1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciValueKlass.hpp"
  26 #include "opto/addnode.hpp"
  27 #include "opto/graphKit.hpp"
  28 #include "opto/rootnode.hpp"
  29 #include "opto/valuetypenode.hpp"
  30 #include "opto/phaseX.hpp"
  31 
  32 ValueTypeNode* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass) {
  33   // Create a new ValueTypeNode with uninitialized values and NULL oop
  34   const TypeValueType* type = TypeValueType::make(klass);
  35   return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE));
  36 }
  37 
  38 Node* ValueTypeNode::make(PhaseGVN& gvn, Node* mem, Node* oop) {
  39   // Create and initialize a ValueTypeNode by loading all field
  40   // values from a heap-allocated version and also save the oop.
  41   const TypeValueTypePtr* vtptr = gvn.type(oop)->is_valuetypeptr();
  42   ValueTypeNode* vt = new ValueTypeNode(vtptr->value_type(), oop);
  43   vt->load_values(gvn, mem, vt->get_value_klass(), oop);
  44   return gvn.transform(vt);
  45 }
  46 
  47 Node* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass, Node* mem, ciInstanceKlass* holder, Node* obj, int field_offset) {
  48   // Create and initialize a ValueTypeNode by loading all field
  49   // values from a flattened value type field at 'field_offset' in 'obj'.
  50   ValueTypeNode* vt = make(gvn, klass)->as_ValueType();
  51   // The value type is flattened into the object without an oop header. Subtract the
  52   // offset of the first field to account for the missing header when loading the values.
  53   int base_offset = field_offset - klass->get_first_field_offset();
  54   vt->load_values(gvn, mem, holder, obj, base_offset);
  55   return gvn.transform(vt);
  56 }
  57 
  58 void ValueTypeNode::load_values(PhaseGVN& gvn, Node* mem, ciInstanceKlass* holder, Node* base, int base_offset) {
  59   // Initialize the value type by loading its field values from
  60   // memory and adding the values as input edges to the node.
  61   for (uint i = 0; i < field_count(); ++i) {
  62     int offset = base_offset + get_field_offset(i);
  63     Node* adr = gvn.transform(new AddPNode(base, base, gvn.longcon(offset)));
  64     ciField* field = holder->get_field_by_offset(offset, false);
  65     const TypePtr* adr_type = gvn.C->alias_type(field)->adr_type();
  66     Node* value = NULL;
  67     ciType* field_type = get_field_type(i);
  68     if (field_type->is_valuetype()) {
  69       // Recursively load the flattened value type field
  70       value = ValueTypeNode::make(gvn, field_type->as_value_klass(), mem, holder, base, offset);
  71     } else {
  72       value = LoadNode::make(gvn, NULL, mem, adr, adr_type, Type::get_const_type(field_type), field_type->basic_type(), MemNode::unordered);
  73     }
  74     set_field_value(i, gvn.transform(value));
  75   }
  76 }
  77 
  78 void ValueTypeNode::store_to_field(GraphKit* kit, ciInstanceKlass* holder, Node* obj, int field_offset) const {
  79   // The value type is embedded into the object without an oop header. Subtract the
  80   // offset of the first field to account for the missing header when storing the values.
  81   int base_offset = field_offset - get_value_klass()->get_first_field_offset();
  82   store_values(kit, holder, obj, base_offset);
  83 }
  84 
  85 void ValueTypeNode::store_values(GraphKit* kit, ciInstanceKlass* holder, Node* base, int base_offset) const {
  86   // Write field values to memory
  87   for (uint i = 0; i < field_count(); ++i) {
  88     int offset = base_offset + get_field_offset(i);
  89     Node* adr = kit->basic_plus_adr(base, base, offset);
  90     ciField* field = holder->get_field_by_offset(offset, false);
  91     const TypePtr* adr_type = kit->C->alias_type(field)->adr_type();
  92     Node* value = get_field_value(i);
  93     if (value->is_ValueType()) {
  94       // Recursively store the flattened value type field
  95       value->isa_ValueType()->store_to_field(kit, holder, base, offset);
  96     } else {
  97       kit->store_to_memory(kit->control(), adr, value, get_field_type(i)->basic_type(), adr_type, MemNode::unordered);
  98     }
  99   }
 100 }
 101 
 102 Node* ValueTypeNode::store_to_memory(GraphKit* kit) {
 103   Node* in_oop = get_oop();
 104   Node* null_ctl = kit->top();
 105   // Check if value type is already allocated
 106   Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl);
 107   if (null_ctl->is_top()) {
 108     // Value type is allocated
 109     return not_null_oop;
 110   }
 111   // Not able to prove that value type is allocated.
 112   // Emit runtime check that may be folded later.
