1 /* 2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "libadt/vectset.hpp" 28 #include "opto/addnode.hpp" 29 #include "opto/arraycopynode.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/cfgnode.hpp" 33 #include "opto/compile.hpp" 34 #include "opto/convertnode.hpp" 35 #include "opto/locknode.hpp" 36 #include "opto/loopnode.hpp" 37 #include "opto/macro.hpp" 38 #include "opto/memnode.hpp" 39 #include "opto/narrowptrnode.hpp" 40 #include "opto/node.hpp" 41 #include "opto/opaquenode.hpp" 42 #include "opto/phaseX.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/runtime.hpp" 45 #include "opto/subnode.hpp" 46 #include "opto/type.hpp" 47 #include "opto/valuetypenode.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 50 51 // 52 // Replace any references to "oldref" in inputs to "use" with "newref". 53 // Returns the number of replacements made. 54 // 55 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 56 int nreplacements = 0; 57 uint req = use->req(); 58 for (uint j = 0; j < use->len(); j++) { 59 Node *uin = use->in(j); 60 if (uin == oldref) { 61 if (j < req) 62 use->set_req(j, newref); 63 else 64 use->set_prec(j, newref); 65 nreplacements++; 66 } else if (j >= req && uin == NULL) { 67 break; 68 } 69 } 70 return nreplacements; 71 } 72 73 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) { 74 // Copy debug information and adjust JVMState information 75 uint old_dbg_start = oldcall->tf()->domain_sig()->cnt(); 76 uint new_dbg_start = newcall->tf()->domain_sig()->cnt(); 77 int jvms_adj = new_dbg_start - old_dbg_start; 78 assert (new_dbg_start == newcall->req(), "argument count mismatch"); 79 80 // SafePointScalarObject node could be referenced several times in debug info. 81 // Use Dict to record cloned nodes. 82 Dict* sosn_map = new Dict(cmpkey,hashkey); 83 for (uint i = old_dbg_start; i < oldcall->req(); i++) { 84 Node* old_in = oldcall->in(i); 85 // Clone old SafePointScalarObjectNodes, adjusting their field contents. 86 if (old_in != NULL && old_in->is_SafePointScalarObject()) { 87 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject(); 88 uint old_unique = C->unique(); 89 Node* new_in = old_sosn->clone(sosn_map); 90 if (old_unique != C->unique()) { // New node? 91 new_in->set_req(0, C->root()); // reset control edge 92 new_in = transform_later(new_in); // Register new node. 93 } 94 old_in = new_in; 95 } 96 newcall->add_req(old_in); 97 } 98 99 // JVMS may be shared so clone it before we modify it 100 newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL); 101 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) { 102 jvms->set_map(newcall); 103 jvms->set_locoff(jvms->locoff()+jvms_adj); 104 jvms->set_stkoff(jvms->stkoff()+jvms_adj); 105 jvms->set_monoff(jvms->monoff()+jvms_adj); 106 jvms->set_scloff(jvms->scloff()+jvms_adj); 107 jvms->set_endoff(jvms->endoff()+jvms_adj); 108 } 109 } 110 111 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 112 Node* cmp; 113 if (mask != 0) { 114 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 115 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 116 } else { 117 cmp = word; 118 } 119 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 120 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 121 transform_later(iff); 122 123 // Fast path taken. 124 Node *fast_taken = transform_later(new IfFalseNode(iff)); 125 126 // Fast path not-taken, i.e. slow path 127 Node *slow_taken = transform_later(new IfTrueNode(iff)); 128 129 if (return_fast_path) { 130 region->init_req(edge, slow_taken); // Capture slow-control 131 return fast_taken; 132 } else { 133 region->init_req(edge, fast_taken); // Capture fast-control 134 return slow_taken; 135 } 136 } 137 138 //--------------------copy_predefined_input_for_runtime_call-------------------- 139 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 140 // Set fixed predefined input arguments 141 call->init_req( TypeFunc::Control, ctrl ); 142 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 143 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 144 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 145 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 146 } 147 148 //------------------------------make_slow_call--------------------------------- 149 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 150 address slow_call, const char* leaf_name, Node* slow_path, 151 Node* parm0, Node* parm1, Node* parm2) { 152 153 // Slow-path call 154 CallNode *call = leaf_name 155 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 156 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM ); 157 158 // Slow path call has no side-effects, uses few values 159 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 160 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0); 161 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1); 162 if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2); 163 copy_call_debug_info(oldcall, call); 164 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 165 _igvn.replace_node(oldcall, call); 166 transform_later(call); 167 168 return call; 169 } 170 171 void PhaseMacroExpand::extract_call_projections(CallNode *call) { 172 _fallthroughproj = NULL; 173 _fallthroughcatchproj = NULL; 174 _ioproj_fallthrough = NULL; 175 _ioproj_catchall = NULL; 176 _catchallcatchproj = NULL; 177 _memproj_fallthrough = NULL; 178 _memproj_catchall = NULL; 179 _resproj = NULL; 180 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) { 181 ProjNode *pn = call->fast_out(i)->as_Proj(); 182 switch (pn->_con) { 183 case TypeFunc::Control: 184 { 185 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj 186 _fallthroughproj = pn; 187 DUIterator_Fast jmax, j = pn->fast_outs(jmax); 188 const Node *cn = pn->fast_out(j); 189 if (cn->is_Catch()) { 190 ProjNode *cpn = NULL; 191 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { 192 cpn = cn->fast_out(k)->as_Proj(); 193 assert(cpn->is_CatchProj(), "must be a CatchProjNode"); 194 if (cpn->_con == CatchProjNode::fall_through_index) 195 _fallthroughcatchproj = cpn; 196 else { 197 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); 198 _catchallcatchproj = cpn; 199 } 200 } 201 } 202 break; 203 } 204 case TypeFunc::I_O: 205 if (pn->_is_io_use) 206 _ioproj_catchall = pn; 207 else 208 _ioproj_fallthrough = pn; 209 break; 210 case TypeFunc::Memory: 211 if (pn->_is_io_use) 212 _memproj_catchall = pn; 213 else 214 _memproj_fallthrough = pn; 215 break; 216 case TypeFunc::Parms: 217 _resproj = pn; 218 break; 219 default: 220 assert(false, "unexpected projection from allocation node."); 221 } 222 } 223 224 } 225 226 // Eliminate a card mark sequence. p2x is a ConvP2XNode 227 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) { 228 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required"); 229 if (!UseG1GC) { 230 // vanilla/CMS post barrier 231 Node *shift = p2x->unique_out(); 232 Node *addp = shift->unique_out(); 233 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) { 234 Node *mem = addp->last_out(j); 235 if (UseCondCardMark && mem->is_Load()) { 236 assert(mem->Opcode() == Op_LoadB, "unexpected code shape"); 237 // The load is checking if the card has been written so 238 // replace it with zero to fold the test. 239 _igvn.replace_node(mem, intcon(0)); 240 continue; 241 } 242 assert(mem->is_Store(), "store required"); 243 _igvn.replace_node(mem, mem->in(MemNode::Memory)); 244 } 245 } else { 246 // G1 pre/post barriers 247 assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes"); 248 // It could be only one user, URShift node, in Object.clone() intrinsic 249 // but the new allocation is passed to arraycopy stub and it could not 250 // be scalar replaced. So we don't check the case. 251 252 // An other case of only one user (Xor) is when the value check for NULL 253 // in G1 post barrier is folded after CCP so the code which used URShift 254 // is removed. 255 256 // Take Region node before eliminating post barrier since it also 257 // eliminates CastP2X node when it has only one user. 258 Node* this_region = p2x->in(0); 259 assert(this_region != NULL, ""); 260 261 // Remove G1 post barrier. 262 263 // Search for CastP2X->Xor->URShift->Cmp path which 264 // checks if the store done to a different from the value's region. 265 // And replace Cmp with #0 (false) to collapse G1 post barrier. 266 Node* xorx = p2x->find_out_with(Op_XorX); 267 assert(xorx != NULL, "missing G1 post barrier"); 268 Node* shift = xorx->unique_out(); 269 Node* cmpx = shift->unique_out(); 270 assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() && 271 cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne, 272 "missing region check in G1 post barrier"); 273 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ)); 274 275 // Remove G1 pre barrier. 276 277 // Search "if (marking != 0)" check and set it to "false". 278 // There is no G1 pre barrier if previous stored value is NULL 279 // (for example, after initialization). 280 if (this_region->is_Region() && this_region->req() == 3) { 281 int ind = 1; 282 if (!this_region->in(ind)->is_IfFalse()) { 283 ind = 2; 284 } 285 if (this_region->in(ind)->is_IfFalse()) { 286 Node* bol = this_region->in(ind)->in(0)->in(1); 287 assert(bol->is_Bool(), ""); 288 cmpx = bol->in(1); 289 if (bol->as_Bool()->_test._test == BoolTest::ne && 290 cmpx->is_Cmp() && cmpx->in(2) == intcon(0) && 291 cmpx->in(1)->is_Load()) { 292 Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address); 293 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + 294 SATBMarkQueue::byte_offset_of_active()); 295 if (adr->is_AddP() && adr->in(AddPNode::Base) == top() && 296 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal && 297 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) { 298 _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ)); 299 } 300 } 301 } 302 } 303 // Now CastP2X can be removed since it is used only on dead path 304 // which currently still alive until igvn optimize it. 305 assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, ""); 306 _igvn.replace_node(p2x, top()); 307 } 308 } 309 310 // Search for a memory operation for the specified memory slice. 311 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 312 Node *orig_mem = mem; 313 Node *alloc_mem = alloc->in(TypeFunc::Memory); 314 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 315 while (true) { 316 if (mem == alloc_mem || mem == start_mem ) { 317 return mem; // hit one of our sentinels 318 } else if (mem->is_MergeMem()) { 319 mem = mem->as_MergeMem()->memory_at(alias_idx); 320 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 321 Node *in = mem->in(0); 322 // we can safely skip over safepoints, calls, locks and membars because we 323 // already know that the object is safe to eliminate. 324 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 325 return in; 326 } else if (in->is_Call()) { 327 CallNode *call = in->as_Call(); 328 if (call->may_modify(tinst, phase)) { 329 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 330 331 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 332 return in; 333 } 334 } 335 mem = in->in(TypeFunc::Memory); 336 } else if (in->is_MemBar()) { 337 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase)) { 338 assert(in->in(0)->is_Proj() && in->in(0)->in(0)->is_ArrayCopy(), "should be arraycopy"); 339 ArrayCopyNode* ac = in->in(0)->in(0)->as_ArrayCopy(); 340 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 341 return ac; 342 } 343 mem = in->in(TypeFunc::Memory); 344 } else { 345 assert(false, "unexpected projection"); 346 } 347 } else if (mem->is_Store()) { 348 const TypePtr* atype = mem->as_Store()->adr_type(); 349 int adr_idx = phase->C->get_alias_index(atype); 350 if (adr_idx == alias_idx) { 351 assert(atype->isa_oopptr(), "address type must be oopptr"); 352 int adr_offset = atype->offset(); 353 uint adr_iid = atype->is_oopptr()->instance_id(); 354 // Array elements references have the same alias_idx 355 // but different offset and different instance_id. 356 if (adr_offset == offset && adr_iid == alloc->_idx) 357 return mem; 358 } else { 359 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 360 } 361 mem = mem->in(MemNode::Memory); 362 } else if (mem->is_ClearArray()) { 363 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 364 // Can not bypass initialization of the instance 365 // we are looking. 366 debug_only(intptr_t offset;) 367 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 368 InitializeNode* init = alloc->as_Allocate()->initialization(); 369 // We are looking for stored value, return Initialize node 370 // or memory edge from Allocate node. 371 if (init != NULL) 372 return init; 373 else 374 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 375 } 376 // Otherwise skip it (the call updated 'mem' value). 