1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/collectedHeap.hpp"
  27 #include "opto/machnode.hpp"
  28 #include "opto/regalloc.hpp"
  29 
  30 //=============================================================================
  31 // Return the value requested
  32 // result register lookup, corresponding to int_format
  33 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const {
  34   return (int)ra_->get_encode(node);
  35 }
  36 // input register lookup, corresponding to ext_format
  37 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {
  38   return (int)(ra_->get_encode(node->in(idx)));
  39 }
  40 intptr_t  MachOper::constant() const { return 0x00; }
  41 relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; }
  42 jdouble MachOper::constantD() const { ShouldNotReachHere(); return 0.0; }
  43 jfloat  MachOper::constantF() const { ShouldNotReachHere(); return 0.0; }
  44 jlong   MachOper::constantL() const { ShouldNotReachHere(); return CONST64(0) ; }
  45 TypeOopPtr *MachOper::oop() const { return NULL; }
  46 int MachOper::ccode() const { return 0x00; }
  47 // A zero, default, indicates this value is not needed.
  48 // May need to lookup the base register, as done in int_ and ext_format
  49 int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  50 int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  51 int MachOper::scale()  const { return 0x00; }
  52 int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  53 int MachOper::constant_disp()  const { return 0; }
  54 int MachOper::base_position()  const { return -1; }  // no base input
  55 int MachOper::index_position() const { return -1; }  // no index input
  56 // Check for PC-Relative displacement
  57 relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; }
  58 // Return the label
  59 Label*   MachOper::label()  const { ShouldNotReachHere(); return 0; }
  60 intptr_t MachOper::method() const { ShouldNotReachHere(); return 0; }
  61 
  62 
  63 //------------------------------negate-----------------------------------------
  64 // Negate conditional branches.  Error for non-branch operands
  65 void MachOper::negate() {
  66   ShouldNotCallThis();
  67 }
  68 
  69 //-----------------------------type--------------------------------------------
  70 const Type *MachOper::type() const {
  71   return Type::BOTTOM;
  72 }
  73 
  74 //------------------------------in_RegMask-------------------------------------
  75 const RegMask *MachOper::in_RegMask(int index) const {
  76   ShouldNotReachHere();
  77   return NULL;
  78 }
  79 
  80 //------------------------------dump_spec--------------------------------------
  81 // Print any per-operand special info
  82 #ifndef PRODUCT
  83 void MachOper::dump_spec(outputStream *st) const { }
  84 #endif
  85 
  86 //------------------------------hash-------------------------------------------
  87 // Print any per-operand special info
  88 uint MachOper::hash() const {
  89   ShouldNotCallThis();
  90   return 5;
  91 }
  92 
  93 //------------------------------cmp--------------------------------------------
  94 // Print any per-operand special info
  95 uint MachOper::cmp( const MachOper &oper ) const {
  96   ShouldNotCallThis();
  97   return opcode() == oper.opcode();
  98 }
  99 
 100 //------------------------------hash-------------------------------------------
 101 // Print any per-operand special info
 102 uint labelOper::hash() const {
 103   return _block_num;
 104 }
 105 
 106 //------------------------------cmp--------------------------------------------
 107 // Print any per-operand special info
 108 uint labelOper::cmp( const MachOper &oper ) const {
 109   return (opcode() == oper.opcode()) && (_label == oper.label());
 110 }
 111 
 112 //------------------------------hash-------------------------------------------
 113 // Print any per-operand special info
 114 uint methodOper::hash() const {
 115   return (uint)_method;
 116 }
 117 
 118 //------------------------------cmp--------------------------------------------
 119 // Print any per-operand special info
 120 uint methodOper::cmp( const MachOper &oper ) const {
 121   return (opcode() == oper.opcode()) && (_method == oper.method());
 122 }
 123 
 124 
 125 //=============================================================================
 126 //------------------------------MachNode---------------------------------------
 127 
 128 //------------------------------emit-------------------------------------------
 129 void MachNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 130   #ifdef ASSERT
 131   tty->print("missing MachNode emit function: ");
 132   dump();
 133   #endif
 134   ShouldNotCallThis();
 135 }
 136 
 137 //---------------------------postalloc_expand----------------------------------
 138 // Expand node after register allocation.