 113   const Type* oop_type = kit->gvn().type(in_oop);
 114   assert(TypePtr::NULL_PTR->higher_equal(oop_type), "should not be allocated");
 115 
 116   const TypeValueTypePtr* vtptr_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull);
 117   RegionNode* region = new RegionNode(3);
 118   PhiNode* oop = new PhiNode(region, vtptr_type);
 119   PhiNode* io  = new PhiNode(region, Type::ABIO);
 120   PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 121 
 122   // Oop is non-NULL, use it
 123   region->init_req(1, kit->control());
 124   // Fixme if we cast oop to not null we fail if the control path is not folded
 125   // castnode.cpp:69: #  assert(ft == Type::TOP) failed: special case #3
 126   //oop   ->init_req(1, not_null_oop);
 127   oop   ->init_req(1, in_oop);
 128   io    ->init_req(1, kit->i_o());
 129   mem   ->init_req(1, kit->merged_memory());
 130 
 131   // Oop is NULL, allocate value type
 132   kit->set_control(null_ctl);
 133   kit->kill_dead_locals();
 134   Node* klass_node = kit->makecon(TypeKlassPtr::make(get_value_klass()));
 135   Node* alloc_oop  = kit->new_instance(klass_node);
 136   // Write field values to memory
 137   store_values(kit, get_value_klass(), alloc_oop);
 138   region->init_req(2, kit->control());
 139   oop   ->init_req(2, alloc_oop);
 140   io    ->init_req(2, kit->i_o());
 141   mem   ->init_req(2, kit->merged_memory());
 142 
 143   // Update GraphKit
 144   kit->set_control(kit->gvn().transform(region));
 145   kit->set_i_o(kit->gvn().transform(io));
 146   kit->set_all_memory(kit->gvn().transform(mem));
 147   kit->record_for_igvn(region);
 148   kit->record_for_igvn(oop);
 149   kit->record_for_igvn(io);
 150   kit->record_for_igvn(mem);
 151 
 152   // Use cloned ValueTypeNode to propagate oop from now on
 153   Node* res_oop = kit->gvn().transform(oop);
 154   ValueTypeNode* vt = clone()->as_ValueType();
 155   vt->set_oop(res_oop);
 156   kit->replace_in_map(this, kit->gvn().transform(vt));
 157   return res_oop;
 158 }
 159 
 160 // Clones the values type to handle control flow merges involving multiple value types.
 161 // The input edges are replaced by PhiNodes to represent the merged values.
 162 ValueTypeNode* ValueTypeNode::clone_with_phis(PhaseGVN& gvn, Node* region) {
 163   ValueTypeNode* vt = clone()->as_ValueType();
 164 
 165   // Create a PhiNode for merging the oop values
 166   const TypeValueTypePtr* vtptr = TypeValueTypePtr::make(vt->bottom_type()->isa_valuetype());
 167   PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr);
 168   gvn.set_type(oop, vtptr);
 169   vt->set_oop(oop);
 170 
 171   // Create a PhiNode each for merging the field values
 172   for (uint i = 0; i < vt->field_count(); ++i) {
 173     ciType* type = vt->get_field_type(i);
 174     Node*  value = vt->get_field_value(i);
 175     if (type->is_valuetype()) {
 176       // Handle flattened value type fields recursively
 177       value = value->as_ValueType()->clone_with_phis(gvn, region);
 178     } else {
 179       const Type* phi_type = Type::get_const_type(type);
 180       value = PhiNode::make(region, value, phi_type);
 181       gvn.set_type(value, phi_type);
 182     }
 183     vt->set_field_value(i, value);
 184   }
 185   gvn.set_type(vt, vt->bottom_type());
 186   return vt;
 187 }
 188 
 189 // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis'
 190 Node* ValueTypeNode::merge_with(GraphKit* kit, const ValueTypeNode* other, int pnum) {
 191   // Merge oop inputs
 192   PhiNode* phi = get_oop()->as_Phi();
 193   phi->set_req(pnum, other->get_oop());
 194   if (pnum == PhiNode::Input) {
 195     // Last merge
 196     set_oop(kit->gvn().transform_no_reclaim(phi));
 197     kit->record_for_igvn(phi);
 198   }
 199   // Merge field values
 200   for (uint i = 0; i < field_count(); ++i) {
 201     Node* val1 =        get_field_value(i);
 202     Node* val2 = other->get_field_value(i);
 203     if (val1->isa_ValueType()) {
 204       val1->as_ValueType()->merge_with(kit, val2->as_ValueType(), pnum);
 205     } else {
 206       assert(!val2->is_ValueType(), "inconsistent merge values");
 207       val1->set_req(pnum, val2);
 208     }
 209     if (pnum == PhiNode::Input) {
 210       // Last merge
 211       set_field_value(i, kit->gvn().transform_no_reclaim(val1));
 212       kit->record_for_igvn(val1);
 213     }
 214   }
 215   if (pnum == PhiNode::Input) {
 216     // Last merge for this value type.
 217    kit->record_for_igvn(this);
 218    return kit->gvn().transform_no_reclaim(this);
 219   }
 220   return this;
 221 }
 222 
 223 Node* ValueTypeNode::get_field_value(uint index) const {
 224   assert(index < field_count(), "index out of bounds");
 225   return in(Values + index);
 226 }
 227 
 228 // Get the value of the field at the given offset.
 229 // If 'recursive' is true, flattened value type fields will be resolved recursively.
 230 Node* ValueTypeNode::get_field_value_by_offset(int offset, bool recursive) const {
 231   // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the
 232   // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type.
