1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/valueArrayKlass.hpp"
  43 #include "oops/valueArrayOop.hpp"
  44 #include "oops/valueKlass.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/compilationPolicy.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/signature.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/thread.hpp"
  55 #include "runtime/vframe.hpp"
  56 #include "runtime/vframeArray.hpp"
  57 #include "runtime/vframe_hp.hpp"
  58 #include "utilities/events.hpp"
  59 #include "utilities/xmlstream.hpp"
  60 
  61 #if INCLUDE_JVMCI
  62 #include "jvmci/jvmciRuntime.hpp"
  63 #include "jvmci/jvmciJavaClasses.hpp"
  64 #endif
  65 
  66 
  67 bool DeoptimizationMarker::_is_active = false;
  68 
  69 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  70                                          int  caller_adjustment,
  71                                          int  caller_actual_parameters,
  72                                          int  number_of_frames,
  73                                          intptr_t* frame_sizes,
  74                                          address* frame_pcs,
  75                                          BasicType return_type,
  76                                          int exec_mode) {
  77   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  78   _caller_adjustment         = caller_adjustment;
  79   _caller_actual_parameters  = caller_actual_parameters;
  80   _number_of_frames          = number_of_frames;
  81   _frame_sizes               = frame_sizes;
  82   _frame_pcs                 = frame_pcs;
  83   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  84   _return_type               = return_type;
  85   _initial_info              = 0;
  86   // PD (x86 only)
  87   _counter_temp              = 0;
  88   _unpack_kind               = exec_mode;
  89   _sender_sp_temp            = 0;
  90 
  91   _total_frame_sizes         = size_of_frames();
  92   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  93 }
  94 
  95 
  96 Deoptimization::UnrollBlock::~UnrollBlock() {
  97   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  98   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  99   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 100 }
 101 
 102 
 103 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 104   assert(register_number < RegisterMap::reg_count, "checking register number");
 105   return &_register_block[register_number * 2];
 106 }
 107 
 108 
 109 
 110 int Deoptimization::UnrollBlock::size_of_frames() const {
 111   // Acount first for the adjustment of the initial frame
 112   int result = _caller_adjustment;
 113   for (int index = 0; index < number_of_frames(); index++) {
 114     result += frame_sizes()[index];
 115   }
 116   return result;
 117 }
 118 
 119 
 120 void Deoptimization::UnrollBlock::print() {
 121   ttyLocker ttyl;
 122   tty->print_cr("UnrollBlock");
 123   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 124   tty->print(   "  frame_sizes: ");
 125   for (int index = 0; index < number_of_frames(); index++) {
 126     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 127   }
 128   tty->cr();
 129 }
 130 
 131 
 132 // In order to make fetch_unroll_info work properly with escape
 133 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 134 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 135 // of previously eliminated objects occurs in realloc_objects, which is
 136 // called from the method fetch_unroll_info_helper below.
 137 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 138   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 139   // but makes the entry a little slower. There is however a little dance we have to
 140   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 141 
 142   // fetch_unroll_info() is called at the beginning of the deoptimization
 143   // handler. Note this fact before we start generating temporary frames
 144   // that can confuse an asynchronous stack walker. This counter is
 145   // decremented at the end of unpack_frames().
 146   if (TraceDeoptimization) {
 147     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 148   }
 149   thread->inc_in_deopt_handler();
 150 
 151   return fetch_unroll_info_helper(thread, exec_mode);
 152 JRT_END
 153 
 154 
 155 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 156 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 157 
 158   // Note: there is a safepoint safety issue here. No matter whether we enter
 159   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 160   // the vframeArray is created.
 161   //
 162 
 163   // Allocate our special deoptimization ResourceMark
 164   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 165   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 166   thread->set_deopt_mark(dmark);
 167 
 168   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 169   RegisterMap map(thread, true);
 170   RegisterMap dummy_map(thread, false);
 171   // Now get the deoptee with a valid map
 172   frame deoptee = stub_frame.sender(&map);
 173   // Set the deoptee nmethod
 174   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 175   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 176   thread->set_deopt_compiled_method(cm);
 177 
 178   if (VerifyStack) {
 179     thread->validate_frame_layout();
 180   }
 181 
 182   // Create a growable array of VFrames where each VFrame represents an inlined
 183   // Java frame.  This storage is allocated with the usual system arena.
 184   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 185   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 186   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 187   while (!vf->is_top()) {
 188     assert(vf->is_compiled_frame(), "Wrong frame type");
 189     chunk->push(compiledVFrame::cast(vf));
 190     vf = vf->sender();
 191   }
 192   assert(vf->is_compiled_frame(), "Wrong frame type");
 193   chunk->push(compiledVFrame::cast(vf));
 194 
 195   bool realloc_failures = false;
 196 
 197 #if defined(COMPILER2) || INCLUDE_JVMCI
 198   // Reallocate the non-escaping objects and restore their fields. Then
 199   // relock objects if synchronization on them was eliminated.
 200 #ifndef INCLUDE_JVMCI
 201   if (DoEscapeAnalysis || EliminateNestedLocks) {
 202     if (EliminateAllocations) {
 203 #endif // INCLUDE_JVMCI
 204       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 205       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 206 
 207       // The flag return_oop() indicates call sites which return oop
 208       // in compiled code. Such sites include java method calls,
 209       // runtime calls (for example, used to allocate new objects/arrays
 210       // on slow code path) and any other calls generated in compiled code.
 211       // It is not guaranteed that we can get such information here only
 212       // by analyzing bytecode in deoptimized frames. This is why this flag
 213       // is set during method compilation (see Compile::Process_OopMap_Node()).
 214       // If the previous frame was popped or if we are dispatching an exception,
 215       // we don't have an oop result.
 216       ScopeDesc* scope = chunk->at(0)->scope();
 217       bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 218       // In case of the return of multiple values, we must take care
 219       // of all oop return values.
 220       GrowableArray<Handle> return_oops;
 221       ValueKlass* vk = NULL;
 222       if (save_oop_result) {
 223         if (scope->return_vt()) {
 224           vk = ValueKlass::returned_value_type(map);
 225           if (vk != NULL) {
 226             bool success = vk->save_oop_results(map, return_oops);
 227             assert(success, "found klass ptr being returned: saving oops can't fail");
 228             save_oop_result = false;
 229           } else {
 230             vk = NULL;
 231           }
 232         }
 233       }      
 234       if (save_oop_result) {
 235         // Reallocation may trigger GC. If deoptimization happened on return from
 236         // call which returns oop we need to save it since it is not in oopmap.
 237         oop result = deoptee.saved_oop_result(&map);
 238         assert(result == NULL || result->is_oop(), "must be oop");
 239         return_oops.push(Handle(thread, result));
 240         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 241         if (TraceDeoptimization) {
 242           ttyLocker ttyl;
 243           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 244         }
 245       }
 246       if (objects != NULL || vk != NULL) {
 247         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 248         JRT_BLOCK
 249           if (vk != NULL) {
 250             realloc_failures = realloc_value_type_result(vk, map, return_oops, THREAD);
 251           }
 252           if (objects != NULL) {
 253             realloc_failures = realloc_failures || realloc_objects(thread, &deoptee, objects, THREAD);
 254             reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD);
 255           }
 256         JRT_END
 257 #ifndef PRODUCT
 258         if (TraceDeoptimization) {
 259           ttyLocker ttyl;
 260           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 261           print_objects(objects, realloc_failures);
 262         }
 263 #endif
 264       }
 265       if (save_oop_result || vk != NULL) {
 266         // Restore result.
 267         assert(return_oops.length() == 1, "no value type");
 268         deoptee.set_saved_oop_result(&map, return_oops.pop()());
 269       }
 270 #ifndef INCLUDE_JVMCI
 271     }
 272     if (EliminateLocks) {
 273 #endif // INCLUDE_JVMCI
 274 #ifndef PRODUCT
 275       bool first = true;
 276 #endif
 277       for (int i = 0; i < chunk->length(); i++) {
 278         compiledVFrame* cvf = chunk->at(i);
 279         assert (cvf->scope() != NULL,"expect only compiled java frames");
 280         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 281         if (monitors->is_nonempty()) {
 282           relock_objects(monitors, thread, realloc_failures);
 283 #ifndef PRODUCT
 284           if (PrintDeoptimizationDetails) {
 285             ttyLocker ttyl;
 286             for (int j = 0; j < monitors->length(); j++) {
 287               MonitorInfo* mi = monitors->at(j);
 288               if (mi->eliminated()) {
 289                 if (first) {
 290                   first = false;
 291                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 292                 }
 293                 if (mi->owner_is_scalar_replaced()) {
 294                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 295                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 296                 } else {
 297                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 298                 }
 299               }
 300             }
 301           }
 302 #endif // !PRODUCT
 303         }
 304       }
 305 #ifndef INCLUDE_JVMCI
 306     }
 307   }
 308 #endif // INCLUDE_JVMCI
 309 #endif // COMPILER2 || INCLUDE_JVMCI
 310 
 311   ScopeDesc* trap_scope = chunk->at(0)->scope();
 312   Handle exceptionObject;
 313   if (trap_scope->rethrow_exception()) {
 314     if (PrintDeoptimizationDetails) {
 315       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 316     }
 317     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 318     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 319     ScopeValue* topOfStack = expressions->top();
 320     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 321     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 322   }
 323 
 324   // Ensure that no safepoint is taken after pointers have been stored
 325   // in fields of rematerialized objects.  If a safepoint occurs from here on
 326   // out the java state residing in the vframeArray will be missed.
 327   NoSafepointVerifier no_safepoint;
 328 
 329   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 330 #if defined(COMPILER2) || INCLUDE_JVMCI
 331   if (realloc_failures) {
 332     pop_frames_failed_reallocs(thread, array);
 333   }
 334 #endif
 335 
 336   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 337   thread->set_vframe_array_head(array);
 338 
 339   // Now that the vframeArray has been created if we have any deferred local writes
 340   // added by jvmti then we can free up that structure as the data is now in the
 341   // vframeArray
 342 
 343   if (thread->deferred_locals() != NULL) {
 344     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 345     int i = 0;
 346     do {
 347       // Because of inlining we could have multiple vframes for a single frame
 348       // and several of the vframes could have deferred writes. Find them all.
