rev 10504 : value type calling convention
1 /*
2 * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "compiler/oopMap.hpp"
28 #include "memory/allocation.inline.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/block.hpp"
31 #include "opto/callnode.hpp"
32 #include "opto/cfgnode.hpp"
33 #include "opto/chaitin.hpp"
34 #include "opto/coalesce.hpp"
35 #include "opto/connode.hpp"
36 #include "opto/idealGraphPrinter.hpp"
37 #include "opto/indexSet.hpp"
38 #include "opto/machnode.hpp"
39 #include "opto/memnode.hpp"
40 #include "opto/movenode.hpp"
41 #include "opto/opcodes.hpp"
42 #include "opto/rootnode.hpp"
43
44 #ifndef PRODUCT
45 void LRG::dump() const {
46 ttyLocker ttyl;
47 tty->print("%d ",num_regs());
48 _mask.dump();
49 if( _msize_valid ) {
50 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
51 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
52 } else {
53 tty->print(", #?(%d) ",_mask.Size());
54 }
55
56 tty->print("EffDeg: ");
57 if( _degree_valid ) tty->print( "%d ", _eff_degree );
58 else tty->print("? ");
59
60 if( is_multidef() ) {
61 tty->print("MultiDef ");
62 if (_defs != NULL) {
63 tty->print("(");
64 for (int i = 0; i < _defs->length(); i++) {
65 tty->print("N%d ", _defs->at(i)->_idx);
66 }
67 tty->print(") ");
68 }
69 }
70 else if( _def == 0 ) tty->print("Dead ");
71 else tty->print("Def: N%d ",_def->_idx);
72
73 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
74 // Flags
75 if( _is_oop ) tty->print("Oop ");
76 if( _is_float ) tty->print("Float ");
77 if( _is_vector ) tty->print("Vector ");
78 if( _was_spilled1 ) tty->print("Spilled ");
79 if( _was_spilled2 ) tty->print("Spilled2 ");
80 if( _direct_conflict ) tty->print("Direct_conflict ");
81 if( _fat_proj ) tty->print("Fat ");
82 if( _was_lo ) tty->print("Lo ");
83 if( _has_copy ) tty->print("Copy ");
84 if( _at_risk ) tty->print("Risk ");
85
86 if( _must_spill ) tty->print("Must_spill ");
87 if( _is_bound ) tty->print("Bound ");
88 if( _msize_valid ) {
89 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
90 }
91
92 tty->cr();
93 }
94 #endif
95
96 // Compute score from cost and area. Low score is best to spill.
97 static double raw_score( double cost, double area ) {
98 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
99 }
100
101 double LRG::score() const {
102 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
103 // Bigger area lowers score, encourages spilling this live range.
104 // Bigger cost raise score, prevents spilling this live range.
105 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
106 // to turn a divide by a constant into a multiply by the reciprical).
107 double score = raw_score( _cost, _area);
108
109 // Account for area. Basically, LRGs covering large areas are better
110 // to spill because more other LRGs get freed up.
111 if( _area == 0.0 ) // No area? Then no progress to spill
112 return 1e35;
113
114 if( _was_spilled2 ) // If spilled once before, we are unlikely
115 return score + 1e30; // to make progress again.
116
117 if( _cost >= _area*3.0 ) // Tiny area relative to cost
118 return score + 1e17; // Probably no progress to spill
119
120 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
121 return score + 1e10; // Likely no progress to spill
122
123 return score;
124 }
125
126 #define NUMBUCKS 3
127
128 // Straight out of Tarjan's union-find algorithm
129 uint LiveRangeMap::find_compress(uint lrg) {
130 uint cur = lrg;
131 uint next = _uf_map.at(cur);
132 while (next != cur) { // Scan chain of equivalences
133 assert( next < cur, "always union smaller");
134 cur = next; // until find a fixed-point
135 next = _uf_map.at(cur);
136 }
137
138 // Core of union-find algorithm: update chain of
139 // equivalences to be equal to the root.
140 while (lrg != next) {
141 uint tmp = _uf_map.at(lrg);
142 _uf_map.at_put(lrg, next);
143 lrg = tmp;
144 }
145 return lrg;
146 }
147
148 // Reset the Union-Find map to identity
149 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
150 _max_lrg_id= max_lrg_id;
151 // Force the Union-Find mapping to be at least this large
152 _uf_map.at_put_grow(_max_lrg_id, 0);
153 // Initialize it to be the ID mapping.
154 for (uint i = 0; i < _max_lrg_id; ++i) {
155 _uf_map.at_put(i, i);
156 }
157 }
158
159 // Make all Nodes map directly to their final live range; no need for
160 // the Union-Find mapping after this call.
161 void LiveRangeMap::compress_uf_map_for_nodes() {
162 // For all Nodes, compress mapping
163 uint unique = _names.length();
164 for (uint i = 0; i < unique; ++i) {
165 uint lrg = _names.at(i);
166 uint compressed_lrg = find(lrg);
167 if (lrg != compressed_lrg) {
168 _names.at_put(i, compressed_lrg);
169 }
170 }
171 }
172
173 // Like Find above, but no path compress, so bad asymptotic behavior
174 uint LiveRangeMap::find_const(uint lrg) const {
175 if (!lrg) {
176 return lrg; // Ignore the zero LRG
177 }
178
179 // Off the end? This happens during debugging dumps when you got
180 // brand new live ranges but have not told the allocator yet.
181 if (lrg >= _max_lrg_id) {
182 return lrg;
183 }
184
185 uint next = _uf_map.at(lrg);
186 while (next != lrg) { // Scan chain of equivalences
187 assert(next < lrg, "always union smaller");
188 lrg = next; // until find a fixed-point
189 next = _uf_map.at(lrg);
190 }
191 return next;
192 }
193
194 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
195 : PhaseRegAlloc(unique, cfg, matcher,
196 #ifndef PRODUCT
197 print_chaitin_statistics
198 #else
199 NULL
200 #endif
201 )
202 , _lrg_map(Thread::current()->resource_area(), unique)
203 , _live(0)
204 , _spilled_once(Thread::current()->resource_area())
205 , _spilled_twice(Thread::current()->resource_area())
206 , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
207 , _oldphi(unique)
208 , _scheduling_info_generated(scheduling_info_generated)
209 , _sched_int_pressure(0, INTPRESSURE)
210 , _sched_float_pressure(0, FLOATPRESSURE)
211 , _scratch_int_pressure(0, INTPRESSURE)
212 , _scratch_float_pressure(0, FLOATPRESSURE)
213 #ifndef PRODUCT
214 , _trace_spilling(C->directive()->TraceSpillingOption)
215 #endif
216 {
217 Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
218
219 _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
220
221 // Build a list of basic blocks, sorted by frequency
222 _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
223 // Experiment with sorting strategies to speed compilation
224 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
225 Block **buckets[NUMBUCKS]; // Array of buckets
226 uint buckcnt[NUMBUCKS]; // Array of bucket counters
227 double buckval[NUMBUCKS]; // Array of bucket value cutoffs
228 for (uint i = 0; i < NUMBUCKS; i++) {
229 buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
230 buckcnt[i] = 0;
231 // Bump by three orders of magnitude each time
232 cutoff *= 0.001;
233 buckval[i] = cutoff;
234 for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
235 buckets[i][j] = NULL;
236 }
237 }
238 // Sort blocks into buckets
239 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
240 for (uint j = 0; j < NUMBUCKS; j++) {
241 if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
242 // Assign block to end of list for appropriate bucket
243 buckets[j][buckcnt[j]++] = _cfg.get_block(i);
244 break; // kick out of inner loop
245 }
246 }
247 }
248 // Dump buckets into final block array
249 uint blkcnt = 0;
250 for (uint i = 0; i < NUMBUCKS; i++) {
251 for (uint j = 0; j < buckcnt[i]; j++) {
252 _blks[blkcnt++] = buckets[i][j];
253 }
254 }
255
256 assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
257 }
258
259 // union 2 sets together.
260 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
261 uint src = _lrg_map.find(src_n);
262 uint dst = _lrg_map.find(dst_n);
263 assert(src, "");
264 assert(dst, "");
265 assert(src < _lrg_map.max_lrg_id(), "oob");
266 assert(dst < _lrg_map.max_lrg_id(), "oob");
267 assert(src < dst, "always union smaller");
268 _lrg_map.uf_map(dst, src);
269 }
270
271 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
272 // Make the Node->LRG mapping
273 _lrg_map.extend(x->_idx,lrg);
274 // Make the Union-Find mapping an identity function
275 _lrg_map.uf_extend(lrg, lrg);
276 }
277
278
279 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
280 assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
281 DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
282 int found_projs = 0;
283 uint cnt = orig->outcnt();
284 for (uint i = 0; i < cnt; i++) {
285 Node* proj = orig->raw_out(i);
286 if (proj->is_MachProj()) {
287 assert(proj->outcnt() == 0, "only kill projections are expected here");
288 assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
289 found_projs++;
290 // Copy kill projections after the cloned node
291 Node* kills = proj->clone();
292 kills->set_req(0, copy);
293 b->insert_node(kills, idx++);
294 _cfg.map_node_to_block(kills, b);
295 new_lrg(kills, max_lrg_id++);
296 }
297 }
298 return found_projs;
299 }
300
301 // Renumber the live ranges to compact them. Makes the IFG smaller.
302 void PhaseChaitin::compact() {
303 Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
304
305 // Current the _uf_map contains a series of short chains which are headed
306 // by a self-cycle. All the chains run from big numbers to little numbers.
307 // The Find() call chases the chains & shortens them for the next Find call.
308 // We are going to change this structure slightly. Numbers above a moving
309 // wave 'i' are unchanged. Numbers below 'j' point directly to their
310 // compacted live range with no further chaining. There are no chains or
311 // cycles below 'i', so the Find call no longer works.