377 } else if (mem->Opcode() == Op_SCMemProj) { 378 mem = mem->in(0); 379 Node* adr = NULL; 380 if (mem->is_LoadStore()) { 381 adr = mem->in(MemNode::Address); 382 } else { 383 assert(mem->Opcode() == Op_EncodeISOArray || 384 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 385 adr = mem->in(3); // Destination array 386 } 387 const TypePtr* atype = adr->bottom_type()->is_ptr(); 388 int adr_idx = phase->C->get_alias_index(atype); 389 if (adr_idx == alias_idx) { 390 DEBUG_ONLY(mem->dump();) 391 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 392 return NULL; 393 } 394 mem = mem->in(MemNode::Memory); 395 } else if (mem->Opcode() == Op_StrInflatedCopy) { 396 Node* adr = mem->in(3); // Destination array 397 const TypePtr* atype = adr->bottom_type()->is_ptr(); 398 int adr_idx = phase->C->get_alias_index(atype); 399 if (adr_idx == alias_idx) { 400 DEBUG_ONLY(mem->dump();) 401 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 402 return NULL; 403 } 404 mem = mem->in(MemNode::Memory); 405 } else { 406 return mem; 407 } 408 assert(mem != orig_mem, "dead memory loop"); 409 } 410 } 411 412 // Generate loads from source of the arraycopy for fields of 413 // destination needed at a deoptimization point 414 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, BasicType ft, const Type *ftype, AllocateNode *alloc) { 415 BasicType bt = ft; 416 const Type *type = ftype; 417 if (ft == T_NARROWOOP) { 418 bt = T_OBJECT; 419 type = ftype->make_oopptr(); 420 } 421 Node* res = NULL; 422 if (ac->is_clonebasic()) { 423 Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base); 424 Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset))); 425 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 426 Node* m = ac->in(TypeFunc::Memory); 427 while (m->is_MergeMem()) { 428 m = m->as_MergeMem()->memory_at(C->get_alias_index(adr_type)); 429 if (m->is_Proj() && m->in(0)->is_MemBar()) { 430 m = m->in(0)->in(TypeFunc::Memory); 431 } 432 } 433 res = LoadNode::make(_igvn, ctl, m, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned); 434 } else { 435 if (ac->modifies(offset, offset, &_igvn, true)) { 436 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 437 uint shift = exact_log2(type2aelembytes(bt)); 438 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 439 #ifdef _LP64 440 diff = _igvn.transform(new ConvI2LNode(diff)); 441 #endif 442 diff = _igvn.transform(new LShiftXNode(diff, intcon(shift))); 443 444 Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff)); 445 Node* base = ac->in(ArrayCopyNode::Src); 446 Node* adr = _igvn.transform(new AddPNode(base, base, off)); 447 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 448 Node* m = ac->in(TypeFunc::Memory); 449 res = LoadNode::make(_igvn, ctl, m, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned); 450 } 451 } 452 if (res != NULL) { 453 res = _igvn.transform(res); 454 if (ftype->isa_narrowoop()) { 455 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 456 res = _igvn.transform(new EncodePNode(res, ftype)); 457 } 458 return res; 459 } 460 return NULL; 461 } 462 463 // 464 // Given a Memory Phi, compute a value Phi containing the values from stores 465 // on the input paths. 466 // Note: this function is recursive, its depth is limited by the "level" argument 467 // Returns the computed Phi, or NULL if it cannot compute it. 468 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 469 assert(mem->is_Phi(), "sanity"); 470 int alias_idx = C->get_alias_index(adr_t); 471 int offset = adr_t->offset(); 472 int instance_id = adr_t->instance_id(); 473 474 // Check if an appropriate value phi already exists. 475 Node* region = mem->in(0); 476 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 477 Node* phi = region->fast_out(k); 478 if (phi->is_Phi() && phi != mem && 479 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) { 480 return phi; 481 } 482 } 483 // Check if an appropriate new value phi already exists. 484 Node* new_phi = value_phis->find(mem->_idx); 485 if (new_phi != NULL) 486 return new_phi; 487 488 if (level <= 0) { 489 return NULL; // Give up: phi tree too deep 490 } 491 Node *start_mem = C->start()->proj_out(TypeFunc::Memory); 492 Node *alloc_mem = alloc->in(TypeFunc::Memory); 493 494 uint length = mem->req(); 495 GrowableArray <Node *> values(length, length, NULL, false); 496 497 // create a new Phi for the value 498 PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset); 499 transform_later(phi); 500 value_phis->push(phi, mem->_idx); 501 502 for (uint j = 1; j < length; j++) { 503 Node *in = mem->in(j); 504 if (in == NULL || in->is_top()) { 505 values.at_put(j, in); 506 } else { 507 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 508 if (val == start_mem || val == alloc_mem) { 509 // hit a sentinel, return appropriate 0 value 510 values.at_put(j, _igvn.zerocon(ft)); 511 continue; 512 } 513 if (val->is_Initialize()) { 514 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 515 } 516 if (val == NULL) { 517 return NULL; // can't find a value on this path 518 } 519 if (val == mem) { 520 values.at_put(j, mem); 521 } else if (val->is_Store()) { 522 values.at_put(j, val->in(MemNode::ValueIn)); 523 } else if(val->is_Proj() && val->in(0) == alloc) { 524 values.at_put(j, _igvn.zerocon(ft)); 525 } else if (val->is_Phi()) { 526 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 527 if (val == NULL) { 528 return NULL; 529 } 530 values.at_put(j, val); 531 } else if (val->Opcode() == Op_SCMemProj) { 532 assert(val->in(0)->is_LoadStore() || 533 val->in(0)->Opcode() == Op_EncodeISOArray || 534 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 535 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 536 return NULL; 537 } else if (val->is_ArrayCopy()) { 538 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), ft, phi_type, alloc); 539 if (res == NULL) { 540 return NULL; 541 } 542 values.at_put(j, res); 543 } else { 544 #ifdef ASSERT 545 val->dump(); 546 assert(false, "unknown node on this path"); 547 #endif 548 return NULL; // unknown node on this path 549 } 550 } 551 } 552 // Set Phi's inputs 553 for (uint j = 1; j < length; j++) { 554 if (values.at(j) == mem) { 555 phi->init_req(j, phi); 556 } else { 557 phi->init_req(j, values.at(j)); 558 } 559 } 560 return phi; 561 } 562 563 // Search the last value stored into the object's field. 564 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 565 assert(adr_t->is_known_instance_field(), "instance required"); 566 assert(ft != T_VALUETYPE, "should not be used for value type fields"); 567 int instance_id = adr_t->instance_id(); 568 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 569 570 int alias_idx = C->get_alias_index(adr_t); 571 int offset = adr_t->offset(); 572 Node *start_mem = C->start()->proj_out(TypeFunc::Memory); 573 Node *alloc_ctrl = alloc->in(TypeFunc::Control); 574 Node *alloc_mem = alloc->in(TypeFunc::Memory); 575 Arena *a = Thread::current()->resource_area(); 576 VectorSet visited(a); 577 578 bool done = sfpt_mem == alloc_mem; 579 Node *mem = sfpt_mem; 580 while (!done) { 581 if (visited.test_set(mem->_idx)) { 582 return NULL; // found a loop, give up 583 } 584 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 585 if (mem == start_mem || mem == alloc_mem) { 586 done = true; // hit a sentinel, return appropriate 0 value 587 } else if (mem->is_Initialize()) { 588 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 589 if (mem == NULL) { 590 done = true; // Something went wrong. 591 } else if (mem->is_Store()) { 592 const TypePtr* atype = mem->as_Store()->adr_type(); 593 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 594 done = true; 595 } 596 } else if (mem->is_Store()) { 597 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 598 assert(atype != NULL, "address type must be oopptr"); 599 assert(C->get_alias_index(atype) == alias_idx && 600 atype->is_known_instance_field() && atype->offset() == offset && 601 atype->instance_id() == instance_id, "store is correct memory slice"); 602 done = true; 603 } else if (mem->is_Phi()) { 604 // try to find a phi's unique input 605 Node *unique_input = NULL; 606 Node *top = C->top(); 607 for (uint i = 1; i < mem->req(); i++) { 608 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 609 if (n == NULL || n == top || n == mem) { 610 continue; 611 } else if (unique_input == NULL) { 612 unique_input = n; 613 } else if (unique_input != n) { 614 unique_input = top; 615 break; 616 } 617 } 618 if (unique_input != NULL && unique_input != top) { 619 mem = unique_input; 620 } else { 621 done = true; 622 } 623 } else if (mem->is_ArrayCopy()) { 624 done = true; 625 } else { 626 assert(false, "unexpected node"); 627 } 628 } 629 if (mem != NULL) { 630 if (mem == start_mem || mem == alloc_mem) { 631 // hit a sentinel, return appropriate 0 value 632 return _igvn.zerocon(ft); 633 } else if (mem->is_Store()) { 634 return mem->in(MemNode::ValueIn); 635 } else if (mem->is_Phi()) { 636 // attempt to produce a Phi reflecting the values on the input paths of the Phi 637 Node_Stack value_phis(a, 8); 638 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 639 if (phi != NULL) { 640 return phi; 641 } else { 642 // Kill all new Phis 643 while(value_phis.is_nonempty()) { 644 Node* n = value_phis.node(); 645 _igvn.replace_node(n, C->top()); 646 value_phis.pop(); 647 } 648 } 649 } else if (mem->is_ArrayCopy()) { 650 Node* ctl = mem->in(0); 651 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) { 652 // pin the loads in the uncommon trap path 653 ctl = sfpt_ctl; 654 } 655 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, ft, ftype, alloc); 656 } 657 } 658 // Something went wrong. 659 return NULL; 660 } 661 662 // Search the last value stored into the value type's fields. 663 Node* PhaseMacroExpand::value_type_from_mem(Node* mem, Node* ctl, ciValueKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) { 664 // Subtract the offset of the first field to account for the missing oop header 665 offset -= vk->first_field_offset(); 666 // Create a new ValueTypeNode and retrieve the field values from memory 667 ValueTypeNode* vt = ValueTypeNode::make(_igvn, vk)->as_ValueType(); 668 for (int i = 0; i < vk->field_count(); ++i) { 669 ciType* field_type = vt->field_type(i); 670 int field_offset = offset + vt->field_offset(i); 671 // Each value type field has its own memory slice 672 adr_type = adr_type->with_field_offset(field_offset); 673 Node* value = NULL; 674 if (field_type->basic_type() == T_VALUETYPE) { 675 value = value_type_from_mem(mem, ctl, field_type->as_value_klass(), adr_type, field_offset, alloc); 676 } else { 677 value = value_from_mem(mem, ctl, field_type->basic_type(), Type::get_const_type(field_type), adr_type, alloc); 678 } 679 vt->set_field_value(i, value); 680 } 681 return vt; 682 } 683 684 // Check the possibility of scalar replacement. 685 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 686 // Scan the uses of the allocation to check for anything that would 687 // prevent us from eliminating it. 688 NOT_PRODUCT( const char* fail_eliminate = NULL; ) 689 DEBUG_ONLY( Node* disq_node = NULL; ) 690 bool can_eliminate = true; 691 692 Node* res = alloc->result_cast(); 693 const TypeOopPtr* res_type = NULL; 694 if (res == NULL) { 695 // All users were eliminated. 696 } else if (!res->is_CheckCastPP()) { 697 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 698 can_eliminate = false; 699 } else { 700 res_type = _igvn.type(res)->isa_oopptr(); 701 if (res_type == NULL) { 702 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 703 can_eliminate = false; 704 } else if (res_type->isa_aryptr()) { 705 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 706 if (length < 0) { 707 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 708 can_eliminate = false; 709 } 710 } 711 } 712 713 if (can_eliminate && res != NULL) { 714 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); 715 j < jmax && can_eliminate; j++) { 716 Node* use = res->fast_out(j); 717 718 if (use->is_AddP()) { 719 const TypePtr* addp_type = _igvn.type(use)->is_ptr(); 720 int offset = addp_type->offset(); 721 722 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 723 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";) 724 can_eliminate = false; 725 break; 726 } 727 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 728 k < kmax && can_eliminate; k++) { 729 Node* n = use->fast_out(k); 730 if (!n->is_Store() && n->Opcode() != Op_CastP2X && 731 !(n->is_ArrayCopy() && 732 n->as_ArrayCopy()->is_clonebasic() && 733 n->in(ArrayCopyNode::Dest) == use)) { 734 DEBUG_ONLY(disq_node = n;) 735 if (n->is_Load() || n->is_LoadStore()) { 736 NOT_PRODUCT(fail_eliminate = "Field load";) 737 } else { 738 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 739 } 740 can_eliminate = false; 741 } 742 } 743 } else if (use->is_ArrayCopy() && 744 (use->as_ArrayCopy()->is_arraycopy_validated() || 745 use->as_ArrayCopy()->is_copyof_validated() || 746 use->as_ArrayCopy()->is_copyofrange_validated()) && 747 use->in(ArrayCopyNode::Dest) == res) { 748 // ok to eliminate 749 } else if (use->is_SafePoint()) { 750 SafePointNode* sfpt = use->as_SafePoint(); 751 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 752 // Object is passed as argument. 