 233   int index = get_value_klass()->get_field_index_by_offset(offset);
 234   int sub_offset = offset - get_field_offset(index);
 235   Node* value = get_field_value(index);
 236   if (recursive && value->is_ValueType()) {
 237     // Flattened value type field
 238     ValueTypeNode* vt = value->as_ValueType();
 239     sub_offset += vt->get_value_klass()->get_first_field_offset(); // Add header size
 240     return vt->get_field_value_by_offset(sub_offset);
 241   }
 242   assert(!(recursive && value->is_ValueType()), "should not be a value type");
 243   assert(sub_offset == 0, "offset mismatch");
 244   return value;
 245 }
 246 
 247 void ValueTypeNode::set_field_value(uint index, Node* value) {
 248   assert(index < field_count(), "index out of bounds");
 249   set_req(Values + index, value);
 250 }
 251 
 252 int ValueTypeNode::get_field_offset(uint index) const {
 253   assert(index < field_count(), "index out of bounds");
 254   return get_value_klass()->get_field_offset_by_index(index);
 255 }
 256 
 257 ciType* ValueTypeNode::get_field_type(uint index) const {
 258   assert(index < field_count(), "index out of bounds");
 259   return get_value_klass()->get_field_type_by_index(index);
 260 }
 261 
 262 void ValueTypeNode::make_scalar_in_safepoints(Compile* C) {
 263   const TypeValueTypePtr* res_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull);
 264   ciValueKlass* vk = get_value_klass();
 265   uint nfields = vk->get_field_count();
 266   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 267     Node* u = fast_out(i);
 268     if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) {
 269       Node* in_oop = get_oop();
 270       const Type* oop_type = in_oop->bottom_type();
 271       SafePointNode* sfpt = u->as_SafePoint();
 272       JVMState* jvms = sfpt->jvms();
 273       int start = jvms->debug_start();
 274       int end   = jvms->debug_end();
 275       if (oop_type->meet(TypePtr::NULL_PTR) != oop_type) {
 276         // Replace safepoint edge by oop
 277         int nb = sfpt->replace_edges_in_range(this, in_oop, start, end);
 278         --i; imax -= nb;
 279       } else {
 280         // Replace safepoint edge by SafePointScalarObjectNode and add field values
 281         assert(jvms != NULL, "missing JVMS");
 282         uint first_ind = (sfpt->req() - jvms->scloff());
 283         SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 284 #ifdef ASSERT
 285                                                                         NULL,
 286 #endif
 287                                                                         first_ind, nfields);
 288         sobj->init_req(0, C->root());
 289         // Iterate over the value type fields in order of increasing
 290         // offset and add the field values to the safepoint.
 291         for (uint j = 0; j < nfields; ++j) {
 292           int offset = vk->nonstatic_field_at(j)->offset();
 293           Node* value = get_field_value_by_offset(offset, true /* include flattened value type fields */);
 294           sfpt->add_req(value);
 295         }
 296         jvms->set_endoff(sfpt->req());
 297         int nb = sfpt->replace_edges_in_range(this, sobj, start, end);
 298         --i; imax -= nb;
 299       }
 300     }
 301   }
 302 }
 303 
 304 uint ValueTypeNode::set_arguments_for_java_call(CallJavaNode* call, int base_input, const GraphKit& kit, ciValueKlass* base_vk, int base_offset) {
 305   ciValueKlass* vk = get_value_klass();
 306   if (base_vk == NULL) {
 307     base_vk = vk;
 308   }
 309   uint edges = 0;
 310   for (uint i = 0; i < field_count(); i++) {
 311     ciType* field_type = get_field_type(i);
 312     int offset = base_offset + get_field_offset(i) - (base_offset > 0 ? vk->get_first_field_offset() : 0);
 313     Node* arg = get_field_value(i);
 314     if (field_type->is_valuetype()) {
 315       ciValueKlass* embedded_vk = field_type->as_value_klass();
 316       edges += arg->as_ValueType()->set_arguments_for_java_call(call, base_input, kit, base_vk, offset);
 317     } else {
 318       int j = 0; int extra = 0;
 319       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 320         ciField* f = base_vk->nonstatic_field_at(j);
 321         if (offset == f->offset()) {
 322           assert(f->type() == field_type, "");
 323           break;
 324         }
 325         BasicType bt = f->type()->basic_type();
 326         if (bt == T_LONG || bt == T_DOUBLE) {
 327           extra++;
 328         }
 329       }
 330       call->init_req(base_input + j + extra, arg);
 331       edges++;
 332       BasicType bt = field_type->basic_type();
 333       if (bt == T_LONG || bt == T_DOUBLE) {
 334         call->init_req(base_input + j + extra + 1, kit.top());
 335         edges++;
 336       }
 337     }
 338   }
 339   return edges;
 340 }
 341 
 342 Node* ValueTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 343   // No optimizations for now
 344   return NULL;
 345 }
 346 
 347 #ifndef PRODUCT
 348 
 349 void ValueTypeNode::dump_spec(outputStream* st) const {
 350   TypeNode::dump_spec(st);
 351 }
 352 
 353 #endif