1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "logging/log.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/compiledICHolder.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/vframeArray.hpp"
  37 #include "vmreg_x86.inline.hpp"
  38 #ifdef COMPILER1
  39 #include "c1/c1_Runtime1.hpp"
  40 #endif
  41 #ifdef COMPILER2
  42 #include "opto/runtime.hpp"
  43 #endif
  44 #include "vm_version_x86.hpp"
  45 
  46 #define __ masm->
  47 
  48 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  49 
  50 class RegisterSaver {
  51   // Capture info about frame layout
  52 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  53   enum layout {
  54                 fpu_state_off = 0,
  55                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  56                 st0_off, st0H_off,
  57                 st1_off, st1H_off,
  58                 st2_off, st2H_off,
  59                 st3_off, st3H_off,
  60                 st4_off, st4H_off,
  61                 st5_off, st5H_off,
  62                 st6_off, st6H_off,
  63                 st7_off, st7H_off,
  64                 xmm_off,
  65                 DEF_XMM_OFFS(0),
  66                 DEF_XMM_OFFS(1),
  67                 DEF_XMM_OFFS(2),
  68                 DEF_XMM_OFFS(3),
  69                 DEF_XMM_OFFS(4),
  70                 DEF_XMM_OFFS(5),
  71                 DEF_XMM_OFFS(6),
  72                 DEF_XMM_OFFS(7),
  73                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  74                 rdi_off,
  75                 rsi_off,
  76                 ignore_off,  // extra copy of rbp,
  77                 rsp_off,
  78                 rbx_off,
  79                 rdx_off,
  80                 rcx_off,
  81                 rax_off,
  82                 // The frame sender code expects that rbp will be in the "natural" place and
  83                 // will override any oopMap setting for it. We must therefore force the layout
  84                 // so that it agrees with the frame sender code.
  85                 rbp_off,
  86                 return_off,      // slot for return address
  87                 reg_save_size };
  88   enum { FPU_regs_live = flags_off - fpu_state_end };
  89 
  90   public:
  91 
  92   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  93                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
  94   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
  95 
  96   static int rax_offset() { return rax_off; }
  97   static int rbx_offset() { return rbx_off; }
  98 
  99   // Offsets into the register save area
 100   // Used by deoptimization when it is managing result register
 101   // values on its own
 102 
 103   static int raxOffset(void) { return rax_off; }
 104   static int rdxOffset(void) { return rdx_off; }
 105   static int rbxOffset(void) { return rbx_off; }
 106   static int xmm0Offset(void) { return xmm0_off; }
 107   // This really returns a slot in the fp save area, which one is not important
 108   static int fpResultOffset(void) { return st0_off; }
 109 
 110   // During deoptimization only the result register need to be restored
 111   // all the other values have already been extracted.
 112 
 113   static void restore_result_registers(MacroAssembler* masm);
 114 
 115 };
 116 
 117 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 118                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 119   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 120   int ymm_bytes = num_xmm_regs * 16;
 121   int zmm_bytes = num_xmm_regs * 32;
 122 #ifdef COMPILER2
 123   if (save_vectors) {
 124     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 125     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 126     // Save upper half of YMM registers
 127     int vect_bytes = ymm_bytes;
 128     if (UseAVX > 2) {
 129       // Save upper half of ZMM registers as well
 130       vect_bytes += zmm_bytes;
 131     }
 132     additional_frame_words += vect_bytes / wordSize;
 133   }
 134 #else
 135   assert(!save_vectors, "vectors are generated only by C2");
 136 #endif
 137   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 138   int frame_words = frame_size_in_bytes / wordSize;
 139   *total_frame_words = frame_words;
 140 
 141   assert(FPUStateSizeInWords == 27, "update stack layout");
 142 
 143   // save registers, fpu state, and flags
 144   // We assume caller has already has return address slot on the stack
 145   // We push epb twice in this sequence because we want the real rbp,
 146   // to be under the return like a normal enter and we want to use pusha
 147   // We push by hand instead of pusing push
 148   __ enter();
 149   __ pusha();
 150   __ pushf();
 151   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 152   __ push_FPU_state();          // Save FPU state & init
 153 
 154   if (verify_fpu) {
 155     // Some stubs may have non standard FPU control word settings so
 156     // only check and reset the value when it required to be the
 157     // standard value.  The safepoint blob in particular can be used
 158     // in methods which are using the 24 bit control word for
 159     // optimized float math.
 160 
 161 #ifdef ASSERT
 162     // Make sure the control word has the expected value
 163     Label ok;
 164     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 165     __ jccb(Assembler::equal, ok);
 166     __ stop("corrupted control word detected");
 167     __ bind(ok);
 168 #endif
 169 
 170     // Reset the control word to guard against exceptions being unmasked
 171     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 172     // into the on stack copy and then reload that to make sure that the
 173     // current and future values are correct.
 174     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 175   }
 176 
 177   __ frstor(Address(rsp, 0));
 178   if (!verify_fpu) {
 179     // Set the control word so that exceptions are masked for the
 180     // following code.
 181     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 182   }
 183 
 184   int off = st0_off;
 185   int delta = st1_off - off;
 186 
 187   // Save the FPU registers in de-opt-able form
 188   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 189     __ fstp_d(Address(rsp, off*wordSize));
 190     off += delta;
 191   }
 192 
 193   off = xmm0_off;
 194   delta = xmm1_off - off;
 195   if(UseSSE == 1) {
 196     // Save the XMM state
 197     for (int n = 0; n < num_xmm_regs; n++) {
 198       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 199       off += delta;
 200     }
 201   } else if(UseSSE >= 2) {
 202     // Save whole 128bit (16 bytes) XMM registers
 203     for (int n = 0; n < num_xmm_regs; n++) {
 204       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 205       off += delta;
 206     }
 207   }
 208 
 209   if (save_vectors) {
 210     __ subptr(rsp, ymm_bytes);
 211     // Save upper half of YMM registers
 212     for (int n = 0; n < num_xmm_regs; n++) {
 213       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 214     }
 215     if (UseAVX > 2) {
 216       __ subptr(rsp, zmm_bytes);
 217       // Save upper half of ZMM registers
 218       for (int n = 0; n < num_xmm_regs; n++) {
 219         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 220       }
 221     }
 222   }
 223   __ vzeroupper();
 224 
 225   // Set an oopmap for the call site.  This oopmap will map all
 226   // oop-registers and debug-info registers as callee-saved.  This
 227   // will allow deoptimization at this safepoint to find all possible
 228   // debug-info recordings, as well as let GC find all oops.
 229 
 230   OopMapSet *oop_maps = new OopMapSet();
 231   OopMap* map =  new OopMap( frame_words, 0 );
 232 
 233 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 234 #define NEXTREG(x) (x)->as_VMReg()->next()
 235 
 236   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 240   // rbp, location is known implicitly, no oopMap
 241   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 243   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 244   off = st0_off;
 245   delta = st1_off - off;
 246   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 247     FloatRegister freg_name = as_FloatRegister(n);
 248     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 249     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 250     off += delta;
 251   }
 252   off = xmm0_off;
 253   delta = xmm1_off - off;
 254   for (int n = 0; n < num_xmm_regs; n++) {
 255     XMMRegister xmm_name = as_XMMRegister(n);
 256     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 257     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 258     off += delta;
 259   }
 260 #undef NEXTREG
 261 #undef STACK_OFFSET
 262 
 263   return map;
 264 }
 265 
 266 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 267   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 268   int ymm_bytes = num_xmm_regs * 16;
 269   int zmm_bytes = num_xmm_regs * 32;
 270   // Recover XMM & FPU state
 271   int additional_frame_bytes = 0;
 272 #ifdef COMPILER2
 273   if (restore_vectors) {
 274     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 275     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 276     // Save upper half of YMM registers
 277     additional_frame_bytes = ymm_bytes;
 278     if (UseAVX > 2) {
 279       // Save upper half of ZMM registers as well
 280       additional_frame_bytes += zmm_bytes;
 281     }
 282   }
 283 #else
 284   assert(!restore_vectors, "vectors are generated only by C2");
 285 #endif
 286 
 287   int off = xmm0_off;
 288   int delta = xmm1_off - off;
 289 
 290   __ vzeroupper();
 291 
 292   if (UseSSE == 1) {
 293     // Restore XMM registers
 294     assert(additional_frame_bytes == 0, "");
 295     for (int n = 0; n < num_xmm_regs; n++) {
 296       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 297       off += delta;
 298     }
 299   } else if (UseSSE >= 2) {
 300     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 301     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 302     for (int n = 0; n < num_xmm_regs; n++) {
 303       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 304       off += delta;
 305     }
 306   }
 307 
 308   if (restore_vectors) {
 309     if (UseAVX > 2) {
 310       // Restore upper half of ZMM registers.
 311       for (int n = 0; n < num_xmm_regs; n++) {
 312         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
 313       }
 314       __ addptr(rsp, zmm_bytes);
 315     }
 316     // Restore upper half of YMM registers.
 317     for (int n = 0; n < num_xmm_regs; n++) {
 318       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
 319     }
 320     __ addptr(rsp, ymm_bytes);
 321   }
 322 
 323   __ pop_FPU_state();
 324   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 325 
 326   __ popf();
 327   __ popa();
 328   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 329   __ pop(rbp);
 330 }
 331 
 332 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 333 
 334   // Just restore result register. Only used by deoptimization. By
 335   // now any callee save register that needs to be restore to a c2
 336   // caller of the deoptee has been extracted into the vframeArray
 337   // and will be stuffed into the c2i adapter we create for later
 338   // restoration so only result registers need to be restored here.
 339   //
 340 
 341   __ frstor(Address(rsp, 0));      // Restore fpu state
 342 
 343   // Recover XMM & FPU state
 344   if( UseSSE == 1 ) {
 345     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 346   } else if( UseSSE >= 2 ) {
 347     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 348   }
 349   __ movptr(rax, Address(rsp, rax_off*wordSize));
 350   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 351   // Pop all of the register save are off the stack except the return address
 352   __ addptr(rsp, return_off * wordSize);
 353 }
 354 
 355 // Is vector's size (in bytes) bigger than a size saved by default?
 356 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 357 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 358 bool SharedRuntime::is_wide_vector(int size) {
 359   return size > 16;
 360 }
 361 
 362 size_t SharedRuntime::trampoline_size() {
 363   return 16;
 364 }
 365 
 366 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 367   __ jump(RuntimeAddress(destination));
 368 }
 369 
 370 // The java_calling_convention describes stack locations as ideal slots on
 371 // a frame with no abi restrictions. Since we must observe abi restrictions
 372 // (like the placement of the register window) the slots must be biased by
 373 // the following value.
 374 static int reg2offset_in(VMReg r) {
 375   // Account for saved rbp, and return address
 376   // This should really be in_preserve_stack_slots
 377   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 378 }
 379 
 380 static int reg2offset_out(VMReg r) {
 381   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 382 }
 383 
 384 // ---------------------------------------------------------------------------
 385 // Read the array of BasicTypes from a signature, and compute where the
 386 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 387 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 388 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 389 // as framesizes are fixed.
 390 // VMRegImpl::stack0 refers to the first slot 0(sp).
 391 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 392 // up to RegisterImpl::number_of_registers) are the 32-bit
 393 // integer registers.
 394 
 395 // Pass first two oop/int args in registers ECX and EDX.
 396 // Pass first two float/double args in registers XMM0 and XMM1.
 397 // Doubles have precedence, so if you pass a mix of floats and doubles
 398 // the doubles will grab the registers before the floats will.
 399 
 400 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 401 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 402 // units regardless of build. Of course for i486 there is no 64 bit build
 403 
 404 
 405 // ---------------------------------------------------------------------------
 406 // The compiled Java calling convention.
 407 // Pass first two oop/int args in registers ECX and EDX.
 408 // Pass first two float/double args in registers XMM0 and XMM1.
 409 // Doubles have precedence, so if you pass a mix of floats and doubles
 410 // the doubles will grab the registers before the floats will.
 411 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 412                                            VMRegPair *regs,
 413                                            int total_args_passed,
 414                                            int is_outgoing) {
 415   uint    stack = 0;          // Starting stack position for args on stack
 416 
 417 
 418   // Pass first two oop/int args in registers ECX and EDX.
 419   uint reg_arg0 = 9999;
 420   uint reg_arg1 = 9999;
 421 
 422   // Pass first two float/double args in registers XMM0 and XMM1.
 423   // Doubles have precedence, so if you pass a mix of floats and doubles
 424   // the doubles will grab the registers before the floats will.