753 DEBUG_ONLY(disq_node = use;) 754 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 755 can_eliminate = false; 756 } 757 Node* sfptMem = sfpt->memory(); 758 if (sfptMem == NULL || sfptMem->is_top()) { 759 DEBUG_ONLY(disq_node = use;) 760 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";) 761 can_eliminate = false; 762 } else { 763 safepoints.append_if_missing(sfpt); 764 } 765 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 766 if (use->is_Phi()) { 767 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 768 NOT_PRODUCT(fail_eliminate = "Object is return value";) 769 } else { 770 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 771 } 772 DEBUG_ONLY(disq_node = use;) 773 } else { 774 if (use->Opcode() == Op_Return) { 775 NOT_PRODUCT(fail_eliminate = "Object is return value";) 776 } else { 777 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 778 } 779 DEBUG_ONLY(disq_node = use;) 780 } 781 can_eliminate = false; 782 } 783 } 784 } 785 786 #ifndef PRODUCT 787 if (PrintEliminateAllocations) { 788 if (can_eliminate) { 789 tty->print("Scalar "); 790 if (res == NULL) 791 alloc->dump(); 792 else 793 res->dump(); 794 } else if (alloc->_is_scalar_replaceable) { 795 tty->print("NotScalar (%s)", fail_eliminate); 796 if (res == NULL) 797 alloc->dump(); 798 else 799 res->dump(); 800 #ifdef ASSERT 801 if (disq_node != NULL) { 802 tty->print(" >>>> "); 803 disq_node->dump(); 804 } 805 #endif /*ASSERT*/ 806 } 807 } 808 #endif 809 return can_eliminate; 810 } 811 812 // Do scalar replacement. 813 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 814 GrowableArray <SafePointNode *> safepoints_done; 815 816 ciKlass* klass = NULL; 817 ciInstanceKlass* iklass = NULL; 818 int nfields = 0; 819 int array_base = 0; 820 int element_size = 0; 821 BasicType basic_elem_type = T_ILLEGAL; 822 ciType* elem_type = NULL; 823 824 Node* res = alloc->result_cast(); 825 assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result"); 826 const TypeOopPtr* res_type = NULL; 827 if (res != NULL) { // Could be NULL when there are no users 828 res_type = _igvn.type(res)->isa_oopptr(); 829 } 830 831 if (res != NULL) { 832 klass = res_type->klass(); 833 // Value types are only allocated on demand 834 if (res_type->isa_instptr() || res_type->isa_valuetypeptr()) { 835 // find the fields of the class which will be needed for safepoint debug information 836 assert(klass->is_instance_klass(), "must be an instance klass."); 837 iklass = klass->as_instance_klass(); 838 nfields = iklass->nof_nonstatic_fields(); 839 } else { 840 // find the array's elements which will be needed for safepoint debug information 841 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 842 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass."); 843 elem_type = klass->as_array_klass()->element_type(); 844 basic_elem_type = elem_type->basic_type(); 845 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 846 element_size = type2aelembytes(basic_elem_type); 847 } 848 } 849 // 850 // Process the safepoint uses 851 // 852 while (safepoints.length() > 0) { 853 SafePointNode* sfpt = safepoints.pop(); 854 Node* mem = sfpt->memory(); 855 Node* ctl = sfpt->control(); 856 assert(sfpt->jvms() != NULL, "missed JVMS"); 857 // Fields of scalar objs are referenced only at the end 858 // of regular debuginfo at the last (youngest) JVMS. 859 // Record relative start index. 860 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 861 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, 862 #ifdef ASSERT 863 alloc, 864 #endif 865 first_ind, nfields); 866 sobj->init_req(0, C->root()); 867 transform_later(sobj); 868 869 // Scan object's fields adding an input to the safepoint for each field. 870 for (int j = 0; j < nfields; j++) { 871 intptr_t offset; 872 ciField* field = NULL; 873 if (iklass != NULL) { 874 field = iklass->nonstatic_field_at(j); 875 offset = field->offset(); 876 elem_type = field->type(); 877 basic_elem_type = field->layout_type(); 878 // Value type fields should not have safepoint uses 879 assert(basic_elem_type != T_VALUETYPE, "value type fields are flattened"); 880 } else { 881 offset = array_base + j * (intptr_t)element_size; 882 } 883 884 const Type *field_type; 885 // The next code is taken from Parse::do_get_xxx(). 886 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) { 887 if (!elem_type->is_loaded()) { 888 field_type = TypeInstPtr::BOTTOM; 889 } else if (field != NULL && field->is_constant() && field->is_static()) { 890 // This can happen if the constant oop is non-perm. 891 ciObject* con = field->constant_value().as_object(); 892 // Do not "join" in the previous type; it doesn't add value, 893 // and may yield a vacuous result if the field is of interface type. 894 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 895 assert(field_type != NULL, "field singleton type must be consistent"); 896 } else { 897 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 898 } 899 if (UseCompressedOops) { 900 field_type = field_type->make_narrowoop(); 901 basic_elem_type = T_NARROWOOP; 902 } 903 } else { 904 field_type = Type::get_const_basic_type(basic_elem_type); 905 } 906 907 Node* field_val = NULL; 908 const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 909 if (klass->is_value_array_klass()) { 910 ciValueKlass* vk = elem_type->as_value_klass(); 911 assert(vk->flatten_array(), "must be flattened"); 912 field_val = value_type_from_mem(mem, ctl, vk, field_addr_type->isa_aryptr(), 0, alloc); 913 } else { 914 field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc); 915 } 916 if (field_val == NULL) { 917 // We weren't able to find a value for this field, 918 // give up on eliminating this allocation. 919 920 // Remove any extra entries we added to the safepoint. 921 uint last = sfpt->req() - 1; 922 for (int k = 0; k < j; k++) { 923 sfpt->del_req(last--); 924 } 925 _igvn._worklist.push(sfpt); 926 // rollback processed safepoints 927 while (safepoints_done.length() > 0) { 928 SafePointNode* sfpt_done = safepoints_done.pop(); 929 // remove any extra entries we added to the safepoint 930 last = sfpt_done->req() - 1; 931 for (int k = 0; k < nfields; k++) { 932 sfpt_done->del_req(last--); 933 } 934 JVMState *jvms = sfpt_done->jvms(); 935 jvms->set_endoff(sfpt_done->req()); 936 // Now make a pass over the debug information replacing any references 937 // to SafePointScalarObjectNode with the allocated object. 938 int start = jvms->debug_start(); 939 int end = jvms->debug_end(); 940 for (int i = start; i < end; i++) { 941 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 942 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 943 if (scobj->first_index(jvms) == sfpt_done->req() && 944 scobj->n_fields() == (uint)nfields) { 945 assert(scobj->alloc() == alloc, "sanity"); 946 sfpt_done->set_req(i, res); 947 } 948 } 949 } 950 _igvn._worklist.push(sfpt_done); 951 } 952 #ifndef PRODUCT 953 if (PrintEliminateAllocations) { 954 if (field != NULL) { 955 tty->print("=== At SafePoint node %d can't find value of Field: ", 956 sfpt->_idx); 957 field->print(); 958 int field_idx = C->get_alias_index(field_addr_type); 959 tty->print(" (alias_idx=%d)", field_idx); 960 } else { // Array's element 961 tty->print("=== At SafePoint node %d can't find value of array element [%d]", 962 sfpt->_idx, j); 963 } 964 tty->print(", which prevents elimination of: "); 965 if (res == NULL) 966 alloc->dump(); 967 else 968 res->dump(); 969 } 970 #endif 971 return false; 972 } 973 if (UseCompressedOops && field_type->isa_narrowoop()) { 974 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 975 // to be able scalar replace the allocation. 976 if (field_val->is_EncodeP()) { 977 field_val = field_val->in(1); 978 } else { 979 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 980 } 981 } 982 sfpt->add_req(field_val); 983 } 984 JVMState *jvms = sfpt->jvms(); 985 jvms->set_endoff(sfpt->req()); 986 // Now make a pass over the debug information replacing any references 987 // to the allocated object with "sobj" 988 int start = jvms->debug_start(); 989 int end = jvms->debug_end(); 990 sfpt->replace_edges_in_range(res, sobj, start, end); 991 _igvn._worklist.push(sfpt); 992 safepoints_done.append_if_missing(sfpt); // keep it for rollback 993 } 994 return true; 995 } 996 997 // Process users of eliminated allocation. 998 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) { 999 Node* res = alloc->result_cast(); 1000 if (res != NULL) { 1001 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 1002 Node *use = res->last_out(j); 1003 uint oc1 = res->outcnt(); 1004 1005 if (use->is_AddP()) { 1006 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 1007 Node *n = use->last_out(k); 1008 uint oc2 = use->outcnt(); 1009 if (n->is_Store()) { 1010 #ifdef ASSERT 1011 // Verify that there is no dependent MemBarVolatile nodes, 1012 // they should be removed during IGVN, see MemBarNode::Ideal(). 1013 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); 1014 p < pmax; p++) { 1015 Node* mb = n->fast_out(p); 1016 assert(mb->is_Initialize() || !mb->is_MemBar() || 1017 mb->req() <= MemBarNode::Precedent || 1018 mb->in(MemBarNode::Precedent) != n, 1019 "MemBarVolatile should be eliminated for non-escaping object"); 1020 } 1021 #endif 1022 _igvn.replace_node(n, n->in(MemNode::Memory)); 1023 } else if (n->is_ArrayCopy()) { 1024 // Disconnect ArrayCopy node 1025 ArrayCopyNode* ac = n->as_ArrayCopy(); 1026 assert(ac->is_clonebasic(), "unexpected array copy kind"); 1027 Node* ctl_proj = ac->proj_out(TypeFunc::Control); 1028 Node* mem_proj = ac->proj_out(TypeFunc::Memory); 1029 if (ctl_proj != NULL) { 1030 _igvn.replace_node(ctl_proj, n->in(0)); 1031 } 1032 if (mem_proj != NULL) { 1033 _igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 1034 } 1035 } else { 1036 eliminate_card_mark(n); 1037 } 1038 k -= (oc2 - use->outcnt()); 1039 } 1040 } else if (use->is_ArrayCopy()) { 1041 // Disconnect ArrayCopy node 1042 ArrayCopyNode* ac = use->as_ArrayCopy(); 1043 assert(ac->is_arraycopy_validated() || 1044 ac->is_copyof_validated() || 1045 ac->is_copyofrange_validated(), "unsupported"); 1046 CallProjections callprojs; 1047 ac->extract_projections(&callprojs, true); 1048 1049 _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O)); 1050 _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory)); 1051 _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control)); 1052 1053 // Set control to top. IGVN will remove the remaining projections 1054 ac->set_req(0, top()); 1055 ac->replace_edge(res, top()); 1056 1057 // Disconnect src right away: it can help find new 1058 // opportunities for allocation elimination 1059 Node* src = ac->in(ArrayCopyNode::Src); 1060 ac->replace_edge(src, top()); 1061 if (src->outcnt() == 0) { 1062 _igvn.remove_dead_node(src); 1063 } 1064 1065 _igvn._worklist.push(ac); 1066 } else { 1067 eliminate_card_mark(use); 1068 } 1069 j -= (oc1 - res->outcnt()); 1070 } 1071 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 1072 _igvn.remove_dead_node(res); 1073 } 1074 1075 // 1076 // Process other users of allocation's projections 1077 // 1078 if (_resproj != NULL && _resproj->outcnt() != 0) { 1079 // First disconnect stores captured by Initialize node. 1080 // If Initialize node is eliminated first in the following code, 1081 // it will kill such stores and DUIterator_Last will assert. 1082 for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax); j < jmax; j++) { 1083 Node *use = _resproj->fast_out(j); 1084 if (use->is_AddP()) { 1085 // raw memory addresses used only by the initialization 1086 _igvn.replace_node(use, C->top()); 1087 --j; --jmax; 1088 } 1089 } 1090 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) { 1091 Node *use = _resproj->last_out(j); 1092 uint oc1 = _resproj->outcnt(); 1093 if (use->is_Initialize()) { 1094 // Eliminate Initialize node. 1095 InitializeNode *init = use->as_Initialize(); 1096 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 1097 Node *ctrl_proj = init->proj_out(TypeFunc::Control); 1098 if (ctrl_proj != NULL) { 1099 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection"); 1100 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj); 1101 } 1102 Node *mem_proj = init->proj_out(TypeFunc::Memory); 1103 if (mem_proj != NULL) { 1104 Node *mem = init->in(TypeFunc::Memory); 1105 #ifdef ASSERT 1106 if (mem->is_MergeMem()) { 1107 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection"); 1108 } else { 1109 assert(mem == _memproj_fallthrough, "allocation memory projection"); 1110 } 1111 #endif 1112 _igvn.replace_node(mem_proj, mem); 1113 } 1114 } else { 1115 assert(false, "only Initialize or AddP expected"); 1116 } 1117 j -= (oc1 - _resproj->outcnt()); 1118 } 1119 } 1120 if (_fallthroughcatchproj != NULL) { 1121 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control)); 1122 } 1123 if (_memproj_fallthrough != NULL) { 1124 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory)); 1125 } 1126 if (_memproj_catchall != NULL) { 1127 _igvn.replace_node(_memproj_catchall, C->top()); 1128 } 1129 if (_ioproj_fallthrough != NULL) { 1130 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O)); 1131 } 1132 if (_ioproj_catchall != NULL) { 1133 _igvn.replace_node(_ioproj_catchall, C->top()); 1134 } 1135 if (_catchallcatchproj != NULL) { 1136 _igvn.replace_node(_catchallcatchproj, C->top()); 1137 } 1138 } 1139 1140 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1141 // Don't do scalar replacement if the frame can be popped by JVMTI: 1142 // if reallocation fails during deoptimization we'll pop all 1143 // interpreter frames for this compiled frame and that won't play 1144 // nice with JVMTI popframe. 