312 uint j=1;
313 uint i;
314 for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
315 uint lr = _lrg_map.uf_live_range_id(i);
316 // Ignore unallocated live ranges
317 if (!lr) {
318 continue;
319 }
320 assert(lr <= i, "");
321 _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
322 }
323 // Now change the Node->LR mapping to reflect the compacted names
324 uint unique = _lrg_map.size();
325 for (i = 0; i < unique; i++) {
326 uint lrg_id = _lrg_map.live_range_id(i);
327 _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
328 }
329
330 // Reset the Union-Find mapping
331 _lrg_map.reset_uf_map(j);
332 }
333
334 void PhaseChaitin::Register_Allocate() {
335
336 // Above the OLD FP (and in registers) are the incoming arguments. Stack
337 // slots in this area are called "arg_slots". Above the NEW FP (and in
338 // registers) is the outgoing argument area; above that is the spill/temp
339 // area. These are all "frame_slots". Arg_slots start at the zero
340 // stack_slots and count up to the known arg_size. Frame_slots start at
341 // the stack_slot #arg_size and go up. After allocation I map stack
342 // slots to actual offsets. Stack-slots in the arg_slot area are biased
343 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
344
345 _trip_cnt = 0;
346 _alternate = 0;
347 _matcher._allocation_started = true;
348
349 ResourceArea split_arena; // Arena for Split local resources
350 ResourceArea live_arena; // Arena for liveness & IFG info
351 ResourceMark rm(&live_arena);
352
353 // Need live-ness for the IFG; need the IFG for coalescing. If the
354 // liveness is JUST for coalescing, then I can get some mileage by renaming
355 // all copy-related live ranges low and then using the max copy-related
356 // live range as a cut-off for LIVE and the IFG. In other words, I can
357 // build a subset of LIVE and IFG just for copies.
358 PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
359
360 // Need IFG for coalescing and coloring
361 PhaseIFG ifg(&live_arena);
362 _ifg = &ifg;
363
364 // Come out of SSA world to the Named world. Assign (virtual) registers to
365 // Nodes. Use the same register for all inputs and the output of PhiNodes
366 // - effectively ending SSA form. This requires either coalescing live
367 // ranges or inserting copies. For the moment, we insert "virtual copies"
368 // - we pretend there is a copy prior to each Phi in predecessor blocks.
369 // We will attempt to coalesce such "virtual copies" before we manifest
370 // them for real.
371 de_ssa();
372
373 #ifdef ASSERT
374 // Veify the graph before RA.
375 verify(&live_arena);
376 #endif
377
378 {
379 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
380 _live = NULL; // Mark live as being not available
381 rm.reset_to_mark(); // Reclaim working storage
382 IndexSet::reset_memory(C, &live_arena);
383 ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
384 gather_lrg_masks( false ); // Collect LRG masks
385 live.compute(_lrg_map.max_lrg_id()); // Compute liveness
386 _live = &live; // Mark LIVE as being available
387 }
388
389 // Base pointers are currently "used" by instructions which define new
390 // derived pointers. This makes base pointers live up to the where the
391 // derived pointer is made, but not beyond. Really, they need to be live
392 // across any GC point where the derived value is live. So this code looks
393 // at all the GC points, and "stretches" the live range of any base pointer
394 // to the GC point.
395 if (stretch_base_pointer_live_ranges(&live_arena)) {
396 Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
397 // Since some live range stretched, I need to recompute live
398 _live = NULL;
399 rm.reset_to_mark(); // Reclaim working storage
400 IndexSet::reset_memory(C, &live_arena);
401 ifg.init(_lrg_map.max_lrg_id());
402 gather_lrg_masks(false);
403 live.compute(_lrg_map.max_lrg_id());
404 _live = &live;
405 }
406 // Create the interference graph using virtual copies
407 build_ifg_virtual(); // Include stack slots this time
408
409 // The IFG is/was triangular. I am 'squaring it up' so Union can run
410 // faster. Union requires a 'for all' operation which is slow on the
411 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
412 // meaning I can visit all the Nodes neighbors less than a Node in time
413 // O(# of neighbors), but I have to visit all the Nodes greater than a
414 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
415 _ifg->SquareUp();
416
417 // Aggressive (but pessimistic) copy coalescing.
418 // This pass works on virtual copies. Any virtual copies which are not
419 // coalesced get manifested as actual copies
420 {
421 Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
422
423 PhaseAggressiveCoalesce coalesce(*this);
424 coalesce.coalesce_driver();
425 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
426 // not match the Phi itself, insert a copy.
427 coalesce.insert_copies(_matcher);
428 if (C->failing()) {
429 return;
430 }
431 }
432
433 // After aggressive coalesce, attempt a first cut at coloring.
434 // To color, we need the IFG and for that we need LIVE.
435 {
436 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
437 _live = NULL;
438 rm.reset_to_mark(); // Reclaim working storage
439 IndexSet::reset_memory(C, &live_arena);
440 ifg.init(_lrg_map.max_lrg_id());
441 gather_lrg_masks( true );
442 live.compute(_lrg_map.max_lrg_id());
443 _live = &live;
444 }
445
446 // Build physical interference graph
447 uint must_spill = 0;
448 must_spill = build_ifg_physical(&live_arena);
449 // If we have a guaranteed spill, might as well spill now
450 if (must_spill) {
451 if(!_lrg_map.max_lrg_id()) {
452 return;
453 }
454 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
455 C->check_node_count(10*must_spill, "out of nodes before split");
456 if (C->failing()) {
457 return;
458 }
459
460 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
461 _lrg_map.set_max_lrg_id(new_max_lrg_id);
462 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
463 // or we failed to split
464 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
465 if (C->failing()) {
466 return;
467 }
468
469 NOT_PRODUCT(C->verify_graph_edges();)
470
471 compact(); // Compact LRGs; return new lower max lrg
472
473 {
474 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
475 _live = NULL;
476 rm.reset_to_mark(); // Reclaim working storage
477 IndexSet::reset_memory(C, &live_arena);
478 ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
479 gather_lrg_masks( true ); // Collect intersect mask
480 live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
481 _live = &live;
482 }
483 build_ifg_physical(&live_arena);
484 _ifg->SquareUp();
485 _ifg->Compute_Effective_Degree();
486 // Only do conservative coalescing if requested
487 if (OptoCoalesce) {
488 Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
489 // Conservative (and pessimistic) copy coalescing of those spills
490 PhaseConservativeCoalesce coalesce(*this);
491 // If max live ranges greater than cutoff, don't color the stack.
492 // This cutoff can be larger than below since it is only done once.
493 coalesce.coalesce_driver();
494 }
495 _lrg_map.compress_uf_map_for_nodes();
496
497 #ifdef ASSERT
498 verify(&live_arena, true);
499 #endif
500 } else {
501 ifg.SquareUp();
502 ifg.Compute_Effective_Degree();
503 #ifdef ASSERT
504 set_was_low();
505 #endif
506 }
507
508 // Prepare for Simplify & Select
509 cache_lrg_info(); // Count degree of LRGs
510
511 // Simplify the InterFerence Graph by removing LRGs of low degree.
512 // LRGs of low degree are trivially colorable.
513 Simplify();
514
515 // Select colors by re-inserting LRGs back into the IFG in reverse order.
516 // Return whether or not something spills.
517 uint spills = Select( );
518
519 // If we spill, split and recycle the entire thing
520 while( spills ) {
521 if( _trip_cnt++ > 24 ) {
522 DEBUG_ONLY( dump_for_spill_split_recycle(); )
523 if( _trip_cnt > 27 ) {
524 C->record_method_not_compilable("failed spill-split-recycle sanity check");
525 return;
526 }
527 }
528
529 if (!_lrg_map.max_lrg_id()) {
530 return;
531 }
532 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
533 _lrg_map.set_max_lrg_id(new_max_lrg_id);
534 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
535 C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
536 if (C->failing()) {
537 return;
538 }
539
540 compact(); // Compact LRGs; return new lower max lrg
541
542 // Nuke the live-ness and interference graph and LiveRanGe info
543 {
544 Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
545 _live = NULL;
546 rm.reset_to_mark(); // Reclaim working storage
547 IndexSet::reset_memory(C, &live_arena);
548 ifg.init(_lrg_map.max_lrg_id());
549
550 // Create LiveRanGe array.
551 // Intersect register masks for all USEs and DEFs
552 gather_lrg_masks(true);
553 live.compute(_lrg_map.max_lrg_id());
554 _live = &live;
555 }
556 must_spill = build_ifg_physical(&live_arena);
557 _ifg->SquareUp();
558 _ifg->Compute_Effective_Degree();
559
560 // Only do conservative coalescing if requested
561 if (OptoCoalesce) {
562 Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
563 // Conservative (and pessimistic) copy coalescing
564 PhaseConservativeCoalesce coalesce(*this);
565 // Check for few live ranges determines how aggressive coalesce is.
566 coalesce.coalesce_driver();
567 }
568 _lrg_map.compress_uf_map_for_nodes();
569 #ifdef ASSERT
570 verify(&live_arena, true);
571 #endif
572 cache_lrg_info(); // Count degree of LRGs
573
574 // Simplify the InterFerence Graph by removing LRGs of low degree.
575 // LRGs of low degree are trivially colorable.
576 Simplify();
577
578 // Select colors by re-inserting LRGs back into the IFG in reverse order.
579 // Return whether or not something spills.
580 spills = Select();
581 }
582
583 // Count number of Simplify-Select trips per coloring success.
584 _allocator_attempts += _trip_cnt + 1;
585 _allocator_successes += 1;
586
587 // Peephole remove copies
588 post_allocate_copy_removal();
589
590 // Merge multidefs if multiple defs representing the same value are used in a single block.
591 merge_multidefs();
592
593 #ifdef ASSERT
594 // Veify the graph after RA.
595 verify(&live_arena);
596 #endif
597
598 // max_reg is past the largest *register* used.
599 // Convert that to a frame_slot number.
600 if (_max_reg <= _matcher._new_SP) {
601 _framesize = C->out_preserve_stack_slots();
602 }
603 else {
604 _framesize = _max_reg -_matcher._new_SP;
605 }
606 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
607
608 // This frame must preserve the required fp alignment
609 _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
610 assert(_framesize <= 1000000, "sanity check");
611 #ifndef PRODUCT
612 _total_framesize += _framesize;
613 if ((int)_framesize > _max_framesize) {
614 _max_framesize = _framesize;
615 }
616 #endif
617
618 // Convert CISC spills
619 fixup_spills();
620
621 // Log regalloc results
622 CompileLog* log = Compile::current()->log();
623 if (log != NULL) {
624 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
625 }
626
627 if (C->failing()) {
628 return;
629 }
630
631 NOT_PRODUCT(C->verify_graph_edges();)
632
633 // Move important info out of the live_arena to longer lasting storage.
