rev 10535 : incremental inlining fixes
1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "ci/bcEscapeAnalyzer.hpp" 28 #include "compiler/oopMap.hpp" 29 #include "opto/callGenerator.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/convertnode.hpp" 33 #include "opto/escape.hpp" 34 #include "opto/locknode.hpp" 35 #include "opto/machnode.hpp" 36 #include "opto/matcher.hpp" 37 #include "opto/parse.hpp" 38 #include "opto/regalloc.hpp" 39 #include "opto/regmask.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/runtime.hpp" 42 #include "opto/valuetypenode.hpp" 43 44 // Portions of code courtesy of Clifford Click 45 46 // Optimization - Graph Style 47 48 //============================================================================= 49 uint StartNode::size_of() const { return sizeof(*this); } 50 uint StartNode::cmp( const Node &n ) const 51 { return _domain == ((StartNode&)n)._domain; } 52 const Type *StartNode::bottom_type() const { return _domain; } 53 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; } 54 #ifndef PRODUCT 55 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);} 56 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ } 57 #endif 58 59 //------------------------------Ideal------------------------------------------ 60 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){ 61 return remove_dead_region(phase, can_reshape) ? this : NULL; 62 } 63 64 //------------------------------calling_convention----------------------------- 65 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 66 Matcher::calling_convention( sig_bt, parm_regs, argcnt, false ); 67 } 68 69 //------------------------------Registers-------------------------------------- 70 const RegMask &StartNode::in_RegMask(uint) const { 71 return RegMask::Empty; 72 } 73 74 //------------------------------match------------------------------------------ 75 // Construct projections for incoming parameters, and their RegMask info 76 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) { 77 switch (proj->_con) { 78 case TypeFunc::Control: 79 case TypeFunc::I_O: 80 case TypeFunc::Memory: 81 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 82 case TypeFunc::FramePtr: 83 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP); 84 case TypeFunc::ReturnAdr: 85 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP); 86 case TypeFunc::Parms: 87 default: { 88 uint parm_num = proj->_con - TypeFunc::Parms; 89 const Type *t = _domain->field_at(proj->_con); 90 if (t->base() == Type::Half) // 2nd half of Longs and Doubles 91 return new ConNode(Type::TOP); 92 uint ideal_reg = t->ideal_reg(); 93 RegMask &rm = match->_calling_convention_mask[parm_num]; 94 return new MachProjNode(this,proj->_con,rm,ideal_reg); 95 } 96 } 97 return NULL; 98 } 99 100 //------------------------------StartOSRNode---------------------------------- 101 // The method start node for an on stack replacement adapter 102 103 //------------------------------osr_domain----------------------------- 104 const TypeTuple *StartOSRNode::osr_domain() { 105 const Type **fields = TypeTuple::fields(2); 106 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer 107 108 return TypeTuple::make(TypeFunc::Parms+1, fields); 109 } 110 111 //============================================================================= 112 const char * const ParmNode::names[TypeFunc::Parms+1] = { 113 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms" 114 }; 115 116 #ifndef PRODUCT 117 void ParmNode::dump_spec(outputStream *st) const { 118 if( _con < TypeFunc::Parms ) { 119 st->print("%s", names[_con]); 120 } else { 121 st->print("Parm%d: ",_con-TypeFunc::Parms); 122 // Verbose and WizardMode dump bottom_type for all nodes 123 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st); 124 } 125 } 126 127 void ParmNode::dump_compact_spec(outputStream *st) const { 128 if (_con < TypeFunc::Parms) { 129 st->print("%s", names[_con]); 130 } else { 131 st->print("%d:", _con-TypeFunc::Parms); 132 // unconditionally dump bottom_type 133 bottom_type()->dump_on(st); 134 } 135 } 136 137 // For a ParmNode, all immediate inputs and outputs are considered relevant 138 // both in compact and standard representation. 139 void ParmNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { 140 this->collect_nodes(in_rel, 1, false, false); 141 this->collect_nodes(out_rel, -1, false, false); 142 } 143 #endif 144 145 uint ParmNode::ideal_reg() const { 146 switch( _con ) { 147 case TypeFunc::Control : // fall through 148 case TypeFunc::I_O : // fall through 149 case TypeFunc::Memory : return 0; 150 case TypeFunc::FramePtr : // fall through 151 case TypeFunc::ReturnAdr: return Op_RegP; 152 default : assert( _con > TypeFunc::Parms, "" ); 153 // fall through 154 case TypeFunc::Parms : { 155 // Type of argument being passed 156 const Type *t = in(0)->as_Start()->_domain->field_at(_con); 157 return t->ideal_reg(); 158 } 159 } 160 ShouldNotReachHere(); 161 return 0; 162 } 163 164 //============================================================================= 165 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) { 166 init_req(TypeFunc::Control,cntrl); 167 init_req(TypeFunc::I_O,i_o); 168 init_req(TypeFunc::Memory,memory); 169 init_req(TypeFunc::FramePtr,frameptr); 170 init_req(TypeFunc::ReturnAdr,retadr); 171 } 172 173 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){ 174 return remove_dead_region(phase, can_reshape) ? this : NULL; 175 } 176 177 const Type* ReturnNode::Value(PhaseGVN* phase) const { 178 return ( phase->type(in(TypeFunc::Control)) == Type::TOP) 179 ? Type::TOP 180 : Type::BOTTOM; 181 } 182 183 // Do we Match on this edge index or not? No edges on return nodes 184 uint ReturnNode::match_edge(uint idx) const { 185 return 0; 186 } 187 188 189 #ifndef PRODUCT 190 void ReturnNode::dump_req(outputStream *st) const { 191 // Dump the required inputs, enclosed in '(' and ')' 192 uint i; // Exit value of loop 193 for (i = 0; i < req(); i++) { // For all required inputs 194 if (i == TypeFunc::Parms) st->print("returns"); 195 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 196 else st->print("_ "); 197 } 198 } 199 #endif 200 201 //============================================================================= 202 RethrowNode::RethrowNode( 203 Node* cntrl, 204 Node* i_o, 205 Node* memory, 206 Node* frameptr, 207 Node* ret_adr, 208 Node* exception 209 ) : Node(TypeFunc::Parms + 1) { 210 init_req(TypeFunc::Control , cntrl ); 211 init_req(TypeFunc::I_O , i_o ); 212 init_req(TypeFunc::Memory , memory ); 213 init_req(TypeFunc::FramePtr , frameptr ); 214 init_req(TypeFunc::ReturnAdr, ret_adr); 215 init_req(TypeFunc::Parms , exception); 216 } 217 218 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){ 219 return remove_dead_region(phase, can_reshape) ? this : NULL; 220 } 221 222 const Type* RethrowNode::Value(PhaseGVN* phase) const { 223 return (phase->type(in(TypeFunc::Control)) == Type::TOP) 224 ? Type::TOP 225 : Type::BOTTOM; 226 } 227 228 uint RethrowNode::match_edge(uint idx) const { 229 return 0; 230 } 231 232 #ifndef PRODUCT 233 void RethrowNode::dump_req(outputStream *st) const { 234 // Dump the required inputs, enclosed in '(' and ')' 235 uint i; // Exit value of loop 236 for (i = 0; i < req(); i++) { // For all required inputs 237 if (i == TypeFunc::Parms) st->print("exception"); 238 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 239 else st->print("_ "); 240 } 241 } 242 #endif 243 244 //============================================================================= 245 // Do we Match on this edge index or not? Match only target address & method 246 uint TailCallNode::match_edge(uint idx) const { 247 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 248 } 249 250 //============================================================================= 251 // Do we Match on this edge index or not? Match only target address & oop 252 uint TailJumpNode::match_edge(uint idx) const { 253 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 254 } 255 256 //============================================================================= 257 JVMState::JVMState(ciMethod* method, JVMState* caller) : 258 _method(method) { 259 assert(method != NULL, "must be valid call site"); 260 _reexecute = Reexecute_Undefined; 261 debug_only(_bci = -99); // random garbage value 262 debug_only(_map = (SafePointNode*)-1); 263 _caller = caller; 264 _depth = 1 + (caller == NULL ? 