 425   // CNC - TURNED OFF FOR non-SSE.
 426   //       On Intel we have to round all doubles (and most floats) at
 427   //       call sites by storing to the stack in any case.
 428   // UseSSE=0 ==> Don't Use ==> 9999+0
 429   // UseSSE=1 ==> Floats only ==> 9999+1
 430   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 431   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 432   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 433   uint freg_arg0 = 9999+fargs;
 434   uint freg_arg1 = 9999+fargs;
 435 
 436   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 437   int i;
 438   for( i = 0; i < total_args_passed; i++) {
 439     if( sig_bt[i] == T_DOUBLE ) {
 440       // first 2 doubles go in registers
 441       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 442       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 443       else // Else double is passed low on the stack to be aligned.
 444         stack += 2;
 445     } else if( sig_bt[i] == T_LONG ) {
 446       stack += 2;
 447     }
 448   }
 449   int dstack = 0;             // Separate counter for placing doubles
 450 
 451   // Now pick where all else goes.
 452   for( i = 0; i < total_args_passed; i++) {
 453     // From the type and the argument number (count) compute the location
 454     switch( sig_bt[i] ) {
 455     case T_SHORT:
 456     case T_CHAR:
 457     case T_BYTE:
 458     case T_BOOLEAN:
 459     case T_INT:
 460     case T_ARRAY:
 461     case T_OBJECT:
 462     case T_ADDRESS:
 463       if( reg_arg0 == 9999 )  {
 464         reg_arg0 = i;
 465         regs[i].set1(rcx->as_VMReg());
 466       } else if( reg_arg1 == 9999 )  {
 467         reg_arg1 = i;
 468         regs[i].set1(rdx->as_VMReg());
 469       } else {
 470         regs[i].set1(VMRegImpl::stack2reg(stack++));
 471       }
 472       break;
 473     case T_FLOAT:
 474       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 475         freg_arg0 = i;
 476         regs[i].set1(xmm0->as_VMReg());
 477       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 478         freg_arg1 = i;
 479         regs[i].set1(xmm1->as_VMReg());
 480       } else {
 481         regs[i].set1(VMRegImpl::stack2reg(stack++));
 482       }
 483       break;
 484     case T_LONG:
 485       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 486       regs[i].set2(VMRegImpl::stack2reg(dstack));
 487       dstack += 2;
 488       break;
 489     case T_DOUBLE:
 490       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 491       if( freg_arg0 == (uint)i ) {
 492         regs[i].set2(xmm0->as_VMReg());
 493       } else if( freg_arg1 == (uint)i ) {
 494         regs[i].set2(xmm1->as_VMReg());
 495       } else {
 496         regs[i].set2(VMRegImpl::stack2reg(dstack));
 497         dstack += 2;
 498       }
 499       break;
 500     case T_VOID: regs[i].set_bad(); break;
 501       break;
 502     default:
 503       ShouldNotReachHere();
 504       break;
 505     }
 506   }
 507 
 508   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 509   return round_to(stack, 2);
 510 }
 511 
 512 // Patch the callers callsite with entry to compiled code if it exists.
 513 static void patch_callers_callsite(MacroAssembler *masm) {
 514   Label L;
 515   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 516   __ jcc(Assembler::equal, L);
 517   // Schedule the branch target address early.
 518   // Call into the VM to patch the caller, then jump to compiled callee
 519   // rax, isn't live so capture return address while we easily can
 520   __ movptr(rax, Address(rsp, 0));
 521   __ pusha();
 522   __ pushf();
 523 
 524   if (UseSSE == 1) {
 525     __ subptr(rsp, 2*wordSize);
 526     __ movflt(Address(rsp, 0), xmm0);
 527     __ movflt(Address(rsp, wordSize), xmm1);
 528   }
 529   if (UseSSE >= 2) {
 530     __ subptr(rsp, 4*wordSize);
 531     __ movdbl(Address(rsp, 0), xmm0);
 532     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 533   }
 534 #ifdef COMPILER2
 535   // C2 may leave the stack dirty if not in SSE2+ mode
 536   if (UseSSE >= 2) {
 537     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 538   } else {
 539     __ empty_FPU_stack();
 540   }
 541 #endif /* COMPILER2 */
 542 
 543   // VM needs caller's callsite
 544   __ push(rax);
 545   // VM needs target method
 546   __ push(rbx);
 547   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 548   __ addptr(rsp, 2*wordSize);
 549 
 550   if (UseSSE == 1) {
 551     __ movflt(xmm0, Address(rsp, 0));
 552     __ movflt(xmm1, Address(rsp, wordSize));
 553     __ addptr(rsp, 2*wordSize);
 554   }
 555   if (UseSSE >= 2) {
 556     __ movdbl(xmm0, Address(rsp, 0));
 557     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 558     __ addptr(rsp, 4*wordSize);
 559   }
 560 
 561   __ popf();
 562   __ popa();
 563   __ bind(L);
 564 }
 565 
 566 
 567 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 568   int next_off = st_off - Interpreter::stackElementSize;
 569   __ movdbl(Address(rsp, next_off), r);
 570 }
 571 
 572 static void gen_c2i_adapter(MacroAssembler *masm,
 573                             const GrowableArray<SigEntry>& sig_extended,
 574                             const VMRegPair *regs,
 575                             Label& skip_fixup,
 576                             address start,
 577                             OopMapSet*& oop_maps,
 578                             int& frame_complete,
 579                             int& frame_size_in_words) {
 580   // Before we get into the guts of the C2I adapter, see if we should be here
 581   // at all.  We've come from compiled code and are attempting to jump to the
 582   // interpreter, which means the caller made a static call to get here
 583   // (vcalls always get a compiled target if there is one).  Check for a
 584   // compiled target.  If there is one, we need to patch the caller's call.
 585   patch_callers_callsite(masm);
 586 
 587   __ bind(skip_fixup);
 588 
 589 #ifdef COMPILER2
 590   // C2 may leave the stack dirty if not in SSE2+ mode
 591   if (UseSSE >= 2) {
 592     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 593   } else {
 594     __ empty_FPU_stack();
 595   }
 596 #endif /* COMPILER2 */
 597 
 598   // Since all args are passed on the stack, total_args_passed * interpreter_
 599   // stack_element_size  is the
 600   // space we need.
 601   int extraspace = sig_extended.length() * Interpreter::stackElementSize;
 602 
 603   // Get return address
 604   __ pop(rax);
 605 
 606   // set senderSP value
 607   __ movptr(rsi, rsp);
 608 
 609   __ subptr(rsp, extraspace);
 610 
 611   // Now write the args into the outgoing interpreter space
 612   for (int i = 0; i < sig_extended.length(); i++) {
 613     if (sig_extended.at(i)._bt == T_VOID) {
 614       assert(i > 0 && (sig_extended.at(i-1)._bt == T_LONG || sig_extended.at(i-1)._bt == T_DOUBLE), "missing half");
 615       continue;
 616     }
 617 
 618     // st_off points to lowest address on stack.
 619     int st_off = ((sig_extended.length() - 1) - i) * Interpreter::stackElementSize;
 620     int next_off = st_off - Interpreter::stackElementSize;
 621 
 622     // Say 4 args:
 623     // i   st_off
 624     // 0   12 T_LONG
 625     // 1    8 T_VOID
 626     // 2    4 T_OBJECT
 627     // 3    0 T_BOOL
 628     VMReg r_1 = regs[i].first();
 629     VMReg r_2 = regs[i].second();
 630     if (!r_1->is_valid()) {
 631       assert(!r_2->is_valid(), "");
 632       continue;
 633     }
 634 
 635     if (r_1->is_stack()) {
 636       // memory to memory use fpu stack top
 637       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 638 
 639       if (!r_2->is_valid()) {
 640         __ movl(rdi, Address(rsp, ld_off));
 641         __ movptr(Address(rsp, st_off), rdi);
 642       } else {
 643 
 644         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 645         // st_off == MSW, st_off-wordSize == LSW
 646 
 647         __ movptr(rdi, Address(rsp, ld_off));
 648         __ movptr(Address(rsp, next_off), rdi);
 649 #ifndef _LP64
 650         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 651         __ movptr(Address(rsp, st_off), rdi);
 652 #else
 653 #ifdef ASSERT
 654         // Overwrite the unused slot with known junk
 655         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 656         __ movptr(Address(rsp, st_off), rax);
 657 #endif /* ASSERT */
 658 #endif // _LP64
 659       }
 660     } else if (r_1->is_Register()) {
 661       Register r = r_1->as_Register();
 662       if (!r_2->is_valid()) {
 663         __ movl(Address(rsp, st_off), r);
 664       } else {
 665         // long/double in gpr
 666         NOT_LP64(ShouldNotReachHere());
 667         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 668         // T_DOUBLE and T_LONG use two slots in the interpreter
 669         if (sig_extended.at(i)._bt == T_LONG || sig_extended.at(i)._bt == T_DOUBLE) {
 670           // long/double in gpr
 671 #ifdef ASSERT
 672           // Overwrite the unused slot with known junk
 673           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 674           __ movptr(Address(rsp, st_off), rax);
 675 #endif /* ASSERT */
 676           __ movptr(Address(rsp, next_off), r);
 677         } else {
 678           __ movptr(Address(rsp, st_off), r);
 679         }
 680       }
 681     } else {
 682       assert(r_1->is_XMMRegister(), "");
 683       if (!r_2->is_valid()) {
 684         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 685       } else {
 686         assert(sig_extended.at(i)._bt == T_DOUBLE || sig_extended.at(i)._bt == T_LONG, "wrong type");
 687         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 688       }
 689     }
 690   }
 691 
 692   // Schedule the branch target address early.
 693   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 694   // And repush original return address
 695   __ push(rax);
 696   __ jmp(rcx);
 697 }
 698 
 699 
 700 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 701   int next_val_off = ld_off - Interpreter::stackElementSize;
 702   __ movdbl(r, Address(saved_sp, next_val_off));
 703 }
 704 
 705 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 706                         address code_start, address code_end,
 707                         Label& L_ok) {
 708   Label L_fail;
 709   __ lea(temp_reg, ExternalAddress(code_start));
 710   __ cmpptr(pc_reg, temp_reg);
 711   __ jcc(Assembler::belowEqual, L_fail);
 712   __ lea(temp_reg, ExternalAddress(code_end));
 713   __ cmpptr(pc_reg, temp_reg);
 714   __ jcc(Assembler::below, L_ok);
 715   __ bind(L_fail);
 716 }
 717 
 718 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 719                                     int comp_args_on_stack,
 720                                     const GrowableArray<SigEntry>& sig_extended,
 721                                     const VMRegPair *regs) {
 722 
 723   // Note: rsi contains the senderSP on entry. We must preserve it since
 724   // we may do a i2c -> c2i transition if we lose a race where compiled
 725   // code goes non-entrant while we get args ready.
 726 
 727   // Adapters can be frameless because they do not require the caller
 728   // to perform additional cleanup work, such as correcting the stack pointer.
 729   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 730   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 731   // even if a callee has modified the stack pointer.
 732   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 733   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 734   // up via the senderSP register).
 735   // In other words, if *either* the caller or callee is interpreted, we can
 736   // get the stack pointer repaired after a call.
 737   // This is why c2i and i2c adapters cannot be indefinitely composed.
 738   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 739   // both caller and callee would be compiled methods, and neither would
 740   // clean up the stack pointer changes performed by the two adapters.
 741   // If this happens, control eventually transfers back to the compiled
 742   // caller, but with an uncorrected stack, causing delayed havoc.
 743 
 744   // Pick up the return address
 745   __ movptr(rax, Address(rsp, 0));
 746 
 747   if (VerifyAdapterCalls &&
 748       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 749     // So, let's test for cascading c2i/i2c adapters right now.
 750     //  assert(Interpreter::contains($return_addr) ||
 751     //         StubRoutines::contains($return_addr),
 752     //         "i2c adapter must return to an interpreter frame");
 753     __ block_comment("verify_i2c { ");
 754     Label L_ok;
 755     if (Interpreter::code() != NULL)
 756       range_check(masm, rax, rdi,
 757                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 758                   L_ok);
 759     if (StubRoutines::code1() != NULL)
 760       range_check(masm, rax, rdi,
 761                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 762                   L_ok);
 763     if (StubRoutines::code2() != NULL)
 764       range_check(masm, rax, rdi,
 765                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 766                   L_ok);
 767     const char* msg = "i2c adapter must return to an interpreter frame";
 768     __ block_comment(msg);
 769     __ stop(msg);
 770     __ bind(L_ok);
 771     __ block_comment("} verify_i2ce ");
 772   }
 773 
 774   // Must preserve original SP for loading incoming arguments because
 775   // we need to align the outgoing SP for compiled code.