634 alloc_node_regs(_lrg_map.size());
635 for (uint i=0; i < _lrg_map.size(); i++) {
636 if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
637 LRG &lrg = lrgs(_lrg_map.live_range_id(i));
638 if (!lrg.alive()) {
639 set_bad(i);
640 } else if (lrg.num_regs() == 1) {
641 set1(i, lrg.reg());
642 } else { // Must be a register-set
643 if (!lrg._fat_proj) { // Must be aligned adjacent register set
644 // Live ranges record the highest register in their mask.
645 // We want the low register for the AD file writer's convenience.
646 OptoReg::Name hi = lrg.reg(); // Get hi register
647 OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
648 // We have to use pair [lo,lo+1] even for wide vectors because
649 // the rest of code generation works only with pairs. It is safe
650 // since for registers encoding only 'lo' is used.
651 // Second reg from pair is used in ScheduleAndBundle on SPARC where
652 // vector max size is 8 which corresponds to registers pair.
653 // It is also used in BuildOopMaps but oop operations are not
654 // vectorized.
655 set2(i, lo);
656 } else { // Misaligned; extract 2 bits
657 OptoReg::Name hi = lrg.reg(); // Get hi register
658 lrg.Remove(hi); // Yank from mask
659 int lo = lrg.mask().find_first_elem(); // Find lo
660 set_pair(i, hi, lo);
661 }
662 }
663 if( lrg._is_oop ) _node_oops.set(i);
664 } else {
665 set_bad(i);
666 }
667 }
668
669 // Done!
670 _live = NULL;
671 _ifg = NULL;
672 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
673 }
674
675 void PhaseChaitin::de_ssa() {
676 // Set initial Names for all Nodes. Most Nodes get the virtual register
677 // number. A few get the ZERO live range number. These do not
678 // get allocated, but instead rely on correct scheduling to ensure that
679 // only one instance is simultaneously live at a time.
680 uint lr_counter = 1;
681 for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
682 Block* block = _cfg.get_block(i);
683 uint cnt = block->number_of_nodes();
684
685 // Handle all the normal Nodes in the block
686 for( uint j = 0; j < cnt; j++ ) {
687 Node *n = block->get_node(j);
688 // Pre-color to the zero live range, or pick virtual register
689 const RegMask &rm = n->out_RegMask();
690 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
691 }
692 }
693
694 // Reset the Union-Find mapping to be identity
695 _lrg_map.reset_uf_map(lr_counter);
696 }
697
698 void PhaseChaitin::mark_ssa() {
699 // Use ssa names to populate the live range maps or if no mask
700 // is available, use the 0 entry.
701 uint max_idx = 0;
702 for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
703 Block* block = _cfg.get_block(i);
704 uint cnt = block->number_of_nodes();
705
706 // Handle all the normal Nodes in the block
707 for ( uint j = 0; j < cnt; j++ ) {
708 Node *n = block->get_node(j);
709 // Pre-color to the zero live range, or pick virtual register
710 const RegMask &rm = n->out_RegMask();
711 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
712 max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
713 }
714 }
715 _lrg_map.set_max_lrg_id(max_idx+1);
716
717 // Reset the Union-Find mapping to be identity
718 _lrg_map.reset_uf_map(max_idx+1);
719 }
720
721
722 // Gather LiveRanGe information, including register masks. Modification of
723 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
724 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
725
726 // Nail down the frame pointer live range
727 uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
728 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
729
730 // For all blocks
731 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
732 Block* block = _cfg.get_block(i);
733
734 // For all instructions
735 for (uint j = 1; j < block->number_of_nodes(); j++) {
736 Node* n = block->get_node(j);
737 uint input_edge_start =1; // Skip control most nodes
738 bool is_machine_node = false;
739 if (n->is_Mach()) {
740 is_machine_node = true;
741 input_edge_start = n->as_Mach()->oper_input_base();
742 }
743 uint idx = n->is_Copy();
744
745 // Get virtual register number, same as LiveRanGe index
746 uint vreg = _lrg_map.live_range_id(n);
747 LRG& lrg = lrgs(vreg);
748 if (vreg) { // No vreg means un-allocable (e.g. memory)
749
750 // Collect has-copy bit
751 if (idx) {
752 lrg._has_copy = 1;
753 uint clidx = _lrg_map.live_range_id(n->in(idx));
754 LRG& copy_src = lrgs(clidx);
755 copy_src._has_copy = 1;
756 }
757
758 // Check for float-vs-int live range (used in register-pressure
759 // calculations)
760 const Type *n_type = n->bottom_type();
761 if (n_type->is_floatingpoint()) {
762 lrg._is_float = 1;
763 }
764
765 // Check for twice prior spilling. Once prior spilling might have
766 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
767 // further spilling is unlikely to make progress.
768 if (_spilled_once.test(n->_idx)) {
769 lrg._was_spilled1 = 1;
770 if (_spilled_twice.test(n->_idx)) {
771 lrg._was_spilled2 = 1;
772 }
773 }
774
775 #ifndef PRODUCT
776 if (trace_spilling() && lrg._def != NULL) {
777 // collect defs for MultiDef printing
778 if (lrg._defs == NULL) {
779 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
780 lrg._defs->append(lrg._def);
781 }
782 lrg._defs->append(n);
783 }
784 #endif
785
786 // Check for a single def LRG; these can spill nicely
787 // via rematerialization. Flag as NULL for no def found
788 // yet, or 'n' for single def or -1 for many defs.
789 lrg._def = lrg._def ? NodeSentinel : n;
790
791 // Limit result register mask to acceptable registers
792 const RegMask &rm = n->out_RegMask();
793 lrg.AND( rm );
794
795 int ireg = n->ideal_reg();
796 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
797 "oops must be in Op_RegP's" );
798
799 // Check for vector live range (only if vector register is used).
800 // On SPARC vector uses RegD which could be misaligned so it is not
801 // processes as vector in RA.
802 if (RegMask::is_vector(ireg))
803 lrg._is_vector = 1;
804 assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
805 "vector must be in vector registers");
806
807 // Check for bound register masks
808 const RegMask &lrgmask = lrg.mask();
809 if (lrgmask.is_bound(ireg)) {
810 lrg._is_bound = 1;
811 }
812
813 // Check for maximum frequency value
814 if (lrg._maxfreq < block->_freq) {
815 lrg._maxfreq = block->_freq;
816 }
817
818 // Check for oop-iness, or long/double
819 // Check for multi-kill projection
820 switch (ireg) {
821 case MachProjNode::fat_proj:
822 // Fat projections have size equal to number of registers killed
823 lrg.set_num_regs(rm.Size());
824 lrg.set_reg_pressure(lrg.num_regs());
825 lrg._fat_proj = 1;
826 lrg._is_bound = 1;
827 break;
828 case Op_RegP:
829 #ifdef _LP64
830 lrg.set_num_regs(2); // Size is 2 stack words
831 #else
832 lrg.set_num_regs(1); // Size is 1 stack word
833 #endif
834 // Register pressure is tracked relative to the maximum values
835 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
836 // and relative to other types which compete for the same regs.
837 //
838 // The following table contains suggested values based on the
839 // architectures as defined in each .ad file.
840 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
841 // compile-speed or performance.
842 // Note1:
843 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
844 // since .ad registers are defined as high and low halves.
845 // These reg_pressure values remain compatible with the code
846 // in is_high_pressure() which relates get_invalid_mask_size(),
847 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
848 // Note2:
849 // SPARC -d32 has 24 registers available for integral values,
850 // but only 10 of these are safe for 64-bit longs.
851 // Using set_reg_pressure(2) for both int and long means
852 // the allocator will believe it can fit 26 longs into
853 // registers. Using 2 for longs and 1 for ints means the
854 // allocator will attempt to put 52 integers into registers.
855 // The settings below limit this problem to methods with
856 // many long values which are being run on 32-bit SPARC.
857 //
858 // ------------------- reg_pressure --------------------
859 // Each entry is reg_pressure_per_value,number_of_regs
860 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
861 // IA32 2 1 1 1 1 6 6
862 // IA64 1 1 1 1 1 50 41
863 // SPARC 2 2 2 2 2 48 (24) 52 (26)
864 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
865 // AMD64 1 1 1 1 1 14 15
866 // -----------------------------------------------------
867 #if defined(SPARC)
868 lrg.set_reg_pressure(2); // use for v9 as well
869 #else
870 lrg.set_reg_pressure(1); // normally one value per register
871 #endif
872 if( n_type->isa_oop_ptr() ) {
873 lrg._is_oop = 1;
874 }
875 break;
876 case Op_RegL: // Check for long or double
877 case Op_RegD:
878 lrg.set_num_regs(2);
879 // Define platform specific register pressure
880 #if defined(SPARC) || defined(ARM32)
881 lrg.set_reg_pressure(2);
882 #elif defined(IA32)
883 if( ireg == Op_RegL ) {
884 lrg.set_reg_pressure(2);
885 } else {
886 lrg.set_reg_pressure(1);
887 }
888 #else
889 lrg.set_reg_pressure(1); // normally one value per register
890 #endif
891 // If this def of a double forces a mis-aligned double,
892 // flag as '_fat_proj' - really flag as allowing misalignment
893 // AND changes how we count interferences. A mis-aligned
894 // double can interfere with TWO aligned pairs, or effectively
895 // FOUR registers!