0 : caller->depth()); 265 _locoff = TypeFunc::Parms; 266 _stkoff = _locoff + _method->max_locals(); 267 _monoff = _stkoff + _method->max_stack(); 268 _scloff = _monoff; 269 _endoff = _monoff; 270 _sp = 0; 271 } 272 JVMState::JVMState(int stack_size) : 273 _method(NULL) { 274 _bci = InvocationEntryBci; 275 _reexecute = Reexecute_Undefined; 276 debug_only(_map = (SafePointNode*)-1); 277 _caller = NULL; 278 _depth = 1; 279 _locoff = TypeFunc::Parms; 280 _stkoff = _locoff; 281 _monoff = _stkoff + stack_size; 282 _scloff = _monoff; 283 _endoff = _monoff; 284 _sp = 0; 285 } 286 287 //--------------------------------of_depth------------------------------------- 288 JVMState* JVMState::of_depth(int d) const { 289 const JVMState* jvmp = this; 290 assert(0 < d && (uint)d <= depth(), "oob"); 291 for (int skip = depth() - d; skip > 0; skip--) { 292 jvmp = jvmp->caller(); 293 } 294 assert(jvmp->depth() == (uint)d, "found the right one"); 295 return (JVMState*)jvmp; 296 } 297 298 //-----------------------------same_calls_as----------------------------------- 299 bool JVMState::same_calls_as(const JVMState* that) const { 300 if (this == that) return true; 301 if (this->depth() != that->depth()) return false; 302 const JVMState* p = this; 303 const JVMState* q = that; 304 for (;;) { 305 if (p->_method != q->_method) return false; 306 if (p->_method == NULL) return true; // bci is irrelevant 307 if (p->_bci != q->_bci) return false; 308 if (p->_reexecute != q->_reexecute) return false; 309 p = p->caller(); 310 q = q->caller(); 311 if (p == q) return true; 312 assert(p != NULL && q != NULL, "depth check ensures we don't run off end"); 313 } 314 } 315 316 //------------------------------debug_start------------------------------------ 317 uint JVMState::debug_start() const { 318 debug_only(JVMState* jvmroot = of_depth(1)); 319 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last"); 320 return of_depth(1)->locoff(); 321 } 322 323 //-------------------------------debug_end------------------------------------- 324 uint JVMState::debug_end() const { 325 debug_only(JVMState* jvmroot = of_depth(1)); 326 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last"); 327 return endoff(); 328 } 329 330 //------------------------------debug_depth------------------------------------ 331 uint JVMState::debug_depth() const { 332 uint total = 0; 333 for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) { 334 total += jvmp->debug_size(); 335 } 336 return total; 337 } 338 339 #ifndef PRODUCT 340 341 //------------------------------format_helper---------------------------------- 342 // Given an allocation (a Chaitin object) and a Node decide if the Node carries 343 // any defined value or not. If it does, print out the register or constant. 344 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) { 345 if (n == NULL) { st->print(" NULL"); return; } 346 if (n->is_SafePointScalarObject()) { 347 // Scalar replacement. 348 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject(); 349 scobjs->append_if_missing(spobj); 350 int sco_n = scobjs->find(spobj); 351 assert(sco_n >= 0, ""); 352 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n); 353 return; 354 } 355 if (regalloc->node_regs_max_index() > 0 && 356 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined 357 char buf[50]; 358 regalloc->dump_register(n,buf); 359 st->print(" %s%d]=%s",msg,i,buf); 360 } else { // No register, but might be constant 361 const Type *t = n->bottom_type(); 362 switch (t->base()) { 363 case Type::Int: 364 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con()); 365 break; 366 case Type::AnyPtr: 367 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" ); 368 st->print(" %s%d]=#NULL",msg,i); 369 break; 370 case Type::AryPtr: 371 case Type::InstPtr: 372 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop())); 373 break; 374 case Type::KlassPtr: 375 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass())); 376 break; 377 case Type::MetadataPtr: 378 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata())); 379 break; 380 case Type::NarrowOop: 381 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop())); 382 break; 383 case Type::RawPtr: 384 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr())); 385 break; 386 case Type::DoubleCon: 387 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d); 388 break; 389 case Type::FloatCon: 390 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f); 391 break; 392 case Type::Long: 393 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con())); 394 break; 395 case Type::Half: 396 case Type::Top: 397 st->print(" %s%d]=_",msg,i); 398 break; 399 default: ShouldNotReachHere(); 400 } 401 } 402 } 403 404 //------------------------------format----------------------------------------- 405 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const { 406 st->print(" #"); 407 if (_method) { 408 _method->print_short_name(st); 409 st->print(" @ bci:%d ",_bci); 410 } else { 411 st->print_cr(" runtime stub "); 412 return; 413 } 414 if (n->is_MachSafePoint()) { 415 GrowableArray<SafePointScalarObjectNode*> scobjs; 416 MachSafePointNode *mcall = n->as_MachSafePoint(); 417 uint i; 418 // Print locals 419 for (i = 0; i < (uint)loc_size(); i++) 420 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs); 421 // Print stack 422 for (i = 0; i < (uint)stk_size(); i++) { 423 if ((uint)(_stkoff + i) >= mcall->len()) 424 st->print(" oob "); 425 else 426 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs); 427 } 428 for (i = 0; (int)i < nof_monitors(); i++) { 429 Node *box = mcall->monitor_box(this, i); 430 Node *obj = mcall->monitor_obj(this, i); 431 if (regalloc->node_regs_max_index() > 0 && 432 OptoReg::is_valid(regalloc->get_reg_first(box))) { 433 box = BoxLockNode::box_node(box); 434 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs); 435 } else { 436 OptoReg::Name box_reg = BoxLockNode::reg(box); 437 st->print(" MON-BOX%d=%s+%d", 438 i, 439 OptoReg::regname(OptoReg::c_frame_pointer), 440 regalloc->reg2offset(box_reg)); 441 } 442 const char* obj_msg = "MON-OBJ["; 443 if (EliminateLocks) { 444 if (BoxLockNode::box_node(box)->is_eliminated()) 445 obj_msg = "MON-OBJ(LOCK ELIMINATED)["; 446 } 447 format_helper(regalloc, st, obj, obj_msg, i, &scobjs); 448 } 449 450 for (i = 0; i < (uint)scobjs.length(); i++) { 451 // Scalar replaced objects. 452 st->cr(); 453 st->print(" # ScObj" INT32_FORMAT " ", i); 454 SafePointScalarObjectNode* spobj = scobjs.at(i); 455 ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass(); 456 assert(cik->is_instance_klass() || 457 cik->is_array_klass(), "Not supported allocation."); 458 ciInstanceKlass *iklass = NULL; 459 if (cik->is_instance_klass()) { 460 cik->print_name_on(st); 461 iklass = cik->as_instance_klass(); 462 } else if (cik->is_type_array_klass()) { 463 cik->as_array_klass()->base_element_type()->print_name_on(st); 464 st->print("[%d]", spobj->n_fields()); 465 } else if (cik->is_obj_array_klass()) { 466 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass(); 467 if (cie->is_instance_klass()) { 468 cie->print_name_on(st); 469 } else if (cie->is_type_array_klass()) { 470 cie->as_array_klass()->base_element_type()->print_name_on(st); 471 } else { 472 ShouldNotReachHere(); 473 } 474 st->print("[%d]", spobj->n_fields()); 475 int ndim = cik->as_array_klass()->dimension() - 1; 476 while (ndim-- > 0) { 477 st->print("[]"); 478 } 479 } 480 st->print("={"); 481 uint nf = spobj->n_fields(); 482 if (nf > 0) { 483 uint first_ind = spobj->first_index(mcall->jvms()); 484 Node* fld_node = mcall->in(first_ind); 485 ciField* cifield; 486 if (iklass != NULL) { 487 st->print(" ["); 488 cifield = iklass->nonstatic_field_at(0); 489 cifield->print_name_on(st); 490 format_helper(regalloc, st, fld_node, ":", 0, &scobjs); 491 } else { 492 format_helper(regalloc, st, fld_node, "[", 0, &scobjs); 493 } 494 for (uint j = 1; j < nf; j++) { 495 fld_node = mcall->in(first_ind+j); 496 if (iklass != NULL) { 497 st->print(", ["); 498 cifield = iklass->nonstatic_field_at(j); 499 cifield->print_name_on(st); 500 format_helper(regalloc, st, fld_node, ":", j, &scobjs); 501 } else { 502 format_helper(regalloc, st, fld_node, ", [", j, &scobjs); 503 } 504 } 505 } 506 st->print(" }"); 507 } 508 } 509 st->cr(); 510 if (caller() != NULL) caller()->format(regalloc, n, st); 511 } 512 513 514 void JVMState::dump_spec(outputStream *st) const { 515 if (_method != NULL) { 516 bool printed = false; 517 if (!Verbose) { 518 // The JVMS dumps make really, really long lines. 519 // Take out the most boring parts, which are the package prefixes. 520 char buf[500]; 521 stringStream namest(buf, sizeof(buf)); 522 _method->print_short_name(&namest); 523 if (namest.count() < sizeof(buf)) { 524 const char* name = namest.base(); 525 if (name[0] == ' ') ++name; 526 const char* endcn = strchr(name, ':'); // end of class name 527 if (endcn == NULL) endcn = strchr(name, '('); 528 if (endcn == NULL) endcn = name + strlen(name); 529 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/') 530 --endcn; 531 st->print(" %s", endcn); 532 printed = true; 533 } 534 } 535 if (!printed) 536 _method->print_short_name(st); 537 st->print(" @ bci:%d",_bci); 538 if(_reexecute == Reexecute_True) 539 st->print(" reexecute"); 540 } else { 541 st->print(" runtime stub"); 542 } 543 if (caller() != NULL) caller()->dump_spec(st); 544 } 545 546 547 void JVMState::dump_on(outputStream* st) const { 548 bool print_map = _map && !