
8518   effect(KILL cr);
8519 
8520   format %{ "shrl    $dst, $shift" %}
8521   opcode(0xC1, 0x5); /* C1 /5 ib */
8522   ins_encode(reg_opc_imm(dst, shift));
8523   ins_pipe(ialu_reg);
8524 %}
8525 
8526 // Logical Shift Right by 8-bit immediate
8527 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8528 %{
8529   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8530   effect(KILL cr);
8531 
8532   format %{ "shrl    $dst, $shift" %}
8533   opcode(0xC1, 0x5); /* C1 /5 ib */
8534   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8535   ins_pipe(ialu_mem_imm);
8536 %}
8537 
8538 // Logical Shift Right by variable
8539 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8540 %{
8541   match(Set dst (URShiftI dst shift));
8542   effect(KILL cr);
8543 
8544   format %{ "shrl    $dst, $shift" %}
8545   opcode(0xD3, 0x5); /* D3 /5 */
8546   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8547   ins_pipe(ialu_reg_reg);
8548 %}
8549 
8550 // Logical Shift Right by variable
8551 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8552 %{
8553   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8554   effect(KILL cr);
8555 
8556   format %{ "shrl    $dst, $shift" %}
8557   opcode(0xD3, 0x5); /* D3 /5 */
8558   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8559   ins_pipe(ialu_mem_reg);
8560 %}
8561 
8562 // Long Shift Instructions
8563 // Shift Left by one
8564 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8565 %{
8566   match(Set dst (LShiftL dst shift));
8567   effect(KILL cr);
8568 
8569   format %{ "salq    $dst, $shift" %}
8570   opcode(0xD1, 0x4); /* D1 /4 */
8571   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8572   ins_pipe(ialu_reg);
8573 %}
8574 
8575 // Shift Left by one
8576 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8577 %{
8578   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8579   effect(KILL cr);
8580 
8581   format %{ "salq    $dst, $shift" %}
8582   opcode(0xD1, 0x4); /* D1 /4 */
8583   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8584   ins_pipe(ialu_mem_imm);
8585 %}
8586 
8587 // Shift Left by 8-bit immediate
8588 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8589 %{
8590   match(Set dst (LShiftL dst shift));
8591   effect(KILL cr);
8592 
8593   format %{ "salq    $dst, $shift" %}
8594   opcode(0xC1, 0x4); /* C1 /4 ib */
8595   ins_encode(reg_opc_imm_wide(dst, shift));
8596   ins_pipe(ialu_reg);
8597 %}
8598 
8599 // Shift Left by 8-bit immediate
8600 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8601 %{
8602   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8603   effect(KILL cr);
8604 
8605   format %{ "salq    $dst, $shift" %}
8606   opcode(0xC1, 0x4); /* C1 /4 ib */
8607   ins_encode(REX_mem_wide(dst), OpcP,
8608              RM_opc_mem(secondary, dst), Con8or32(shift));
8609   ins_pipe(ialu_mem_imm);
8610 %}
8611 
8612 // Shift Left by variable
8613 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8614 %{
8615   match(Set dst (LShiftL dst shift));
8616   effect(KILL cr);
8617 
8618   format %{ "salq    $dst, $shift" %}
8619   opcode(0xD3, 0x4); /* D3 /4 */
8620   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8621   ins_pipe(ialu_reg_reg);
8622 %}
8623 
8624 // Shift Left by variable
8625 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8626 %{
8627   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8628   effect(KILL cr);
8629 
8630   format %{ "salq    $dst, $shift" %}
8631   opcode(0xD3, 0x4); /* D3 /4 */
8632   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8633   ins_pipe(ialu_mem_reg);
8634 %}
8635 
8636 // Arithmetic shift right by one
8637 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8638 %{
8639   match(Set dst (RShiftL dst shift));
8640   effect(KILL cr);
8641 
8642   format %{ "sarq    $dst, $shift" %}
8643   opcode(0xD1, 0x7); /* D1 /7 */
8644   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8645   ins_pipe(ialu_reg);
8646 %}
8647 
8648 // Arithmetic shift right by one
8649 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8650 %{
8651   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8652   effect(KILL cr);
8653 
8654   format %{ "sarq    $dst, $shift" %}
8655   opcode(0xD1, 0x7); /* D1 /7 */
8656   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8657   ins_pipe(ialu_mem_imm);
8658 %}
8659 
8660 // Arithmetic Shift Right by 8-bit immediate
8661 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8662 %{
8663   match(Set dst (RShiftL dst shift));
8664   effect(KILL cr);
8665 
8666   format %{ "sarq    $dst, $shift" %}
8667   opcode(0xC1, 0x7); /* C1 /7 ib */
8668   ins_encode(reg_opc_imm_wide(dst, shift));
8669   ins_pipe(ialu_mem_imm);
8670 %}
8671 
8672 // Arithmetic Shift Right by 8-bit immediate
8673 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8674 %{
8675   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8676   effect(KILL cr);
8677 
8678   format %{ "sarq    $dst, $shift" %}
8679   opcode(0xC1, 0x7); /* C1 /7 ib */
8680   ins_encode(REX_mem_wide(dst), OpcP,
8681              RM_opc_mem(secondary, dst), Con8or32(shift));
8682   ins_pipe(ialu_mem_imm);
8683 %}
8684 
8685 // Arithmetic Shift Right by variable
8686 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8687 %{
8688   match(Set dst (RShiftL dst shift));
8689   effect(KILL cr);
8690 
8691   format %{ "sarq    $dst, $shift" %}
8692   opcode(0xD3, 0x7); /* D3 /7 */
8693   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8694   ins_pipe(ialu_reg_reg);
8695 %}
8696 
8697 // Arithmetic Shift Right by variable
8698 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8699 %{
8700   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8701   effect(KILL cr);
8702 
8703   format %{ "sarq    $dst, $shift" %}
8704   opcode(0xD3, 0x7); /* D3 /7 */
8705   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8706   ins_pipe(ialu_mem_reg);
8707 %}
8708 
8709 // Logical shift right by one
8710 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8711 %{
8712   match(Set dst (URShiftL dst shift));
8713   effect(KILL cr);
8714 
8715   format %{ "shrq    $dst, $shift" %}
8716   opcode(0xD1, 0x5); /* D1 /5 */
8717   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8718   ins_pipe(ialu_reg);
8719 %}
8720 
8721 // Logical shift right by one
8722 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8723 %{
8724   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8725   effect(KILL cr);
8726 
8727   format %{ "shrq    $dst, $shift" %}
8728   opcode(0xD1, 0x5); /* D1 /5 */
8729   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8730   ins_pipe(ialu_mem_imm);
8731 %}
8732 
8733 // Logical Shift Right by 8-bit immediate
8734 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8735 %{
8736   match(Set dst (URShiftL dst shift));
8737   effect(KILL cr);
8738 
8739   format %{ "shrq    $dst, $shift" %}
8740   opcode(0xC1, 0x5); /* C1 /5 ib */
8741   ins_encode(reg_opc_imm_wide(dst, shift));
8742   ins_pipe(ialu_reg);
8743 %}
8744 
8745 
8746 // Logical Shift Right by 8-bit immediate
8747 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8748 %{
8749   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8750   effect(KILL cr);
8751 
8752   format %{ "shrq    $dst, $shift" %}
8753   opcode(0xC1, 0x5); /* C1 /5 ib */
8754   ins_encode(REX_mem_wide(dst), OpcP,
8755              RM_opc_mem(secondary, dst), Con8or32(shift));
8756   ins_pipe(ialu_mem_imm);
8757 %}
8758 
8759 // Logical Shift Right by variable
8760 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8761 %{
8762   match(Set dst (URShiftL dst shift));
8763   effect(KILL cr);
8764 
8765   format %{ "shrq    $dst, $shift" %}
8766   opcode(0xD3, 0x5); /* D3 /5 */
8767   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8768   ins_pipe(ialu_reg_reg);
8769 %}
8770 
8771 // Logical Shift Right by variable
8772 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8773 %{
8774   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8775   effect(KILL cr);
8776 
8777   format %{ "shrq    $dst, $shift" %}
8778   opcode(0xD3, 0x5); /* D3 /5 */
8779   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8780   ins_pipe(ialu_mem_reg);
8781 %}
8782 
8783 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8784 // This idiom is used by the compiler for the i2b bytecode.
8785 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8786 %{
8787   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8788 
8789   format %{ "movsbl  $dst, $src\t# i2b" %}
8790   opcode(0x0F, 0xBE);
8791   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8792   ins_pipe(ialu_reg_reg);
8793 %}
8794 
8795 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8796 // This idiom is used by the compiler the i2s bytecode.
8797 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8798 %{
8799   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8800 
8801   format %{ "movswl  $dst, $src\t# i2s" %}
8802   opcode(0x0F, 0xBF);
8803   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8804   ins_pipe(ialu_reg_reg);
8805 %}
8806 
8807 // ROL/ROR instructions
8808 
8809 // ROL expand
8810 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
8811   effect(KILL cr, USE_DEF dst);
8812 
8813   format %{ "roll    $dst" %}
8814   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8815   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8816   ins_pipe(ialu_reg);
8817 %}
8818 
8819 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
8820   effect(USE_DEF dst, USE shift, KILL cr);
8821 
8822   format %{ "roll    $dst, $shift" %}
8823   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8824   ins_encode( reg_opc_imm(dst, shift) );
8825   ins_pipe(ialu_reg);
8826 %}
8827 
8828 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8829 %{
8830   effect(USE_DEF dst, USE shift, KILL cr);
8831 
8832   format %{ "roll    $dst, $shift" %}
8833   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8834   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8835   ins_pipe(ialu_reg_reg);
8836 %}
8837 // end of ROL expand
8838 
8839 // Rotate Left by one
8840 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8841 %{
8842   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8843 
8844   expand %{
8845     rolI_rReg_imm1(dst, cr);
8846   %}
8847 %}
8848 
8849 // Rotate Left by 8-bit immediate
8850 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8851 %{
8852   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8853   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8854 
8855   expand %{
8856     rolI_rReg_imm8(dst, lshift, cr);
8857   %}
8858 %}
8859 
8860 // Rotate Left by variable
8861 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8862 %{
8863   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8864 
8865   expand %{
8866     rolI_rReg_CL(dst, shift, cr);
8867   %}
8868 %}
8869 
8870 // Rotate Left by variable
8871 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8872 %{
8873   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8874 
8875   expand %{
8876     rolI_rReg_CL(dst, shift, cr);
8877   %}
8878 %}
8879 
8880 // ROR expand
8881 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
8882 %{
8883   effect(USE_DEF dst, KILL cr);
8884 
8885   format %{ "rorl    $dst" %}
8886   opcode(0xD1, 0x1); /* D1 /1 */
8887   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8888   ins_pipe(ialu_reg);
8889 %}
8890 
8891 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
8892 %{
8893   effect(USE_DEF dst, USE shift, KILL cr);
8894 
8895   format %{ "rorl    $dst, $shift" %}
8896   opcode(0xC1, 0x1); /* C1 /1 ib */
8897   ins_encode(reg_opc_imm(dst, shift));
8898   ins_pipe(ialu_reg);
8899 %}
8900 
8901 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8902 %{
8903   effect(USE_DEF dst, USE shift, KILL cr);
8904 
8905   format %{ "rorl    $dst, $shift" %}
8906   opcode(0xD3, 0x1); /* D3 /1 */
8907   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8908   ins_pipe(ialu_reg_reg);
8909 %}
8910 // end of ROR expand
8911 
8912 // Rotate Right by one
8913 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8914 %{
8915   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8916 
8917   expand %{
8918     rorI_rReg_imm1(dst, cr);
8919   %}
8920 %}
8921 
8922 // Rotate Right by 8-bit immediate
8923 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8924 %{
8925   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8926   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8927 
8928   expand %{
8929     rorI_rReg_imm8(dst, rshift, cr);
8930   %}
8931 %}
8932 
8933 // Rotate Right by variable
8934 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8935 %{
8936   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8937 
8938   expand %{
8939     rorI_rReg_CL(dst, shift, cr);
8940   %}
8941 %}
8942 
8943 // Rotate Right by variable
8944 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8945 %{
8946   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8947 
8948   expand %{
8949     rorI_rReg_CL(dst, shift, cr);
8950   %}
8951 %}
8952 
8953 // for long rotate
8954 // ROL expand
8955 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
8956   effect(USE_DEF dst, KILL cr);
8957 
8958   format %{ "rolq    $dst" %}
8959   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8960   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8961   ins_pipe(ialu_reg);
8962 %}
8963 
8964 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
8965   effect(USE_DEF dst, USE shift, KILL cr);
8966 
8967   format %{ "rolq    $dst, $shift" %}
8968   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8969   ins_encode( reg_opc_imm_wide(dst, shift) );
8970   ins_pipe(ialu_reg);
8971 %}
8972 
8973 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8974 %{
8975   effect(USE_DEF dst, USE shift, KILL cr);
8976 
8977   format %{ "rolq    $dst, $shift" %}
8978   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8979   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8980   ins_pipe(ialu_reg_reg);
8981 %}
8982 // end of ROL expand
8983 
8984 // Rotate Left by one
8985 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8986 %{
8987   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8988 
8989   expand %{
8990     rolL_rReg_imm1(dst, cr);
8991   %}
8992 %}
8993 
8994 // Rotate Left by 8-bit immediate
8995 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8996 %{
8997   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8998   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8999 
9000   expand %{
9001     rolL_rReg_imm8(dst, lshift, cr);
9002   %}
9003 %}
9004 
9005 // Rotate Left by variable
9006 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9007 %{
9008   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
9009 
9010   expand %{
9011     rolL_rReg_CL(dst, shift, cr);
9012   %}
9013 %}
9014 
9015 // Rotate Left by variable
9016 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9017 %{
9018   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
9019 
9020   expand %{
9021     rolL_rReg_CL(dst, shift, cr);
9022   %}
9023 %}
9024 
9025 // ROR expand
9026 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
9027 %{
9028   effect(USE_DEF dst, KILL cr);
9029 
9030   format %{ "rorq    $dst" %}
9031   opcode(0xD1, 0x1); /* D1 /1 */
9032   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9033   ins_pipe(ialu_reg);
9034 %}
9035 
9036 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
9037 %{
9038   effect(USE_DEF dst, USE shift, KILL cr);
9039 
9040   format %{ "rorq    $dst, $shift" %}
9041   opcode(0xC1, 0x1); /* C1 /1 ib */
9042   ins_encode(reg_opc_imm_wide(dst, shift));
9043   ins_pipe(ialu_reg);
9044 %}
9045 
9046 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9047 %{
9048   effect(USE_DEF dst, USE shift, KILL cr);
9049 
9050   format %{ "rorq    $dst, $shift" %}
9051   opcode(0xD3, 0x1); /* D3 /1 */
9052   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9053   ins_pipe(ialu_reg_reg);
9054 %}
9055 // end of ROR expand
9056 
9057 // Rotate Right by one
9058 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9059 %{
9060   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9061 
9062   expand %{
9063     rorL_rReg_imm1(dst, cr);
9064   %}
9065 %}
9066 
9067 // Rotate Right by 8-bit immediate
9068 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9069 %{
9070   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9071   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9072 
9073   expand %{
9074     rorL_rReg_imm8(dst, rshift, cr);
9075   %}
9076 %}
9077 
9078 // Rotate Right by variable
9079 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9080 %{
9081   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
9082 
9083   expand %{
9084     rorL_rReg_CL(dst, shift, cr);
9085   %}
9086 %}
9087 
9088 // Rotate Right by variable
9089 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9090 %{
9091   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
9092 
9093   expand %{
9094     rorL_rReg_CL(dst, shift, cr);
9095   %}
9096 %}
9097 
9098 // Logical Instructions
9099 
9100 // Integer Logical Instructions
9101 
9102 // And Instructions