 139 void MachNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {}
 140 
 141 //------------------------------size-------------------------------------------
 142 // Size of instruction in bytes
 143 uint MachNode::size(PhaseRegAlloc *ra_) const {
 144   // If a virtual was not defined for this specific instruction,
 145   // Call the helper which finds the size by emitting the bits.
 146   return MachNode::emit_size(ra_);
 147 }
 148 
 149 //------------------------------size-------------------------------------------
 150 // Helper function that computes size by emitting code
 151 uint MachNode::emit_size(PhaseRegAlloc *ra_) const {
 152   // Emit into a trash buffer and count bytes emitted.
 153   assert(ra_ == ra_->C->regalloc(), "sanity");
 154   return ra_->C->scratch_emit_size(this);
 155 }
 156 
 157 
 158 
 159 //------------------------------hash-------------------------------------------
 160 uint MachNode::hash() const {
 161   uint no = num_opnds();
 162   uint sum = rule();
 163   for( uint i=0; i<no; i++ )
 164     sum += _opnds[i]->hash();
 165   return sum+Node::hash();
 166 }
 167 
 168 //-----------------------------cmp---------------------------------------------
 169 uint MachNode::cmp( const Node &node ) const {
 170   MachNode& n = *((Node&)node).as_Mach();
 171   uint no = num_opnds();
 172   if( no != n.num_opnds() ) return 0;
 173   if( rule() != n.rule() ) return 0;
 174   for( uint i=0; i<no; i++ )    // All operands must match
 175     if( !_opnds[i]->cmp( *n._opnds[i] ) )
 176       return 0;                 // mis-matched operands
 177   return 1;                     // match
 178 }
 179 
 180 // Return an equivalent instruction using memory for cisc_operand position
 181 MachNode *MachNode::cisc_version(int offset) {
 182   ShouldNotCallThis();
 183   return NULL;
 184 }
 185 
 186 void MachNode::use_cisc_RegMask() {
 187   ShouldNotReachHere();
 188 }
 189 
 190 
 191 //-----------------------------in_RegMask--------------------------------------
 192 const RegMask &MachNode::in_RegMask( uint idx ) const {
 193   uint numopnds = num_opnds();        // Virtual call for number of operands
 194   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
 195   if( idx < skipped ) {
 196     assert( ideal_Opcode() == Op_AddP, "expected base ptr here" );
 197     assert( idx == 1, "expected base ptr here" );
 198     // debug info can be anywhere
 199     return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP];
 200   }
 201   uint opcnt     = 1;                 // First operand
 202   uint num_edges = _opnds[1]->num_edges(); // leaves for first operand
 203   while( idx >= skipped+num_edges ) {
 204     skipped += num_edges;
 205     opcnt++;                          // Bump operand count
 206     assert( opcnt < numopnds, "Accessing non-existent operand" );
 207     num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand
 208   }
 209 
 210   const RegMask *rm = cisc_RegMask();
 211   if( rm == NULL || (int)opcnt != cisc_operand() ) {
 212     rm = _opnds[opcnt]->in_RegMask(idx-skipped);
 213   }
 214   return *rm;
 215 }
 216 
 217 //-----------------------------memory_inputs--------------------------------
 218 const MachOper*  MachNode::memory_inputs(Node* &base, Node* &index) const {
 219   const MachOper* oper = memory_operand();
 220 
 221   if (oper == (MachOper*)-1) {
 222     base = NodeSentinel;
 223     index = NodeSentinel;
 224   } else {
 225     base = NULL;
 226     index = NULL;
 227     if (oper != NULL) {
 228       // It has a unique memory operand.  Find its index.