((uintptr_t)_map & 1) && 549 ((caller() == NULL) || (caller()->map() != _map)); 550 if (print_map) { 551 if (_map->len() > _map->req()) { // _map->has_exceptions() 552 Node* ex = _map->in(_map->req()); // _map->next_exception() 553 // skip the first one; it's already being printed 554 while (ex != NULL && ex->len() > ex->req()) { 555 ex = ex->in(ex->req()); // ex->next_exception() 556 ex->dump(1); 557 } 558 } 559 _map->dump(Verbose ? 2 : 1); 560 } 561 if (caller() != NULL) { 562 caller()->dump_on(st); 563 } 564 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=", 565 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false"); 566 if (_method == NULL) { 567 st->print_cr("(none)"); 568 } else { 569 _method->print_name(st); 570 st->cr(); 571 if (bci() >= 0 && bci() < _method->code_size()) { 572 st->print(" bc: "); 573 _method->print_codes_on(bci(), bci()+1, st); 574 } 575 } 576 } 577 578 // Extra way to dump a jvms from the debugger, 579 // to avoid a bug with C++ member function calls. 580 void dump_jvms(JVMState* jvms) { 581 jvms->dump(); 582 } 583 #endif 584 585 //--------------------------clone_shallow-------------------------------------- 586 JVMState* JVMState::clone_shallow(Compile* C) const { 587 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0); 588 n->set_bci(_bci); 589 n->_reexecute = _reexecute; 590 n->set_locoff(_locoff); 591 n->set_stkoff(_stkoff); 592 n->set_monoff(_monoff); 593 n->set_scloff(_scloff); 594 n->set_endoff(_endoff); 595 n->set_sp(_sp); 596 n->set_map(_map); 597 return n; 598 } 599 600 //---------------------------clone_deep---------------------------------------- 601 JVMState* JVMState::clone_deep(Compile* C) const { 602 JVMState* n = clone_shallow(C); 603 for (JVMState* p = n; p->_caller != NULL; p = p->_caller) { 604 p->_caller = p->_caller->clone_shallow(C); 605 } 606 assert(n->depth() == depth(), "sanity"); 607 assert(n->debug_depth() == debug_depth(), "sanity"); 608 return n; 609 } 610 611 /** 612 * Reset map for all callers 613 */ 614 void JVMState::set_map_deep(SafePointNode* map) { 615 for (JVMState* p = this; p->_caller != NULL; p = p->_caller) { 616 p->set_map(map); 617 } 618 } 619 620 // Adapt offsets in in-array after adding or removing an edge. 621 // Prerequisite is that the JVMState is used by only one node. 622 void JVMState::adapt_position(int delta) { 623 for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) { 624 jvms->set_locoff(jvms->locoff() + delta); 625 jvms->set_stkoff(jvms->stkoff() + delta); 626 jvms->set_monoff(jvms->monoff() + delta); 627 jvms->set_scloff(jvms->scloff() + delta); 628 jvms->set_endoff(jvms->endoff() + delta); 629 } 630 } 631 632 // Mirror the stack size calculation in the deopt code 633 // How much stack space would we need at this point in the program in 634 // case of deoptimization? 635 int JVMState::interpreter_frame_size() const { 636 const JVMState* jvms = this; 637 int size = 0; 638 int callee_parameters = 0; 639 int callee_locals = 0; 640 int extra_args = method()->max_stack() - stk_size(); 641 642 while (jvms != NULL) { 643 int locks = jvms->nof_monitors(); 644 int temps = jvms->stk_size(); 645 bool is_top_frame = (jvms == this); 646 ciMethod* method = jvms->method(); 647 648 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), 649 temps + callee_parameters, 650 extra_args, 651 locks, 652 callee_parameters, 653 callee_locals, 654 is_top_frame); 655 size += frame_size; 656 657 callee_parameters = method->size_of_parameters(); 658 callee_locals = method->max_locals(); 659 extra_args = 0; 660 jvms = jvms->caller(); 661 } 662 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; 663 } 664 665 //============================================================================= 666 uint CallNode::cmp( const Node &n ) const 667 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } 668 #ifndef PRODUCT 669 void CallNode::dump_req(outputStream *st) const { 670 // Dump the required inputs, enclosed in '(' and ')' 671 uint i; // Exit value of loop 672 for (i = 0; i < req(); i++) { // For all required inputs 673 if (i == TypeFunc::Parms) st->print("("); 674 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 675 else st->print("_ "); 676 } 677 st->print(")"); 678 } 679 680 void CallNode::dump_spec(outputStream *st) const { 681 st->print(" "); 682 if (tf() != NULL) tf()->dump_on(st); 683 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); 684 if (jvms() != NULL) jvms()->dump_spec(st); 685 } 686 #endif 687 688 const Type *CallNode::bottom_type() const { return tf()->range(); } 689 const Type* CallNode::Value(PhaseGVN* phase) const { 690 if (phase->type(in(0)) == Type::TOP) return Type::TOP; 691 return tf()->range(); 692 } 693 694 //------------------------------calling_convention----------------------------- 695 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 696 // Use the standard compiler calling convention 697 Matcher::calling_convention( sig_bt, parm_regs, argcnt, true ); 698 } 699 700 701 //------------------------------match------------------------------------------ 702 // Construct projections for control, I/O, memory-fields, ..., and 703 // return result(s) along with their RegMask info 704 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) { 705 switch (proj->_con) { 706 case TypeFunc::Control: 707 case TypeFunc::I_O: 708 case TypeFunc::Memory: 709 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 710 711 case TypeFunc::Parms+1: // For LONG & DOUBLE returns 712 assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, ""); 713 // 2nd half of doubles and longs 714 return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad); 715 716 case TypeFunc::Parms: { // Normal returns 717 uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg(); 718 OptoRegPair regs = is_CallRuntime() 719 ? match->c_return_value(ideal_reg,true) // Calls into C runtime 720 : match-> return_value(ideal_reg,true); // Calls into compiled Java code 721 RegMask rm = RegMask(regs.first()); 722 if( OptoReg::is_valid(regs.second()) ) 723 rm.Insert( regs.second() ); 724 return new MachProjNode(this,proj->_con,rm,ideal_reg); 725 } 726 727 case TypeFunc::ReturnAdr: 728 case TypeFunc::FramePtr: 729 default: 730 ShouldNotReachHere(); 731 } 732 return NULL; 733 } 734 735 // Do we Match on this edge index or not? Match no edges 736 uint CallNode::match_edge(uint idx) const { 737 return 0; 738 } 739 740 // 741 // Determine whether the call could modify the field of the specified 742 // instance at the specified offset. 743 // 744 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { 745 assert((t_oop != NULL), "sanity"); 746 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) { 747 const TypeTuple* args = _tf->domain_sig(); 748 Node* dest = NULL; 749 // Stubs that can be called once an ArrayCopyNode is expanded have 750 // different signatures. Look for the second pointer argument, 751 // that is the destination of the copy. 752 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) { 753 if (args->field_at(i)->isa_ptr()) { 754 j++; 755 if (j == 2) { 756 dest = in(i); 757 break; 758 } 759 } 760 } 761 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) { 762 return true; 763 } 764 return false; 765 } 766 if (t_oop->is_known_instance()) { 767 // The instance_id is set only for scalar-replaceable allocations which 768 // are not passed as arguments according to Escape Analysis. 769 return false; 770 } 771 if (t_oop->is_ptr_to_boxed_value()) { 772 ciKlass* boxing_klass = t_oop->klass(); 773 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) { 774 // Skip unrelated boxing methods. 775 Node* proj = proj_out(TypeFunc::Parms); 776 if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) { 777 return false; 778 } 779 } 780 if (is_CallJava() && as_CallJava()->method() != NULL) { 781 ciMethod* meth = as_CallJava()->method(); 782 if (meth->is_getter()) { 783 return false; 784 } 785 // May modify (by reflection) if an boxing object is passed 786 // as argument or returned. 