 349       if (list->at(i)->id() == array->original().id()) {
 350         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 351         list->remove_at(i);
 352         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 353         delete dlv;
 354       } else {
 355         i++;
 356       }
 357     } while ( i < list->length() );
 358     if (list->length() == 0) {
 359       thread->set_deferred_locals(NULL);
 360       // free the list and elements back to C heap.
 361       delete list;
 362     }
 363 
 364   }
 365 
 366 #ifndef SHARK
 367   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 368   CodeBlob* cb = stub_frame.cb();
 369   // Verify we have the right vframeArray
 370   assert(cb->frame_size() >= 0, "Unexpected frame size");
 371   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 372 
 373   // If the deopt call site is a MethodHandle invoke call site we have
 374   // to adjust the unpack_sp.
 375   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 376   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 377     unpack_sp = deoptee.unextended_sp();
 378 
 379 #ifdef ASSERT
 380   assert(cb->is_deoptimization_stub() ||
 381          cb->is_uncommon_trap_stub() ||
 382          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 383          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 384          "unexpected code blob: %s", cb->name());
 385 #endif
 386 #else
 387   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 388 #endif // !SHARK
 389 
 390   // This is a guarantee instead of an assert because if vframe doesn't match
 391   // we will unpack the wrong deoptimized frame and wind up in strange places
 392   // where it will be very difficult to figure out what went wrong. Better
 393   // to die an early death here than some very obscure death later when the
 394   // trail is cold.
 395   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 396   // in that it will fail to detect a problem when there is one. This needs
 397   // more work in tiger timeframe.
 398   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 399 
 400   int number_of_frames = array->frames();
 401 
 402   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 403   // virtual activation, which is the reverse of the elements in the vframes array.
 404   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 405   // +1 because we always have an interpreter return address for the final slot.
 406   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 407   int popframe_extra_args = 0;
 408   // Create an interpreter return address for the stub to use as its return
 409   // address so the skeletal frames are perfectly walkable
 410   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 411 
 412   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 413   // activation be put back on the expression stack of the caller for reexecution
 414   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 415     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 416   }
 417 
 418   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 419   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 420   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 421   //
 422   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 423   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 424 
 425   // It's possible that the number of parameters at the call site is
 426   // different than number of arguments in the callee when method
 427   // handles are used.  If the caller is interpreted get the real
 428   // value so that the proper amount of space can be added to it's
 429   // frame.
 430   bool caller_was_method_handle = false;
 431   if (deopt_sender.is_interpreted_frame()) {
 432     methodHandle method = deopt_sender.interpreter_frame_method();
 433     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 434     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 435       // Method handle invokes may involve fairly arbitrary chains of
 436       // calls so it's impossible to know how much actual space the
 437       // caller has for locals.
 438       caller_was_method_handle = true;
 439     }
 440   }
 441 
 442   //
 443   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 444   // frame_sizes/frame_pcs[1] next oldest frame (int)
 445   // frame_sizes/frame_pcs[n] youngest frame (int)
 446   //
 447   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 448   // owns the space for the return address to it's caller).  Confusing ain't it.
 449   //
 450   // The vframe array can address vframes with indices running from
 451   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 452   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 453   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 454   // so things look a little strange in this loop.
 455   //
 456   int callee_parameters = 0;
 457   int callee_locals = 0;
 458   for (int index = 0; index < array->frames(); index++ ) {
 459     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 460     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 461     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 462     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 463                                                                                                     callee_locals,
 464                                                                                                     index == 0,
 465                                                                                                     popframe_extra_args);
 466     // This pc doesn't have to be perfect just good enough to identify the frame
 467     // as interpreted so the skeleton frame will be walkable
 468     // The correct pc will be set when the skeleton frame is completely filled out
 469     // The final pc we store in the loop is wrong and will be overwritten below
 470     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 471 
 472     callee_parameters = array->element(index)->method()->size_of_parameters();
 473     callee_locals = array->element(index)->method()->max_locals();
 474     popframe_extra_args = 0;
 475   }
 476 
 477   // Compute whether the root vframe returns a float or double value.
 478   BasicType return_type;
 479   {
 480     methodHandle method(thread, array->element(0)->method());
 481     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 482     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 483   }
 484 
 485   // Compute information for handling adapters and adjusting the frame size of the caller.
 486   int caller_adjustment = 0;
 487 
 488   // Compute the amount the oldest interpreter frame will have to adjust
 489   // its caller's stack by. If the caller is a compiled frame then
 490   // we pretend that the callee has no parameters so that the
 491   // extension counts for the full amount of locals and not just
 492   // locals-parms. This is because without a c2i adapter the parm
 493   // area as created by the compiled frame will not be usable by
 494   // the interpreter. (Depending on the calling convention there
 495   // may not even be enough space).
 496 
 497   // QQQ I'd rather see this pushed down into last_frame_adjust
 498   // and have it take the sender (aka caller).
 499 
 500   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 501     caller_adjustment = last_frame_adjust(0, callee_locals);
 502   } else if (callee_locals > callee_parameters) {
 503     // The caller frame may need extending to accommodate
 504     // non-parameter locals of the first unpacked interpreted frame.
 505     // Compute that adjustment.
 506     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 507   }
 508 
 509   // If the sender is deoptimized the we must retrieve the address of the handler
 510   // since the frame will "magically" show the original pc before the deopt
 511   // and we'd undo the deopt.
 512 
 513   frame_pcs[0] = deopt_sender.raw_pc();
 514 
 515 #ifndef SHARK
 516   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 517 #endif // SHARK
 518 
 519 #ifdef INCLUDE_JVMCI
 520   if (exceptionObject() != NULL) {
 521     thread->set_exception_oop(exceptionObject());
 522     exec_mode = Unpack_exception;
 523   }
 524 #endif
 525 
 526   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 527     assert(thread->has_pending_exception(), "should have thrown OOME");
 528     thread->set_exception_oop(thread->pending_exception());
 529     thread->clear_pending_exception();
 530     exec_mode = Unpack_exception;
 531   }
 532 
 533 #if INCLUDE_JVMCI
 534   if (thread->frames_to_pop_failed_realloc() > 0) {
 535     thread->set_pending_monitorenter(false);
 536   }
 537 #endif
 538 
 539   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 540                                       caller_adjustment * BytesPerWord,
 541                                       caller_was_method_handle ? 0 : callee_parameters,
 542                                       number_of_frames,
 543                                       frame_sizes,
 544                                       frame_pcs,
 545                                       return_type,
 546                                       exec_mode);
 547   // On some platforms, we need a way to pass some platform dependent
 548   // information to the unpacking code so the skeletal frames come out
 549   // correct (initial fp value, unextended sp, ...)
 550   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 551 
 552   if (array->frames() > 1) {
 553     if (VerifyStack && TraceDeoptimization) {
 554       ttyLocker ttyl;
 555       tty->print_cr("Deoptimizing method containing inlining");
 556     }
 557   }
 558 
 559   array->set_unroll_block(info);
 560   return info;
 561 }
 562 
 563 // Called to cleanup deoptimization data structures in normal case
 564 // after unpacking to stack and when stack overflow error occurs
 565 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 566                                         vframeArray *array) {
 567 
 568   // Get array if coming from exception
 569   if (array == NULL) {
 570     array = thread->vframe_array_head();
 571   }
 572   thread->set_vframe_array_head(NULL);
 573 
 574   // Free the previous UnrollBlock
 575   vframeArray* old_array = thread->vframe_array_last();
 576   thread->set_vframe_array_last(array);
 577 
 578   if (old_array != NULL) {
 579     UnrollBlock* old_info = old_array->unroll_block();
 580     old_array->set_unroll_block(NULL);
 581     delete old_info;
 582     delete old_array;
 583   }
 584 
 585   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 586   // inside the vframeArray (StackValueCollections)
 587 
 588   delete thread->deopt_mark();
 589   thread->set_deopt_mark(NULL);
 590   thread->set_deopt_compiled_method(NULL);
 591 
 592 
 593   if (JvmtiExport::can_pop_frame()) {
 594 #ifndef CC_INTERP
 595     // Regardless of whether we entered this routine with the pending
 596     // popframe condition bit set, we should always clear it now
 597     thread->clear_popframe_condition();
 598 #else
 599     // C++ interpreter will clear has_pending_popframe when it enters
 600     // with method_resume. For deopt_resume2 we clear it now.
 601     if (thread->popframe_forcing_deopt_reexecution())
 602         thread->clear_popframe_condition();
 603 #endif /* CC_INTERP */
 604   }
 605 
 606   // unpack_frames() is called at the end of the deoptimization handler
 607   // and (in C2) at the end of the uncommon trap handler. Note this fact
 608   // so that an asynchronous stack walker can work again. This counter is
 609   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 610   // the beginning of uncommon_trap().
 611   thread->dec_in_deopt_handler();
 612 }
 613 
 614 // Moved from cpu directories because none of the cpus has callee save values.
 615 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 616 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 617 
 618   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 619   // the days we had adapter frames. When we deoptimize a situation where a
 620   // compiled caller calls a compiled caller will have registers it expects
 621   // to survive the call to the callee. If we deoptimize the callee the only
 622   // way we can restore these registers is to have the oldest interpreter
 623   // frame that we create restore these values. That is what this routine
 624   // will accomplish.
 625 
 626   // At the moment we have modified c2 to not have any callee save registers
 627   // so this problem does not exist and this routine is just a place holder.
 628 
 629   assert(f->is_interpreted_frame(), "must be interpreted");
 630 }
 631 
 632 // Return BasicType of value being returned
 633 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 634 
 635   // We are already active int he special DeoptResourceMark any ResourceObj's we
 636   // allocate will be freed at the end of the routine.