 776   __ movptr(rdi, rsp);
 777 
 778   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 779   // in registers, we will occasionally have no stack args.
 780   int comp_words_on_stack = 0;
 781   if (comp_args_on_stack) {
 782     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 783     // registers are below.  By subtracting stack0, we either get a negative
 784     // number (all values in registers) or the maximum stack slot accessed.
 785     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 786     // Convert 4-byte stack slots to words.
 787     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 788     // Round up to miminum stack alignment, in wordSize
 789     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 790     __ subptr(rsp, comp_words_on_stack * wordSize);
 791   }
 792 
 793   // Align the outgoing SP
 794   __ andptr(rsp, -(StackAlignmentInBytes));
 795 
 796   // push the return address on the stack (note that pushing, rather
 797   // than storing it, yields the correct frame alignment for the callee)
 798   __ push(rax);
 799 
 800   // Put saved SP in another register
 801   const Register saved_sp = rax;
 802   __ movptr(saved_sp, rdi);
 803 
 804 
 805   // Will jump to the compiled code just as if compiled code was doing it.
 806   // Pre-load the register-jump target early, to schedule it better.
 807   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 808 
 809   // Now generate the shuffle code.  Pick up all register args and move the
 810   // rest through the floating point stack top.
 811   for (int i = 0; i < sig_extended.length(); i++) {
 812     if (sig_extended.at(i)._bt == T_VOID) {
 813       // Longs and doubles are passed in native word order, but misaligned
 814       // in the 32-bit build.
 815       assert(i > 0 && (sig_extended.at(i-1)._bt == T_LONG || sig_extended.at(i-1)._bt == T_DOUBLE), "missing half");
 816       continue;
 817     }
 818 
 819     // Pick up 0, 1 or 2 words from SP+offset.
 820 
 821     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 822             "scrambled load targets?");
 823     // Load in argument order going down.
 824     int ld_off = (sig_extended.length() - i) * Interpreter::stackElementSize;
 825     // Point to interpreter value (vs. tag)
 826     int next_off = ld_off - Interpreter::stackElementSize;
 827     //
 828     //
 829     //
 830     VMReg r_1 = regs[i].first();
 831     VMReg r_2 = regs[i].second();
 832     if (!r_1->is_valid()) {
 833       assert(!r_2->is_valid(), "");
 834       continue;
 835     }
 836     if (r_1->is_stack()) {
 837       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 838       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 839 
 840       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 841       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 842       // we be generated.
 843       if (!r_2->is_valid()) {
 844         // __ fld_s(Address(saved_sp, ld_off));
 845         // __ fstp_s(Address(rsp, st_off));
 846         __ movl(rsi, Address(saved_sp, ld_off));
 847         __ movptr(Address(rsp, st_off), rsi);
 848       } else {
 849         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 850         // are accessed as negative so LSW is at LOW address
 851 
 852         // ld_off is MSW so get LSW
 853         // st_off is LSW (i.e. reg.first())
 854         // __ fld_d(Address(saved_sp, next_off));
 855         // __ fstp_d(Address(rsp, st_off));
 856         //
 857         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 858         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 859         // So we must adjust where to pick up the data to match the interpreter.
 860         //
 861         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 862         // are accessed as negative so LSW is at LOW address
 863 
 864         // ld_off is MSW so get LSW
 865         const int offset = (NOT_LP64(true ||) sig_extended.at(i)._bt==T_LONG||sig_extended.at(i)._bt==T_DOUBLE)?
 866                            next_off : ld_off;
 867         __ movptr(rsi, Address(saved_sp, offset));
 868         __ movptr(Address(rsp, st_off), rsi);
 869 #ifndef _LP64
 870         __ movptr(rsi, Address(saved_sp, ld_off));
 871         __ movptr(Address(rsp, st_off + wordSize), rsi);
 872 #endif // _LP64
 873       }
 874     } else if (r_1->is_Register()) {  // Register argument
 875       Register r = r_1->as_Register();
 876       assert(r != rax, "must be different");
 877       if (r_2->is_valid()) {
 878         //
 879         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 880         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 881         // So we must adjust where to pick up the data to match the interpreter.
 882 
 883         const int offset = (NOT_LP64(true ||) sig_extended.at(i)._bt==T_LONG||sig_extended.at(i)._bt==T_DOUBLE)?
 884                            next_off : ld_off;
 885 
 886         // this can be a misaligned move
 887         __ movptr(r, Address(saved_sp, offset));
 888 #ifndef _LP64
 889         assert(r_2->as_Register() != rax, "need another temporary register");
 890         // Remember r_1 is low address (and LSB on x86)
 891         // So r_2 gets loaded from high address regardless of the platform
 892         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 893 #endif // _LP64
 894       } else {
 895         __ movl(r, Address(saved_sp, ld_off));
 896       }
 897     } else {
 898       assert(r_1->is_XMMRegister(), "");
 899       if (!r_2->is_valid()) {
 900         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 901       } else {
 902         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 903       }
 904     }
 905   }
 906 
 907   // 6243940 We might end up in handle_wrong_method if
 908   // the callee is deoptimized as we race thru here. If that
 909   // happens we don't want to take a safepoint because the
 910   // caller frame will look interpreted and arguments are now
 911   // "compiled" so it is much better to make this transition
 912   // invisible to the stack walking code. Unfortunately if
 913   // we try and find the callee by normal means a safepoint
 914   // is possible. So we stash the desired callee in the thread
 915   // and the vm will find there should this case occur.
 916 
 917   __ get_thread(rax);
 918   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 919 
 920   // move Method* to rax, in case we end up in an c2i adapter.
 921   // the c2i adapters expect Method* in rax, (c2) because c2's
 922   // resolve stubs return the result (the method) in rax,.
 923   // I'd love to fix this.
 924   __ mov(rax, rbx);
 925 
 926   __ jmp(rdi);
 927 }
 928 
 929 // ---------------------------------------------------------------
 930 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 931                                                             int comp_args_on_stack,
 932                                                             const GrowableArray<SigEntry>& sig_extended,
 933                                                             const VMRegPair *regs,
 934                                                             AdapterFingerPrint* fingerprint,
 935                                                             AdapterBlob*& new_adapter) {
 936   address i2c_entry = __ pc();
 937 
 938   gen_i2c_adapter(masm, comp_args_on_stack, sig_extended, regs);
 939 
 940   // -------------------------------------------------------------------------
 941   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 942   // to the interpreter.  The args start out packed in the compiled layout.  They
 943   // need to be unpacked into the interpreter layout.  This will almost always
 944   // require some stack space.  We grow the current (compiled) stack, then repack
 945   // the args.  We  finally end in a jump to the generic interpreter entry point.
 946   // On exit from the interpreter, the interpreter will restore our SP (lest the
 947   // compiled code, which relys solely on SP and not EBP, get sick).
 948 
 949   address c2i_unverified_entry = __ pc();
 950   Label skip_fixup;
 951 
 952   Register holder = rax;
 953   Register receiver = rcx;
 954   Register temp = rbx;
 955 
 956   {
 957 
 958     Label missed;
 959     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 960     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 961     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 962     __ jcc(Assembler::notEqual, missed);
 963     // Method might have been compiled since the call site was patched to
 964     // interpreted if that is the case treat it as a miss so we can get
 965     // the call site corrected.
 966     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 967     __ jcc(Assembler::equal, skip_fixup);
 968 
 969     __ bind(missed);
 970     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 971   }
 972 
 973   address c2i_entry = __ pc();
 974 
 975   OopMapSet* oop_maps = NULL;
 976   int frame_complete = CodeOffsets::frame_never_safe;
 977   int frame_size_in_words = 0;
 978   gen_c2i_adapter(masm, sig_extended, regs, skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words);
 979 
 980   __ flush();
 981   new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps);
 982   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 983 }
 984 
 985 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 986                                          VMRegPair *regs,
 987                                          VMRegPair *regs2,
 988                                          int total_args_passed) {
 989   assert(regs2 == NULL, "not needed on x86");
 990 // We return the amount of VMRegImpl stack slots we need to reserve for all
 991 // the arguments NOT counting out_preserve_stack_slots.
 992 
 993   uint    stack = 0;        // All arguments on stack
 994 
 995   for( int i = 0; i < total_args_passed; i++) {
 996     // From the type and the argument number (count) compute the location
 997     switch( sig_bt[i] ) {
 998     case T_BOOLEAN:
 999     case T_CHAR:
1000     case T_FLOAT:
1001     case T_BYTE:
1002     case T_SHORT:
1003     case T_INT:
1004     case T_OBJECT:
1005     case T_ARRAY:
1006     case T_ADDRESS:
1007     case T_METADATA:
1008       regs[i].set1(VMRegImpl::stack2reg(stack++));
1009       break;
1010     case T_LONG:
1011     case T_DOUBLE: // The stack numbering is reversed from Java
1012       // Since C arguments do not get reversed, the ordering for
1013       // doubles on the stack must be opposite the Java convention
1014       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1015       regs[i].set2(VMRegImpl::stack2reg(stack));
1016       stack += 2;
1017       break;
1018     case T_VOID: regs[i].set_bad(); break;
1019     default:
1020       ShouldNotReachHere();
1021       break;
1022     }
1023   }
1024   return stack;
1025 }
1026 
1027 // A simple move of integer like type
1028 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1029   if (src.first()->is_stack()) {
1030     if (dst.first()->is_stack()) {
1031       // stack to stack
1032       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1033       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1034       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1035       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1036     } else {
1037       // stack to reg
1038       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1039     }
1040   } else if (dst.first()->is_stack()) {
1041     // reg to stack
1042     // no need to sign extend on 64bit
1043     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1044   } else {
1045     if (dst.first() != src.first()) {
1046       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1047     }
1048   }
1049 }
1050 
1051 // An oop arg. Must pass a handle not the oop itself
1052 static void object_move(MacroAssembler* masm,
1053                         OopMap* map,
1054                         int oop_handle_offset,
1055                         int framesize_in_slots,
1056                         VMRegPair src,
1057                         VMRegPair dst,
1058                         bool is_receiver,
1059                         int* receiver_offset) {
1060 
1061   // Because of the calling conventions we know that src can be a
1062   // register or a stack location. dst can only be a stack location.
1063 
1064   assert(dst.first()->is_stack(), "must be stack");
1065   // must pass a handle. First figure out the location we use as a handle
1066 
1067   if (src.first()->is_stack()) {
1068     // Oop is already on the stack as an argument
1069     Register rHandle = rax;
1070     Label nil;
1071     __ xorptr(rHandle, rHandle);
1072     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1073     __ jcc(Assembler::equal, nil);
1074     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1075     __ bind(nil);
1076     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1077 
1078     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1079     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1080     if (is_receiver) {
1081       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1082     }
1083   } else {
1084     // Oop is in an a register we must store it to the space we reserve
1085     // on the stack for oop_handles
1086     const Register rOop = src.first()->as_Register();
1087     const Register rHandle = rax;
1088     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1089     int offset = oop_slot*VMRegImpl::stack_slot_size;
1090     Label skip;
1091     __ movptr(Address(rsp, offset), rOop);
1092     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1093     __ xorptr(rHandle, rHandle);
1094     __ cmpptr(rOop, (int32_t)NULL_WORD);
1095     __ jcc(Assembler::equal, skip);
1096     __ lea(rHandle, Address(rsp, offset));
1097     __ bind(skip);
1098     // Store the handle parameter
1099     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1100     if (is_receiver) {
1101       *receiver_offset = offset;
1102     }
1103   }
1104 }
1105 
1106 // A float arg may have to do float reg int reg conversion
1107 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1108   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1109 
1110   // Because of the calling convention we know that src is either a stack location
1111   // or an xmm register. dst can only be a stack location.
1112 
1113   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1114 
1115   if (src.first()->is_stack()) {
1116     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1117     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1118   } else {
1119     // reg to stack
1120     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1121   }
1122 }
1123 
1124 // A long move
1125 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1126 
1127   // The only legal possibility for a long_move VMRegPair is:
1128   // 1: two stack slots (possibly unaligned)
1129   // as neither the java  or C calling convention will use registers
1130   // for longs.