787 if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) { 788 Node* proj = proj_out(TypeFunc::Parms); 789 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr(); 790 if ((inst_t != NULL) && (!inst_t->klass_is_exact() || 791 (inst_t->klass() == boxing_klass))) { 792 return true; 793 } 794 } 795 const TypeTuple* d = tf()->domain_cc(); 796 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 797 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr(); 798 if ((inst_t != NULL) && (!inst_t->klass_is_exact() || 799 (inst_t->klass() == boxing_klass))) { 800 return true; 801 } 802 } 803 return false; 804 } 805 } 806 return true; 807 } 808 809 // Does this call have a direct reference to n other than debug information? 810 bool CallNode::has_non_debug_use(Node *n) { 811 const TypeTuple * d = tf()->domain_cc(); 812 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 813 Node *arg = in(i); 814 if (arg == n) { 815 return true; 816 } 817 } 818 return false; 819 } 820 821 bool CallNode::has_debug_use(Node *n) { 822 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) { 823 Node *arg = in(i); 824 if (arg == n) { 825 return true; 826 } 827 } 828 return false; 829 } 830 831 // Returns the unique CheckCastPP of a call 832 // or 'this' if there are several CheckCastPP or unexpected uses 833 // or returns NULL if there is no one. 834 Node *CallNode::result_cast() { 835 Node *cast = NULL; 836 837 Node *p = proj_out(TypeFunc::Parms); 838 if (p == NULL) 839 return NULL; 840 841 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) { 842 Node *use = p->fast_out(i); 843 if (use->is_CheckCastPP()) { 844 if (cast != NULL) { 845 return this; // more than 1 CheckCastPP 846 } 847 cast = use; 848 } else if (!use->is_Initialize() && 849 !use->is_AddP() && 850 use->Opcode() != Op_MemBarStoreStore) { 851 // Expected uses are restricted to a CheckCastPP, an Initialize 852 // node, a MemBarStoreStore (clone) and AddP nodes. If we 853 // encounter any other use (a Phi node can be seen in rare 854 // cases) return this to prevent incorrect optimizations. 855 return this; 856 } 857 } 858 return cast; 859 } 860 861 862 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) { 863 projs->fallthrough_proj = NULL; 864 projs->fallthrough_catchproj = NULL; 865 projs->fallthrough_ioproj = NULL; 866 projs->catchall_ioproj = NULL; 867 projs->catchall_catchproj = NULL; 868 projs->fallthrough_memproj = NULL; 869 projs->catchall_memproj = NULL; 870 projs->resproj = NULL; 871 projs->exobj = NULL; 872 873 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 874 ProjNode *pn = fast_out(i)->as_Proj(); 875 if (pn->outcnt() == 0) continue; 876 switch (pn->_con) { 877 case TypeFunc::Control: 878 { 879 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj 880 projs->fallthrough_proj = pn; 881 DUIterator_Fast jmax, j = pn->fast_outs(jmax); 882 const Node *cn = pn->fast_out(j); 883 if (cn->is_Catch()) { 884 ProjNode *cpn = NULL; 885 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { 886 cpn = cn->fast_out(k)->as_Proj(); 887 assert(cpn->is_CatchProj(), "must be a CatchProjNode"); 888 if (cpn->_con == CatchProjNode::fall_through_index) 889 projs->fallthrough_catchproj = cpn; 890 else { 891 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); 892 projs->catchall_catchproj = cpn; 893 } 894 } 895 } 896 break; 897 } 898 case TypeFunc::I_O: 899 if (pn->_is_io_use) 900 projs->catchall_ioproj = pn; 901 else 902 projs->fallthrough_ioproj = pn; 903 for (DUIterator j = pn->outs(); pn->has_out(j); j++) { 904 Node* e = pn->out(j); 905 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) { 906 assert(projs->exobj == NULL, "only one"); 907 projs->exobj = e; 908 } 909 } 910 break; 911 case TypeFunc::Memory: 912 if (pn->_is_io_use) 913 projs->catchall_memproj = pn; 914 else 915 projs->fallthrough_memproj = pn; 916 break; 917 case TypeFunc::Parms: 918 projs->resproj = pn; 919 break; 920 default: 921 assert(false, "unexpected projection from allocation node."); 922 } 923 } 924 925 // The resproj may not exist because the result could be ignored 926 // and the exception object may not exist if an exception handler 927 // swallows the exception but all the other must exist and be found. 928 assert(projs->fallthrough_proj != NULL, "must be found"); 929 do_asserts = do_asserts && !Compile::current()->inlining_incrementally(); 930 assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found"); 931 assert(!do_asserts || projs->fallthrough_memproj != NULL, "must be found"); 932 assert(!do_asserts || projs->fallthrough_ioproj != NULL, "must be found"); 933 assert(!do_asserts || projs->catchall_catchproj != NULL, "must be found"); 934 if (separate_io_proj) { 935 assert(!do_asserts || projs->catchall_memproj != NULL, "must be found"); 936 assert(!do_asserts || projs->catchall_ioproj != NULL, "must be found"); 937 } 938 } 939 940 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) { 941 CallGenerator* cg = generator(); 942 if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) { 943 // Check whether this MH handle call becomes a candidate for inlining 944 ciMethod* callee = cg->method(); 945 vmIntrinsics::ID iid = callee->intrinsic_id(); 946 if (iid == vmIntrinsics::_invokeBasic) { 947 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) { 948 phase->C->prepend_late_inline(cg); 949 set_generator(NULL); 950 } 951 } else { 952 assert(callee->has_member_arg(), "wrong type of call?"); 953 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) { 954 phase->C->prepend_late_inline(cg); 955 set_generator(NULL); 956 } 957 } 958 } 959 return SafePointNode::Ideal(phase, can_reshape); 960 } 961 962 bool CallNode::is_call_to_arraycopystub() const { 963 if (_name != NULL && strstr(_name, "arraycopy") != 0) { 964 return true; 965 } 966 return false; 967 } 968 969 //============================================================================= 970 uint CallJavaNode::size_of() const { return sizeof(*this); } 971 uint CallJavaNode::cmp( const Node &n ) const { 972 CallJavaNode &call = (CallJavaNode&)n; 973 return CallNode::cmp(call) && _method == call._method && 974 _override_symbolic_info == call._override_symbolic_info; 975 } 976 #ifndef PRODUCT 977 void CallJavaNode::dump_spec(outputStream *st) const { 978 if( _method ) _method->print_short_name(st); 979 CallNode::dump_spec(st); 980 } 981 982 void CallJavaNode::dump_compact_spec(outputStream* st) const { 983 if (_method) { 984 _method->print_short_name(st); 985 } else { 986 st->print("<?>"); 987 } 988 } 989 #endif 990 991 //============================================================================= 992 uint CallStaticJavaNode::size_of() const { return sizeof(*this); } 993 uint CallStaticJavaNode::cmp( const Node &n ) const { 994 CallStaticJavaNode &call = (CallStaticJavaNode&)n; 995 return CallJavaNode::cmp(call); 996 } 997 998 //----------------------------uncommon_trap_request---------------------------- 999 // If this is an uncommon trap, return the request code, else zero. 1000 int CallStaticJavaNode::uncommon_trap_request() const { 1001 if (_name != NULL && !strcmp(_name, "uncommon_trap")) { 1002 return extract_uncommon_trap_request(this); 1003 } 1004 return 0; 1005 } 1006 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) { 1007 #ifndef PRODUCT 1008 if (!(call->req() > TypeFunc::Parms && 1009 call->in(TypeFunc::Parms) != NULL && 1010 call->in(TypeFunc::Parms)->is_Con() && 1011 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) { 1012 assert(in_dump() != 0, "OK if dumping"); 1013 tty->print("[bad uncommon trap]"); 1014 return 0; 1015 } 1016 #endif 1017 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con(); 1018 } 1019 1020 #ifndef PRODUCT 1021 void CallStaticJavaNode::dump_spec(outputStream *st) const { 1022 st->print("# Static "); 1023 if (_name != NULL) { 1024 st->print("%s", _name); 1025 int trap_req = uncommon_trap_request(); 1026 if (trap_req != 0) { 1027 char buf[100]; 1028 st->print("(%s)", 1029 Deoptimization::format_trap_request(buf, sizeof(buf), 1030 trap_req)); 1031 } 1032 st->print(" "); 1033 } 1034 CallJavaNode::dump_spec(st); 1035 } 1036 1037 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const { 1038 if (_method) { 1039 _method->print_short_name(st); 1040 } else if (_name) { 1041 st->print("%s", _name); 1042 } else { 1043 st->print("<?