 229       int oper_idx = num_opnds();
 230       while (--oper_idx >= 0) {
 231         if (_opnds[oper_idx] == oper)  break;
 232       }
 233       int oper_pos = operand_index(oper_idx);
 234       int base_pos = oper->base_position();
 235       if (base_pos >= 0) {
 236         base = _in[oper_pos+base_pos];
 237       }
 238       int index_pos = oper->index_position();
 239       if (index_pos >= 0) {
 240         index = _in[oper_pos+index_pos];
 241       }
 242     }
 243   }
 244 
 245   return oper;
 246 }
 247 
 248 //-----------------------------get_base_and_disp----------------------------
 249 const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const {
 250 
 251   // Find the memory inputs using our helper function
 252   Node* base;
 253   Node* index;
 254   const MachOper* oper = memory_inputs(base, index);
 255 
 256   if (oper == NULL) {
 257     // Base has been set to NULL
 258     offset = 0;
 259   } else if (oper == (MachOper*)-1) {
 260     // Base has been set to NodeSentinel
 261     // There is not a unique memory use here.  We will fall to AliasIdxBot.
 262     offset = Type::OffsetBot;
 263   } else {
 264     // Base may be NULL, even if offset turns out to be != 0
 265 
 266     intptr_t disp = oper->constant_disp();
 267     int scale = oper->scale();
 268     // Now we have collected every part of the ADLC MEMORY_INTER.
 269     // See if it adds up to a base + offset.
 270     if (index != NULL) {
 271       const Type* t_index = index->bottom_type();
 272       if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass,
 273                                                                     // EncodeNKlass, LoadConNklass.
 274         // Memory references through narrow oops have a
 275         // funny base so grab the type from the index:
 276         // [R12 + narrow_oop_reg<<3 + offset]
 277         assert(base == NULL, "Memory references through narrow oops have no base");
 278         offset = disp;
 279         adr_type = t_index->make_ptr()->add_offset(offset);
 280         return NULL;
 281       } else if (!index->is_Con()) {
 282         disp = Type::OffsetBot;
 283       } else if (disp != Type::OffsetBot) {
 284         const TypeX* ti = t_index->isa_intptr_t();
 285         if (ti == NULL) {
 286           disp = Type::OffsetBot;  // a random constant??
 287         } else {
 288           disp += ti->get_con() << scale;
 289         }
 290       }
 291     }
 292     offset = disp;
 293 
 294     // In i486.ad, indOffset32X uses base==RegI and disp==RegP,
 295     // this will prevent alias analysis without the following support:
 296     // Lookup the TypePtr used by indOffset32X, a compile-time constant oop,
 297     // Add the offset determined by the "base", or use Type::OffsetBot.
 298     if( adr_type == TYPE_PTR_SENTINAL ) {
 299       const TypePtr *t_disp = oper->disp_as_type();  // only !NULL for indOffset32X
 300       if (t_disp != NULL) {
 301         offset = Type::OffsetBot;
 302         const Type* t_base = base->bottom_type();
 303         if (t_base->isa_intptr_t()) {
 304           const TypeX *t_offset = t_base->is_intptr_t();
 305           if( t_offset->is_con() ) {
 306             offset = t_offset->get_con();
 307           }
 308         }
 309         adr_type = t_disp->add_offset(offset);
 310       } else if( base == NULL && offset != 0 && offset != Type::OffsetBot ) {
 311         // Use ideal type if it is oop ptr.
 312         const TypePtr *tp = oper->type()->isa_ptr();
 313         if( tp != NULL) {
 314           adr_type = tp;
 315         }
 316       }
 317     }
 318 
 319   }
 320   return base;
 321 }
 322 
 323 
 324 //---------------------------------adr_type---------------------------------
 325 const class TypePtr *MachNode::adr_type() const {
 326   intptr_t offset = 0;
 327   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // attempt computing adr_type
 328   const Node *base = get_base_and_disp(offset, adr_type);
 329   if( adr_type != TYPE_PTR_SENTINAL ) {
 330     return adr_type;      // get_base_and_disp has the answer
 331   }
 332 
 333   // Direct addressing modes have no base node, simply an indirect
 334   // offset, which is always to raw memory.
