1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/universe.inline.hpp"
  42 #include "oops/fieldStreams.hpp"
  43 #include "oops/objArrayOop.inline.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/valueKlass.hpp"
  46 #include "prims/forte.hpp"
  47 #include "prims/jvmtiExport.hpp"
  48 #include "prims/jvmtiRedefineClassesTrace.hpp"
  49 #include "prims/methodHandles.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/init.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/javaCalls.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/vframe.hpp"
  62 #include "runtime/vframeArray.hpp"
  63 #include "trace/tracing.hpp"
  64 #include "utilities/copy.hpp"
  65 #include "utilities/dtrace.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/hashtable.inline.hpp"
  68 #include "utilities/macros.hpp"
  69 #include "utilities/xmlstream.hpp"
  70 #ifdef COMPILER1
  71 #include "c1/c1_Runtime1.hpp"
  72 #endif
  73 
  74 // Shared stub locations
  75 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  76 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  77 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  78 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  79 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  81 
  82 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  83 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  84 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  85 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  86 
  87 #ifdef COMPILER2
  88 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  89 #endif // COMPILER2
  90 
  91 
  92 //----------------------------generate_stubs-----------------------------------
  93 void SharedRuntime::generate_stubs() {
  94   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  95   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  96   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  97   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  98   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  99   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 100 
 101 #if defined(COMPILER2) || INCLUDE_JVMCI
 102   // Vectors are generated only by C2 and JVMCI.
 103   bool support_wide = is_wide_vector(MaxVectorSize);
 104   if (support_wide) {
 105     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 106   }
 107 #endif // COMPILER2 || INCLUDE_JVMCI
 108   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 109   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 110 
 111   generate_deopt_blob();
 112 
 113 #ifdef COMPILER2
 114   generate_uncommon_trap_blob();
 115 #endif // COMPILER2
 116 }
 117 
 118 #include <math.h>
 119 
 120 // Implementation of SharedRuntime
 121 
 122 #ifndef PRODUCT
 123 // For statistics
 124 int SharedRuntime::_ic_miss_ctr = 0;
 125 int SharedRuntime::_wrong_method_ctr = 0;
 126 int SharedRuntime::_resolve_static_ctr = 0;
 127 int SharedRuntime::_resolve_virtual_ctr = 0;
 128 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 129 int SharedRuntime::_implicit_null_throws = 0;
 130 int SharedRuntime::_implicit_div0_throws = 0;
 131 int SharedRuntime::_throw_null_ctr = 0;
 132 
 133 int SharedRuntime::_nof_normal_calls = 0;
 134 int SharedRuntime::_nof_optimized_calls = 0;
 135 int SharedRuntime::_nof_inlined_calls = 0;
 136 int SharedRuntime::_nof_megamorphic_calls = 0;
 137 int SharedRuntime::_nof_static_calls = 0;
 138 int SharedRuntime::_nof_inlined_static_calls = 0;
 139 int SharedRuntime::_nof_interface_calls = 0;
 140 int SharedRuntime::_nof_optimized_interface_calls = 0;
 141 int SharedRuntime::_nof_inlined_interface_calls = 0;
 142 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 143 int SharedRuntime::_nof_removable_exceptions = 0;
 144 
 145 int SharedRuntime::_new_instance_ctr=0;
 146 int SharedRuntime::_new_array_ctr=0;
 147 int SharedRuntime::_multi1_ctr=0;
 148 int SharedRuntime::_multi2_ctr=0;
 149 int SharedRuntime::_multi3_ctr=0;
 150 int SharedRuntime::_multi4_ctr=0;
 151 int SharedRuntime::_multi5_ctr=0;
 152 int SharedRuntime::_mon_enter_stub_ctr=0;
 153 int SharedRuntime::_mon_exit_stub_ctr=0;
 154 int SharedRuntime::_mon_enter_ctr=0;
 155 int SharedRuntime::_mon_exit_ctr=0;
 156 int SharedRuntime::_partial_subtype_ctr=0;
 157 int SharedRuntime::_jbyte_array_copy_ctr=0;
 158 int SharedRuntime::_jshort_array_copy_ctr=0;
 159 int SharedRuntime::_jint_array_copy_ctr=0;
 160 int SharedRuntime::_jlong_array_copy_ctr=0;
 161 int SharedRuntime::_oop_array_copy_ctr=0;
 162 int SharedRuntime::_checkcast_array_copy_ctr=0;
 163 int SharedRuntime::_unsafe_array_copy_ctr=0;
 164 int SharedRuntime::_generic_array_copy_ctr=0;
 165 int SharedRuntime::_slow_array_copy_ctr=0;
 166 int SharedRuntime::_find_handler_ctr=0;
 167 int SharedRuntime::_rethrow_ctr=0;
 168 
 169 int     SharedRuntime::_ICmiss_index                    = 0;
 170 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 171 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 172 
 173 
 174 void SharedRuntime::trace_ic_miss(address at) {
 175   for (int i = 0; i < _ICmiss_index; i++) {
 176     if (_ICmiss_at[i] == at) {
 177       _ICmiss_count[i]++;
 178       return;
 179     }
 180   }
 181   int index = _ICmiss_index++;
 182   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 183   _ICmiss_at[index] = at;
 184   _ICmiss_count[index] = 1;
 185 }
 186 
 187 void SharedRuntime::print_ic_miss_histogram() {
 188   if (ICMissHistogram) {
 189     tty->print_cr("IC Miss Histogram:");
 190     int tot_misses = 0;
 191     for (int i = 0; i < _ICmiss_index; i++) {
 192       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 193       tot_misses += _ICmiss_count[i];
 194     }
 195     tty->print_cr("Total IC misses: %7d", tot_misses);
 196   }
 197 }
 198 #endif // PRODUCT
 199 
 200 #if INCLUDE_ALL_GCS
 201 
 202 // G1 write-barrier pre: executed before a pointer store.
 203 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 204   if (orig == NULL) {
 205     assert(false, "should be optimized out");
 206     return;
 207   }
 208   assert(orig->is_oop(true /* ignore mark word */), "Error");
 209   // store the original value that was in the field reference
 210   thread->satb_mark_queue().enqueue(orig);
 211 JRT_END
 212 
 213 // G1 write-barrier post: executed after a pointer store.
 214 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 215   thread->dirty_card_queue().enqueue(card_addr);
 216 JRT_END
 217 
 218 #endif // INCLUDE_ALL_GCS
 219 
 220 
 221 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 222   return x * y;
 223 JRT_END
 224 
 225 
 226 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 227   if (x == min_jlong && y == CONST64(-1)) {
 228     return x;
 229   } else {
 230     return x / y;
 231   }
 232 JRT_END
 233 
 234 
 235 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 236   if (x == min_jlong && y == CONST64(-1)) {
 237     return 0;
 238   } else {
 239     return x % y;
 240   }
 241 JRT_END
 242 
 243 
 244 const juint  float_sign_mask  = 0x7FFFFFFF;
 245 const juint  float_infinity   = 0x7F800000;
 246 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 247 const julong double_infinity  = CONST64(0x7FF0000000000000);
 248 
 249 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 250 #ifdef _WIN64
 251   // 64-bit Windows on amd64 returns the wrong values for
 252   // infinity operands.
 253   union { jfloat f; juint i; } xbits, ybits;
 254   xbits.f = x;
 255   ybits.f = y;
 256   // x Mod Infinity == x unless x is infinity
 257   if (((xbits.i & float_sign_mask) != float_infinity) &&
 258        ((ybits.i & float_sign_mask) == float_infinity) ) {
 259     return x;
 260   }
 261   return ((jfloat)fmod_winx64((double)x, (double)y));
 262 #else
 263   return ((jfloat)fmod((double)x,(double)y));
 264 #endif
 265 JRT_END
 266 
 267 
 268 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 269 #ifdef _WIN64
 270   union { jdouble d; julong l; } xbits, ybits;
 271   xbits.d = x;
 272   ybits.d = y;
 273   // x Mod Infinity == x unless x is infinity
 274   if (((xbits.l & double_sign_mask) != double_infinity) &&
 275        ((ybits.l & double_sign_mask) == double_infinity) ) {
 276     return x;
 277   }
 278   return ((jdouble)fmod_winx64((double)x, (double)y));
 279 #else
 280   return ((jdouble)fmod((double)x,(double)y));
 281 #endif
 282 JRT_END
 283 
 284 #ifdef __SOFTFP__
 285 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 286   return x + y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 290   return x - y;
 291 JRT_END
 292 
 293 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 294   return x * y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 298   return x / y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 302   return x + y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 306   return x - y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 310   return x * y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 314   return x / y;
 315 JRT_END
 316 
 317 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 318   return (jfloat)x;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 322   return (jdouble)x;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 326   return (jdouble)x;
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 330   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 338   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 342   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 343 JRT_END
 344 
 345 // Functions to return the opposite of the aeabi functions for nan.
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 347   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 351   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 355   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 359   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 363   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 367   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 371   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 375   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 // Intrinsics make gcc generate code for these.
 379 float  SharedRuntime::fneg(float f)   {
 380   return -f;
 381 }
 382 
 383 double SharedRuntime::dneg(double f)  {
 384   return -f;
 385 }
 386 
 387 #endif // __SOFTFP__
 388 
 389 #if defined(__SOFTFP__) || defined(E500V2)
 390 // Intrinsics make gcc generate code for these.
 391 double SharedRuntime::dabs(double f)  {
 392   return (f <= (double)0.0) ? (double)0.0 - f : f;
 393 }
 394 
 395 #endif
 396 
 397 #if defined(__SOFTFP__) || defined(PPC)
 398 double SharedRuntime::dsqrt(double f) {
 399   return sqrt(f);
 400 }
 401 #endif
 402 
 403 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jint)
 407     return max_jint;
 408   if (x <= (jfloat) min_jint)
 409     return min_jint;
 410   return (jint) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jfloat) max_jlong)
 418     return max_jlong;
 419   if (x <= (jfloat) min_jlong)
 420     return min_jlong;
 421   return (jlong) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jint)
 429     return max_jint;
 430   if (x <= (jdouble) min_jint)
 431     return min_jint;
 432   return (jint) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jdouble) max_jlong)
 440     return max_jlong;
 441   if (x <= (jdouble) min_jlong)
 442     return min_jlong;
 443   return (jlong) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 448   return (jfloat)x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 453   return (jfloat)x;
 454 JRT_END
 455 
 456 
 457 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 458   return (jdouble)x;
 459 JRT_END
 460 
 461 // Exception handling across interpreter/compiler boundaries
 462 //
 463 // exception_handler_for_return_address(...) returns the continuation address.
 464 // The continuation address is the entry point of the exception handler of the
 465 // previous frame depending on the return address.
 466 
 467 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 468   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 469   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 470 
 471   // Reset method handle flag.
 472   thread->set_is_method_handle_return(false);
 473 
 474 #if INCLUDE_JVMCI
 475   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 476   // and other exception handler continuations do not read it
 477   thread->set_exception_pc(NULL);
 478 #endif
 479 
 480   // The fastest case first
 481   CodeBlob* blob = CodeCache::find_blob(return_address);
 482   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 483   if (nm != NULL) {
 484     // Set flag if return address is a method handle call site.
 485     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 486     // native nmethods don't have exception handlers
 487     assert(!nm->is_native_method(), "no exception handler");
 488     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 489     if (nm->is_deopt_pc(return_address)) {
 490       // If we come here because of a stack overflow, the stack may be
 491       // unguarded. Reguard the stack otherwise if we return to the
 492       // deopt blob and the stack bang causes a stack overflow we
 493       // crash.