 637 
 638   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 639   // but makes the entry a little slower. There is however a little dance we have to
 640   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 641   ResetNoHandleMark rnhm; // No-op in release/product versions
 642   HandleMark hm;
 643 
 644   frame stub_frame = thread->last_frame();
 645 
 646   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 647   // must point to the vframeArray for the unpack frame.
 648   vframeArray* array = thread->vframe_array_head();
 649 
 650 #ifndef PRODUCT
 651   if (TraceDeoptimization) {
 652     ttyLocker ttyl;
 653     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 654                   p2i(thread), p2i(array), exec_mode);
 655   }
 656 #endif
 657   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 658               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 659 
 660   UnrollBlock* info = array->unroll_block();
 661 
 662   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 663   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 664 
 665   BasicType bt = info->return_type();
 666 
 667   // If we have an exception pending, claim that the return type is an oop
 668   // so the deopt_blob does not overwrite the exception_oop.
 669 
 670   if (exec_mode == Unpack_exception)
 671     bt = T_OBJECT;
 672 
 673   // Cleanup thread deopt data
 674   cleanup_deopt_info(thread, array);
 675 
 676 #ifndef PRODUCT
 677   if (VerifyStack) {
 678     ResourceMark res_mark;
 679 
 680     thread->validate_frame_layout();
 681 
 682     // Verify that the just-unpacked frames match the interpreter's
 683     // notions of expression stack and locals
 684     vframeArray* cur_array = thread->vframe_array_last();
 685     RegisterMap rm(thread, false);
 686     rm.set_include_argument_oops(false);
 687     bool is_top_frame = true;
 688     int callee_size_of_parameters = 0;
 689     int callee_max_locals = 0;
 690     for (int i = 0; i < cur_array->frames(); i++) {
 691       vframeArrayElement* el = cur_array->element(i);
 692       frame* iframe = el->iframe();
 693       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 694 
 695       // Get the oop map for this bci
 696       InterpreterOopMap mask;
 697       int cur_invoke_parameter_size = 0;
 698       bool try_next_mask = false;
 699       int next_mask_expression_stack_size = -1;
 700       int top_frame_expression_stack_adjustment = 0;
 701       methodHandle mh(thread, iframe->interpreter_frame_method());
 702       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 703       BytecodeStream str(mh);
 704       str.set_start(iframe->interpreter_frame_bci());
 705       int max_bci = mh->code_size();
 706       // Get to the next bytecode if possible
 707       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 708       // Check to see if we can grab the number of outgoing arguments
 709       // at an uncommon trap for an invoke (where the compiler
 710       // generates debug info before the invoke has executed)
 711       Bytecodes::Code cur_code = str.next();
 712       if (cur_code == Bytecodes::_invokevirtual   ||
 713           cur_code == Bytecodes::_invokespecial   ||
 714           cur_code == Bytecodes::_invokestatic    ||
 715           cur_code == Bytecodes::_invokeinterface ||
 716           cur_code == Bytecodes::_invokedynamic) {
 717         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 718         Symbol* signature = invoke.signature();
 719         ArgumentSizeComputer asc(signature);
 720         cur_invoke_parameter_size = asc.size();
 721         if (invoke.has_receiver()) {
 722           // Add in receiver
 723           ++cur_invoke_parameter_size;
 724         }
 725         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 726           callee_size_of_parameters++;
 727         }
 728       }
 729       if (str.bci() < max_bci) {
 730         Bytecodes::Code bc = str.next();
 731         if (bc >= 0) {
 732           // The interpreter oop map generator reports results before
 733           // the current bytecode has executed except in the case of
 734           // calls. It seems to be hard to tell whether the compiler
 735           // has emitted debug information matching the "state before"
 736           // a given bytecode or the state after, so we try both
 737           switch (cur_code) {
 738             case Bytecodes::_invokevirtual:
 739             case Bytecodes::_invokespecial:
 740             case Bytecodes::_invokestatic:
 741             case Bytecodes::_invokeinterface:
 742             case Bytecodes::_invokedynamic:
 743             case Bytecodes::_athrow:
 744               break;
 745             default: {
 746               InterpreterOopMap next_mask;
 747               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 748               next_mask_expression_stack_size = next_mask.expression_stack_size();
 749               // Need to subtract off the size of the result type of
 750               // the bytecode because this is not described in the
 751               // debug info but returned to the interpreter in the TOS
 752               // caching register
 753               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 754               if (bytecode_result_type != T_ILLEGAL) {
 755                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 756               }
 757               assert(top_frame_expression_stack_adjustment >= 0, "");
 758               try_next_mask = true;
 759               break;
 760             }
 761           }
 762         }
 763       }
 764 
 765       // Verify stack depth and oops in frame
 766       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 767       if (!(
 768             /* SPARC */
 769             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 770             /* x86 */
 771             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 772             (try_next_mask &&
 773              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 774                                                                     top_frame_expression_stack_adjustment))) ||
 775             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 776             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 777              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 778             )) {
 779         ttyLocker ttyl;
 780 
 781         // Print out some information that will help us debug the problem
 782         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 783         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 784         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 785                       iframe->interpreter_frame_expression_stack_size());
 786         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 787         tty->print_cr("  try_next_mask = %d", try_next_mask);
 788         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 789         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 790         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 791         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 792         tty->print_cr("  exec_mode = %d", exec_mode);
 793         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 794         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 795         tty->print_cr("  Interpreted frames:");
 796         for (int k = 0; k < cur_array->frames(); k++) {
 797           vframeArrayElement* el = cur_array->element(k);
 798           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 799         }
 800         cur_array->print_on_2(tty);
 801         guarantee(false, "wrong number of expression stack elements during deopt");
 802       }
 803       VerifyOopClosure verify;
 804       iframe->oops_interpreted_do(&verify, &rm, false);
 805       callee_size_of_parameters = mh->size_of_parameters();
 806       callee_max_locals = mh->max_locals();
 807       is_top_frame = false;
 808     }
 809   }
 810 #endif /* !PRODUCT */
 811 
 812 
 813   return bt;
 814 JRT_END
 815 
 816 
 817 int Deoptimization::deoptimize_dependents() {
 818   Threads::deoptimized_wrt_marked_nmethods();
 819   return 0;
 820 }
 821 
 822 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 823   = Deoptimization::Action_reinterpret;
 824 
 825 #if defined(COMPILER2) || INCLUDE_JVMCI
 826 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 827   Handle pending_exception(THREAD, thread->pending_exception());
 828   const char* exception_file = thread->exception_file();
 829   int exception_line = thread->exception_line();
 830   thread->clear_pending_exception();
 831 
 832   bool failures = false;
 833 
 834   for (int i = 0; i < objects->length(); i++) {
 835     assert(objects->at(i)->is_object(), "invalid debug information");
 836     ObjectValue* sv = (ObjectValue*) objects->at(i);
 837 
 838     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 839     oop obj = NULL;
 840 
 841     if (k->is_instance_klass()) {
 842       InstanceKlass* ik = InstanceKlass::cast(k);
 843       obj = ik->allocate_instance(THREAD);
 844     } else if (k->is_valueArray_klass()) {
 845       ValueArrayKlass* ak = ValueArrayKlass::cast(k);
 846       // Value type array must be zeroed because not all memory is reassigned
 847       obj = ak->allocate(sv->field_size(), true, THREAD);
 848     } else if (k->is_typeArray_klass()) {
 849       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 850       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 851       int len = sv->field_size() / type2size[ak->element_type()];
 852       obj = ak->allocate(len, THREAD);
 853     } else if (k->is_objArray_klass()) {
 854       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 855       obj = ak->allocate(sv->field_size(), THREAD);
 856     }
 857 
 858     if (obj == NULL) {
 859       failures = true;
 860     }
 861 
 862     assert(sv->value().is_null(), "redundant reallocation");
 863     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 864     CLEAR_PENDING_EXCEPTION;
 865     sv->set_value(obj);
 866   }
 867 
 868   if (failures) {
 869     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 870   } else if (pending_exception.not_null()) {
 871     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 872   }
 873 
 874   return failures;
 875 }
 876 
 877 // We're deoptimizing at the return of a call, value type fields are
 878 // in registers. When we go back to the interpreter, it will expect a
 879 // reference to a value type instance. Allocate and initialize it from
 880 // the register values here.
 881 bool Deoptimization::realloc_value_type_result(ValueKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) {
 882   VMRegPair* regs;
 883   int nb_fields;
 884   const GrowableArray<SigEntry>& sig_vk = vk->return_convention(regs, nb_fields);
 885   regs++;
 886   nb_fields--;
 887   oop new_vt = vk->realloc_result(sig_vk, map, regs, return_oops, nb_fields, THREAD);
 888   if (new_vt == NULL) {
 889     CLEAR_PENDING_EXCEPTION;
 890     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true);
 891   }
 892   return_oops.clear();
 893   return_oops.push(Handle(THREAD, new_vt));
 894   return false;
 895 }
 896 
 897 // restore elements of an eliminated type array
 898 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 899   int index = 0;
 900   intptr_t val;
 901 
 902   for (int i = 0; i < sv->field_size(); i++) {
 903     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 904     switch(type) {
 905     case T_LONG: case T_DOUBLE: {
 906       assert(value->type() == T_INT, "Agreement.");
 907       StackValue* low =
 908         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 909 #ifdef _LP64
 910       jlong res = (jlong)low->get_int();
 911 #else
 912 #ifdef SPARC
 913       // For SPARC we have to swap high and low words.
 914       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 915 #else
 916       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 917 #endif //SPARC
 918 #endif
 919       obj->long_at_put(index, res);
 920       break;
 921     }
 922 
 923     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 924     case T_INT: case T_FLOAT: { // 4 bytes.
 925       assert(value->type() == T_INT, "Agreement.");
 926       bool big_value = false;
 927       if (i + 1 < sv->field_size() && type == T_INT) {
 928         if (sv->field_at(i)->is_location()) {
 929           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 930           if (type == Location::dbl || type == Location::lng) {
 931             big_value = true;
 932           }
 933         } else if (sv->field_at(i)->is_constant_int()) {
 934           ScopeValue* next_scope_field = sv->field_at(i + 1);
 935           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 936             big_value = true;
 937           }
 938         }
 939       }
 940 
 941       if (big_value) {
 942         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 943   #ifdef _LP64
 944         jlong res = (jlong)low->get_int();
 945   #else
 946   #ifdef SPARC
 947         // For SPARC we have to swap high and low words.