9103 // And Register with Register
9104 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9105 %{
9106   match(Set dst (AndI dst src));
9107   effect(KILL cr);
9108 
9109   format %{ "andl    $dst, $src\t# int" %}
9110   opcode(0x23);
9111   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9112   ins_pipe(ialu_reg_reg);
9113 %}
9114 
9115 // And Register with Immediate 255
9116 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
9117 %{
9118   match(Set dst (AndI dst src));
9119 
9120   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
9121   opcode(0x0F, 0xB6);
9122   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9123   ins_pipe(ialu_reg);
9124 %}
9125 
9126 // And Register with Immediate 255 and promote to long
9127 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
9128 %{
9129   match(Set dst (ConvI2L (AndI src mask)));
9130 
9131   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
9132   opcode(0x0F, 0xB6);
9133   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9134   ins_pipe(ialu_reg);
9135 %}
9136 
9137 // And Register with Immediate 65535
9138 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
9139 %{
9140   match(Set dst (AndI dst src));
9141 
9142   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
9143   opcode(0x0F, 0xB7);
9144   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9145   ins_pipe(ialu_reg);
9146 %}
9147 
9148 // And Register with Immediate 65535 and promote to long
9149 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
9150 %{
9151   match(Set dst (ConvI2L (AndI src mask)));
9152 
9153   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
9154   opcode(0x0F, 0xB7);
9155   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9156   ins_pipe(ialu_reg);
9157 %}
9158 
9159 // And Register with Immediate
9160 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9161 %{
9162   match(Set dst (AndI dst src));
9163   effect(KILL cr);
9164 
9165   format %{ "andl    $dst, $src\t# int" %}
9166   opcode(0x81, 0x04); /* Opcode 81 /4 */
9167   ins_encode(OpcSErm(dst, src), Con8or32(src));
9168   ins_pipe(ialu_reg);
9169 %}
9170 
9171 // And Register with Memory
9172 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9173 %{
9174   match(Set dst (AndI dst (LoadI src)));
9175   effect(KILL cr);
9176 
9177   ins_cost(125);
9178   format %{ "andl    $dst, $src\t# int" %}
9179   opcode(0x23);
9180   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9181   ins_pipe(ialu_reg_mem);
9182 %}
9183 
9184 // And Memory with Register
9185 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9186 %{
9187   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9188   effect(KILL cr);
9189 
9190   ins_cost(150);
9191   format %{ "andl    $dst, $src\t# int" %}
9192   opcode(0x21); /* Opcode 21 /r */
9193   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9194   ins_pipe(ialu_mem_reg);
9195 %}
9196 
9197 // And Memory with Immediate
9198 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
9199 %{
9200   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9201   effect(KILL cr);
9202 
9203   ins_cost(125);
9204   format %{ "andl    $dst, $src\t# int" %}
9205   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9206   ins_encode(REX_mem(dst), OpcSE(src),
9207              RM_opc_mem(secondary, dst), Con8or32(src));
9208   ins_pipe(ialu_mem_imm);
9209 %}
9210 
9211 // BMI1 instructions
9212 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, rFlagsReg cr) %{
9213   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2)));
9214   predicate(UseBMI1Instructions);
9215   effect(KILL cr);
9216 
9217   ins_cost(125);
9218   format %{ "andnl  $dst, $src1, $src2" %}
9219 
9220   ins_encode %{
9221     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
9222   %}
9223   ins_pipe(ialu_reg_mem);
9224 %}
9225 
9226 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, rFlagsReg cr) %{
9227   match(Set dst (AndI (XorI src1 minus_1) src2));
9228   predicate(UseBMI1Instructions);
9229   effect(KILL cr);
9230 
9231   format %{ "andnl  $dst, $src1, $src2" %}
9232 
9233   ins_encode %{
9234     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
9235   %}
9236   ins_pipe(ialu_reg);
9237 %}
9238 
9239 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, rFlagsReg cr) %{
9240   match(Set dst (AndI (SubI imm_zero src) src));
9241   predicate(UseBMI1Instructions);
9242   effect(KILL cr);
9243 
9244   format %{ "blsil  $dst, $src" %}
9245 
9246   ins_encode %{
9247     __ blsil($dst$$Register, $src$$Register);
9248   %}
9249   ins_pipe(ialu_reg);
9250 %}
9251 
9252 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, rFlagsReg cr) %{
9253   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
9254   predicate(UseBMI1Instructions);
9255   effect(KILL cr);
9256 
9257   ins_cost(125);
9258   format %{ "blsil  $dst, $src" %}
9259 
9260   ins_encode %{
9261     __ blsil($dst$$Register, $src$$Address);
9262   %}
9263   ins_pipe(ialu_reg_mem);
9264 %}
9265 
9266 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9267 %{
9268   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ) );
9269   predicate(UseBMI1Instructions);
9270   effect(KILL cr);
9271 
9272   ins_cost(125);
9273   format %{ "blsmskl $dst, $src" %}
9274 
9275   ins_encode %{
9276     __ blsmskl($dst$$Register, $src$$Address);
9277   %}
9278   ins_pipe(ialu_reg_mem);
9279 %}
9280 
9281 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9282 %{
9283   match(Set dst (XorI (AddI src minus_1) src));
9284   predicate(UseBMI1Instructions);
9285   effect(KILL cr);
9286 
9287   format %{ "blsmskl $dst, $src" %}
9288 
9289   ins_encode %{
9290     __ blsmskl($dst$$Register, $src$$Register);
9291   %}
9292 
9293   ins_pipe(ialu_reg);
9294 %}
9295 
9296 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9297 %{
9298   match(Set dst (AndI (AddI src minus_1) src) );
9299   predicate(UseBMI1Instructions);
9300   effect(KILL cr);
9301 
9302   format %{ "blsrl  $dst, $src" %}
9303 
9304   ins_encode %{
9305     __ blsrl($dst$$Register, $src$$Register);
9306   %}
9307 
9308   ins_pipe(ialu_reg_mem);
9309 %}
9310 
9311 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9312 %{
9313   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ) );
9314   predicate(UseBMI1Instructions);
9315   effect(KILL cr);
9316 
9317   ins_cost(125);
9318   format %{ "blsrl  $dst, $src" %}
9319 
9320   ins_encode %{
9321     __ blsrl($dst$$Register, $src$$Address);
9322   %}
9323 
9324   ins_pipe(ialu_reg);
9325 %}
9326 
9327 // Or Instructions
9328 // Or Register with Register
9329 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9330 %{
9331   match(Set dst (OrI dst src));
9332   effect(KILL cr);
9333 
9334   format %{ "orl     $dst, $src\t# int" %}
9335   opcode(0x0B);
9336   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9337   ins_pipe(ialu_reg_reg);
9338 %}
9339 
9340 // Or Register with Immediate
9341 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9342 %{
9343   match(Set dst (OrI dst src));
9344   effect(KILL cr);
9345 
9346   format %{ "orl     $dst, $src\t# int" %}
9347   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9348   ins_encode(OpcSErm(dst, src), Con8or32(src));
9349   ins_pipe(ialu_reg);
9350 %}
9351 
9352 // Or Register with Memory
9353 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9354 %{
9355   match(Set dst (OrI dst (LoadI src)));
9356   effect(KILL cr);
9357 
9358   ins_cost(125);
9359   format %{ "orl     $dst, $src\t# int" %}
9360   opcode(0x0B);
9361   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9362   ins_pipe(ialu_reg_mem);
9363 %}
9364 
9365 // Or Memory with Register
9366 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9367 %{
9368   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9369   effect(KILL cr);
9370 
9371   ins_cost(150);
9372   format %{ "orl     $dst, $src\t# int" %}
9373   opcode(0x09); /* Opcode 09 /r */
9374   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9375   ins_pipe(ialu_mem_reg);
9376 %}
9377 
9378 // Or Memory with Immediate
9379 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
9380 %{
9381   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9382   effect(KILL cr);
9383 
9384   ins_cost(125);
9385   format %{ "orl     $dst, $src\t# int" %}
9386   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9387   ins_encode(REX_mem(dst), OpcSE(src),
9388              RM_opc_mem(secondary, dst), Con8or32(src));
9389   ins_pipe(ialu_mem_imm);
9390 %}
9391 
9392 // Xor Instructions
9393 // Xor Register with Register
9394 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9395 %{
9396   match(Set dst (XorI dst src));
9397   effect(KILL cr);
9398 
9399   format %{ "xorl    $dst, $src\t# int" %}
9400   opcode(0x33);
9401   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9402   ins_pipe(ialu_reg_reg);
9403 %}
9404 
9405 // Xor Register with Immediate -1
9406 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
9407   match(Set dst (XorI dst imm));
9408 
9409   format %{ "not    $dst" %}
9410   ins_encode %{
9411      __ notl($dst$$Register);
9412   %}
9413   ins_pipe(ialu_reg);
9414 %}
9415 
9416 // Xor Register with Immediate
9417 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9418 %{
9419   match(Set dst (XorI dst src));
9420   effect(KILL cr);
9421 
9422   format %{ "xorl    $dst, $src\t# int" %}
9423   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9424   ins_encode(OpcSErm(dst, src), Con8or32(src));
9425   ins_pipe(ialu_reg);
9426 %}
9427 
9428 // Xor Register with Memory
9429 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9430 %{
9431   match(Set dst (XorI dst (LoadI src)));
9432   effect(KILL cr);
9433 
9434   ins_cost(125);
9435   format %{ "xorl    $dst, $src\t# int" %}
9436   opcode(0x33);
9437   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9438   ins_pipe(ialu_reg_mem);
9439 %}
9440 
9441 // Xor Memory with Register
9442 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9443 %{
9444   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9445   effect(KILL cr);
9446 
9447   ins_cost(150);
9448   format %{ "xorl    $dst, $src\t# int" %}
9449   opcode(0x31); /* Opcode 31 /r */
9450   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9451   ins_pipe(ialu_mem_reg);
9452 %}
9453 
9454 // Xor Memory with Immediate
9455 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
9456 %{
9457   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9458   effect(KILL cr);
9459 
9460   ins_cost(125);
9461   format %{ "xorl    $dst, $src\t# int" %}
9462   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9463   ins_encode(REX_mem(dst), OpcSE(src),
9464              RM_opc_mem(secondary, dst), Con8or32(src));
9465   ins_pipe(ialu_mem_imm);
9466 %}
9467 
9468 
9469 // Long Logical Instructions
9470 
9471 // And Instructions
9472 // And Register with Register
9473 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9474 %{
9475   match(Set dst (AndL dst src));
9476   effect(KILL cr);
9477 
9478   format %{ "andq    $dst, $src\t# long" %}
9479   opcode(0x23);
9480   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9481   ins_pipe(ialu_reg_reg);
9482 %}
9483 
9484 // And Register with Immediate 255
9485 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9486 %{
9487   match(Set dst (AndL dst src));
9488 
9489   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
9490   opcode(0x0F, 0xB6);
9491   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9492   ins_pipe(ialu_reg);
9493 %}
9494 
9495 // And Register with Immediate 65535
9496 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
9497 %{
9498   match(Set dst (AndL dst src));
9499 
9500   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
9501   opcode(0x0F, 0xB7);
9502   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9503   ins_pipe(ialu_reg);
9504 %}
9505 
9506 // And Register with Immediate
9507 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9508 %{
9509   match(Set dst (AndL dst src));
9510   effect(KILL cr);
9511 
9512   format %{ "andq    $dst, $src\t# long" %}
9513   opcode(0x81, 0x04); /* Opcode 81 /4 */
9514   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9515   ins_pipe(ialu_reg);
9516 %}
9517 
9518 // And Register with Memory
9519 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9520 %{
9521   match(Set dst (AndL dst (LoadL src)));
9522   effect(KILL cr);
9523 
9524   ins_cost(125);
9525   format %{ "andq    $dst, $src\t# long" %}
9526   opcode(0x23);
9527   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9528   ins_pipe(ialu_reg_mem);
9529 %}
9530 
9531 // And Memory with Register
9532 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9533 %{
9534   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9535   effect(KILL cr);
9536 
9537   ins_cost(150);
9538   format %{ "andq    $dst, $src\t# long" %}
9539   opcode(0x21); /* Opcode 21 /r */
9540   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9541   ins_pipe(ialu_mem_reg);
9542 %}
9543 
9544 // And Memory with Immediate
9545 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9546 %{
9547   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9548   effect(KILL cr);
9549 
9550   ins_cost(125);
9551   format %{ "andq    $dst, $src\t# long" %}
9552   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9553   ins_encode(REX_mem_wide(dst), OpcSE(src),
9554              RM_opc_mem(secondary, dst), Con8or32(src));
9555   ins_pipe(ialu_mem_imm);
9556 %}
9557 
9558 // BMI1 instructions
9559 instruct andnL_rReg_rReg_mem(rRegL dst, rRegL src1, memory src2, immL_M1 minus_1, rFlagsReg cr) %{
9560   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2)));
9561   predicate(UseBMI1Instructions);
9562   effect(KILL cr);
9563 
9564   ins_cost(125);
9565   format %{ "andnq  $dst, $src1, $src2" %}
9566 
9567   ins_encode %{
9568     __ andnq($dst$$Register, $src1$$Register, $src2$$Address);
9569   %}
9570   ins_pipe(ialu_reg_mem);
9571 %}
9572 
9573 instruct andnL_rReg_rReg_rReg(rRegL dst, rRegL src1, rRegL src2, immL_M1 minus_1, rFlagsReg cr) %{
9574   match(Set dst (AndL (XorL src1 minus_1) src2));
9575   predicate(UseBMI1Instructions);
9576   effect(KILL cr);
9577 
9578   format %{ "andnq  $dst, $src1, $src2" %}
9579 
9580   ins_encode %{
9581   __ andnq($dst$$Register, $src1$$Register, $src2$$Register);
9582   %}
9583   ins_pipe(ialu_reg_mem);
9584 %}
9585 
9586 instruct blsiL_rReg_rReg(rRegL dst, rRegL src, immL0 imm_zero, rFlagsReg cr) %{
9587   match(Set dst (AndL (SubL imm_zero src) src));
9588   predicate(UseBMI1Instructions);
9589   effect(KILL cr);
9590 
9591   format %{ "blsiq  $dst, $src" %}
9592 
9593   ins_encode %{
9594     __ blsiq($dst$$Register, $src$$Register);
9595   %}
9596   ins_pipe(ialu_reg);
9597 %}
9598 
9599 instruct blsiL_rReg_mem(rRegL dst, memory src, immL0 imm_zero, rFlagsReg cr) %{
9600   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
9601   predicate(UseBMI1Instructions);
9602   effect(KILL cr);
9603 
9604   ins_cost(125);
9605   format %{ "blsiq  $dst, $src" %}
9606 
9607   ins_encode %{
9608     __ blsiq($dst$$Register, $src$$Address);
9609   %}
9610   ins_pipe(ialu_reg_mem);
9611 %}
9612 
9613 instruct blsmskL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9614 %{
9615   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ) );
9616   predicate(UseBMI1Instructions);
9617   effect(KILL cr);
9618 
9619   ins_cost(125);
9620   format %{ "blsmskq $dst, $src" %}
9621 
9622   ins_encode %{
9623     __ blsmskq($dst$$Register, $src$$Address);
9624   %}
9625   ins_pipe(ialu_reg_mem);
9626 %}
9627 
9628 instruct blsmskL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9629 %{
9630   match(Set dst (XorL (AddL src minus_1) src));
9631   predicate(UseBMI1Instructions);
9632   effect(KILL cr);
9633 
9634   format %{ "blsmskq $dst, $src" %}
9635 
9636   ins_encode %{
9637     __ blsmskq($dst$$Register, $src$$Register);
9638   %}
9639 
9640   ins_pipe(ialu_reg);
9641 %}
9642 
9643 instruct blsrL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9644 %{
9645   match(Set dst (AndL (AddL src minus_1) src) );
9646   predicate(UseBMI1Instructions);
9647   effect(KILL cr);
9648 
9649   format %{ "blsrq  $dst, $src" %}
9650 
9651   ins_encode %{
9652     __ blsrq($dst$$Register, $src$$Register);
9653   %}
9654 
9655   ins_pipe(ialu_reg);
9656 %}
9657 
9658 instruct blsrL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9659 %{
9660   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src)) );
9661   predicate(UseBMI1Instructions);
9662   effect(KILL cr);
9663 
9664   ins_cost(125);
9665   format %{ "blsrq  $dst, $src" %}
9666 
9667   ins_encode %{
9668     __ blsrq($dst$$Register, $src$$Address);
9669   %}
9670 
9671   ins_pipe(ialu_reg);
9672 %}
9673 
9674 // Or Instructions
9675 // Or Register with Register
9676 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9677 %{
9678   match(Set dst (OrL dst src));
9679   effect(KILL cr);
9680 
9681   format %{ "orq     $dst, $src\t# long" %}
9682   opcode(0x0B);
9683   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9684   ins_pipe(ialu_reg_reg);
9685 %}
9686 
9687 // Use any_RegP to match R15 (TLS register) without spilling.