 494       bool guard_pages_enabled = thread->stack_guards_enabled();
 495       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 496       if (thread->reserved_stack_activation() != thread->stack_base()) {
 497         thread->set_reserved_stack_activation(thread->stack_base());
 498       }
 499       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 500       return SharedRuntime::deopt_blob()->unpack_with_exception();
 501     } else {
 502       return nm->exception_begin();
 503     }
 504   }
 505 
 506   // Entry code
 507   if (StubRoutines::returns_to_call_stub(return_address)) {
 508     return StubRoutines::catch_exception_entry();
 509   }
 510   // Interpreted code
 511   if (Interpreter::contains(return_address)) {
 512     return Interpreter::rethrow_exception_entry();
 513   }
 514 
 515   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 516   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 517 
 518 #ifndef PRODUCT
 519   { ResourceMark rm;
 520     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 521     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 522     tty->print_cr("b) other problem");
 523   }
 524 #endif // PRODUCT
 525 
 526   ShouldNotReachHere();
 527   return NULL;
 528 }
 529 
 530 
 531 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 532   return raw_exception_handler_for_return_address(thread, return_address);
 533 JRT_END
 534 
 535 
 536 address SharedRuntime::get_poll_stub(address pc) {
 537   address stub;
 538   // Look up the code blob
 539   CodeBlob *cb = CodeCache::find_blob(pc);
 540 
 541   // Should be an nmethod
 542   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 543 
 544   // Look up the relocation information
 545   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 546     "safepoint polling: type must be poll");
 547 
 548 #ifdef ASSERT
 549   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 550     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 551     Disassembler::decode(cb);
 552     fatal("Only polling locations are used for safepoint");
 553   }
 554 #endif
 555 
 556   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 557   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 558   if (at_poll_return) {
 559     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 560            "polling page return stub not created yet");
 561     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 562   } else if (has_wide_vectors) {
 563     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 564            "polling page vectors safepoint stub not created yet");
 565     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 566   } else {
 567     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 568            "polling page safepoint stub not created yet");
 569     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 570   }
 571   log_debug(safepoint)("... found polling page %s exception at pc = "
 572                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 573                        at_poll_return ? "return" : "loop",
 574                        (intptr_t)pc, (intptr_t)stub);
 575   return stub;
 576 }
 577 
 578 
 579 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 580   assert(caller.is_interpreted_frame(), "");
 581   int args_size = ArgumentSizeComputer(sig).size() + 1;
 582   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 583   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 584   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 585   return result;
 586 }
 587 
 588 
 589 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 590   if (JvmtiExport::can_post_on_exceptions()) {
 591     vframeStream vfst(thread, true);
 592     methodHandle method = methodHandle(thread, vfst.method());
 593     address bcp = method()->bcp_from(vfst.bci());
 594     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 595   }
 596   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 597 }
 598 
 599 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 600   Handle h_exception = Exceptions::new_exception(thread, name, message);
 601   throw_and_post_jvmti_exception(thread, h_exception);
 602 }
 603 
 604 // The interpreter code to call this tracing function is only
 605 // called/generated when TraceRedefineClasses has the right bits
 606 // set. Since obsolete methods are never compiled, we don't have
 607 // to modify the compilers to generate calls to this function.
 608 //
 609 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 610     JavaThread* thread, Method* method))
 611   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 612 
 613   if (method->is_obsolete()) {
 614     // We are calling an obsolete method, but this is not necessarily
 615     // an error. Our method could have been redefined just after we
 616     // fetched the Method* from the constant pool.
 617 
 618     // RC_TRACE macro has an embedded ResourceMark
 619     RC_TRACE_WITH_THREAD(0x00001000, thread,
 620                          ("calling obsolete method '%s'",
 621                           method->name_and_sig_as_C_string()));
 622     if (RC_TRACE_ENABLED(0x00002000)) {
 623       // this option is provided to debug calls to obsolete methods
 624       guarantee(false, "faulting at call to an obsolete method.");
 625     }
 626   }
 627   return 0;
 628 JRT_END
 629 
 630 // ret_pc points into caller; we are returning caller's exception handler
 631 // for given exception
 632 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 633                                                     bool force_unwind, bool top_frame_only) {
 634   assert(nm != NULL, "must exist");
 635   ResourceMark rm;
 636 
 637 #if INCLUDE_JVMCI
 638   if (nm->is_compiled_by_jvmci()) {
 639     // lookup exception handler for this pc
 640     int catch_pco = ret_pc - nm->code_begin();
 641     ExceptionHandlerTable table(nm);
 642     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 643     if (t != NULL) {
 644       return nm->code_begin() + t->pco();
 645     } else {
 646       // there is no exception handler for this pc => deoptimize
 647       nm->make_not_entrant();
 648 
 649       // Use Deoptimization::deoptimize for all of its side-effects:
 650       // revoking biases of monitors, gathering traps statistics, logging...
 651       // it also patches the return pc but we do not care about that
 652       // since we return a continuation to the deopt_blob below.
 653       JavaThread* thread = JavaThread::current();
 654       RegisterMap reg_map(thread, UseBiasedLocking);
 655       frame runtime_frame = thread->last_frame();
 656       frame caller_frame = runtime_frame.sender(&reg_map);
 657       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 658 
 659       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 660     }
 661   }
 662 #endif // INCLUDE_JVMCI
 663 
 664   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 665   // determine handler bci, if any
 666   EXCEPTION_MARK;
 667 
 668   int handler_bci = -1;
 669   int scope_depth = 0;
 670   if (!force_unwind) {
 671     int bci = sd->bci();
 672     bool recursive_exception = false;
 673     do {
 674       bool skip_scope_increment = false;
 675       // exception handler lookup
 676       KlassHandle ek (THREAD, exception->klass());
 677       methodHandle mh(THREAD, sd->method());
 678       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 679       if (HAS_PENDING_EXCEPTION) {
 680         recursive_exception = true;
 681         // We threw an exception while trying to find the exception handler.
 682         // Transfer the new exception to the exception handle which will
 683         // be set into thread local storage, and do another lookup for an
 684         // exception handler for this exception, this time starting at the
 685         // BCI of the exception handler which caused the exception to be
 686         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 687         // argument to ensure that the correct exception is thrown (4870175).
 688         exception = Handle(THREAD, PENDING_EXCEPTION);
 689         CLEAR_PENDING_EXCEPTION;
 690         if (handler_bci >= 0) {
 691           bci = handler_bci;
 692           handler_bci = -1;
 693           skip_scope_increment = true;
 694         }
 695       }
 696       else {
 697         recursive_exception = false;
 698       }
 699       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 700         sd = sd->sender();
 701         if (sd != NULL) {
 702           bci = sd->bci();
 703         }
 704         ++scope_depth;
 705       }
 706     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 707   }
 708 
 709   // found handling method => lookup exception handler
 710   int catch_pco = ret_pc - nm->code_begin();
 711 
 712   ExceptionHandlerTable table(nm);
 713   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 714   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 715     // Allow abbreviated catch tables.  The idea is to allow a method
 716     // to materialize its exceptions without committing to the exact
 717     // routing of exceptions.  In particular this is needed for adding
 718     // a synthetic handler to unlock monitors when inlining
 719     // synchronized methods since the unlock path isn't represented in
 720     // the bytecodes.
 721     t = table.entry_for(catch_pco, -1, 0);
 722   }
 723 
 724 #ifdef COMPILER1
 725   if (t == NULL && nm->is_compiled_by_c1()) {
 726     assert(nm->unwind_handler_begin() != NULL, "");
 727     return nm->unwind_handler_begin();
 728   }
 729 #endif
 730 
 731   if (t == NULL) {
 732     ttyLocker ttyl;
 733     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 734     tty->print_cr("   Exception:");
 735     exception->print();
 736     tty->cr();
 737     tty->print_cr(" Compiled exception table :");
 738     table.print();
 739     nm->print_code();
 740     guarantee(false, "missing exception handler");
 741     return NULL;
 742   }
 743 
 744   return nm->code_begin() + t->pco();
 745 }
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 748   // These errors occur only at call sites
 749   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 750 JRT_END
 751 
 752 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 753   // These errors occur only at call sites
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 762   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 763 JRT_END
 764 
 765 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 766   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 767   // cache sites (when the callee activation is not yet set up) so we are at a call site
 768   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 772   throw_StackOverflowError_common(thread, false);
 773 JRT_END
 774 
 775 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 776   throw_StackOverflowError_common(thread, true);
 777 JRT_END
 778 
 779 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 780   // We avoid using the normal exception construction in this case because
 781   // it performs an upcall to Java, and we're already out of stack space.
 782   Thread* THREAD = thread;
 783   Klass* k = SystemDictionary::StackOverflowError_klass();
 784   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 785   if (delayed) {
 786     java_lang_Throwable::set_message(exception_oop,
 787                                      Universe::delayed_stack_overflow_error_message());
 788   }
 789   Handle exception (thread, exception_oop);
 790   if (StackTraceInThrowable) {
 791     java_lang_Throwable::fill_in_stack_trace(exception);
 792   }
 793   // Increment counter for hs_err file reporting
 794   Atomic::inc(&Exceptions::_stack_overflow_errors);
 795   throw_and_post_jvmti_exception(thread, exception);
 796 }
 797 
 798 #if INCLUDE_JVMCI
 799 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 800   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 801   thread->set_jvmci_implicit_exception_pc(pc);
 802   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 803   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 804 }
 805 #endif // INCLUDE_JVMCI
 806 
 807 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 808                                                            address pc,
 809                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 810 {
 811   address target_pc = NULL;
 812 
 813   if (Interpreter::contains(pc)) {
 814 #ifdef CC_INTERP
 815     // C++ interpreter doesn't throw implicit exceptions
 816     ShouldNotReachHere();
 817 #else
 818     switch (exception_kind) {
 819       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 820       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 821       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 822       default:                      ShouldNotReachHere();
 823     }
 824 #endif // !CC_INTERP
 825   } else {
 826     switch (exception_kind) {
 827       case STACK_OVERFLOW: {
 828         // Stack overflow only occurs upon frame setup; the callee is
 829         // going to be unwound. Dispatch to a shared runtime stub
 830         // which will cause the StackOverflowError to be fabricated
 831         // and processed.
 832         // Stack overflow should never occur during deoptimization:
 833         // the compiled method bangs the stack by as much as the
 834         // interpreter would need in case of a deoptimization. The
 835         // deoptimization blob and uncommon trap blob bang the stack
 836         // in a debug VM to verify the correctness of the compiled
 837         // method stack banging.
 838         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 839         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 840         return StubRoutines::throw_StackOverflowError_entry();
 841       }
 842 
 843       case IMPLICIT_NULL: {
 844         if (VtableStubs::contains(pc)) {
 845           // We haven't yet entered the callee frame. Fabricate an
 846           // exception and begin dispatching it in the caller. Since
 847           // the caller was at a call site, it's safe to destroy all
 848           // caller-saved registers, as these entry points do.
 849           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 850 
 851           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 852           if (vt_stub == NULL) return NULL;
 853 
 854           if (vt_stub->is_abstract_method_error(pc)) {
 855             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 856             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 857             return StubRoutines::throw_AbstractMethodError_entry();
 858           } else {
 859             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 860             return StubRoutines::throw_NullPointerException_at_call_entry();
 861           }
 862         } else {
 863           CodeBlob* cb = CodeCache::find_blob(pc);
 864 
 865           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 866           if (cb == NULL) return NULL;
 867 
 868           // Exception happened in CodeCache. Must be either:
 869           // 1. Inline-cache check in C2I handler blob,
 870           // 2. Inline-cache check in nmethod, or
 871           // 3. Implicit null exception in nmethod
 872 
 873           if (!cb->is_nmethod()) {
 874             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 875             if (!is_in_blob) {
 876               // Allow normal crash reporting to handle this
 877               return NULL;
 878             }
 879             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 880             // There is no handler here, so we will simply unwind.
 881             return StubRoutines::throw_NullPointerException_at_call_entry();
 882           }
 883 
 884           // Otherwise, it's an nmethod.  Consult its exception handlers.
 885           nmethod* nm = (nmethod*)cb;
 886           if (nm->inlinecache_check_contains(pc)) {
 887             // exception happened inside inline-cache check code
 888             // => the nmethod is not yet active (i.e., the frame
 889             // is not set up yet) => use return address pushed by
 890             // caller => don't push another return address
 891             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 892             return StubRoutines::throw_NullPointerException_at_call_entry();
 893           }
 894 
 895           if (nm->method()->is_method_handle_intrinsic()) {
 896             // exception happened inside MH dispatch code, similar to a vtable stub
 897             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 898             return StubRoutines::throw_NullPointerException_at_call_entry();
 899           }
 900 
 901 #ifndef PRODUCT
 902           _implicit_null_throws++;
 903 #endif
 904 #if INCLUDE_JVMCI
 905           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 906             // If there's no PcDesc then we'll die way down inside of
 907             // deopt instead of just getting normal error reporting,
 908             // so only go there if it will succeed.
 909             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 910           } else {
 911 #endif // INCLUDE_JVMCI
 912           assert (nm->is_nmethod(), "Expect nmethod");
 913           target_pc = nm->continuation_for_implicit_exception(pc);
 914 #if INCLUDE_JVMCI
 915           }
 916 #endif // INCLUDE_JVMCI
 917           // If there's an unexpected fault, target_pc might be NULL,
 918           // in which case we want to fall through into the normal
 919           // error handling code.