 948         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 949   #else
 950         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 951   #endif //SPARC
 952   #endif
 953         obj->int_at_put(index, (jint)*((jint*)&res));
 954         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 955       } else {
 956         val = value->get_int();
 957         obj->int_at_put(index, (jint)*((jint*)&val));
 958       }
 959       break;
 960     }
 961 
 962     case T_SHORT:
 963       assert(value->type() == T_INT, "Agreement.");
 964       val = value->get_int();
 965       obj->short_at_put(index, (jshort)*((jint*)&val));
 966       break;
 967 
 968     case T_CHAR:
 969       assert(value->type() == T_INT, "Agreement.");
 970       val = value->get_int();
 971       obj->char_at_put(index, (jchar)*((jint*)&val));
 972       break;
 973 
 974     case T_BYTE:
 975       assert(value->type() == T_INT, "Agreement.");
 976       val = value->get_int();
 977       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 978       break;
 979 
 980     case T_BOOLEAN:
 981       assert(value->type() == T_INT, "Agreement.");
 982       val = value->get_int();
 983       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 984       break;
 985 
 986       default:
 987         ShouldNotReachHere();
 988     }
 989     index++;
 990   }
 991 }
 992 
 993 
 994 // restore fields of an eliminated object array
 995 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 996   for (int i = 0; i < sv->field_size(); i++) {
 997     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 998     assert(value->type() == T_OBJECT, "object element expected");
 999     obj->obj_at_put(i, value->get_obj()());
1000   }
1001 }
1002 
1003 class ReassignedField {
1004 public:
1005   int _offset;
1006   BasicType _type;
1007   InstanceKlass* _klass;
1008 public:
1009   ReassignedField() {
1010     _offset = 0;
1011     _type = T_ILLEGAL;
1012     _klass = NULL;
1013   }
1014 };
1015 
1016 int compare(ReassignedField* left, ReassignedField* right) {
1017   return left->_offset - right->_offset;
1018 }
1019 
1020 // Restore fields of an eliminated instance object using the same field order
1021 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1022 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) {
1023   if (klass->superklass() != NULL) {
1024     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal, 0, CHECK_0);
1025   }
1026 
1027   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1028   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1029     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1030       ReassignedField field;
1031       field._offset = fs.offset();
1032       field._type = FieldType::basic_type(fs.signature());
1033       if (field._type == T_VALUETYPE) {
1034         // Resolve klass of flattened value type field
1035         SignatureStream ss(fs.signature(), false);
1036         Klass* vk = ss.as_klass(Handle(THREAD, klass->class_loader()), Handle(THREAD, klass->protection_domain()), SignatureStream::NCDFError, THREAD);
1037         guarantee(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
1038         assert(vk->is_value(), "must be a ValueKlass");
1039         field._klass = InstanceKlass::cast(vk);
1040       }
1041       fields->append(field);
1042     }
1043   }
1044   fields->sort(compare);
1045   for (int i = 0; i < fields->length(); i++) {
1046     intptr_t val;
1047     ScopeValue* scope_field = sv->field_at(svIndex);
1048     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1049     int offset = base_offset + fields->at(i)._offset;
1050     BasicType type = fields->at(i)._type;
1051     switch (type) {
1052       case T_OBJECT: case T_ARRAY:
1053         assert(value->type() == T_OBJECT, "Agreement.");
1054         obj->obj_field_put(offset, value->get_obj()());
1055         break;
1056 
1057       case T_VALUETYPE: {
1058         // Recursively re-assign flattened value type fields
1059         InstanceKlass* vk = fields->at(i)._klass;
1060         assert(vk != NULL, "must be resolved");
1061         offset -= ValueKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header
1062         svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0);
1063         continue; // Continue because we don't need to increment svIndex
1064       }
1065 
1066       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1067       case T_INT: case T_FLOAT: { // 4 bytes.
1068         assert(value->type() == T_INT, "Agreement.");
1069         bool big_value = false;
1070         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1071           if (scope_field->is_location()) {
1072             Location::Type type = ((LocationValue*) scope_field)->location().type();
1073             if (type == Location::dbl || type == Location::lng) {
1074               big_value = true;
1075             }
1076           }
1077           if (scope_field->is_constant_int()) {
1078             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1079             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1080               big_value = true;
1081             }
1082           }
1083         }
1084 
1085         if (big_value) {
1086           i++;
1087           assert(i < fields->length(), "second T_INT field needed");
1088           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1089         } else {
1090           val = value->get_int();
1091           obj->int_field_put(offset, (jint)*((jint*)&val));
1092           break;
1093         }
1094       }
1095         /* no break */
1096 
1097       case T_LONG: case T_DOUBLE: {
1098         assert(value->type() == T_INT, "Agreement.");
1099         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1100 #ifdef _LP64
1101         jlong res = (jlong)low->get_int();
1102 #else
1103 #ifdef SPARC
1104         // For SPARC we have to swap high and low words.
1105         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1106 #else
1107         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1108 #endif //SPARC
1109 #endif
1110         obj->long_field_put(offset, res);
1111         break;
1112       }
1113 
1114       case T_SHORT:
1115         assert(value->type() == T_INT, "Agreement.");
1116         val = value->get_int();
1117         obj->short_field_put(offset, (jshort)*((jint*)&val));
1118         break;
1119 
1120       case T_CHAR:
1121         assert(value->type() == T_INT, "Agreement.");
1122         val = value->get_int();
1123         obj->char_field_put(offset, (jchar)*((jint*)&val));
1124         break;
1125 
1126       case T_BYTE:
1127         assert(value->type() == T_INT, "Agreement.");
1128         val = value->get_int();
1129         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1130         break;
1131 
1132       case T_BOOLEAN:
1133         assert(value->type() == T_INT, "Agreement.");
1134         val = value->get_int();
1135         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1136         break;
1137 
1138       default:
1139         ShouldNotReachHere();
1140     }
1141     svIndex++;
1142   }
1143   return svIndex;
1144 }
1145 
1146 // restore fields of an eliminated value type array
1147 void Deoptimization::reassign_value_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, valueArrayOop obj, ValueArrayKlass* vak, TRAPS) {
1148   ValueKlass* vk = vak->element_klass();
1149   assert(vk->flatten_array(), "should only be used for flattened value type arrays");
1150   // Adjust offset to omit oop header
1151   int base_offset = arrayOopDesc::base_offset_in_bytes(T_VALUETYPE) - ValueKlass::cast(vk)->first_field_offset();
1152   // Initialize all elements of the flattened value type array
1153   for (int i = 0; i < sv->field_size(); i++) {
1154     ScopeValue* val = sv->field_at(i);
1155     int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper()));
1156     reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, false /* skip_internal */, offset, CHECK);
1157   }
1158 }
1159 
1160 // restore fields of all eliminated objects and arrays
1161 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) {
1162   for (int i = 0; i < objects->length(); i++) {
1163     ObjectValue* sv = (ObjectValue*) objects->at(i);
1164     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1165     Handle obj = sv->value();
1166     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1167     if (PrintDeoptimizationDetails) {
1168       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1169     }
1170     if (obj.is_null()) {
1171       continue;
1172     }
1173 
1174     if (k->is_instance_klass()) {
1175       InstanceKlass* ik = InstanceKlass::cast(k);
1176       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK);
1177     } else if (k->is_valueArray_klass()) {
1178       ValueArrayKlass* vak = ValueArrayKlass::cast(k);
1179       reassign_value_array_elements(fr, reg_map, sv, (valueArrayOop) obj(), vak, CHECK);
1180     } else if (k->is_typeArray_klass()) {
1181       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1182       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1183     } else if (k->is_objArray_klass()) {
1184       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1185     }
1186   }
1187 }
1188 
1189 
1190 // relock objects for which synchronization was eliminated
1191 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1192   for (int i = 0; i < monitors->length(); i++) {
1193     MonitorInfo* mon_info = monitors->at(i);
1194     if (mon_info->eliminated()) {
1195       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1196       if (!mon_info->owner_is_scalar_replaced()) {
1197         Handle obj(thread, mon_info->owner());
1198         markOop mark = obj->mark();
1199         if (UseBiasedLocking && mark->has_bias_pattern()) {
1200           // New allocated objects may have the mark set to anonymously biased.
1201           // Also the deoptimized method may called methods with synchronization
1202           // where the thread-local object is bias locked to the current thread.
1203           assert(mark->is_biased_anonymously() ||
1204                  mark->biased_locker() == thread, "should be locked to current thread");
1205           // Reset mark word to unbiased prototype.
1206           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1207           obj->set_mark(unbiased_prototype);
1208         }
1209         BasicLock* lock = mon_info->lock();
1210         ObjectSynchronizer::slow_enter(obj, lock, thread);
1211         assert(mon_info->owner()->is_locked(), "object must be locked now");
1212       }
1213     }
1214   }
1215 }
1216 
1217 
1218 #ifndef PRODUCT
1219 // print information about reallocated objects
1220 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1221   fieldDescriptor fd;
1222 
1223   for (int i = 0; i < objects->length(); i++) {
1224     ObjectValue* sv = (ObjectValue*) objects->at(i);
1225     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1226     Handle obj = sv->value();
1227 
1228     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1229     k->print_value();
1230     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1231     if (obj.is_null()) {
1232       tty->print(" allocation failed");
1233     } else {
1234       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1235     }
1236     tty->cr();
1237 
1238     if (Verbose && !obj.is_null()) {
1239       k->oop_print_on(obj(), tty);
1240     }
1241   }
1242 }
1243 #endif
1244 #endif // COMPILER2 || INCLUDE_JVMCI
1245 
1246 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1247   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1248 
1249 #ifndef PRODUCT
1250   if (PrintDeoptimizationDetails) {
1251     ttyLocker ttyl;
1252     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1253     fr.print_on(tty);
1254     tty->print_cr("     Virtual frames (innermost first):");
1255     for (int index = 0; index < chunk->length(); index++) {
1256       compiledVFrame* vf = chunk->at(index);
1257       tty->print("       %2d - ", index);
1258       vf->print_value();
1259       int bci = chunk->at(index)->raw_bci();
1260       const char* code_name;
1261       if (bci == SynchronizationEntryBCI) {
1262         code_name = "sync entry";
1263       } else {
1264         Bytecodes::Code code = vf->method()->code_at(bci);
1265         code_name = Bytecodes::name(code);
1266       }
1267       tty->print(" - %s", code_name);
1268       tty->print_cr(" @ bci %d ", bci);
1269       if (Verbose) {
1270         vf->print();
1271         tty->cr();
1272       }
1273     }
1274   }
1275 #endif
1276 
1277   // Register map for next frame (used for stack crawl).  We capture
1278   // the state of the deopt'ing frame's caller.  Thus if we need to
1279   // stuff a C2I adapter we can properly fill in the callee-save
1280   // register locations.