>"); 1044 } 1045 } 1046 #endif 1047 1048 //============================================================================= 1049 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); } 1050 uint CallDynamicJavaNode::cmp( const Node &n ) const { 1051 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n; 1052 return CallJavaNode::cmp(call); 1053 } 1054 #ifndef PRODUCT 1055 void CallDynamicJavaNode::dump_spec(outputStream *st) const { 1056 st->print("# Dynamic "); 1057 CallJavaNode::dump_spec(st); 1058 } 1059 #endif 1060 1061 //============================================================================= 1062 uint CallRuntimeNode::size_of() const { return sizeof(*this); } 1063 uint CallRuntimeNode::cmp( const Node &n ) const { 1064 CallRuntimeNode &call = (CallRuntimeNode&)n; 1065 return CallNode::cmp(call) && !strcmp(_name,call._name); 1066 } 1067 #ifndef PRODUCT 1068 void CallRuntimeNode::dump_spec(outputStream *st) const { 1069 st->print("# "); 1070 st->print("%s", _name); 1071 CallNode::dump_spec(st); 1072 } 1073 #endif 1074 1075 //------------------------------calling_convention----------------------------- 1076 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 1077 Matcher::c_calling_convention( sig_bt, parm_regs, argcnt ); 1078 } 1079 1080 //============================================================================= 1081 //------------------------------calling_convention----------------------------- 1082 1083 1084 //============================================================================= 1085 #ifndef PRODUCT 1086 void CallLeafNode::dump_spec(outputStream *st) const { 1087 st->print("# "); 1088 st->print("%s", _name); 1089 CallNode::dump_spec(st); 1090 } 1091 #endif 1092 1093 //============================================================================= 1094 1095 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) { 1096 assert(verify_jvms(jvms), "jvms must match"); 1097 int loc = jvms->locoff() + idx; 1098 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) { 1099 // If current local idx is top then local idx - 1 could 1100 // be a long/double that needs to be killed since top could 1101 // represent the 2nd half ofthe long/double. 1102 uint ideal = in(loc -1)->ideal_reg(); 1103 if (ideal == Op_RegD || ideal == Op_RegL) { 1104 // set other (low index) half to top 1105 set_req(loc - 1, in(loc)); 1106 } 1107 } 1108 set_req(loc, c); 1109 } 1110 1111 uint SafePointNode::size_of() const { return sizeof(*this); } 1112 uint SafePointNode::cmp( const Node &n ) const { 1113 return (&n == this); // Always fail except on self 1114 } 1115 1116 //-------------------------set_next_exception---------------------------------- 1117 void SafePointNode::set_next_exception(SafePointNode* n) { 1118 assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception"); 1119 if (len() == req()) { 1120 if (n != NULL) add_prec(n); 1121 } else { 1122 set_prec(req(), n); 1123 } 1124 } 1125 1126 1127 //----------------------------next_exception----------------------------------- 1128 SafePointNode* SafePointNode::next_exception() const { 1129 if (len() == req()) { 1130 return NULL; 1131 } else { 1132 Node* n = in(req()); 1133 assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges"); 1134 return (SafePointNode*) n; 1135 } 1136 } 1137 1138 1139 //------------------------------Ideal------------------------------------------ 1140 // Skip over any collapsed Regions 1141 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1142 if (remove_dead_region(phase, can_reshape)) { 1143 return this; 1144 } 1145 if (jvms() != NULL) { 1146 bool progress = false; 1147 // A ValueTypeNode with a valid object input in the debug info? 1148 // Reference the object directly. Helps removal of useless value 1149 // type allocations with incremental inlining. 1150 for (uint i = jvms()->debug_start(); i < jvms()->debug_end(); i++) { 1151 Node *arg = in(i); 1152 if (arg->is_ValueType()) { 1153 ValueTypeNode* vt = arg->as_ValueType(); 1154 Node* in_oop = vt->get_oop(); 1155 const Type* oop_type = phase->type(in_oop); 1156 if (oop_type->meet(TypePtr::NULL_PTR) != oop_type) { 1157 set_req(i, in_oop); 1158 progress = true; 1159 } 1160 } 1161 } 1162 if (progress) { 1163 return this; 1164 } 1165 } 1166 return NULL; 1167 } 1168 1169 //------------------------------Identity--------------------------------------- 1170 // Remove obviously duplicate safepoints 1171 Node* SafePointNode::Identity(PhaseGVN* phase) { 1172 1173 // If you have back to back safepoints, remove one 1174 if( in(TypeFunc::Control)->is_SafePoint() ) 1175 return in(TypeFunc::Control); 1176 1177 if( in(0)->is_Proj() ) { 1178 Node *n0 = in(0)->in(0); 1179 // Check if he is a call projection (except Leaf Call) 1180 if( n0->is_Catch() ) { 1181 n0 = n0->in(0)->in(0); 1182 assert( n0->is_Call(), "expect a call here" ); 1183 } 1184 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) { 1185 // Useless Safepoint, so remove it 1186 return in(TypeFunc::Control); 1187 } 1188 } 1189 1190 return this; 1191 } 1192 1193 //------------------------------Value------------------------------------------ 1194 const Type* SafePointNode::Value(PhaseGVN* phase) const { 1195 if( phase->type(in(0)) == Type::TOP ) return Type::TOP; 1196 if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop 1197 return Type::CONTROL; 1198 } 1199 1200 #ifndef PRODUCT 1201 void SafePointNode::dump_spec(outputStream *st) const { 1202 st->print(" SafePoint "); 1203 _replaced_nodes.dump(st); 1204 } 1205 1206 // The related nodes of a SafepointNode are all data inputs, excluding the 1207 // control boundary, as well as all outputs till level 2 (to include projection 1208 // nodes and targets). In compact mode, just include inputs till level 1 and 1209 // outputs as before. 1210 void SafePointNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { 1211 if (compact) { 1212 this->collect_nodes(in_rel, 1, false, false); 1213 } else { 1214 this->collect_nodes_in_all_data(in_rel, false); 1215 } 1216 this->collect_nodes(out_rel, -2, false, false); 1217 } 1218 #endif 1219 1220 const RegMask &SafePointNode::in_RegMask(uint idx) const { 1221 if( idx < TypeFunc::Parms ) return RegMask::Empty; 1222 // Values outside the domain represent debug info 1223 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1224 } 1225 const RegMask &SafePointNode::out_RegMask() const { 1226 return RegMask::Empty; 1227 } 1228 1229 1230 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) { 1231 assert((int)grow_by > 0, "sanity"); 1232 int monoff = jvms->monoff(); 1233 int scloff = jvms->scloff(); 1234 int endoff = jvms->endoff(); 1235 assert(endoff == (int)req(), "no other states or debug info after me"); 1236 Node* top = Compile::current()->top(); 1237 for (uint i = 0; i < grow_by; i++) { 1238 ins_req(monoff, top); 1239 } 1240 jvms->set_monoff(monoff + grow_by); 1241 jvms->set_scloff(scloff + grow_by); 1242 jvms->set_endoff(endoff + grow_by); 1243 } 1244 1245 void SafePointNode::push_monitor(const FastLockNode *lock) { 1246 // Add a LockNode, which points to both the original BoxLockNode (the 1247 // stack space for the monitor) and the Object being locked. 1248 const int MonitorEdges = 2; 1249 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1250 assert(req() == jvms()->endoff(), "correct sizing"); 1251 int nextmon = jvms()->scloff(); 1252 if (GenerateSynchronizationCode) { 1253 ins_req(nextmon, lock->box_node()); 1254 ins_req(nextmon+1, lock->obj_node()); 1255 } else { 1256 Node* top = Compile::current()->top(); 1257 ins_req(nextmon, top); 1258 ins_req(nextmon, top); 1259 } 1260 jvms()->set_scloff(nextmon + MonitorEdges); 1261 jvms()->set_endoff(req()); 1262 } 1263 1264 void SafePointNode::pop_monitor() { 1265 // Delete last monitor from debug info 1266 debug_only(int num_before_pop = jvms()->nof_monitors()); 1267 const int MonitorEdges = 2; 1268 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1269 int scloff = jvms()->scloff(); 1270 int endoff = jvms()->endoff(); 1271 int new_scloff = scloff - MonitorEdges; 1272 int new_endoff = endoff - MonitorEdges; 1273 jvms()->set_scloff(new_scloff); 1274 jvms()->set_endoff(new_endoff); 1275 while (scloff > new_scloff) del_req_ordered(--scloff); 1276 assert(jvms()->nof_monitors() == num_before_pop-1, ""); 1277 } 1278 1279 Node *SafePointNode::peek_monitor_box() const { 1280 int mon = jvms()->nof_monitors() - 1; 1281 assert(mon >= 0, "most have a monitor"); 1282 return monitor_box(jvms(), mon); 1283 } 1284 1285 Node *SafePointNode::peek_monitor_obj() const { 1286 int mon = jvms()->nof_monitors() - 1; 1287 assert(mon >= 0, "most have a monitor"); 1288 return monitor_obj(jvms(), mon); 1289 } 1290 1291 // Do we Match on this edge index or not? Match no edges 1292 uint SafePointNode::match_edge(uint idx) const { 1293 if( !needs_polling_address_input() ) 1294 return 0; 1295 1296 return (TypeFunc::Parms == idx); 1297 } 1298 1299 //============== SafePointScalarObjectNode ============== 1300 1301 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, 1302 #ifdef ASSERT 1303 AllocateNode* alloc, 1304 #endif 1305 uint first_index, 1306 uint n_fields) : 1307 TypeNode(tp, 1), // 1 control input -- seems required. Get from root. 1308 #ifdef ASSERT 1309 _alloc(alloc), 1310 #endif 1311 _first_index(first_index), 1312 _n_fields(n_fields) 1313 { 1314 init_class_id(Class_SafePointScalarObject); 1315 } 1316 1317 // Do not allow value-numbering for SafePointScalarObject node. 1318 uint SafePointScalarObjectNode::hash() const { return NO_HASH; } 1319 uint SafePointScalarObjectNode::cmp( const Node &n ) const { 1320 return (&n == this); // Always fail except on self 1321 } 1322 1323 uint SafePointScalarObjectNode::ideal_reg() const { 1324 return 0; // No matching to machine instruction 1325 } 1326 1327 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const { 1328 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1329 } 1330 1331 const RegMask &SafePointScalarObjectNode::out_RegMask() const { 1332 return RegMask::Empty; 1333 } 1334 1335 uint SafePointScalarObjectNode::match_edge(uint idx) const { 1336 return 0; 1337 } 1338 1339 SafePointScalarObjectNode* 1340 SafePointScalarObjectNode::clone(Dict* sosn_map) const { 1341 void* cached = (*sosn_map)[(void*)this]; 1342 if (cached != NULL) { 1343 return (SafePointScalarObjectNode*)cached; 1344 } 1345 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone(); 1346 sosn_map->Insert((void*)this, (void*)res); 1347 return res; 1348 } 1349 1350 1351 #ifndef PRODUCT 1352 void SafePointScalarObjectNode::dump_spec(outputStream *st) const { 1353 st->print(" # fields@[%d..