9688 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
9689   match(Set dst (OrL dst (CastP2X src)));
9690   effect(KILL cr);
9691 
9692   format %{ "orq     $dst, $src\t# long" %}
9693   opcode(0x0B);
9694   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9695   ins_pipe(ialu_reg_reg);
9696 %}
9697 
9698 
9699 // Or Register with Immediate
9700 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9701 %{
9702   match(Set dst (OrL dst src));
9703   effect(KILL cr);
9704 
9705   format %{ "orq     $dst, $src\t# long" %}
9706   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9707   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9708   ins_pipe(ialu_reg);
9709 %}
9710 
9711 // Or Register with Memory
9712 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9713 %{
9714   match(Set dst (OrL dst (LoadL src)));
9715   effect(KILL cr);
9716 
9717   ins_cost(125);
9718   format %{ "orq     $dst, $src\t# long" %}
9719   opcode(0x0B);
9720   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9721   ins_pipe(ialu_reg_mem);
9722 %}
9723 
9724 // Or Memory with Register
9725 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9726 %{
9727   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9728   effect(KILL cr);
9729 
9730   ins_cost(150);
9731   format %{ "orq     $dst, $src\t# long" %}
9732   opcode(0x09); /* Opcode 09 /r */
9733   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9734   ins_pipe(ialu_mem_reg);
9735 %}
9736 
9737 // Or Memory with Immediate
9738 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9739 %{
9740   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9741   effect(KILL cr);
9742 
9743   ins_cost(125);
9744   format %{ "orq     $dst, $src\t# long" %}
9745   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9746   ins_encode(REX_mem_wide(dst), OpcSE(src),
9747              RM_opc_mem(secondary, dst), Con8or32(src));
9748   ins_pipe(ialu_mem_imm);
9749 %}
9750 
9751 // Xor Instructions
9752 // Xor Register with Register
9753 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9754 %{
9755   match(Set dst (XorL dst src));
9756   effect(KILL cr);
9757 
9758   format %{ "xorq    $dst, $src\t# long" %}
9759   opcode(0x33);
9760   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9761   ins_pipe(ialu_reg_reg);
9762 %}
9763 
9764 // Xor Register with Immediate -1
9765 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
9766   match(Set dst (XorL dst imm));
9767 
9768   format %{ "notq   $dst" %}
9769   ins_encode %{
9770      __ notq($dst$$Register);
9771   %}
9772   ins_pipe(ialu_reg);
9773 %}
9774 
9775 // Xor Register with Immediate
9776 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9777 %{
9778   match(Set dst (XorL dst src));
9779   effect(KILL cr);
9780 
9781   format %{ "xorq    $dst, $src\t# long" %}
9782   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9783   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9784   ins_pipe(ialu_reg);
9785 %}
9786 
9787 // Xor Register with Memory
9788 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9789 %{
9790   match(Set dst (XorL dst (LoadL src)));
9791   effect(KILL cr);
9792 
9793   ins_cost(125);
9794   format %{ "xorq    $dst, $src\t# long" %}
9795   opcode(0x33);
9796   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9797   ins_pipe(ialu_reg_mem);
9798 %}
9799 
9800 // Xor Memory with Register
9801 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9802 %{
9803   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9804   effect(KILL cr);
9805 
9806   ins_cost(150);
9807   format %{ "xorq    $dst, $src\t# long" %}
9808   opcode(0x31); /* Opcode 31 /r */
9809   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9810   ins_pipe(ialu_mem_reg);
9811 %}
9812 
9813 // Xor Memory with Immediate
9814 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9815 %{
9816   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9817   effect(KILL cr);
9818 
9819   ins_cost(125);
9820   format %{ "xorq    $dst, $src\t# long" %}
9821   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9822   ins_encode(REX_mem_wide(dst), OpcSE(src),
9823              RM_opc_mem(secondary, dst), Con8or32(src));
9824   ins_pipe(ialu_mem_imm);
9825 %}
9826 
9827 // Convert Int to Boolean
9828 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
9829 %{
9830   match(Set dst (Conv2B src));
9831   effect(KILL cr);
9832 
9833   format %{ "testl   $src, $src\t# ci2b\n\t"
9834             "setnz   $dst\n\t"
9835             "movzbl  $dst, $dst" %}
9836   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
9837              setNZ_reg(dst),
9838              REX_reg_breg(dst, dst), // movzbl
9839              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9840   ins_pipe(pipe_slow); // XXX
9841 %}
9842 
9843 // Convert Pointer to Boolean
9844 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
9845 %{
9846   match(Set dst (Conv2B src));
9847   effect(KILL cr);
9848 
9849   format %{ "testq   $src, $src\t# cp2b\n\t"
9850             "setnz   $dst\n\t"
9851             "movzbl  $dst, $dst" %}
9852   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
9853              setNZ_reg(dst),
9854              REX_reg_breg(dst, dst), // movzbl
9855              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9856   ins_pipe(pipe_slow); // XXX
9857 %}
9858 
9859 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
9860 %{
9861   match(Set dst (CmpLTMask p q));
9862   effect(KILL cr);
9863 
9864   ins_cost(400);
9865   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
9866             "setlt   $dst\n\t"
9867             "movzbl  $dst, $dst\n\t"
9868             "negl    $dst" %}
9869   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
9870              setLT_reg(dst),
9871              REX_reg_breg(dst, dst), // movzbl
9872              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
9873              neg_reg(dst));
9874   ins_pipe(pipe_slow);
9875 %}
9876 
9877 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
9878 %{
9879   match(Set dst (CmpLTMask dst zero));
9880   effect(KILL cr);
9881 
9882   ins_cost(100);
9883   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
9884   ins_encode %{
9885   __ sarl($dst$$Register, 31);
9886   %}
9887   ins_pipe(ialu_reg);
9888 %}
9889 
9890 /* Better to save a register than avoid a branch */
9891 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
9892 %{
9893   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9894   effect(KILL cr);
9895   ins_cost(300);
9896   format %{ "subl   $p,$q\t# cadd_cmpLTMask\n\t"
9897             "jge    done\n\t"
9898             "addl   $p,$y\n"
9899             "done:  " %}
9900   ins_encode %{
9901     Register Rp = $p$$Register;
9902     Register Rq = $q$$Register;
9903     Register Ry = $y$$Register;
9904     Label done;
9905     __ subl(Rp, Rq);
9906     __ jccb(Assembler::greaterEqual, done);
9907     __ addl(Rp, Ry);
9908     __ bind(done);
9909   %}
9910   ins_pipe(pipe_cmplt);
9911 %}
9912 
9913 /* Better to save a register than avoid a branch */
9914 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
9915 %{
9916   match(Set y (AndI (CmpLTMask p q) y));
9917   effect(KILL cr);
9918 
9919   ins_cost(300);
9920 
9921   format %{ "cmpl     $p, $q\t# and_cmpLTMask\n\t"
9922             "jlt      done\n\t"
9923             "xorl     $y, $y\n"
9924             "done:  " %}
9925   ins_encode %{
9926     Register Rp = $p$$Register;
9927     Register Rq = $q$$Register;
9928     Register Ry = $y$$Register;
9929     Label done;
9930     __ cmpl(Rp, Rq);
9931     __ jccb(Assembler::less, done);
9932     __ xorl(Ry, Ry);
9933     __ bind(done);
9934   %}
9935   ins_pipe(pipe_cmplt);
9936 %}
9937 
9938 
9939 //---------- FP Instructions------------------------------------------------
9940 
9941 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
9942 %{
9943   match(Set cr (CmpF src1 src2));
9944 
9945   ins_cost(145);
9946   format %{ "ucomiss $src1, $src2\n\t"
9947             "jnp,s   exit\n\t"
9948             "pushfq\t# saw NaN, set CF\n\t"
9949             "andq    [rsp], #0xffffff2b\n\t"
9950             "popfq\n"
9951     "exit:" %}
9952   ins_encode %{
9953     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9954     emit_cmpfp_fixup(_masm);
9955   %}
9956   ins_pipe(pipe_slow);
9957 %}
9958 
9959 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
9960   match(Set cr (CmpF src1 src2));
9961 
9962   ins_cost(100);
9963   format %{ "ucomiss $src1, $src2" %}
9964   ins_encode %{
9965     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9966   %}
9967   ins_pipe(pipe_slow);
9968 %}
9969 
9970 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
9971 %{
9972   match(Set cr (CmpF src1 (LoadF src2)));
9973 
9974   ins_cost(145);
9975   format %{ "ucomiss $src1, $src2\n\t"
9976             "jnp,s   exit\n\t"
9977             "pushfq\t# saw NaN, set CF\n\t"
9978             "andq    [rsp], #0xffffff2b\n\t"
9979             "popfq\n"
9980     "exit:" %}
9981   ins_encode %{
9982     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9983     emit_cmpfp_fixup(_masm);
9984   %}
9985   ins_pipe(pipe_slow);
9986 %}
9987 
9988 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
9989   match(Set cr (CmpF src1 (LoadF src2)));
9990 
9991   ins_cost(100);
9992   format %{ "ucomiss $src1, $src2" %}
9993   ins_encode %{
9994     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9995   %}
9996   ins_pipe(pipe_slow);
9997 %}
9998 
9999 instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
10000   match(Set cr (CmpF src con));
10001 
10002   ins_cost(145);
10003   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10004             "jnp,s   exit\n\t"
10005             "pushfq\t# saw NaN, set CF\n\t"
10006             "andq    [rsp], #0xffffff2b\n\t"
10007             "popfq\n"
10008     "exit:" %}
10009   ins_encode %{
10010     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10011     emit_cmpfp_fixup(_masm);
10012   %}
10013   ins_pipe(pipe_slow);
10014 %}
10015 
10016 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
10017   match(Set cr (CmpF src con));
10018   ins_cost(100);
10019   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
10020   ins_encode %{
10021     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10022   %}
10023   ins_pipe(pipe_slow);
10024 %}
10025 
10026 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
10027 %{
10028   match(Set cr (CmpD src1 src2));
10029 
10030   ins_cost(145);
10031   format %{ "ucomisd $src1, $src2\n\t"
10032             "jnp,s   exit\n\t"
10033             "pushfq\t# saw NaN, set CF\n\t"
10034             "andq    [rsp], #0xffffff2b\n\t"
10035             "popfq\n"
10036     "exit:" %}
10037   ins_encode %{
10038     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10039     emit_cmpfp_fixup(_masm);
10040   %}
10041   ins_pipe(pipe_slow);
10042 %}
10043 
10044 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
10045   match(Set cr (CmpD src1 src2));
10046 
10047   ins_cost(100);
10048   format %{ "ucomisd $src1, $src2 test" %}
10049   ins_encode %{
10050     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10051   %}
10052   ins_pipe(pipe_slow);
10053 %}
10054 
10055 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
10056 %{
10057   match(Set cr (CmpD src1 (LoadD src2)));
10058 
10059   ins_cost(145);
10060   format %{ "ucomisd $src1, $src2\n\t"
10061             "jnp,s   exit\n\t"
10062             "pushfq\t# saw NaN, set CF\n\t"
10063             "andq    [rsp], #0xffffff2b\n\t"
10064             "popfq\n"
10065     "exit:" %}
10066   ins_encode %{
10067     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10068     emit_cmpfp_fixup(_masm);
10069   %}
10070   ins_pipe(pipe_slow);
10071 %}
10072 
10073 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
10074   match(Set cr (CmpD src1 (LoadD src2)));
10075 
10076   ins_cost(100);
10077   format %{ "ucomisd $src1, $src2" %}
10078   ins_encode %{
10079     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10080   %}
10081   ins_pipe(pipe_slow);
10082 %}
10083 
10084 instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
10085   match(Set cr (CmpD src con));
10086 
10087   ins_cost(145);
10088   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10089             "jnp,s   exit\n\t"
10090             "pushfq\t# saw NaN, set CF\n\t"
10091             "andq    [rsp], #0xffffff2b\n\t"
10092             "popfq\n"
10093     "exit:" %}
10094   ins_encode %{
10095     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10096     emit_cmpfp_fixup(_masm);
10097   %}
10098   ins_pipe(pipe_slow);
10099 %}
10100 
10101 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
10102   match(Set cr (CmpD src con));
10103   ins_cost(100);
10104   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
10105   ins_encode %{
10106     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10107   %}
10108   ins_pipe(pipe_slow);
10109 %}
10110 
10111 // Compare into -1,0,1
10112 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
10113 %{
10114   match(Set dst (CmpF3 src1 src2));
10115   effect(KILL cr);
10116 
10117   ins_cost(275);
10118   format %{ "ucomiss $src1, $src2\n\t"
10119             "movl    $dst, #-1\n\t"
10120             "jp,s    done\n\t"
10121             "jb,s    done\n\t"
10122             "setne   $dst\n\t"
10123             "movzbl  $dst, $dst\n"
10124     "done:" %}
10125   ins_encode %{
10126     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10127     emit_cmpfp3(_masm, $dst$$Register);
10128   %}
10129   ins_pipe(pipe_slow);
10130 %}
10131 
10132 // Compare into -1,0,1
10133 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
10134 %{
10135   match(Set dst (CmpF3 src1 (LoadF src2)));
10136   effect(KILL cr);
10137 
10138   ins_cost(275);
10139   format %{ "ucomiss $src1, $src2\n\t"
10140             "movl    $dst, #-1\n\t"
10141             "jp,s    done\n\t"
10142             "jb,s    done\n\t"
10143             "setne   $dst\n\t"
10144             "movzbl  $dst, $dst\n"
10145     "done:" %}
10146   ins_encode %{
10147     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10148     emit_cmpfp3(_masm, $dst$$Register);
10149   %}
10150   ins_pipe(pipe_slow);
10151 %}
10152 
10153 // Compare into -1,0,1
10154 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
10155   match(Set dst (CmpF3 src con));
10156   effect(KILL cr);
10157 
10158   ins_cost(275);
10159   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10160             "movl    $dst, #-1\n\t"
10161             "jp,s    done\n\t"
10162             "jb,s    done\n\t"
10163             "setne   $dst\n\t"
10164             "movzbl  $dst, $dst\n"
10165     "done:" %}
10166   ins_encode %{
10167     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10168     emit_cmpfp3(_masm, $dst$$Register);
10169   %}
10170   ins_pipe(pipe_slow);
10171 %}
10172 
10173 // Compare into -1,0,1
10174 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
10175 %{
10176   match(Set dst (CmpD3 src1 src2));
10177   effect(KILL cr);
10178 
10179   ins_cost(275);
10180   format %{ "ucomisd $src1, $src2\n\t"
10181             "movl    $dst, #-1\n\t"
10182             "jp,s    done\n\t"
10183             "jb,s    done\n\t"
10184             "setne   $dst\n\t"
10185             "movzbl  $dst, $dst\n"
10186     "done:" %}
10187   ins_encode %{
10188     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10189     emit_cmpfp3(_masm, $dst$$Register);
10190   %}
10191   ins_pipe(pipe_slow);
10192 %}
10193 
10194 // Compare into -1,0,1
10195 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
10196 %{
10197   match(Set dst (CmpD3 src1 (LoadD src2)));
10198   effect(KILL cr);
10199 
10200   ins_cost(275);
10201   format %{ "ucomisd $src1, $src2\n\t"
10202             "movl    $dst, #-1\n\t"
10203             "jp,s    done\n\t"
10204             "jb,s    done\n\t"
10205             "setne   $dst\n\t"
10206             "movzbl  $dst, $dst\n"
10207     "done:" %}
10208   ins_encode %{
10209     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10210     emit_cmpfp3(_masm, $dst$$Register);
10211   %}
10212   ins_pipe(pipe_slow);
10213 %}
10214 
10215 // Compare into -1,0,1
10216 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
10217   match(Set dst (CmpD3 src con));
10218   effect(KILL cr);
10219 
10220   ins_cost(275);
10221   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10222             "movl    $dst, #-1\n\t"
10223             "jp,s    done\n\t"
10224             "jb,s    done\n\t"
10225             "setne   $dst\n\t"
10226             "movzbl  $dst, $dst\n"
10227     "done:" %}
10228   ins_encode %{
10229     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10230     emit_cmpfp3(_masm, $dst$$Register);
10231   %}
10232   ins_pipe(pipe_slow);
10233 %}
10234 
10235 //----------Arithmetic Conversion Instructions---------------------------------
10236 
10237 instruct roundFloat_nop(regF dst)
10238 %{
10239   match(Set dst (RoundFloat dst));
10240 
10241   ins_cost(0);
10242   ins_encode();
10243   ins_pipe(empty);
10244 %}
10245 
10246 instruct roundDouble_nop(regD dst)
10247 %{
10248   match(Set dst (RoundDouble dst));
10249 
10250   ins_cost(0);
10251   ins_encode();
10252   ins_pipe(empty);
10253 %}
10254 
10255 instruct convF2D_reg_reg(regD dst, regF src)
10256 %{
10257   match(Set dst (ConvF2D src));
10258 
10259   format %{ "cvtss2sd $dst, $src" %}
10260   ins_encode %{
10261     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10262   %}
10263   ins_pipe(pipe_slow); // XXX
10264 %}
10265 
10266 instruct convF2D_reg_mem(regD dst, memory src)
10267 %{
10268   match(Set dst (ConvF2D (LoadF src)));
10269 
10270   format %{ "cvtss2sd $dst, $src" %}
10271   ins_encode %{
10272     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
10273   %}
10274   ins_pipe(pipe_slow); // XXX
10275 %}
10276 
10277 instruct convD2F_reg_reg(regF dst, regD src)
10278 %{
10279   match(Set dst (ConvD2F src));
10280 
10281   format %{ "cvtsd2ss $dst, $src" %}
10282   ins_encode %{
10283     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10284   %}
10285   ins_pipe(pipe_slow); // XXX
10286 %}
10287 
10288 instruct convD2F_reg_mem(regF dst, memory src)
10289 %{
10290   match(Set dst (ConvD2F (LoadD src)));
10291 
10292   format %{ "cvtsd2ss $dst, $src" %}
10293   ins_encode %{
10294     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
10295   %}
10296   ins_pipe(pipe_slow); // XXX
10297 %}
10298 
10299 // XXX do mem variants
10300 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
10301 %{
10302   match(Set dst (ConvF2I src));
10303   effect(KILL cr);
10304 
10305   format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
10306             "cmpl    $dst, #0x80000000\n\t"
10307             "jne,s   done\n\t"
10308             "subq    rsp, #8\n\t"
10309             "movss   [rsp], $src\n\t"
10310             "call    f2i_fixup\n\t"
10311             "popq    $dst\n"
10312     "done:   "%}
10313   ins_encode %{
10314     Label done;
10315     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
10316     __ cmpl($dst$$Register, 0x80000000);
10317     __ jccb(Assembler::notEqual, done);
10318     __ subptr(rsp, 8);
10319     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10320     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
10321     __ pop($dst$$Register);
10322     __ bind(done);
10323   %}
10324   ins_pipe(pipe_slow);
10325 %}
10326 
10327 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
10328 %{
10329   match(Set dst (ConvF2L src));
10330   effect(KILL cr);
10331 
10332   format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
10333             "cmpq    $dst, [0x8000000000000000]\n\t"
10334             "jne,s   done\n\t"
10335             "subq    rsp, #8\n\t"
10336             "movss   [rsp], $src\n\t"
10337             "call    f2l_fixup\n\t"
10338             "popq    $dst\n"
10339     "done:   "%}
10340   ins_encode %{
10341     Label done;
10342     __ cvttss2siq($dst$$Register, $src$$XMMRegister);
10343     __ cmp64($dst$$Register,
10344              ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10345     __ jccb(Assembler::notEqual, done);
10346     __ subptr(rsp, 8);
10347     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10348     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
10349     __ pop($dst$$Register);
10350     __ bind(done);
10351   %}
10352   ins_pipe(pipe_slow);
10353 %}
10354 
10355 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
10356 %{
10357   match(Set dst (ConvD2I src));
10358   effect(KILL cr);
10359 
10360   format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
10361             "cmpl    $dst, #0x80000000\n\t"
10362             "jne,s   done\n\t"
10363             "subq    rsp, #8\n\t"
10364             "movsd   [rsp], $src\n\t"
10365             "call    d2i_fixup\n\t"
10366             "popq    $dst\n"
10367     "done:   "%}
10368   ins_encode %{
10369     Label done;
10370     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10371     __ cmpl($dst$$Register, 0x80000000);
10372     __ jccb(Assembler::notEqual, done);
10373     __ subptr(rsp, 8);
10374     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10375     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
10376     __ pop($dst$$Register);
10377     __ bind(done);
10378   %}
10379   ins_pipe(pipe_slow);
10380 %}
10381 
10382 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
10383 %{
10384   match(Set dst (ConvD2L src));
10385   effect(KILL cr);
10386 
10387   format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
10388             "cmpq    $dst, [0x8000000000000000]\n\t"
10389             "jne,s   done\n\t"
10390             "subq    rsp, #8\n\t"
10391             "movsd   [rsp], $src\n\t"
10392             "call    d2l_fixup\n\t"
10393             "popq    $dst\n"
10394     "done:   "%}
10395   ins_encode %{
10396     Label done;
10397     __ cvttsd2siq($dst$$Register, $src$$XMMRegister);
10398     __ cmp64($dst$$Register,
10399              ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10400     __ jccb(Assembler::notEqual, done);
10401     __ subptr(rsp, 8);
10402     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10403     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
10404     __ pop($dst$$Register);
10405     __ bind(done);
10406   %}
10407   ins_pipe(pipe_slow);
10408 %}
10409 
10410 instruct convI2F_reg_reg(regF dst, rRegI src)
10411 %{
10412   predicate(!UseXmmI2F);
10413   match(Set dst (ConvI2F src));
10414 
