/* * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "ci/ciValueKlass.hpp" #include "opto/addnode.hpp" #include "opto/graphKit.hpp" #include "opto/rootnode.hpp" #include "opto/valuetypenode.hpp" #include "opto/phaseX.hpp" ValueTypeNode* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass) { // Create a new ValueTypeNode with uninitialized values and NULL oop const TypeValueType* type = TypeValueType::make(klass); return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE)); } Node* ValueTypeNode::make_default(PhaseGVN& gvn, ciValueKlass* vk) { // TODO re-use constant oop of pre-allocated default value type here? // Create a new ValueTypeNode with default values ValueTypeNode* vt = ValueTypeNode::make(gvn, vk); for (uint i = 0; i < vt->field_count(); ++i) { ciType* field_type = vt->field_type(i); Node* value = NULL; if (field_type->is_valuetype()) { value = ValueTypeNode::make_default(gvn, field_type->as_value_klass()); } else { value = gvn.zerocon(field_type->basic_type()); } vt->set_field_value(i, value); } return gvn.transform(vt); } Node* ValueTypeNode::make(PhaseGVN& gvn, Node* mem, Node* oop) { // Create and initialize a ValueTypeNode by loading all field // values from a heap-allocated version and also save the oop. const TypeValueType* type = gvn.type(oop)->is_valuetypeptr()->value_type(); ValueTypeNode* vt = new ValueTypeNode(type, oop); vt->load_values(gvn, mem, oop, oop, type->value_klass()); return gvn.transform(vt); } Node* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* vk, Node* mem, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) { // Create and initialize a ValueTypeNode by loading all field values from // a flattened value type field at 'holder_offset' or from a value type array. ValueTypeNode* vt = make(gvn, vk); // The value type is flattened into the object without an oop header. Subtract the // offset of the first field to account for the missing header when loading the values. holder_offset -= vk->first_field_offset(); vt->load_values(gvn, mem, obj, ptr, holder, holder_offset); return gvn.transform(vt); } void ValueTypeNode::load_values(PhaseGVN& gvn, Node* mem, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) { // Initialize the value type by loading its field values from // memory and adding the values as input edges to the node. for (uint i = 0; i < field_count(); ++i) { int offset = holder_offset + field_offset(i); ciType* ftype = field_type(i); Node* value = NULL; if (ftype->is_valuetype()) { // Recursively load the flattened value type field value = ValueTypeNode::make(gvn, ftype->as_value_klass(), mem, base, ptr, holder, offset); } else { const Type* con_type = NULL; if (base->is_Con()) { // If the oop to the value type is constant (static final field), we can // also treat the fields as constants because the value type is immutable. const TypeOopPtr* oop_ptr = base->bottom_type()->isa_oopptr(); ciObject* constant_oop = oop_ptr->const_oop(); ciField* field = holder->get_field_by_offset(offset, false); ciConstant constant = constant_oop->as_instance()->field_value(field); con_type = Type::make_from_constant(constant, /*require_const=*/ true); } if (con_type != NULL) { // Found a constant field value value = gvn.makecon(con_type); } else { // Load field value from memory const Type* base_type = gvn.type(base); const TypePtr* adr_type = NULL; if (base_type->isa_aryptr()) { // In the case of a flattened value type array, each field // has its own slice adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot); } else { ciField* field = holder->get_field_by_offset(offset, false); adr_type = gvn.C->alias_type(field)->adr_type(); } Node* adr = gvn.transform(new AddPNode(base, ptr, gvn.MakeConX(offset))); BasicType bt = type2field[ftype->basic_type()]; value = LoadNode::make(gvn, NULL, mem, adr, adr_type, Type::get_const_type(ftype), bt, MemNode::unordered); } } set_field_value(i, gvn.transform(value)); } } void