1281   frame caller = fr.sender(reg_map);
1282   int frame_size = caller.sp() - fr.sp();
1283 
1284   frame sender = caller;
1285 
1286   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1287   // the vframeArray containing the unpacking information is allocated in the C heap.
1288   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1289   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1290 
1291   // Compare the vframeArray to the collected vframes
1292   assert(array->structural_compare(thread, chunk), "just checking");
1293 
1294 #ifndef PRODUCT
1295   if (PrintDeoptimizationDetails) {
1296     ttyLocker ttyl;
1297     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1298   }
1299 #endif // PRODUCT
1300 
1301   return array;
1302 }
1303 
1304 #if defined(COMPILER2) || INCLUDE_JVMCI
1305 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1306   // Reallocation of some scalar replaced objects failed. Record
1307   // that we need to pop all the interpreter frames for the
1308   // deoptimized compiled frame.
1309   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1310   thread->set_frames_to_pop_failed_realloc(array->frames());
1311   // Unlock all monitors here otherwise the interpreter will see a
1312   // mix of locked and unlocked monitors (because of failed
1313   // reallocations of synchronized objects) and be confused.
1314   for (int i = 0; i < array->frames(); i++) {
1315     MonitorChunk* monitors = array->element(i)->monitors();
1316     if (monitors != NULL) {
1317       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1318         BasicObjectLock* src = monitors->at(j);
1319         if (src->obj() != NULL) {
1320           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1321         }
1322       }
1323       array->element(i)->free_monitors(thread);
1324 #ifdef ASSERT
1325       array->element(i)->set_removed_monitors();
1326 #endif
1327     }
1328   }
1329 }
1330 #endif
1331 
1332 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1333   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1334   Thread* thread = Thread::current();
1335   for (int i = 0; i < monitors->length(); i++) {
1336     MonitorInfo* mon_info = monitors->at(i);
1337     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1338       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1339     }
1340   }
1341 }
1342 
1343 
1344 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1345   if (!UseBiasedLocking) {
1346     return;
1347   }
1348 
1349   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1350 
1351   // Unfortunately we don't have a RegisterMap available in most of
1352   // the places we want to call this routine so we need to walk the
1353   // stack again to update the register map.
1354   if (map == NULL || !map->update_map()) {
1355     StackFrameStream sfs(thread, true);
1356     bool found = false;
1357     while (!found && !sfs.is_done()) {
1358       frame* cur = sfs.current();
1359       sfs.next();
1360       found = cur->id() == fr.id();
1361     }
1362     assert(found, "frame to be deoptimized not found on target thread's stack");
1363     map = sfs.register_map();
1364   }
1365 
1366   vframe* vf = vframe::new_vframe(&fr, map, thread);
1367   compiledVFrame* cvf = compiledVFrame::cast(vf);
1368   // Revoke monitors' biases in all scopes
1369   while (!cvf->is_top()) {
1370     collect_monitors(cvf, objects_to_revoke);
1371     cvf = compiledVFrame::cast(cvf->sender());
1372   }
1373   collect_monitors(cvf, objects_to_revoke);
1374 
1375   if (SafepointSynchronize::is_at_safepoint()) {
1376     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1377   } else {
1378     BiasedLocking::revoke(objects_to_revoke);
1379   }
1380 }
1381 
1382 
1383 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1384   if (!UseBiasedLocking) {
1385     return;
1386   }
1387 
1388   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1389   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1390   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1391     if (jt->has_last_Java_frame()) {
1392       StackFrameStream sfs(jt, true);
1393       while (!sfs.is_done()) {
1394         frame* cur = sfs.current();
1395         if (cb->contains(cur->pc())) {
1396           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1397           compiledVFrame* cvf = compiledVFrame::cast(vf);
1398           // Revoke monitors' biases in all scopes
1399           while (!cvf->is_top()) {
1400             collect_monitors(cvf, objects_to_revoke);
1401             cvf = compiledVFrame::cast(cvf->sender());
1402           }
1403           collect_monitors(cvf, objects_to_revoke);
1404         }
1405         sfs.next();
1406       }
1407     }
1408   }
1409   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1410 }
1411 
1412 
1413 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1414   assert(fr.can_be_deoptimized(), "checking frame type");
1415 
1416   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1417 
1418   if (LogCompilation && xtty != NULL) {
1419     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1420     assert(cm != NULL, "only compiled methods can deopt");
1421 
1422     ttyLocker ttyl;
1423     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1424     cm->log_identity(xtty);
1425     xtty->end_head();
1426     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1427       xtty->begin_elem("jvms bci='%d'", sd->bci());
1428       xtty->method(sd->method());
1429       xtty->end_elem();
1430       if (sd->is_top())  break;
1431     }
1432     xtty->tail("deoptimized");
1433   }
1434 
1435   // Patch the compiled method so that when execution returns to it we will
1436   // deopt the execution state and return to the interpreter.
1437   fr.deoptimize(thread);
1438 }
1439 
1440 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1441   deoptimize(thread, fr, map, Reason_constraint);
1442 }
1443 
1444 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1445   // Deoptimize only if the frame comes from compile code.
1446   // Do not deoptimize the frame which is already patched
1447   // during the execution of the loops below.
1448   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1449     return;
1450   }
1451   ResourceMark rm;
1452   DeoptimizationMarker dm;
1453   if (UseBiasedLocking) {
1454     revoke_biases_of_monitors(thread, fr, map);
1455   }
1456   deoptimize_single_frame(thread, fr, reason);
1457 
1458 }
1459 
1460 
1461 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1462   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1463          "can only deoptimize other thread at a safepoint");
1464   // Compute frame and register map based on thread and sp.
1465   RegisterMap reg_map(thread, UseBiasedLocking);
1466   frame fr = thread->last_frame();
1467   while (fr.id() != id) {
1468     fr = fr.sender(&reg_map);
1469   }
1470   deoptimize(thread, fr, &reg_map, reason);
1471 }
1472 
1473 
1474 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1475   if (thread == Thread::current()) {
1476     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1477   } else {
1478     VM_DeoptimizeFrame deopt(thread, id, reason);
1479     VMThread::execute(&deopt);
1480   }
1481 }
1482 
1483 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1484   deoptimize_frame(thread, id, Reason_constraint);
1485 }
1486 
1487 // JVMTI PopFrame support
1488 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1489 {
1490   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1491 }
1492 JRT_END
1493 
1494 MethodData*
1495 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1496                                 bool create_if_missing) {
1497   Thread* THREAD = thread;
1498   MethodData* mdo = m()->method_data();
1499   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1500     // Build an MDO.  Ignore errors like OutOfMemory;
1501     // that simply means we won't have an MDO to update.
1502     Method::build_interpreter_method_data(m, THREAD);
1503     if (HAS_PENDING_EXCEPTION) {
1504       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1505       CLEAR_PENDING_EXCEPTION;
1506     }
1507     mdo = m()->method_data();
1508   }
1509   return mdo;
1510 }
1511 
1512 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1513 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1514   // in case of an unresolved klass entry, load the class.
1515   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1516     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1517     return;
1518   }
1519 
1520   if (!constant_pool->tag_at(index).is_symbol()) return;
1521 
1522   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1523   Symbol*  symbol  = constant_pool->symbol_at(index);
1524 
1525   // class name?
1526   if (symbol->byte_at(0) != '(') {
1527     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1528     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1529     return;
1530   }
1531 
1532   // then it must be a signature!
1533   ResourceMark rm(THREAD);
1534   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1535     if (ss.is_object()) {
1536       Symbol* class_name = ss.as_symbol(CHECK);
1537       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1538       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1539     }
1540   }
1541 }
1542 
1543 
1544 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1545   EXCEPTION_MARK;
1546   load_class_by_index(constant_pool, index, THREAD);
1547   if (HAS_PENDING_EXCEPTION) {
1548     // Exception happened during classloading. We ignore the exception here, since it
1549     // is going to be rethrown since the current activation is going to be deoptimized and
1550     // the interpreter will re-execute the bytecode.
1551     CLEAR_PENDING_EXCEPTION;
1552     // Class loading called java code which may have caused a stack
1553     // overflow. If the exception was thrown right before the return
1554     // to the runtime the stack is no longer guarded. Reguard the
1555     // stack otherwise if we return to the uncommon trap blob and the
1556     // stack bang causes a stack overflow we crash.
1557     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1558     JavaThread* thread = (JavaThread*)THREAD;
1559     bool guard_pages_enabled = thread->stack_guards_enabled();
1560     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1561     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1562   }
1563 }
1564 
1565 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1566   HandleMark hm;
1567 
1568   // uncommon_trap() is called at the beginning of the uncommon trap
1569   // handler. Note this fact before we start generating temporary frames
1570   // that can confuse an asynchronous stack walker. This counter is
1571   // decremented at the end of unpack_frames().
1572   thread->inc_in_deopt_handler();
1573 
1574   // We need to update the map if we have biased locking.