1131 
1132   if (src.first()->is_stack() && dst.first()->is_stack()) {
1133     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1134     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1135     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1136     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1137     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1138   } else {
1139     ShouldNotReachHere();
1140   }
1141 }
1142 
1143 // A double move
1144 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1145 
1146   // The only legal possibilities for a double_move VMRegPair are:
1147   // The painful thing here is that like long_move a VMRegPair might be
1148 
1149   // Because of the calling convention we know that src is either
1150   //   1: a single physical register (xmm registers only)
1151   //   2: two stack slots (possibly unaligned)
1152   // dst can only be a pair of stack slots.
1153 
1154   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1155 
1156   if (src.first()->is_stack()) {
1157     // source is all stack
1158     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1159     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1160     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1161     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1162   } else {
1163     // reg to stack
1164     // No worries about stack alignment
1165     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1166   }
1167 }
1168 
1169 
1170 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1171   // We always ignore the frame_slots arg and just use the space just below frame pointer
1172   // which by this time is free to use
1173   switch (ret_type) {
1174   case T_FLOAT:
1175     __ fstp_s(Address(rbp, -wordSize));
1176     break;
1177   case T_DOUBLE:
1178     __ fstp_d(Address(rbp, -2*wordSize));
1179     break;
1180   case T_VOID:  break;
1181   case T_LONG:
1182     __ movptr(Address(rbp, -wordSize), rax);
1183     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1184     break;
1185   default: {
1186     __ movptr(Address(rbp, -wordSize), rax);
1187     }
1188   }
1189 }
1190 
1191 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1192   // We always ignore the frame_slots arg and just use the space just below frame pointer
1193   // which by this time is free to use
1194   switch (ret_type) {
1195   case T_FLOAT:
1196     __ fld_s(Address(rbp, -wordSize));
1197     break;
1198   case T_DOUBLE:
1199     __ fld_d(Address(rbp, -2*wordSize));
1200     break;
1201   case T_LONG:
1202     __ movptr(rax, Address(rbp, -wordSize));
1203     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1204     break;
1205   case T_VOID:  break;
1206   default: {
1207     __ movptr(rax, Address(rbp, -wordSize));
1208     }
1209   }
1210 }
1211 
1212 
1213 static void save_or_restore_arguments(MacroAssembler* masm,
1214                                       const int stack_slots,
1215                                       const int total_in_args,
1216                                       const int arg_save_area,
1217                                       OopMap* map,
1218                                       VMRegPair* in_regs,
1219                                       BasicType* in_sig_bt) {
1220   // if map is non-NULL then the code should store the values,
1221   // otherwise it should load them.
1222   int handle_index = 0;
1223   // Save down double word first
1224   for ( int i = 0; i < total_in_args; i++) {
1225     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1226       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1227       int offset = slot * VMRegImpl::stack_slot_size;
1228       handle_index += 2;
1229       assert(handle_index <= stack_slots, "overflow");
1230       if (map != NULL) {
1231         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1232       } else {
1233         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1234       }
1235     }
1236     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1237       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1238       int offset = slot * VMRegImpl::stack_slot_size;
1239       handle_index += 2;
1240       assert(handle_index <= stack_slots, "overflow");
1241       if (map != NULL) {
1242         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1243         if (in_regs[i].second()->is_Register()) {
1244           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1245         }
1246       } else {
1247         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1248         if (in_regs[i].second()->is_Register()) {
1249           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1250         }
1251       }
1252     }
1253   }
1254   // Save or restore single word registers
1255   for ( int i = 0; i < total_in_args; i++) {
1256     if (in_regs[i].first()->is_Register()) {
1257       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1258       int offset = slot * VMRegImpl::stack_slot_size;
1259       assert(handle_index <= stack_slots, "overflow");
1260       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1261         map->set_oop(VMRegImpl::stack2reg(slot));;
1262       }
1263 
1264       // Value is in an input register pass we must flush it to the stack
1265       const Register reg = in_regs[i].first()->as_Register();
1266       switch (in_sig_bt[i]) {
1267         case T_ARRAY:
1268           if (map != NULL) {
1269             __ movptr(Address(rsp, offset), reg);
1270           } else {
1271             __ movptr(reg, Address(rsp, offset));
1272           }
1273           break;
1274         case T_BOOLEAN:
1275         case T_CHAR:
1276         case T_BYTE:
1277         case T_SHORT:
1278         case T_INT:
1279           if (map != NULL) {
1280             __ movl(Address(rsp, offset), reg);
1281           } else {
1282             __ movl(reg, Address(rsp, offset));
1283           }
1284           break;
1285         case T_OBJECT:
1286         default: ShouldNotReachHere();
1287       }
1288     } else if (in_regs[i].first()->is_XMMRegister()) {
1289       if (in_sig_bt[i] == T_FLOAT) {
1290         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1291         int offset = slot * VMRegImpl::stack_slot_size;
1292         assert(handle_index <= stack_slots, "overflow");
1293         if (map != NULL) {
1294           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1295         } else {
1296           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1297         }
1298       }
1299     } else if (in_regs[i].first()->is_stack()) {
1300       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1301         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1302         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1303       }
1304     }
1305   }
1306 }
1307 
1308 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1309 // keeps a new JNI critical region from starting until a GC has been
1310 // forced.  Save down any oops in registers and describe them in an
1311 // OopMap.
1312 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1313                                                Register thread,
1314                                                int stack_slots,
1315                                                int total_c_args,
1316                                                int total_in_args,
1317                                                int arg_save_area,
1318                                                OopMapSet* oop_maps,
1319                                                VMRegPair* in_regs,
1320                                                BasicType* in_sig_bt) {
1321   __ block_comment("check GCLocker::needs_gc");
1322   Label cont;
1323   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1324   __ jcc(Assembler::equal, cont);
1325 
1326   // Save down any incoming oops and call into the runtime to halt for a GC
1327 
1328   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1329 
1330   save_or_restore_arguments(masm, stack_slots, total_in_args,
1331                             arg_save_area, map, in_regs, in_sig_bt);
1332 
1333   address the_pc = __ pc();
1334   oop_maps->add_gc_map( __ offset(), map);
1335   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1336 
1337   __ block_comment("block_for_jni_critical");
1338   __ push(thread);
1339   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1340   __ increment(rsp, wordSize);
1341 
1342   __ get_thread(thread);
1343   __ reset_last_Java_frame(thread, false);
1344 
1345   save_or_restore_arguments(masm, stack_slots, total_in_args,
1346                             arg_save_area, NULL, in_regs, in_sig_bt);
1347 
1348   __ bind(cont);
1349 #ifdef ASSERT
1350   if (StressCriticalJNINatives) {
1351     // Stress register saving
1352     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1353     save_or_restore_arguments(masm, stack_slots, total_in_args,
1354                               arg_save_area, map, in_regs, in_sig_bt);
1355     // Destroy argument registers
1356     for (int i = 0; i < total_in_args - 1; i++) {
1357       if (in_regs[i].first()->is_Register()) {
1358         const Register reg = in_regs[i].first()->as_Register();
1359         __ xorptr(reg, reg);
1360       } else if (in_regs[i].first()->is_XMMRegister()) {
1361         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1362       } else if (in_regs[i].first()->is_FloatRegister()) {
1363         ShouldNotReachHere();
1364       } else if (in_regs[i].first()->is_stack()) {
1365         // Nothing to do
1366       } else {
1367         ShouldNotReachHere();
1368       }
1369       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1370         i++;
1371       }
1372     }
1373 
1374     save_or_restore_arguments(masm, stack_slots, total_in_args,
1375                               arg_save_area, NULL, in_regs, in_sig_bt);
1376   }
1377 #endif
1378 }
1379 
1380 // Unpack an array argument into a pointer to the body and the length
1381 // if the array is non-null, otherwise pass 0 for both.
1382 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1383   Register tmp_reg = rax;
1384   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1385          "possible collision");
1386   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1387          "possible collision");
1388 
1389   // Pass the length, ptr pair
1390   Label is_null, done;
1391   VMRegPair tmp(tmp_reg->as_VMReg());
1392   if (reg.first()->is_stack()) {
1393     // Load the arg up from the stack
1394     simple_move32(masm, reg, tmp);
1395     reg = tmp;
1396   }
1397   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1398   __ jccb(Assembler::equal, is_null);
1399   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1400   simple_move32(masm, tmp, body_arg);
1401   // load the length relative to the body.
1402   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1403                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1404   simple_move32(masm, tmp, length_arg);
1405   __ jmpb(done);
1406   __ bind(is_null);
1407   // Pass zeros
1408   __ xorptr(tmp_reg, tmp_reg);
1409   simple_move32(masm, tmp, body_arg);
1410   simple_move32(masm, tmp, length_arg);
1411   __ bind(done);
1412 }
1413 
1414 static void verify_oop_args(MacroAssembler* masm,
1415                             methodHandle method,
1416                             const BasicType* sig_bt,
1417                             const VMRegPair* regs) {
1418   Register temp_reg = rbx;  // not part of any compiled calling seq
1419   if (VerifyOops) {
1420     for (int i = 0; i < method->size_of_parameters(); i++) {
1421       if (sig_bt[i] == T_OBJECT ||
1422           sig_bt[i] == T_ARRAY) {
1423         VMReg r = regs[i].first();
1424         assert(r->is_valid(), "bad oop arg");
1425         if (r->is_stack()) {
1426           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1427           __ verify_oop(temp_reg);
1428         } else {
1429           __ verify_oop(r->as_Register());
1430         }
1431       }
1432     }
1433   }
1434 }
1435 
1436 static void gen_special_dispatch(MacroAssembler* masm,
1437                                  methodHandle method,
1438                                  const BasicType* sig_bt,
1439                                  const VMRegPair* regs) {
1440   verify_oop_args(masm, method, sig_bt, regs);
1441   vmIntrinsics::ID iid = method->intrinsic_id();
1442 
1443   // Now write the args into the outgoing interpreter space
1444   bool     has_receiver   = false;
1445   Register receiver_reg   = noreg;
1446   int      member_arg_pos = -1;
1447   Register member_reg     = noreg;
1448   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1449   if (ref_kind != 0) {
1450     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1451     member_reg = rbx;  // known to be free at this point
1452     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1453   } else if (iid == vmIntrinsics::_invokeBasic) {
1454     has_receiver = true;
1455   } else {
1456     fatal("unexpected intrinsic id %d", iid);
1457   }
1458 
1459   if (member_reg != noreg) {
1460     // Load the member_arg into register, if necessary.
1461     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1462     VMReg r = regs[member_arg_pos].first();
1463     if (r->is_stack()) {
1464       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1465     } else {
1466       // no data motion is needed
1467       member_reg = r->as_Register();
1468     }
1469   }
1470 
1471   if (has_receiver) {
1472     // Make sure the receiver is loaded into a register.
1473     assert(method->size_of_parameters() > 0, "oob");
1474     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1475     VMReg r = regs[0].first();
1476     assert(r->is_valid(), "bad receiver arg");
1477     if (r->is_stack()) {
1478       // Porting note:  This assumes that compiled calling conventions always
1479       // pass the receiver oop in a register.  If this is not true on some
1480       // platform, pick a temp and load the receiver from stack.
1481       fatal("receiver always in a register");
1482       receiver_reg = rcx;  // known to be free at this point
1483       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1484     } else {
1485       // no data motion is needed
1486       receiver_reg = r->as_Register();
1487     }
1488   }
1489 
1490   // Figure out which address we are really jumping to:
1491   MethodHandles::generate_method_handle_dispatch(masm, iid,
1492                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1493 }
1494 
1495 // ---------------------------------------------------------------------------
1496 // Generate a native wrapper for a given method.  The method takes arguments
1497 // in the Java compiled code convention, marshals them to the native
1498 // convention (handlizes oops, etc), transitions to native, makes the call,
1499 // returns to java state (possibly blocking), unhandlizes any result and
1500 // returns.
1501 //
1502 // Critical native functions are a shorthand for the use of
1503 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1504 // functions.  The wrapper is expected to unpack the arguments before
1505 // passing them to the callee and perform checks before and after the
1506 // native call to ensure that they GCLocker
1507 // lock_critical/unlock_critical semantics are followed.  Some other
1508 // parts of JNI setup are skipped like the tear down of the JNI handle
1509 // block and the check for pending exceptions it's impossible for them
1510 // to be thrown.
1511 //
1512 // They are roughly structured like this:
1513 //    if (GCLocker::needs_gc())
1514 //      SharedRuntime::block_for_jni_critical();
1515 //    tranistion to thread_in_native
1516 //    unpack arrray arguments and call native entry point
1517 //    check for safepoint in progress
1518 //    check if any thread suspend flags are set
1519 //      call into JVM and possible unlock the JNI critical
1520 //      if a GC was suppressed while in the critical native.