 335   // %%%%% Someday we'd like to allow constant oop offsets which
 336   // would let Intel load from static globals in 1 instruction.
 337   // Currently Intel requires 2 instructions and a register temp.
 338   if (base == NULL) {
 339     // NULL base, zero offset means no memory at all (a null pointer!)
 340     if (offset == 0) {
 341       return NULL;
 342     }
 343     // NULL base, any offset means any pointer whatever
 344     if (offset == Type::OffsetBot) {
 345       return TypePtr::BOTTOM;
 346     }
 347     // %%% make offset be intptr_t
 348     assert(!Universe::heap()->is_in_reserved(cast_to_oop(offset)), "must be a raw ptr");
 349     return TypeRawPtr::BOTTOM;
 350   }
 351 
 352   // base of -1 with no particular offset means all of memory
 353   if (base == NodeSentinel)  return TypePtr::BOTTOM;
 354 
 355   const Type* t = base->bottom_type();
 356   if (t->isa_narrowoop() && Universe::narrow_oop_shift() == 0) {
 357     // 32-bit unscaled narrow oop can be the base of any address expression
 358     t = t->make_ptr();
 359   }
 360   if (t->isa_narrowklass() && Universe::narrow_klass_shift() == 0) {
 361     // 32-bit unscaled narrow oop can be the base of any address expression
 362     t = t->make_ptr();
 363   }
 364   if (t->isa_intptr_t() && offset != 0 && offset != Type::OffsetBot) {
 365     // We cannot assert that the offset does not look oop-ish here.
 366     // Depending on the heap layout the cardmark base could land
 367     // inside some oopish region.  It definitely does for Win2K.
 368     // The sum of cardmark-base plus shift-by-9-oop lands outside
 369     // the oop-ish area but we can't assert for that statically.
 370     return TypeRawPtr::BOTTOM;
 371   }
 372 
 373   const TypePtr *tp = t->isa_ptr();
 374 
 375   // be conservative if we do not recognize the type
 376   if (tp == NULL) {
 377     assert(false, "this path may produce not optimal code");
 378     return TypePtr::BOTTOM;
 379   }
 380   assert(tp->base() != Type::AnyPtr, "not a bare pointer");
 381 
 382   if (tp->isa_aryptr()) {
 383     // In the case of a flattened value type array, each field has its
 384     // own slice so we need to extract the field being accessed from
 385     // the address computation
 386     if (offset == Type::OffsetBot) {
 387       Node* base;
 388       Node* index;
 389       const MachOper* oper = memory_inputs(base, index);
 390       if (oper != (MachOper*)-1) {
 391         offset = oper->constant_disp();
 392         return tp->is_aryptr()->with_field_offset_and_offset(offset)->add_offset(Type::OffsetBot);
 393       }
 394     }
 395     return tp->is_aryptr()->with_field_offset_and_offset(offset);
 396   }
 397 
 398   return tp->add_offset(offset);
 399 }
 400 
 401 
 402 //-----------------------------operand_index---------------------------------
 403 int MachNode::operand_index( uint operand ) const {
 404   if( operand < 1 )  return -1;
 405   assert(operand < num_opnds(), "oob");
 406   if( _opnds[operand]->num_edges() == 0 )  return -1;
 407 
 408   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
 409   for (uint opcnt = 1; opcnt < operand; opcnt++) {
 410     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
 411     skipped += num_edges;
 412   }
 413   return skipped;
 414 }
 415 
 416 int MachNode::operand_index(const MachOper *oper) const {
 417   uint skipped = oper_input_base(); // Sum of leaves skipped so far
 418   uint opcnt;
 419   for (opcnt = 1; opcnt < num_opnds(); opcnt++) {
 420     if (_opnds[opcnt] == oper) break;
 421     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
 422     skipped += num_edges;
 423   }
 424   if (_opnds[opcnt] != oper) return -1;
 425   return skipped;
 426 }
 427 
 428 //------------------------------peephole---------------------------------------
 429 // Apply peephole rule(s) to this instruction
 430 MachNode *MachNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {
 431   return NULL;
 432 }
 433 
 434 //------------------------------add_case_label---------------------------------
 435 // Adds the label for the case
 436 void MachNode::add_case_label( int index_num, Label* blockLabel) {
 437   ShouldNotCallThis();
 438 }
 439 
 440 //------------------------------method_set-------------------------------------
 441 // Set the absolute address of a method
 442 void MachNode::method_set( intptr_t addr ) {
 443   ShouldNotCallThis();
 444 }
 445 
 446 //------------------------------rematerialize----------------------------------
 447 bool MachNode::rematerialize() const {
 448   // Temps are always rematerializable
 449   if (is_MachTemp()) return true;
 450 
 451   uint r = rule();              // Match rule
 452   if (r <  Matcher::_begin_rematerialize ||
 453       r >= Matcher::_end_rematerialize) {
 454     return false;
 455   }
 456 
 457   // For 2-address instructions, the input live range is also the output
 458   // live range. Remateralizing does not make progress on the that live range.