 920         }
 921 
 922         break; // fall through
 923       }
 924 
 925 
 926       case IMPLICIT_DIVIDE_BY_ZERO: {
 927         nmethod* nm = CodeCache::find_nmethod(pc);
 928         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 929 #ifndef PRODUCT
 930         _implicit_div0_throws++;
 931 #endif
 932 #if INCLUDE_JVMCI
 933         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 934           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 935         } else {
 936 #endif // INCLUDE_JVMCI
 937         target_pc = nm->continuation_for_implicit_exception(pc);
 938 #if INCLUDE_JVMCI
 939         }
 940 #endif // INCLUDE_JVMCI
 941         // If there's an unexpected fault, target_pc might be NULL,
 942         // in which case we want to fall through into the normal
 943         // error handling code.
 944         break; // fall through
 945       }
 946 
 947       default: ShouldNotReachHere();
 948     }
 949 
 950     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 951 
 952     if (exception_kind == IMPLICIT_NULL) {
 953 #ifndef PRODUCT
 954       // for AbortVMOnException flag
 955       Exceptions::debug_check_abort("java.lang.NullPointerException");
 956 #endif //PRODUCT
 957       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 958     } else {
 959 #ifndef PRODUCT
 960       // for AbortVMOnException flag
 961       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 962 #endif //PRODUCT
 963       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 964     }
 965     return target_pc;
 966   }
 967 
 968   ShouldNotReachHere();
 969   return NULL;
 970 }
 971 
 972 
 973 /**
 974  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 975  * installed in the native function entry of all native Java methods before
 976  * they get linked to their actual native methods.
 977  *
 978  * \note
 979  * This method actually never gets called!  The reason is because
 980  * the interpreter's native entries call NativeLookup::lookup() which
 981  * throws the exception when the lookup fails.  The exception is then
 982  * caught and forwarded on the return from NativeLookup::lookup() call
 983  * before the call to the native function.  This might change in the future.
 984  */
 985 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 986 {
 987   // We return a bad value here to make sure that the exception is
 988   // forwarded before we look at the return value.
 989   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 990 }
 991 JNI_END
 992 
 993 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 994   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 995 }
 996 
 997 
 998 #ifndef PRODUCT
 999 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1000   const frame f = thread->last_frame();
1001   assert(f.is_interpreted_frame(), "must be an interpreted frame");
1002 #ifndef PRODUCT
1003   methodHandle mh(THREAD, f.interpreter_frame_method());
1004   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1005 #endif // !PRODUCT
1006   return preserve_this_value;
1007 JRT_END
1008 #endif // !PRODUCT
1009 
1010 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1011   assert(obj->is_oop(), "must be a valid oop");
1012 #if INCLUDE_JVMCI
1013   // This removes the requirement for JVMCI compilers to emit code
1014   // performing a dynamic check that obj has a finalizer before
1015   // calling this routine. There should be no performance impact
1016   // for C1 since it emits a dynamic check. C2 and the interpreter
1017   // uses other runtime routines for registering finalizers.
1018   if (!obj->klass()->has_finalizer()) {
1019     return;
1020   }
1021 #endif // INCLUDE_JVMCI
1022   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1023   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1024 JRT_END
1025 
1026 
1027 jlong SharedRuntime::get_java_tid(Thread* thread) {
1028   if (thread != NULL) {
1029     if (thread->is_Java_thread()) {
1030       oop obj = ((JavaThread*)thread)->threadObj();
1031       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1032     }
1033   }
1034   return 0;
1035 }
1036 
1037 /**
1038  * This function ought to be a void function, but cannot be because
1039  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1040  * 6254741.  Once that is fixed we can remove the dummy return value.
1041  */
1042 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1043   return dtrace_object_alloc_base(Thread::current(), o, size);
1044 }
1045 
1046 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1047   assert(DTraceAllocProbes, "wrong call");
1048   Klass* klass = o->klass();
1049   Symbol* name = klass->name();
1050   HOTSPOT_OBJECT_ALLOC(
1051                    get_java_tid(thread),
1052                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1053   return 0;
1054 }
1055 
1056 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1057     JavaThread* thread, Method* method))
1058   assert(DTraceMethodProbes, "wrong call");
1059   Symbol* kname = method->klass_name();
1060   Symbol* name = method->name();
1061   Symbol* sig = method->signature();
1062   HOTSPOT_METHOD_ENTRY(
1063       get_java_tid(thread),
1064       (char *) kname->bytes(), kname->utf8_length(),
1065       (char *) name->bytes(), name->utf8_length(),
1066       (char *) sig->bytes(), sig->utf8_length());
1067   return 0;
1068 JRT_END
1069 
1070 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1071     JavaThread* thread, Method* method))
1072   assert(DTraceMethodProbes, "wrong call");
1073   Symbol* kname = method->klass_name();
1074   Symbol* name = method->name();
1075   Symbol* sig = method->signature();
1076   HOTSPOT_METHOD_RETURN(
1077       get_java_tid(thread),
1078       (char *) kname->bytes(), kname->utf8_length(),
1079       (char *) name->bytes(), name->utf8_length(),
1080       (char *) sig->bytes(), sig->utf8_length());
1081   return 0;
1082 JRT_END
1083 
1084 
1085 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1086 // for a call current in progress, i.e., arguments has been pushed on stack
1087 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1088 // vtable updates, etc.  Caller frame must be compiled.
1089 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1090   ResourceMark rm(THREAD);
1091 
1092   // last java frame on stack (which includes native call frames)
1093   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1094 
1095   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1096 }
1097 
1098 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1099   nmethod* caller_nm = vfst.nm();
1100 
1101   nmethodLocker caller_lock(caller_nm);
1102 
1103   address pc = vfst.frame_pc();
1104   { // Get call instruction under lock because another thread may be busy patching it.
1105     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1106     return caller_nm->attached_method_before_pc(pc);
1107   }
1108   return NULL;
1109 }
1110 
1111 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1112 // for a call current in progress, i.e., arguments has been pushed on stack
1113 // but callee has not been invoked yet.  Caller frame must be compiled.
1114 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1115                                               vframeStream& vfst,
1116                                               Bytecodes::Code& bc,
1117                                               CallInfo& callinfo, TRAPS) {
1118   Handle receiver;
1119   Handle nullHandle;  //create a handy null handle for exception returns
1120 
1121   assert(!vfst.at_end(), "Java frame must exist");
1122 
1123   // Find caller and bci from vframe
1124   methodHandle caller(THREAD, vfst.method());
1125   int          bci   = vfst.bci();
1126 
1127   Bytecode_invoke bytecode(caller, bci);
1128   int bytecode_index = bytecode.index();
1129 
1130   methodHandle attached_method = extract_attached_method(vfst);
1131   if (attached_method.not_null()) {
1132     methodHandle callee = bytecode.static_target(CHECK_NH);
1133     vmIntrinsics::ID id = callee->intrinsic_id();
1134     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1135     // it attaches statically resolved method to the call site.
1136     if (MethodHandles::is_signature_polymorphic(id) &&
1137         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1138       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1139 
1140       // Adjust invocation mode according to the attached method.
1141       switch (bc) {
1142         case Bytecodes::_invokeinterface:
1143           if (!attached_method->method_holder()->is_interface()) {
1144             bc = Bytecodes::_invokevirtual;
1145           }
1146           break;
1147         case Bytecodes::_invokehandle:
1148           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1149             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1150                                               : Bytecodes::_invokevirtual;
1151           }
1152           break;
1153       }
1154     }
1155   } else {
1156     bc = bytecode.invoke_code();
1157   }
1158 
1159   bool has_receiver = bc != Bytecodes::_invokestatic &&
1160                       bc != Bytecodes::_invokedynamic &&
1161                       bc != Bytecodes::_invokehandle &&
1162                       bc != Bytecodes::_invokedirect;
1163 
1164   // Find receiver for non-static call
1165   if (has_receiver) {
1166     // This register map must be update since we need to find the receiver for
1167     // compiled frames. The receiver might be in a register.
1168     RegisterMap reg_map2(thread);
1169     frame stubFrame   = thread->last_frame();
1170     // Caller-frame is a compiled frame
1171     frame callerFrame = stubFrame.sender(&reg_map2);
1172 
1173     if (attached_method.is_null()) {
1174       methodHandle callee = bytecode.static_target(CHECK_NH);
1175       if (callee.is_null()) {
1176         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1177       }
1178     }
1179 
1180     // Retrieve from a compiled argument list
1181     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1182 
1183     if (receiver.is_null()) {
1184       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1185     }
1186   }
1187 
1188   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1189 
1190   // Resolve method
1191   if (attached_method.not_null()) {
1192     // Parameterized by attached method.
1193     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1194   } else {
1195     // Parameterized by bytecode.
1196     constantPoolHandle constants(THREAD, caller->constants());
1197     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1198   }
1199 
1200 #ifdef ASSERT
1201   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1202   if (has_receiver) {
1203     assert(receiver.not_null(), "should have thrown exception");
1204     KlassHandle receiver_klass(THREAD, receiver->klass());
1205     Klass* rk = NULL;
1206     if (attached_method.not_null()) {
1207       // In case there's resolved method attached, use its holder during the check.
1208       rk = attached_method->method_holder();
1209     } else {
1210       // Klass is already loaded.
1211       constantPoolHandle constants(THREAD, caller->constants());
1212       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1213     }
1214     KlassHandle static_receiver_klass(THREAD, rk);
1215     methodHandle callee = callinfo.selected_method();
1216     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1217            "actual receiver must be subclass of static receiver klass");
1218     if (receiver_klass->is_instance_klass()) {
1219       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1220         tty->print_cr("ERROR: Klass not yet initialized!!");
1221         receiver_klass()->print();
1222       }
1223       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1224     }
1225   }
1226 #endif
1227 
1228   return receiver;
1229 }
1230 
1231 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1232   ResourceMark rm(THREAD);
1233   // We need first to check if any Java activations (compiled, interpreted)
1234   // exist on the stack since last JavaCall.  If not, we need
1235   // to get the target method from the JavaCall wrapper.
1236   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1237   methodHandle callee_method;
1238   if (vfst.at_end()) {
1239     // No Java frames were found on stack since we did the JavaCall.
1240     // Hence the stack can only contain an entry_frame.  We need to
1241     // find the target method from the stub frame.
1242     RegisterMap reg_map(thread, false);
1243     frame fr = thread->last_frame();
1244     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1245     fr = fr.sender(&reg_map);
1246     assert(fr.is_entry_frame(), "must be");
1247     // fr is now pointing to the entry frame.
1248     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1249     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1250   } else {
1251     Bytecodes::Code bc;
1252     CallInfo callinfo;
1253     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1254     callee_method = callinfo.selected_method();
1255   }
1256   assert(callee_method()->is_method(), "must be");
1257   return callee_method;
1258 }
1259 
1260 // Resolves a call.
1261 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1262                                            bool is_virtual,
1263                                            bool is_optimized, TRAPS) {
1264   methodHandle callee_method;
1265   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1266   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1267     int retry_count = 0;
1268     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1269            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1270       // If has a pending exception then there is no need to re-try to
1271       // resolve this method.
1272       // If the method has been redefined, we need to try again.
1273       // Hack: we have no way to update the vtables of arrays, so don't
1274       // require that java.lang.Object has been updated.
1275 
1276       // It is very unlikely that method is redefined more than 100 times
1277       // in the middle of resolve. If it is looping here more than 100 times
1278       // means then there could be a bug here.
1279       guarantee((retry_count++ < 100),
1280                 "Could not resolve to latest version of redefined method");
1281       // method is redefined in the middle of resolve so re-try.
1282       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1283     }
1284   }
1285   return callee_method;
1286 }
1287 
1288 // Resolves a call.  The compilers generate code for calls that go here
1289 // and are patched with the real destination of the call.
1290 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1291                                            bool is_virtual,
1292                                            bool is_optimized, TRAPS) {
1293 
1294   ResourceMark rm(thread);
1295   RegisterMap cbl_map(thread, false);
1296   frame caller_frame = thread->last_frame().sender(&cbl_map);
1297 
1298   CodeBlob* caller_cb = caller_frame.cb();
1299   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1300   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1301 
1302   // make sure caller is not getting deoptimized
1303   // and removed before we are done with it.