10415   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10416   ins_encode %{
10417     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10418   %}
10419   ins_pipe(pipe_slow); // XXX
10420 %}
10421 
10422 instruct convI2F_reg_mem(regF dst, memory src)
10423 %{
10424   match(Set dst (ConvI2F (LoadI src)));
10425 
10426   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10427   ins_encode %{
10428     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10429   %}
10430   ins_pipe(pipe_slow); // XXX
10431 %}
10432 
10433 instruct convI2D_reg_reg(regD dst, rRegI src)
10434 %{
10435   predicate(!UseXmmI2D);
10436   match(Set dst (ConvI2D src));
10437 
10438   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10439   ins_encode %{
10440     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10441   %}
10442   ins_pipe(pipe_slow); // XXX
10443 %}
10444 
10445 instruct convI2D_reg_mem(regD dst, memory src)
10446 %{
10447   match(Set dst (ConvI2D (LoadI src)));
10448 
10449   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10450   ins_encode %{
10451     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10452   %}
10453   ins_pipe(pipe_slow); // XXX
10454 %}
10455 
10456 instruct convXI2F_reg(regF dst, rRegI src)
10457 %{
10458   predicate(UseXmmI2F);
10459   match(Set dst (ConvI2F src));
10460 
10461   format %{ "movdl $dst, $src\n\t"
10462             "cvtdq2psl $dst, $dst\t# i2f" %}
10463   ins_encode %{
10464     __ movdl($dst$$XMMRegister, $src$$Register);
10465     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10466   %}
10467   ins_pipe(pipe_slow); // XXX
10468 %}
10469 
10470 instruct convXI2D_reg(regD dst, rRegI src)
10471 %{
10472   predicate(UseXmmI2D);
10473   match(Set dst (ConvI2D src));
10474 
10475   format %{ "movdl $dst, $src\n\t"
10476             "cvtdq2pdl $dst, $dst\t# i2d" %}
10477   ins_encode %{
10478     __ movdl($dst$$XMMRegister, $src$$Register);
10479     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10480   %}
10481   ins_pipe(pipe_slow); // XXX
10482 %}
10483 
10484 instruct convL2F_reg_reg(regF dst, rRegL src)
10485 %{
10486   match(Set dst (ConvL2F src));
10487 
10488   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10489   ins_encode %{
10490     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10491   %}
10492   ins_pipe(pipe_slow); // XXX
10493 %}
10494 
10495 instruct convL2F_reg_mem(regF dst, memory src)
10496 %{
10497   match(Set dst (ConvL2F (LoadL src)));
10498 
10499   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10500   ins_encode %{
10501     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10502   %}
10503   ins_pipe(pipe_slow); // XXX
10504 %}
10505 
10506 instruct convL2D_reg_reg(regD dst, rRegL src)
10507 %{
10508   match(Set dst (ConvL2D src));
10509 
10510   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10511   ins_encode %{
10512     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10513   %}
10514   ins_pipe(pipe_slow); // XXX
10515 %}
10516 
10517 instruct convL2D_reg_mem(regD dst, memory src)
10518 %{
10519   match(Set dst (ConvL2D (LoadL src)));
10520 
10521   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10522   ins_encode %{
10523     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10524   %}
10525   ins_pipe(pipe_slow); // XXX
10526 %}
10527 
10528 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10529 %{
10530   match(Set dst (ConvI2L src));
10531 
10532   ins_cost(125);
10533   format %{ "movslq  $dst, $src\t# i2l" %}
10534   ins_encode %{
10535     __ movslq($dst$$Register, $src$$Register);
10536   %}
10537   ins_pipe(ialu_reg_reg);
10538 %}
10539 
10540 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10541 // %{
10542 //   match(Set dst (ConvI2L src));
10543 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10544 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10545 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10546 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10547 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
10548 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10549 
10550 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
10551 //   ins_encode(enc_copy(dst, src));
10552 // //   opcode(0x63); // needs REX.W
10553 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10554 //   ins_pipe(ialu_reg_reg);
10555 // %}
10556 
10557 // Zero-extend convert int to long
10558 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10559 %{
10560   match(Set dst (AndL (ConvI2L src) mask));
10561 
10562   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10563   ins_encode %{
10564     if ($dst$$reg != $src$$reg) {
10565       __ movl($dst$$Register, $src$$Register);
10566     }
10567   %}
10568   ins_pipe(ialu_reg_reg);
10569 %}
10570 
10571 // Zero-extend convert int to long
10572 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10573 %{
10574   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10575 
10576   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10577   ins_encode %{
10578     __ movl($dst$$Register, $src$$Address);
10579   %}
10580   ins_pipe(ialu_reg_mem);
10581 %}
10582 
10583 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10584 %{
10585   match(Set dst (AndL src mask));
10586 
10587   format %{ "movl    $dst, $src\t# zero-extend long" %}
10588   ins_encode %{
10589     __ movl($dst$$Register, $src$$Register);
10590   %}
10591   ins_pipe(ialu_reg_reg);
10592 %}
10593 
10594 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10595 %{
10596   match(Set dst (ConvL2I src));
10597 
10598   format %{ "movl    $dst, $src\t# l2i" %}
10599   ins_encode %{
10600     __ movl($dst$$Register, $src$$Register);
10601   %}
10602   ins_pipe(ialu_reg_reg);
10603 %}
10604 
10605 
10606 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10607   match(Set dst (MoveF2I src));
10608   effect(DEF dst, USE src);
10609 
10610   ins_cost(125);
10611   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10612   ins_encode %{
10613     __ movl($dst$$Register, Address(rsp, $src$$disp));
10614   %}
10615   ins_pipe(ialu_reg_mem);
10616 %}
10617 
10618 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10619   match(Set dst (MoveI2F src));
10620   effect(DEF dst, USE src);
10621 
10622   ins_cost(125);
10623   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10624   ins_encode %{
10625     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10626   %}
10627   ins_pipe(pipe_slow);
10628 %}
10629 
10630 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10631   match(Set dst (MoveD2L src));
10632   effect(DEF dst, USE src);
10633 
10634   ins_cost(125);
10635   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10636   ins_encode %{
10637     __ movq($dst$$Register, Address(rsp, $src$$disp));
10638   %}
10639   ins_pipe(ialu_reg_mem);
10640 %}
10641 
10642 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10643   predicate(!UseXmmLoadAndClearUpper);
10644   match(Set dst (MoveL2D src));
10645   effect(DEF dst, USE src);
10646 
10647   ins_cost(125);
10648   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10649   ins_encode %{
10650     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10651   %}
10652   ins_pipe(pipe_slow);
10653 %}
10654 
10655 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10656   predicate(UseXmmLoadAndClearUpper);
10657   match(Set dst (MoveL2D src));
10658   effect(DEF dst, USE src);
10659 
10660   ins_cost(125);
10661   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10662   ins_encode %{
10663     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10664   %}
10665   ins_pipe(pipe_slow);
10666 %}
10667 
10668 
10669 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10670   match(Set dst (MoveF2I src));
10671   effect(DEF dst, USE src);
10672 
10673   ins_cost(95); // XXX
10674   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10675   ins_encode %{
10676     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10677   %}
10678   ins_pipe(pipe_slow);
10679 %}
10680 
10681 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10682   match(Set dst (MoveI2F src));
10683   effect(DEF dst, USE src);
10684 
10685   ins_cost(100);
10686   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10687   ins_encode %{
10688     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10689   %}
10690   ins_pipe( ialu_mem_reg );
10691 %}
10692 
10693 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10694   match(Set dst (MoveD2L src));
10695   effect(DEF dst, USE src);
10696 
10697   ins_cost(95); // XXX
10698   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10699   ins_encode %{
10700     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10701   %}
10702   ins_pipe(pipe_slow);
10703 %}
10704 
10705 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10706   match(Set dst (MoveL2D src));
10707   effect(DEF dst, USE src);
10708 
10709   ins_cost(100);
10710   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10711   ins_encode %{
10712     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10713   %}
10714   ins_pipe(ialu_mem_reg);
10715 %}
10716 
10717 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10718   match(Set dst (MoveF2I src));
10719   effect(DEF dst, USE src);
10720   ins_cost(85);
10721   format %{ "movd    $dst,$src\t# MoveF2I" %}
10722   ins_encode %{
10723     __ movdl($dst$$Register, $src$$XMMRegister);
10724   %}
10725   ins_pipe( pipe_slow );
10726 %}
10727 
10728 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10729   match(Set dst (MoveD2L src));
10730   effect(DEF dst, USE src);
10731   ins_cost(85);
10732   format %{ "movd    $dst,$src\t# MoveD2L" %}
10733   ins_encode %{
10734     __ movdq($dst$$Register, $src$$XMMRegister);
10735   %}
10736   ins_pipe( pipe_slow );
10737 %}
10738 
10739 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10740   match(Set dst (MoveI2F src));
10741   effect(DEF dst, USE src);
10742   ins_cost(100);
10743   format %{ "movd    $dst,$src\t# MoveI2F" %}
10744   ins_encode %{
10745     __ movdl($dst$$XMMRegister, $src$$Register);
10746   %}
10747   ins_pipe( pipe_slow );
10748 %}
10749 
10750 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10751   match(Set dst (MoveL2D src));
10752   effect(DEF dst, USE src);
10753   ins_cost(100);
10754   format %{ "movd    $dst,$src\t# MoveL2D" %}
10755   ins_encode %{
10756      __ movdq($dst$$XMMRegister, $src$$Register);
10757   %}
10758   ins_pipe( pipe_slow );
10759 %}
10760 
10761 
10762 // =======================================================================
10763 // fast clearing of an array
10764 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegL val,
10765                   Universe dummy, rFlagsReg cr)
10766 %{
10767   predicate(!((ClearArrayNode*)n)->is_large() && !((ClearArrayNode*)n)->word_copy_only());
10768   match(Set dummy (ClearArray (Binary cnt base) val));
10769   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL cr);
10770 
10771   format %{ $$template
10772     $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10773     $$emit$$"jg      LARGE\n\t"
10774     $$emit$$"dec     rcx\n\t"
10775     $$emit$$"js      DONE\t# Zero length\n\t"
10776     $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10777     $$emit$$"dec     rcx\n\t"
10778     $$emit$$"jge     LOOP\n\t"
10779     $$emit$$"jmp     DONE\n\t"
10780     $$emit$$"# LARGE:\n\t"
10781     if (UseFastStosb) {
10782        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10783        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--\n\t"
10784     } else if (UseXMMForObjInit) {
10785        $$emit$$"movdq   $tmp, $val\n\t"
10786        $$emit$$"punpcklqdq $tmp, $tmp\n\t"
10787        $$emit$$"vinserti128_high $tmp, $tmp\n\t"
10788        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10789        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10790        $$emit$$"vmovdqu $tmp,(rax)\n\t"
10791        $$emit$$"vmovdqu $tmp,0x20(rax)\n\t"
10792        $$emit$$"add     0x40,rax\n\t"
10793        $$emit$$"# L_zero_64_bytes:\n\t"
10794        $$emit$$"sub     0x8,rcx\n\t"
10795        $$emit$$"jge     L_loop\n\t"
10796        $$emit$$"add     0x4,rcx\n\t"
10797        $$emit$$"jl      L_tail\n\t"
10798        $$emit$$"vmovdqu $tmp,(rax)\n\t"
10799        $$emit$$"add     0x20,rax\n\t"
10800        $$emit$$"sub     0x4,rcx\n\t"
10801        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10802        $$emit$$"add     0x4,rcx\n\t"
10803        $$emit$$"jle     L_end\n\t"
10804        $$emit$$"dec     rcx\n\t"
10805        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10806        $$emit$$"vmovq   xmm0,(rax)\n\t"
10807        $$emit$$"add     0x8,rax\n\t"
10808        $$emit$$"dec     rcx\n\t"
10809        $$emit$$"jge     L_sloop\n\t"
10810        $$emit$$"# L_end:\n\t"
10811     } else {
10812        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
10813     }
10814     $$emit$$"# DONE"
10815   %}
10816   ins_encode %{
10817     __ clear_mem($base$$Register, $cnt$$Register, $val$$Register,
10818                  $tmp$$XMMRegister, false, false);
10819   %}
10820   ins_pipe(pipe_slow);
10821 %}
10822 
10823 instruct rep_stos_word_copy(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegL val,
10824                   Universe dummy, rFlagsReg cr)
10825 %{
10826   predicate(!((ClearArrayNode*)n)->is_large() && ((ClearArrayNode*)n)->word_copy_only());
10827   match(Set dummy (ClearArray (Binary cnt base) val));
10828   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL cr);
10829 
10830   format %{ $$template
10831     $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10832     $$emit$$"jg      LARGE\n\t"
10833     $$emit$$"dec     rcx\n\t"
10834     $$emit$$"js      DONE\t# Zero length\n\t"
10835     $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10836     $$emit$$"dec     rcx\n\t"
10837     $$emit$$"jge     LOOP\n\t"
10838     $$emit$$"jmp     DONE\n\t"
10839     $$emit$$"# LARGE:\n\t"
10840     if (UseXMMForObjInit) {
10841        $$emit$$"movdq   $tmp, $val\n\t"
10842        $$emit$$"punpcklqdq $tmp, $tmp\n\t"
10843        $$emit$$"vinserti128_high $tmp, $tmp\n\t"
10844        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10845        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10846        $$emit$$"vmovdqu $tmp,(rax)\n\t"
10847        $$emit$$"vmovdqu $tmp,0x20(rax)\n\t"
10848        $$emit$$"add     0x40,rax\n\t"
10849        $$emit$$"# L_zero_64_bytes:\n\t"
10850        $$emit$$"sub     0x8,rcx\n\t"
10851        $$emit$$"jge     L_loop\n\t"
10852        $$emit$$"add     0x4,rcx\n\t"
10853        $$emit$$"jl      L_tail\n\t"
10854        $$emit$$"vmovdqu $tmp,(rax)\n\t"
10855        $$emit$$"add     0x20,rax\n\t"
10856        $$emit$$"sub     0x4,rcx\n\t"
10857        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10858        $$emit$$"add     0x4,rcx\n\t"
10859        $$emit$$"jle     L_end\n\t"
10860        $$emit$$"dec     rcx\n\t"
10861        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10862        $$emit$$"vmovq   xmm0,(rax)\n\t"
10863        $$emit$$"add     0x8,rax\n\t"
10864        $$emit$$"dec     rcx\n\t"
10865        $$emit$$"jge     L_sloop\n\t"
10866        $$emit$$"# L_end:\n\t"
10867     } else {
10868        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
10869     }
10870     $$emit$$"# DONE"
10871   %}
10872   ins_encode %{
10873     __ clear_mem($base$$Register, $cnt$$Register, $val$$Register,
10874                  $tmp$$XMMRegister, false, true);
10875   %}
10876   ins_pipe(pipe_slow);
10877 %}
10878 
10879 instruct rep_stos_large(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegL val, 
10880                         Universe dummy, rFlagsReg cr)
10881 %{
10882   predicate(((ClearArrayNode*)n)->is_large() && !((ClearArrayNode*)n)->word_copy_only());
10883   match(Set dummy (ClearArray (Binary cnt base) val));
10884   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL cr);
10885 
10886   format %{ $$template
10887     if (UseFastStosb) {
10888        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10889        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--"
10890     } else if (UseXMMForObjInit) {
10891        $$emit$$"movdq   $tmp, $val\n\t"
10892        $$emit$$"punpcklqdq $tmp, $tmp\n\t"
10893        $$emit$$"vinserti128_high $tmp, $tmp\n\t"
10894        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10895        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10896        $$emit$$"vmovdqu $tmp,(rax)\n\t"
10897        $$emit$$"vmovdqu $tmp,0x20(rax)\n\t"
10898        $$emit$$"add     0x40,rax\n\t"
10899        $$emit$$"# L_zero_64_bytes:\n\t"
10900        $$emit$$"sub     0x8,rcx\n\t"
10901        $$emit$$"jge     L_loop\n\t"
10902        $$emit$$"add     0x4,rcx\n\t"
10903        $$emit$$"jl      L_tail\n\t"
10904        $$emit$$"vmovdqu $tmp,(rax)\n\t"
10905        $$emit$$"add     0x20,rax\n\t"
10906        $$emit$$"sub     0x4,rcx\n\t"
10907        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10908        $$emit$$"add     0x4,rcx\n\t"
10909        $$emit$$"jle     L_end\n\t"
10910        $$emit$$"dec     rcx\n\t"
10911        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10912        $$emit$$"vmovq   xmm0,(rax)\n\t"
10913        $$emit$$"add     0x8,rax\n\t"
10914        $$emit$$"dec     rcx\n\t"
10915        $$emit$$"jge     L_sloop\n\t"
10916        $$emit$$"# L_end:\n\t"
10917     } else {
10918        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
10919     }
10920   %}
10921   ins_encode %{
10922     __ clear_mem($base$$Register, $cnt$$Register, $val$$Register, 
10923                  $tmp$$XMMRegister, true, false);
10924   %}
10925   ins_pipe(pipe_slow);
10926 %}
10927 
10928 instruct rep_stos_large_word_copy(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegL val, 
10929                         Universe dummy, rFlagsReg cr)
10930 %{
10931   predicate(((ClearArrayNode*)n)->is_large() && ((ClearArrayNode*)n)->word_copy_only());
10932   match(Set dummy (ClearArray (Binary cnt base) val));
10933   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL cr);
10934 
10935   format %{ $$template
10936     if (UseXMMForObjInit) {
10937        $$emit$$"movdq   $tmp, $val\n\t"
10938        $$emit$$"punpcklqdq $tmp, $tmp\n\t"
10939        $$emit$$"vinserti128_high $tmp, $tmp\n\t"
10940        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10941        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10942        $$emit$$"vmovdqu $tmp,(rax)\n\t"
10943        $$emit$$"vmovdqu $tmp,0x20(rax)\n\t"
10944        $$emit$$"add     0x40,rax\n\t"
10945        $$emit$$"# L_zero_64_bytes:\n\t"
10946        $$emit$$"sub     0x8,rcx\n\t"
10947        $$emit$$"jge     L_loop\n\t"
10948        $$emit$$"add     0x4,rcx\n\t"
10949        $$emit$$"jl      L_tail\n\t"
10950        $$emit$$"vmovdqu $tmp,(rax)\n\t"
10951        $$emit$$"add     0x20,rax\n\t"
10952        $$emit$$"sub     0x4,rcx\n\t"
10953        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10954        $$emit$$"add     0x4,rcx\n\t"
10955        $$emit$$"jle     L_end\n\t"
10956        $$emit$$"dec     rcx\n\t"
10957        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10958        $$emit$$"vmovq   xmm0,(rax)\n\t"
10959        $$emit$$"add     0x8,rax\n\t"
10960        $$emit$$"dec     rcx\n\t"
10961        $$emit$$"jge     L_sloop\n\t"
10962        $$emit$$"# L_end:\n\t"
10963     } else {
10964        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
10965     }
10966   %}
10967   ins_encode %{
10968     __ clear_mem($base$$Register, $cnt$$Register, $val$$Register, 
10969                  $tmp$$XMMRegister, true, true);
10970   %}
10971   ins_pipe(pipe_slow);
10972 %}
10973 
10974 instruct string_compareL(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10975                          rax_RegI result, regD tmp1, rFlagsReg cr)
10976 %{
10977   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10978   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10979   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10980 
10981   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10982   ins_encode %{
10983     __ string_compare($str1$$Register, $str2$$Register,
10984                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10985                       $tmp1$$XMMRegister, StrIntrinsicNode::LL);
10986   %}
10987   ins_pipe( pipe_slow );
10988 %}
10989 
10990 instruct string_compareU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10991                          rax_RegI result, regD tmp1, rFlagsReg cr)
10992 %{
10993   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10994   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10995   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10996 
10997   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10998   ins_encode %{
10999     __ string_compare($str1$$Register, $str2$$Register,
11000                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11001                       $tmp1$$XMMRegister, StrIntrinsicNode::UU);
11002   %}
11003   ins_pipe( pipe_slow );
11004 %}
11005 
11006 instruct string_compareLU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11007                           rax_RegI result, regD tmp1, rFlagsReg cr)
11008 %{
11009   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
11010   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11011   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11012 
11013   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11014   ins_encode %{
11015     __ string_compare($str1$$Register, $str2$$Register,
11016                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11017                       $tmp1$$XMMRegister, StrIntrinsicNode::LU);
11018   %}
11019   ins_pipe( pipe_slow );
11020 %}
11021 
11022 instruct string_compareUL(rsi_RegP str1, rdx_RegI cnt1, rdi_RegP str2, rcx_RegI cnt2,
11023                           rax_RegI result, regD tmp1, rFlagsReg cr)
11024 %{
11025   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
11026   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11027   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11028 
11029   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11030   ins_encode %{
11031     __ string_compare($str2$$Register, $str1$$Register,
11032                       $cnt2$$Register, $cnt1$$Register, $result$$Register,
11033                       $tmp1$$XMMRegister, StrIntrinsicNode::UL);
11034   %}
11035   ins_pipe( pipe_slow );
11036 %}
11037 
11038 // fast search of substring with known size.