1521 //    transition back to thread_in_Java
1522 //    return to caller
1523 //
1524 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1525                                                 const methodHandle& method,
1526                                                 int compile_id,
1527                                                 BasicType* in_sig_bt,
1528                                                 VMRegPair* in_regs,
1529                                                 BasicType ret_type) {
1530   if (method->is_method_handle_intrinsic()) {
1531     vmIntrinsics::ID iid = method->intrinsic_id();
1532     intptr_t start = (intptr_t)__ pc();
1533     int vep_offset = ((intptr_t)__ pc()) - start;
1534     gen_special_dispatch(masm,
1535                          method,
1536                          in_sig_bt,
1537                          in_regs);
1538     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1539     __ flush();
1540     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1541     return nmethod::new_native_nmethod(method,
1542                                        compile_id,
1543                                        masm->code(),
1544                                        vep_offset,
1545                                        frame_complete,
1546                                        stack_slots / VMRegImpl::slots_per_word,
1547                                        in_ByteSize(-1),
1548                                        in_ByteSize(-1),
1549                                        (OopMapSet*)NULL);
1550   }
1551   bool is_critical_native = true;
1552   address native_func = method->critical_native_function();
1553   if (native_func == NULL) {
1554     native_func = method->native_function();
1555     is_critical_native = false;
1556   }
1557   assert(native_func != NULL, "must have function");
1558 
1559   // An OopMap for lock (and class if static)
1560   OopMapSet *oop_maps = new OopMapSet();
1561 
1562   // We have received a description of where all the java arg are located
1563   // on entry to the wrapper. We need to convert these args to where
1564   // the jni function will expect them. To figure out where they go
1565   // we convert the java signature to a C signature by inserting
1566   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1567 
1568   const int total_in_args = method->size_of_parameters();
1569   int total_c_args = total_in_args;
1570   if (!is_critical_native) {
1571     total_c_args += 1;
1572     if (method->is_static()) {
1573       total_c_args++;
1574     }
1575   } else {
1576     for (int i = 0; i < total_in_args; i++) {
1577       if (in_sig_bt[i] == T_ARRAY) {
1578         total_c_args++;
1579       }
1580     }
1581   }
1582 
1583   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1584   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1585   BasicType* in_elem_bt = NULL;
1586 
1587   int argc = 0;
1588   if (!is_critical_native) {
1589     out_sig_bt[argc++] = T_ADDRESS;
1590     if (method->is_static()) {
1591       out_sig_bt[argc++] = T_OBJECT;
1592     }
1593 
1594     for (int i = 0; i < total_in_args ; i++ ) {
1595       out_sig_bt[argc++] = in_sig_bt[i];
1596     }
1597   } else {
1598     Thread* THREAD = Thread::current();
1599     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1600     SignatureStream ss(method->signature());
1601     for (int i = 0; i < total_in_args ; i++ ) {
1602       if (in_sig_bt[i] == T_ARRAY) {
1603         // Arrays are passed as int, elem* pair
1604         out_sig_bt[argc++] = T_INT;
1605         out_sig_bt[argc++] = T_ADDRESS;
1606         Symbol* atype = ss.as_symbol(CHECK_NULL);
1607         const char* at = atype->as_C_string();
1608         if (strlen(at) == 2) {
1609           assert(at[0] == '[', "must be");
1610           switch (at[1]) {
1611             case 'B': in_elem_bt[i]  = T_BYTE; break;
1612             case 'C': in_elem_bt[i]  = T_CHAR; break;
1613             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1614             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1615             case 'I': in_elem_bt[i]  = T_INT; break;
1616             case 'J': in_elem_bt[i]  = T_LONG; break;
1617             case 'S': in_elem_bt[i]  = T_SHORT; break;
1618             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1619             default: ShouldNotReachHere();
1620           }
1621         }
1622       } else {
1623         out_sig_bt[argc++] = in_sig_bt[i];
1624         in_elem_bt[i] = T_VOID;
1625       }
1626       if (in_sig_bt[i] != T_VOID) {
1627         assert(in_sig_bt[i] == ss.type(), "must match");
1628         ss.next();
1629       }
1630     }
1631   }
1632 
1633   // Now figure out where the args must be stored and how much stack space
1634   // they require.
1635   int out_arg_slots;
1636   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1637 
1638   // Compute framesize for the wrapper.  We need to handlize all oops in
1639   // registers a max of 2 on x86.
1640 
1641   // Calculate the total number of stack slots we will need.
1642 
1643   // First count the abi requirement plus all of the outgoing args
1644   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1645 
1646   // Now the space for the inbound oop handle area
1647   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1648   if (is_critical_native) {
1649     // Critical natives may have to call out so they need a save area
1650     // for register arguments.
1651     int double_slots = 0;
1652     int single_slots = 0;
1653     for ( int i = 0; i < total_in_args; i++) {
1654       if (in_regs[i].first()->is_Register()) {
1655         const Register reg = in_regs[i].first()->as_Register();
1656         switch (in_sig_bt[i]) {
1657           case T_ARRAY:  // critical array (uses 2 slots on LP64)
1658           case T_BOOLEAN:
1659           case T_BYTE:
1660           case T_SHORT:
1661           case T_CHAR:
1662           case T_INT:  single_slots++; break;
1663           case T_LONG: double_slots++; break;
1664           default:  ShouldNotReachHere();
1665         }
1666       } else if (in_regs[i].first()->is_XMMRegister()) {
1667         switch (in_sig_bt[i]) {
1668           case T_FLOAT:  single_slots++; break;
1669           case T_DOUBLE: double_slots++; break;
1670           default:  ShouldNotReachHere();
1671         }
1672       } else if (in_regs[i].first()->is_FloatRegister()) {
1673         ShouldNotReachHere();
1674       }
1675     }
1676     total_save_slots = double_slots * 2 + single_slots;
1677     // align the save area
1678     if (double_slots != 0) {
1679       stack_slots = round_to(stack_slots, 2);
1680     }
1681   }
1682 
1683   int oop_handle_offset = stack_slots;
1684   stack_slots += total_save_slots;
1685 
1686   // Now any space we need for handlizing a klass if static method
1687 
1688   int klass_slot_offset = 0;
1689   int klass_offset = -1;
1690   int lock_slot_offset = 0;
1691   bool is_static = false;
1692 
1693   if (method->is_static()) {
1694     klass_slot_offset = stack_slots;
1695     stack_slots += VMRegImpl::slots_per_word;
1696     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1697     is_static = true;
1698   }
1699 
1700   // Plus a lock if needed
1701 
1702   if (method->is_synchronized()) {
1703     lock_slot_offset = stack_slots;
1704     stack_slots += VMRegImpl::slots_per_word;
1705   }
1706 
1707   // Now a place (+2) to save return values or temp during shuffling
1708   // + 2 for return address (which we own) and saved rbp,
1709   stack_slots += 4;
1710 
1711   // Ok The space we have allocated will look like:
1712   //
1713   //
1714   // FP-> |                     |
1715   //      |---------------------|
1716   //      | 2 slots for moves   |
1717   //      |---------------------|
1718   //      | lock box (if sync)  |
1719   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1720   //      | klass (if static)   |
1721   //      |---------------------| <- klass_slot_offset
1722   //      | oopHandle area      |
1723   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1724   //      | outbound memory     |
1725   //      | based arguments     |
1726   //      |                     |
1727   //      |---------------------|
1728   //      |                     |
1729   // SP-> | out_preserved_slots |
1730   //
1731   //
1732   // ****************************************************************************
1733   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1734   // arguments off of the stack after the jni call. Before the call we can use
1735   // instructions that are SP relative. After the jni call we switch to FP
1736   // relative instructions instead of re-adjusting the stack on windows.
1737   // ****************************************************************************
1738 
1739 
1740   // Now compute actual number of stack words we need rounding to make
1741   // stack properly aligned.
1742   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1743 
1744   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1745 
1746   intptr_t start = (intptr_t)__ pc();
1747 
1748   // First thing make an ic check to see if we should even be here
1749 
1750   // We are free to use all registers as temps without saving them and
1751   // restoring them except rbp. rbp is the only callee save register
1752   // as far as the interpreter and the compiler(s) are concerned.
1753 
1754 
1755   const Register ic_reg = rax;
1756   const Register receiver = rcx;
1757   Label hit;
1758   Label exception_pending;
1759 
1760   __ verify_oop(receiver);
1761   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1762   __ jcc(Assembler::equal, hit);
1763 
1764   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1765 
1766   // verified entry must be aligned for code patching.
1767   // and the first 5 bytes must be in the same cache line
1768   // if we align at 8 then we will be sure 5 bytes are in the same line
1769   __ align(8);
1770 
1771   __ bind(hit);
1772 
1773   int vep_offset = ((intptr_t)__ pc()) - start;
1774 
1775 #ifdef COMPILER1
1776   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1777   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1778     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1779    }
1780 #endif // COMPILER1
1781 
1782   // The instruction at the verified entry point must be 5 bytes or longer
1783   // because it can be patched on the fly by make_non_entrant. The stack bang
1784   // instruction fits that requirement.
1785 
1786   // Generate stack overflow check
1787 
1788   if (UseStackBanging) {
1789     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
1790   } else {
1791     // need a 5 byte instruction to allow MT safe patching to non-entrant
1792     __ fat_nop();
1793   }
1794 
1795   // Generate a new frame for the wrapper.
1796   __ enter();
1797   // -2 because return address is already present and so is saved rbp
1798   __ subptr(rsp, stack_size - 2*wordSize);
1799 
1800   // Frame is now completed as far as size and linkage.
1801   int frame_complete = ((intptr_t)__ pc()) - start;
1802 
1803   if (UseRTMLocking) {
1804     // Abort RTM transaction before calling JNI
1805     // because critical section will be large and will be
1806     // aborted anyway. Also nmethod could be deoptimized.
1807     __ xabort(0);
1808   }
1809 
1810   // Calculate the difference between rsp and rbp,. We need to know it
1811   // after the native call because on windows Java Natives will pop
1812   // the arguments and it is painful to do rsp relative addressing
1813   // in a platform independent way. So after the call we switch to
1814   // rbp, relative addressing.
1815 
1816   int fp_adjustment = stack_size - 2*wordSize;
1817 
1818 #ifdef COMPILER2
1819   // C2 may leave the stack dirty if not in SSE2+ mode
1820   if (UseSSE >= 2) {
1821     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1822   } else {
1823     __ empty_FPU_stack();
1824   }
1825 #endif /* COMPILER2 */
1826 
1827   // Compute the rbp, offset for any slots used after the jni call
1828 
1829   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1830 
1831   // We use rdi as a thread pointer because it is callee save and
1832   // if we load it once it is usable thru the entire wrapper
1833   const Register thread = rdi;
1834 
1835   // We use rsi as the oop handle for the receiver/klass
1836   // It is callee save so it survives the call to native
1837 
1838   const Register oop_handle_reg = rsi;
1839 
1840   __ get_thread(thread);
1841 
1842   if (is_critical_native) {
1843     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1844                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1845   }
1846 
1847   //
1848   // We immediately shuffle the arguments so that any vm call we have to
1849   // make from here on out (sync slow path, jvmti, etc.) we will have
1850   // captured the oops from our caller and have a valid oopMap for
1851   // them.
1852 
1853   // -----------------
1854   // The Grand Shuffle
1855   //
1856   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1857   // and, if static, the class mirror instead of a receiver.  This pretty much
1858   // guarantees that register layout will not match (and x86 doesn't use reg
1859   // parms though amd does).  Since the native abi doesn't use register args
1860   // and the java conventions does we don't have to worry about collisions.
1861   // All of our moved are reg->stack or stack->stack.
1862   // We ignore the extra arguments during the shuffle and handle them at the
1863   // last moment. The shuffle is described by the two calling convention
1864   // vectors we have in our possession. We simply walk the java vector to
1865   // get the source locations and the c vector to get the destinations.
1866 
1867   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1868 
1869   // Record rsp-based slot for receiver on stack for non-static methods
1870   int receiver_offset = -1;
1871 
1872   // This is a trick. We double the stack slots so we can claim
1873   // the oops in the caller's frame. Since we are sure to have
1874   // more args than the caller doubling is enough to make
1875   // sure we can capture all the incoming oop args from the
1876   // caller.
1877   //
1878   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1879 
1880   // Mark location of rbp,
1881   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1882 
1883   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1884   // Are free to temporaries if we have to do  stack to steck moves.