1304   // CLEANUP - with lazy deopt shouldn't need this lock
1305   nmethodLocker caller_lock(caller_nm);
1306 
1307   // determine call info & receiver
1308   // note: a) receiver is NULL for static calls
1309   //       b) an exception is thrown if receiver is NULL for non-static calls
1310   CallInfo call_info;
1311   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1312   Handle receiver = find_callee_info(thread, invoke_code,
1313                                      call_info, CHECK_(methodHandle()));
1314   methodHandle callee_method = call_info.selected_method();
1315 
1316   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1317          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1318          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1319          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1320          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1321 
1322   assert(caller_nm->is_alive(), "It should be alive");
1323 
1324 #ifndef PRODUCT
1325   // tracing/debugging/statistics
1326   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1327                 (is_virtual) ? (&_resolve_virtual_ctr) :
1328                                (&_resolve_static_ctr);
1329   Atomic::inc(addr);
1330 
1331   if (TraceCallFixup) {
1332     ResourceMark rm(thread);
1333     tty->print("resolving %s%s (%s) call to",
1334       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1335       Bytecodes::name(invoke_code));
1336     callee_method->print_short_name(tty);
1337     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1338                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1339   }
1340 #endif
1341 
1342   // JSR 292 key invariant:
1343   // If the resolved method is a MethodHandle invoke target, the call
1344   // site must be a MethodHandle call site, because the lambda form might tail-call
1345   // leaving the stack in a state unknown to either caller or callee
1346   // TODO detune for now but we might need it again
1347 //  assert(!callee_method->is_compiled_lambda_form() ||
1348 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1349 
1350   // Compute entry points. This might require generation of C2I converter
1351   // frames, so we cannot be holding any locks here. Furthermore, the
1352   // computation of the entry points is independent of patching the call.  We
1353   // always return the entry-point, but we only patch the stub if the call has
1354   // not been deoptimized.  Return values: For a virtual call this is an
1355   // (cached_oop, destination address) pair. For a static call/optimized
1356   // virtual this is just a destination address.
1357 
1358   StaticCallInfo static_call_info;
1359   CompiledICInfo virtual_call_info;
1360 
1361   // Make sure the callee nmethod does not get deoptimized and removed before
1362   // we are done patching the code.
1363   nmethod* callee_nm = callee_method->code();
1364   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1365     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1366     callee_nm = NULL;
1367   }
1368   nmethodLocker nl_callee(callee_nm);
1369 #ifdef ASSERT
1370   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1371 #endif
1372 
1373   if (is_virtual) {
1374     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle || invoke_code == Bytecodes::_invokedirect, "sanity check");
1375     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1376     KlassHandle h_klass(THREAD, (invoke_code == Bytecodes::_invokehandle || invoke_code == Bytecodes::_invokedirect) ? NULL : receiver->klass());
1377     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1378                      is_optimized, static_bound, virtual_call_info,
1379                      CHECK_(methodHandle()));
1380   } else {
1381     // static call
1382     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1383   }
1384 
1385   // grab lock, check for deoptimization and potentially patch caller
1386   {
1387     MutexLocker ml_patch(CompiledIC_lock);
1388 
1389     // Lock blocks for safepoint during which both nmethods can change state.
1390 
1391     // Now that we are ready to patch if the Method* was redefined then
1392     // don't update call site and let the caller retry.
1393     // Don't update call site if callee nmethod was unloaded or deoptimized.
1394     // Don't update call site if callee nmethod was replaced by an other nmethod
1395     // which may happen when multiply alive nmethod (tiered compilation)
1396     // will be supported.
1397     if (!callee_method->is_old() &&
1398         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1399 #ifdef ASSERT
1400       // We must not try to patch to jump to an already unloaded method.
1401       if (dest_entry_point != 0) {
1402         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1403         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1404                "should not call unloaded nmethod");
1405       }
1406 #endif
1407       if (is_virtual) {
1408         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1409         if (inline_cache->is_clean()) {
1410           inline_cache->set_to_monomorphic(virtual_call_info);
1411         }
1412       } else {
1413         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1414         if (ssc->is_clean()) ssc->set(static_call_info);
1415       }
1416     }
1417 
1418   } // unlock CompiledIC_lock
1419 
1420   return callee_method;
1421 }
1422 
1423 
1424 // Inline caches exist only in compiled code
1425 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1426 #ifdef ASSERT
1427   RegisterMap reg_map(thread, false);
1428   frame stub_frame = thread->last_frame();
1429   assert(stub_frame.is_runtime_frame(), "sanity check");
1430   frame caller_frame = stub_frame.sender(&reg_map);
1431   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1432 #endif /* ASSERT */
1433 
1434   methodHandle callee_method;
1435   JRT_BLOCK
1436     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1437     // Return Method* through TLS
1438     thread->set_vm_result_2(callee_method());
1439   JRT_BLOCK_END
1440   // return compiled code entry point after potential safepoints
1441   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1442   return callee_method->verified_code_entry();
1443 JRT_END
1444 
1445 
1446 // Handle call site that has been made non-entrant
1447 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1448   // 6243940 We might end up in here if the callee is deoptimized
1449   // as we race to call it.  We don't want to take a safepoint if
1450   // the caller was interpreted because the caller frame will look
1451   // interpreted to the stack walkers and arguments are now
1452   // "compiled" so it is much better to make this transition
1453   // invisible to the stack walking code. The i2c path will
1454   // place the callee method in the callee_target. It is stashed
1455   // there because if we try and find the callee by normal means a
1456   // safepoint is possible and have trouble gc'ing the compiled args.
1457   RegisterMap reg_map(thread, false);
1458   frame stub_frame = thread->last_frame();
1459   assert(stub_frame.is_runtime_frame(), "sanity check");
1460   frame caller_frame = stub_frame.sender(&reg_map);
1461 
1462   if (caller_frame.is_interpreted_frame() ||
1463       caller_frame.is_entry_frame()) {
1464     Method* callee = thread->callee_target();
1465     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1466     thread->set_vm_result_2(callee);
1467     thread->set_callee_target(NULL);
1468     return callee->get_c2i_entry();
1469   }
1470 
1471   // Must be compiled to compiled path which is safe to stackwalk
1472   methodHandle callee_method;
1473   JRT_BLOCK
1474     // Force resolving of caller (if we called from compiled frame)
1475     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1476     thread->set_vm_result_2(callee_method());
1477   JRT_BLOCK_END
1478   // return compiled code entry point after potential safepoints
1479   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1480   return callee_method->verified_code_entry();
1481 JRT_END
1482 
1483 // Handle abstract method call
1484 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1485   return StubRoutines::throw_AbstractMethodError_entry();
1486 JRT_END
1487 
1488 
1489 // resolve a static call and patch code
1490 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1491   methodHandle callee_method;
1492   JRT_BLOCK
1493     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1494     thread->set_vm_result_2(callee_method());
1495   JRT_BLOCK_END
1496   // return compiled code entry point after potential safepoints
1497   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1498   return callee_method->verified_code_entry();
1499 JRT_END
1500 
1501 
1502 // resolve virtual call and update inline cache to monomorphic
1503 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1504   methodHandle callee_method;
1505   JRT_BLOCK
1506     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1507     thread->set_vm_result_2(callee_method());
1508   JRT_BLOCK_END
1509   // return compiled code entry point after potential safepoints
1510   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1511   return callee_method->verified_code_entry();
1512 JRT_END
1513 
1514 
1515 // Resolve a virtual call that can be statically bound (e.g., always
1516 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1517 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1518   methodHandle callee_method;
1519   JRT_BLOCK
1520     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1521     thread->set_vm_result_2(callee_method());
1522   JRT_BLOCK_END
1523   // return compiled code entry point after potential safepoints
1524   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1525   return callee_method->verified_code_entry();
1526 JRT_END
1527 
1528 
1529 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1530   ResourceMark rm(thread);
1531   CallInfo call_info;
1532   Bytecodes::Code bc;
1533 
1534   // receiver is NULL for static calls. An exception is thrown for NULL
1535   // receivers for non-static calls
1536   Handle receiver = find_callee_info(thread, bc, call_info,
1537                                      CHECK_(methodHandle()));
1538   // Compiler1 can produce virtual call sites that can actually be statically bound
1539   // If we fell thru to below we would think that the site was going megamorphic
1540   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1541   // we'd try and do a vtable dispatch however methods that can be statically bound
1542   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1543   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1544   // plain ic_miss) and the site will be converted to an optimized virtual call site
1545   // never to miss again. I don't believe C2 will produce code like this but if it
1546   // did this would still be the correct thing to do for it too, hence no ifdef.
1547   //
1548   if (call_info.resolved_method()->can_be_statically_bound()) {
1549     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1550     if (TraceCallFixup) {
1551       RegisterMap reg_map(thread, false);
1552       frame caller_frame = thread->last_frame().sender(&reg_map);
1553       ResourceMark rm(thread);
1554       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1555       callee_method->print_short_name(tty);
1556       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1557       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1558     }
1559     return callee_method;
1560   }
1561 
1562   methodHandle callee_method = call_info.selected_method();
1563 
1564   bool should_be_mono = false;
1565 
1566 #ifndef PRODUCT
1567   Atomic::inc(&_ic_miss_ctr);
1568 
1569   // Statistics & Tracing
1570   if (TraceCallFixup) {
1571     ResourceMark rm(thread);
1572     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1573     callee_method->print_short_name(tty);
1574     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1575   }
1576 
1577   if (ICMissHistogram) {
1578     MutexLocker m(VMStatistic_lock);
1579     RegisterMap reg_map(thread, false);
1580     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1581     // produce statistics under the lock
1582     trace_ic_miss(f.pc());
1583   }
1584 #endif
1585 
1586   // install an event collector so that when a vtable stub is created the
1587   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1588   // event can't be posted when the stub is created as locks are held
1589   // - instead the event will be deferred until the event collector goes
1590   // out of scope.
1591   JvmtiDynamicCodeEventCollector event_collector;
1592 
1593   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1594   { MutexLocker ml_patch (CompiledIC_lock);
1595     RegisterMap reg_map(thread, false);
1596     frame caller_frame = thread->last_frame().sender(&reg_map);
1597     CodeBlob* cb = caller_frame.cb();
1598     if (cb->is_nmethod()) {
1599       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1600       bool should_be_mono = false;
1601       if (inline_cache->is_optimized()) {
1602         if (TraceCallFixup) {
1603           ResourceMark rm(thread);
1604           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1605           callee_method->print_short_name(tty);
1606           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1607         }
1608         should_be_mono = true;
1609       } else if (inline_cache->is_icholder_call()) {
1610         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1611         if (ic_oop != NULL) {
1612 
1613           if (receiver()->klass() == ic_oop->holder_klass()) {
1614             // This isn't a real miss. We must have seen that compiled code
1615             // is now available and we want the call site converted to a
1616             // monomorphic compiled call site.
1617             // We can't assert for callee_method->code() != NULL because it
1618             // could have been deoptimized in the meantime
1619             if (TraceCallFixup) {
1620               ResourceMark rm(thread);
1621               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1622               callee_method->print_short_name(tty);
1623               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1624             }
1625             should_be_mono = true;
1626           }
1627         }
1628       }
1629 
1630       if (should_be_mono) {
1631 
1632         // We have a path that was monomorphic but was going interpreted
1633         // and now we have (or had) a compiled entry. We correct the IC
1634         // by using a new icBuffer.
1635         CompiledICInfo info;
1636         KlassHandle receiver_klass(THREAD, receiver()->klass());
1637         inline_cache->compute_monomorphic_entry(callee_method,
1638                                                 receiver_klass,
1639                                                 inline_cache->is_optimized(),
1640                                                 false,
1641                                                 info, CHECK_(methodHandle()));
1642         inline_cache->set_to_monomorphic(info);
1643       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1644         // Potential change to megamorphic
1645         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1646         if (!successful) {
1647           inline_cache->set_to_clean();
1648         }
1649       } else {
1650         // Either clean or megamorphic
1651       }
1652     } else {
1653       fatal("Unimplemented");
1654     }
1655   } // Release CompiledIC_lock
1656 
1657   return callee_method;
1658 }
1659 
1660 //
1661 // Resets a call-site in compiled code so it will get resolved again.
1662 // This routines handles both virtual call sites, optimized virtual call
1663 // sites, and static call sites. Typically used to change a call sites
1664 // destination from compiled to interpreted.
1665 //
1666 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1667   ResourceMark rm(thread);
1668   RegisterMap reg_map(thread, false);
1669   frame stub_frame = thread->last_frame();
1670   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1671   frame caller = stub_frame.sender(&reg_map);
1672 
1673   // Do nothing if the frame isn't a live compiled frame.
1674   // nmethod could be deoptimized by the time we get here
1675   // so no update to the caller is needed.
1676 
1677   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1678 
1679     address pc = caller.pc();
1680 
1681     // Check for static or virtual call
1682     bool is_static_call = false;
1683     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1684 
1685     // Default call_addr is the location of the "basic" call.
1686     // Determine the address of the call we a reresolving. With
1687     // Inline Caches we will always find a recognizable call.