896 if (rm.is_misaligned_pair()) {
897 lrg._fat_proj = 1;
898 lrg._is_bound = 1;
899 }
900 break;
901 case Op_RegF:
902 case Op_RegI:
903 case Op_RegN:
904 case Op_RegFlags:
905 case 0: // not an ideal register
906 lrg.set_num_regs(1);
907 #ifdef SPARC
908 lrg.set_reg_pressure(2);
909 #else
910 lrg.set_reg_pressure(1);
911 #endif
912 break;
913 case Op_VecS:
914 assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
915 assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
916 lrg.set_num_regs(RegMask::SlotsPerVecS);
917 lrg.set_reg_pressure(1);
918 break;
919 case Op_VecD:
920 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
921 assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
922 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
923 lrg.set_num_regs(RegMask::SlotsPerVecD);
924 lrg.set_reg_pressure(1);
925 break;
926 case Op_VecX:
927 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
928 assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
929 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
930 lrg.set_num_regs(RegMask::SlotsPerVecX);
931 lrg.set_reg_pressure(1);
932 break;
933 case Op_VecY:
934 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
935 assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
936 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
937 lrg.set_num_regs(RegMask::SlotsPerVecY);
938 lrg.set_reg_pressure(1);
939 break;
940 case Op_VecZ:
941 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
942 assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
943 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
944 lrg.set_num_regs(RegMask::SlotsPerVecZ);
945 lrg.set_reg_pressure(1);
946 break;
947 default:
948 ShouldNotReachHere();
949 }
950 }
951
952 // Now do the same for inputs
953 uint cnt = n->req();
954 // Setup for CISC SPILLING
955 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
956 if( UseCISCSpill && after_aggressive ) {
957 inp = n->cisc_operand();
958 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
959 // Convert operand number to edge index number
960 inp = n->as_Mach()->operand_index(inp);
961 }
962
963 // Prepare register mask for each input
964 for( uint k = input_edge_start; k < cnt; k++ ) {
965 uint vreg = _lrg_map.live_range_id(n->in(k));
966 if (!vreg) {
967 continue;
968 }
969
970 // If this instruction is CISC Spillable, add the flags
971 // bit to its appropriate input
972 if( UseCISCSpill && after_aggressive && inp == k ) {
973 #ifndef PRODUCT
974 if( TraceCISCSpill ) {
975 tty->print(" use_cisc_RegMask: ");
976 n->dump();
977 }
978 #endif
979 n->as_Mach()->use_cisc_RegMask();
980 }
981
982 if (is_machine_node && _scheduling_info_generated) {
983 MachNode* cur_node = n->as_Mach();
984 // this is cleaned up by register allocation
985 if (k >= cur_node->num_opnds()) continue;
986 }
987
988 LRG &lrg = lrgs(vreg);
989 // // Testing for floating point code shape
990 // Node *test = n->in(k);
991 // if( test->is_Mach() ) {
992 // MachNode *m = test->as_Mach();
993 // int op = m->ideal_Opcode();
994 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
995 // int zzz = 1;
996 // }
997 // }
998
999 // Limit result register mask to acceptable registers.
1000 // Do not limit registers from uncommon uses before
1001 // AggressiveCoalesce. This effectively pre-virtual-splits
1002 // around uncommon uses of common defs.
1003 const RegMask &rm = n->in_RegMask(k);
1004 if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1005 // Since we are BEFORE aggressive coalesce, leave the register
1006 // mask untrimmed by the call. This encourages more coalescing.
1007 // Later, AFTER aggressive, this live range will have to spill
1008 // but the spiller handles slow-path calls very nicely.
1009 } else {
1010 lrg.AND( rm );
1011 }
1012
1013 // Check for bound register masks
1014 const RegMask &lrgmask = lrg.mask();
1015 int kreg = n->in(k)->ideal_reg();
1016 bool is_vect = RegMask::is_vector(kreg);
1017 assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
1018 is_vect || kreg == Op_RegD || kreg == Op_RegL,
1019 "vector must be in vector registers");
1020 if (lrgmask.is_bound(kreg))
1021 lrg._is_bound = 1;
1022
1023 // If this use of a double forces a mis-aligned double,
1024 // flag as '_fat_proj' - really flag as allowing misalignment
1025 // AND changes how we count interferences. A mis-aligned
1026 // double can interfere with TWO aligned pairs, or effectively
1027 // FOUR registers!
1028 #ifdef ASSERT
1029 if (is_vect && !_scheduling_info_generated) {
1030 if (lrg.num_regs() != 0) {
1031 assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1032 assert(!lrg._fat_proj, "sanity");
1033 assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1034 } else {
1035 assert(n->is_Phi(), "not all inputs processed only if Phi");
1036 }
1037 }
1038 #endif
1039 if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1040 lrg._fat_proj = 1;
1041 lrg._is_bound = 1;
1042 }
1043 // if the LRG is an unaligned pair, we will have to spill
1044 // so clear the LRG's register mask if it is not already spilled
1045 if (!is_vect && !n->is_SpillCopy() &&
1046 (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1047 lrgmask.is_misaligned_pair()) {
1048 lrg.Clear();
1049 }
1050
1051 // Check for maximum frequency value
1052 if (lrg._maxfreq < block->_freq) {
1053 lrg._maxfreq = block->_freq;
1054 }
1055
1056 } // End for all allocated inputs
1057 } // end for all instructions
1058 } // end for all blocks
1059
1060 // Final per-liverange setup
1061 for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1062 LRG &lrg = lrgs(i2);
1063 assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1064 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1065 lrg.clear_to_sets();
1066 }
1067 lrg.compute_set_mask_size();
1068 if (lrg.not_free()) { // Handle case where we lose from the start
1069 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1070 lrg._direct_conflict = 1;
1071 }
1072 lrg.set_degree(0); // no neighbors in IFG yet
1073 }
1074 }
1075
1076 // Set the was-lo-degree bit. Conservative coalescing should not change the
1077 // colorability of the graph. If any live range was of low-degree before
1078 // coalescing, it should Simplify. This call sets the was-lo-degree bit.
1079 // The bit is checked in Simplify.
1080 void PhaseChaitin::set_was_low() {
1081 #ifdef ASSERT
1082 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1083 int size = lrgs(i).num_regs();
1084 uint old_was_lo = lrgs(i)._was_lo;
1085 lrgs(i)._was_lo = 0;
1086 if( lrgs(i).lo_degree() ) {
1087 lrgs(i)._was_lo = 1; // Trivially of low degree
1088 } else { // Else check the Brigg's assertion
1089 // Brigg's observation is that the lo-degree neighbors of a
1090 // hi-degree live range will not interfere with the color choices
1091 // of said hi-degree live range. The Simplify reverse-stack-coloring
1092 // order takes care of the details. Hence you do not have to count
1093 // low-degree neighbors when determining if this guy colors.
1094 int briggs_degree = 0;
1095 IndexSet *s = _ifg->neighbors(i);
1096 IndexSetIterator elements(s);
1097 uint lidx;
1098 while((lidx = elements.next()) != 0) {
1099 if( !lrgs(lidx).lo_degree() )
1100 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1101 }
1102 if( briggs_degree < lrgs(i).degrees_of_freedom() )
1103 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
1104 }
1105 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1106 }
1107 #endif
1108 }
1109
1110 #define REGISTER_CONSTRAINED 16
1111
1112 // Compute cost/area ratio, in case we spill. Build the lo-degree list.
1113 void PhaseChaitin::cache_lrg_info( ) {
1114 Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1115
1116 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1117 LRG &lrg = lrgs(i);
1118
1119 // Check for being of low degree: means we can be trivially colored.
1120 // Low degree, dead or must-spill guys just get to simplify right away
1121 if( lrg.lo_degree() ||
1122 !lrg.alive() ||
1123 lrg._must_spill ) {
1124 // Split low degree list into those guys that must get a
1125 // register and those that can go to register or stack.
1126 // The idea is LRGs that can go register or stack color first when
1127 // they have a good chance of getting a register. The register-only
1128 // lo-degree live ranges always get a register.
1129 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1130 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1131 lrg._next = _lo_stk_degree;
1132 _lo_stk_degree = i;
1133 } else {
1134 lrg._next = _lo_degree;
1135 _lo_degree = i;
1136 }
1137 } else { // Else high degree
1138 lrgs(_hi_degree)._prev = i;
1139 lrg._next = _hi_degree;
1140 lrg._prev = 0;
1141 _hi_degree = i;
1142 }
1143 }
1144 }
1145
1146 // Simplify the IFG by removing LRGs of low degree that have NO copies
1147 void PhaseChaitin::Pre_Simplify( ) {
1148
1149 // Warm up the lo-degree no-copy list
1150 int lo_no_copy = 0;
1151 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1152 if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
1153 !lrgs(i).alive() ||
1154 lrgs(i)._must_spill) {
1155 lrgs(i)._next = lo_no_copy;
1156 lo_no_copy = i;
1157 }
1158 }
1159
1160 while( lo_no_copy ) {
1161 uint lo = lo_no_copy;
1162 lo_no_copy = lrgs(lo)._next;
1163 int size = lrgs(lo).num_regs();
1164
1165 // Put the simplified guy on the simplified list.
1166 lrgs(lo)._next = _simplified;
1167 _simplified = lo;
1168
1169 // Yank this guy from the IFG.
1170 IndexSet *adj = _ifg->remove_node( lo );
1171
1172 // If any neighbors' degrees fall below their number of
1173 // allowed registers, then put that neighbor on the low degree
1174 // list. Note that 'degree' can only fall and 'numregs' is
1175 // unchanged by this action. Thus the two are equal at most once,
1176 // so LRGs hit the lo-degree worklists at most once.
1177 IndexSetIterator elements(adj);
1178 uint neighbor;
1179 while ((neighbor = elements.next()) != 0) {
1180 LRG *n = &lrgs(neighbor);
1181 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1182
1183 // Check for just becoming of-low-degree
1184 if( n->just_lo_degree() && !n->_has_copy ) {
1185 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1186 // Put on lo-degree list
1187 n->_next = lo_no_copy;
1188 lo_no_copy = neighbor;
1189 }
1190 }
1191 } // End of while lo-degree no_copy worklist not empty
1192
1193 // No more lo-degree no-copy live ranges to simplify
1194 }
1195
1196 // Simplify the IFG by removing LRGs of low degree.
1197 void PhaseChaitin::Simplify( ) {
1198 Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1199
1200 while( 1 ) { // Repeat till simplified it all
1201 // May want to explore simplifying lo_degree before _lo_stk_degree.
1202 // This might result in more spills coloring into registers during
1203 // Select().
1204 while( _lo_degree || _lo_stk_degree ) {
1205 // If possible, pull from lo_stk first
1206 uint lo;
1207 if( _lo_degree ) {
1208 lo = _lo_degree;
1209 _lo_degree = lrgs(lo)._next;
1210 } else {
1211 lo = _lo_stk_degree;
1212 _lo_stk_degree = lrgs(lo)._next;
1213 }
1214
1215 // Put the simplified guy on the simplified list.
1216 lrgs(lo)._next = _simplified;
1217 _simplified = lo;
1218 // If this guy is "at risk" then mark his current neighbors
1219 if( lrgs(lo)._at_risk ) {
1220 IndexSetIterator elements(_ifg->neighbors(lo));
1221 uint datum;
1222 while ((datum = elements.next()) != 0) {
1223 lrgs(datum)._risk_bias = lo;
1224 }
1225 }
1226
1227 // Yank this guy from the IFG.