%d]", first_index(), 1354 first_index() + n_fields() - 1); 1355 } 1356 1357 #endif 1358 1359 //============================================================================= 1360 uint AllocateNode::size_of() const { return sizeof(*this); } 1361 1362 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype, 1363 Node *ctrl, Node *mem, Node *abio, 1364 Node *size, Node *klass_node, Node *initial_test) 1365 : CallNode(atype, NULL, TypeRawPtr::BOTTOM) 1366 { 1367 init_class_id(Class_Allocate); 1368 init_flags(Flag_is_macro); 1369 _is_scalar_replaceable = false; 1370 _is_non_escaping = false; 1371 _is_allocation_MemBar_redundant = false; 1372 Node *topnode = C->top(); 1373 1374 init_req( TypeFunc::Control , ctrl ); 1375 init_req( TypeFunc::I_O , abio ); 1376 init_req( TypeFunc::Memory , mem ); 1377 init_req( TypeFunc::ReturnAdr, topnode ); 1378 init_req( TypeFunc::FramePtr , topnode ); 1379 init_req( AllocSize , size); 1380 init_req( KlassNode , klass_node); 1381 init_req( InitialTest , initial_test); 1382 init_req( ALength , topnode); 1383 C->add_macro_node(this); 1384 } 1385 1386 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer) 1387 { 1388 assert(initializer != NULL && 1389 initializer->is_initializer() && 1390 !initializer->is_static(), 1391 "unexpected initializer method"); 1392 BCEscapeAnalyzer* analyzer = initializer->get_bcea(); 1393 if (analyzer == NULL) { 1394 return; 1395 } 1396 1397 // Allocation node is first parameter in its initializer 1398 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) { 1399 _is_allocation_MemBar_redundant = true; 1400 } 1401 } 1402 1403 //============================================================================= 1404 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1405 Node* res = SafePointNode::Ideal(phase, can_reshape); 1406 if (res != NULL) { 1407 return res; 1408 } 1409 // Don't bother trying to transform a dead node 1410 if (in(0) && in(0)->is_top()) return NULL; 1411 1412 const Type* type = phase->type(Ideal_length()); 1413 if (type->isa_int() && type->is_int()->_hi < 0) { 1414 if (can_reshape) { 1415 PhaseIterGVN *igvn = phase->is_IterGVN(); 1416 // Unreachable fall through path (negative array length), 1417 // the allocation can only throw so disconnect it. 1418 Node* proj = proj_out(TypeFunc::Control); 1419 Node* catchproj = NULL; 1420 if (proj != NULL) { 1421 for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) { 1422 Node *cn = proj->fast_out(i); 1423 if (cn->is_Catch()) { 1424 catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index); 1425 break; 1426 } 1427 } 1428 } 1429 if (catchproj != NULL && catchproj->outcnt() > 0 && 1430 (catchproj->outcnt() > 1 || 1431 catchproj->unique_out()->Opcode() != Op_Halt)) { 1432 assert(catchproj->is_CatchProj(), "must be a CatchProjNode"); 1433 Node* nproj = catchproj->clone(); 1434 igvn->register_new_node_with_optimizer(nproj); 1435 1436 Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr ); 1437 frame = phase->transform(frame); 1438 // Halt & Catch Fire 1439 Node *halt = new HaltNode( nproj, frame ); 1440 phase->C->root()->add_req(halt); 1441 phase->transform(halt); 1442 1443 igvn->replace_node(catchproj, phase->C->top()); 1444 return this; 1445 } 1446 } else { 1447 // Can't correct it during regular GVN so register for IGVN 1448 phase->C->record_for_igvn(this); 1449 } 1450 } 1451 return NULL; 1452 } 1453 1454 // Retrieve the length from the AllocateArrayNode. Narrow the type with a 1455 // CastII, if appropriate. If we are not allowed to create new nodes, and 1456 // a CastII is appropriate, return NULL. 1457 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) { 1458 Node *length = in(AllocateNode::ALength); 1459 assert(length != NULL, "length is not null"); 1460 1461 const TypeInt* length_type = phase->find_int_type(length); 1462 const TypeAryPtr* ary_type = oop_type->isa_aryptr(); 1463 1464 if (ary_type != NULL && length_type != NULL) { 1465 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type); 1466 if (narrow_length_type != length_type) { 1467 // Assert one of: 1468 // - the narrow_length is 0 1469 // - the narrow_length is not wider than length 1470 assert(narrow_length_type == TypeInt::ZERO || 1471 length_type->is_con() && narrow_length_type->is_con() && 1472 (narrow_length_type->_hi <= length_type->_lo) || 1473 (narrow_length_type->_hi <= length_type->_hi && 1474 narrow_length_type->_lo >= length_type->_lo), 1475 "narrow type must be narrower than length type"); 1476 1477 // Return NULL if new nodes are not allowed 1478 if (!allow_new_nodes) return NULL; 1479 // Create a cast which is control dependent on the initialization to 1480 // propagate the fact that the array length must be positive. 1481 length = new CastIINode(length, narrow_length_type); 1482 length->set_req(0, initialization()->proj_out(0)); 1483 } 1484 } 1485 1486 return length; 1487 } 1488 1489 //============================================================================= 1490 uint LockNode::size_of() const { return sizeof(*this); } 1491 1492 // Redundant lock elimination 1493 // 1494 // There are various patterns of locking where we release and 1495 // immediately reacquire a lock in a piece of code where no operations 1496 // occur in between that would be observable. In those cases we can 1497 // skip releasing and reacquiring the lock without violating any 1498 // fairness requirements. Doing this around a loop could cause a lock 1499 // to be held for a very long time so we concentrate on non-looping 1500 // control flow. We also require that the operations are fully 1501 // redundant meaning that we don't introduce new lock operations on 1502 // some paths so to be able to eliminate it on others ala PRE. This 1503 // would probably require some more extensive graph manipulation to 1504 // guarantee that the memory edges were all handled correctly. 1505 // 1506 // Assuming p is a simple predicate which can't trap in any way and s 1507 // is a synchronized method consider this code: 1508 // 1509 // s(); 1510 // if (p) 1511 // s(); 1512 // else 1513 // s(); 1514 // s(); 1515 // 1516 // 1. The unlocks of the first call to s can be eliminated if the 1517 // locks inside the then and else branches are eliminated. 1518 // 1519 // 2. The unlocks of the then and else branches can be eliminated if 1520 // the lock of the final call to s is eliminated. 1521 // 1522 // Either of these cases subsumes the simple case of sequential control flow 1523 // 1524 // Addtionally we can eliminate versions without the else case: 1525 // 1526 // s(); 1527 // if (p) 1528 // s(); 1529 // s(); 1530 // 1531 // 3. In this case we eliminate the unlock of the first s, the lock 1532 // and unlock in the then case and the lock in the final s. 1533 // 1534 // Note also that in all these cases the then/else pieces don't have 1535 // to be trivial as long as they begin and end with synchronization 1536 // operations. 1537 // 1538 // s(); 1539 // if (p) 1540 // s(); 1541 // f(); 1542 // s(); 1543 // s(); 1544 // 1545 // The code will work properly for this case, leaving in the unlock 1546 // before the call to f and the relock after it. 1547 // 1548 // A potentially interesting case which isn't handled here is when the 1549 // locking is partially redundant. 1550 // 1551 // s(); 1552 // if (p) 1553 // s(); 1554 // 1555 // This could be eliminated putting unlocking on the else case and 1556 // eliminating the first unlock and the lock in the then side. 1557 // Alternatively the unlock could be moved out of the then side so it 1558 // was after the merge and the first unlock and second lock 1559 // eliminated. This might require less manipulation of the memory 1560 // state to get correct. 