11039 instruct string_indexof_conL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11040                              rbx_RegI result, regD vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11041 %{
11042   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11043   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11044   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11045 
11046   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11047   ins_encode %{
11048     int icnt2 = (int)$int_cnt2$$constant;
11049     if (icnt2 >= 16) {
11050       // IndexOf for constant substrings with size >= 16 elements
11051       // which don't need to be loaded through stack.
11052       __ string_indexofC8($str1$$Register, $str2$$Register,
11053                           $cnt1$$Register, $cnt2$$Register,
11054                           icnt2, $result$$Register,
11055                           $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11056     } else {
11057       // Small strings are loaded through stack if they cross page boundary.
11058       __ string_indexof($str1$$Register, $str2$$Register,
11059                         $cnt1$$Register, $cnt2$$Register,
11060                         icnt2, $result$$Register,
11061                         $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11062     }
11063   %}
11064   ins_pipe( pipe_slow );
11065 %}
11066 
11067 // fast search of substring with known size.
11068 instruct string_indexof_conU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11069                              rbx_RegI result, regD vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11070 %{
11071   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11072   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11073   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11074 
11075   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11076   ins_encode %{
11077     int icnt2 = (int)$int_cnt2$$constant;
11078     if (icnt2 >= 8) {
11079       // IndexOf for constant substrings with size >= 8 elements
11080       // which don't need to be loaded through stack.
11081       __ string_indexofC8($str1$$Register, $str2$$Register,
11082                           $cnt1$$Register, $cnt2$$Register,
11083                           icnt2, $result$$Register,
11084                           $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11085     } else {
11086       // Small strings are loaded through stack if they cross page boundary.
11087       __ string_indexof($str1$$Register, $str2$$Register,
11088                         $cnt1$$Register, $cnt2$$Register,
11089                         icnt2, $result$$Register,
11090                         $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11091     }
11092   %}
11093   ins_pipe( pipe_slow );
11094 %}
11095 
11096 // fast search of substring with known size.
11097 instruct string_indexof_conUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11098                              rbx_RegI result, regD vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11099 %{
11100   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11101   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11102   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11103 
11104   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11105   ins_encode %{
11106     int icnt2 = (int)$int_cnt2$$constant;
11107     if (icnt2 >= 8) {
11108       // IndexOf for constant substrings with size >= 8 elements
11109       // which don't need to be loaded through stack.
11110       __ string_indexofC8($str1$$Register, $str2$$Register,
11111                           $cnt1$$Register, $cnt2$$Register,
11112                           icnt2, $result$$Register,
11113                           $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11114     } else {
11115       // Small strings are loaded through stack if they cross page boundary.
11116       __ string_indexof($str1$$Register, $str2$$Register,
11117                         $cnt1$$Register, $cnt2$$Register,
11118                         icnt2, $result$$Register,
11119                         $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11120     }
11121   %}
11122   ins_pipe( pipe_slow );
11123 %}
11124 
11125 instruct string_indexofL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11126                          rbx_RegI result, regD vec, rcx_RegI tmp, rFlagsReg cr)
11127 %{
11128   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11129   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11130   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11131 
11132   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11133   ins_encode %{
11134     __ string_indexof($str1$$Register, $str2$$Register,
11135                       $cnt1$$Register, $cnt2$$Register,
11136                       (-1), $result$$Register,
11137                       $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11138   %}
11139   ins_pipe( pipe_slow );
11140 %}
11141 
11142 instruct string_indexofU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11143                          rbx_RegI result, regD vec, rcx_RegI tmp, rFlagsReg cr)
11144 %{
11145   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11146   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11147   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11148 
11149   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11150   ins_encode %{
11151     __ string_indexof($str1$$Register, $str2$$Register,
11152                       $cnt1$$Register, $cnt2$$Register,
11153                       (-1), $result$$Register,
11154                       $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11155   %}
11156   ins_pipe( pipe_slow );
11157 %}
11158 
11159 instruct string_indexofUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11160                          rbx_RegI result, regD vec, rcx_RegI tmp, rFlagsReg cr)
11161 %{
11162   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11163   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11164   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11165 
11166   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11167   ins_encode %{
11168     __ string_indexof($str1$$Register, $str2$$Register,
11169                       $cnt1$$Register, $cnt2$$Register,
11170                       (-1), $result$$Register,
11171                       $vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11172   %}
11173   ins_pipe( pipe_slow );
11174 %}
11175 
11176 instruct string_indexofU_char(rdi_RegP str1, rdx_RegI cnt1, rax_RegI ch,
11177                               rbx_RegI result, regD vec1, regD vec2, regD vec3, rcx_RegI tmp, rFlagsReg cr)
11178 %{
11179   predicate(UseSSE42Intrinsics);
11180   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
11181   effect(TEMP vec1, TEMP vec2, TEMP vec3, USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP tmp, KILL cr);
11182   format %{ "String IndexOf char[] $str1,$cnt1,$ch -> $result   // KILL all" %}
11183   ins_encode %{
11184     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, $result$$Register,
11185                            $vec1$$XMMRegister, $vec2$$XMMRegister, $vec3$$XMMRegister, $tmp$$Register);
11186   %}
11187   ins_pipe( pipe_slow );
11188 %}
11189 
11190 // fast string equals
11191 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
11192                        regD tmp1, regD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11193 %{
11194   match(Set result (StrEquals (Binary str1 str2) cnt));
11195   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11196 
11197   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11198   ins_encode %{
11199     __ arrays_equals(false, $str1$$Register, $str2$$Register,
11200                      $cnt$$Register, $result$$Register, $tmp3$$Register,
11201                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11202   %}
11203   ins_pipe( pipe_slow );
11204 %}
11205 
11206 // fast array equals
11207 instruct array_equalsB(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11208                        regD tmp1, regD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11209 %{
11210   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
11211   match(Set result (AryEq ary1 ary2));
11212   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11213 
11214   format %{ "Array Equals byte[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11215   ins_encode %{
11216     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11217                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11218                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11219   %}
11220   ins_pipe( pipe_slow );
11221 %}
11222 
11223 instruct array_equalsC(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11224                       regD tmp1, regD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11225 %{
11226   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
11227   match(Set result (AryEq ary1 ary2));
11228   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11229 
11230   format %{ "Array Equals char[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11231   ins_encode %{
11232     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11233                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11234                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, true /* char */);
11235   %}
11236   ins_pipe( pipe_slow );
11237 %}
11238 
11239 instruct has_negatives(rsi_RegP ary1, rcx_RegI len, rax_RegI result,
11240                       regD tmp1, regD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11241 %{
11242   match(Set result (HasNegatives ary1 len));
11243   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL len, KILL tmp3, KILL cr);
11244 
11245   format %{ "has negatives byte[] $ary1,$len -> $result   // KILL $tmp1, $tmp2, $tmp3" %}
11246   ins_encode %{
11247     __ has_negatives($ary1$$Register, $len$$Register,
11248                      $result$$Register, $tmp3$$Register,
11249                      $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11250   %}
11251   ins_pipe( pipe_slow );
11252 %}
11253 
11254 // fast char[] to byte[] compression
11255 instruct string_compress(rsi_RegP src, rdi_RegP dst, rdx_RegI len, regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11256                          rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11257   match(Set result (StrCompressedCopy src (Binary dst len)));
11258   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11259 
11260   format %{ "String Compress $src,$dst -> $result    // KILL RAX, RCX, RDX" %}
11261   ins_encode %{
11262     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
11263                            $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11264                            $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11265   %}
11266   ins_pipe( pipe_slow );
11267 %}
11268 
11269 // fast byte[] to char[] inflation
11270 instruct string_inflate(Universe dummy, rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11271                         regD tmp1, rcx_RegI tmp2, rFlagsReg cr) %{
11272   match(Set dummy (StrInflatedCopy src (Binary dst len)));
11273   effect(TEMP tmp1, TEMP tmp2, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
11274 
11275   format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
11276   ins_encode %{
11277     __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
11278                           $tmp1$$XMMRegister, $tmp2$$Register);
11279   %}
11280   ins_pipe( pipe_slow );
11281 %}
11282 
11283 // encode char[] to byte[] in ISO_8859_1
11284 instruct encode_iso_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11285                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11286                           rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11287   match(Set result (EncodeISOArray src (Binary dst len)));
11288   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11289 
11290   format %{ "Encode array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
11291   ins_encode %{
11292     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11293                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11294                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11295   %}
11296   ins_pipe( pipe_slow );
11297 %}
11298 
11299 //----------Overflow Math Instructions-----------------------------------------
11300 
11301 instruct overflowAddI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11302 %{
11303   match(Set cr (OverflowAddI op1 op2));
11304   effect(DEF cr, USE_KILL op1, USE op2);
11305 
11306   format %{ "addl    $op1, $op2\t# overflow check int" %}
11307 
11308   ins_encode %{
11309     __ addl($op1$$Register, $op2$$Register);
11310   %}
11311   ins_pipe(ialu_reg_reg);
11312 %}
11313 
11314 instruct overflowAddI_rReg_imm(rFlagsReg cr, rax_RegI op1, immI op2)
11315 %{
11316   match(Set cr (OverflowAddI op1 op2));
11317   effect(DEF cr, USE_KILL op1, USE op2);
11318 
11319   format %{ "addl    $op1, $op2\t# overflow check int" %}
11320 
11321   ins_encode %{
11322     __ addl($op1$$Register, $op2$$constant);
11323   %}
11324   ins_pipe(ialu_reg_reg);
11325 %}
11326 
11327 instruct overflowAddL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11328 %{
11329   match(Set cr (OverflowAddL op1 op2));
11330   effect(DEF cr, USE_KILL op1, USE op2);
11331 
11332   format %{ "addq    $op1, $op2\t# overflow check long" %}
11333   ins_encode %{
11334     __ addq($op1$$Register, $op2$$Register);
11335   %}
11336   ins_pipe(ialu_reg_reg);
11337 %}
11338 
11339 instruct overflowAddL_rReg_imm(rFlagsReg cr, rax_RegL op1, immL32 op2)
11340 %{
11341   match(Set cr (OverflowAddL op1 op2));
11342   effect(DEF cr, USE_KILL op1, USE op2);
11343 
11344   format %{ "addq    $op1, $op2\t# overflow check long" %}
11345   ins_encode %{
11346     __ addq($op1$$Register, $op2$$constant);
11347   %}
11348   ins_pipe(ialu_reg_reg);
11349 %}
11350 
11351 instruct overflowSubI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11352 %{
11353   match(Set cr (OverflowSubI op1 op2));
11354 
11355   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11356   ins_encode %{
11357     __ cmpl($op1$$Register, $op2$$Register);
11358   %}
11359   ins_pipe(ialu_reg_reg);
11360 %}
11361 
11362 instruct overflowSubI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11363 %{
11364   match(Set cr (OverflowSubI op1 op2));
11365 
11366   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11367   ins_encode %{
11368     __ cmpl($op1$$Register, $op2$$constant);
11369   %}
11370   ins_pipe(ialu_reg_reg);
11371 %}
11372 
11373 instruct overflowSubL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11374 %{
11375   match(Set cr (OverflowSubL op1 op2));
11376 
11377   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11378   ins_encode %{
11379     __ cmpq($op1$$Register, $op2$$Register);
11380   %}
11381   ins_pipe(ialu_reg_reg);
11382 %}
11383 
11384 instruct overflowSubL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11385 %{
11386   match(Set cr (OverflowSubL op1 op2));
11387 
11388   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11389   ins_encode %{
11390     __ cmpq($op1$$Register, $op2$$constant);
11391   %}
11392   ins_pipe(ialu_reg_reg);
11393 %}
11394 
11395 instruct overflowNegI_rReg(rFlagsReg cr, immI0 zero, rax_RegI op2)
11396 %{
11397   match(Set cr (OverflowSubI zero op2));
11398   effect(DEF cr, USE_KILL op2);
11399 
11400   format %{ "negl    $op2\t# overflow check int" %}
11401   ins_encode %{
11402     __ negl($op2$$Register);
11403   %}
11404   ins_pipe(ialu_reg_reg);
11405 %}
11406 
11407 instruct overflowNegL_rReg(rFlagsReg cr, immL0 zero, rax_RegL op2)
11408 %{
11409   match(Set cr (OverflowSubL zero op2));
11410   effect(DEF cr, USE_KILL op2);
11411 
11412   format %{ "negq    $op2\t# overflow check long" %}
11413   ins_encode %{
11414     __ negq($op2$$Register);
11415   %}
11416   ins_pipe(ialu_reg_reg);
11417 %}
11418 
11419 instruct overflowMulI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11420 %{
11421   match(Set cr (OverflowMulI op1 op2));
11422   effect(DEF cr, USE_KILL op1, USE op2);
11423 
11424   format %{ "imull    $op1, $op2\t# overflow check int" %}
11425   ins_encode %{
11426     __ imull($op1$$Register, $op2$$Register);
11427   %}
11428   ins_pipe(ialu_reg_reg_alu0);
11429 %}
11430 
11431 instruct overflowMulI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
11432 %{
11433   match(Set cr (OverflowMulI op1 op2));
11434   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11435 
11436   format %{ "imull    $tmp, $op1, $op2\t# overflow check int" %}
11437   ins_encode %{
11438     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
11439   %}
11440   ins_pipe(ialu_reg_reg_alu0);
11441 %}
11442 
11443 instruct overflowMulL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11444 %{
11445   match(Set cr (OverflowMulL op1 op2));
11446   effect(DEF cr, USE_KILL op1, USE op2);
11447 
11448   format %{ "imulq    $op1, $op2\t# overflow check long" %}
11449   ins_encode %{
11450     __ imulq($op1$$Register, $op2$$Register);
11451   %}
11452   ins_pipe(ialu_reg_reg_alu0);
11453 %}
11454 
11455 instruct overflowMulL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2, rRegL tmp)
11456 %{
11457   match(Set cr (OverflowMulL op1 op2));
11458   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11459 
11460   format %{ "imulq    $tmp, $op1, $op2\t# overflow check long" %}
11461   ins_encode %{
11462     __ imulq($tmp$$Register, $op1$$Register, $op2$$constant);
11463   %}
11464   ins_pipe(ialu_reg_reg_alu0);
11465 %}
11466 
11467 
11468 //----------Control Flow Instructions------------------------------------------
11469 // Signed compare Instructions
11470 
11471 // XXX more variants!!