1575 #if INCLUDE_JVMCI
1576   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1577   RegisterMap reg_map(thread, true);
1578 #else
1579   RegisterMap reg_map(thread, UseBiasedLocking);
1580 #endif
1581   frame stub_frame = thread->last_frame();
1582   frame fr = stub_frame.sender(&reg_map);
1583   // Make sure the calling nmethod is not getting deoptimized and removed
1584   // before we are done with it.
1585   nmethodLocker nl(fr.pc());
1586 
1587   // Log a message
1588   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1589               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1590 
1591   {
1592     ResourceMark rm;
1593 
1594     // Revoke biases of any monitors in the frame to ensure we can migrate them
1595     revoke_biases_of_monitors(thread, fr, &reg_map);
1596 
1597     DeoptReason reason = trap_request_reason(trap_request);
1598     DeoptAction action = trap_request_action(trap_request);
1599 #if INCLUDE_JVMCI
1600     int debug_id = trap_request_debug_id(trap_request);
1601 #endif
1602     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1603 
1604     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1605     compiledVFrame* cvf = compiledVFrame::cast(vf);
1606 
1607     CompiledMethod* nm = cvf->code();
1608 
1609     ScopeDesc*      trap_scope  = cvf->scope();
1610 
1611     if (TraceDeoptimization) {
1612       ttyLocker ttyl;
1613       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1614 #if INCLUDE_JVMCI
1615           , debug_id
1616 #endif
1617           );
1618     }
1619 
1620     methodHandle    trap_method = trap_scope->method();
1621     int             trap_bci    = trap_scope->bci();
1622 #if INCLUDE_JVMCI
1623     oop speculation = thread->pending_failed_speculation();
1624     if (nm->is_compiled_by_jvmci()) {
1625       if (speculation != NULL) {
1626         oop speculation_log = nm->as_nmethod()->speculation_log();
1627         if (speculation_log != NULL) {
1628           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1629             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1630               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1631             }
1632           }
1633           if (TraceDeoptimization) {
1634             tty->print_cr("Saving speculation to speculation log");
1635           }
1636           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1637         } else {
1638           if (TraceDeoptimization) {
1639             tty->print_cr("Speculation present but no speculation log");
1640           }
1641         }
1642         thread->set_pending_failed_speculation(NULL);
1643       } else {
1644         if (TraceDeoptimization) {
1645           tty->print_cr("No speculation");
1646         }
1647       }
1648     } else {
1649       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1650     }
1651 
1652     if (trap_bci == SynchronizationEntryBCI) {
1653       trap_bci = 0;
1654       thread->set_pending_monitorenter(true);
1655     }
1656 
1657     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1658       thread->set_pending_transfer_to_interpreter(true);
1659     }
1660 #endif
1661 
1662     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1663     // Record this event in the histogram.
1664     gather_statistics(reason, action, trap_bc);
1665 
1666     // Ensure that we can record deopt. history:
1667     // Need MDO to record RTM code generation state.
1668     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1669 
1670     methodHandle profiled_method;
1671 #if INCLUDE_JVMCI
1672     if (nm->is_compiled_by_jvmci()) {
1673       profiled_method = nm->method();
1674     } else {
1675       profiled_method = trap_method;
1676     }
1677 #else
1678     profiled_method = trap_method;
1679 #endif
1680 
1681     MethodData* trap_mdo =
1682       get_method_data(thread, profiled_method, create_if_missing);
1683 
1684     // Log a message
1685     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1686                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1687                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1688 
1689     // Print a bunch of diagnostics, if requested.
1690     if (TraceDeoptimization || LogCompilation) {
1691       ResourceMark rm;
1692       ttyLocker ttyl;
1693       char buf[100];
1694       if (xtty != NULL) {
1695         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1696                          os::current_thread_id(),
1697                          format_trap_request(buf, sizeof(buf), trap_request));
1698         nm->log_identity(xtty);
1699       }
1700       Symbol* class_name = NULL;
1701       bool unresolved = false;
1702       if (unloaded_class_index >= 0) {
1703         constantPoolHandle constants (THREAD, trap_method->constants());
1704         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1705           class_name = constants->klass_name_at(unloaded_class_index);
1706           unresolved = true;
1707           if (xtty != NULL)
1708             xtty->print(" unresolved='1'");
1709         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1710           class_name = constants->symbol_at(unloaded_class_index);
1711         }
1712         if (xtty != NULL)
1713           xtty->name(class_name);
1714       }
1715       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1716         // Dump the relevant MDO state.
1717         // This is the deopt count for the current reason, any previous
1718         // reasons or recompiles seen at this point.
1719         int dcnt = trap_mdo->trap_count(reason);
1720         if (dcnt != 0)
1721           xtty->print(" count='%d'", dcnt);
1722         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1723         int dos = (pdata == NULL)? 0: pdata->trap_state();
1724         if (dos != 0) {
1725           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1726           if (trap_state_is_recompiled(dos)) {
1727             int recnt2 = trap_mdo->overflow_recompile_count();
1728             if (recnt2 != 0)
1729               xtty->print(" recompiles2='%d'", recnt2);
1730           }
1731         }
1732       }
1733       if (xtty != NULL) {
1734         xtty->stamp();
1735         xtty->end_head();
1736       }
1737       if (TraceDeoptimization) {  // make noise on the tty
1738         tty->print("Uncommon trap occurred in");
1739         nm->method()->print_short_name(tty);
1740         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1741 #if INCLUDE_JVMCI
1742         if (nm->is_nmethod()) {
1743           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1744           if (installedCode != NULL) {
1745             oop installedCodeName = NULL;
1746             if (installedCode->is_a(InstalledCode::klass())) {
1747               installedCodeName = InstalledCode::name(installedCode);
1748             }
1749             if (installedCodeName != NULL) {
1750               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1751             } else {
1752               tty->print(" (JVMCI: installed code has no name) ");
1753             }
1754           } else if (nm->is_compiled_by_jvmci()) {
1755             tty->print(" (JVMCI: no installed code) ");
1756           }
1757         }
1758 #endif
1759         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1760                    p2i(fr.pc()),
1761                    os::current_thread_id(),
1762                    trap_reason_name(reason),
1763                    trap_action_name(action),
1764                    unloaded_class_index
1765 #if INCLUDE_JVMCI
1766                    , debug_id
1767 #endif
1768                    );
1769         if (class_name != NULL) {
1770           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1771           class_name->print_symbol_on(tty);
1772         }
1773         tty->cr();
1774       }
1775       if (xtty != NULL) {
1776         // Log the precise location of the trap.
1777         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1778           xtty->begin_elem("jvms bci='%d'", sd->bci());
1779           xtty->method(sd->method());
1780           xtty->end_elem();
1781           if (sd->is_top())  break;
1782         }
1783         xtty->tail("uncommon_trap");
1784       }
1785     }
1786     // (End diagnostic printout.)
1787 
1788     // Load class if necessary
1789     if (unloaded_class_index >= 0) {
1790       constantPoolHandle constants(THREAD, trap_method->constants());
1791       load_class_by_index(constants, unloaded_class_index);
1792     }
1793 
1794     // Flush the nmethod if necessary and desirable.
1795     //
1796     // We need to avoid situations where we are re-flushing the nmethod
1797     // because of a hot deoptimization site.  Repeated flushes at the same
1798     // point need to be detected by the compiler and avoided.  If the compiler
1799     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1800     // module must take measures to avoid an infinite cycle of recompilation
1801     // and deoptimization.  There are several such measures:
1802     //
1803     //   1. If a recompilation is ordered a second time at some site X
1804     //   and for the same reason R, the action is adjusted to 'reinterpret',
1805     //   to give the interpreter time to exercise the method more thoroughly.
1806     //   If this happens, the method's overflow_recompile_count is incremented.
1807     //
1808     //   2. If the compiler fails to reduce the deoptimization rate, then
1809     //   the method's overflow_recompile_count will begin to exceed the set
1810     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1811     //   is adjusted to 'make_not_compilable', and the method is abandoned
1812     //   to the interpreter.  This is a performance hit for hot methods,
1813     //   but is better than a disastrous infinite cycle of recompilations.
1814     //   (Actually, only the method containing the site X is abandoned.)
1815     //
1816     //   3. In parallel with the previous measures, if the total number of
1817     //   recompilations of a method exceeds the much larger set limit
1818     //   PerMethodRecompilationCutoff, the method is abandoned.
1819     //   This should only happen if the method is very large and has
1820     //   many "lukewarm" deoptimizations.  The code which enforces this
1821     //   limit is elsewhere (class nmethod, class Method).
1822     //
1823     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1824     // to recompile at each bytecode independently of the per-BCI cutoff.
1825     //
1826     // The decision to update code is up to the compiler, and is encoded
1827     // in the Action_xxx code.  If the compiler requests Action_none
1828     // no trap state is changed, no compiled code is changed, and the
1829     // computation suffers along in the interpreter.
1830     //
1831     // The other action codes specify various tactics for decompilation
1832     // and recompilation.  Action_maybe_recompile is the loosest, and
1833     // allows the compiled code to stay around until enough traps are seen,
1834     // and until the compiler gets around to recompiling the trapping method.
1835     //
1836     // The other actions cause immediate removal of the present code.
1837 
1838     // Traps caused by injected profile shouldn't pollute trap counts.
1839     bool injected_profile_trap = trap_method->has_injected_profile() &&
1840                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1841 
1842     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1843     bool make_not_entrant = false;
1844     bool make_not_compilable = false;
1845     bool reprofile = false;
1846     switch (action) {
1847     case Action_none:
1848       // Keep the old code.
1849       update_trap_state = false;
1850       break;
1851     case Action_maybe_recompile:
1852       // Do not need to invalidate the present code, but we can
1853       // initiate another
1854       // Start compiler without (necessarily) invalidating the nmethod.
1855       // The system will tolerate the old code, but new code should be
1856       // generated when possible.
1857       break;
1858     case Action_reinterpret:
1859       // Go back into the interpreter for a while, and then consider
1860       // recompiling form scratch.