ValueTypeNode::store(GraphKit* kit, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) const { // The value type is embedded into the object without an oop header. Subtract the // offset of the first field to account for the missing header when storing the values. holder_offset -= value_klass()->first_field_offset(); store_values(kit, obj, ptr, holder, holder_offset); } void ValueTypeNode::store_values(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const { // Write field values to memory for (uint i = 0; i < field_count(); ++i) { int offset = holder_offset + field_offset(i); Node* value = field_value(i); if (value->is_ValueType()) { // Recursively store the flattened value type field value->isa_ValueType()->store(kit, base, ptr, holder, offset); } else { const Type* base_type = kit->gvn().type(base); const TypePtr* adr_type = NULL; if (base_type->isa_aryptr()) { // In the case of a flattened value type array, each field has its own slice adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot); } else { ciField* field = holder->get_field_by_offset(offset, false); adr_type = kit->C->alias_type(field)->adr_type(); } Node* adr = kit->basic_plus_adr(base, ptr, offset); BasicType bt = type2field[field_type(i)->basic_type()]; if (is_java_primitive(bt)) { kit->store_to_memory(kit->control(), adr, value, bt, adr_type, MemNode::unordered); } else { const TypeOopPtr* ft = TypeOopPtr::make_from_klass(field_type(i)->as_klass()); assert(adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent"); bool is_array = base_type->isa_aryptr() != NULL; kit->store_oop(kit->control(), base, adr, adr_type, value, ft, bt, is_array, MemNode::unordered); } } } } Node* ValueTypeNode::store_to_memory(GraphKit* kit) { Node* in_oop = get_oop(); Node* null_ctl = kit->top(); // Check if value type is already allocated Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl); if (null_ctl->is_top()) { // Value type is allocated return not_null_oop; } // Not able to prove that value type is allocated. // Emit runtime check that may be folded later. const Type* oop_type = kit->gvn().type(in_oop); assert(TypePtr::NULL_PTR->higher_equal(oop_type), "should not be allocated"); const TypeValueTypePtr* vtptr_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull); RegionNode* region = new RegionNode(3); PhiNode* oop = new PhiNode(region, vtptr_type); PhiNode* io = new PhiNode(region, Type::ABIO); PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); // Oop is non-NULL, use it region->init_req(1, kit->control()); oop ->init_req(1, not_null_oop); io ->init_req(1, kit->i_o()); mem ->init_req(1, kit->merged_memory()); // Oop is NULL, allocate value type kit->set_control(null_ctl); kit->kill_dead_locals(); ciValueKlass* vk = value_klass(); Node* klass_node = kit->makecon(TypeKlassPtr::make(vk)); Node* alloc_oop = kit->new_instance(klass_node); // Write field values to memory store_values(kit, alloc_oop, alloc_oop, vk); region->init_req(2, kit->control()); oop ->init_req(2, alloc_oop); io ->init_req(2, kit->i_o()); mem ->init_req(2, kit->merged_memory()); // Update GraphKit kit->set_control(kit->gvn().transform(region)); kit->set_i_o(kit->gvn().transform(io)); kit->set_all_memory(kit->gvn().transform(mem)); kit->record_for_igvn(region); kit->record_for_igvn(oop); kit->record_for_igvn(io); kit->record_for_igvn(mem); // Use cloned ValueTypeNode to propagate oop from now on Node* res_oop = kit->gvn().transform(oop); ValueTypeNode* vt = clone()->as_ValueType(); vt->set_oop(res_oop); kit->replace_in_map(this, kit->gvn().transform(vt)); return res_oop; } // Clones the values type to handle control flow merges involving multiple value types. // The inputs are replaced by PhiNodes to represent the merged values for the given region. ValueTypeNode* ValueTypeNode::clone_with_phis(PhaseGVN* gvn, Node* region) { assert(!has_phi_inputs(region), "already cloned with phis"); ValueTypeNode* vt = clone()->as_ValueType(); // Create a PhiNode for merging the oop values const TypeValueTypePtr* vtptr = TypeValueTypePtr::make(vt->bottom_type()->isa_valuetype()); PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr); gvn->set_type(oop, vtptr); vt->set_oop(oop); // Create a PhiNode each for merging the field values for (uint i = 0; i < vt->field_count(); ++i) { ciType* type = vt->field_type(i); Node* value = vt->field_value(i); if (type->is_valuetype()) { // Handle flattened value type fields recursively value = value->as_ValueType()->clone_with_phis(gvn, region); } else { const Type* phi_type = Type::get_const_type(type); value = PhiNode::make(region, value, phi_type); gvn->set_type(value, phi_type); } vt->set_field_value(i, value); } gvn->set_type(vt, vt->bottom_type()); return vt; } // Checks if the inputs of the ValueTypeNode were replaced by PhiNodes // for the given region (see ValueTypeNode::clone_with_phis). bool ValueTypeNode::has_phi_inputs(Node* region) { // Check oop input bool result = get_oop()->is_Phi() && get_oop()->as_Phi()->region() == region; #ifdef ASSERT if (result) { // Check all field value inputs for consistency for (uint i = Oop; i < field_count(); ++i) { Node* n = in(i); if (n->is_ValueType()) { assert(n->as_ValueType()->has_phi_inputs(region), "inconsistent phi inputs"); } else { assert(n->is_Phi() && n->as_Phi()->region() == region, "inconsistent phi inputs"); } } } #endif return result; } // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis' ValueTypeNode* ValueTypeNode::merge_with(PhaseGVN* gvn, const ValueTypeNode* other, int pnum, bool transform) { // Merge oop inputs PhiNode* phi = get_oop()->as_Phi(); phi->set_req(pnum, other->get_oop()); if (transform) { set_oop(gvn->transform(phi)); gvn->record_for_igvn(phi); } // Merge field values for (uint i = 0; i < field_count(); ++i) { Node* val1 = field_value(i); Node* val2 = other->field_value(i); if (val1->isa_ValueType()) { val1->as_ValueType()->merge_with(gvn, val2->as_ValueType(), pnum, transform); } else { assert(val1->is_Phi(), "must be a phi node"); assert(!val2->is_ValueType(), "inconsistent merge values"); val1->set_req(pnum, val2); } if (transform) { set_field_value(i, gvn->transform(val1)); gvn->record_for_igvn(val1); } } return this; } Node* ValueTypeNode::field_value(uint index) const { assert(index < field_count(), "index out of bounds"); return in(Values + index); } // Get the value of the field at the given offset. // If 'recursive' is true, flattened value type fields will be resolved recursively. Node* ValueTypeNode::field_value_by_offset(int offset, bool recursive) const { // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type. int index = value_klass()->field_index_by_offset(offset); int sub_offset = offset - field_offset(index); Node* value = field_value(index); if (recursive && value->is_ValueType()) { // Flattened value type field ValueTypeNode* vt = value->as_ValueType(); sub_offset += vt->value_klass()->first_field_offset(); // Add header size return vt->field_value_by_offset(sub_offset); } assert(!(recursive && value->is_ValueType()), "should not be a value type"); assert(sub_offset == 0, "offset mismatch"); return value; } void ValueTypeNode::set_field_value(uint index, Node* value) { assert(index < field_count(), "index out of bounds"); set_req(Values + index, value); } int ValueTypeNode::field_offset(uint index) const { assert(index < field_count(), "index out of bounds"); return value_klass()->field_offset_by_index(index); } ciType* ValueTypeNode::field_type(uint index) const { assert(index < field_count(), "index out of bounds"); return value_klass()->field_type_by_index(index); } void ValueTypeNode::make_scalar_in_safepoints(Compile* C) { const TypeValueTypePtr* res_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull); ciValueKlass* vk = value_klass(); uint nfields = vk->flattened_field_count(); for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { Node* u = fast_out(i); if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) { Node* in_oop = get_oop(); const