1228 IndexSet *adj = _ifg->remove_node( lo );
1229
1230 // If any neighbors' degrees fall below their number of
1231 // allowed registers, then put that neighbor on the low degree
1232 // list. Note that 'degree' can only fall and 'numregs' is
1233 // unchanged by this action. Thus the two are equal at most once,
1234 // so LRGs hit the lo-degree worklist at most once.
1235 IndexSetIterator elements(adj);
1236 uint neighbor;
1237 while ((neighbor = elements.next()) != 0) {
1238 LRG *n = &lrgs(neighbor);
1239 #ifdef ASSERT
1240 if( VerifyOpto || VerifyRegisterAllocator ) {
1241 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1242 }
1243 #endif
1244
1245 // Check for just becoming of-low-degree just counting registers.
1246 // _must_spill live ranges are already on the low degree list.
1247 if( n->just_lo_degree() && !n->_must_spill ) {
1248 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1249 // Pull from hi-degree list
1250 uint prev = n->_prev;
1251 uint next = n->_next;
1252 if( prev ) lrgs(prev)._next = next;
1253 else _hi_degree = next;
1254 lrgs(next)._prev = prev;
1255 n->_next = _lo_degree;
1256 _lo_degree = neighbor;
1257 }
1258 }
1259 } // End of while lo-degree/lo_stk_degree worklist not empty
1260
1261 // Check for got everything: is hi-degree list empty?
1262 if( !_hi_degree ) break;
1263
1264 // Time to pick a potential spill guy
1265 uint lo_score = _hi_degree;
1266 double score = lrgs(lo_score).score();
1267 double area = lrgs(lo_score)._area;
1268 double cost = lrgs(lo_score)._cost;
1269 bool bound = lrgs(lo_score)._is_bound;
1270
1271 // Find cheapest guy
1272 debug_only( int lo_no_simplify=0; );
1273 for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1274 assert( !(*_ifg->_yanked)[i], "" );
1275 // It's just vaguely possible to move hi-degree to lo-degree without
1276 // going through a just-lo-degree stage: If you remove a double from
1277 // a float live range it's degree will drop by 2 and you can skip the
1278 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
1279 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
1280 if( lrgs(i).lo_degree() ) {
1281 lo_score = i;
1282 break;
1283 }
1284 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1285 double iscore = lrgs(i).score();
1286 double iarea = lrgs(i)._area;
1287 double icost = lrgs(i)._cost;
1288 bool ibound = lrgs(i)._is_bound;
1289
1290 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
1291 // wins. Ties happen because all live ranges in question have spilled
1292 // a few times before and the spill-score adds a huge number which
1293 // washes out the low order bits. We are choosing the lesser of 2
1294 // evils; in this case pick largest area to spill.
1295 // Ties also happen when live ranges are defined and used only inside
1296 // one block. In which case their area is 0 and score set to max.
1297 // In such case choose bound live range over unbound to free registers
1298 // or with smaller cost to spill.
1299 if( iscore < score ||
1300 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1301 (iscore == score && iarea == area &&
1302 ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1303 lo_score = i;
1304 score = iscore;
1305 area = iarea;
1306 cost = icost;
1307 bound = ibound;
1308 }
1309 }
1310 LRG *lo_lrg = &lrgs(lo_score);
1311 // The live range we choose for spilling is either hi-degree, or very
1312 // rarely it can be low-degree. If we choose a hi-degree live range
1313 // there better not be any lo-degree choices.
1314 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1315
1316 // Pull from hi-degree list
1317 uint prev = lo_lrg->_prev;
1318 uint next = lo_lrg->_next;
1319 if( prev ) lrgs(prev)._next = next;
1320 else _hi_degree = next;
1321 lrgs(next)._prev = prev;
1322 // Jam him on the lo-degree list, despite his high degree.
1323 // Maybe he'll get a color, and maybe he'll spill.
1324 // Only Select() will know.
1325 lrgs(lo_score)._at_risk = true;
1326 _lo_degree = lo_score;
1327 lo_lrg->_next = 0;
1328
1329 } // End of while not simplified everything
1330
1331 }
1332
1333 // Is 'reg' register legal for 'lrg'?
1334 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1335 if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1336 lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1337 // RA uses OptoReg which represent the highest element of a registers set.
1338 // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1339 // in which XMMd is used by RA to represent such vectors. A double value
1340 // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1341 // The register mask uses largest bits set of overlapping register sets.
1342 // On x86 with AVX it uses 8 bits for each XMM registers set.
1343 //
1344 // The 'lrg' already has cleared-to-set register mask (done in Select()
1345 // before calling choose_color()). Passing mask.Member(reg) check above
1346 // indicates that the size (num_regs) of 'reg' set is less or equal to
1347 // 'lrg' set size.
1348 // For set size 1 any register which is member of 'lrg' mask is legal.
1349 if (lrg.num_regs()==1)
1350 return true;
1351 // For larger sets only an aligned register with the same set size is legal.
1352 int mask = lrg.num_regs()-1;
1353 if ((reg&mask) == mask)
1354 return true;
1355 }
1356 return false;
1357 }
1358
1359 // Choose a color using the biasing heuristic
1360 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1361
1362 // Check for "at_risk" LRG's
1363 uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1364 if( risk_lrg != 0 ) {
1365 // Walk the colored neighbors of the "at_risk" candidate
1366 // Choose a color which is both legal and already taken by a neighbor
1367 // of the "at_risk" candidate in order to improve the chances of the
1368 // "at_risk" candidate of coloring
1369 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1370 uint datum;
1371 while ((datum = elements.next()) != 0) {
1372 OptoReg::Name reg = lrgs(datum).reg();
1373 // If this LRG's register is legal for us, choose it
1374 if (is_legal_reg(lrg, reg, chunk))
1375 return reg;
1376 }
1377 }
1378
1379 uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1380 if( copy_lrg != 0 ) {
1381 // If he has a color,
1382 if( !(*(_ifg->_yanked))[copy_lrg] ) {
1383 OptoReg::Name reg = lrgs(copy_lrg).reg();
1384 // And it is legal for you,
1385 if (is_legal_reg(lrg, reg, chunk))
1386 return reg;
1387 } else if( chunk == 0 ) {
1388 // Choose a color which is legal for him
1389 RegMask tempmask = lrg.mask();
1390 tempmask.AND(lrgs(copy_lrg).mask());
1391 tempmask.clear_to_sets(lrg.num_regs());
1392 OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
1393 if (OptoReg::is_valid(reg))
1394 return reg;
1395 }
1396 }
1397
1398 // If no bias info exists, just go with the register selection ordering
1399 if (lrg._is_vector || lrg.num_regs() == 2) {
1400 // Find an aligned set
1401 return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
1402 }
1403
1404 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
1405 // copy removal to remove many more copies, by preventing a just-assigned
1406 // register from being repeatedly assigned.
1407 OptoReg::Name reg = lrg.mask().find_first_elem();
1408 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1409 // This 'Remove; find; Insert' idiom is an expensive way to find the
1410 // SECOND element in the mask.
1411 lrg.Remove(reg);
1412 OptoReg::Name reg2 = lrg.mask().find_first_elem();
1413 lrg.Insert(reg);
1414 if( OptoReg::is_reg(reg2))
1415 reg = reg2;
1416 }
1417 return OptoReg::add( reg, chunk );
1418 }
1419
1420 // Choose a color in the current chunk
1421 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1422 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1423 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1424
1425 if( lrg.num_regs() == 1 || // Common Case
1426 !lrg._fat_proj ) // Aligned+adjacent pairs ok
1427 // Use a heuristic to "bias" the color choice
1428 return bias_color(lrg, chunk);
1429
1430 assert(!lrg._is_vector, "should be not vector here" );
1431 assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1432
1433 // Fat-proj case or misaligned double argument.
1434 assert(lrg.compute_mask_size() == lrg.num_regs() ||
1435 lrg.num_regs() == 2,"fat projs exactly color" );
1436 assert( !chunk, "always color in 1st chunk" );
1437 // Return the highest element in the set.
1438 return lrg.mask().find_last_elem();
1439 }
1440
1441 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
1442 // in reverse order of removal. As long as nothing of hi-degree was yanked,
1443 // everything going back is guaranteed a color. Select that color. If some
1444 // hi-degree LRG cannot get a color then we record that we must spill.
1445 uint PhaseChaitin::Select( ) {
1446 Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1447
1448 uint spill_reg = LRG::SPILL_REG;
1449 _max_reg = OptoReg::Name(0); // Past max register used
1450 while( _simplified ) {
1451 // Pull next LRG from the simplified list - in reverse order of removal
1452 uint lidx = _simplified;
1453 LRG *lrg = &lrgs(lidx);
1454 _simplified = lrg->_next;
1455
1456
1457 #ifndef PRODUCT
1458 if (trace_spilling()) {
1459 ttyLocker ttyl;
1460 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1461 lrg->degrees_of_freedom());
1462 lrg->dump();
1463 }
1464 #endif
1465
1466 // Re-insert into the IFG
1467 _ifg->re_insert(lidx);
1468 if( !lrg->alive() ) continue;
1469 // capture allstackedness flag before mask is hacked
1470 const int is_allstack = lrg->mask().is_AllStack();
1471
1472 // Yeah, yeah, yeah, I know, I know. I can refactor this
1473 // to avoid the GOTO, although the refactored code will not
1474 // be much clearer. We arrive here IFF we have a stack-based
1475 // live range that cannot color in the current chunk, and it
1476 // has to move into the next free stack chunk.
1477 int chunk = 0; // Current chunk is first chunk
1478 retry_next_chunk:
1479
1480 // Remove neighbor colors
1481 IndexSet *s = _ifg->neighbors(lidx);
1482
1483 debug_only(RegMask orig_mask = lrg->mask();)
1484 IndexSetIterator elements(s);
1485 uint neighbor;
1486 while ((neighbor = elements.next()) != 0) {
1487 // Note that neighbor might be a spill_reg. In this case, exclusion
1488 // of its color will be a no-op, since the spill_reg chunk is in outer
1489 // space. Also, if neighbor is in a different chunk, this exclusion
1490 // will be a no-op. (Later on, if lrg runs out of possible colors in
1491 // its chunk, a new chunk of color may be tried, in which case
1492 // examination of neighbors is started again, at retry_next_chunk.)
1493 LRG &nlrg = lrgs(neighbor);
1494 OptoReg::Name nreg = nlrg.reg();
1495 // Only subtract masks in the same chunk
1496 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1497 #ifndef PRODUCT
1498 uint size = lrg->mask().Size();
1499 RegMask rm = lrg->mask();
1500 #endif
1501 lrg->SUBTRACT(nlrg.mask());
1502 #ifndef PRODUCT
1503 if (trace_spilling() && lrg->mask().Size() != size) {
1504 ttyLocker ttyl;
1505 tty->print("L%d ", lidx);
1506 rm.dump();
1507 tty->print(" intersected L%d ", neighbor);
1508 nlrg.mask().dump();
1509 tty->print(" removed ");
1510 rm.SUBTRACT(lrg->mask());
1511 rm.dump();
1512 tty->print(" leaving ");
1513 lrg->mask().dump();
1514 tty->cr();
1515 }
1516 #endif
1517 }
1518 }
1519 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1520 // Aligned pairs need aligned masks
1521 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1522 if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1523 lrg->clear_to_sets();
1524 }
1525
1526 // Check if a color is available and if so pick the color
1527 OptoReg::Name reg = choose_color( *lrg, chunk );
1528 #ifdef SPARC
1529 debug_only(lrg->compute_set_mask_size());
1530 assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1531 #endif
1532
1533 //---------------
1534 // If we fail to color and the AllStack flag is set, trigger
1535 // a chunk-rollover event
1536 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1537 // Bump register mask up to next stack chunk
1538 chunk += RegMask::CHUNK_SIZE;
1539 lrg->Set_All();
1540
1541 goto retry_next_chunk;
1542 }
1543
1544 //---------------
1545 // Did we get a color?
1546 else if( OptoReg::is_valid(reg)) {
1547 #ifndef PRODUCT
1548 RegMask avail_rm = lrg->mask();
1549 #endif
1550
1551 // Record selected register
1552 lrg->set_reg(reg);
1553
1554 if( reg >= _max_reg ) // Compute max register limit
1555 _max_reg = OptoReg::add(reg,1);
1556 // Fold reg back into normal space
1557 reg = OptoReg::add(reg,-chunk);
1558
1559 // If the live range is not bound, then we actually had some choices
1560 // to make. In this case, the mask has more bits in it than the colors
1561 // chosen. Restrict the mask to just what was picked.
1562 int n_regs = lrg->num_regs();
1563 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1564 if (n_regs == 1 || !lrg->_fat_proj) {
1565 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1566 lrg->Clear(); // Clear the mask
1567 lrg->Insert(reg); // Set regmask to match selected reg
1568 // For vectors and pairs, also insert the low bit of the pair
1569 for (int i = 1; i < n_regs; i++)
1570 lrg->Insert(OptoReg::add(reg,-i));
1571 lrg->set_mask_size(n_regs);
1572 } else { // Else fatproj
1573 // mask must be equal to fatproj bits, by definition
1574 }
1575 #ifndef PRODUCT
1576 if (trace_spilling()) {
1577 ttyLocker ttyl;
1578 tty->print("L%d selected ", lidx);
1579 lrg->mask().dump();
1580 tty->print(" from ");
1581 avail_rm.dump();
1582 tty->cr();
1583 }
1584 #endif
1585 // Note that reg is the highest-numbered register in the newly-bound mask.
1586 } // end color available case
1587
1588 //---------------
1589 // Live range is live and no colors available
1590 else {
1591 assert( lrg->alive(), "" );
1592 assert( !lrg->_fat_proj || lrg->is_multidef() ||
1593 lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1594 assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1595
1596 // Assign the special spillreg register
1597 lrg->set_reg(OptoReg::Name(spill_reg++));
1598 // Do not empty the regmask; leave mask_size lying around
1599 // for use during Spilling
1600 #ifndef PRODUCT
1601 if( trace_spilling() ) {
1602 ttyLocker ttyl;
1603 tty->print("L%d spilling with neighbors: ", lidx);
1604 s->dump();
1605 debug_only(tty->print(" original mask: "));
1606 debug_only(orig_mask.dump());
1607 dump_lrg(lidx);
1608 }
1609 #endif
1610 } // end spill case
1611
1612 }
1613
1614 return spill_reg-LRG::SPILL_REG; // Return number of spills
1615 }
1616
1617 // Copy 'was_spilled'-edness from the source Node to the dst Node.
1618 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1619 if( _spilled_once.test(src->_idx) ) {
1620 _spilled_once.set(dst->_idx);
1621 lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
1622 if( _spilled_twice.test(src->_idx) ) {
1623 _spilled_twice.set(dst->_idx);
1624 lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
1625 }
1626 }
1627 }
1628
1629 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1630 void PhaseChaitin::set_was_spilled( Node *n ) {
1631 if( _spilled_once.test_set(n->_idx) )
1632 _spilled_twice.set(n->_idx);
1633 }
1634
1635 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1636 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1637 void PhaseChaitin::fixup_spills() {
1638 // This function does only cisc spill work.
1639 if( !UseCISCSpill ) return;
1640
1641 Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1642
1643 // Grab the Frame Pointer
1644 Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1645
1646 // For all blocks
1647 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1648 Block* block = _cfg.get_block(i);
1649
1650 // For all instructions in block
1651 uint last_inst = block->end_idx();
1652 for (uint j = 1; j <= last_inst; j++) {
1653 Node* n = block->get_node(j);
1654
1655 // Dead instruction???
1656 assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1657 C->top() == n || // Or the random TOP node
1658 n->is_Proj(), // Or a fat-proj kill node
1659 "No dead instructions after post-alloc" );
1660
1661 int inp = n->cisc_operand();
1662 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1663 // Convert operand number to edge index number
1664 MachNode *mach = n->as_Mach();
1665 inp = mach->operand_index(inp);
1666 Node *src = n->in(inp); // Value to load or store
1667 LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1668 OptoReg::Name src_reg = lrg_cisc.reg();
1669 // Doubles record the HIGH register of an adjacent pair.
1670 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1671 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1672 // This is a CISC Spill, get stack offset and construct new node
1673 #ifndef PRODUCT
1674 if( TraceCISCSpill ) {
1675 tty->print(" reg-instr: ");
1676 n->dump();
1677 }
1678 #endif
1679 int stk_offset = reg2offset(src_reg);
1680 // Bailout if we might exceed node limit when spilling this instruction
1681 C->check_node_count(0, "out of nodes fixing spills");
1682 if (C->failing()) return;
1683 // Transform node
1684 MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1685 cisc->set_req(inp,fp); // Base register is frame pointer
1686 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1687 assert( cisc->oper_input_base() == 2, "Only adding one edge");
1688 cisc->ins_req(1,src); // Requires a memory edge
1689 }
1690 block->map_node(cisc, j); // Insert into basic block
1691 n->subsume_by(cisc, C); // Correct graph
1692 //
1693 ++_used_cisc_instructions;
1694 #ifndef PRODUCT
1695 if( TraceCISCSpill ) {
1696 tty->print(" cisc-instr: ");
1697 cisc->dump();
1698 }
1699 #endif
1700 } else {
1701 #ifndef PRODUCT
1702 if( TraceCISCSpill ) {
1703 tty->print(" using reg-instr: ");
1704 n->dump();
1705 }
1706 #endif
1707 ++_unused_cisc_instructions; // input can be on stack
1708 }
1709 }
1710
1711 } // End of for all instructions
1712
1713 } // End of for all blocks
1714 }
1715
1716 // Helper to stretch above; recursively discover the base Node for a
1717 // given derived Node. Easy for AddP-related machine nodes, but needs
1718 // to be recursive for derived Phis.
1719 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1720 // See if already computed; if so return it
1721 if( derived_base_map[derived->_idx] )
1722 return derived_base_map[derived->_idx];
1723
1724 // See if this happens to be a base.
1725 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1726 // pointers derived from NULL! These are always along paths that
1727 // can't happen at run-time but the optimizer cannot deduce it so
1728 // we have to handle it gracefully.
1729 assert(!derived->bottom_type()->isa_narrowoop() ||
1730 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1731 const TypePtr *tj = derived->bottom_type()->isa_ptr();
1732 // If its an OOP with a non-zero offset, then it is derived.
1733 if( tj == NULL || tj->_offset == 0 ) {
1734 derived_base_map[derived->_idx] = derived;
1735 return derived;
1736 }
1737 // Derived is NULL+offset? Base is NULL!
1738 if( derived->is_Con() ) {
1739 Node *base = _matcher.mach_null();
1740 assert(base != NULL, "sanity");
1741 if (base->in(0) == NULL) {
1742 // Initialize it once and make it shared:
1743 // set control to _root and place it into Start block
1744 // (where top() node is placed).
1745 base->init_req(0, _cfg.get_root_node());
1746 Block *startb = _cfg.get_block_for_node(C->top());
1747 uint node_pos = startb->find_node(C->top());
1748 startb->insert_node(base, node_pos);
1749 _cfg.map_node_to_block(base, startb);
1750 assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1751
1752 // The loadConP0 might have projection nodes depending on architecture
1753 // Add the projection nodes to the CFG
1754 for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1755 Node* use = base->fast_out(i);
1756 if (use->is_MachProj()) {
1757 startb->insert_node(use, ++node_pos);
1758 _cfg.map_node_to_block(use, startb);
1759 new_lrg(use, maxlrg++);
1760 }
1761 }
1762 }
1763 if (_lrg_map.live_range_id(base) == 0) {
1764 new_lrg(base, maxlrg++);
1765 }
1766 assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
1767 derived_base_map[derived->_idx] = base;
1768 return base;
1769 }
1770
1771 // Check for AddP-related opcodes
1772 if (!derived->is_Phi()) {
1773 assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1774 Node *base = derived->in(AddPNode::Base);
1775 derived_base_map[derived->_idx] = base;
1776 return base;
1777 }
1778
1779 // Recursively find bases for Phis.
1780 // First check to see if we can avoid a base Phi here.
1781 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1782 uint i;
1783 for( i = 2; i < derived->req(); i++ )
1784 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1785 break;
1786 // Went to the end without finding any different bases?
1787 if( i == derived->req() ) { // No need for a base Phi here
1788 derived_base_map[derived->_idx] = base;
1789 return base;
1790 }
1791
1792 // Now we see we need a base-Phi here to merge the bases
1793 const Type *t = base->bottom_type();
1794 base = new PhiNode( derived->in(0), t );
1795 for( i = 1; i < derived->req(); i++ ) {
1796 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1797 t = t->meet(base->in(i)->bottom_type());
1798 }
1799 base->as_Phi()->set_type(t);
1800
1801 // Search the current block for an existing base-Phi
1802 Block *b = _cfg.get_block_for_node(derived);
1803 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1804 Node *phi = b->get_node(i);
1805 if( !phi->is_Phi() ) { // Found end of Phis with no match?