1561 // 1562 // Additionally we might allow work between a unlock and lock before 1563 // giving up eliminating the locks. The current code disallows any 1564 // conditional control flow between these operations. A formulation 1565 // similar to partial redundancy elimination computing the 1566 // availability of unlocking and the anticipatability of locking at a 1567 // program point would allow detection of fully redundant locking with 1568 // some amount of work in between. I'm not sure how often I really 1569 // think that would occur though. Most of the cases I've seen 1570 // indicate it's likely non-trivial work would occur in between. 1571 // There may be other more complicated constructs where we could 1572 // eliminate locking but I haven't seen any others appear as hot or 1573 // interesting. 1574 // 1575 // Locking and unlocking have a canonical form in ideal that looks 1576 // roughly like this: 1577 // 1578 // <obj> 1579 // | \\------+ 1580 // | \ \ 1581 // | BoxLock \ 1582 // | | | \ 1583 // | | \ \ 1584 // | | FastLock 1585 // | | / 1586 // | | / 1587 // | | | 1588 // 1589 // Lock 1590 // | 1591 // Proj #0 1592 // | 1593 // MembarAcquire 1594 // | 1595 // Proj #0 1596 // 1597 // MembarRelease 1598 // | 1599 // Proj #0 1600 // | 1601 // Unlock 1602 // | 1603 // Proj #0 1604 // 1605 // 1606 // This code proceeds by processing Lock nodes during PhaseIterGVN 1607 // and searching back through its control for the proper code 1608 // patterns. Once it finds a set of lock and unlock operations to 1609 // eliminate they are marked as eliminatable which causes the 1610 // expansion of the Lock and Unlock macro nodes to make the operation a NOP 1611 // 1612 //============================================================================= 1613 1614 // 1615 // Utility function to skip over uninteresting control nodes. Nodes skipped are: 1616 // - copy regions. (These may not have been optimized away yet.) 1617 // - eliminated locking nodes 1618 // 1619 static Node *next_control(Node *ctrl) { 1620 if (ctrl == NULL) 1621 return NULL; 1622 while (1) { 1623 if (ctrl->is_Region()) { 1624 RegionNode *r = ctrl->as_Region(); 1625 Node *n = r->is_copy(); 1626 if (n == NULL) 1627 break; // hit a region, return it 1628 else 1629 ctrl = n; 1630 } else if (ctrl->is_Proj()) { 1631 Node *in0 = ctrl->in(0); 1632 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) { 1633 ctrl = in0->in(0); 1634 } else { 1635 break; 1636 } 1637 } else { 1638 break; // found an interesting control 1639 } 1640 } 1641 return ctrl; 1642 } 1643 // 1644 // Given a control, see if it's the control projection of an Unlock which 1645 // operating on the same object as lock. 1646 // 1647 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock, 1648 GrowableArray<AbstractLockNode*> &lock_ops) { 1649 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL; 1650 if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) { 1651 Node *n = ctrl_proj->in(0); 1652 if (n != NULL && n->is_Unlock()) { 1653 UnlockNode *unlock = n->as_Unlock(); 1654 if (lock->obj_node()->eqv_uncast(unlock->obj_node()) && 1655 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) && 1656 !unlock->is_eliminated()) { 1657 lock_ops.append(unlock); 1658 return true; 1659 } 1660 } 1661 } 1662 return false; 1663 } 1664 1665 // 1666 // Find the lock matching an unlock. Returns null if a safepoint 1667 // or complicated control is encountered first. 1668 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) { 1669 LockNode *lock_result = NULL; 1670 // find the matching lock, or an intervening safepoint 1671 Node *ctrl = next_control(unlock->in(0)); 1672 while (1) { 1673 assert(ctrl != NULL, "invalid control graph"); 1674 assert(!ctrl->is_Start(), "missing lock for unlock"); 1675 if (ctrl->is_top()) break; // dead control path 1676 if (ctrl->is_Proj()) ctrl = ctrl->in(0); 1677 if (ctrl->is_SafePoint()) { 1678 break; // found a safepoint (may be the lock we are searching for) 1679 } else if (ctrl->is_Region()) { 1680 // Check for a simple diamond pattern. Punt on anything more complicated 1681 if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) { 1682 Node *in1 = next_control(ctrl->in(1)); 1683 Node *in2 = next_control(ctrl->in(2)); 1684 if (((in1->is_IfTrue() && in2->is_IfFalse()) || 1685 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) { 1686 ctrl = next_control(in1->in(0)->in(0)); 1687 } else { 1688 break; 1689 } 1690 } else { 1691 break; 1692 } 1693 } else { 1694 ctrl = next_control(ctrl->in(0)); // keep searching 1695 } 1696 } 1697 if (ctrl->is_Lock()) { 1698 LockNode *lock = ctrl->as_Lock(); 1699 if (lock->obj_node()->eqv_uncast(unlock->obj_node()) && 1700 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) { 1701 lock_result = lock; 1702 } 1703 } 1704 return lock_result; 1705 } 1706 1707 // This code corresponds to case 3 above. 1708 1709 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock, 1710 GrowableArray<AbstractLockNode*> &lock_ops) { 1711 Node* if_node = node->in(0); 1712 bool if_true = node->is_IfTrue(); 1713 1714 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) { 1715 Node *lock_ctrl = next_control(if_node->in(0)); 1716 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) { 1717 Node* lock1_node = NULL; 1718 ProjNode* proj = if_node->as_If()->proj_out(!if_true); 1719 if (if_true) { 1720 if (proj->is_IfFalse() && proj->outcnt() == 1) { 1721 lock1_node = proj->unique_out(); 1722 } 1723 } else { 1724 if (proj->is_IfTrue() && proj->outcnt() == 1) { 1725 lock1_node = proj->unique_out(); 1726 } 1727 } 1728 if (lock1_node != NULL && lock1_node->is_Lock()) { 1729 LockNode *lock1 = lock1_node->as_Lock(); 1730 if (lock->obj_node()->eqv_uncast(lock1->obj_node()) && 1731 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) && 1732 !lock1->is_eliminated()) { 1733 lock_ops.append(lock1); 1734 return true; 1735 } 1736 } 1737 } 1738 } 1739 1740 lock_ops.trunc_to(0); 1741 return false; 1742 } 1743 1744 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock, 1745 GrowableArray<AbstractLockNode*> &lock_ops) { 1746 // check each control merging at this point for a matching unlock. 1747 // in(0) should be self edge so skip it. 1748 for (int i = 1; i < (int)region->req(); i++) { 1749 Node *in_node = next_control(region->in(i)); 1750 if (in_node != NULL) { 1751 if (find_matching_unlock(in_node, lock, lock_ops)) { 1752 // found a match so keep on checking. 1753 continue; 1754 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) { 1755 continue; 1756 } 1757 1758 // If we fall through to here then it was some kind of node we 1759 // don't understand or there wasn't a matching unlock, so give 1760 // up trying to merge locks. 1761 lock_ops.trunc_to(0); 1762 return false; 1763 } 1764 } 1765 return true; 1766 1767 } 1768 1769 #ifndef PRODUCT 1770 // 1771 // Create a counter which counts the number of times this lock is acquired 1772 // 1773 void AbstractLockNode::create_lock_counter(JVMState* state) { 1774 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter); 1775 } 1776 1777 void AbstractLockNode::set_eliminated_lock_counter() { 1778 if (_counter) { 1779 // Update the counter to indicate that this lock was eliminated. 1780 // The counter update code will stay around even though the 1781 // optimizer will eliminate the lock operation itself. 1782 _counter->set_tag(NamedCounter::EliminatedLockCounter); 1783 } 1784 } 1785 1786 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"}; 1787 1788 void AbstractLockNode::dump_spec(outputStream* st) const { 1789 st->print("%s ", _kind_names[_kind]); 1790 CallNode::dump_spec(st); 1791 } 1792 1793 void AbstractLockNode::dump_compact_spec(outputStream* st) const { 1794 st->print("%s", _kind_names[_kind]); 1795 } 1796 1797 // The related set of lock nodes includes the control boundary. 1798 void AbstractLockNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { 1799 if (compact) { 1800 this->collect_nodes(in_rel, 1, false, false); 1801 } else { 1802 this->collect_nodes_in_all_data(in_rel, true); 1803 } 1804 this->collect_nodes(out_rel, -2, false, false); 1805 } 1806 #endif 1807 1808 //============================================================================= 1809 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1810 1811 // perform any generic optimizations first (returns 'this' or NULL) 1812 Node *result = SafePointNode::Ideal(phase, can_reshape); 1813 if (result != NULL) return result; 1814 // Don't bother trying to transform a dead node 1815 if (in(0) && in(0)->is_top()) return NULL; 1816 1817 // Now see if we can optimize away this lock. We don't actually 1818 // remove the locking here, we simply set the _eliminate flag which 1819 // prevents macro expansion from expanding the lock. Since we don't 1820 // modify the graph, the value returned from this function is the 1821 // one computed above. 