 459   if (two_adr()) return false;
 460 
 461   // Check for rematerializing float constants, or not
 462   if (!Matcher::rematerialize_float_constants) {
 463     int op = ideal_Opcode();
 464     if (op == Op_ConF || op == Op_ConD) {
 465       return false;
 466     }
 467   }
 468 
 469   // Defining flags - can't spill these! Must remateralize.
 470   if (ideal_reg() == Op_RegFlags) {
 471     return true;
 472   }
 473 
 474   // Stretching lots of inputs - don't do it.
 475   if (req() > 2) {
 476     return false;
 477   }
 478 
 479   if (req() == 2 && in(1) && in(1)->ideal_reg() == Op_RegFlags) {
 480     // In(1) will be rematerialized, too.
 481     // Stretching lots of inputs - don't do it.
 482     if (in(1)->req() > 2) {
 483       return false;
 484     }
 485   }
 486 
 487   // Don't remateralize somebody with bound inputs - it stretches a
 488   // fixed register lifetime.
 489   uint idx = oper_input_base();
 490   if (req() > idx) {
 491     const RegMask &rm = in_RegMask(idx);
 492     if (rm.is_bound(ideal_reg())) {
 493       return false;
 494     }
 495   }
 496 
 497   return true;
 498 }
 499 
 500 #ifndef PRODUCT
 501 //------------------------------dump_spec--------------------------------------
 502 // Print any per-operand special info
 503 void MachNode::dump_spec(outputStream *st) const {
 504   uint cnt = num_opnds();
 505   for( uint i=0; i<cnt; i++ ) {
 506     if (_opnds[i] != NULL) {
 507       _opnds[i]->dump_spec(st);
 508     } else {
 509       st->print(" _");
 510     }
 511   }
 512   const TypePtr *t = adr_type();
 513   if( t ) {
 514     Compile* C = Compile::current();
 515     if( C->alias_type(t)->is_volatile() )
 516       st->print(" Volatile!");
 517   }
 518 }
 519 
 520 //------------------------------dump_format------------------------------------
 521 // access to virtual
 522 void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const {
 523   format(ra, st); // access to virtual
 524 }
 525 #endif
 526 
 527 //=============================================================================
 528 #ifndef PRODUCT
 529 void MachTypeNode::dump_spec(outputStream *st) const {
 530   if (_bottom_type != NULL) {
 531     _bottom_type->dump_on(st);
 532   } else {
 533     st->print(" NULL");
 534   }
 535 }
 536 #endif
 537 
 538 
 539 //=============================================================================
 540 int MachConstantNode::constant_offset() {
 541   // Bind the offset lazily.
 542   if (_constant.offset() == -1) {
 543     Compile::ConstantTable& constant_table = Compile::current()->constant_table();
 544     int offset = constant_table.find_offset(_constant);
 545     // If called from Compile::scratch_emit_size return the
 546     // pre-calculated offset.