1885   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1886 
1887   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1888     switch (in_sig_bt[i]) {
1889       case T_ARRAY:
1890         if (is_critical_native) {
1891           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1892           c_arg++;
1893           break;
1894         }
1895       case T_OBJECT:
1896         assert(!is_critical_native, "no oop arguments");
1897         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1898                     ((i == 0) && (!is_static)),
1899                     &receiver_offset);
1900         break;
1901       case T_VOID:
1902         break;
1903 
1904       case T_FLOAT:
1905         float_move(masm, in_regs[i], out_regs[c_arg]);
1906           break;
1907 
1908       case T_DOUBLE:
1909         assert( i + 1 < total_in_args &&
1910                 in_sig_bt[i + 1] == T_VOID &&
1911                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1912         double_move(masm, in_regs[i], out_regs[c_arg]);
1913         break;
1914 
1915       case T_LONG :
1916         long_move(masm, in_regs[i], out_regs[c_arg]);
1917         break;
1918 
1919       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1920 
1921       default:
1922         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1923     }
1924   }
1925 
1926   // Pre-load a static method's oop into rsi.  Used both by locking code and
1927   // the normal JNI call code.
1928   if (method->is_static() && !is_critical_native) {
1929 
1930     //  load opp into a register
1931     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1932 
1933     // Now handlize the static class mirror it's known not-null.
1934     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1935     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1936 
1937     // Now get the handle
1938     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1939     // store the klass handle as second argument
1940     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1941   }
1942 
1943   // Change state to native (we save the return address in the thread, since it might not
1944   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1945   // points into the right code segment. It does not have to be the correct return pc.
1946   // We use the same pc/oopMap repeatedly when we call out
1947 
1948   intptr_t the_pc = (intptr_t) __ pc();
1949   oop_maps->add_gc_map(the_pc - start, map);
1950 
1951   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1952 
1953 
1954   // We have all of the arguments setup at this point. We must not touch any register
1955   // argument registers at this point (what if we save/restore them there are no oop?
1956 
1957   {
1958     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1959     __ mov_metadata(rax, method());
1960     __ call_VM_leaf(
1961          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1962          thread, rax);
1963   }
1964 
1965   // RedefineClasses() tracing support for obsolete method entry
1966   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1967     __ mov_metadata(rax, method());
1968     __ call_VM_leaf(
1969          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1970          thread, rax);
1971   }
1972 
1973   // These are register definitions we need for locking/unlocking
1974   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1975   const Register obj_reg  = rcx;  // Will contain the oop
1976   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1977 
1978   Label slow_path_lock;
1979   Label lock_done;
1980 
1981   // Lock a synchronized method
1982   if (method->is_synchronized()) {
1983     assert(!is_critical_native, "unhandled");
1984 
1985 
1986     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1987 
1988     // Get the handle (the 2nd argument)
1989     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1990 
1991     // Get address of the box
1992 
1993     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1994 
1995     // Load the oop from the handle
1996     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1997 
1998     if (UseBiasedLocking) {
1999       // Note that oop_handle_reg is trashed during this call
2000       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
2001     }
2002 
2003     // Load immediate 1 into swap_reg %rax,
2004     __ movptr(swap_reg, 1);
2005 
2006     // Load (object->mark() | 1) into swap_reg %rax,
2007     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2008 
2009     // Save (object->mark() | 1) into BasicLock's displaced header
2010     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2011 
2012     if (os::is_MP()) {
2013       __ lock();
2014     }
2015 
2016     // src -> dest iff dest == rax, else rax, <- dest
2017     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2018     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2019     __ jcc(Assembler::equal, lock_done);
2020 
2021     // Test if the oopMark is an obvious stack pointer, i.e.,
2022     //  1) (mark & 3) == 0, and
2023     //  2) rsp <= mark < mark + os::pagesize()
2024     // These 3 tests can be done by evaluating the following
2025     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2026     // assuming both stack pointer and pagesize have their
2027     // least significant 2 bits clear.
2028     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2029 
2030     __ subptr(swap_reg, rsp);
2031     __ andptr(swap_reg, 3 - os::vm_page_size());
2032 
2033     // Save the test result, for recursive case, the result is zero
2034     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2035     __ jcc(Assembler::notEqual, slow_path_lock);
2036     // Slow path will re-enter here
2037     __ bind(lock_done);
2038 
2039     if (UseBiasedLocking) {
2040       // Re-fetch oop_handle_reg as we trashed it above
2041       __ movptr(oop_handle_reg, Address(rsp, wordSize));
2042     }
2043   }
2044 
2045 
2046   // Finally just about ready to make the JNI call
2047 
2048 
2049   // get JNIEnv* which is first argument to native
2050   if (!is_critical_native) {
2051     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2052     __ movptr(Address(rsp, 0), rdx);
2053   }
2054 
2055   // Now set thread in native
2056   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2057 
2058   __ call(RuntimeAddress(native_func));
2059 
2060   // Verify or restore cpu control state after JNI call
2061   __ restore_cpu_control_state_after_jni();
2062 
2063   // WARNING - on Windows Java Natives use pascal calling convention and pop the
2064   // arguments off of the stack. We could just re-adjust the stack pointer here
2065   // and continue to do SP relative addressing but we instead switch to FP
2066   // relative addressing.
2067 
2068   // Unpack native results.
2069   switch (ret_type) {
2070   case T_BOOLEAN: __ c2bool(rax);            break;
2071   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2072   case T_BYTE   : __ sign_extend_byte (rax); break;
2073   case T_SHORT  : __ sign_extend_short(rax); break;
2074   case T_INT    : /* nothing to do */        break;
2075   case T_DOUBLE :
2076   case T_FLOAT  :
2077     // Result is in st0 we'll save as needed
2078     break;
2079   case T_ARRAY:                 // Really a handle
2080   case T_OBJECT:                // Really a handle
2081       break; // can't de-handlize until after safepoint check
2082   case T_VOID: break;
2083   case T_LONG: break;
2084   default       : ShouldNotReachHere();
2085   }
2086 
2087   // Switch thread to "native transition" state before reading the synchronization state.
2088   // This additional state is necessary because reading and testing the synchronization
2089   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2090   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2091   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2092   //     Thread A is resumed to finish this native method, but doesn't block here since it
2093   //     didn't see any synchronization is progress, and escapes.
2094   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2095 
2096   if(os::is_MP()) {
2097     if (UseMembar) {
2098       // Force this write out before the read below
2099       __ membar(Assembler::Membar_mask_bits(
2100            Assembler::LoadLoad | Assembler::LoadStore |
2101            Assembler::StoreLoad | Assembler::StoreStore));
2102     } else {
2103       // Write serialization page so VM thread can do a pseudo remote membar.
2104       // We use the current thread pointer to calculate a thread specific
2105       // offset to write to within the page. This minimizes bus traffic
2106       // due to cache line collision.
2107       __ serialize_memory(thread, rcx);
2108     }
2109   }
2110 
2111   if (AlwaysRestoreFPU) {
2112     // Make sure the control word is correct.
2113     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2114   }
2115 
2116   Label after_transition;
2117 
2118   // check for safepoint operation in progress and/or pending suspend requests
2119   { Label Continue;
2120 
2121     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2122              SafepointSynchronize::_not_synchronized);
2123 
2124     Label L;
2125     __ jcc(Assembler::notEqual, L);
2126     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2127     __ jcc(Assembler::equal, Continue);
2128     __ bind(L);
2129 
2130     // Don't use call_VM as it will see a possible pending exception and forward it
2131     // and never return here preventing us from clearing _last_native_pc down below.
2132     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2133     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2134     // by hand.
2135     //
2136     __ vzeroupper();
2137 
2138     save_native_result(masm, ret_type, stack_slots);
2139     __ push(thread);
2140     if (!is_critical_native) {
2141       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2142                                               JavaThread::check_special_condition_for_native_trans)));
2143     } else {
2144       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2145                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
2146     }
2147     __ increment(rsp, wordSize);
2148     // Restore any method result value
2149     restore_native_result(masm, ret_type, stack_slots);
2150 
2151     if (is_critical_native) {
2152       // The call above performed the transition to thread_in_Java so
2153       // skip the transition logic below.
2154       __ jmpb(after_transition);
2155     }
2156 
2157     __ bind(Continue);
2158   }
2159 
2160   // change thread state
2161   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2162   __ bind(after_transition);
2163 
2164   Label reguard;
2165   Label reguard_done;
2166   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2167   __ jcc(Assembler::equal, reguard);
2168 
2169   // slow path reguard  re-enters here
2170   __ bind(reguard_done);
2171 
2172   // Handle possible exception (will unlock if necessary)
2173 
2174   // native result if any is live
2175 
2176   // Unlock
2177   Label slow_path_unlock;
2178   Label unlock_done;
2179   if (method->is_synchronized()) {
2180 
2181     Label done;
2182 
2183     // Get locked oop from the handle we passed to jni
2184     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2185 
2186     if (UseBiasedLocking) {
2187       __ biased_locking_exit(obj_reg, rbx, done);
2188     }
2189 
2190     // Simple recursive lock?
2191 
2192     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2193     __ jcc(Assembler::equal, done);
2194 
2195     // Must save rax, if if it is live now because cmpxchg must use it
2196     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2197       save_native_result(masm, ret_type, stack_slots);
2198     }
2199 
2200     //  get old displaced header
2201     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2202 
2203     // get address of the stack lock
2204     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2205 
2206     // Atomic swap old header if oop still contains the stack lock
2207     if (os::is_MP()) {
2208     __ lock();
2209     }
2210 
2211     // src -> dest iff dest == rax, else rax, <- dest
2212     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2213     __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2214     __ jcc(Assembler::notEqual, slow_path_unlock);
2215 
2216     // slow path re-enters here
2217     __ bind(unlock_done);
2218     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2219       restore_native_result(masm, ret_type, stack_slots);
2220     }
2221 
2222     __ bind(done);
2223 
2224   }
2225 
2226   {
2227     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2228     // Tell dtrace about this method exit
2229     save_native_result(masm, ret_type, stack_slots);
2230     __ mov_metadata(rax, method());
2231     __ call_VM_leaf(
2232          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2233          thread, rax);
2234     restore_native_result(masm, ret_type, stack_slots);
2235   }
2236 
2237   // We can finally stop using that last_Java_frame we setup ages ago
2238 
2239   __ reset_last_Java_frame(thread, false);
2240 
2241   // Unbox oop result, e.g. JNIHandles::resolve value.
2242   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2243     __ resolve_jobject(rax /* value */,
2244                        thread /* thread */,
2245                        rcx /* tmp */);
2246   }
2247 
2248   if (CheckJNICalls) {
2249     // clear_pending_jni_exception_check
2250     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2251   }
2252 
2253   if (!is_critical_native) {
2254     // reset handle block
2255     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2256     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2257 
2258     // Any exception pending?