1822 if (can_reshape && EliminateLocks && !is_non_esc_obj()) { 1823 // 1824 // If we are locking an unescaped object, the lock/unlock is unnecessary 1825 // 1826 ConnectionGraph *cgr = phase->C->congraph(); 1827 if (cgr != NULL && cgr->not_global_escape(obj_node())) { 1828 assert(!is_eliminated() || is_coarsened(), "sanity"); 1829 // The lock could be marked eliminated by lock coarsening 1830 // code during first IGVN before EA. Replace coarsened flag 1831 // to eliminate all associated locks/unlocks. 1832 #ifdef ASSERT 1833 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1"); 1834 #endif 1835 this->set_non_esc_obj(); 1836 return result; 1837 } 1838 1839 // 1840 // Try lock coarsening 1841 // 1842 PhaseIterGVN* iter = phase->is_IterGVN(); 1843 if (iter != NULL && !is_eliminated()) { 1844 1845 GrowableArray<AbstractLockNode*> lock_ops; 1846 1847 Node *ctrl = next_control(in(0)); 1848 1849 // now search back for a matching Unlock 1850 if (find_matching_unlock(ctrl, this, lock_ops)) { 1851 // found an unlock directly preceding this lock. This is the 1852 // case of single unlock directly control dependent on a 1853 // single lock which is the trivial version of case 1 or 2. 1854 } else if (ctrl->is_Region() ) { 1855 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) { 1856 // found lock preceded by multiple unlocks along all paths 1857 // joining at this point which is case 3 in description above. 1858 } 1859 } else { 1860 // see if this lock comes from either half of an if and the 1861 // predecessors merges unlocks and the other half of the if 1862 // performs a lock. 1863 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) { 1864 // found unlock splitting to an if with locks on both branches. 1865 } 1866 } 1867 1868 if (lock_ops.length() > 0) { 1869 // add ourselves to the list of locks to be eliminated. 1870 lock_ops.append(this); 1871 1872 #ifndef PRODUCT 1873 if (PrintEliminateLocks) { 1874 int locks = 0; 1875 int unlocks = 0; 1876 for (int i = 0; i < lock_ops.length(); i++) { 1877 AbstractLockNode* lock = lock_ops.at(i); 1878 if (lock->Opcode() == Op_Lock) 1879 locks++; 1880 else 1881 unlocks++; 1882 if (Verbose) { 1883 lock->dump(1); 1884 } 1885 } 1886 tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks); 1887 } 1888 #endif 1889 1890 // for each of the identified locks, mark them 1891 // as eliminatable 1892 for (int i = 0; i < lock_ops.length(); i++) { 1893 AbstractLockNode* lock = lock_ops.at(i); 1894 1895 // Mark it eliminated by coarsening and update any counters 1896 #ifdef ASSERT 1897 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened"); 1898 #endif 1899 lock->set_coarsened(); 1900 } 1901 } else if (ctrl->is_Region() && 1902 iter->_worklist.member(ctrl)) { 1903 // We weren't able to find any opportunities but the region this 1904 // lock is control dependent on hasn't been processed yet so put 1905 // this lock back on the worklist so we can check again once any 1906 // region simplification has occurred. 1907 iter->_worklist.push(this); 1908 } 1909 } 1910 } 1911 1912 return result; 1913 } 1914 1915 //============================================================================= 1916 bool LockNode::is_nested_lock_region() { 1917 return is_nested_lock_region(NULL); 1918 } 1919 1920 // p is used for access to compilation log; no logging if NULL 1921 bool LockNode::is_nested_lock_region(Compile * c) { 1922 BoxLockNode* box = box_node()->as_BoxLock(); 1923 int stk_slot = box->stack_slot(); 1924 if (stk_slot <= 0) { 1925 #ifdef ASSERT 1926 this->log_lock_optimization(c, "eliminate_lock_INLR_1"); 1927 #endif 1928 return false; // External lock or it is not Box (Phi node). 1929 } 1930 1931 // Ignore complex cases: merged locks or multiple locks. 1932 Node* obj = obj_node(); 1933 LockNode* unique_lock = NULL; 1934 if (!box->is_simple_lock_region(&unique_lock, obj)) { 1935 #ifdef ASSERT 1936 this->log_lock_optimization(c, "eliminate_lock_INLR_2a"); 1937 #endif 1938 return false; 1939 } 1940 if (unique_lock != this) { 1941 #ifdef ASSERT 1942 this->log_lock_optimization(c, "eliminate_lock_INLR_2b"); 1943 #endif 1944 return false; 1945 } 1946 1947 // Look for external lock for the same object. 1948 SafePointNode* sfn = this->as_SafePoint(); 1949 JVMState* youngest_jvms = sfn->jvms(); 1950 int max_depth = youngest_jvms->depth(); 1951 for (int depth = 1; depth <= max_depth; depth++) { 1952 JVMState* jvms = youngest_jvms->of_depth(depth); 1953 int num_mon = jvms->nof_monitors(); 1954 // Loop over monitors 1955 for (int idx = 0; idx < num_mon; idx++) { 1956 Node* obj_node = sfn->monitor_obj(jvms, idx); 1957 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock(); 1958 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) { 1959 return true; 1960 } 1961 } 1962 } 1963 #ifdef ASSERT 1964 this->log_lock_optimization(c, "eliminate_lock_INLR_3"); 1965 #endif 1966 return false; 1967 } 1968 1969 //============================================================================= 1970 uint UnlockNode::size_of() const { return sizeof(*this); } 1971 1972 //============================================================================= 1973 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1974 1975 // perform any generic optimizations first (returns 'this' or NULL) 1976 Node *result = SafePointNode::Ideal(phase, can_reshape); 1977 if (result != NULL) return result; 1978 // Don't bother trying to transform a dead node 1979 if (in(0) && in(0)->is_top()) return NULL; 1980 1981 // Now see if we can optimize away this unlock. We don't actually 1982 // remove the unlocking here, we simply set the _eliminate flag which 1983 // prevents macro expansion from expanding the unlock. Since we don't 1984 // modify the graph, the value returned from this function is the 1985 // one computed above. 1986 // Escape state is defined after Parse phase. 1987 if (can_reshape && EliminateLocks && !is_non_esc_obj()) { 1988 // 1989 // If we are unlocking an unescaped object, the lock/unlock is unnecessary. 1990 // 1991 ConnectionGraph *cgr = phase->C->congraph(); 1992 if (cgr != NULL && cgr->not_global_escape(obj_node())) { 1993 assert(!is_eliminated() || is_coarsened(), "sanity"); 1994 // The lock could be marked eliminated by lock coarsening 1995 // code during first IGVN before EA. Replace coarsened flag 1996 // to eliminate all associated locks/unlocks. 1997 #ifdef ASSERT 1998 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2"); 1999 #endif 2000 this->set_non_esc_obj(); 2001 } 2002 } 2003 return result; 2004 } 2005 2006 const char * AbstractLockNode::kind_as_string() const { 2007 return is_coarsened() ? "coarsened" : 2008 is_nested() ? "nested" : 2009 is_non_esc_obj() ? "non_escaping" : 2010 "?"; 2011 } 2012 2013 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag) const { 2014 if (C == NULL) { 2015 return; 2016 } 2017 CompileLog* log = C->log(); 2018 if (log != NULL) { 2019 log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'", 2020 tag, is_Lock(), C->compile_id(), 2021 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?", 2022 kind_as_string()); 2023 log->stamp(); 2024 log->end_head(); 2025 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms(); 2026 while (p != NULL) { 2027 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 2028 p = p->caller(); 2029 } 2030 log->tail(tag); 2031 } 2032 } 2033 2034 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) { 2035 if (dest_t->is_known_instance() && t_oop->is_known_instance()) { 2036 return dest_t->instance_id() == t_oop->instance_id(); 2037 } 2038 2039 if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) { 2040 // clone 2041 if (t_oop->isa_aryptr()) { 2042 return false; 2043 } 2044 if (!t_oop->isa_instptr()) { 2045 return true; 2046 } 2047 if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) { 2048 return true; 2049 } 2050 // unrelated 2051 return false; 2052 } 2053 2054 if (dest_t->isa_aryptr()) { 2055 // arraycopy or array clone 2056 if (t_oop->isa_instptr()) { 2057 return false; 2058 } 2059 if (!t_oop->isa_aryptr()) { 2060 return true; 2061 } 2062 2063 const Type* elem = dest_t->is_aryptr()->elem(); 2064 if (elem == Type::BOTTOM) { 2065 // An array but we don't know what elements are 2066 return true; 2067 } 2068 2069 dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr(); 2070 uint dest_alias = phase->C->get_alias_index(dest_t); 2071 uint t_oop_alias = phase->C->get_alias_index(t_oop); 2072 2073 return dest_alias == t_oop_alias; 2074 } 2075 2076 return true; 2077 } 2078 --- EOF ---