1688     // With Inline Caches disabled we may or may not find a
1689     // recognizable call. We will always find a call for static
1690     // calls and for optimized virtual calls. For vanilla virtual
1691     // calls it depends on the state of the UseInlineCaches switch.
1692     //
1693     // With Inline Caches disabled we can get here for a virtual call
1694     // for two reasons:
1695     //   1 - calling an abstract method. The vtable for abstract methods
1696     //       will run us thru handle_wrong_method and we will eventually
1697     //       end up in the interpreter to throw the ame.
1698     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1699     //       call and between the time we fetch the entry address and
1700     //       we jump to it the target gets deoptimized. Similar to 1
1701     //       we will wind up in the interprter (thru a c2i with c2).
1702     //
1703     address call_addr = NULL;
1704     {
1705       // Get call instruction under lock because another thread may be
1706       // busy patching it.
1707       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1708       // Location of call instruction
1709       if (NativeCall::is_call_before(pc)) {
1710         NativeCall *ncall = nativeCall_before(pc);
1711         call_addr = ncall->instruction_address();
1712       }
1713     }
1714     // Make sure nmethod doesn't get deoptimized and removed until
1715     // this is done with it.
1716     // CLEANUP - with lazy deopt shouldn't need this lock
1717     nmethodLocker nmlock(caller_nm);
1718 
1719     if (call_addr != NULL) {
1720       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1721       int ret = iter.next(); // Get item
1722       if (ret) {
1723         assert(iter.addr() == call_addr, "must find call");
1724         if (iter.type() == relocInfo::static_call_type) {
1725           is_static_call = true;
1726         } else {
1727           assert(iter.type() == relocInfo::virtual_call_type ||
1728                  iter.type() == relocInfo::opt_virtual_call_type
1729                 , "unexpected relocInfo. type");
1730         }
1731       } else {
1732         assert(!UseInlineCaches, "relocation info. must exist for this address");
1733       }
1734 
1735       // Cleaning the inline cache will force a new resolve. This is more robust
1736       // than directly setting it to the new destination, since resolving of calls
1737       // is always done through the same code path. (experience shows that it
1738       // leads to very hard to track down bugs, if an inline cache gets updated
1739       // to a wrong method). It should not be performance critical, since the
1740       // resolve is only done once.
1741 
1742       MutexLocker ml(CompiledIC_lock);
1743       if (is_static_call) {
1744         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1745         ssc->set_to_clean();
1746       } else {
1747         // compiled, dispatched call (which used to call an interpreted method)
1748         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1749         inline_cache->set_to_clean();
1750       }
1751     }
1752   }
1753 
1754   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1755 
1756 
1757 #ifndef PRODUCT
1758   Atomic::inc(&_wrong_method_ctr);
1759 
1760   if (TraceCallFixup) {
1761     ResourceMark rm(thread);
1762     tty->print("handle_wrong_method reresolving call to");
1763     callee_method->print_short_name(tty);
1764     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1765   }
1766 #endif
1767 
1768   return callee_method;
1769 }
1770 
1771 #ifdef ASSERT
1772 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1773                                                                 const BasicType* sig_bt,
1774                                                                 const VMRegPair* regs) {
1775   ResourceMark rm;
1776   const int total_args_passed = method->size_of_parameters();
1777   const VMRegPair*    regs_with_member_name = regs;
1778         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1779 
1780   const int member_arg_pos = total_args_passed - 1;
1781   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1782   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1783 
1784   const bool is_outgoing = method->is_method_handle_intrinsic();
1785   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1786 
1787   for (int i = 0; i < member_arg_pos; i++) {
1788     VMReg a =    regs_with_member_name[i].first();
1789     VMReg b = regs_without_member_name[i].first();
1790     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1791   }
1792   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1793 }
1794 #endif
1795 
1796 // ---------------------------------------------------------------------------
1797 // We are calling the interpreter via a c2i. Normally this would mean that
1798 // we were called by a compiled method. However we could have lost a race
1799 // where we went int -> i2c -> c2i and so the caller could in fact be
1800 // interpreted. If the caller is compiled we attempt to patch the caller
1801 // so he no longer calls into the interpreter.
1802 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1803   Method* moop(method);
1804 
1805   address entry_point = moop->from_compiled_entry();
1806 
1807   // It's possible that deoptimization can occur at a call site which hasn't
1808   // been resolved yet, in which case this function will be called from
1809   // an nmethod that has been patched for deopt and we can ignore the
1810   // request for a fixup.
1811   // Also it is possible that we lost a race in that from_compiled_entry
1812   // is now back to the i2c in that case we don't need to patch and if
1813   // we did we'd leap into space because the callsite needs to use
1814   // "to interpreter" stub in order to load up the Method*. Don't
1815   // ask me how I know this...
1816 
1817   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1818   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1819     return;
1820   }
1821 
1822   // The check above makes sure this is a nmethod.
1823   nmethod* nm = cb->as_nmethod_or_null();
1824   assert(nm, "must be");
1825 
1826   // Get the return PC for the passed caller PC.
1827   address return_pc = caller_pc + frame::pc_return_offset;
1828 
1829   // There is a benign race here. We could be attempting to patch to a compiled
1830   // entry point at the same time the callee is being deoptimized. If that is
1831   // the case then entry_point may in fact point to a c2i and we'd patch the
1832   // call site with the same old data. clear_code will set code() to NULL
1833   // at the end of it. If we happen to see that NULL then we can skip trying
1834   // to patch. If we hit the window where the callee has a c2i in the
1835   // from_compiled_entry and the NULL isn't present yet then we lose the race
1836   // and patch the code with the same old data. Asi es la vida.
1837 
1838   if (moop->code() == NULL) return;
1839 
1840   if (nm->is_in_use()) {
1841 
1842     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1843     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1844     if (NativeCall::is_call_before(return_pc)) {
1845       NativeCall *call = nativeCall_before(return_pc);
1846       //
1847       // bug 6281185. We might get here after resolving a call site to a vanilla
1848       // virtual call. Because the resolvee uses the verified entry it may then
1849       // see compiled code and attempt to patch the site by calling us. This would
1850       // then incorrectly convert the call site to optimized and its downhill from
1851       // there. If you're lucky you'll get the assert in the bugid, if not you've
1852       // just made a call site that could be megamorphic into a monomorphic site
1853       // for the rest of its life! Just another racing bug in the life of
1854       // fixup_callers_callsite ...
1855       //
1856       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1857       iter.next();
1858       assert(iter.has_current(), "must have a reloc at java call site");
1859       relocInfo::relocType typ = iter.reloc()->type();
1860       if (typ != relocInfo::static_call_type &&
1861            typ != relocInfo::opt_virtual_call_type &&
1862            typ != relocInfo::static_stub_type) {
1863         return;
1864       }
1865       address destination = call->destination();
1866       if (destination != entry_point) {
1867         CodeBlob* callee = CodeCache::find_blob(destination);
1868         // callee == cb seems weird. It means calling interpreter thru stub.
1869         if (callee == cb || callee->is_adapter_blob()) {
1870           // static call or optimized virtual
1871           if (TraceCallFixup) {
1872             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1873             moop->print_short_name(tty);
1874             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1875           }
1876           call->set_destination_mt_safe(entry_point);
1877         } else {
1878           if (TraceCallFixup) {
1879             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1880             moop->print_short_name(tty);
1881             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1882           }
1883           // assert is too strong could also be resolve destinations.
1884           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1885         }
1886       } else {
1887           if (TraceCallFixup) {
1888             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1889             moop->print_short_name(tty);
1890             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1891           }
1892       }
1893     }
1894   }
1895 IRT_END
1896 
1897 
1898 // same as JVM_Arraycopy, but called directly from compiled code
1899 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1900                                                 oopDesc* dest, jint dest_pos,
1901                                                 jint length,
1902                                                 JavaThread* thread)) {
1903 #ifndef PRODUCT
1904   _slow_array_copy_ctr++;
1905 #endif
1906   // Check if we have null pointers
1907   if (src == NULL || dest == NULL) {
1908     THROW(vmSymbols::java_lang_NullPointerException());
1909   }
1910   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1911   // even though the copy_array API also performs dynamic checks to ensure
1912   // that src and dest are truly arrays (and are conformable).
1913   // The copy_array mechanism is awkward and could be removed, but
1914   // the compilers don't call this function except as a last resort,
1915   // so it probably doesn't matter.
1916   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1917                                         (arrayOopDesc*)dest, dest_pos,
1918                                         length, thread);
1919 }
1920 JRT_END
1921 
1922 char* SharedRuntime::generate_class_cast_message(
1923     JavaThread* thread, const char* objName) {
1924 
1925   // Get target class name from the checkcast instruction
1926   vframeStream vfst(thread, true);
1927   assert(!vfst.at_end(), "Java frame must exist");
1928   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1929   Klass* targetKlass = vfst.method()->constants()->klass_at(
1930     cc.index(), thread);
1931   return generate_class_cast_message(objName, targetKlass->external_name());
1932 }
1933 
1934 char* SharedRuntime::generate_class_cast_message(
1935     const char* objName, const char* targetKlassName, const char* desc) {
1936   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1937 
1938   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1939   if (NULL == message) {
1940     // Shouldn't happen, but don't cause even more problems if it does
1941     message = const_cast<char*>(objName);
1942   } else {
1943     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1944   }
1945   return message;
1946 }
1947 
1948 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1949   (void) JavaThread::current()->reguard_stack();
1950 JRT_END
1951 
1952 
1953 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1954 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1955   // Disable ObjectSynchronizer::quick_enter() in default config
1956   // until JDK-8077392 is resolved.
1957   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1958     // Only try quick_enter() if we're not trying to reach a safepoint
1959     // so that the calling thread reaches the safepoint more quickly.
1960     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1961   }
1962   // NO_ASYNC required because an async exception on the state transition destructor
1963   // would leave you with the lock held and it would never be released.
1964   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1965   // and the model is that an exception implies the method failed.
1966   JRT_BLOCK_NO_ASYNC
1967   oop obj(_obj);
1968   if (PrintBiasedLockingStatistics) {
1969     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1970   }
1971   Handle h_obj(THREAD, obj);
1972   if (UseBiasedLocking) {
1973     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1974     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1975   } else {
1976     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1977   }
1978   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1979   JRT_BLOCK_END
1980 JRT_END
1981 
1982 // Handles the uncommon cases of monitor unlocking in compiled code
1983 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1984    oop obj(_obj);
1985   assert(JavaThread::current() == THREAD, "invariant");
1986   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1987   // testing was unable to ever fire the assert that guarded it so I have removed it.
1988   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1989 #undef MIGHT_HAVE_PENDING
1990 #ifdef MIGHT_HAVE_PENDING
1991   // Save and restore any pending_exception around the exception mark.
1992   // While the slow_exit must not throw an exception, we could come into
1993   // this routine with one set.