1806 b->insert_node(base, i); // Must insert created Phi here as base
1807 _cfg.map_node_to_block(base, b);
1808 new_lrg(base,maxlrg++);
1809 break;
1810 }
1811 // See if Phi matches.
1812 uint j;
1813 for( j = 1; j < base->req(); j++ )
1814 if( phi->in(j) != base->in(j) &&
1815 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1816 break;
1817 if( j == base->req() ) { // All inputs match?
1818 base = phi; // Then use existing 'phi' and drop 'base'
1819 break;
1820 }
1821 }
1822
1823
1824 // Cache info for later passes
1825 derived_base_map[derived->_idx] = base;
1826 return base;
1827 }
1828
1829 // At each Safepoint, insert extra debug edges for each pair of derived value/
1830 // base pointer that is live across the Safepoint for oopmap building. The
1831 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1832 // required edge set.
1833 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1834 int must_recompute_live = false;
1835 uint maxlrg = _lrg_map.max_lrg_id();
1836 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1837 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1838
1839 // For all blocks in RPO do...
1840 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1841 Block* block = _cfg.get_block(i);
1842 // Note use of deep-copy constructor. I cannot hammer the original
1843 // liveout bits, because they are needed by the following coalesce pass.
1844 IndexSet liveout(_live->live(block));
1845
1846 for (uint j = block->end_idx() + 1; j > 1; j--) {
1847 Node* n = block->get_node(j - 1);
1848
1849 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
1850 // like to see in the same register. Compare uses the loop-phi and so
1851 // extends its live range BUT cannot be part of the cycle. If this
1852 // extended live range overlaps with the update of the loop-phi value
1853 // we need both alive at the same time -- which requires at least 1
1854 // copy. But because Intel has only 2-address registers we end up with
1855 // at least 2 copies, one before the loop-phi update instruction and
1856 // one after. Instead we split the input to the compare just after the
1857 // phi.
1858 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1859 Node *phi = n->in(1);
1860 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1861 Block *phi_block = _cfg.get_block_for_node(phi);
1862 if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1863 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1864 Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1865 insert_proj( phi_block, 1, spill, maxlrg++ );
1866 n->set_req(1,spill);
1867 must_recompute_live = true;
1868 }
1869 }
1870 }
1871
1872 // Get value being defined
1873 uint lidx = _lrg_map.live_range_id(n);
1874 // Ignore the occasional brand-new live range
1875 if (lidx && lidx < _lrg_map.max_lrg_id()) {
1876 // Remove from live-out set
1877 liveout.remove(lidx);
1878
1879 // Copies do not define a new value and so do not interfere.
1880 // Remove the copies source from the liveout set before interfering.
1881 uint idx = n->is_Copy();
1882 if (idx) {
1883 liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1884 }
1885 }
1886
1887 // Found a safepoint?
1888 JVMState *jvms = n->jvms();
1889 if( jvms ) {
1890 // Now scan for a live derived pointer
1891 IndexSetIterator elements(&liveout);
1892 uint neighbor;
1893 while ((neighbor = elements.next()) != 0) {
1894 // Find reaching DEF for base and derived values
1895 // This works because we are still in SSA during this call.
1896 Node *derived = lrgs(neighbor)._def;
1897 const TypePtr *tj = derived->bottom_type()->isa_ptr();
1898 assert(!derived->bottom_type()->isa_narrowoop() ||
1899 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1900 // If its an OOP with a non-zero offset, then it is derived.
1901 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1902 Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1903 assert(base->_idx < _lrg_map.size(), "");
1904 // Add reaching DEFs of derived pointer and base pointer as a
1905 // pair of inputs
1906 n->add_req(derived);
1907 n->add_req(base);
1908
1909 // See if the base pointer is already live to this point.
1910 // Since I'm working on the SSA form, live-ness amounts to
1911 // reaching def's. So if I find the base's live range then
1912 // I know the base's def reaches here.
1913 if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1914 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1915 (_lrg_map.live_range_id(base) > 0) && // not a constant
1916 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1917 // Base pointer is not currently live. Since I stretched
1918 // the base pointer to here and it crosses basic-block
1919 // boundaries, the global live info is now incorrect.
1920 // Recompute live.
1921 must_recompute_live = true;
1922 } // End of if base pointer is not live to debug info
1923 }
1924 } // End of scan all live data for derived ptrs crossing GC point
1925 } // End of if found a GC point
1926
1927 // Make all inputs live
1928 if (!n->is_Phi()) { // Phi function uses come from prior block
1929 for (uint k = 1; k < n->req(); k++) {
1930 uint lidx = _lrg_map.live_range_id(n->in(k));
1931 if (lidx < _lrg_map.max_lrg_id()) {
1932 liveout.insert(lidx);
1933 }
1934 }
1935 }
1936
1937 } // End of forall instructions in block
1938 liveout.clear(); // Free the memory used by liveout.
1939
1940 } // End of forall blocks
1941 _lrg_map.set_max_lrg_id(maxlrg);
1942
1943 // If I created a new live range I need to recompute live
1944 if (maxlrg != _ifg->_maxlrg) {
1945 must_recompute_live = true;
1946 }
1947
1948 return must_recompute_live != 0;
1949 }
1950
1951 // Extend the node to LRG mapping
1952
1953 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1954 _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1955 }
1956
1957 #ifndef PRODUCT
1958 void PhaseChaitin::dump(const Node *n) const {
1959 uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1960 tty->print("L%d",r);
1961 if (r && n->Opcode() != Op_Phi) {
1962 if( _node_regs ) { // Got a post-allocation copy of allocation?
1963 tty->print("[");
1964 OptoReg::Name second = get_reg_second(n);
1965 if( OptoReg::is_valid(second) ) {
1966 if( OptoReg::is_reg(second) )
1967 tty->print("%s:",Matcher::regName[second]);
1968 else
1969 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1970 }
1971 OptoReg::Name first = get_reg_first(n);
1972 if( OptoReg::is_reg(first) )
1973 tty->print("%s]",Matcher::regName[first]);
1974 else
1975 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1976 } else
1977 n->out_RegMask().dump();
1978 }
1979 tty->print("/N%d\t",n->_idx);
1980 tty->print("%s === ", n->Name());
1981 uint k;
1982 for (k = 0; k < n->req(); k++) {
1983 Node *m = n->in(k);
1984 if (!m) {
1985 tty->print("_ ");
1986 }
1987 else {
1988 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1989 tty->print("L%d",r);
1990 // Data MultiNode's can have projections with no real registers.
1991 // Don't die while dumping them.
1992 int op = n->Opcode();
1993 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1994 if( _node_regs ) {
1995 tty->print("[");
1996 OptoReg::Name second = get_reg_second(n->in(k));
1997 if( OptoReg::is_valid(second) ) {
1998 if( OptoReg::is_reg(second) )
1999 tty->print("%s:",Matcher::regName[second]);
2000 else
2001 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2002 reg2offset_unchecked(second));
2003 }
2004 OptoReg::Name first = get_reg_first(n->in(k));
2005 if( OptoReg::is_reg(first) )
2006 tty->print("%s]",Matcher::regName[first]);
2007 else
2008 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2009 reg2offset_unchecked(first));
2010 } else
2011 n->in_RegMask(k).dump();
2012 }
2013 tty->print("/N%d ",m->_idx);
2014 }
2015 }
2016 if( k < n->len() && n->in(k) ) tty->print("| ");
2017 for( ; k < n->len(); k++ ) {
2018 Node *m = n->in(k);
2019 if(!m) {
2020 break;
2021 }
2022 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2023 tty->print("L%d",r);
2024 tty->print("/N%d ",m->_idx);
2025 }
2026 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2027 else n->dump_spec(tty);
2028 if( _spilled_once.test(n->_idx ) ) {
2029 tty->print(" Spill_1");
2030 if( _spilled_twice.test(n->_idx ) )
2031 tty->print(" Spill_2");
2032 }
2033 tty->print("\n");
2034 }
2035
2036 void PhaseChaitin::dump(const Block *b) const {
2037 b->dump_head(&_cfg);
2038
2039 // For all instructions
2040 for( uint j = 0; j < b->number_of_nodes(); j++ )
2041 dump(b->get_node(j));
2042 // Print live-out info at end of block
2043 if( _live ) {
2044 tty->print("Liveout: ");
2045 IndexSet *live = _live->live(b);
2046 IndexSetIterator elements(live);
2047 tty->print("{");
2048 uint i;
2049 while ((i = elements.next()) != 0) {
2050 tty->print("L%d ", _lrg_map.find_const(i));
2051 }
2052 tty->print_cr("}");
2053 }
2054 tty->print("\n");
2055 }
2056
2057 void PhaseChaitin::dump() const {
2058 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
2059 _matcher._new_SP, _framesize );
2060
2061 // For all blocks
2062 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2063 dump(_cfg.get_block(i));
2064 }
2065 // End of per-block dump
2066 tty->print("\n");
2067
2068 if (!_ifg) {
2069 tty->print("(No IFG.)\n");
2070 return;
2071 }
2072
2073 // Dump LRG array
2074 tty->print("--- Live RanGe Array ---\n");
2075 for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2076 tty->print("L%d: ",i2);
2077 if (i2 < _ifg->_maxlrg) {
2078 lrgs(i2).dump();
2079 }
2080 else {
2081 tty->print_cr("new LRG");
2082 }
2083 }
2084 tty->cr();
2085
2086 // Dump lo-degree list
2087 tty->print("Lo degree: ");
2088 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2089 tty->print("L%d ",i3);
2090 tty->cr();
2091
2092 // Dump lo-stk-degree list
2093 tty->print("Lo stk degree: ");
2094 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2095 tty->print("L%d ",i4);
2096 tty->cr();
2097
2098 // Dump lo-degree list
2099 tty->print("Hi degree: ");
2100 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2101 tty->print("L%d ",i5);
2102 tty->cr();
2103 }
2104
2105 void PhaseChaitin::dump_degree_lists() const {
2106 // Dump lo-degree list
2107 tty->print("Lo degree: ");
2108 for( uint i = _lo_degree; i; i = lrgs(i)._next )
2109 tty->print("L%d ",i);
2110 tty->cr();
2111
2112 // Dump lo-stk-degree list
2113 tty->print("Lo stk degree: ");
2114 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2115 tty->print("L%d ",i2);
2116 tty->cr();
2117
2118 // Dump lo-degree list
2119 tty->print("Hi degree: ");
2120 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2121 tty->print("L%d ",i3);
2122 tty->cr();
2123 }
2124
2125 void PhaseChaitin::dump_simplified() const {
2126 tty->print("Simplified: ");
2127 for( uint i = _simplified; i; i = lrgs(i)._next )
2128 tty->print("L%d ",i);
2129 tty->cr();
2130 }
2131
2132 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
2133 if ((int)reg < 0)
2134 sprintf(buf, "<OptoReg::%d>", (int)reg);
2135 else if (OptoReg::is_reg(reg))
2136 strcpy(buf, Matcher::regName[reg]);
2137 else
2138 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2139 pc->reg2offset(reg));
2140 return buf+strlen(buf);
2141 }
2142
2143 // Dump a register name into a buffer. Be intelligent if we get called
2144 // before allocation is complete.
2145 char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
2146 if( this == NULL ) { // Not got anything?
2147 sprintf(buf,"N%d",n->_idx); // Then use Node index
2148 } else if( _node_regs ) {
2149 // Post allocation, use direct mappings, no LRG info available
2150 print_reg( get_reg_first(n), this, buf );
2151 } else {
2152 uint lidx = _lrg_map.find_const(n); // Grab LRG number
2153 if( !_ifg ) {
2154 sprintf(buf,"L%d",lidx); // No register binding yet
2155 } else if( !lidx ) { // Special, not allocated value
2156 strcpy(buf,"Special");
2157 } else {
2158 if (lrgs(lidx)._is_vector) {
2159 if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2160 print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2161 else
2162 sprintf(buf,"L%d",lidx); // No register binding yet
2163 } else if( (lrgs(lidx).num_regs() == 1)
2164 ? lrgs(lidx).mask().is_bound1()
2165 : lrgs(lidx).mask().is_bound_pair() ) {
2166 // Hah! We have a bound machine register
2167 print_reg( lrgs(lidx).reg(), this, buf );
2168 } else {
2169 sprintf(buf,"L%d",lidx); // No register binding yet
2170 }
2171 }
2172 }
2173 return buf+strlen(buf);
2174 }
2175
2176 void PhaseChaitin::dump_for_spill_split_recycle() const {
2177 if( WizardMode && (PrintCompilation || PrintOpto) ) {
2178 // Display which live ranges need to be split and the allocator's state
2179 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2180 for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2181 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2182 tty->print("L%d: ", bidx);
2183 lrgs(bidx).dump();
2184 }
2185 }
2186 tty->cr();
2187 dump();
2188 }
2189 }
2190
2191 void PhaseChaitin::dump_frame() const {
2192 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2193 const TypeTuple *domain = C->tf()->domain();
2194 const int argcnt = domain->cnt() - TypeFunc::Parms;
2195
2196 // Incoming arguments in registers dump
2197 for( int k = 0; k < argcnt; k++ ) {
2198 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2199 if( OptoReg::is_reg(parmreg)) {
2200 const char *reg_name = OptoReg::regname(parmreg);
2201 tty->print("#r%3.3d %s", parmreg, reg_name);
2202 parmreg = _matcher._parm_regs[k].second();
2203 if( OptoReg::is_reg(parmreg)) {
2204 tty->print(":%s", OptoReg::regname(parmreg));
2205 }
2206 tty->print(" : parm %d: ", k);
2207 domain->field_at(k + TypeFunc::Parms)->dump();
2208 tty->cr();
2209 }
2210 }
2211
2212 // Check for un-owned padding above incoming args
2213 OptoReg::Name reg = _matcher._new_SP;
2214 if( reg > _matcher._in_arg_limit ) {
2215 reg = OptoReg::add(reg, -1);
2216 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2217 }
2218
2219 // Incoming argument area dump
2220 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2221 while( reg > begin_in_arg ) {
2222 reg = OptoReg::add(reg, -1);
2223 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2224 int j;
2225 for( j = 0; j < argcnt; j++) {
2226 if( _matcher._parm_regs[j].first() == reg ||
2227 _matcher._parm_regs[j].second() == reg ) {
2228 tty->print("parm %d: ",j);
2229 domain->field_at(j + TypeFunc::Parms)->dump();
2230 tty->cr();
2231 break;
2232 }
2233 }
2234 if( j >= argcnt )
2235 tty->print_cr("HOLE, owned by SELF");
2236 }
2237
2238 // Old outgoing preserve area
2239 while( reg > _matcher._old_SP ) {
2240 reg = OptoReg::add(reg, -1);
2241 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2242 }
2243
2244 // Old SP
2245 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2246 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2247
2248 // Preserve area dump
2249 int fixed_slots = C->fixed_slots();
2250 OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2251 OptoReg::Name return_addr = _matcher.return_addr();
2252
2253 reg = OptoReg::add(reg, -1);
2254 while (OptoReg::is_stack(reg)) {
2255 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2256 if (return_addr == reg) {
2257 tty->print_cr("return address");
2258 } else if (reg >= begin_in_preserve) {
2259 // Preserved slots are present on x86
2260 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2261 tty->print_cr("saved fp register");
2262 else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2263 VerifyStackAtCalls)
2264 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
2265 else
2266 tty->print_cr("in_preserve");
2267 } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2268 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2269 } else {
2270 tty->print_cr("pad2, stack alignment");
2271 }
2272 reg = OptoReg::add(reg, -1);
2273 }
2274
2275 // Spill area dump
2276 reg = OptoReg::add(_matcher._new_SP, _framesize );
2277 while( reg > _matcher._out_arg_limit ) {
2278 reg = OptoReg::add(reg, -1);
2279 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2280 }
2281
2282 // Outgoing argument area dump
2283 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2284 reg = OptoReg::add(reg, -1);
2285 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2286 }
2287
2288 // Outgoing new preserve area
2289 while( reg > _matcher._new_SP ) {
2290 reg = OptoReg::add(reg, -1);
2291 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2292 }
2293 tty->print_cr("#");
2294 }
2295
2296 void PhaseChaitin::dump_bb( uint pre_order ) const {
2297 tty->print_cr("---dump of B%d---",pre_order);
2298 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2299 Block* block = _cfg.get_block(i);
2300 if (block->_pre_order == pre_order) {
2301 dump(block);
2302 }
2303 }
2304 }
2305
2306 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2307 tty->print_cr("---dump of L%d---",lidx);
2308
2309 if (_ifg) {
2310 if (lidx >= _lrg_map.max_lrg_id()) {
2311 tty->print("Attempt to print live range index beyond max live range.\n");
2312 return;
2313 }
2314 tty->print("L%d: ",lidx);
2315 if (lidx < _ifg->_maxlrg) {
2316 lrgs(lidx).dump();
2317 } else {
2318 tty->print_cr("new LRG");
2319 }
2320 }
2321 if( _ifg && lidx < _ifg->_maxlrg) {
2322 tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2323 _ifg->neighbors(lidx)->dump();
2324 tty->cr();
2325 }
2326 // For all blocks
2327 for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2328 Block* block = _cfg.get_block(i);
2329 int dump_once = 0;
2330
2331 // For all instructions
2332 for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2333 Node *n = block->get_node(j);
2334 if (_lrg_map.find_const(n) == lidx) {
2335 if (!dump_once++) {
2336 tty->cr();
2337 block->dump_head(&_cfg);
2338 }
2339 dump(n);
2340 continue;
2341 }
2342 if (!defs_only) {
2343 uint cnt = n->req();
2344 for( uint k = 1; k < cnt; k++ ) {
2345 Node *m = n->in(k);
2346 if (!m) {
2347 continue; // be robust in the dumper
2348 }
2349 if (_lrg_map.find_const(m) == lidx) {
2350 if (!dump_once++) {
2351 tty->cr();
2352 block->dump_head(&_cfg);
2353 }
2354 dump(n);
2355 }
2356 }
2357 }
2358 }
2359 } // End of per-block dump
2360 tty->cr();
2361 }
2362 #endif // not PRODUCT
2363
2364 int PhaseChaitin::_final_loads = 0;
2365 int PhaseChaitin::_final_stores = 0;
2366 int PhaseChaitin::_final_memoves= 0;
2367 int PhaseChaitin::_final_copies = 0;
2368 double PhaseChaitin::_final_load_cost = 0;
2369 double PhaseChaitin::_final_store_cost = 0;
2370 double PhaseChaitin::_final_memove_cost= 0;
2371 double PhaseChaitin::_final_copy_cost = 0;
2372 int PhaseChaitin::_conserv_coalesce = 0;
2373 int PhaseChaitin::_conserv_coalesce_pair = 0;
2374 int PhaseChaitin::_conserv_coalesce_trie = 0;
2375 int PhaseChaitin::_conserv_coalesce_quad = 0;
2376 int PhaseChaitin::_post_alloc = 0;
2377 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2378 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2379 int PhaseChaitin::_used_cisc_instructions = 0;
2380 int PhaseChaitin::_unused_cisc_instructions = 0;
2381 int PhaseChaitin::_allocator_attempts = 0;
2382 int PhaseChaitin::_allocator_successes = 0;
2383
2384 #ifndef PRODUCT
2385 uint PhaseChaitin::_high_pressure = 0;
2386 uint PhaseChaitin::_low_pressure = 0;
2387
2388 void PhaseChaitin::print_chaitin_statistics() {
2389 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2390 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2391 tty->print_cr("Adjusted spill cost = %7.0f.",
2392 _final_load_cost*4.0 + _final_store_cost * 2.0 +
2393 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2394 tty->print("Conservatively coalesced %d copies, %d pairs",
2395 _conserv_coalesce, _conserv_coalesce_pair);
2396 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2397 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2398 tty->print_cr(", %d post alloc.", _post_alloc);
2399 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2400 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2401 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2402 if( _used_cisc_instructions || _unused_cisc_instructions )
2403 tty->print_cr("Used cisc instruction %d, remained in register %d",
2404 _used_cisc_instructions, _unused_cisc_instructions);
2405 if( _allocator_successes != 0 )
2406 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2407 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2408 }
2409 #endif // not PRODUCT
--- EOF ---