11472 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11473 %{
11474   match(Set cr (CmpI op1 op2));
11475   effect(DEF cr, USE op1, USE op2);
11476 
11477   format %{ "cmpl    $op1, $op2" %}
11478   opcode(0x3B);  /* Opcode 3B /r */
11479   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11480   ins_pipe(ialu_cr_reg_reg);
11481 %}
11482 
11483 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11484 %{
11485   match(Set cr (CmpI op1 op2));
11486 
11487   format %{ "cmpl    $op1, $op2" %}
11488   opcode(0x81, 0x07); /* Opcode 81 /7 */
11489   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11490   ins_pipe(ialu_cr_reg_imm);
11491 %}
11492 
11493 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
11494 %{
11495   match(Set cr (CmpI op1 (LoadI op2)));
11496 
11497   ins_cost(500); // XXX
11498   format %{ "cmpl    $op1, $op2" %}
11499   opcode(0x3B); /* Opcode 3B /r */
11500   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11501   ins_pipe(ialu_cr_reg_mem);
11502 %}
11503 
11504 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
11505 %{
11506   match(Set cr (CmpI src zero));
11507 
11508   format %{ "testl   $src, $src" %}
11509   opcode(0x85);
11510   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11511   ins_pipe(ialu_cr_reg_imm);
11512 %}
11513 
11514 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
11515 %{
11516   match(Set cr (CmpI (AndI src con) zero));
11517 
11518   format %{ "testl   $src, $con" %}
11519   opcode(0xF7, 0x00);
11520   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
11521   ins_pipe(ialu_cr_reg_imm);
11522 %}
11523 
11524 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
11525 %{
11526   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
11527 
11528   format %{ "testl   $src, $mem" %}
11529   opcode(0x85);
11530   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
11531   ins_pipe(ialu_cr_reg_mem);
11532 %}
11533 
11534 // Unsigned compare Instructions; really, same as signed except they
11535 // produce an rFlagsRegU instead of rFlagsReg.
11536 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
11537 %{
11538   match(Set cr (CmpU op1 op2));
11539 
11540   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11541   opcode(0x3B); /* Opcode 3B /r */
11542   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11543   ins_pipe(ialu_cr_reg_reg);
11544 %}
11545 
11546 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
11547 %{
11548   match(Set cr (CmpU op1 op2));
11549 
11550   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11551   opcode(0x81,0x07); /* Opcode 81 /7 */
11552   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11553   ins_pipe(ialu_cr_reg_imm);
11554 %}
11555 
11556 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
11557 %{
11558   match(Set cr (CmpU op1 (LoadI op2)));
11559 
11560   ins_cost(500); // XXX
11561   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11562   opcode(0x3B); /* Opcode 3B /r */
11563   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11564   ins_pipe(ialu_cr_reg_mem);
11565 %}
11566 
11567 // // // Cisc-spilled version of cmpU_rReg
11568 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
11569 // //%{
11570 // //  match(Set cr (CmpU (LoadI op1) op2));
11571 // //
11572 // //  format %{ "CMPu   $op1,$op2" %}
11573 // //  ins_cost(500);
11574 // //  opcode(0x39);  /* Opcode 39 /r */
11575 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11576 // //%}
11577 
11578 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
11579 %{
11580   match(Set cr (CmpU src zero));
11581 
11582   format %{ "testl  $src, $src\t# unsigned" %}
11583   opcode(0x85);
11584   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11585   ins_pipe(ialu_cr_reg_imm);
11586 %}
11587 
11588 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
11589 %{
11590   match(Set cr (CmpP op1 op2));
11591 
11592   format %{ "cmpq    $op1, $op2\t# ptr" %}
11593   opcode(0x3B); /* Opcode 3B /r */
11594   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11595   ins_pipe(ialu_cr_reg_reg);
11596 %}
11597 
11598 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
11599 %{
11600   match(Set cr (CmpP op1 (LoadP op2)));
11601 
11602   ins_cost(500); // XXX
11603   format %{ "cmpq    $op1, $op2\t# ptr" %}
11604   opcode(0x3B); /* Opcode 3B /r */
11605   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11606   ins_pipe(ialu_cr_reg_mem);
11607 %}
11608 
11609 // // // Cisc-spilled version of cmpP_rReg
11610 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
11611 // //%{
11612 // //  match(Set cr (CmpP (LoadP op1) op2));
11613 // //
11614 // //  format %{ "CMPu   $op1,$op2" %}
11615 // //  ins_cost(500);
11616 // //  opcode(0x39);  /* Opcode 39 /r */
11617 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11618 // //%}
11619 
11620 // XXX this is generalized by compP_rReg_mem???
11621 // Compare raw pointer (used in out-of-heap check).
11622 // Only works because non-oop pointers must be raw pointers
11623 // and raw pointers have no anti-dependencies.
11624 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
11625 %{
11626   predicate(n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none);
11627   match(Set cr (CmpP op1 (LoadP op2)));
11628 
11629   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
11630   opcode(0x3B); /* Opcode 3B /r */
11631   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11632   ins_pipe(ialu_cr_reg_mem);
11633 %}
11634 
11635 // This will generate a signed flags result. This should be OK since
11636 // any compare to a zero should be eq/neq.
11637 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
11638 %{
11639   match(Set cr (CmpP src zero));
11640 
11641   format %{ "testq   $src, $src\t# ptr" %}
11642   opcode(0x85);
11643   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11644   ins_pipe(ialu_cr_reg_imm);
11645 %}
11646 
11647 // This will generate a signed flags result. This should be OK since
11648 // any compare to a zero should be eq/neq.
11649 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
11650 %{
11651   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
11652   match(Set cr (CmpP (LoadP op) zero));
11653 
11654   ins_cost(500); // XXX
11655   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
11656   opcode(0xF7); /* Opcode F7 /0 */
11657   ins_encode(REX_mem_wide(op),
11658              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
11659   ins_pipe(ialu_cr_reg_imm);
11660 %}
11661 
11662 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
11663 %{
11664   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
11665   match(Set cr (CmpP (LoadP mem) zero));
11666 
11667   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
11668   ins_encode %{
11669     __ cmpq(r12, $mem$$Address);
11670   %}
11671   ins_pipe(ialu_cr_reg_mem);
11672 %}
11673 
11674 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
11675 %{
11676   match(Set cr (CmpN op1 op2));
11677 
11678   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11679   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
11680   ins_pipe(ialu_cr_reg_reg);
11681 %}
11682 
11683 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
11684 %{
11685   match(Set cr (CmpN src (LoadN mem)));
11686 
11687   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
11688   ins_encode %{
11689     __ cmpl($src$$Register, $mem$$Address);
11690   %}
11691   ins_pipe(ialu_cr_reg_mem);
11692 %}
11693 
11694 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
11695   match(Set cr (CmpN op1 op2));
11696 
11697   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11698   ins_encode %{
11699     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
11700   %}
11701   ins_pipe(ialu_cr_reg_imm);
11702 %}
11703 
11704 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
11705 %{
11706   match(Set cr (CmpN src (LoadN mem)));
11707 
11708   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
11709   ins_encode %{
11710     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
11711   %}
11712   ins_pipe(ialu_cr_reg_mem);
11713 %}
11714 
11715 instruct compN_rReg_imm_klass(rFlagsRegU cr, rRegN op1, immNKlass op2) %{
11716   match(Set cr (CmpN op1 op2));
11717 
11718   format %{ "cmpl    $op1, $op2\t# compressed klass ptr" %}
11719   ins_encode %{
11720     __ cmp_narrow_klass($op1$$Register, (Klass*)$op2$$constant);
11721   %}
11722   ins_pipe(ialu_cr_reg_imm);
11723 %}
11724 
11725 instruct compN_mem_imm_klass(rFlagsRegU cr, memory mem, immNKlass src)
11726 %{
11727   match(Set cr (CmpN src (LoadNKlass mem)));
11728 
11729   format %{ "cmpl    $mem, $src\t# compressed klass ptr" %}
11730   ins_encode %{
11731     __ cmp_narrow_klass($mem$$Address, (Klass*)$src$$constant);
11732   %}
11733   ins_pipe(ialu_cr_reg_mem);
11734 %}
11735 
11736 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
11737   match(Set cr (CmpN src zero));
11738 
11739   format %{ "testl   $src, $src\t# compressed ptr" %}
11740   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
11741   ins_pipe(ialu_cr_reg_imm);
11742 %}
11743 
11744 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
11745 %{
11746   predicate(Universe::narrow_oop_base() != NULL);
11747   match(Set cr (CmpN (LoadN mem) zero));
11748 
11749   ins_cost(500); // XXX
11750   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
11751   ins_encode %{
11752     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
11753   %}
11754   ins_pipe(ialu_cr_reg_mem);
11755 %}
11756 
11757 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
11758 %{
11759   predicate(Universe::narrow_oop_base() == NULL && (Universe::narrow_klass_base() == NULL));
11760   match(Set cr (CmpN (LoadN mem) zero));
11761 
11762   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
11763   ins_encode %{
11764     __ cmpl(r12, $mem$$Address);
11765   %}
11766   ins_pipe(ialu_cr_reg_mem);
11767 %}
11768 
11769 // Yanked all unsigned pointer compare operations.
11770 // Pointer compares are done with CmpP which is already unsigned.
11771 
11772 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11773 %{
11774   match(Set cr (CmpL op1 op2));
11775 
11776   format %{ "cmpq    $op1, $op2" %}
11777   opcode(0x3B);  /* Opcode 3B /r */
11778   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11779   ins_pipe(ialu_cr_reg_reg);
11780 %}
11781 
11782 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11783 %{
11784   match(Set cr (CmpL op1 op2));
11785 
11786   format %{ "cmpq    $op1, $op2" %}
11787   opcode(0x81, 0x07); /* Opcode 81 /7 */
11788   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11789   ins_pipe(ialu_cr_reg_imm);
11790 %}
11791 
11792 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
11793 %{
11794   match(Set cr (CmpL op1 (LoadL op2)));
11795 
11796   format %{ "cmpq    $op1, $op2" %}
11797   opcode(0x3B); /* Opcode 3B /r */
11798   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11799   ins_pipe(ialu_cr_reg_mem);
11800 %}
11801 
11802 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
11803 %{
11804   match(Set cr (CmpL src zero));
11805 
11806   format %{ "testq   $src, $src" %}
11807   opcode(0x85);
11808   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11809   ins_pipe(ialu_cr_reg_imm);
11810 %}
11811 
11812 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
11813 %{
11814   match(Set cr (CmpL (AndL src con) zero));
11815 
11816   format %{ "testq   $src, $con\t# long" %}
11817   opcode(0xF7, 0x00);
11818   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
11819   ins_pipe(ialu_cr_reg_imm);
11820 %}
11821 
11822 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
11823 %{
11824   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
11825 
11826   format %{ "testq   $src, $mem" %}
11827   opcode(0x85);
11828   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11829   ins_pipe(ialu_cr_reg_mem);
11830 %}
11831 
11832 instruct testL_reg_mem2(rFlagsReg cr, rRegP src, memory mem, immL0 zero)
11833 %{
11834   match(Set cr (CmpL (AndL (CastP2X src) (LoadL mem)) zero));
11835 
11836   format %{ "testq   $src, $mem" %}
11837   opcode(0x85);
11838   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11839   ins_pipe(ialu_cr_reg_mem);
11840 %}
11841 
11842 // Manifest a CmpL result in an integer register.  Very painful.
11843 // This is the test to avoid.
11844 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11845 %{
11846   match(Set dst (CmpL3 src1 src2));
11847   effect(KILL flags);
11848 
11849   ins_cost(275); // XXX
11850   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11851             "movl    $dst, -1\n\t"
11852             "jl,s    done\n\t"
11853             "setne   $dst\n\t"
11854             "movzbl  $dst, $dst\n\t"
11855     "done:" %}
11856   ins_encode(cmpl3_flag(src1, src2, dst));
11857   ins_pipe(pipe_slow);
11858 %}
11859 
11860 // Unsigned long compare Instructions; really, same as signed long except they
11861 // produce an rFlagsRegU instead of rFlagsReg.
11862 instruct compUL_rReg(rFlagsRegU cr, rRegL op1, rRegL op2)
11863 %{
11864   match(Set cr (CmpUL op1 op2));
11865 
11866   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11867   opcode(0x3B);  /* Opcode 3B /r */
11868   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11869   ins_pipe(ialu_cr_reg_reg);
11870 %}
11871 
11872 instruct compUL_rReg_imm(rFlagsRegU cr, rRegL op1, immL32 op2)
11873 %{
11874   match(Set cr (CmpUL op1 op2));
11875 
11876   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11877   opcode(0x81, 0x07); /* Opcode 81 /7 */
11878   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11879   ins_pipe(ialu_cr_reg_imm);
11880 %}
11881 
11882 instruct compUL_rReg_mem(rFlagsRegU cr, rRegL op1, memory op2)
11883 %{
11884   match(Set cr (CmpUL op1 (LoadL op2)));
11885 
11886   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11887   opcode(0x3B); /* Opcode 3B /r */
11888   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11889   ins_pipe(ialu_cr_reg_mem);
11890 %}
11891 
11892 instruct testUL_reg(rFlagsRegU cr, rRegL src, immL0 zero)
11893 %{
11894   match(Set cr (CmpUL src zero));
11895 
11896   format %{ "testq   $src, $src\t# unsigned" %}
11897   opcode(0x85);
11898   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11899   ins_pipe(ialu_cr_reg_imm);
11900 %}
11901 
11902 instruct compB_mem_imm(rFlagsReg cr, memory mem, immI8 imm)
11903 %{
11904   match(Set cr (CmpI (LoadB mem) imm));
11905 
11906   ins_cost(125);
11907   format %{ "cmpb    $mem, $imm" %}
11908   ins_encode %{ __ cmpb($mem$$Address, $imm$$constant); %}
11909   ins_pipe(ialu_cr_reg_mem);
11910 %}
11911 
11912 instruct testB_mem_imm(rFlagsReg cr, memory mem, immI8 imm, immI0 zero)
11913 %{
11914   match(Set cr (CmpI (AndI (LoadB mem) imm) zero));
11915 
11916   ins_cost(125);
11917   format %{ "testb   $mem, $imm" %}
11918   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
11919   ins_pipe(ialu_cr_reg_mem);
11920 %}
11921 
11922 //----------Max and Min--------------------------------------------------------
11923 // Min Instructions
11924 
11925 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
11926 %{
11927   effect(USE_DEF dst, USE src, USE cr);
11928 
11929   format %{ "cmovlgt $dst, $src\t# min" %}
11930   opcode(0x0F, 0x4F);
11931   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11932   ins_pipe(pipe_cmov_reg);
11933 %}
11934 
11935 
11936 instruct minI_rReg(rRegI dst, rRegI src)
11937 %{
11938   match(Set dst (MinI dst src));
11939 
11940   ins_cost(200);
11941   expand %{
11942     rFlagsReg cr;
11943     compI_rReg(cr, dst, src);
11944     cmovI_reg_g(dst, src, cr);
11945   %}
11946 %}
11947 
11948 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
11949 %{
11950   effect(USE_DEF dst, USE src, USE cr);
11951 
11952   format %{ "cmovllt $dst, $src\t# max" %}
11953   opcode(0x0F, 0x4C);
11954   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11955   ins_pipe(pipe_cmov_reg);
11956 %}
11957 
11958 
11959 instruct maxI_rReg(rRegI dst, rRegI src)
11960 %{
11961   match(Set dst (MaxI dst src));
11962 
11963   ins_cost(200);
11964   expand %{
11965     rFlagsReg cr;
11966     compI_rReg(cr, dst, src);
11967     cmovI_reg_l(dst, src, cr);
11968   %}
11969 %}
11970 
11971 // ============================================================================
11972 // Branch Instructions
11973 
11974 // Jump Direct - Label defines a relative address from JMP+1
11975 instruct jmpDir(label labl)
11976 %{
11977   match(Goto);
11978   effect(USE labl);
11979 
11980   ins_cost(300);
11981   format %{ "jmp     $labl" %}
11982   size(5);
11983   ins_encode %{
11984     Label* L = $labl$$label;
11985     __ jmp(*L, false); // Always long jump
11986   %}
11987   ins_pipe(pipe_jmp);
11988 %}
11989 
11990 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11991 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
11992 %{
11993   match(If cop cr);
11994   effect(USE labl);
11995 
11996   ins_cost(300);
11997   format %{ "j$cop     $labl" %}
11998   size(6);
11999   ins_encode %{
12000     Label* L = $labl$$label;
12001     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12002   %}
12003   ins_pipe(pipe_jcc);
12004 %}
12005 
12006 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12007 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
12008 %{
12009   predicate(!n->has_vector_mask_set());
12010   match(CountedLoopEnd cop cr);
12011   effect(USE labl);
12012 
12013   ins_cost(300);
12014   format %{ "j$cop     $labl\t# loop end" %}
12015   size(6);
12016   ins_encode %{
12017     Label* L = $labl$$label;
12018     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12019   %}
12020   ins_pipe(pipe_jcc);
12021 %}
12022 
12023 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12024 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12025   predicate(!n->has_vector_mask_set());
12026   match(CountedLoopEnd cop cmp);
12027   effect(USE labl);
12028 
12029   ins_cost(300);
12030   format %{ "j$cop,u   $labl\t# loop end" %}
12031   size(6);
12032   ins_encode %{
12033     Label* L = $labl$$label;
12034     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12035   %}
12036   ins_pipe(pipe_jcc);
12037 %}
12038 
12039 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12040   predicate(!n->has_vector_mask_set());
12041   match(CountedLoopEnd cop cmp);
12042   effect(USE labl);
12043 
12044   ins_cost(200);
12045   format %{ "j$cop,u   $labl\t# loop end" %}
12046   size(6);
12047   ins_encode %{
12048     Label* L = $labl$$label;
12049     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12050   %}
12051   ins_pipe(pipe_jcc);
12052 %}
12053 
12054 // mask version
12055 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12056 instruct jmpLoopEnd_and_restoreMask(cmpOp cop, rFlagsReg cr, label labl)
12057 %{
12058   predicate(n->has_vector_mask_set());
12059   match(CountedLoopEnd cop cr);
12060   effect(USE labl);
12061 
12062   ins_cost(400);
12063   format %{ "j$cop     $labl\t# loop end\n\t"
12064             "restorevectmask \t# vector mask restore for loops" %}
12065   size(10);
12066   ins_encode %{
12067     Label* L = $labl$$label;
12068     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12069     __ restorevectmask();
12070   %}
12071   ins_pipe(pipe_jcc);
12072 %}
12073 
12074 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12075 instruct jmpLoopEndU_and_restoreMask(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12076   predicate(n->has_vector_mask_set());
12077   match(CountedLoopEnd cop cmp);
12078   effect(USE labl);
12079 
12080   ins_cost(400);
12081   format %{ "j$cop,u   $labl\t# loop end\n\t"
12082             "restorevectmask \t# vector mask restore for loops" %}
12083   size(10);
12084   ins_encode %{
12085     Label* L = $labl$$label;
12086     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12087     __ restorevectmask();
12088   %}
12089   ins_pipe(pipe_jcc);
12090 %}
12091 
12092 instruct jmpLoopEndUCF_and_restoreMask(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12093   predicate(n->has_vector_mask_set());
12094   match(CountedLoopEnd cop cmp);
12095   effect(USE labl);
12096 
12097   ins_cost(300);
12098   format %{ "j$cop,u   $labl\t# loop end\n\t"
12099             "restorevectmask \t# vector mask restore for loops" %}
12100   size(10);
12101   ins_encode %{
12102     Label* L = $labl$$label;
12103     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12104     __ restorevectmask();
12105   %}
12106   ins_pipe(pipe_jcc);
12107 %}
12108 
12109 // Jump Direct Conditional - using unsigned comparison
12110 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12111   match(If cop cmp);
12112   effect(USE labl);
12113 
12114   ins_cost(300);
12115   format %{ "j$cop,u  $labl" %}
12116   size(6);
12117   ins_encode %{
12118     Label* L = $labl$$label;
12119     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12120   %}
12121   ins_pipe(pipe_jcc);
12122 %}
12123 
12124 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12125   match(If cop cmp);
12126   effect(USE labl);
12127 
12128   ins_cost(200);
12129   format %{ "j$cop,u  $labl" %}
12130   size(6);
12131   ins_encode %{
12132     Label* L = $labl$$label;
12133     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12134   %}
12135   ins_pipe(pipe_jcc);
12136 %}
12137 
12138 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12139   match(If cop cmp);
12140   effect(USE labl);
12141 
12142   ins_cost(200);
12143   format %{ $$template
12144     if ($cop$$cmpcode == Assembler::notEqual) {
12145       $$emit$$"jp,u   $labl\n\t"
12146       $$emit$$"j$cop,u   $labl"
12147     } else {
12148       $$emit$$"jp,u   done\n\t"
12149       $$emit$$"j$cop,u   $labl\n\t"
12150       $$emit$$"done:"
12151     }
12152   %}
12153   ins_encode %{
12154     Label* l = $labl$$label;
12155     if ($cop$$cmpcode == Assembler::notEqual) {
12156       __ jcc(Assembler::parity, *l, false);
12157       __ jcc(Assembler::notEqual, *l, false);
12158     } else if ($cop$$cmpcode == Assembler::equal) {
12159       Label done;
12160       __ jccb(Assembler::parity, done);
12161       __ jcc(Assembler::equal, *l, false);
12162       __ bind(done);
12163     } else {
12164        ShouldNotReachHere();
12165     }
12166   %}
12167   ins_pipe(pipe_jcc);
12168 %}
12169 
12170 // ============================================================================
12171 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
12172 // superklass array for an instance of the superklass.  Set a hidden
12173 // internal cache on a hit (cache is checked with exposed code in
12174 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
12175 // encoding ALSO sets flags.
12176 
12177 instruct partialSubtypeCheck(rdi_RegP result,
12178                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12179                              rFlagsReg cr)
12180 %{
12181   match(Set result (PartialSubtypeCheck sub super));
12182   effect(KILL rcx, KILL cr);
12183 
12184   ins_cost(1100);  // slightly larger than the next version
12185   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12186             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12187             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12188             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
12189             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
12190             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12191             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
12192     "miss:\t" %}
12193 
12194   opcode(0x1); // Force a XOR of RDI
12195   ins_encode(enc_PartialSubtypeCheck());
12196   ins_pipe(pipe_slow);
12197 %}
12198 
12199 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
12200                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12201                                      immP0 zero,
12202                                      rdi_RegP result)
12203 %{
12204   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12205   effect(KILL rcx, KILL result);
12206 
12207   ins_cost(1000);
12208   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12209             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12210             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12211             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
12212             "jne,s   miss\t\t# Missed: flags nz\n\t"
12213             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12214     "miss:\t" %}
12215 
12216   opcode(0x0); // No need to XOR RDI
12217   ins_encode(enc_PartialSubtypeCheck());
12218   ins_pipe(pipe_slow);
12219 %}
12220 
12221 // ============================================================================
12222 // Branch Instructions -- short offset versions
12223 //
12224 // These instructions are used to replace jumps of a long offset (the default
12225 // match) with jumps of a shorter offset.  These instructions are all tagged
12226 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12227 // match rules in general matching.  Instead, the ADLC generates a conversion
12228 // method in the MachNode which can be used to do in-place replacement of the
12229 // long variant with the shorter variant.  The compiler will determine if a
12230 // branch can be taken by the is_short_branch_offset() predicate in the machine
12231 // specific code section of the file.
12232 
12233 // Jump Direct - Label defines a relative address from JMP+1
12234 instruct jmpDir_short(label labl) %{
12235   match(Goto);
12236   effect(USE labl);
12237 
12238   ins_cost(300);
12239   format %{ "jmp,s   $labl" %}
12240   size(2);
12241   ins_encode %{
12242     Label* L = $labl$$label;
12243     __ jmpb(*L);
12244   %}
12245   ins_pipe(pipe_jmp);
12246   ins_short_branch(1);
12247 %}
12248 
12249 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12250 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
12251   match(If cop cr);
12252   effect(USE labl);
12253 
12254   ins_cost(300);
12255   format %{ "j$cop,s   $labl" %}
12256   size(2);
12257   ins_encode %{
12258     Label* L = $labl$$label;
12259     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12260   %}
12261   ins_pipe(pipe_jcc);
12262   ins_short_branch(1);
12263 %}
12264 
12265 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12266 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
12267   match(CountedLoopEnd cop cr);
12268   effect(USE labl);
12269 
12270   ins_cost(300);
12271   format %{ "j$cop,s   $labl\t# loop end" %}
12272   size(2);
12273   ins_encode %{
12274     Label* L = $labl$$label;
12275     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12276   %}
12277   ins_pipe(pipe_jcc);
12278   ins_short_branch(1);
12279 %}
12280 
12281 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12282 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12283   match(CountedLoopEnd cop cmp);
12284   effect(USE labl);
12285 
12286   ins_cost(300);
12287   format %{ "j$cop,us  $labl\t# loop end" %}
12288   size(2);
12289   ins_encode %{
12290     Label* L = $labl$$label;
12291     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12292   %}
12293   ins_pipe(pipe_jcc);
12294   ins_short_branch(1);
12295 %}
12296 
12297 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12298   match(CountedLoopEnd cop cmp);
12299   effect(USE labl);
12300 
12301   ins_cost(300);
12302   format %{ "j$cop,us  $labl\t# loop end" %}
12303   size(2);
12304   ins_encode %{
12305     Label* L = $labl$$label;
12306     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12307   %}
12308   ins_pipe(pipe_jcc);
12309   ins_short_branch(1);
12310 %}
12311 
12312 // Jump Direct Conditional - using unsigned comparison
12313 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12314   match(If cop cmp);
12315   effect(USE labl);
12316 
12317   ins_cost(300);
12318   format %{ "j$cop,us  $labl" %}
12319   size(2);
12320   ins_encode %{
12321     Label* L = $labl$$label;
12322     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12323   %}
12324   ins_pipe(pipe_jcc);
12325   ins_short_branch(1);
12326 %}
12327 
12328 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12329   match(If cop cmp);
12330   effect(USE labl);
12331 
12332   ins_cost(300);
12333   format %{ "j$cop,us  $labl" %}
12334   size(2);
12335   ins_encode %{
12336     Label* L = $labl$$label;
12337     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12338   %}
12339   ins_pipe(pipe_jcc);
12340   ins_short_branch(1);
12341 %}
12342 
12343 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12344   match(If cop cmp);
12345   effect(USE labl);
12346 
12347   ins_cost(300);
12348   format %{ $$template
12349     if ($cop$$cmpcode == Assembler::notEqual) {
12350       $$emit$$"jp,u,s   $labl\n\t"
12351       $$emit$$"j$cop,u,s   $labl"
12352     } else {
12353       $$emit$$"jp,u,s   done\n\t"
12354       $$emit$$"j$cop,u,s  $labl\n\t"
12355       $$emit$$"done:"
12356     }
12357   %}
12358   size(4);
12359   ins_encode %{
12360     Label* l = $labl$$label;
12361     if ($cop$$cmpcode == Assembler::notEqual) {
12362       __ jccb(Assembler::parity, *l);
12363       __ jccb(Assembler::notEqual, *l);
12364     } else if ($cop$$cmpcode == Assembler::equal) {
12365       Label done;
12366       __ jccb(Assembler::parity, done);
12367       __ jccb(Assembler::equal, *l);
12368       __ bind(done);
12369     } else {
12370        ShouldNotReachHere();
12371     }
12372   %}
12373   ins_pipe(pipe_jcc);
12374   ins_short_branch(1);
12375 %}
12376 
12377 // ============================================================================
12378 // inlined locking and unlocking
12379 
12380 instruct cmpFastLockRTM(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rdx_RegI scr, rRegI cx1, rRegI cx2) %{
12381   predicate(Compile::current()->use_rtm());
12382   match(Set cr (FastLock object box));
12383   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12384   ins_cost(300);
12385   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12386   ins_encode %{
12387     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12388                  $scr$$Register, $cx1$$Register, $cx2$$Register,
12389                  _counters, _rtm_counters, _stack_rtm_counters,
12390                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12391                  true, ra_->C->profile_rtm());
12392   %}
12393   ins_pipe(pipe_slow);
12394 %}
12395 
12396 instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr) %{
12397   predicate(!Compile::current()->use_rtm());
12398   match(Set cr (FastLock object box));
12399   effect(TEMP tmp, TEMP scr, USE_KILL box);
12400   ins_cost(300);
12401   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
12402   ins_encode %{
12403     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12404                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
12405   %}
12406   ins_pipe(pipe_slow);
12407 %}
12408 
12409 instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
12410   match(Set cr (FastUnlock object box));
12411   effect(TEMP tmp, USE_KILL box);
12412   ins_cost(300);
12413   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
12414   ins_encode %{
12415     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12416   %}
12417   ins_pipe(pipe_slow);
12418 %}
12419 
12420 
12421 // ============================================================================
12422 // Safepoint Instructions
12423 instruct safePoint_poll(rFlagsReg cr)
12424 %{
12425   predicate(!Assembler::is_polling_page_far() && SafepointMechanism::uses_global_page_poll());
12426   match(SafePoint);
12427   effect(KILL cr);
12428 
12429   format %{ "testl  rax, [rip + #offset_to_poll_page]\t"
12430             "# Safepoint: poll for GC" %}
12431   ins_cost(125);
12432   ins_encode %{
12433     AddressLiteral addr(os::get_polling_page(), relocInfo::poll_type);
12434     __ testl(rax, addr);
12435   %}
12436   ins_pipe(ialu_reg_mem);
12437 %}
12438 
12439 instruct safePoint_poll_far(rFlagsReg cr, rRegP poll)
12440 %{
12441   predicate(Assembler::is_polling_page_far() && SafepointMechanism::uses_global_page_poll());
12442   match(SafePoint poll);
12443   effect(KILL cr, USE poll);
12444 
12445   format %{ "testl  rax, [$poll]\t"
12446             "# Safepoint: poll for GC" %}
12447   ins_cost(125);
12448   ins_encode %{
12449     __ relocate(relocInfo::poll_type);
12450     __ testl(rax, Address($poll$$Register, 0));
12451   %}
12452   ins_pipe(ialu_reg_mem);
12453 %}
12454 
12455 instruct safePoint_poll_tls(rFlagsReg cr, rRegP poll)
12456 %{
12457   predicate(SafepointMechanism::uses_thread_local_poll());
12458   match(SafePoint poll);
12459   effect(KILL cr, USE poll);
12460 
12461   format %{ "testl  rax, [$poll]\t"
12462             "# Safepoint: poll for GC" %}
12463   ins_cost(125);
12464   size(4); /* setting an explicit size will cause debug builds to assert if size is incorrect */
12465   ins_encode %{
12466     __ relocate(relocInfo::poll_type);
12467     address pre_pc = __ pc();
12468     __ testl(rax, Address($poll$$Register, 0));
12469     assert(nativeInstruction_at(pre_pc)->is_safepoint_poll(), "must emit test %%eax [reg]");
12470   %}
12471   ins_pipe(ialu_reg_mem);
12472 %}
12473 
12474 // ============================================================================
12475 // Procedure Call/Return Instructions
12476 // Call Java Static Instruction
12477 // Note: If this code changes, the corresponding ret_addr_offset() and
12478 //       compute_padding() functions will have to be adjusted.
12479 instruct CallStaticJavaDirect(method meth) %{
12480   match(CallStaticJava);
12481   effect(USE meth);
12482 
12483   ins_cost(300);
12484   format %{ "call,static " %}
12485   opcode(0xE8); /* E8 cd */
12486   ins_encode(clear_avx, Java_Static_Call(meth), call_epilog);
12487   ins_pipe(pipe_slow);
12488   ins_alignment(4);
12489 %}
12490 
12491 // Call Java Dynamic Instruction
12492 // Note: If this code changes, the corresponding ret_addr_offset() and
12493 //       compute_padding() functions will have to be adjusted.
12494 instruct CallDynamicJavaDirect(method meth)
12495 %{
12496   match(CallDynamicJava);
12497   effect(USE meth);
12498 
12499   ins_cost(300);
12500   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
12501             "call,dynamic " %}
12502   ins_encode(clear_avx, Java_Dynamic_Call(meth), call_epilog);
12503   ins_pipe(pipe_slow);
12504   ins_alignment(4);
12505 %}
12506 
12507 // Call Runtime Instruction
12508 instruct CallRuntimeDirect(method meth)
12509 %{
12510   match(CallRuntime);
12511   effect(USE meth);
12512 
12513   ins_cost(300);
12514   format %{ "call,runtime " %}
12515   ins_encode(clear_avx, Java_To_Runtime(meth));
12516   ins_pipe(pipe_slow);
12517 %}
12518 
12519 // Call runtime without safepoint
12520 instruct CallLeafDirect(method meth)
12521 %{
12522   match(CallLeaf);
12523   effect(USE meth);
12524 
12525   ins_cost(300);
12526   format %{ "call_leaf,runtime " %}
12527   ins_encode(clear_avx, Java_To_Runtime(meth));
12528   ins_pipe(pipe_slow);
12529 %}
12530 
12531 // Call runtime without safepoint
12532 // entry point is null, target holds the address to call
12533 instruct CallLeafNoFPInDirect(rRegP target)
12534 %{
12535   predicate(n->as_Call()->entry_point() == NULL);
12536   match(CallLeafNoFP target);
12537 
12538   ins_cost(300);
12539   format %{ "call_leaf_nofp,runtime indirect " %}
12540   ins_encode %{
12541      __ call($target$$Register);
12542   %}
12543 
12544   ins_pipe(pipe_slow);
12545 %}
12546 
12547 instruct CallLeafNoFPDirect(method meth)
12548 %{
12549   predicate(n->as_Call()->entry_point() != NULL);
12550   match(CallLeafNoFP);
12551   effect(USE meth);
12552 
12553   ins_cost(300);
12554   format %{ "call_leaf_nofp,runtime " %}
12555   ins_encode(clear_avx, Java_To_Runtime(meth));
12556   ins_pipe(pipe_slow);
12557 %}
12558 
12559 // Return Instruction
12560 // Remove the return address & jump to it.
12561 // Notice: We always emit a nop after a ret to make sure there is room
12562 // for safepoint patching
12563 instruct Ret()
12564 %{
12565   match(Return);
12566 
12567   format %{ "ret" %}
12568   opcode(0xC3);
12569   ins_encode(OpcP);
12570   ins_pipe(pipe_jmp);
12571 %}
12572 
12573 // Tail Call; Jump from runtime stub to Java code.
12574 // Also known as an 'interprocedural jump'.
12575 // Target of jump will eventually return to caller.
12576 // TailJump below removes the return address.
12577 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
12578 %{
12579   match(TailCall jump_target method_oop);
12580 
12581   ins_cost(300);
12582   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
12583   opcode(0xFF, 0x4); /* Opcode FF /4 */
12584   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
12585   ins_pipe(pipe_jmp);
12586 %}
12587 
12588 // Tail Jump; remove the return address; jump to target.
12589 // TailCall above leaves the return address around.
12590 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
12591 %{
12592   match(TailJump jump_target ex_oop);
12593 
12594   ins_cost(300);
12595   format %{ "popq    rdx\t# pop return address\n\t"
12596             "jmp     $jump_target" %}
12597   opcode(0xFF, 0x4); /* Opcode FF /4 */
12598   ins_encode(Opcode(0x5a), // popq rdx
12599              REX_reg(jump_target), OpcP, reg_opc(jump_target));
12600   ins_pipe(pipe_jmp);
12601 %}
12602 
12603 // Create exception oop: created by stack-crawling runtime code.
12604 // Created exception is now available to this handler, and is setup
12605 // just prior to jumping to this handler.  No code emitted.
12606 instruct CreateException(rax_RegP ex_oop)
12607 %{
12608   match(Set ex_oop (CreateEx));
12609 
12610   size(0);
12611   // use the following format syntax
12612   format %{ "# exception oop is in rax; no code emitted" %}
12613   ins_encode();
12614   ins_pipe(empty);
12615 %}
12616 
12617 // Rethrow exception:
12618 // The exception oop will come in the first argument position.
12619 // Then JUMP (not call) to the rethrow stub code.
12620 instruct RethrowException()
12621 %{
12622   match(Rethrow);
12623 
12624   // use the following format syntax
12625   format %{ "jmp     rethrow_stub" %}
12626   ins_encode(enc_rethrow);
12627   ins_pipe(pipe_jmp);
12628 %}
12629 
12630 //
12631 // Execute ZGC load barrier (strong) slow path
12632 //
12633 
12634 // When running without XMM regs
12635 instruct loadBarrierSlowRegNoVec(rRegP dst, memory mem, rFlagsReg cr) %{
12636 
12637   match(Set dst (LoadBarrierSlowReg mem));
12638   predicate(MaxVectorSize < 16);
12639 
12640   effect(DEF dst, KILL cr);
12641 
12642   format %{"LoadBarrierSlowRegNoVec $dst, $mem" %}
12643   ins_encode %{
12644 #if INCLUDE_ZGC
12645     Register d = $dst$$Register;
12646     ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12647 
12648     assert(d != r12, "Can't be R12!");
12649     assert(d != r15, "Can't be R15!");
12650     assert(d != rsp, "Can't be RSP!");
12651 
12652     __ lea(d, $mem$$Address);
12653     __ call(RuntimeAddress(bs->load_barrier_slow_stub(d)));
12654 #else
12655     ShouldNotReachHere();
12656 #endif
12657   %}
12658   ins_pipe(pipe_slow);
12659 %}
12660 
12661 // For XMM and YMM enabled processors
12662 instruct loadBarrierSlowRegXmmAndYmm(rRegP dst, memory mem, rFlagsReg cr,
12663                                      rxmm0 x0, rxmm1 x1, rxmm2 x2,rxmm3 x3,
12664                                      rxmm4 x4, rxmm5 x5, rxmm6 x6, rxmm7 x7,
12665                                      rxmm8 x8, rxmm9 x9, rxmm10 x10, rxmm11 x11,
12666                                      rxmm12 x12, rxmm13 x13, rxmm14 x14, rxmm15 x15) %{
12667 
12668   match(Set dst (LoadBarrierSlowReg mem));
12669   predicate((UseSSE > 0) && (UseAVX <= 2) && (MaxVectorSize >= 16));
12670 
12671   effect(DEF dst, KILL cr,
12672          KILL x0, KILL x1, KILL x2, KILL x3,
12673          KILL x4, KILL x5, KILL x6, KILL x7,
12674          KILL x8, KILL x9, KILL x10, KILL x11,
12675          KILL x12, KILL x13, KILL x14, KILL x15);
12676 
12677   format %{"LoadBarrierSlowRegXmm $dst, $mem" %}
12678   ins_encode %{
12679 #if INCLUDE_ZGC
12680     Register d = $dst$$Register;
12681     ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12682 
12683     assert(d != r12, "Can't be R12!");
12684     assert(d != r15, "Can't be R15!");
12685     assert(d != rsp, "Can't be RSP!");
12686 
12687     __ lea(d, $mem$$Address);
12688     __ call(RuntimeAddress(bs->load_barrier_slow_stub(d)));
12689 #else
12690     ShouldNotReachHere();
12691 #endif
12692   %}
12693   ins_pipe(pipe_slow);
12694 %}
12695 
12696 // For ZMM enabled processors
12697 instruct loadBarrierSlowRegZmm(rRegP dst, memory mem, rFlagsReg cr,
12698                                rxmm0 x0, rxmm1 x1, rxmm2 x2,rxmm3 x3,
12699                                rxmm4 x4, rxmm5 x5, rxmm6 x6, rxmm7 x7,
12700                                rxmm8 x8, rxmm9 x9, rxmm10 x10, rxmm11 x11,
12701                                rxmm12 x12, rxmm13 x13, rxmm14 x14, rxmm15 x15,
12702                                rxmm16 x16, rxmm17 x17, rxmm18 x18, rxmm19 x19,
12703                                rxmm20 x20, rxmm21 x21, rxmm22 x22, rxmm23 x23,
12704                                rxmm24 x24, rxmm25 x25, rxmm26 x26, rxmm27 x27,
12705                                rxmm28 x28, rxmm29 x29, rxmm30 x30, rxmm31 x31) %{
12706 
12707   match(Set dst (LoadBarrierSlowReg mem));
12708   predicate((UseAVX == 3) && (MaxVectorSize >= 16));
12709 
12710   effect(DEF dst, KILL cr,
12711          KILL x0, KILL x1, KILL x2, KILL x3,
12712          KILL x4, KILL x5, KILL x6, KILL x7,
12713          KILL x8, KILL x9, KILL x10, KILL x11,
12714          KILL x12, KILL x13, KILL x14, KILL x15,
12715          KILL x16, KILL x17, KILL x18, KILL x19,
12716          KILL x20, KILL x21, KILL x22, KILL x23,
12717          KILL x24, KILL x25, KILL x26, KILL x27,
12718          KILL x28, KILL x29, KILL x30, KILL x31);
12719 
12720   format %{"LoadBarrierSlowRegZmm $dst, $mem" %}
12721   ins_encode %{
12722 #if INCLUDE_ZGC
12723     Register d = $dst$$Register;
12724     ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12725 
12726     assert(d != r12, "Can't be R12!");
12727     assert(d != r15, "Can't be R15!");
12728     assert(d != rsp, "Can't be RSP!");
12729 
12730     __ lea(d, $mem$$Address);
12731     __ call(RuntimeAddress(bs->load_barrier_slow_stub(d)));
12732 #else
12733     ShouldNotReachHere();
12734 #endif
12735   %}
12736   ins_pipe(pipe_slow);
12737 %}
12738 
12739 //
12740 // Execute ZGC load barrier (weak) slow path
12741 //
12742 
12743 // When running without XMM regs
12744 instruct loadBarrierWeakSlowRegNoVec(rRegP dst, memory mem, rFlagsReg cr) %{
12745 
12746   match(Set dst (LoadBarrierSlowReg mem));
12747   predicate(MaxVectorSize < 16);
12748 
12749   effect(DEF dst, KILL cr);
12750 
12751   format %{"LoadBarrierSlowRegNoVec $dst, $mem" %}
12752   ins_encode %{
12753 #if INCLUDE_ZGC
12754     Register d = $dst$$Register;
12755     ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12756 
12757     assert(d != r12, "Can't be R12!");
12758     assert(d != r15, "Can't be R15!");
12759     assert(d != rsp, "Can't be RSP!");
12760 
12761     __ lea(d, $mem$$Address);
12762     __ call(RuntimeAddress(bs->load_barrier_weak_slow_stub(d)));
12763 #else
12764     ShouldNotReachHere();
12765 #endif
12766   %}
12767   ins_pipe(pipe_slow);
12768 %}
12769 
12770 // For XMM and YMM enabled processors
12771 instruct loadBarrierWeakSlowRegXmmAndYmm(rRegP dst, memory mem, rFlagsReg cr,
12772                                          rxmm0 x0, rxmm1 x1, rxmm2 x2,rxmm3 x3,
12773                                          rxmm4 x4, rxmm5 x5, rxmm6 x6, rxmm7 x7,
12774                                          rxmm8 x8, rxmm9 x9, rxmm10 x10, rxmm11 x11,
12775                                          rxmm12 x12, rxmm13 x13, rxmm14 x14, rxmm15 x15) %{
12776 
12777   match(Set dst (LoadBarrierWeakSlowReg mem));
12778   predicate((UseSSE > 0) && (UseAVX <= 2) && (MaxVectorSize >= 16));
12779 
12780   effect(DEF dst, KILL cr,
12781          KILL x0, KILL x1, KILL x2, KILL x3,
12782          KILL x4, KILL x5, KILL x6, KILL x7,
12783          KILL x8, KILL x9, KILL x10, KILL x11,
12784          KILL x12, KILL x13, KILL x14, KILL x15);
12785 
12786   format %{"LoadBarrierWeakSlowRegXmm $dst, $mem" %}
12787   ins_encode %{
12788 #if INCLUDE_ZGC
12789     Register d = $dst$$Register;
12790     ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12791 
12792     assert(d != r12, "Can't be R12!");
12793     assert(d != r15, "Can't be R15!");
12794     assert(d != rsp, "Can't be RSP!");
12795 
12796     __ lea(d,$mem$$Address);
12797     __ call(RuntimeAddress(bs->load_barrier_weak_slow_stub(d)));
12798 #else
12799     ShouldNotReachHere();
12800 #endif
12801   %}
12802   ins_pipe(pipe_slow);
12803 %}
12804 
12805 // For ZMM enabled processors
12806 instruct loadBarrierWeakSlowRegZmm(rRegP dst, memory mem, rFlagsReg cr,
12807                                    rxmm0 x0, rxmm1 x1, rxmm2 x2,rxmm3 x3,
12808                                    rxmm4 x4, rxmm5 x5, rxmm6 x6, rxmm7 x7,
12809                                    rxmm8 x8, rxmm9 x9, rxmm10 x10, rxmm11 x11,
12810                                    rxmm12 x12, rxmm13 x13, rxmm14 x14, rxmm15 x15,
12811                                    rxmm16 x16, rxmm17 x17, rxmm18 x18, rxmm19 x19,
12812                                    rxmm20 x20, rxmm21 x21, rxmm22 x22, rxmm23 x23,
12813                                    rxmm24 x24, rxmm25 x25, rxmm26 x26, rxmm27 x27,
12814                                    rxmm28 x28, rxmm29 x29, rxmm30 x30, rxmm31 x31) %{
12815 
12816   match(Set dst (LoadBarrierWeakSlowReg mem));
12817   predicate((UseAVX == 3) && (MaxVectorSize >= 16));
12818 
12819   effect(DEF dst, KILL cr,
12820          KILL x0, KILL x1, KILL x2, KILL x3,
12821          KILL x4, KILL x5, KILL x6, KILL x7,
12822          KILL x8, KILL x9, KILL x10, KILL x11,
12823          KILL x12, KILL x13, KILL x14, KILL x15,
12824          KILL x16, KILL x17, KILL x18, KILL x19,
12825          KILL x20, KILL x21, KILL x22, KILL x23,
12826          KILL x24, KILL x25, KILL x26, KILL x27,
12827          KILL x28, KILL x29, KILL x30, KILL x31);
12828 
12829   format %{"LoadBarrierWeakSlowRegZmm $dst, $mem" %}
12830   ins_encode %{
12831 #if INCLUDE_ZGC
12832     Register d = $dst$$Register;
12833     ZBarrierSetAssembler* bs = (ZBarrierSetAssembler*)BarrierSet::barrier_set()->barrier_set_assembler();
12834 
12835     assert(d != r12, "Can't be R12!");
12836     assert(d != r15, "Can't be R15!");
12837     assert(d != rsp, "Can't be RSP!");
12838 
12839     __ lea(d,$mem$$Address);
12840     __ call(RuntimeAddress(bs->load_barrier_weak_slow_stub(d)));
12841 #else
12842     ShouldNotReachHere();
12843 #endif
12844   %}
12845   ins_pipe(pipe_slow);
12846 %}
12847 
12848 // ============================================================================
12849 // This name is KNOWN by the ADLC and cannot be changed.
12850 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12851 // for this guy.
12852 instruct tlsLoadP(r15_RegP dst) %{
12853   match(Set dst (ThreadLocal));
12854   effect(DEF dst);
12855 
12856   size(0);
12857   format %{ "# TLS is in R15" %}
12858   ins_encode( /*empty encoding*/ );
12859   ins_pipe(ialu_reg_reg);
12860 %}
12861 
12862 
12863 //----------PEEPHOLE RULES-----------------------------------------------------
12864 // These must follow all instruction definitions as they use the names
12865 // defined in the instructions definitions.
12866 //
12867 // peepmatch ( root_instr_name [preceding_instruction]* );
12868 //
12869 // peepconstraint %{
12870 // (instruction_number.operand_name relational_op instruction_number.operand_name
12871 //  [, ...] );
12872 // // instruction numbers are zero-based using left to right order in peepmatch
12873 //
12874 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12875 // // provide an instruction_number.operand_name for each operand that appears
12876 // // in the replacement instruction's match rule
12877 //
12878 // ---------VM FLAGS---------------------------------------------------------
12879 //
12880 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12881 //
12882 // Each peephole rule is given an identifying number starting with zero and
12883 // increasing by one in the order seen by the parser.  An individual peephole
12884 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12885 // on the command-line.
12886 //
12887 // ---------CURRENT LIMITATIONS----------------------------------------------
12888 //
12889 // Only match adjacent instructions in same basic block
12890 // Only equality constraints
12891 // Only constraints between operands, not (0.dest_reg == RAX_enc)
12892 // Only one replacement instruction
12893 //
12894 // ---------EXAMPLE----------------------------------------------------------
12895 //
12896 // // pertinent parts of existing instructions in architecture description
12897 // instruct movI(rRegI dst, rRegI src)
12898 // %{
12899 //   match(Set dst (CopyI src));
12900 // %}
12901 //
12902 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
12903 // %{
12904 //   match(Set dst (AddI dst src));
12905 //   effect(KILL cr);
12906 // %}
12907 //
12908 // // Change (inc mov) to lea
12909 // peephole %{
12910 //   // increment preceeded by register-register move
12911 //   peepmatch ( incI_rReg movI );
12912 //   // require that the destination register of the increment
12913 //   // match the destination register of the move
12914 //   peepconstraint ( 0.dst == 1.dst );
12915 //   // construct a replacement instruction that sets
12916 //   // the destination to ( move's source register + one )
12917 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
12918 // %}
12919 //
12920 
12921 // Implementation no longer uses movX instructions since
12922 // machine-independent system no longer uses CopyX nodes.
12923 //
12924 // peephole
12925 // %{
12926 //   peepmatch (incI_rReg movI);
12927 //   peepconstraint (0.dst == 1.dst);
12928 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12929 // %}
12930 
12931 // peephole
12932 // %{
12933 //   peepmatch (decI_rReg movI);
12934 //   peepconstraint (0.dst == 1.dst);
12935 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12936 // %}
12937 
12938 // peephole
12939 // %{
12940 //   peepmatch (addI_rReg_imm movI);
12941 //   peepconstraint (0.dst == 1.dst);
12942 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12943 // %}
12944 
12945 // peephole
12946 // %{
12947 //   peepmatch (incL_rReg movL);
12948 //   peepconstraint (0.dst == 1.dst);
12949 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12950 // %}
12951 
12952 // peephole
12953 // %{
12954 //   peepmatch (decL_rReg movL);
12955 //   peepconstraint (0.dst == 1.dst);
12956 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12957 // %}
12958 
12959 // peephole
12960 // %{
12961 //   peepmatch (addL_rReg_imm movL);
12962 //   peepconstraint (0.dst == 1.dst);
12963 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12964 // %}
12965 
12966 // peephole
12967 // %{
12968 //   peepmatch (addP_rReg_imm movP);
12969 //   peepconstraint (0.dst == 1.dst);
12970 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
12971 // %}
12972 
12973 // // Change load of spilled value to only a spill
12974 // instruct storeI(memory mem, rRegI src)
12975 // %{
12976 //   match(Set mem (StoreI mem src));
12977 // %}
12978 //
12979 // instruct loadI(rRegI dst, memory mem)
12980 // %{
12981 //   match(Set dst (LoadI mem));
12982 // %}
12983 //
12984 
12985 peephole
12986 %{
12987   peepmatch (loadI storeI);
12988   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12989   peepreplace (storeI(1.mem 1.mem 1.src));
12990 %}
12991 
12992 peephole
12993 %{
12994   peepmatch (loadL storeL);
12995   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12996   peepreplace (storeL(1.mem 1.mem 1.src));
12997 %}
12998 
12999 //----------SMARTSPILL RULES---------------------------------------------------
13000 // These must follow all instruction definitions as they use the names
13001 // defined in the instructions definitions.