1994   oop pending_excep = NULL;
1995   const char* pending_file;
1996   int pending_line;
1997   if (HAS_PENDING_EXCEPTION) {
1998     pending_excep = PENDING_EXCEPTION;
1999     pending_file  = THREAD->exception_file();
2000     pending_line  = THREAD->exception_line();
2001     CLEAR_PENDING_EXCEPTION;
2002   }
2003 #endif /* MIGHT_HAVE_PENDING */
2004 
2005   {
2006     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2007     EXCEPTION_MARK;
2008     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2009   }
2010 
2011 #ifdef MIGHT_HAVE_PENDING
2012   if (pending_excep != NULL) {
2013     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2014   }
2015 #endif /* MIGHT_HAVE_PENDING */
2016 JRT_END
2017 
2018 #ifndef PRODUCT
2019 
2020 void SharedRuntime::print_statistics() {
2021   ttyLocker ttyl;
2022   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2023 
2024   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2025 
2026   SharedRuntime::print_ic_miss_histogram();
2027 
2028   if (CountRemovableExceptions) {
2029     if (_nof_removable_exceptions > 0) {
2030       Unimplemented(); // this counter is not yet incremented
2031       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2032     }
2033   }
2034 
2035   // Dump the JRT_ENTRY counters
2036   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2037   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2038   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2039   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2040   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2041   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2042   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2043 
2044   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2045   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2046   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2047   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2048   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2049 
2050   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2051   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2052   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2053   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2054   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2055   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2056   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2057   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2058   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2059   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2060   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2061   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2062   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2063   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2064   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2065   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2066 
2067   AdapterHandlerLibrary::print_statistics();
2068 
2069   if (xtty != NULL)  xtty->tail("statistics");
2070 }
2071 
2072 inline double percent(int x, int y) {
2073   return 100.0 * x / MAX2(y, 1);
2074 }
2075 
2076 class MethodArityHistogram {
2077  public:
2078   enum { MAX_ARITY = 256 };
2079  private:
2080   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2081   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2082   static int _max_arity;                      // max. arity seen
2083   static int _max_size;                       // max. arg size seen
2084 
2085   static void add_method_to_histogram(nmethod* nm) {
2086     Method* m = nm->method();
2087     ArgumentCount args(m->signature());
2088     int arity   = args.size() + (m->is_static() ? 0 : 1);
2089     int argsize = m->size_of_parameters();
2090     arity   = MIN2(arity, MAX_ARITY-1);
2091     argsize = MIN2(argsize, MAX_ARITY-1);
2092     int count = nm->method()->compiled_invocation_count();
2093     _arity_histogram[arity]  += count;
2094     _size_histogram[argsize] += count;
2095     _max_arity = MAX2(_max_arity, arity);
2096     _max_size  = MAX2(_max_size, argsize);
2097   }
2098 
2099   void print_histogram_helper(int n, int* histo, const char* name) {
2100     const int N = MIN2(5, n);
2101     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2102     double sum = 0;
2103     double weighted_sum = 0;
2104     int i;
2105     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2106     double rest = sum;
2107     double percent = sum / 100;
2108     for (i = 0; i <= N; i++) {
2109       rest -= histo[i];
2110       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2111     }
2112     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2113     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2114   }
2115 
2116   void print_histogram() {
2117     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2118     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2119     tty->print_cr("\nSame for parameter size (in words):");
2120     print_histogram_helper(_max_size, _size_histogram, "size");
2121     tty->cr();
2122   }
2123 
2124  public:
2125   MethodArityHistogram() {
2126     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2127     _max_arity = _max_size = 0;
2128     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2129     CodeCache::nmethods_do(add_method_to_histogram);
2130     print_histogram();
2131   }
2132 };
2133 
2134 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2135 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2136 int MethodArityHistogram::_max_arity;
2137 int MethodArityHistogram::_max_size;
2138 
2139 void SharedRuntime::print_call_statistics(int comp_total) {
2140   tty->print_cr("Calls from compiled code:");
2141   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2142   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2143   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2144   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2145   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2146   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2147   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2148   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2149   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2150   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2151   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2152   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2153   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2154   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2155   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2156   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2157   tty->cr();
2158   tty->print_cr("Note 1: counter updates are not MT-safe.");
2159   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2160   tty->print_cr("        %% in nested categories are relative to their category");
2161   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2162   tty->cr();
2163 
2164   MethodArityHistogram h;
2165 }
2166 #endif
2167 
2168 
2169 // A simple wrapper class around the calling convention information
2170 // that allows sharing of adapters for the same calling convention.
2171 class AdapterFingerPrint : public CHeapObj<mtCode> {
2172  private:
2173   enum {
2174     _basic_type_bits = 4,
2175     _basic_type_mask = right_n_bits(_basic_type_bits),
2176     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2177     _compact_int_count = 3
2178   };
2179   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2180   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2181 
2182   union {
2183     int  _compact[_compact_int_count];
2184     int* _fingerprint;
2185   } _value;
2186   int _length; // A negative length indicates the fingerprint is in the compact form,
2187                // Otherwise _value._fingerprint is the array.
2188 
2189   // Remap BasicTypes that are handled equivalently by the adapters.
2190   // These are correct for the current system but someday it might be
2191   // necessary to make this mapping platform dependent.
2192   static int adapter_encoding(BasicType in) {
2193     switch (in) {
2194       case T_BOOLEAN:
2195       case T_BYTE:
2196       case T_SHORT:
2197       case T_CHAR:
2198         // There are all promoted to T_INT in the calling convention
2199         return T_INT;
2200 
2201       case T_OBJECT:
2202       case T_VALUETYPE:
2203       case T_ARRAY:
2204         // In other words, we assume that any register good enough for
2205         // an int or long is good enough for a managed pointer.
2206 #ifdef _LP64
2207         return T_LONG;
2208 #else
2209         return T_INT;
2210 #endif
2211 
2212       case T_INT:
2213       case T_LONG:
2214       case T_FLOAT:
2215       case T_DOUBLE:
2216       case T_VOID:
2217         return in;
2218 
2219       default:
2220         ShouldNotReachHere();
2221         return T_CONFLICT;
2222     }
2223   }
2224 
2225  public:
2226   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2227     // The fingerprint is based on the BasicType signature encoded
2228     // into an array of ints with eight entries per int.
2229     int* ptr;
2230     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2231     if (len <= _compact_int_count) {
2232       assert(_compact_int_count == 3, "else change next line");
2233       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2234       // Storing the signature encoded as signed chars hits about 98%
2235       // of the time.
2236       _length = -len;
2237       ptr = _value._compact;
2238     } else {
2239       _length = len;
2240       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2241       ptr = _value._fingerprint;
2242     }
2243 
2244     // Now pack the BasicTypes with 8 per int
2245     int sig_index = 0;
2246     for (int index = 0; index < len; index++) {
2247       int value = 0;
2248       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2249         int bt = ((sig_index < total_args_passed)
2250                   ? adapter_encoding(sig_bt[sig_index++])
2251                   : 0);
2252         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2253         value = (value << _basic_type_bits) | bt;
2254       }
2255       ptr[index] = value;
2256     }
2257   }
2258 
2259   ~AdapterFingerPrint() {
2260     if (_length > 0) {
2261       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2262     }
2263   }
2264 
2265   int value(int index) {
2266     if (_length < 0) {
2267       return _value._compact[index];
2268     }
2269     return _value._fingerprint[index];
2270   }
2271   int length() {
2272     if (_length < 0) return -_length;
2273     return _length;
2274   }
2275 
2276   bool is_compact() {
2277     return _length <= 0;
2278   }
2279 
2280   unsigned int compute_hash() {
2281     int hash = 0;
2282     for (int i = 0; i < length(); i++) {
2283       int v = value(i);
2284       hash = (hash << 8) ^ v ^ (hash >> 5);
2285     }
2286     return (unsigned int)hash;
2287   }
2288 
2289   const char* as_string() {
2290     stringStream st;
2291     st.print("0x");
2292     for (int i = 0; i < length(); i++) {
2293       st.print("%08x", value(i));
2294     }
2295     return st.as_string();
2296   }
2297 
2298   bool equals(AdapterFingerPrint* other) {
2299     if (other->_length != _length) {
2300       return false;
2301     }
2302     if (_length < 0) {
2303       assert(_compact_int_count == 3, "else change next line");
2304       return _value._compact[0] == other->_value._compact[0] &&
2305              _value._compact[1] == other->_value._compact[1] &&
2306              _value._compact[2] == other->_value._compact[2];
2307     } else {
2308       for (int i = 0; i < _length; i++) {
2309         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2310           return false;
2311         }
2312       }
2313     }
2314     return true;
2315   }
2316 };
2317 
2318 
2319 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2320 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2321   friend class AdapterHandlerTableIterator;
2322 
2323  private:
2324 
2325 #ifndef PRODUCT
2326   static int _lookups; // number of calls to lookup
2327   static int _buckets; // number of buckets checked
2328   static int _equals;  // number of buckets checked with matching hash
2329   static int _hits;    // number of successful lookups
2330   static int _compact; // number of equals calls with compact signature
2331 #endif
2332 
2333   AdapterHandlerEntry* bucket(int i) {
2334     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2335   }
2336 
2337  public:
2338   AdapterHandlerTable()
2339     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2340 
2341   // Create a new entry suitable for insertion in the table
2342   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2343     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2344     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2345     return entry;
2346   }
2347 
2348   // Insert an entry into the table
2349   void add(AdapterHandlerEntry* entry) {
2350     int index = hash_to_index(entry->hash());
2351     add_entry(index, entry);
2352   }
2353 
2354   void free_entry(AdapterHandlerEntry* entry) {
2355     entry->deallocate();
2356     BasicHashtable<mtCode>::free_entry(entry);
2357   }
2358 
2359   // Find a entry with the same fingerprint if it exists
2360   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2361     NOT_PRODUCT(_lookups++);
2362     AdapterFingerPrint fp(total_args_passed, sig_bt);
2363     unsigned int hash = fp.compute_hash();
2364     int index = hash_to_index(hash);
2365     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2366       NOT_PRODUCT(_buckets++);
2367       if (e->hash() == hash) {
2368         NOT_PRODUCT(_equals++);
2369         if (fp.equals(e->fingerprint())) {
2370 #ifndef PRODUCT
2371           if (fp.is_compact()) _compact++;
2372           _hits++;
2373 #endif
2374           return e;
2375         }
2376       }
2377     }
2378     return NULL;
2379   }
2380 
2381 #ifndef PRODUCT
2382   void print_statistics() {
2383     ResourceMark rm;
2384     int longest = 0;
2385     int empty = 0;
2386     int total = 0;
2387     int nonempty = 0;
2388     for (int index = 0; index < table_size(); index++) {
2389       int count = 0;
2390       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2391         count++;
2392       }
2393       if (count != 0) nonempty++;
2394       if (count == 0) empty++;
2395       if (count > longest) longest = count;
2396       total += count;
2397     }
2398     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2399                   empty, longest, total, total / (double)nonempty);
2400     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2401                   _lookups, _buckets, _equals, _hits, _compact);
2402   }
2403 #endif
2404 };
2405 
2406 
2407 #ifndef PRODUCT
2408 
2409 int AdapterHandlerTable::_lookups;
2410 int AdapterHandlerTable::_buckets;
2411 int AdapterHandlerTable::_equals;
2412 int AdapterHandlerTable::_hits;
2413 int AdapterHandlerTable::_compact;
2414 
2415 #endif
2416 
2417 class AdapterHandlerTableIterator : public StackObj {
2418  private:
2419   AdapterHandlerTable* _table;
2420   int _index;
2421   AdapterHandlerEntry* _current;
2422 
2423   void scan() {
2424     while (_index < _table->table_size()) {
2425       AdapterHandlerEntry* a = _table->bucket(_index);
2426       _index++;
2427       if (a != NULL) {
2428         _current = a;
2429         return;
2430       }
2431     }
2432   }
2433 
2434  public:
2435   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2436     scan();
2437   }
2438   bool has_next() {
2439     return _current != NULL;
2440   }
2441   AdapterHandlerEntry* next() {
2442     if (_current != NULL) {
2443       AdapterHandlerEntry* result = _current;
2444       _current = _current->next();
2445       if (_current == NULL) scan();
2446       return result;
2447     } else {
2448       return NULL;
2449     }
2450   }
2451 };
2452 
2453 
2454 // ---------------------------------------------------------------------------
2455 // Implementation of AdapterHandlerLibrary
2456 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2457 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2458 const int AdapterHandlerLibrary_size = 16*K;
2459 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2460 
2461 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2462   // Should be called only when AdapterHandlerLibrary_lock is active.
2463   if (_buffer == NULL) // Initialize lazily
2464       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2465   return _buffer;
2466 }
2467 
2468 extern "C" void unexpected_adapter_call() {
2469   ShouldNotCallThis();
2470 }
2471 
2472 void AdapterHandlerLibrary::initialize() {
2473   if (_adapters != NULL) return;
2474   _adapters = new AdapterHandlerTable();
2475 
2476   if (!CodeCacheExtensions::skip_compiler_support()) {
2477     // Create a special handler for abstract methods.  Abstract methods
2478     // are never compiled so an i2c entry is somewhat meaningless, but
2479     // throw AbstractMethodError just in case.
2480     // Pass wrong_method_abstract for the c2i transitions to return
2481     // AbstractMethodError for invalid invocations.
2482     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2483     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2484                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2485                                                                 wrong_method_abstract, wrong_method_abstract);
2486   } else {
2487     // Adapters are not supposed to be used.
2488     // Generate a special one to cause an error if used (and store this
2489     // singleton in place of the useless _abstract_method_error adapter).
2490     address entry = (address) &unexpected_adapter_call;
2491     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2492                                                                 entry,
2493                                                                 entry,
2494                                                                 entry);
2495 
2496   }
2497 }
2498 
2499 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2500                                                       address i2c_entry,
2501                                                       address c2i_entry,
2502                                                       address c2i_unverified_entry) {
2503   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2504 }
2505 
2506 // Value type arguments are not passed by reference, instead each
2507 // field of the value type is passed as an argument. This helper
2508 // function collects the fields of the value types (including embedded
2509 // value type's fields) in a list. Included with the field's type is
2510 // the offset of each field in the value type: i2c and c2i adapters
2511 // need that to load or store fields. Finally, the list of fields is
2512 // sorted in order of increasing offsets: the adapters and the
2513 // compiled code need and agreed upon order of fields.
2514 //
2515 // The list of basic type that is returned starts with a T_VALUETYPE
2516 // and ends with an extra T_VOID. T_VALUETYPE/T_VOID are used as
2517 // delimiters. Every entry between the two is a field of the value
2518 // type. If there's an embedded value type in the list, it also starts
2519 // with a T_VALUETYPE and ends with a T_VOID. This is so we can
2520 // generate a unique fingerprint for the method's adapters and we can
2521 // generate the list of basic types from the interpreter point of view
2522 // (value types passed as reference: iterate on the list until a
2523 // T_VALUETYPE, drop everything until and including the closing
2524 // T_VOID) or the compiler point of view (each field of the value
2525 // types is an argument: drop all T_VALUETYPE/T_VOID from the list).
2526 static GrowableArray<SigEntry> collect_fields(ValueKlass* vk, int base_off = 0) {
2527   GrowableArray<SigEntry> sig;
2528   sig.push(SigEntry(T_VALUETYPE, base_off));
2529   for (JavaFieldStream fs(vk); !fs.done(); fs.next()) {
2530     if (fs.access_flags().is_static())  continue;
2531     fieldDescriptor& fd = fs.field_descriptor();
2532     BasicType bt = fd.field_type();
2533     int offset = base_off + fd.offset() - (base_off > 0 ? vk->first_field_offset() : 0);
2534     if (bt == T_VALUETYPE) {
2535       Symbol* signature = fd.signature();
2536       JavaThread* THREAD = JavaThread::current();
2537       oop loader = vk->class_loader();
2538       oop protection_domain = vk->protection_domain();
2539       Klass* klass = SystemDictionary::resolve_or_null(signature,
2540                                                        Handle(THREAD, loader), Handle(THREAD, protection_domain),
2541                                                        THREAD);
2542       assert(klass != NULL && !HAS_PENDING_EXCEPTION, "lookup shouldn't fail");
2543       const GrowableArray<SigEntry>& embedded = collect_fields(ValueKlass::cast(klass), offset);
2544       sig.appendAll(&embedded);
2545     } else {
2546       sig.push(SigEntry(bt, offset));
2547       if (bt == T_LONG || bt == T_DOUBLE) {
2548         sig.push(SigEntry(T_VOID, offset));
2549       }
2550     }
2551   }
2552   int offset = base_off + vk->size_helper()*HeapWordSize - (base_off > 0 ? vk->first_field_offset() : 0);
2553   sig.push(SigEntry(T_VOID, offset)); // hack: use T_VOID to mark end of value type fields
2554   if (base_off == 0) {
2555     sig.sort(SigEntry::compare);
2556   }
2557   assert(sig.at(0)._bt == T_VALUETYPE && sig.at(sig.length()-1)._bt == T_VOID, "broken structure");
2558   return sig;
2559 }
2560 
2561 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2562   // Use customized signature handler.  Need to lock around updates to
2563   // the AdapterHandlerTable (it is not safe for concurrent readers
2564   // and a single writer: this could be fixed if it becomes a
2565   // problem).
2566 
2567   ResourceMark rm;
2568 
2569   NOT_PRODUCT(int insts_size = 0);
2570   AdapterBlob* new_adapter = NULL;
2571   AdapterHandlerEntry* entry = NULL;
2572   AdapterFingerPrint* fingerprint = NULL;
2573   {
2574     MutexLocker mu(AdapterHandlerLibrary_lock);
2575     // make sure data structure is initialized
2576     initialize();
2577 
2578     if (CodeCacheExtensions::skip_compiler_support()) {
2579       // adapters are useless and should not be used, including the
2580       // abstract_method_handler. However, some callers check that
2581       // an adapter was installed.
2582       // Return the singleton adapter, stored into _abstract_method_handler
2583       // and modified to cause an error if we ever call it.
2584       return _abstract_method_handler;
2585     }
2586 
2587     if (method->is_abstract()) {
2588       return _abstract_method_handler;
2589     }
2590 
2591     // Fill in the signature array, for the calling-convention call.
2592     GrowableArray<SigEntry> sig;
2593     {
2594       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2595       Thread* THREAD = Thread::current();
2596       Handle class_loader(THREAD, method->method_holder()->class_loader());
2597       Handle protection_domain(THREAD, method->method_holder()->protection_domain());
2598       GrowableArray<BasicType> sig_bt_tmp;
2599       int value_klasses = 0;
2600 
2601       int i = 0;
2602       if (!method->is_static()) {  // Pass in receiver first
2603         Klass* holder = method->method_holder();
2604         if (ValueTypePassFieldsAsArgs && holder->is_value()) {
2605           value_klasses++;
2606           ValueKlass* vk = ValueKlass::cast(holder);
2607           const GrowableArray<SigEntry>& sig_vk = collect_fields(vk);
2608           sig.appendAll(&sig_vk);
2609         } else {
2610           sig.push(SigEntry(T_OBJECT));
2611         }
2612       }
2613       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2614         if (ValueTypePassFieldsAsArgs && ss.type() == T_VALUETYPE) {
2615           value_klasses++;
2616           Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
2617           assert(k != NULL && !HAS_PENDING_EXCEPTION, "");
2618           ValueKlass* vk = ValueKlass::cast(k);
2619           const GrowableArray<SigEntry>& sig_vk = collect_fields(vk);
2620           sig.appendAll(&sig_vk);
2621         } else {
2622           sig.push(SigEntry(ss.type()));
2623           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2624             sig.push(SigEntry(T_VOID));
2625           }
2626         }
2627       }
2628     }
2629 
2630     int values = 0;
2631     if (ValueTypePassFieldsAsArgs) {
2632       for (int i = 0; i < sig.length(); i++) {
2633         if (sig.at(i)._bt == T_VALUETYPE) {
2634           values++;
2635         }
2636       }
2637     }
2638     int total_args_passed_cc = sig.length() - 2 * values;
2639     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2640     
2641     int j = 0;
2642     for (int i = 0; i < sig.length(); i++) {
2643       if (!ValueTypePassFieldsAsArgs) {
2644         sig_bt_cc[j++] = sig.at(i)._bt;
2645       } else if (sig.at(i)._bt != T_VALUETYPE &&
2646                  (sig.at(i)._bt != T_VOID ||
2647                   sig.at(i-1)._bt == T_LONG ||
2648                   sig.at(i-1)._bt == T_DOUBLE)) {
2649         sig_bt_cc[j++] = sig.at(i)._bt;
2650       }
2651     }
2652     assert(j == total_args_passed_cc, "");
2653 
2654     int total_args_passed_fp = sig.length();
2655     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2656     for (int i = 0; i < sig.length(); i++) {
2657       sig_bt_fp[i] = sig.at(i)._bt;
2658     }
2659 
2660     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2661 
2662     // Lookup method signature's fingerprint
2663     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2664 
2665 #ifdef ASSERT
2666     AdapterHandlerEntry* shared_entry = NULL;
2667     // Start adapter sharing verification only after the VM is booted.
2668     if (VerifyAdapterSharing && (entry != NULL)) {
2669       shared_entry = entry;
2670       entry = NULL;
2671     }
2672 #endif
2673 
2674     if (entry != NULL) {
2675       return entry;
2676     }
2677 
2678     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2679     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2680 
2681     // Make a C heap allocated version of the fingerprint to store in the adapter
2682     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2683 
2684     // StubRoutines::code2() is initialized after this function can be called. As a result,
2685     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2686     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2687     // stub that ensure that an I2C stub is called from an interpreter frame.
2688     bool contains_all_checks = StubRoutines::code2() != NULL;
2689 
2690     // Create I2C & C2I handlers
2691     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2692     if (buf != NULL) {
2693       CodeBuffer buffer(buf);
2694       short buffer_locs[20];
2695       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2696                                              sizeof(buffer_locs)/sizeof(relocInfo));
2697 
2698 
2699       MacroAssembler _masm(&buffer);
2700       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2701                                                      comp_args_on_stack,
2702                                                      sig,
2703                                                      regs,
2704                                                      fingerprint,
2705                                                      new_adapter);
2706 #ifdef ASSERT
2707       if (VerifyAdapterSharing) {
2708         if (shared_entry != NULL) {
2709           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2710           // Release the one just created and return the original
2711           _adapters->free_entry(entry);
2712           return shared_entry;
2713         } else  {
2714           entry->save_code(buf->code_begin(), buffer.insts_size());
2715         }
2716       }
2717 #endif
2718 
2719       NOT_PRODUCT(insts_size = buffer.insts_size());
2720     }
2721     if (new_adapter == NULL) {
2722       // CodeCache is full, disable compilation
2723       // Ought to log this but compile log is only per compile thread
2724       // and we're some non descript Java thread.
2725       return NULL; // Out of CodeCache space
2726     }
2727     entry->relocate(new_adapter->content_begin());
2728 #ifndef PRODUCT
2729     // debugging suppport
2730     if (PrintAdapterHandlers || PrintStubCode) {
2731       ttyLocker ttyl;
2732       entry->print_adapter_on(tty);
2733       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2734                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2735                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2736       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2737       if (Verbose || PrintStubCode) {
2738         address first_pc = entry->base_address();
2739         if (first_pc != NULL) {
2740           Disassembler::decode(first_pc, first_pc + insts_size);
2741           tty->cr();
2742         }
2743       }
2744     }
2745 #endif
2746     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2747     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2748     if (contains_all_checks || !VerifyAdapterCalls) {
2749       _adapters->add(entry);
2750     }
2751   }
2752   // Outside of the lock
2753   if (new_adapter != NULL) {
2754     char blob_id[256];
2755     jio_snprintf(blob_id,
2756                  sizeof(blob_id),
2757                  "%s(%s)@" PTR_FORMAT,
2758                  new_adapter->name(),
2759                  fingerprint->as_string(),
2760                  new_adapter->content_begin());
2761     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2762 
2763     if (JvmtiExport::should_post_dynamic_code_generated()) {
2764       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2765     }
2766   }
2767   return entry;
2768 }
2769 
2770 address AdapterHandlerEntry::base_address() {
2771   address base = _i2c_entry;
2772   if (base == NULL)  base = _c2i_entry;
2773   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2774   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2775   return base;
2776 }
2777 
2778 void AdapterHandlerEntry::relocate(address new_base) {
2779   address old_base = base_address();
2780   assert(old_base != NULL, "");
2781   ptrdiff_t delta = new_base - old_base;
2782   if (_i2c_entry != NULL)
2783     _i2c_entry += delta;
2784   if (_c2i_entry != NULL)
2785     _c2i_entry += delta;
2786   if (_c2i_unverified_entry != NULL)
2787     _c2i_unverified_entry += delta;
2788   assert(base_address() == new_base, "");
2789 }
2790 
2791 
2792 void AdapterHandlerEntry::deallocate() {
2793   delete _fingerprint;
2794 #ifdef ASSERT
2795   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2796 #endif
2797 }
2798 
2799 
2800 #ifdef ASSERT
2801 // Capture the code before relocation so that it can be compared
2802 // against other versions.  If the code is captured after relocation
2803 // then relative instructions won't be equivalent.
2804 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2805   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2806   _saved_code_length = length;
2807   memcpy(_saved_code, buffer, length);
2808 }
2809 
2810 
2811 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2812   if (length != _saved_code_length) {
2813     return false;
2814   }
2815 
2816   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2817 }
2818 #endif
2819 
2820 
2821 /**
2822  * Create a native wrapper for this native method.  The wrapper converts the
2823  * Java-compiled calling convention to the native convention, handles
2824  * arguments, and transitions to native.  On return from the native we transition
2825  * back to java blocking if a safepoint is in progress.
2826  */
2827 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2828   ResourceMark rm;
2829   nmethod* nm = NULL;
2830 
2831   assert(method->is_native(), "must be native");
2832   assert(method->is_method_handle_intrinsic() ||
2833          method->has_native_function(), "must have something valid to call!");
2834 
2835   {
2836     // Perform the work while holding the lock, but perform any printing outside the lock
2837     MutexLocker mu(AdapterHandlerLibrary_lock);
2838     // See if somebody beat us to it
2839     if (method->code() != NULL) {
2840       return;
2841     }
2842 
2843     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2844     assert(compile_id > 0, "Must generate native wrapper");
2845 
2846 
2847     ResourceMark rm;
2848     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2849     if (buf != NULL) {
2850       CodeBuffer buffer(buf);
2851       double locs_buf[20];
2852       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2853       MacroAssembler _masm(&buffer);
2854 
2855       // Fill in the signature array, for the calling-convention call.