2259     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2260     __ jcc(Assembler::notEqual, exception_pending);
2261   }
2262 
2263   // no exception, we're almost done
2264 
2265   // check that only result value is on FPU stack
2266   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2267 
2268   // Fixup floating pointer results so that result looks like a return from a compiled method
2269   if (ret_type == T_FLOAT) {
2270     if (UseSSE >= 1) {
2271       // Pop st0 and store as float and reload into xmm register
2272       __ fstp_s(Address(rbp, -4));
2273       __ movflt(xmm0, Address(rbp, -4));
2274     }
2275   } else if (ret_type == T_DOUBLE) {
2276     if (UseSSE >= 2) {
2277       // Pop st0 and store as double and reload into xmm register
2278       __ fstp_d(Address(rbp, -8));
2279       __ movdbl(xmm0, Address(rbp, -8));
2280     }
2281   }
2282 
2283   // Return
2284 
2285   __ leave();
2286   __ ret(0);
2287 
2288   // Unexpected paths are out of line and go here
2289 
2290   // Slow path locking & unlocking
2291   if (method->is_synchronized()) {
2292 
2293     // BEGIN Slow path lock
2294 
2295     __ bind(slow_path_lock);
2296 
2297     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2298     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2299     __ push(thread);
2300     __ push(lock_reg);
2301     __ push(obj_reg);
2302     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2303     __ addptr(rsp, 3*wordSize);
2304 
2305 #ifdef ASSERT
2306     { Label L;
2307     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2308     __ jcc(Assembler::equal, L);
2309     __ stop("no pending exception allowed on exit from monitorenter");
2310     __ bind(L);
2311     }
2312 #endif
2313     __ jmp(lock_done);
2314 
2315     // END Slow path lock
2316 
2317     // BEGIN Slow path unlock
2318     __ bind(slow_path_unlock);
2319     __ vzeroupper();
2320     // Slow path unlock
2321 
2322     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2323       save_native_result(masm, ret_type, stack_slots);
2324     }
2325     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2326 
2327     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2328     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2329 
2330 
2331     // should be a peal
2332     // +wordSize because of the push above
2333     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2334     __ push(thread);
2335     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2336     __ push(rax);
2337 
2338     __ push(obj_reg);
2339     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2340     __ addptr(rsp, 3*wordSize);
2341 #ifdef ASSERT
2342     {
2343       Label L;
2344       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2345       __ jcc(Assembler::equal, L);
2346       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2347       __ bind(L);
2348     }
2349 #endif /* ASSERT */
2350 
2351     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2352 
2353     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2354       restore_native_result(masm, ret_type, stack_slots);
2355     }
2356     __ jmp(unlock_done);
2357     // END Slow path unlock
2358 
2359   }
2360 
2361   // SLOW PATH Reguard the stack if needed
2362 
2363   __ bind(reguard);
2364   __ vzeroupper();
2365   save_native_result(masm, ret_type, stack_slots);
2366   {
2367     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2368   }
2369   restore_native_result(masm, ret_type, stack_slots);
2370   __ jmp(reguard_done);
2371 
2372 
2373   // BEGIN EXCEPTION PROCESSING
2374 
2375   if (!is_critical_native) {
2376     // Forward  the exception
2377     __ bind(exception_pending);
2378 
2379     // remove possible return value from FPU register stack
2380     __ empty_FPU_stack();
2381 
2382     // pop our frame
2383     __ leave();
2384     // and forward the exception
2385     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2386   }
2387 
2388   __ flush();
2389 
2390   nmethod *nm = nmethod::new_native_nmethod(method,
2391                                             compile_id,
2392                                             masm->code(),
2393                                             vep_offset,
2394                                             frame_complete,
2395                                             stack_slots / VMRegImpl::slots_per_word,
2396                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2397                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2398                                             oop_maps);
2399 
2400   if (is_critical_native) {
2401     nm->set_lazy_critical_native(true);
2402   }
2403 
2404   return nm;
2405 
2406 }
2407 
2408 // this function returns the adjust size (in number of words) to a c2i adapter
2409 // activation for use during deoptimization
2410 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2411   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2412 }
2413 
2414 
2415 uint SharedRuntime::out_preserve_stack_slots() {
2416   return 0;
2417 }
2418 
2419 //------------------------------generate_deopt_blob----------------------------
2420 void SharedRuntime::generate_deopt_blob() {
2421   // allocate space for the code
2422   ResourceMark rm;
2423   // setup code generation tools
2424   // note: the buffer code size must account for StackShadowPages=50
2425   CodeBuffer   buffer("deopt_blob", 1536, 1024);
2426   MacroAssembler* masm = new MacroAssembler(&buffer);
2427   int frame_size_in_words;
2428   OopMap* map = NULL;
2429   // Account for the extra args we place on the stack
2430   // by the time we call fetch_unroll_info
2431   const int additional_words = 2; // deopt kind, thread
2432 
2433   OopMapSet *oop_maps = new OopMapSet();
2434 
2435   // -------------
2436   // This code enters when returning to a de-optimized nmethod.  A return
2437   // address has been pushed on the the stack, and return values are in
2438   // registers.
2439   // If we are doing a normal deopt then we were called from the patched
2440   // nmethod from the point we returned to the nmethod. So the return
2441   // address on the stack is wrong by NativeCall::instruction_size
2442   // We will adjust the value to it looks like we have the original return
2443   // address on the stack (like when we eagerly deoptimized).
2444   // In the case of an exception pending with deoptimized then we enter
2445   // with a return address on the stack that points after the call we patched
2446   // into the exception handler. We have the following register state:
2447   //    rax,: exception
2448   //    rbx,: exception handler
2449   //    rdx: throwing pc
2450   // So in this case we simply jam rdx into the useless return address and
2451   // the stack looks just like we want.
2452   //
2453   // At this point we need to de-opt.  We save the argument return
2454   // registers.  We call the first C routine, fetch_unroll_info().  This
2455   // routine captures the return values and returns a structure which
2456   // describes the current frame size and the sizes of all replacement frames.
2457   // The current frame is compiled code and may contain many inlined
2458   // functions, each with their own JVM state.  We pop the current frame, then
2459   // push all the new frames.  Then we call the C routine unpack_frames() to
2460   // populate these frames.  Finally unpack_frames() returns us the new target
2461   // address.  Notice that callee-save registers are BLOWN here; they have
2462   // already been captured in the vframeArray at the time the return PC was
2463   // patched.
2464   address start = __ pc();
2465   Label cont;
2466 
2467   // Prolog for non exception case!
2468 
2469   // Save everything in sight.
2470 
2471   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2472   // Normal deoptimization
2473   __ push(Deoptimization::Unpack_deopt);
2474   __ jmp(cont);
2475 
2476   int reexecute_offset = __ pc() - start;
2477 
2478   // Reexecute case
2479   // return address is the pc describes what bci to do re-execute at
2480 
2481   // No need to update map as each call to save_live_registers will produce identical oopmap
2482   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2483 
2484   __ push(Deoptimization::Unpack_reexecute);
2485   __ jmp(cont);
2486 
2487   int exception_offset = __ pc() - start;
2488 
2489   // Prolog for exception case
2490 
2491   // all registers are dead at this entry point, except for rax, and
2492   // rdx which contain the exception oop and exception pc
2493   // respectively.  Set them in TLS and fall thru to the
2494   // unpack_with_exception_in_tls entry point.
2495 
2496   __ get_thread(rdi);
2497   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2498   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2499 
2500   int exception_in_tls_offset = __ pc() - start;
2501 
2502   // new implementation because exception oop is now passed in JavaThread
2503 
2504   // Prolog for exception case
2505   // All registers must be preserved because they might be used by LinearScan
2506   // Exceptiop oop and throwing PC are passed in JavaThread
2507   // tos: stack at point of call to method that threw the exception (i.e. only
2508   // args are on the stack, no return address)
2509 
2510   // make room on stack for the return address
2511   // It will be patched later with the throwing pc. The correct value is not
2512   // available now because loading it from memory would destroy registers.
2513   __ push(0);
2514 
2515   // Save everything in sight.
2516 
2517   // No need to update map as each call to save_live_registers will produce identical oopmap
2518   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2519 
2520   // Now it is safe to overwrite any register
2521 
2522   // store the correct deoptimization type
2523   __ push(Deoptimization::Unpack_exception);
2524 
2525   // load throwing pc from JavaThread and patch it as the return address
2526   // of the current frame. Then clear the field in JavaThread
2527   __ get_thread(rdi);
2528   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2529   __ movptr(Address(rbp, wordSize), rdx);
2530   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2531 
2532 #ifdef ASSERT
2533   // verify that there is really an exception oop in JavaThread
2534   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2535   __ verify_oop(rax);
2536 
2537   // verify that there is no pending exception
2538   Label no_pending_exception;
2539   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2540   __ testptr(rax, rax);
2541   __ jcc(Assembler::zero, no_pending_exception);
2542   __ stop("must not have pending exception here");
2543   __ bind(no_pending_exception);
2544 #endif
2545 
2546   __ bind(cont);
2547 
2548   // Compiled code leaves the floating point stack dirty, empty it.
2549   __ empty_FPU_stack();
2550 
2551 
2552   // Call C code.  Need thread and this frame, but NOT official VM entry
2553   // crud.  We cannot block on this call, no GC can happen.
2554   __ get_thread(rcx);
2555   __ push(rcx);
2556   // fetch_unroll_info needs to call last_java_frame()
2557   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2558 
2559   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2560 
2561   // Need to have an oopmap that tells fetch_unroll_info where to
2562   // find any register it might need.
2563 
2564   oop_maps->add_gc_map( __ pc()-start, map);
2565 
2566   // Discard args to fetch_unroll_info
2567   __ pop(rcx);
2568   __ pop(rcx);
2569 
2570   __ get_thread(rcx);
2571   __ reset_last_Java_frame(rcx, false);
2572 
2573   // Load UnrollBlock into EDI
2574   __ mov(rdi, rax);
2575 
2576   // Move the unpack kind to a safe place in the UnrollBlock because
2577   // we are very short of registers
2578 
2579   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2580   // retrieve the deopt kind from the UnrollBlock.
2581   __ movl(rax, unpack_kind);
2582 
2583    Label noException;
2584   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2585   __ jcc(Assembler::notEqual, noException);
2586   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2587   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2588   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2589   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2590 
2591   __ verify_oop(rax);
2592 
2593   // Overwrite the result registers with the exception results.
2594   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2595   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2596 
2597   __ bind(noException);
2598 
2599   // Stack is back to only having register save data on the stack.
2600   // Now restore the result registers. Everything else is either dead or captured
2601   // in the vframeArray.
2602 
2603   RegisterSaver::restore_result_registers(masm);
2604 
2605   // Non standard control word may be leaked out through a safepoint blob, and we can
2606   // deopt at a poll point with the non standard control word. However, we should make
2607   // sure the control word is correct after restore_result_registers.
2608   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2609 
2610   // All of the register save area has been popped of the stack. Only the
2611   // return address remains.
2612 
2613   // Pop all the frames we must move/replace.
2614   //
2615   // Frame picture (youngest to oldest)
2616   // 1: self-frame (no frame link)
2617   // 2: deopting frame  (no frame link)
2618   // 3: caller of deopting frame (could be compiled/interpreted).
2619   //
2620   // Note: by leaving the return address of self-frame on the stack
2621   // and using the size of frame 2 to adjust the stack
2622   // when we are done the return to frame 3 will still be on the stack.
2623 
2624   // Pop deoptimized frame
2625   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2626 
2627   // sp should be pointing at the return address to the caller (3)
2628 
2629   // Pick up the initial fp we should save
2630   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2631   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2632 
2633 #ifdef ASSERT
2634   // Compilers generate code that bang the stack by as much as the
2635   // interpreter would need. So this stack banging should never
2636   // trigger a fault. Verify that it does not on non product builds.
2637   if (UseStackBanging) {
2638     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2639     __ bang_stack_size(rbx, rcx);
2640   }
2641 #endif
2642 
2643   // Load array of frame pcs into ECX
2644   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2645 
2646   __ pop(rsi); // trash the old pc
2647 
2648   // Load array of frame sizes into ESI
2649   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2650 
2651   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2652 
2653   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2654   __ movl(counter, rbx);
2655 
2656   // Now adjust the caller's stack to make up for the extra locals
2657   // but record the original sp so that we can save it in the skeletal interpreter
2658   // frame and the stack walking of interpreter_sender will get the unextended sp
2659   // value and not the "real" sp value.
2660 
2661   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2662   __ movptr(sp_temp, rsp);
2663   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2664   __ subptr(rsp, rbx);
2665 
2666   // Push interpreter frames in a loop
2667   Label loop;
2668   __ bind(loop);
2669   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2670   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2671   __ pushptr(Address(rcx, 0));          // save return address
2672   __ enter();                           // save old & set new rbp,
2673   __ subptr(rsp, rbx);                  // Prolog!
2674   __ movptr(rbx, sp_temp);              // sender's sp
2675   // This value is corrected by layout_activation_impl
2676   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2677   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2678   __ movptr(sp_temp, rsp);              // pass to next frame
2679   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2680   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2681   __ decrementl(counter);             // decrement counter
2682   __ jcc(Assembler::notZero, loop);
2683   __ pushptr(Address(rcx, 0));          // save final return address
2684 
2685   // Re-push self-frame
2686   __ enter();                           // save old & set new rbp,
2687 
2688   //  Return address and rbp, are in place
2689   // We'll push additional args later. Just allocate a full sized
2690   // register save area
2691   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2692 
2693   // Restore frame locals after moving the frame
2694   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2695   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2696   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2697   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2698   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2699 
2700   // Set up the args to unpack_frame
2701 
2702   __ pushl(unpack_kind);                     // get the unpack_kind value
2703   __ get_thread(rcx);
2704   __ push(rcx);
2705 
2706   // set last_Java_sp, last_Java_fp
2707   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2708 
2709   // Call C code.  Need thread but NOT official VM entry
2710   // crud.  We cannot block on this call, no GC can happen.  Call should
2711   // restore return values to their stack-slots with the new SP.
2712   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2713   // Set an oopmap for the call site
2714   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2715 
2716   // rax, contains the return result type
2717   __ push(rax);
2718 
2719   __ get_thread(rcx);
2720   __ reset_last_Java_frame(rcx, false);
2721 
2722   // Collect return values
2723   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2724   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2725 
2726   // Clear floating point stack before returning to interpreter
2727   __ empty_FPU_stack();
2728 
2729   // Check if we should push the float or double return value.