1145 if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) { 1146 return false; 1147 } 1148 Node* klass = alloc->in(AllocateNode::KlassNode); 1149 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1150 Node* res = alloc->result_cast(); 1151 // Eliminate boxing allocations which are not used 1152 // regardless scalar replacable status. 1153 bool boxing_alloc = C->eliminate_boxing() && 1154 tklass->klass()->is_instance_klass() && 1155 tklass->klass()->as_instance_klass()->is_box_klass(); 1156 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) { 1157 return false; 1158 } 1159 1160 extract_call_projections(alloc); 1161 1162 GrowableArray <SafePointNode *> safepoints; 1163 if (!can_eliminate_allocation(alloc, safepoints)) { 1164 return false; 1165 } 1166 1167 if (!alloc->_is_scalar_replaceable) { 1168 assert(res == NULL, "sanity"); 1169 // We can only eliminate allocation if all debug info references 1170 // are already replaced with SafePointScalarObject because 1171 // we can't search for a fields value without instance_id. 1172 if (safepoints.length() > 0) { 1173 return false; 1174 } 1175 } 1176 1177 if (!scalar_replacement(alloc, safepoints)) { 1178 return false; 1179 } 1180 1181 CompileLog* log = C->log(); 1182 if (log != NULL) { 1183 log->head("eliminate_allocation type='%d'", 1184 log->identify(tklass->klass())); 1185 JVMState* p = alloc->jvms(); 1186 while (p != NULL) { 1187 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1188 p = p->caller(); 1189 } 1190 log->tail("eliminate_allocation"); 1191 } 1192 1193 process_users_of_allocation(alloc); 1194 1195 #ifndef PRODUCT 1196 if (PrintEliminateAllocations) { 1197 if (alloc->is_AllocateArray()) 1198 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1199 else 1200 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1201 } 1202 #endif 1203 1204 return true; 1205 } 1206 1207 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1208 // EA should remove all uses of non-escaping boxing node. 1209 if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) { 1210 return false; 1211 } 1212 1213 assert(boxing->result_cast() == NULL, "unexpected boxing node result"); 1214 1215 extract_call_projections(boxing); 1216 1217 const TypeTuple* r = boxing->tf()->range(); 1218 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1219 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1220 assert(t != NULL, "sanity"); 1221 1222 CompileLog* log = C->log(); 1223 if (log != NULL) { 1224 log->head("eliminate_boxing type='%d'", 1225 log->identify(t->klass())); 1226 JVMState* p = boxing->jvms(); 1227 while (p != NULL) { 1228 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1229 p = p->caller(); 1230 } 1231 log->tail("eliminate_boxing"); 1232 } 1233 1234 process_users_of_allocation(boxing); 1235 1236 #ifndef PRODUCT 1237 if (PrintEliminateAllocations) { 1238 tty->print("++++ Eliminated: %d ", boxing->_idx); 1239 boxing->method()->print_short_name(tty); 1240 tty->cr(); 1241 } 1242 #endif 1243 1244 return true; 1245 } 1246 1247 //---------------------------set_eden_pointers------------------------- 1248 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) { 1249 if (UseTLAB) { // Private allocation: load from TLS 1250 Node* thread = transform_later(new ThreadLocalNode()); 1251 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset()); 1252 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset()); 1253 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset); 1254 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset); 1255 } else { // Shared allocation: load from globals 1256 CollectedHeap* ch = Universe::heap(); 1257 address top_adr = (address)ch->top_addr(); 1258 address end_adr = (address)ch->end_addr(); 1259 eden_top_adr = makecon(TypeRawPtr::make(top_adr)); 1260 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr); 1261 } 1262 } 1263 1264 1265 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1266 Node* adr = basic_plus_adr(base, offset); 1267 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1268 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1269 transform_later(value); 1270 return value; 1271 } 1272 1273 1274 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1275 Node* adr = basic_plus_adr(base, offset); 1276 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered); 1277 transform_later(mem); 1278 return mem; 1279 } 1280 1281 //============================================================================= 1282 // 1283 // A L L O C A T I O N 1284 // 1285 // Allocation attempts to be fast in the case of frequent small objects. 1286 // It breaks down like this: 1287 // 1288 // 1) Size in doublewords is computed. This is a constant for objects and 1289 // variable for most arrays. Doubleword units are used to avoid size 1290 // overflow of huge doubleword arrays. We need doublewords in the end for 1291 // rounding. 1292 // 1293 // 2) Size is checked for being 'too large'. Too-large allocations will go 1294 // the slow path into the VM. The slow path can throw any required 1295 // exceptions, and does all the special checks for very large arrays. The 1296 // size test can constant-fold away for objects. For objects with 1297 // finalizers it constant-folds the otherway: you always go slow with 1298 // finalizers. 1299 // 1300 // 3) If NOT using TLABs, this is the contended loop-back point. 1301 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1302 // 1303 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1304 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1305 // "size*8" we always enter the VM, where "largish" is a constant picked small 1306 // enough that there's always space between the eden max and 4Gig (old space is 1307 // there so it's quite large) and large enough that the cost of entering the VM 1308 // is dwarfed by the cost to initialize the space. 1309 // 1310 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1311 // down. If contended, repeat at step 3. If using TLABs normal-store 1312 // adjusted heap top back down; there is no contention. 1313 // 1314 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1315 // fields. 1316 // 1317 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1318 // oop flavor. 1319 // 1320 //============================================================================= 1321 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1322 // Allocations bigger than this always go the slow route. 1323 // This value must be small enough that allocation attempts that need to 1324 // trigger exceptions go the slow route. Also, it must be small enough so 1325 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1326 //=============================================================================j// 1327 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1328 // The allocator will coalesce int->oop copies away. See comment in 1329 // coalesce.cpp about how this works. It depends critically on the exact 1330 // code shape produced here, so if you are changing this code shape 1331 // make sure the GC info for the heap-top is correct in and around the 1332 // slow-path call. 1333 // 1334 1335 void PhaseMacroExpand::expand_allocate_common( 1336 AllocateNode* alloc, // allocation node to be expanded 1337 Node* length, // array length for an array allocation 1338 const TypeFunc* slow_call_type, // Type of slow call 1339 address slow_call_address // Address of slow call 1340 ) 1341 { 1342 1343 Node* ctrl = alloc->in(TypeFunc::Control); 1344 Node* mem = alloc->in(TypeFunc::Memory); 1345 Node* i_o = alloc->in(TypeFunc::I_O); 1346 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1347 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1348 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1349 1350 assert(ctrl != NULL, "must have control"); 1351 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1352 // they will not be used if "always_slow" is set 1353 enum { slow_result_path = 1, fast_result_path = 2 }; 1354 Node *result_region = NULL; 1355 Node *result_phi_rawmem = NULL; 1356 Node *result_phi_rawoop = NULL; 1357 Node *result_phi_i_o = NULL; 1358 1359 // The initial slow comparison is a size check, the comparison 1360 // we want to do is a BoolTest::gt 1361 bool always_slow = false; 1362 int tv = _igvn.find_int_con(initial_slow_test, -1); 1363 if (tv >= 0) { 1364 always_slow = (tv == 1); 1365 initial_slow_test = NULL; 1366 } else { 1367 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1368 } 1369 1370 if (C->env()->dtrace_alloc_probes() || 1371 !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc())) { 1372 // Force slow-path allocation 1373 always_slow = true; 1374 initial_slow_test = NULL; 1375 } 1376 1377 1378 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1379 Node *slow_region = NULL; 1380 Node *toobig_false = ctrl; 1381 1382 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent"); 1383 // generate the initial test if necessary 1384 if (initial_slow_test != NULL ) { 1385 slow_region = new RegionNode(3); 1386 1387 // Now make the initial failure test. Usually a too-big test but 1388 // might be a TRUE for finalizers or a fancy class check for 1389 // newInstance0. 1390 IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1391 transform_later(toobig_iff); 1392 // Plug the failing-too-big test into the slow-path region 1393 Node *toobig_true = new IfTrueNode( toobig_iff ); 1394 transform_later(toobig_true); 1395 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1396 toobig_false = new IfFalseNode( toobig_iff ); 1397 transform_later(toobig_false); 1398 } else { // No initial test, just fall into next case 1399 toobig_false = ctrl; 1400 debug_only(slow_region = NodeSentinel); 1401 } 1402 1403 Node *slow_mem = mem; // save the current memory state for slow path 1404 // generate the fast allocation code unless we know that the initial test will always go slow 1405 if (!always_slow) { 1406 // Fast path modifies only raw memory. 1407 if (mem->is_MergeMem()) { 1408 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1409 } 1410 1411 Node* eden_top_adr; 1412 Node* eden_end_adr; 1413 1414 set_eden_pointers(eden_top_adr, eden_end_adr); 1415 1416 // Load Eden::end. Loop invariant and hoisted. 1417 // 1418 // Note: We set the control input on "eden_end" and "old_eden_top" when using 1419 // a TLAB to work around a bug where these values were being moved across 1420 // a safepoint. These are not oops, so they cannot be include in the oop 1421 // map, but they can be changed by a GC. The proper way to fix this would 1422 // be to set the raw memory state when generating a SafepointNode. However 1423 // this will require extensive changes to the loop optimization in order to 1424 // prevent a degradation of the optimization. 1425 // See comment in memnode.hpp, around line 227 in class LoadPNode. 1426 Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS); 1427 1428 // allocate the Region and Phi nodes for the result 1429 result_region = new RegionNode(3); 1430 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1431 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1432 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1433 1434 // We need a Region for the loop-back contended case. 1435 enum { fall_in_path = 1, contended_loopback_path = 2 }; 1436 Node *contended_region; 1437 Node *contended_phi_rawmem; 1438 if (UseTLAB) { 1439 contended_region = toobig_false; 1440 contended_phi_rawmem = mem; 1441 } else { 1442 contended_region = new RegionNode(3); 1443 contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1444 // Now handle the passing-too-big test. We fall into the contended 1445 // loop-back merge point. 