Type* oop_type = in_oop->bottom_type(); SafePointNode* sfpt = u->as_SafePoint(); JVMState* jvms = sfpt->jvms(); int start = jvms->debug_start(); int end = jvms->debug_end(); assert(TypePtr::NULL_PTR->higher_equal(oop_type), "already heap allocated value type should be linked directly"); // Replace safepoint edge by SafePointScalarObjectNode and add field values assert(jvms != NULL, "missing JVMS"); uint first_ind = (sfpt->req() - jvms->scloff()); SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, #ifdef ASSERT NULL, #endif first_ind, nfields); sobj->init_req(0, C->root()); // Iterate over the value type fields in order of increasing // offset and add the field values to the safepoint. for (uint j = 0; j < nfields; ++j) { int offset = vk->nonstatic_field_at(j)->offset(); Node* value = field_value_by_offset(offset, true /* include flattened value type fields */); sfpt->add_req(value); } jvms->set_endoff(sfpt->req()); int nb = sfpt->replace_edges_in_range(this, sobj, start, end); --i; imax -= nb; } } } void ValueTypeNode::pass_klass(Node* n, uint pos, const GraphKit& kit) { ciValueKlass* vk = value_klass(); const TypeKlassPtr* tk = TypeKlassPtr::make(vk); Node* arg = kit.makecon(tk); n->init_req(pos, arg); } uint ValueTypeNode::pass_fields(Node* n, int base_input, const GraphKit& kit, ciValueKlass* base_vk, int base_offset) { ciValueKlass* vk = value_klass(); if (base_vk == NULL) { base_vk = vk; } uint edges = 0; for (uint i = 0; i < field_count(); i++) { ciType* f_type = field_type(i); int offset = base_offset + field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0); Node* arg = field_value(i); if (f_type->is_valuetype()) { ciValueKlass* embedded_vk = f_type->as_value_klass(); edges += arg->as_ValueType()->pass_fields(n, base_input, kit, base_vk, offset); } else { int j = 0; int extra = 0; for (; j < base_vk->nof_nonstatic_fields(); j++) { ciField* f = base_vk->nonstatic_field_at(j); if (offset == f->offset()) { assert(f->type() == f_type, "inconsistent field type"); break; } BasicType bt = f->type()->basic_type(); if (bt == T_LONG || bt == T_DOUBLE) { extra++; } } n->init_req(base_input + j + extra, arg); edges++; BasicType bt = f_type->basic_type(); if (bt == T_LONG || bt == T_DOUBLE) { n->init_req(base_input + j + extra + 1, kit.top()); edges++; } } } return edges; } Node* ValueTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) { if (can_reshape) { PhaseIterGVN* igvn = phase->is_IterGVN(); const Type* oop_type = igvn->type(get_oop()); if (oop_type->meet(TypePtr::NULL_PTR) != oop_type) { // Value type is heap allocated, search for safepoint uses for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { Node* out = fast_out(i); if (out->is_SafePoint()) { // Let SafePointNode::Ideal() take care of re-wiring the // safepoint to the oop input instead of the value type node. igvn->rehash_node_delayed(out); } } } } return NULL; } // When a call returns multiple values, it has several result // projections, one per field. Replacing the result of the call by a // value type node (after late inlining) requires that for each result // projection, we find the corresponding value type field. void ValueTypeNode::replace_call_results(Node* call, Compile* C) { ciValueKlass* vk = value_klass(); for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) { ProjNode *pn = call->fast_out(i)->as_Proj(); uint con = pn->_con; if (con >= TypeFunc::Parms+1) { uint field_nb = con - (TypeFunc::Parms+1); int extra = 0; for (uint j = 0; j < field_nb - extra; j++) { ciField* f = vk->nonstatic_field_at(j); BasicType bt = f->type()->basic_type(); if (bt == T_LONG || bt == T_DOUBLE) { extra++; } } ciField* f = vk->nonstatic_field_at(field_nb - extra); Node* field = field_value_by_offset(f->offset(), true); C->gvn_replace_by(pn, field); C->initial_gvn()->hash_delete(pn); pn->set_req(0, C->top()); --i; --imax; } } } #ifndef PRODUCT void ValueTypeNode::dump_spec(outputStream* st) const { TypeNode::dump_spec(st); } #endif