2856       const int total_args_passed = method->size_of_parameters();
2857 
2858       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2859       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2860       int i=0;
2861       if (!method->is_static())  // Pass in receiver first
2862         sig_bt[i++] = T_OBJECT;
2863       SignatureStream ss(method->signature());
2864       for (; !ss.at_return_type(); ss.next()) {
2865         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2866         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2867           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2868       }
2869       assert(i == total_args_passed, "");
2870       BasicType ret_type = ss.type();
2871 
2872       // Now get the compiled-Java layout as input (or output) arguments.
2873       // NOTE: Stubs for compiled entry points of method handle intrinsics
2874       // are just trampolines so the argument registers must be outgoing ones.
2875       const bool is_outgoing = method->is_method_handle_intrinsic();
2876       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2877 
2878       // Generate the compiled-to-native wrapper code
2879       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2880 
2881       if (nm != NULL) {
2882         method->set_code(method, nm);
2883 
2884         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2885         if (directive->PrintAssemblyOption) {
2886           nm->print_code();
2887         }
2888         DirectivesStack::release(directive);
2889       }
2890     }
2891   } // Unlock AdapterHandlerLibrary_lock
2892 
2893 
2894   // Install the generated code.
2895   if (nm != NULL) {
2896     if (PrintCompilation) {
2897       ttyLocker ttyl;
2898       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2899     }
2900     nm->post_compiled_method_load_event();
2901   }
2902 }
2903 
2904 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2905   assert(thread == JavaThread::current(), "must be");
2906   // The code is about to enter a JNI lazy critical native method and
2907   // _needs_gc is true, so if this thread is already in a critical
2908   // section then just return, otherwise this thread should block
2909   // until needs_gc has been cleared.
2910   if (thread->in_critical()) {
2911     return;
2912   }
2913   // Lock and unlock a critical section to give the system a chance to block
2914   GCLocker::lock_critical(thread);
2915   GCLocker::unlock_critical(thread);
2916 JRT_END
2917 
2918 // -------------------------------------------------------------------------
2919 // Java-Java calling convention
2920 // (what you use when Java calls Java)
2921 
2922 //------------------------------name_for_receiver----------------------------------
2923 // For a given signature, return the VMReg for parameter 0.
2924 VMReg SharedRuntime::name_for_receiver() {
2925   VMRegPair regs;
2926   BasicType sig_bt = T_OBJECT;
2927   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2928   // Return argument 0 register.  In the LP64 build pointers
2929   // take 2 registers, but the VM wants only the 'main' name.
2930   return regs.first();
2931 }
2932 
2933 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2934   // This method is returning a data structure allocating as a
2935   // ResourceObject, so do not put any ResourceMarks in here.
2936   char *s = sig->as_C_string();
2937   int len = (int)strlen(s);
2938   s++; len--;                   // Skip opening paren
2939   char *t = s+len;
2940   while (*(--t) != ')');      // Find close paren
2941 
2942   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2943   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2944   int cnt = 0;
2945   if (has_receiver) {
2946     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2947   }
2948 
2949   while (s < t) {
2950     switch (*s++) {            // Switch on signature character
2951     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2952     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2953     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2954     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2955     case 'I': sig_bt[cnt++] = T_INT;     break;
2956     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2957     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2958     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2959     case 'V': sig_bt[cnt++] = T_VOID;    break;
2960     case 'L':                   // Oop
2961       while (*s++ != ';');   // Skip signature
2962       sig_bt[cnt++] = T_OBJECT;
2963       break;
2964     case 'Q':                   // Oop
2965       while (*s++ != ';');   // Skip signature
2966       sig_bt[cnt++] = T_VALUETYPE;
2967       break;
2968     case '[': {                 // Array
2969       do {                      // Skip optional size
2970         while (*s >= '0' && *s <= '9') s++;
2971       } while (*s++ == '[');   // Nested arrays?
2972       // Skip element type
2973       if (s[-1] == 'L')
2974         while (*s++ != ';'); // Skip signature
2975       sig_bt[cnt++] = T_ARRAY;
2976       break;
2977     }
2978     default : ShouldNotReachHere();
2979     }
2980   }
2981 
2982   if (has_appendix) {
2983     sig_bt[cnt++] = T_OBJECT;
2984   }
2985 
2986   assert(cnt < 256, "grow table size");
2987 
2988   int comp_args_on_stack;
2989   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2990 
2991   // the calling convention doesn't count out_preserve_stack_slots so
2992   // we must add that in to get "true" stack offsets.
2993 
2994   if (comp_args_on_stack) {
2995     for (int i = 0; i < cnt; i++) {
2996       VMReg reg1 = regs[i].first();
2997       if (reg1->is_stack()) {
2998         // Yuck
2999         reg1 = reg1->bias(out_preserve_stack_slots());
3000       }
3001       VMReg reg2 = regs[i].second();
3002       if (reg2->is_stack()) {
3003         // Yuck
3004         reg2 = reg2->bias(out_preserve_stack_slots());
3005       }
3006       regs[i].set_pair(reg2, reg1);
3007     }
3008   }
3009 
3010   // results
3011   *arg_size = cnt;
3012   return regs;
3013 }
3014 
3015 // OSR Migration Code
3016 //
3017 // This code is used convert interpreter frames into compiled frames.  It is
3018 // called from very start of a compiled OSR nmethod.  A temp array is
3019 // allocated to hold the interesting bits of the interpreter frame.  All
3020 // active locks are inflated to allow them to move.  The displaced headers and
3021 // active interpreter locals are copied into the temp buffer.  Then we return
3022 // back to the compiled code.  The compiled code then pops the current
3023 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3024 // copies the interpreter locals and displaced headers where it wants.
3025 // Finally it calls back to free the temp buffer.
3026 //
3027 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3028 
3029 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3030 
3031   //
3032   // This code is dependent on the memory layout of the interpreter local
3033   // array and the monitors. On all of our platforms the layout is identical
3034   // so this code is shared. If some platform lays the their arrays out
3035   // differently then this code could move to platform specific code or
3036   // the code here could be modified to copy items one at a time using
3037   // frame accessor methods and be platform independent.
3038 
3039   frame fr = thread->last_frame();
3040   assert(fr.is_interpreted_frame(), "");
3041   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3042 
3043   // Figure out how many monitors are active.
3044   int active_monitor_count = 0;
3045   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3046        kptr < fr.interpreter_frame_monitor_begin();
3047        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3048     if (kptr->obj() != NULL) active_monitor_count++;
3049   }
3050 
3051   // QQQ we could place number of active monitors in the array so that compiled code
3052   // could double check it.
3053 
3054   Method* moop = fr.interpreter_frame_method();
3055   int max_locals = moop->max_locals();
3056   // Allocate temp buffer, 1 word per local & 2 per active monitor
3057   int buf_size_words = max_locals + active_monitor_count*2;
3058   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3059 
3060   // Copy the locals.  Order is preserved so that loading of longs works.
3061   // Since there's no GC I can copy the oops blindly.
3062   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3063   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3064                        (HeapWord*)&buf[0],
3065                        max_locals);
3066 
3067   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3068   int i = max_locals;
3069   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3070        kptr2 < fr.interpreter_frame_monitor_begin();
3071        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3072     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3073       BasicLock *lock = kptr2->lock();
3074       // Inflate so the displaced header becomes position-independent
3075       if (lock->displaced_header()->is_unlocked())
3076         ObjectSynchronizer::inflate_helper(kptr2->obj());
3077       // Now the displaced header is free to move
3078       buf[i++] = (intptr_t)lock->displaced_header();
3079       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3080     }
3081   }
3082   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3083 
3084   return buf;
3085 JRT_END
3086 
3087 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3088   FREE_C_HEAP_ARRAY(intptr_t, buf);
3089 JRT_END
3090 
3091 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3092   AdapterHandlerTableIterator iter(_adapters);
3093   while (iter.has_next()) {
3094     AdapterHandlerEntry* a = iter.next();
3095     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3096   }
3097   return false;
3098 }
3099 
3100 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3101   AdapterHandlerTableIterator iter(_adapters);
3102   while (iter.has_next()) {
3103     AdapterHandlerEntry* a = iter.next();
3104     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3105       st->print("Adapter for signature: ");
3106       a->print_adapter_on(tty);
3107       return;
3108     }
3109   }
3110   assert(false, "Should have found handler");
3111 }
3112 
3113 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3114   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3115                p2i(this), fingerprint()->as_string(),
3116                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3117 
3118 }
3119 
3120 #ifndef PRODUCT
3121 
3122 void AdapterHandlerLibrary::print_statistics() {
3123   _adapters->print_statistics();
3124 }
3125 
3126 #endif /* PRODUCT */
3127 
3128 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3129   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3130   thread->enable_stack_reserved_zone();
3131   thread->set_reserved_stack_activation(thread->stack_base());
3132 JRT_END
3133 
3134 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3135   frame activation;
3136   int decode_offset = 0;
3137   nmethod* nm = NULL;
3138   frame prv_fr = fr;
3139   int count = 1;
3140 
3141   assert(fr.is_java_frame(), "Must start on Java frame");
3142 
3143   while (!fr.is_first_frame()) {
3144     Method* method = NULL;
3145     // Compiled java method case.
3146     if (decode_offset != 0) {
3147       DebugInfoReadStream stream(nm, decode_offset);
3148       decode_offset = stream.read_int();
3149       method = (Method*)nm->metadata_at(stream.read_int());
3150     } else {
3151       if (fr.is_first_java_frame()) break;
3152       address pc = fr.pc();
3153       prv_fr = fr;
3154       if (fr.is_interpreted_frame()) {
3155         method = fr.interpreter_frame_method();
3156         fr = fr.java_sender();
3157       } else {
3158         CodeBlob* cb = fr.cb();
3159         fr = fr.java_sender();
3160         if (cb == NULL || !cb->is_nmethod()) {
3161           continue;
3162         }
3163         nm = (nmethod*)cb;
3164         if (nm->method()->is_native()) {
3165           method = nm->method();
3166         } else {
3167           PcDesc* pd = nm->pc_desc_at(pc);
3168           assert(pd != NULL, "PcDesc must not be NULL");
3169           decode_offset = pd->scope_decode_offset();
3170           // if decode_offset is not equal to 0, it will execute the
3171           // "compiled java method case" at the beginning of the loop.
3172           continue;
3173         }
3174       }
3175     }
3176     if (method->has_reserved_stack_access()) {
3177       ResourceMark rm(thread);
3178       activation = prv_fr;
3179       warning("Potentially dangerous stack overflow in "
3180               "ReservedStackAccess annotated method %s [%d]",
3181               method->name_and_sig_as_C_string(), count++);
3182       EventReservedStackActivation event;
3183       if (event.should_commit()) {
3184         event.set_method(method);
3185         event.commit();
3186       }
3187     }
3188   }
3189   return activation;
3190 }
3191 
3192 // We are at a compiled code to interpreter call. We need backing
3193 // buffers for all value type arguments. Allocate an object array to
3194 // hold them (convenient because once we're done with it we don't have
3195 // to worry about freeing it).
3196 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread))
3197 {
3198   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3199   ResourceMark rm;
3200   JavaThread* THREAD = thread;
3201   vframeStream vfst(thread);
3202   methodHandle caller(thread, vfst.method());
3203   int bci   = vfst.bci();
3204   Bytecode_invoke bytecode(caller, bci);
3205   methodHandle callee = bytecode.static_target(CHECK);
3206 
3207   int nb_slots = 0;
3208   if (!callee->is_static() && callee->method_holder()->is_value()) {
3209     nb_slots++;
3210   }
3211   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3212   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3213   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3214     if (ss.type() == T_VALUETYPE) {
3215       nb_slots++;
3216     }
3217   }
3218   objArrayHandle array = ObjArrayKlass::cast(Universe::objectArrayKlassObj())->allocate(nb_slots, CHECK);
3219   int i = 0;
3220   if (!callee->is_static() && callee->method_holder()->is_value()) {
3221     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3222     oop res = vk->allocate_instance(CHECK);
3223     array->obj_at_put(i, res);
3224     i++;
3225   }
3226   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3227     if (ss.type() == T_VALUETYPE) {
3228       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3229       assert(k != NULL && !HAS_PENDING_EXCEPTION, "");
3230       ValueKlass* vk = ValueKlass::cast(k);
3231       oop res = vk->allocate_instance(CHECK);
3232       array->obj_at_put(i, res);
3233       i++;
3234     }
3235   }
3236   thread->set_vm_result(array());
3237 }
3238 JRT_END