 547     // NOTE: If the AD file does some table base offset optimizations
 548     // later the AD file needs to take care of this fact.
 549     if (Compile::current()->in_scratch_emit_size()) {
 550       return constant_table.calculate_table_base_offset() + offset;
 551     }
 552     _constant.set_offset(constant_table.table_base_offset() + offset);
 553   }
 554   return _constant.offset();
 555 }
 556 
 557 int MachConstantNode::constant_offset_unchecked() const {
 558   return _constant.offset();
 559 }
 560 
 561 //=============================================================================
 562 #ifndef PRODUCT
 563 void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
 564   int reg = ra_->get_reg_first(in(1)->in(_vidx));
 565   st->print("%s %s", Name(), Matcher::regName[reg]);
 566 }
 567 #endif
 568 
 569 void MachNullCheckNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 570   // only emits entries in the null-pointer exception handler table
 571 }
 572 void MachNullCheckNode::label_set(Label* label, uint block_num) {
 573   // Nothing to emit
 574 }
 575 void MachNullCheckNode::save_label( Label** label, uint* block_num ) {
 576   // Nothing to emit
 577 }
 578 
 579 const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const {
 580   if( idx == 0 ) return RegMask::Empty;
 581   else return in(1)->as_Mach()->out_RegMask();
 582 }
 583 
 584 //=============================================================================
 585 const Type *MachProjNode::bottom_type() const {
 586   if( _ideal_reg == fat_proj ) return Type::BOTTOM;
 587   // Try the normal mechanism first
 588   const Type *t = in(0)->bottom_type();
 589   if( t->base() == Type::Tuple ) {
 590     const TypeTuple *tt = t->is_tuple();
 591     if (_con < tt->cnt())
 592       return tt->field_at(_con);
 593   }
 594   // Else use generic type from ideal register set
 595   assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds");
 596   return Type::mreg2type[_ideal_reg];
 597 }
 598 
 599 const TypePtr *MachProjNode::adr_type() const {
 600   if (bottom_type() == Type::MEMORY) {
 601     // in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM
 602     Node* ctrl = in(0);
 603     if (ctrl == NULL)  return NULL; // node is dead
 604     const TypePtr* adr_type = ctrl->adr_type();
 605     #ifdef ASSERT
 606     if (!is_error_reported() && !Node::in_dump())
 607       assert(adr_type != NULL, "source must have adr_type");
 608     #endif
 609     return adr_type;
 610   }
 611   assert(bottom_type()->base() != Type::Memory, "no other memories?");
 612   return NULL;
 613 }
 614 
 615 #ifndef PRODUCT
 616 void MachProjNode::dump_spec(outputStream *st) const {
 617   ProjNode::dump_spec(st);
 618   switch (_ideal_reg) {
 619   case unmatched_proj:  st->print("/unmatched");                           break;
 620   case fat_proj:        st->print("/fat"); if (WizardMode) _rout.dump(st); break;
 621   }
 622 }
 623 #endif
 624 
 625 //=============================================================================
 626 #ifndef PRODUCT
 627 void MachIfNode::dump_spec(outputStream *st) const {
 628   st->print("P=%f, C=%f",_prob, _fcnt);
 629 }
 630 #endif
 631 
 632 //=============================================================================
 633 uint MachReturnNode::size_of() const { return sizeof(*this); }
 634 
 635 //------------------------------Registers--------------------------------------
 636 const RegMask &MachReturnNode::in_RegMask( uint idx ) const {
 637   return _in_rms[idx];
 638 }
 639 
 640 const TypePtr *MachReturnNode::adr_type() const {
 641   // most returns and calls are assumed to consume & modify all of memory
 642   // the matcher will copy non-wide adr_types from ideal originals
 643   return _adr_type;
 644 }
 645 
 646 //=============================================================================
 647 const Type *MachSafePointNode::bottom_type() const {  return TypeTuple::MEMBAR; }
 648 
 649 //------------------------------Registers--------------------------------------
 650 const RegMask &MachSafePointNode::in_RegMask( uint idx ) const {
 651   // Values in the domain use the users calling convention, embodied in the
 652   // _in_rms array of RegMasks.