2730   Label results_done, yes_double_value;
2731   __ cmpl(Address(rsp, 0), T_DOUBLE);
2732   __ jcc (Assembler::zero, yes_double_value);
2733   __ cmpl(Address(rsp, 0), T_FLOAT);
2734   __ jcc (Assembler::notZero, results_done);
2735 
2736   // return float value as expected by interpreter
2737   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2738   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2739   __ jmp(results_done);
2740 
2741   // return double value as expected by interpreter
2742   __ bind(yes_double_value);
2743   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2744   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2745 
2746   __ bind(results_done);
2747 
2748   // Pop self-frame.
2749   __ leave();                              // Epilog!
2750 
2751   // Jump to interpreter
2752   __ ret(0);
2753 
2754   // -------------
2755   // make sure all code is generated
2756   masm->flush();
2757 
2758   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2759   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2760 }
2761 
2762 
2763 #ifdef COMPILER2
2764 //------------------------------generate_uncommon_trap_blob--------------------
2765 void SharedRuntime::generate_uncommon_trap_blob() {
2766   // allocate space for the code
2767   ResourceMark rm;
2768   // setup code generation tools
2769   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2770   MacroAssembler* masm = new MacroAssembler(&buffer);
2771 
2772   enum frame_layout {
2773     arg0_off,      // thread                     sp + 0 // Arg location for
2774     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2775     arg2_off,      // exec_mode                  sp + 2
2776     // The frame sender code expects that rbp will be in the "natural" place and
2777     // will override any oopMap setting for it. We must therefore force the layout
2778     // so that it agrees with the frame sender code.
2779     rbp_off,       // callee saved register      sp + 3
2780     return_off,    // slot for return address    sp + 4
2781     framesize
2782   };
2783 
2784   address start = __ pc();
2785 
2786   if (UseRTMLocking) {
2787     // Abort RTM transaction before possible nmethod deoptimization.
2788     __ xabort(0);
2789   }
2790 
2791   // Push self-frame.
2792   __ subptr(rsp, return_off*wordSize);     // Epilog!
2793 
2794   // rbp, is an implicitly saved callee saved register (i.e. the calling
2795   // convention will save restore it in prolog/epilog) Other than that
2796   // there are no callee save registers no that adapter frames are gone.
2797   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2798 
2799   // Clear the floating point exception stack
2800   __ empty_FPU_stack();
2801 
2802   // set last_Java_sp
2803   __ get_thread(rdx);
2804   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2805 
2806   // Call C code.  Need thread but NOT official VM entry
2807   // crud.  We cannot block on this call, no GC can happen.  Call should
2808   // capture callee-saved registers as well as return values.
2809   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2810   // argument already in ECX
2811   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2812   __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2813   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2814 
2815   // Set an oopmap for the call site
2816   OopMapSet *oop_maps = new OopMapSet();
2817   OopMap* map =  new OopMap( framesize, 0 );
2818   // No oopMap for rbp, it is known implicitly
2819 
2820   oop_maps->add_gc_map( __ pc()-start, map);
2821 
2822   __ get_thread(rcx);
2823 
2824   __ reset_last_Java_frame(rcx, false);
2825 
2826   // Load UnrollBlock into EDI
2827   __ movptr(rdi, rax);
2828 
2829 #ifdef ASSERT
2830   { Label L;
2831     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
2832             (int32_t)Deoptimization::Unpack_uncommon_trap);
2833     __ jcc(Assembler::equal, L);
2834     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
2835     __ bind(L);
2836   }
2837 #endif
2838 
2839   // Pop all the frames we must move/replace.
2840   //
2841   // Frame picture (youngest to oldest)
2842   // 1: self-frame (no frame link)
2843   // 2: deopting frame  (no frame link)
2844   // 3: caller of deopting frame (could be compiled/interpreted).
2845 
2846   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2847   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2848 
2849   // Pop deoptimized frame
2850   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2851   __ addptr(rsp, rcx);
2852 
2853   // sp should be pointing at the return address to the caller (3)
2854 
2855   // Pick up the initial fp we should save
2856   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2857   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2858 
2859 #ifdef ASSERT
2860   // Compilers generate code that bang the stack by as much as the
2861   // interpreter would need. So this stack banging should never
2862   // trigger a fault. Verify that it does not on non product builds.
2863   if (UseStackBanging) {
2864     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2865     __ bang_stack_size(rbx, rcx);
2866   }
2867 #endif
2868 
2869   // Load array of frame pcs into ECX
2870   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2871 
2872   __ pop(rsi); // trash the pc
2873 
2874   // Load array of frame sizes into ESI
2875   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2876 
2877   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2878 
2879   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2880   __ movl(counter, rbx);
2881 
2882   // Now adjust the caller's stack to make up for the extra locals
2883   // but record the original sp so that we can save it in the skeletal interpreter
2884   // frame and the stack walking of interpreter_sender will get the unextended sp
2885   // value and not the "real" sp value.
2886 
2887   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2888   __ movptr(sp_temp, rsp);
2889   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2890   __ subptr(rsp, rbx);
2891 
2892   // Push interpreter frames in a loop
2893   Label loop;
2894   __ bind(loop);
2895   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2896   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2897   __ pushptr(Address(rcx, 0));          // save return address
2898   __ enter();                           // save old & set new rbp,
2899   __ subptr(rsp, rbx);                  // Prolog!
2900   __ movptr(rbx, sp_temp);              // sender's sp
2901   // This value is corrected by layout_activation_impl
2902   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2903   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2904   __ movptr(sp_temp, rsp);              // pass to next frame
2905   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2906   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2907   __ decrementl(counter);             // decrement counter
2908   __ jcc(Assembler::notZero, loop);
2909   __ pushptr(Address(rcx, 0));            // save final return address
2910 
2911   // Re-push self-frame
2912   __ enter();                           // save old & set new rbp,
2913   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2914 
2915 
2916   // set last_Java_sp, last_Java_fp
2917   __ get_thread(rdi);
2918   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2919 
2920   // Call C code.  Need thread but NOT official VM entry
2921   // crud.  We cannot block on this call, no GC can happen.  Call should
2922   // restore return values to their stack-slots with the new SP.
2923   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2924   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2925   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2926   // Set an oopmap for the call site
2927   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2928 
2929   __ get_thread(rdi);
2930   __ reset_last_Java_frame(rdi, true);
2931 
2932   // Pop self-frame.
2933   __ leave();     // Epilog!
2934 
2935   // Jump to interpreter
2936   __ ret(0);
2937 
2938   // -------------
2939   // make sure all code is generated
2940   masm->flush();
2941 
2942    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2943 }
2944 #endif // COMPILER2
2945 
2946 //------------------------------generate_handler_blob------
2947 //
2948 // Generate a special Compile2Runtime blob that saves all registers,
2949 // setup oopmap, and calls safepoint code to stop the compiled code for
2950 // a safepoint.
2951 //
2952 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2953 
2954   // Account for thread arg in our frame
2955   const int additional_words = 1;
2956   int frame_size_in_words;
2957 
2958   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2959 
2960   ResourceMark rm;
2961   OopMapSet *oop_maps = new OopMapSet();
2962   OopMap* map;
2963 
2964   // allocate space for the code
2965   // setup code generation tools
2966   CodeBuffer   buffer("handler_blob", 1024, 512);
2967   MacroAssembler* masm = new MacroAssembler(&buffer);
2968 
2969   const Register java_thread = rdi; // callee-saved for VC++
2970   address start   = __ pc();
2971   address call_pc = NULL;
2972   bool cause_return = (poll_type == POLL_AT_RETURN);
2973   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2974 
2975   if (UseRTMLocking) {
2976     // Abort RTM transaction before calling runtime
2977     // because critical section will be large and will be
2978     // aborted anyway. Also nmethod could be deoptimized.
2979     __ xabort(0);
2980   }
2981 
2982   // If cause_return is true we are at a poll_return and there is
2983   // the return address on the stack to the caller on the nmethod
2984   // that is safepoint. We can leave this return on the stack and
2985   // effectively complete the return and safepoint in the caller.
2986   // Otherwise we push space for a return address that the safepoint
2987   // handler will install later to make the stack walking sensible.
2988   if (!cause_return)
2989     __ push(rbx);  // Make room for return address (or push it again)
2990 
2991   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
2992 
2993   // The following is basically a call_VM. However, we need the precise
2994   // address of the call in order to generate an oopmap. Hence, we do all the
2995   // work ourselves.
2996 
2997   // Push thread argument and setup last_Java_sp
2998   __ get_thread(java_thread);
2999   __ push(java_thread);
3000   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
3001 
3002   // if this was not a poll_return then we need to correct the return address now.
3003   if (!cause_return) {
3004     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
3005     __ movptr(Address(rbp, wordSize), rax);
3006   }
3007 
3008   // do the call
3009   __ call(RuntimeAddress(call_ptr));
3010 
3011   // Set an oopmap for the call site.  This oopmap will map all
3012   // oop-registers and debug-info registers as callee-saved.  This
3013   // will allow deoptimization at this safepoint to find all possible
3014   // debug-info recordings, as well as let GC find all oops.
3015 
3016   oop_maps->add_gc_map( __ pc() - start, map);
3017 
3018   // Discard arg
3019   __ pop(rcx);
3020 
3021   Label noException;
3022 
3023   // Clear last_Java_sp again
3024   __ get_thread(java_thread);
3025   __ reset_last_Java_frame(java_thread, false);
3026 
3027   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3028   __ jcc(Assembler::equal, noException);
3029 
3030   // Exception pending
3031   RegisterSaver::restore_live_registers(masm, save_vectors);
3032 
3033   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3034 
3035   __ bind(noException);
3036 
3037   // Normal exit, register restoring and exit
3038   RegisterSaver::restore_live_registers(masm, save_vectors);
3039 
3040   __ ret(0);
3041 
3042   // make sure all code is generated
3043   masm->flush();
3044 
3045   // Fill-out other meta info
3046   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3047 }
3048 
3049 //
3050 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3051 //
3052 // Generate a stub that calls into vm to find out the proper destination
3053 // of a java call. All the argument registers are live at this point
3054 // but since this is generic code we don't know what they are and the caller
3055 // must do any gc of the args.
3056 //
3057 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3058   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3059 
3060   // allocate space for the code
3061   ResourceMark rm;
3062 
3063   CodeBuffer buffer(name, 1000, 512);
3064   MacroAssembler* masm                = new MacroAssembler(&buffer);
3065 
3066   int frame_size_words;
3067   enum frame_layout {
3068                 thread_off,
3069                 extra_words };
3070 
3071   OopMapSet *oop_maps = new OopMapSet();
3072   OopMap* map = NULL;
3073 
3074   int start = __ offset();
3075 
3076   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3077 
3078   int frame_complete = __ offset();
3079 
3080   const Register thread = rdi;
3081   __ get_thread(rdi);
3082 
3083   __ push(thread);
3084   __ set_last_Java_frame(thread, noreg, rbp, NULL);
3085 
3086   __ call(RuntimeAddress(destination));
3087 
3088 
3089   // Set an oopmap for the call site.
3090   // We need this not only for callee-saved registers, but also for volatile
3091   // registers that the compiler might be keeping live across a safepoint.
3092 
3093   oop_maps->add_gc_map( __ offset() - start, map);
3094 
3095   // rax, contains the address we are going to jump to assuming no exception got installed
3096 
3097   __ addptr(rsp, wordSize);
3098 
3099   // clear last_Java_sp
3100   __ reset_last_Java_frame(thread, true);
3101   // check for pending exceptions
3102   Label pending;
3103   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3104   __ jcc(Assembler::notEqual, pending);
3105 
3106   // get the returned Method*
3107   __ get_vm_result_2(rbx, thread);
3108   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3109 
3110   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3111 
3112   RegisterSaver::restore_live_registers(masm);
3113 
3114   // We are back the the original state on entry and ready to go.
3115 
3116   __ jmp(rax);
3117 
3118   // Pending exception after the safepoint
3119 
3120   __ bind(pending);
3121 
3122   RegisterSaver::restore_live_registers(masm);
3123 
3124   // exception pending => remove activation and forward to exception handler
3125 
3126   __ get_thread(thread);
3127   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3128   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3129   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3130 
3131   // -------------
3132   // make sure all code is generated
3133   masm->flush();
3134 
3135   // return the  blob
3136   // frame_size_words or bytes??
3137   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3138 }