1861       make_not_entrant = true;
1862       // Reset invocation counter for outer most method.
1863       // This will allow the interpreter to exercise the bytecodes
1864       // for a while before recompiling.
1865       // By contrast, Action_make_not_entrant is immediate.
1866       //
1867       // Note that the compiler will track null_check, null_assert,
1868       // range_check, and class_check events and log them as if they
1869       // had been traps taken from compiled code.  This will update
1870       // the MDO trap history so that the next compilation will
1871       // properly detect hot trap sites.
1872       reprofile = true;
1873       break;
1874     case Action_make_not_entrant:
1875       // Request immediate recompilation, and get rid of the old code.
1876       // Make them not entrant, so next time they are called they get
1877       // recompiled.  Unloaded classes are loaded now so recompile before next
1878       // time they are called.  Same for uninitialized.  The interpreter will
1879       // link the missing class, if any.
1880       make_not_entrant = true;
1881       break;
1882     case Action_make_not_compilable:
1883       // Give up on compiling this method at all.
1884       make_not_entrant = true;
1885       make_not_compilable = true;
1886       break;
1887     default:
1888       ShouldNotReachHere();
1889     }
1890 
1891     // Setting +ProfileTraps fixes the following, on all platforms:
1892     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1893     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1894     // recompile relies on a MethodData* to record heroic opt failures.
1895 
1896     // Whether the interpreter is producing MDO data or not, we also need
1897     // to use the MDO to detect hot deoptimization points and control
1898     // aggressive optimization.
1899     bool inc_recompile_count = false;
1900     ProfileData* pdata = NULL;
1901     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1902       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1903       uint this_trap_count = 0;
1904       bool maybe_prior_trap = false;
1905       bool maybe_prior_recompile = false;
1906       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1907 #if INCLUDE_JVMCI
1908                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1909 #endif
1910                                    nm->method(),
1911                                    //outputs:
1912                                    this_trap_count,
1913                                    maybe_prior_trap,
1914                                    maybe_prior_recompile);
1915       // Because the interpreter also counts null, div0, range, and class
1916       // checks, these traps from compiled code are double-counted.
1917       // This is harmless; it just means that the PerXTrapLimit values
1918       // are in effect a little smaller than they look.
1919 
1920       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1921       if (per_bc_reason != Reason_none) {
1922         // Now take action based on the partially known per-BCI history.
1923         if (maybe_prior_trap
1924             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1925           // If there are too many traps at this BCI, force a recompile.
1926           // This will allow the compiler to see the limit overflow, and
1927           // take corrective action, if possible.  The compiler generally
1928           // does not use the exact PerBytecodeTrapLimit value, but instead
1929           // changes its tactics if it sees any traps at all.  This provides
1930           // a little hysteresis, delaying a recompile until a trap happens
1931           // several times.
1932           //
1933           // Actually, since there is only one bit of counter per BCI,
1934           // the possible per-BCI counts are {0,1,(per-method count)}.
1935           // This produces accurate results if in fact there is only
1936           // one hot trap site, but begins to get fuzzy if there are
1937           // many sites.  For example, if there are ten sites each
1938           // trapping two or more times, they each get the blame for
1939           // all of their traps.
1940           make_not_entrant = true;
1941         }
1942 
1943         // Detect repeated recompilation at the same BCI, and enforce a limit.
1944         if (make_not_entrant && maybe_prior_recompile) {
1945           // More than one recompile at this point.
1946           inc_recompile_count = maybe_prior_trap;
1947         }
1948       } else {
1949         // For reasons which are not recorded per-bytecode, we simply
1950         // force recompiles unconditionally.
1951         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1952         make_not_entrant = true;
1953       }
1954 
1955       // Go back to the compiler if there are too many traps in this method.
1956       if (this_trap_count >= per_method_trap_limit(reason)) {
1957         // If there are too many traps in this method, force a recompile.
1958         // This will allow the compiler to see the limit overflow, and
1959         // take corrective action, if possible.
1960         // (This condition is an unlikely backstop only, because the
1961         // PerBytecodeTrapLimit is more likely to take effect first,
1962         // if it is applicable.)
1963         make_not_entrant = true;
1964       }
1965 
1966       // Here's more hysteresis:  If there has been a recompile at
1967       // this trap point already, run the method in the interpreter
1968       // for a while to exercise it more thoroughly.
1969       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1970         reprofile = true;
1971       }
1972     }
1973 
1974     // Take requested actions on the method:
1975 
1976     // Recompile
1977     if (make_not_entrant) {
1978       if (!nm->make_not_entrant()) {
1979         return; // the call did not change nmethod's state
1980       }
1981 
1982       if (pdata != NULL) {
1983         // Record the recompilation event, if any.
1984         int tstate0 = pdata->trap_state();
1985         int tstate1 = trap_state_set_recompiled(tstate0, true);
1986         if (tstate1 != tstate0)
1987           pdata->set_trap_state(tstate1);
1988       }
1989 
1990 #if INCLUDE_RTM_OPT
1991       // Restart collecting RTM locking abort statistic if the method
1992       // is recompiled for a reason other than RTM state change.
1993       // Assume that in new recompiled code the statistic could be different,
1994       // for example, due to different inlining.
1995       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1996           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1997         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1998       }
1999 #endif
2000       // For code aging we count traps separately here, using make_not_entrant()
2001       // as a guard against simultaneous deopts in multiple threads.
2002       if (reason == Reason_tenured && trap_mdo != NULL) {
2003         trap_mdo->inc_tenure_traps();
2004       }
2005     }
2006 
2007     if (inc_recompile_count) {
2008       trap_mdo->inc_overflow_recompile_count();
2009       if ((uint)trap_mdo->overflow_recompile_count() >
2010           (uint)PerBytecodeRecompilationCutoff) {
2011         // Give up on the method containing the bad BCI.
2012         if (trap_method() == nm->method()) {
2013           make_not_compilable = true;
2014         } else {
2015           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
2016           // But give grace to the enclosing nm->method().
2017         }
2018       }
2019     }
2020 
2021     // Reprofile
2022     if (reprofile) {
2023       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
2024     }
2025 
2026     // Give up compiling
2027     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2028       assert(make_not_entrant, "consistent");
2029       nm->method()->set_not_compilable(CompLevel_full_optimization);
2030     }
2031 
2032   } // Free marked resources
2033 
2034 }
2035 JRT_END
2036 
2037 ProfileData*
2038 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2039                                          int trap_bci,
2040                                          Deoptimization::DeoptReason reason,
2041                                          bool update_total_trap_count,
2042 #if INCLUDE_JVMCI
2043                                          bool is_osr,
2044 #endif
2045                                          Method* compiled_method,
2046                                          //outputs:
2047                                          uint& ret_this_trap_count,
2048                                          bool& ret_maybe_prior_trap,
2049                                          bool& ret_maybe_prior_recompile) {
2050   bool maybe_prior_trap = false;
2051   bool maybe_prior_recompile = false;
2052   uint this_trap_count = 0;
2053   if (update_total_trap_count) {
2054     uint idx = reason;
2055 #if INCLUDE_JVMCI
2056     if (is_osr) {
2057       idx += Reason_LIMIT;
2058     }
2059 #endif
2060     uint prior_trap_count = trap_mdo->trap_count(idx);
2061     this_trap_count  = trap_mdo->inc_trap_count(idx);
2062 
2063     // If the runtime cannot find a place to store trap history,
2064     // it is estimated based on the general condition of the method.
2065     // If the method has ever been recompiled, or has ever incurred
2066     // a trap with the present reason , then this BCI is assumed
2067     // (pessimistically) to be the culprit.
2068     maybe_prior_trap      = (prior_trap_count != 0);
2069     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2070   }
2071   ProfileData* pdata = NULL;
2072 
2073 
2074   // For reasons which are recorded per bytecode, we check per-BCI data.
2075   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2076   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2077   if (per_bc_reason != Reason_none) {
2078     // Find the profile data for this BCI.  If there isn't one,
2079     // try to allocate one from the MDO's set of spares.
2080     // This will let us detect a repeated trap at this point.
2081     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2082 
2083     if (pdata != NULL) {
2084       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2085         if (LogCompilation && xtty != NULL) {
2086           ttyLocker ttyl;
2087           // no more room for speculative traps in this MDO
2088           xtty->elem("speculative_traps_oom");
2089         }
2090       }
2091       // Query the trap state of this profile datum.
2092       int tstate0 = pdata->trap_state();
2093       if (!trap_state_has_reason(tstate0, per_bc_reason))
2094         maybe_prior_trap = false;
2095       if (!trap_state_is_recompiled(tstate0))
2096         maybe_prior_recompile = false;
2097 
2098       // Update the trap state of this profile datum.
2099       int tstate1 = tstate0;
2100       // Record the reason.
2101       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2102       // Store the updated state on the MDO, for next time.
2103       if (tstate1 != tstate0)
2104         pdata->set_trap_state(tstate1);
2105     } else {
2106       if (LogCompilation && xtty != NULL) {
2107         ttyLocker ttyl;
2108         // Missing MDP?  Leave a small complaint in the log.
2109         xtty->elem("missing_mdp bci='%d'", trap_bci);
2110       }
2111     }
2112   }
2113 
2114   // Return results:
2115   ret_this_trap_count = this_trap_count;
2116   ret_maybe_prior_trap = maybe_prior_trap;
2117   ret_maybe_prior_recompile = maybe_prior_recompile;
2118   return pdata;
2119 }
2120 
2121 void
2122 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2123   ResourceMark rm;
2124   // Ignored outputs:
2125   uint ignore_this_trap_count;
2126   bool ignore_maybe_prior_trap;
2127   bool ignore_maybe_prior_recompile;
2128   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2129   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2130   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2131   query_update_method_data(trap_mdo, trap_bci,
2132                            (DeoptReason)reason,
2133                            update_total_counts,
2134 #if INCLUDE_JVMCI
2135                            false,
2136 #endif
2137                            NULL,
2138                            ignore_this_trap_count,
2139                            ignore_maybe_prior_trap,
2140                            ignore_maybe_prior_recompile);
2141 }
2142 
2143 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2144   if (TraceDeoptimization) {
2145     tty->print("Uncommon trap ");
2146   }
2147   // Still in Java no safepoints
2148   {
2149     // This enters VM and may safepoint
2150     uncommon_trap_inner(thread, trap_request);
2151   }
2152   return fetch_unroll_info_helper(thread, exec_mode);
2153 }
2154 
2155 // Local derived constants.