 653   if( idx < TypeFunc::Parms ) return _in_rms[idx];
 654 
 655   if (SafePointNode::needs_polling_address_input() &&
 656       idx == TypeFunc::Parms &&
 657       ideal_Opcode() == Op_SafePoint) {
 658     return MachNode::in_RegMask(idx);
 659   }
 660 
 661   // Values outside the domain represent debug info
 662   assert(in(idx)->ideal_reg() != Op_RegFlags, "flags register is not spillable");
 663   return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()];
 664 }
 665 
 666 
 667 //=============================================================================
 668 
 669 uint MachCallNode::cmp( const Node &n ) const
 670 { return _tf == ((MachCallNode&)n)._tf; }
 671 const Type *MachCallNode::bottom_type() const { return tf()->range_cc(); }
 672 const Type* MachCallNode::Value(PhaseGVN* phase) const { return tf()->range_cc(); }
 673 
 674 #ifndef PRODUCT
 675 void MachCallNode::dump_spec(outputStream *st) const {
 676   st->print("# ");
 677   if (tf() != NULL)  tf()->dump_on(st);
 678   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 679   if (jvms() != NULL)  jvms()->dump_spec(st);
 680 }
 681 #endif
 682 
 683 bool MachCallNode::return_value_is_used() const {
 684   if (tf()->range_sig()->cnt() == TypeFunc::Parms) {
 685     // void return
 686     return false;
 687   }
 688 
 689   assert(tf()->range_sig() == tf()->range_cc(), "multiple return values not supported");
 690 
 691   // find the projection corresponding to the return value
 692   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 693     Node *use = fast_out(i);
 694     if (!use->is_Proj()) continue;
 695     if (use->as_Proj()->_con == TypeFunc::Parms) {
 696       return true;
 697     }
 698   }
 699   return false;
 700 }
 701 
 702 // Similar to cousin class CallNode::returns_pointer
 703 // Because this is used in deoptimization, we want the type info, not the data
 704 // flow info; the interpreter will "use" things that are dead to the optimizer.
 705 bool MachCallNode::returns_pointer() const {
 706   const TypeTuple *r = tf()->range_sig();
 707   return (r->cnt() > TypeFunc::Parms &&
 708           r->field_at(TypeFunc::Parms)->isa_ptr());
 709 }
 710 
 711 bool MachCallNode::returns_vt() const {
 712   const TypeTuple *r = tf()->range_sig();
 713   return (r->cnt() > TypeFunc::Parms &&
 714           r->field_at(TypeFunc::Parms)->isa_valuetypeptr());
 715 }
 716 
 717 //------------------------------Registers--------------------------------------
 718 const RegMask &MachCallNode::in_RegMask(uint idx) const {
 719   // Values in the domain use the users calling convention, embodied in the
 720   // _in_rms array of RegMasks.
 721   if (idx < tf()->domain_sig()->cnt()) {
 722     return _in_rms[idx];
 723   }
 724   if (idx == mach_constant_base_node_input()) {
 725     return MachConstantBaseNode::static_out_RegMask();
 726   }
 727   // Values outside the domain represent debug info
 728   return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()];
 729 }
 730 
 731 //=============================================================================
 732 uint MachCallJavaNode::size_of() const { return sizeof(*this); }
 733 uint MachCallJavaNode::cmp( const Node &n ) const {
 734   MachCallJavaNode &call = (MachCallJavaNode&)n;
 735   return MachCallNode::cmp(call) && _method->equals(call._method) &&
 736          _override_symbolic_info == call._override_symbolic_info;
 737 }
 738 #ifndef PRODUCT
 739 void MachCallJavaNode::dump_spec(outputStream *st) const {
 740   if (_method_handle_invoke)
 741     st->print("MethodHandle ");
 742   if (_method) {
 743     _method->print_short_name(st);
 744     st->print(" ");
 745   }
 746   MachCallNode::dump_spec(st);
 747 }
 748 #endif
 749 
 750 //------------------------------Registers--------------------------------------
 751 const RegMask &MachCallJavaNode::in_RegMask(uint idx) const {
 752   // Values in the domain use the users calling convention, embodied in the
 753   // _in_rms array of RegMasks.
 754   if (idx < tf()->domain_cc()->cnt()) {
 755     return _in_rms[idx];
 756   }
 757   if (idx == mach_constant_base_node_input()) {
 758     return MachConstantBaseNode::static_out_RegMask();
 759   }
 760   // Values outside the domain represent debug info
 761   Matcher* m = Compile::current()->matcher();
 762   // If this call is a MethodHandle invoke we have to use a different
 763   // debugmask which does not include the register we use to save the
 764   // SP over MH invokes.
 765   RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask;
 766   return *debugmask[in(idx)->ideal_reg()];
 767 }
 768 
 769 //=============================================================================
 770 uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); }
 771 uint MachCallStaticJavaNode::cmp( const Node &n ) const {
 772   MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n;
 773   return MachCallJavaNode::cmp(call) && _name == call._name;
 774 }
 775 
 776 //----------------------------uncommon_trap_request----------------------------
 777 // If this is an uncommon trap, return the request code, else zero.
 778 int MachCallStaticJavaNode::uncommon_trap_request() const {
 779   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 780     return CallStaticJavaNode::extract_uncommon_trap_request(this);
 781   }
 782   return 0;
 783 }
 784 
 785 #ifndef PRODUCT
 786 // Helper for summarizing uncommon_trap arguments.
 787 void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const {
 788   int trap_req = uncommon_trap_request();
 789   if (trap_req != 0) {
 790     char buf[100];
 791     st->print("(%s)",
 792                Deoptimization::format_trap_request(buf, sizeof(buf),
 793                                                    trap_req));
 794   }
 795 }
 796 
 797 void MachCallStaticJavaNode::dump_spec(outputStream *st) const {
 798   st->print("Static ");
 799   if (_name != NULL) {
 800     st->print("wrapper for: %s", _name );
 801     dump_trap_args(st);
 802     st->print(" ");
 803   }
 804   MachCallJavaNode::dump_spec(st);
 805 }
 806 #endif
 807 
 808 //=============================================================================
 809 #ifndef PRODUCT
 810 void MachCallDynamicJavaNode::dump_spec(outputStream *st) const {
 811   st->print("Dynamic ");
 812   MachCallJavaNode::dump_spec(st);
 813 }
 814 #endif
 815 //=============================================================================
 816 uint MachCallRuntimeNode::size_of() const { return sizeof(*this); }
 817 uint MachCallRuntimeNode::cmp( const Node &n ) const {
 818   MachCallRuntimeNode &call = (MachCallRuntimeNode&)n;
 819   return MachCallNode::cmp(call) && !strcmp(_name,call._name);
 820 }
 821 #ifndef PRODUCT
 822 void MachCallRuntimeNode::dump_spec(outputStream *st) const {
 823   st->print("%s ",_name);
 824   MachCallNode::dump_spec(st);
 825 }
 826 #endif
 827 //=============================================================================
 828 // A shared JVMState for all HaltNodes.  Indicates the start of debug info
 829 // is at TypeFunc::Parms.  Only required for SOE register spill handling -
 830 // to indicate where the stack-slot-only debug info inputs begin.
 831 // There is no other JVM state needed here.
 832 JVMState jvms_for_throw(0);
 833 JVMState *MachHaltNode::jvms() const {
 834   return &jvms_for_throw;
 835 }
 836 
 837 //=============================================================================
 838 #ifndef PRODUCT
 839 void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
 840   st->print("B%d", _block_num);
 841 }
 842 #endif // PRODUCT
 843 
 844 //=============================================================================
 845 #ifndef PRODUCT
 846 void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
 847   st->print(INTPTR_FORMAT, _method);
 848 }
 849 #endif // PRODUCT