1446 contended_region ->init_req(fall_in_path, toobig_false); 1447 contended_phi_rawmem->init_req(fall_in_path, mem); 1448 transform_later(contended_region); 1449 transform_later(contended_phi_rawmem); 1450 } 1451 1452 // Load(-locked) the heap top. 1453 // See note above concerning the control input when using a TLAB 1454 Node *old_eden_top = UseTLAB 1455 ? new LoadPNode (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered) 1456 : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire); 1457 1458 transform_later(old_eden_top); 1459 // Add to heap top to get a new heap top 1460 Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes); 1461 transform_later(new_eden_top); 1462 // Check for needing a GC; compare against heap end 1463 Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end); 1464 transform_later(needgc_cmp); 1465 Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge); 1466 transform_later(needgc_bol); 1467 IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN); 1468 transform_later(needgc_iff); 1469 1470 // Plug the failing-heap-space-need-gc test into the slow-path region 1471 Node *needgc_true = new IfTrueNode(needgc_iff); 1472 transform_later(needgc_true); 1473 if (initial_slow_test) { 1474 slow_region->init_req(need_gc_path, needgc_true); 1475 // This completes all paths into the slow merge point 1476 transform_later(slow_region); 1477 } else { // No initial slow path needed! 1478 // Just fall from the need-GC path straight into the VM call. 1479 slow_region = needgc_true; 1480 } 1481 // No need for a GC. Setup for the Store-Conditional 1482 Node *needgc_false = new IfFalseNode(needgc_iff); 1483 transform_later(needgc_false); 1484 1485 // Grab regular I/O before optional prefetch may change it. 1486 // Slow-path does no I/O so just set it to the original I/O. 1487 result_phi_i_o->init_req(slow_result_path, i_o); 1488 1489 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem, 1490 old_eden_top, new_eden_top, length); 1491 1492 // Name successful fast-path variables 1493 Node* fast_oop = old_eden_top; 1494 Node* fast_oop_ctrl; 1495 Node* fast_oop_rawmem; 1496 1497 // Store (-conditional) the modified eden top back down. 1498 // StorePConditional produces flags for a test PLUS a modified raw 1499 // memory state. 1500 if (UseTLAB) { 1501 Node* store_eden_top = 1502 new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr, 1503 TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered); 1504 transform_later(store_eden_top); 1505 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path 1506 fast_oop_rawmem = store_eden_top; 1507 } else { 1508 Node* store_eden_top = 1509 new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr, 1510 new_eden_top, fast_oop/*old_eden_top*/); 1511 transform_later(store_eden_top); 1512 Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne); 1513 transform_later(contention_check); 1514 store_eden_top = new SCMemProjNode(store_eden_top); 1515 transform_later(store_eden_top); 1516 1517 // If not using TLABs, check to see if there was contention. 1518 IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN); 1519 transform_later(contention_iff); 1520 Node *contention_true = new IfTrueNode(contention_iff); 1521 transform_later(contention_true); 1522 // If contention, loopback and try again. 1523 contended_region->init_req(contended_loopback_path, contention_true); 1524 contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top); 1525 1526 // Fast-path succeeded with no contention! 1527 Node *contention_false = new IfFalseNode(contention_iff); 1528 transform_later(contention_false); 1529 fast_oop_ctrl = contention_false; 1530 1531 // Bump total allocated bytes for this thread 1532 Node* thread = new ThreadLocalNode(); 1533 transform_later(thread); 1534 Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread, 1535 in_bytes(JavaThread::allocated_bytes_offset())); 1536 Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr, 1537 0, TypeLong::LONG, T_LONG); 1538 #ifdef _LP64 1539 Node* alloc_size = size_in_bytes; 1540 #else 1541 Node* alloc_size = new ConvI2LNode(size_in_bytes); 1542 transform_later(alloc_size); 1543 #endif 1544 Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size); 1545 transform_later(new_alloc_bytes); 1546 fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr, 1547 0, new_alloc_bytes, T_LONG); 1548 } 1549 1550 InitializeNode* init = alloc->initialization(); 1551 fast_oop_rawmem = initialize_object(alloc, 1552 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1553 klass_node, length, size_in_bytes); 1554 1555 // If initialization is performed by an array copy, any required 1556 // MemBarStoreStore was already added. If the object does not 1557 // escape no need for a MemBarStoreStore. If the object does not 1558 // escape in its initializer and memory barrier (MemBarStoreStore or 1559 // stronger) is already added at exit of initializer, also no need 1560 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1561 // so that stores that initialize this object can't be reordered 1562 // with a subsequent store that makes this object accessible by 1563 // other threads. 1564 // Other threads include java threads and JVM internal threads 1565 // (for example concurrent GC threads). Current concurrent GC 1566 // implementation: CMS and G1 will not scan newly created object, 1567 // so it's safe to skip storestore barrier when allocation does 1568 // not escape. 1569 if (!alloc->does_not_escape_thread() && 1570 !alloc->is_allocation_MemBar_redundant() && 1571 (init == NULL || !init->is_complete_with_arraycopy())) { 1572 if (init == NULL || init->req() < InitializeNode::RawStores) { 1573 // No InitializeNode or no stores captured by zeroing 1574 // elimination. Simply add the MemBarStoreStore after object 1575 // initialization. 1576 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1577 transform_later(mb); 1578 1579 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1580 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1581 fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control); 1582 transform_later(fast_oop_ctrl); 1583 fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory); 1584 transform_later(fast_oop_rawmem); 1585 } else { 1586 // Add the MemBarStoreStore after the InitializeNode so that 1587 // all stores performing the initialization that were moved 1588 // before the InitializeNode happen before the storestore 1589 // barrier. 1590 1591 Node* init_ctrl = init->proj_out(TypeFunc::Control); 1592 Node* init_mem = init->proj_out(TypeFunc::Memory); 1593 1594 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1595 transform_later(mb); 1596 1597 Node* ctrl = new ProjNode(init,TypeFunc::Control); 1598 transform_later(ctrl); 1599 Node* mem = new ProjNode(init,TypeFunc::Memory); 1600 transform_later(mem); 1601 1602 // The MemBarStoreStore depends on control and memory coming 1603 // from the InitializeNode 1604 mb->init_req(TypeFunc::Memory, mem); 1605 mb->init_req(TypeFunc::Control, ctrl); 1606 1607 ctrl = new ProjNode(mb,TypeFunc::Control); 1608 transform_later(ctrl); 1609 mem = new ProjNode(mb,TypeFunc::Memory); 1610 transform_later(mem); 1611 1612 // All nodes that depended on the InitializeNode for control 1613 // and memory must now depend on the MemBarNode that itself 1614 // depends on the InitializeNode 1615 _igvn.replace_node(init_ctrl, ctrl); 1616 _igvn.replace_node(init_mem, mem); 1617 } 1618 } 1619 1620 if (C->env()->dtrace_extended_probes()) { 1621 // Slow-path call 1622 int size = TypeFunc::Parms + 2; 1623 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1624 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base), 1625 "dtrace_object_alloc", 1626 TypeRawPtr::BOTTOM); 1627 1628 // Get base of thread-local storage area 1629 Node* thread = new ThreadLocalNode(); 1630 transform_later(thread); 1631 1632 call->init_req(TypeFunc::Parms+0, thread); 1633 call->init_req(TypeFunc::Parms+1, fast_oop); 1634 call->init_req(TypeFunc::Control, fast_oop_ctrl); 1635 call->init_req(TypeFunc::I_O , top()); // does no i/o 1636 call->init_req(TypeFunc::Memory , fast_oop_rawmem); 1637 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1638 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1639 transform_later(call); 1640 fast_oop_ctrl = new ProjNode(call,TypeFunc::Control); 1641 transform_later(fast_oop_ctrl); 1642 fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory); 1643 transform_later(fast_oop_rawmem); 1644 } 1645 1646 // Plug in the successful fast-path into the result merge point 1647 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1648 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1649 result_phi_i_o ->init_req(fast_result_path, i_o); 1650 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1651 } else { 1652 slow_region = ctrl; 1653 result_phi_i_o = i_o; // Rename it to use in the following code. 1654 } 1655 1656 // Generate slow-path call 1657 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1658 OptoRuntime::stub_name(slow_call_address), 1659 alloc->jvms()->bci(), 1660 TypePtr::BOTTOM); 1661 call->init_req( TypeFunc::Control, slow_region ); 1662 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o 1663 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs 1664 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) ); 1665 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) ); 1666 1667 call->init_req(TypeFunc::Parms+0, klass_node); 1668 if (length != NULL) { 1669 call->init_req(TypeFunc::Parms+1, length); 1670 } 1671 1672 // Copy debug information and adjust JVMState information, then replace 1673 // allocate node with the call 1674 copy_call_debug_info((CallNode *) alloc, call); 1675 if (!always_slow) { 1676 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1677 } else { 1678 // Hook i_o projection to avoid its elimination during allocation 1679 // replacement (when only a slow call is generated). 1680 call->set_req(TypeFunc::I_O, result_phi_i_o); 1681 } 1682 _igvn.replace_node(alloc, call); 1683 transform_later(call); 1684 1685 // Identify the output projections from the allocate node and 1686 // adjust any references to them. 1687 // The control and io projections look like: 1688 // 1689 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1690 // Allocate Catch 1691 // ^---Proj(io) <-------+ ^---CatchProj(io) 1692 // 1693 // We are interested in the CatchProj nodes. 1694 // 1695 extract_call_projections(call); 1696 1697 // An allocate node has separate memory projections for the uses on 1698 // the control and i_o paths. Replace the control memory projection with 1699 // result_phi_rawmem (unless we are only generating a slow call when 1700 // both memory projections are combined) 1701 if (!always_slow && _memproj_fallthrough != NULL) { 1702 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) { 1703 Node *use = _memproj_fallthrough->fast_out(i); 1704 _igvn.rehash_node_delayed(use); 1705 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem); 1706 // back up iterator 1707 --i; 1708 } 1709 } 1710 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete 1711 // _memproj_catchall so we end up with a call that has only 1 memory projection. 1712 if (_memproj_catchall != NULL ) { 1713 if (_memproj_fallthrough == NULL) { 1714 _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory); 1715 transform_later(_memproj_fallthrough); 1716 } 1717 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) { 1718 Node *use = _memproj_catchall->fast_out(i); 1719 _igvn.rehash_node_delayed(use); 1720 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough); 1721 // back up iterator 1722 --i; 1723 } 1724 assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted"); 1725 _igvn.remove_dead_node(_memproj_catchall); 1726 } 1727 1728 // An allocate node has separate i_o projections for the uses on the control 1729 // and i_o paths. Always replace the control i_o projection with result i_o 1730 // otherwise incoming i_o become dead when only a slow call is generated 1731 // (it is different from memory projections where both projections are 1732 // combined in such case). 1733 if (_ioproj_fallthrough != NULL) { 1734 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) { 1735 Node *use = _ioproj_fallthrough->fast_out(i); 1736 _igvn.rehash_node_delayed(use); 1737 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o); 1738 // back up iterator 1739 --i; 1740 } 1741 } 1742 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete 1743 // _ioproj_catchall so we end up with a call that has only 1 i_o projection. 1744 if (_ioproj_catchall != NULL ) { 1745 if (_ioproj_fallthrough == NULL) { 1746 _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O); 1747 transform_later(_ioproj_fallthrough); 1748 } 1749 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) { 1750 Node *use = _ioproj_catchall->fast_out(i); 1751 _igvn.rehash_node_delayed(use); 1752 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough); 1753 // back up iterator 1754 --i; 1755 } 1756 assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted"); 1757 _igvn.remove_dead_node(_ioproj_catchall); 1758 } 1759 1760 // if we generated only a slow call, we are done 1761 if (always_slow) { 1762 // Now we can unhook i_o. 1763 if (result_phi_i_o->outcnt() > 1) { 1764 call->set_req(TypeFunc::I_O, top()); 1765 } else { 1766 assert(result_phi_i_o->unique_ctrl_out() == call, ""); 1767 // Case of new array with negative size known during compilation. 1768 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1769 // following code since call to runtime will throw exception. 1770 // As result there will be no users of i_o after the call. 1771 // Leave i_o attached to this call to avoid problems in preceding graph. 1772 } 1773 return; 1774 } 1775 1776 1777 if (_fallthroughcatchproj != NULL) { 1778 ctrl = _fallthroughcatchproj->clone(); 1779 transform_later(ctrl); 1780 _igvn.replace_node(_fallthroughcatchproj, result_region); 1781 } else { 1782 ctrl = top(); 1783 } 1784 Node *slow_result; 1785 if (_resproj == NULL) { 1786 // no uses of the allocation result 1787 slow_result = top(); 1788 } else { 1789 slow_result = _resproj->clone(); 1790 transform_later(slow_result); 1791 _igvn.replace_node(_resproj, result_phi_rawoop); 1792 } 1793 1794 // Plug slow-path into result merge point 1795 result_region ->init_req( slow_result_path, ctrl ); 1796 result_phi_rawoop->init_req( slow_result_path, slow_result); 1797 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough ); 1798 transform_later(result_region); 1799 transform_later(result_phi_rawoop); 1800 transform_later(result_phi_rawmem); 1801 transform_later(result_phi_i_o); 1802 // This completes all paths into the result merge point 1803 } 1804 1805 1806 // Helper for PhaseMacroExpand::expand_allocate_common. 1807 // Initializes the newly-allocated storage. 1808 Node* 1809 PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1810 Node* control, Node* rawmem, Node* object, 1811 Node* klass_node, Node* length, 1812 Node* size_in_bytes) { 1813 InitializeNode* init = alloc->initialization(); 1814 // Store the klass & mark bits 1815 Node* mark_node = NULL; 1816 // For now only enable fast locking for non-array types 1817 if (UseBiasedLocking && (length == NULL)) { 1818 mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS); 1819 } else { 1820 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype())); 1821 } 1822 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS); 1823 1824 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1825 int header_size = alloc->minimum_header_size(); // conservatively small 1826 1827 // Array length 1828 if (length != NULL) { // Arrays need length field 1829 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1830 // conservatively small header size: 1831 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1832 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); 1833 if (k->is_array_klass()) // we know the exact header size in most cases: 1834 header_size = Klass::layout_helper_header_size(k->layout_helper()); 1835 } 1836 1837 // Clear the object body, if necessary. 1838 if (init == NULL) { 1839 // The init has somehow disappeared; be cautious and clear everything. 1840 // 1841 // This can happen if a node is allocated but an uncommon trap occurs 1842 // immediately. In this case, the Initialize gets associated with the 1843 // trap, and may be placed in a different (outer) loop, if the Allocate 1844 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1845 // there can be two Allocates to one Initialize. The answer in all these 1846 // edge cases is safety first. It is always safe to clear immediately 1847 // within an Allocate, and then (maybe or maybe not) clear some more later. 1848 if (!(UseTLAB && ZeroTLAB)) { 1849 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1850 header_size, size_in_bytes, 1851 &_igvn); 1852 } 1853 } else { 1854 if (!init->is_complete()) { 1855 // Try to win by zeroing only what the init does not store. 1856 // We can also try to do some peephole optimizations, 1857 // such as combining some adjacent subword stores. 1858 rawmem = init->complete_stores(control, rawmem, object, 1859 header_size, size_in_bytes, &_igvn); 1860 } 1861 // We have no more use for this link, since the AllocateNode goes away: 1862 init->set_req(InitializeNode::RawAddress, top()); 1863 // (If we keep the link, it just confuses the register allocator, 1864 // who thinks he sees a real use of the address by the membar.) 1865 } 1866 1867 return rawmem; 1868 } 1869 1870 // Generate prefetch instructions for next allocations. 1871 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1872 Node*& contended_phi_rawmem, 1873 Node* old_eden_top, Node* new_eden_top, 1874 Node* length) { 1875 enum { fall_in_path = 1, pf_path = 2 }; 1876 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1877 // Generate prefetch allocation with watermark check. 1878 // As an allocation hits the watermark, we will prefetch starting 1879 // at a "distance" away from watermark. 1880 1881 Node *pf_region = new RegionNode(3); 1882 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1883 TypeRawPtr::BOTTOM ); 1884 // I/O is used for Prefetch 1885 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1886 1887 Node *thread = new ThreadLocalNode(); 1888 transform_later(thread); 1889 1890 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1891 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1892 transform_later(eden_pf_adr); 1893 1894 Node *old_pf_wm = new LoadPNode(needgc_false, 1895 contended_phi_rawmem, eden_pf_adr, 1896 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 1897 MemNode::unordered); 1898 transform_later(old_pf_wm); 1899 1900 // check against new_eden_top 1901 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 1902 transform_later(need_pf_cmp); 1903 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 1904 transform_later(need_pf_bol); 1905 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 1906 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 1907 transform_later(need_pf_iff); 1908 1909 // true node, add prefetchdistance 1910 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 1911 transform_later(need_pf_true); 1912 1913 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 1914 transform_later(need_pf_false); 1915 1916 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 1917 _igvn.MakeConX(AllocatePrefetchDistance) ); 1918 transform_later(new_pf_wmt ); 1919 new_pf_wmt->set_req(0, need_pf_true); 1920 1921 Node *store_new_wmt = new StorePNode(need_pf_true, 1922 contended_phi_rawmem, eden_pf_adr, 1923 TypeRawPtr::BOTTOM, new_pf_wmt, 1924 MemNode::unordered); 1925 transform_later(store_new_wmt); 1926 1927 // adding prefetches 1928 pf_phi_abio->init_req( fall_in_path, i_o ); 1929 1930 Node *prefetch_adr; 1931 Node *prefetch; 1932 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize; 1933 uint step_size = AllocatePrefetchStepSize; 1934 uint distance = 0; 1935 1936 for ( uint i = 0; i < lines; i++ ) { 1937 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 1938 _igvn.MakeConX(distance) ); 1939 transform_later(prefetch_adr); 1940 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1941 transform_later(prefetch); 1942 distance += step_size; 1943 i_o = prefetch; 1944 } 1945 pf_phi_abio->set_req( pf_path, i_o ); 1946 1947 pf_region->init_req( fall_in_path, need_pf_false ); 1948 pf_region->init_req( pf_path, need_pf_true ); 1949 1950 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 1951 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 1952 1953 transform_later(pf_region); 1954 transform_later(pf_phi_rawmem); 1955 transform_later(pf_phi_abio); 1956 1957 needgc_false = pf_region; 1958 contended_phi_rawmem = pf_phi_rawmem; 1959 i_o = pf_phi_abio; 1960 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 1961 // Insert a prefetch for each allocation. 1962 // This code is used for Sparc with BIS. 1963 Node *pf_region = new RegionNode(3); 1964 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1965 TypeRawPtr::BOTTOM ); 1966 transform_later(pf_region); 1967 1968 // Generate several prefetch instructions. 1969 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1970 uint step_size = AllocatePrefetchStepSize; 1971 uint distance = AllocatePrefetchDistance; 1972 1973 // Next cache address. 1974 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 1975 _igvn.MakeConX(distance)); 1976 transform_later(cache_adr); 1977 cache_adr = new CastP2XNode(needgc_false, cache_adr); 1978 transform_later(cache_adr); 1979 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 1980 cache_adr = new AndXNode(cache_adr, mask); 1981 transform_later(cache_adr); 1982 cache_adr = new CastX2PNode(cache_adr); 1983 transform_later(cache_adr); 1984 1985 // Prefetch 1986 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 1987 prefetch->set_req(0, needgc_false); 1988 transform_later(prefetch); 1989 contended_phi_rawmem = prefetch; 1990 Node *prefetch_adr; 1991 distance = step_size; 1992 for ( uint i = 1; i < lines; i++ ) { 1993 prefetch_adr = new AddPNode( cache_adr, cache_adr, 1994 _igvn.MakeConX(distance) ); 1995 transform_later(prefetch_adr); 1996 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 1997 transform_later(prefetch); 1998 distance += step_size; 1999 contended_phi_rawmem = prefetch; 2000 } 2001 } else if( AllocatePrefetchStyle > 0 ) { 2002 // Insert a prefetch for each allocation only on the fast-path 2003 Node *prefetch_adr; 2004 Node *prefetch; 2005 // Generate several prefetch instructions. 2006 uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 2007 uint step_size = AllocatePrefetchStepSize; 2008 uint distance = AllocatePrefetchDistance; 2009 for ( uint i = 0; i < lines; i++ ) { 2010 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 2011 _igvn.MakeConX(distance) ); 2012 transform_later(prefetch_adr); 2013 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 2014 // Do not let it float too high, since if eden_top == eden_end, 2015 // both might be null. 2016 if( i == 0 ) { // Set control for first prefetch, next follows it 2017 prefetch->init_req(0, needgc_false); 2018 } 2019 transform_later(prefetch); 2020 distance += step_size; 2021 i_o = prefetch; 2022 } 2023 } 2024 return i_o; 2025 } 2026 2027 2028 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 2029 expand_allocate_common(alloc, NULL, 2030 OptoRuntime::new_instance_Type(), 2031 OptoRuntime::new_instance_Java()); 2032 } 2033 2034 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 2035 Node* length = alloc->in(AllocateNode::ALength); 2036 InitializeNode* init = alloc->initialization(); 2037 Node* klass_node = alloc->in(AllocateNode::KlassNode); 2038 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); 2039 address slow_call_address; // Address of slow call 2040 if (init != NULL && init->is_complete_with_arraycopy() && 2041 k->is_type_array_klass()) { 2042 // Don't zero type array during slow allocation in VM since 2043 // it will be initialized later by arraycopy in compiled code. 2044 slow_call_address = OptoRuntime::new_array_nozero_Java(); 2045 } else { 2046 slow_call_address = OptoRuntime::new_array_Java(); 2047 } 2048 expand_allocate_common(alloc, length, 2049 OptoRuntime::new_array_Type(), 2050 slow_call_address); 2051 } 2052 2053 //-------------------mark_eliminated_box---------------------------------- 2054 // 2055 // During EA obj may point to several objects but after few ideal graph 2056 // transformations (CCP) it may point to only one non escaping object 2057 // (but still using phi), corresponding locks and unlocks will be marked 2058 // for elimination. Later obj could be replaced with a new node (new phi) 2059 // and which does not have escape information. And later after some graph 2060 // reshape other locks and unlocks (which were not marked for elimination 2061 // before) are connected to this new obj (phi) but they still will not be 2062 // marked for elimination since new obj has no escape information. 2063 // Mark all associated (same box and obj) lock and unlock nodes for 2064 // elimination if some of them marked already. 2065 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) { 2066 if (oldbox->as_BoxLock()->is_eliminated()) 2067 return; // This BoxLock node was processed already. 2068 2069 // New implementation (EliminateNestedLocks) has separate BoxLock 2070 // node for each locked region so mark all associated locks/unlocks as 2071 // eliminated even if different objects are referenced in one locked region 2072 // (for example, OSR compilation of nested loop inside locked scope). 2073 if (EliminateNestedLocks || 2074 oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) { 2075 // Box is used only in one lock region. Mark this box as eliminated. 2076 _igvn.hash_delete(oldbox); 2077 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value 2078 _igvn.hash_insert(oldbox); 2079 2080 for (uint i = 0; i < oldbox->outcnt(); i++) { 2081 Node* u = oldbox->raw_out(i); 2082 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 2083 AbstractLockNode* alock = u->as_AbstractLock(); 2084 // Check lock's box since box could be referenced by Lock's debug info. 2085 if (alock->box_node() == oldbox) { 2086 // Mark eliminated all related locks and unlocks. 2087 #ifdef ASSERT 2088 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 2089 #endif 2090 alock->set_non_esc_obj(); 2091 } 2092 } 2093 } 2094 return; 2095 } 2096 2097 // Create new "eliminated" BoxLock node and use it in monitor debug info 2098 // instead of oldbox for the same object. 2099 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 2100 2101 // Note: BoxLock node is marked eliminated only here and it is used 2102 // to indicate that all associated lock and unlock nodes are marked 2103 // for elimination. 2104 newbox->set_eliminated(); 2105 transform_later(newbox); 2106 2107 // Replace old box node with new box for all users of the same object. 2108 for (uint i = 0; i < oldbox->outcnt();) { 2109 bool next_edge = true; 2110 2111 Node* u = oldbox->raw_out(i); 2112 if (u->is_AbstractLock()) { 2113 AbstractLockNode* alock = u->as_AbstractLock(); 2114 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 2115 // Replace Box and mark eliminated all related locks and unlocks. 2116 #ifdef ASSERT 2117 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 2118 #endif 2119 alock->set_non_esc_obj(); 2120 _igvn.rehash_node_delayed(alock); 2121 alock->set_box_node(newbox); 2122 next_edge = false; 2123 } 2124 } 2125 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2126 FastLockNode* flock = u->as_FastLock(); 2127 assert(flock->box_node() == oldbox, "sanity"); 2128 _igvn.rehash_node_delayed(flock); 2129 flock->set_box_node(newbox); 2130 next_edge = false; 2131 } 2132 2133 // Replace old box in monitor debug info. 2134 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2135 SafePointNode* sfn = u->as_SafePoint(); 2136 JVMState* youngest_jvms = sfn->jvms(); 2137 int max_depth = youngest_jvms->depth(); 2138 for (int depth = 1; depth <= max_depth; depth++) { 2139 JVMState* jvms = youngest_jvms->of_depth(depth); 2140 int num_mon = jvms->nof_monitors(); 2141 // Loop over monitors 2142 for (int idx = 0; idx < num_mon; idx++) { 2143 Node* obj_node = sfn->monitor_obj(jvms, idx); 2144 Node* box_node = sfn->monitor_box(jvms, idx); 2145 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2146 int j = jvms->monitor_box_offset(idx); 2147 _igvn.replace_input_of(u, j, newbox); 2148 next_edge = false; 2149 } 2150 } 2151 } 2152 } 2153 if (next_edge) i++; 2154 } 2155 } 2156 2157 //-----------------------mark_eliminated_locking_nodes----------------------- 2158 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2159 if (EliminateNestedLocks) { 2160 if (alock->is_nested()) { 2161 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2162 return; 2163 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2164 // Only Lock node has JVMState needed here. 2165 // Not that preceding claim is documented anywhere else. 2166 if (alock->jvms() != NULL) { 2167 if (alock->as_Lock()->is_nested_lock_region()) { 2168 // Mark eliminated related nested locks and unlocks. 2169 Node* obj = alock->obj_node(); 2170 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2171 assert(!box_node->is_eliminated(), "should not be marked yet"); 2172 // Note: BoxLock node is marked eliminated only here 2173 // and it is used to indicate that all associated lock 2174 // and unlock nodes are marked for elimination. 2175 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2176 for (uint i = 0; i < box_node->outcnt(); i++) { 2177 Node* u = box_node->raw_out(i); 2178 if (u->is_AbstractLock()) { 2179 alock = u->as_AbstractLock(); 2180 if (alock->box_node() == box_node) { 2181 // Verify that this Box is referenced only by related locks. 2182 assert(alock->obj_node()->eqv_uncast(obj), ""); 2183 // Mark all related locks and unlocks. 2184 #ifdef ASSERT 2185 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2186 #endif 2187 alock->set_nested(); 2188 } 2189 } 2190 } 2191 } else { 2192 #ifdef ASSERT 2193 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2194 if (C->log() != NULL) 2195 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2196 #endif 2197 } 2198 } 2199 return; 2200 } 2201 // Process locks for non escaping object 2202 assert(alock->is_non_esc_obj(), ""); 2203 } // EliminateNestedLocks 2204 2205 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2206 // Look for all locks of this object and mark them and 2207 // corresponding BoxLock nodes as eliminated. 2208 Node* obj = alock->obj_node(); 2209 for (uint j = 0; j < obj->outcnt(); j++) { 2210 Node* o = obj->raw_out(j); 2211 if (o->is_AbstractLock() && 2212 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2213 alock = o->as_AbstractLock(); 2214 Node* box = alock->box_node(); 2215 // Replace old box node with new eliminated box for all users 2216 // of the same object and mark related locks as eliminated. 2217 mark_eliminated_box(box, obj); 2218 } 2219 } 2220 } 2221 } 2222 2223 // we have determined that this lock/unlock can be eliminated, we simply 2224 // eliminate the node without expanding it. 2225 // 2226 // Note: The membar's associated with the lock/unlock are currently not 2227 // eliminated. This should be investigated as a future enhancement. 2228 // 2229 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2230 2231 if (!alock->is_eliminated()) { 2232 return false; 2233 } 2234 #ifdef ASSERT 2235 if (!alock->is_coarsened()) { 2236 // Check that new "eliminated" BoxLock node is created. 2237 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2238 assert(oldbox->is_eliminated(), "should be done already"); 2239 } 2240 #endif 2241 2242 alock->log_lock_optimization(C, "eliminate_lock"); 2243 2244 #ifndef PRODUCT 2245 if (PrintEliminateLocks) { 2246 if (alock->is_Lock()) { 2247 tty->print_cr("++++ Eliminated: %d Lock", alock->_idx); 2248 } else { 2249 tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx); 2250 } 2251 } 2252 #endif 2253 2254 Node* mem = alock->in(TypeFunc::Memory); 2255 Node* ctrl = alock->in(TypeFunc::Control); 2256 2257 extract_call_projections(alock); 2258 // There are 2 projections from the lock. The lock node will 2259 // be deleted when its last use is subsumed below. 2260 assert(alock->outcnt() == 2 && 2261 _fallthroughproj != NULL && 2262 _memproj_fallthrough != NULL, 2263 "Unexpected projections from Lock/Unlock"); 2264 2265 Node* fallthroughproj = _fallthroughproj; 2266 Node* memproj_fallthrough = _memproj_fallthrough; 2267 2268 // The memory projection from a lock/unlock is RawMem 2269 // The input to a Lock is merged memory, so extract its RawMem input 2270 // (unless the MergeMem has been optimized away.) 2271 if (alock->is_Lock()) { 2272 // Seach for MemBarAcquireLock node and delete it also. 2273 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2274 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, ""); 2275 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2276 Node* memproj = membar->proj_out(TypeFunc::Memory); 2277 _igvn.replace_node(ctrlproj, fallthroughproj); 2278 _igvn.replace_node(memproj, memproj_fallthrough); 2279 2280 // Delete FastLock node also if this Lock node is unique user 2281 // (a loop peeling may clone a Lock node). 2282 Node* flock = alock->as_Lock()->fastlock_node(); 2283 if (flock->outcnt() == 1) { 2284 assert(flock->unique_out() == alock, "sanity"); 2285 _igvn.replace_node(flock, top()); 2286 } 2287 } 2288 2289 // Seach for MemBarReleaseLock node and delete it also. 2290 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() && 2291 ctrl->in(0)->is_MemBar()) { 2292 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2293 assert(membar->Opcode() == Op_MemBarReleaseLock && 2294 mem->is_Proj() && membar == mem->in(0), ""); 2295 _igvn.replace_node(fallthroughproj, ctrl); 2296 _igvn.replace_node(memproj_fallthrough, mem); 2297 fallthroughproj = ctrl; 2298 memproj_fallthrough = mem; 2299 ctrl = membar->in(TypeFunc::Control); 2300 mem = membar->in(TypeFunc::Memory); 2301 } 2302 2303 _igvn.replace_node(fallthroughproj, ctrl); 2304 _igvn.replace_node(memproj_fallthrough, mem); 2305 return true; 2306 } 2307 2308 2309 //------------------------------expand_lock_node---------------------- 2310 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2311 2312 Node* ctrl = lock->in(TypeFunc::Control); 2313 Node* mem = lock->in(TypeFunc::Memory); 2314 Node* obj = lock->obj_node(); 2315 Node* box = lock->box_node(); 2316 Node* flock = lock->fastlock_node(); 2317 2318 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2319 2320 // Make the merge point 2321 Node *region; 2322 Node *mem_phi; 2323 Node *slow_path; 2324 2325 if (UseOptoBiasInlining) { 2326 /* 2327 * See the full description in MacroAssembler::biased_locking_enter(). 2328 * 2329 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) { 2330 * // The object is biased. 2331 * proto_node = klass->prototype_header; 2332 * o_node = thread | proto_node; 2333 * x_node = o_node ^ mark_word; 2334 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ? 2335 * // Done. 2336 * } else { 2337 * if( (x_node & biased_lock_mask) != 0 ) { 2338 * // The klass's prototype header is no longer biased. 2339 * cas(&mark_word, mark_word, proto_node) 2340 * goto cas_lock; 2341 * } else { 2342 * // The klass's prototype header is still biased. 2343 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch? 2344 * old = mark_word; 2345 * new = o_node; 2346 * } else { 2347 * // Different thread or anonymous biased. 2348 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask); 2349 * new = thread | old; 2350 * } 2351 * // Try to rebias. 2352 * if( cas(&mark_word, old, new) == 0 ) { 2353 * // Done. 2354 * } else { 2355 * goto slow_path; // Failed. 2356 * } 2357 * } 2358 * } 2359 * } else { 2360 * // The object is not biased. 2361 * cas_lock: 2362 * if( FastLock(obj) == 0 ) { 2363 * // Done. 2364 * } else { 2365 * slow_path: 2366 * OptoRuntime::complete_monitor_locking_Java(obj); 2367 * } 2368 * } 2369 */ 2370 2371 region = new RegionNode(5); 2372 // create a Phi for the memory state 2373 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2374 2375 Node* fast_lock_region = new RegionNode(3); 2376 Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM); 2377 2378 // First, check mark word for the biased lock pattern. 2379 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); 2380 2381 // Get fast path - mark word has the biased lock pattern. 2382 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node, 2383 markOopDesc::biased_lock_mask_in_place, 2384 markOopDesc::biased_lock_pattern, true); 2385 // fast_lock_region->in(1) is set to slow path. 2386 fast_lock_mem_phi->init_req(1, mem); 2387 2388 // Now check that the lock is biased to the current thread and has 2389 // the same epoch and bias as Klass::_prototype_header. 2390 2391 // Special-case a fresh allocation to avoid building nodes: 2392 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn); 2393 if (klass_node == NULL) { 2394 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 2395 klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr())); 2396 #ifdef _LP64 2397 if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) { 2398 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity"); 2399 klass_node->in(1)->init_req(0, ctrl); 2400 } else 2401 #endif 2402 klass_node->init_req(0, ctrl); 2403 } 2404 Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type()); 2405 2406 Node* thread = transform_later(new ThreadLocalNode()); 2407 Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread)); 2408 Node* o_node = transform_later(new OrXNode(cast_thread, proto_node)); 2409 Node* x_node = transform_later(new XorXNode(o_node, mark_node)); 2410 2411 // Get slow path - mark word does NOT match the value. 2412 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node, 2413 (~markOopDesc::age_mask_in_place), 0); 2414 // region->in(3) is set to fast path - the object is biased to the current thread. 2415 mem_phi->init_req(3, mem); 2416 2417 2418 // Mark word does NOT match the value (thread | Klass::_prototype_header). 2419 2420 2421 // First, check biased pattern. 2422 // Get fast path - _prototype_header has the same biased lock pattern. 2423 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node, 2424 markOopDesc::biased_lock_mask_in_place, 0, true); 2425 2426 not_biased_ctrl = fast_lock_region->in(2); // Slow path 2427 // fast_lock_region->in(2) - the prototype header is no longer biased 2428 // and we have to revoke the bias on this object. 2429 // We are going to try to reset the mark of this object to the prototype 2430 // value and fall through to the CAS-based locking scheme. 2431 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 2432 Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr, 2433 proto_node, mark_node); 2434 transform_later(cas); 2435 Node* proj = transform_later(new SCMemProjNode(cas)); 2436 fast_lock_mem_phi->init_req(2, proj); 2437 2438 2439 // Second, check epoch bits. 2440 Node* rebiased_region = new RegionNode(3); 2441 Node* old_phi = new PhiNode( rebiased_region, TypeX_X); 2442 Node* new_phi = new PhiNode( rebiased_region, TypeX_X); 2443 2444 // Get slow path - mark word does NOT match epoch bits. 2445 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node, 2446 markOopDesc::epoch_mask_in_place, 0); 2447 // The epoch of the current bias is not valid, attempt to rebias the object 2448 // toward the current thread. 2449 rebiased_region->init_req(2, epoch_ctrl); 2450 old_phi->init_req(2, mark_node); 2451 new_phi->init_req(2, o_node); 2452 2453 // rebiased_region->in(1) is set to fast path. 2454 // The epoch of the current bias is still valid but we know 2455 // nothing about the owner; it might be set or it might be clear. 2456 Node* cmask = MakeConX(markOopDesc::biased_lock_mask_in_place | 2457 markOopDesc::age_mask_in_place | 2458 markOopDesc::epoch_mask_in_place); 2459 Node* old = transform_later(new AndXNode(mark_node, cmask)); 2460 cast_thread = transform_later(new CastP2XNode(ctrl, thread)); 2461 Node* new_mark = transform_later(new OrXNode(cast_thread, old)); 2462 old_phi->init_req(1, old); 2463 new_phi->init_req(1, new_mark); 2464 2465 transform_later(rebiased_region); 2466 transform_later(old_phi); 2467 transform_later(new_phi); 2468 2469 // Try to acquire the bias of the object using an atomic operation. 2470 // If this fails we will go in to the runtime to revoke the object's bias. 2471 cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi); 2472 transform_later(cas); 2473 proj = transform_later(new SCMemProjNode(cas)); 2474 2475 // Get slow path - Failed to CAS. 2476 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0); 2477 mem_phi->init_req(4, proj); 2478 // region->in(4) is set to fast path - the object is rebiased to the current thread. 2479 2480 // Failed to CAS. 2481 slow_path = new RegionNode(3); 2482 Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM); 2483 2484 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control 2485 slow_mem->init_req(1, proj); 2486 2487 // Call CAS-based locking scheme (FastLock node). 2488 2489 transform_later(fast_lock_region); 2490 transform_later(fast_lock_mem_phi); 2491 2492 // Get slow path - FastLock failed to lock the object. 2493 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0); 2494 mem_phi->init_req(2, fast_lock_mem_phi); 2495 // region->in(2) is set to fast path - the object is locked to the current thread. 2496 2497 slow_path->init_req(2, ctrl); // Capture slow-control 2498 slow_mem->init_req(2, fast_lock_mem_phi); 2499 2500 transform_later(slow_path); 2501 transform_later(slow_mem); 2502 // Reset lock's memory edge. 2503 lock->set_req(TypeFunc::Memory, slow_mem); 2504 2505 } else { 2506 region = new RegionNode(3); 2507 // create a Phi for the memory state 2508 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2509 2510 // Optimize test; set region slot 2 2511 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2512 mem_phi->init_req(2, mem); 2513 } 2514 2515 // Make slow path call 2516 CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), 2517 OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, 2518 obj, box, NULL); 2519 2520 extract_call_projections(call); 2521 2522 // Slow path can only throw asynchronous exceptions, which are always 2523 // de-opted. So the compiler thinks the slow-call can never throw an 2524 // exception. If it DOES throw an exception we would need the debug 2525 // info removed first (since if it throws there is no monitor). 2526 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL && 2527 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock"); 2528 2529 // Capture slow path 2530 // disconnect fall-through projection from call and create a new one 2531 // hook up users of fall-through projection to region 2532 Node *slow_ctrl = _fallthroughproj->clone(); 2533 transform_later(slow_ctrl); 2534 _igvn.hash_delete(_fallthroughproj); 2535 _fallthroughproj->disconnect_inputs(NULL, C); 2536 region->init_req(1, slow_ctrl); 2537 // region inputs are now complete 2538 transform_later(region); 2539 _igvn.replace_node(_fallthroughproj, region); 2540 2541 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2542 mem_phi->init_req(1, memproj ); 2543 transform_later(mem_phi); 2544 _igvn.replace_node(_memproj_fallthrough, mem_phi); 2545 } 2546 2547 //------------------------------expand_unlock_node---------------------- 2548 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2549 2550 Node* ctrl = unlock->in(TypeFunc::Control); 2551 Node* mem = unlock->in(TypeFunc::Memory); 2552 Node* obj = unlock->obj_node(); 2553 Node* box = unlock->box_node(); 2554 2555 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2556 2557 // No need for a null check on unlock 2558 2559 // Make the merge point 2560 Node *region; 2561 Node *mem_phi; 2562 2563 if (UseOptoBiasInlining) { 2564 // Check for biased locking unlock case, which is a no-op. 2565 // See the full description in MacroAssembler::biased_locking_exit(). 2566 region = new RegionNode(4); 2567 // create a Phi for the memory state 2568 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2569 mem_phi->init_req(3, mem); 2570 2571 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); 2572 ctrl = opt_bits_test(ctrl, region, 3, mark_node, 2573 markOopDesc::biased_lock_mask_in_place, 2574 markOopDesc::biased_lock_pattern); 2575 } else { 2576 region = new RegionNode(3); 2577 // create a Phi for the memory state 2578 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2579 } 2580 2581 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2582 funlock = transform_later( funlock )->as_FastUnlock(); 2583 // Optimize test; set region slot 2 2584 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2585 Node *thread = transform_later(new ThreadLocalNode()); 2586 2587 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2588 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2589 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2590 2591 extract_call_projections(call); 2592 2593 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL && 2594 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock"); 2595 2596 // No exceptions for unlocking 2597 // Capture slow path 2598 // disconnect fall-through projection from call and create a new one 2599 // hook up users of fall-through projection to region 2600 Node *slow_ctrl = _fallthroughproj->clone(); 2601 transform_later(slow_ctrl); 2602 _igvn.hash_delete(_fallthroughproj); 2603 _fallthroughproj->disconnect_inputs(NULL, C); 2604 region->init_req(1, slow_ctrl); 2605 // region inputs are now complete 2606 transform_later(region); 2607 _igvn.replace_node(_fallthroughproj, region); 2608 2609 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2610 mem_phi->init_req(1, memproj ); 2611 mem_phi->init_req(2, mem); 2612 transform_later(mem_phi); 2613 _igvn.replace_node(_memproj_fallthrough, mem_phi); 2614 } 2615 2616 //---------------------------eliminate_macro_nodes---------------------- 2617 // Eliminate scalar replaced allocations and associated locks. 2618 void PhaseMacroExpand::eliminate_macro_nodes() { 2619 if (C->macro_count() == 0) 2620 return; 2621 2622 // First, attempt to eliminate locks 2623 int cnt = C->macro_count(); 2624 for (int i=0; i < cnt; i++) { 2625 Node *n = C->macro_node(i); 2626 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2627 // Before elimination mark all associated (same box and obj) 2628 // lock and unlock nodes. 2629 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2630 } 2631 } 2632 bool progress = true; 2633 while (progress) { 2634 progress = false; 2635 for (int i = C->macro_count(); i > 0; i--) { 2636 Node * n = C->macro_node(i-1); 2637 bool success = false; 2638 debug_only(int old_macro_count = C->macro_count();); 2639 if (n->is_AbstractLock()) { 2640 success = eliminate_locking_node(n->as_AbstractLock()); 2641 } 2642 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2643 progress = progress || success; 2644 } 2645 } 2646 // Next, attempt to eliminate allocations 2647 _has_locks = false; 2648 progress = true; 2649 while (progress) { 2650 progress = false; 2651 for (int i = C->macro_count(); i > 0; i--) { 2652 Node * n = C->macro_node(i-1); 2653 bool success = false; 2654 debug_only(int old_macro_count = C->macro_count();); 2655 switch (n->class_id()) { 2656 case Node::Class_Allocate: 2657 case Node::Class_AllocateArray: 2658 success = eliminate_allocate_node(n->as_Allocate()); 2659 break; 2660 case Node::Class_CallStaticJava: 2661 success = eliminate_boxing_node(n->as_CallStaticJava()); 2662 break; 2663 case Node::Class_Lock: 2664 case Node::Class_Unlock: 2665 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2666 _has_locks = true; 2667 break; 2668 case Node::Class_ArrayCopy: 2669 break; 2670 default: 2671 assert(n->Opcode() == Op_LoopLimit || 2672 n->Opcode() == Op_Opaque1 || 2673 n->Opcode() == Op_Opaque2 || 2674 n->Opcode() == Op_Opaque3, "unknown node type in macro list"); 2675 } 2676 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2677 progress = progress || success; 2678 } 2679 } 2680 } 2681 2682 //------------------------------expand_macro_nodes---------------------- 2683 // Returns true if a failure occurred. 2684 bool PhaseMacroExpand::expand_macro_nodes() { 2685 // Last attempt to eliminate macro nodes. 2686 eliminate_macro_nodes(); 2687 2688 // Make sure expansion will not cause node limit to be exceeded. 2689 // Worst case is a macro node gets expanded into about 200 nodes. 2690 // Allow 50% more for optimization. 2691 if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) ) 2692 return true; 2693 2694 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 2695 bool progress = true; 2696 while (progress) { 2697 progress = false; 2698 for (int i = C->macro_count(); i > 0; i--) { 2699 Node * n = C->macro_node(i-1); 2700 bool success = false; 2701 debug_only(int old_macro_count = C->macro_count();); 2702 if (n->Opcode() == Op_LoopLimit) { 2703 // Remove it from macro list and put on IGVN worklist to optimize. 2704 C->remove_macro_node(n); 2705 _igvn._worklist.push(n); 2706 success = true; 2707 } else if (n->Opcode() == Op_CallStaticJava) { 2708 // Remove it from macro list and put on IGVN worklist to optimize. 2709 C->remove_macro_node(n); 2710 _igvn._worklist.push(n); 2711 success = true; 2712 } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) { 2713 _igvn.replace_node(n, n->in(1)); 2714 success = true; 2715 #if INCLUDE_RTM_OPT 2716 } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) { 2717 assert(C->profile_rtm(), "should be used only in rtm deoptimization code"); 2718 assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), ""); 2719 Node* cmp = n->unique_out(); 2720 #ifdef ASSERT 2721 // Validate graph. 2722 assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), ""); 2723 BoolNode* bol = cmp->unique_out()->as_Bool(); 2724 assert((bol->outcnt() == 1) && bol->unique_out()->is_If() && 2725 (bol->_test._test == BoolTest::ne), ""); 2726 IfNode* ifn = bol->unique_out()->as_If(); 2727 assert((ifn->outcnt() == 2) && 2728 ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, ""); 2729 #endif 2730 Node* repl = n->in(1); 2731 if (!_has_locks) { 2732 // Remove RTM state check if there are no locks in the code. 2733 // Replace input to compare the same value. 2734 repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1); 2735 } 2736 _igvn.replace_node(n, repl); 2737 success = true; 2738 #endif 2739 } 2740 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2741 progress = progress || success; 2742 } 2743 } 2744 2745 // expand arraycopy "macro" nodes first 2746 // For ReduceBulkZeroing, we must first process all arraycopy nodes 2747 // before the allocate nodes are expanded. 2748 int macro_idx = C->macro_count() - 1; 2749 while (macro_idx >= 0) { 2750 Node * n = C->macro_node(macro_idx); 2751 assert(n->is_macro(), "only macro nodes expected here"); 2752 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) { 2753 // node is unreachable, so don't try to expand it 2754 C->remove_macro_node(n); 2755 } else if (n->is_ArrayCopy()){ 2756 int macro_count = C->macro_count(); 2757 expand_arraycopy_node(n->as_ArrayCopy()); 2758 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 2759 } 2760 if (C->failing()) return true; 2761 macro_idx --; 2762 } 2763 2764 // expand "macro" nodes 2765 // nodes are removed from the macro list as they are processed 2766 while (C->macro_count() > 0) { 2767 int macro_count = C->macro_count(); 2768 Node * n = C->macro_node(macro_count-1); 2769 assert(n->is_macro(), "only macro nodes expected here"); 2770 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) { 2771 // node is unreachable, so don't try to expand it 2772 C->remove_macro_node(n); 2773 continue; 2774 } 2775 switch (n->class_id()) { 2776 case Node::Class_Allocate: 2777 expand_allocate(n->as_Allocate()); 2778 break; 2779 case Node::Class_AllocateArray: 2780 expand_allocate_array(n->as_AllocateArray()); 2781 break; 2782 case Node::Class_Lock: 2783 expand_lock_node(n->as_Lock()); 2784 break; 2785 case Node::Class_Unlock: 2786 expand_unlock_node(n->as_Unlock()); 2787 break; 2788 default: 2789 assert(false, "unknown node type in macro list"); 2790 } 2791 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 2792 if (C->failing()) return true; 2793 } 2794 2795 _igvn.set_delay_transform(false); 2796 _igvn.optimize(); 2797 if (C->failing()) return true; 2798 return false; 2799 }