2156 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2157 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2158 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2159 
2160 //---------------------------trap_state_reason---------------------------------
2161 Deoptimization::DeoptReason
2162 Deoptimization::trap_state_reason(int trap_state) {
2163   // This assert provides the link between the width of DataLayout::trap_bits
2164   // and the encoding of "recorded" reasons.  It ensures there are enough
2165   // bits to store all needed reasons in the per-BCI MDO profile.
2166   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2167   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2168   trap_state -= recompile_bit;
2169   if (trap_state == DS_REASON_MASK) {
2170     return Reason_many;
2171   } else {
2172     assert((int)Reason_none == 0, "state=0 => Reason_none");
2173     return (DeoptReason)trap_state;
2174   }
2175 }
2176 //-------------------------trap_state_has_reason-------------------------------
2177 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2178   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2179   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2180   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2181   trap_state -= recompile_bit;
2182   if (trap_state == DS_REASON_MASK) {
2183     return -1;  // true, unspecifically (bottom of state lattice)
2184   } else if (trap_state == reason) {
2185     return 1;   // true, definitely
2186   } else if (trap_state == 0) {
2187     return 0;   // false, definitely (top of state lattice)
2188   } else {
2189     return 0;   // false, definitely
2190   }
2191 }
2192 //-------------------------trap_state_add_reason-------------------------------
2193 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2194   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2195   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2196   trap_state -= recompile_bit;
2197   if (trap_state == DS_REASON_MASK) {
2198     return trap_state + recompile_bit;     // already at state lattice bottom
2199   } else if (trap_state == reason) {
2200     return trap_state + recompile_bit;     // the condition is already true
2201   } else if (trap_state == 0) {
2202     return reason + recompile_bit;          // no condition has yet been true
2203   } else {
2204     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2205   }
2206 }
2207 //-----------------------trap_state_is_recompiled------------------------------
2208 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2209   return (trap_state & DS_RECOMPILE_BIT) != 0;
2210 }
2211 //-----------------------trap_state_set_recompiled-----------------------------
2212 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2213   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2214   else    return trap_state & ~DS_RECOMPILE_BIT;
2215 }
2216 //---------------------------format_trap_state---------------------------------
2217 // This is used for debugging and diagnostics, including LogFile output.
2218 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2219                                               int trap_state) {
2220   assert(buflen > 0, "sanity");
2221   DeoptReason reason      = trap_state_reason(trap_state);
2222   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2223   // Re-encode the state from its decoded components.
2224   int decoded_state = 0;
2225   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2226     decoded_state = trap_state_add_reason(decoded_state, reason);
2227   if (recomp_flag)
2228     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2229   // If the state re-encodes properly, format it symbolically.
2230   // Because this routine is used for debugging and diagnostics,
2231   // be robust even if the state is a strange value.
2232   size_t len;
2233   if (decoded_state != trap_state) {
2234     // Random buggy state that doesn't decode??
2235     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2236   } else {
2237     len = jio_snprintf(buf, buflen, "%s%s",
2238                        trap_reason_name(reason),
2239                        recomp_flag ? " recompiled" : "");
2240   }
2241   return buf;
2242 }
2243 
2244 
2245 //--------------------------------statics--------------------------------------
2246 const char* Deoptimization::_trap_reason_name[] = {
2247   // Note:  Keep this in sync. with enum DeoptReason.
2248   "none",
2249   "null_check",
2250   "null_assert" JVMCI_ONLY("_or_unreached0"),
2251   "range_check",
2252   "class_check",
2253   "array_check",
2254   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2255   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2256   "unloaded",
2257   "uninitialized",
2258   "unreached",
2259   "unhandled",
2260   "constraint",
2261   "div0_check",
2262   "age",
2263   "predicate",
2264   "loop_limit_check",
2265   "speculate_class_check",
2266   "speculate_null_check",
2267   "rtm_state_change",
2268   "unstable_if",
2269   "unstable_fused_if",
2270 #if INCLUDE_JVMCI
2271   "aliasing",
2272   "transfer_to_interpreter",
2273   "not_compiled_exception_handler",
2274   "unresolved",
2275   "jsr_mismatch",
2276 #endif
2277   "tenured"
2278 };
2279 const char* Deoptimization::_trap_action_name[] = {
2280   // Note:  Keep this in sync. with enum DeoptAction.
2281   "none",
2282   "maybe_recompile",
2283   "reinterpret",
2284   "make_not_entrant",
2285   "make_not_compilable"
2286 };
2287 
2288 const char* Deoptimization::trap_reason_name(int reason) {
2289   // Check that every reason has a name
2290   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2291 
2292   if (reason == Reason_many)  return "many";
2293   if ((uint)reason < Reason_LIMIT)
2294     return _trap_reason_name[reason];
2295   static char buf[20];
2296   sprintf(buf, "reason%d", reason);
2297   return buf;
2298 }
2299 const char* Deoptimization::trap_action_name(int action) {
2300   // Check that every action has a name
2301   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2302 
2303   if ((uint)action < Action_LIMIT)
2304     return _trap_action_name[action];
2305   static char buf[20];
2306   sprintf(buf, "action%d", action);
2307   return buf;
2308 }
2309 
2310 // This is used for debugging and diagnostics, including LogFile output.
2311 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2312                                                 int trap_request) {
2313   jint unloaded_class_index = trap_request_index(trap_request);
2314   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2315   const char* action = trap_action_name(trap_request_action(trap_request));
2316 #if INCLUDE_JVMCI
2317   int debug_id = trap_request_debug_id(trap_request);
2318 #endif
2319   size_t len;
2320   if (unloaded_class_index < 0) {
2321     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2322                        reason, action
2323 #if INCLUDE_JVMCI
2324                        ,debug_id
2325 #endif
2326                        );
2327   } else {
2328     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2329                        reason, action, unloaded_class_index
2330 #if INCLUDE_JVMCI
2331                        ,debug_id
2332 #endif
2333                        );
2334   }
2335   return buf;
2336 }
2337 
2338 juint Deoptimization::_deoptimization_hist
2339         [Deoptimization::Reason_LIMIT]
2340     [1 + Deoptimization::Action_LIMIT]
2341         [Deoptimization::BC_CASE_LIMIT]
2342   = {0};
2343 
2344 enum {
2345   LSB_BITS = 8,
2346   LSB_MASK = right_n_bits(LSB_BITS)
2347 };
2348 
2349 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2350                                        Bytecodes::Code bc) {
2351   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2352   assert(action >= 0 && action < Action_LIMIT, "oob");
2353   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2354   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2355   juint* cases = _deoptimization_hist[reason][1+action];
2356   juint* bc_counter_addr = NULL;
2357   juint  bc_counter      = 0;
2358   // Look for an unused counter, or an exact match to this BC.
2359   if (bc != Bytecodes::_illegal) {
2360     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2361       juint* counter_addr = &cases[bc_case];
2362       juint  counter = *counter_addr;
2363       if ((counter == 0 && bc_counter_addr == NULL)
2364           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2365         // this counter is either free or is already devoted to this BC
2366         bc_counter_addr = counter_addr;
2367         bc_counter = counter | bc;
2368       }
2369     }
2370   }
2371   if (bc_counter_addr == NULL) {
2372     // Overflow, or no given bytecode.
2373     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2374     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2375   }
2376   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2377 }
2378 
2379 jint Deoptimization::total_deoptimization_count() {
2380   return _deoptimization_hist[Reason_none][0][0];
2381 }
2382 
2383 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2384   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2385   return _deoptimization_hist[reason][0][0];
2386 }
2387 
2388 void Deoptimization::print_statistics() {
2389   juint total = total_deoptimization_count();
2390   juint account = total;
2391   if (total != 0) {
2392     ttyLocker ttyl;
2393     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2394     tty->print_cr("Deoptimization traps recorded:");
2395     #define PRINT_STAT_LINE(name, r) \
2396       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2397     PRINT_STAT_LINE("total", total);
2398     // For each non-zero entry in the histogram, print the reason,
2399     // the action, and (if specifically known) the type of bytecode.
2400     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2401       for (int action = 0; action < Action_LIMIT; action++) {
2402         juint* cases = _deoptimization_hist[reason][1+action];
2403         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2404           juint counter = cases[bc_case];
2405           if (counter != 0) {
2406             char name[1*K];
2407             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2408             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2409               bc = Bytecodes::_illegal;
2410             sprintf(name, "%s/%s/%s",
2411                     trap_reason_name(reason),
2412                     trap_action_name(action),
2413                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2414             juint r = counter >> LSB_BITS;
2415             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2416             account -= r;
2417           }
2418         }
2419       }
2420     }
2421     if (account != 0) {
2422       PRINT_STAT_LINE("unaccounted", account);
2423     }
2424     #undef PRINT_STAT_LINE
2425     if (xtty != NULL)  xtty->tail("statistics");
2426   }
2427 }
2428 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2429 
2430 
2431 // Stubs for C1 only system.
2432 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2433   return false;
2434 }
2435 
2436 const char* Deoptimization::trap_reason_name(int reason) {
2437   return "unknown";
2438 }
2439 
2440 void Deoptimization::print_statistics() {
2441   // no output
2442 }
2443 
2444 void
2445 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2446   // no udpate
2447 }
2448 
2449 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2450   return 0;
2451 }
2452 
2453 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2454                                        Bytecodes::Code bc) {
2455   // no update
2456 }
2457 
2458 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2459                                               int trap_state) {
2460   jio_snprintf(buf, buflen, "#%d", trap_state);
2461   return buf;
2462 }
2463 
2464 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI