1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 OptoReg::Name OptoReg::c_frame_pointer;
  45 
  46 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  47 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  48 RegMask Matcher::STACK_ONLY_mask;
  49 RegMask Matcher::c_frame_ptr_mask;
  50 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  51 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  52 
  53 //---------------------------Matcher-------------------------------------------
  54 Matcher::Matcher()
  55 : PhaseTransform( Phase::Ins_Select ),
  56 #ifdef ASSERT
  57   _old2new_map(C->comp_arena()),
  58   _new2old_map(C->comp_arena()),
  59 #endif
  60   _shared_nodes(C->comp_arena()),
  61   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  62   _swallowed(swallowed),
  63   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  64   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  65   _must_clone(must_clone),
  66   _register_save_policy(register_save_policy),
  67   _c_reg_save_policy(c_reg_save_policy),
  68   _register_save_type(register_save_type),
  69   _ruleName(ruleName),
  70   _allocation_started(false),
  71   _states_arena(Chunk::medium_size),
  72   _visited(&_states_arena),
  73   _shared(&_states_arena),
  74   _dontcare(&_states_arena) {
  75   C->set_matcher(this);
  76 
  77   idealreg2spillmask  [Op_RegI] = NULL;
  78   idealreg2spillmask  [Op_RegN] = NULL;
  79   idealreg2spillmask  [Op_RegL] = NULL;
  80   idealreg2spillmask  [Op_RegF] = NULL;
  81   idealreg2spillmask  [Op_RegD] = NULL;
  82   idealreg2spillmask  [Op_RegP] = NULL;
  83   idealreg2spillmask  [Op_VecS] = NULL;
  84   idealreg2spillmask  [Op_VecD] = NULL;
  85   idealreg2spillmask  [Op_VecX] = NULL;
  86   idealreg2spillmask  [Op_VecY] = NULL;
  87   idealreg2spillmask  [Op_VecZ] = NULL;
  88   idealreg2spillmask  [Op_RegFlags] = NULL;
  89 
  90   idealreg2debugmask  [Op_RegI] = NULL;
  91   idealreg2debugmask  [Op_RegN] = NULL;
  92   idealreg2debugmask  [Op_RegL] = NULL;
  93   idealreg2debugmask  [Op_RegF] = NULL;
  94   idealreg2debugmask  [Op_RegD] = NULL;
  95   idealreg2debugmask  [Op_RegP] = NULL;
  96   idealreg2debugmask  [Op_VecS] = NULL;
  97   idealreg2debugmask  [Op_VecD] = NULL;
  98   idealreg2debugmask  [Op_VecX] = NULL;
  99   idealreg2debugmask  [Op_VecY] = NULL;
 100   idealreg2debugmask  [Op_VecZ] = NULL;
 101   idealreg2debugmask  [Op_RegFlags] = NULL;
 102 
 103   idealreg2mhdebugmask[Op_RegI] = NULL;
 104   idealreg2mhdebugmask[Op_RegN] = NULL;
 105   idealreg2mhdebugmask[Op_RegL] = NULL;
 106   idealreg2mhdebugmask[Op_RegF] = NULL;
 107   idealreg2mhdebugmask[Op_RegD] = NULL;
 108   idealreg2mhdebugmask[Op_RegP] = NULL;
 109   idealreg2mhdebugmask[Op_VecS] = NULL;
 110   idealreg2mhdebugmask[Op_VecD] = NULL;
 111   idealreg2mhdebugmask[Op_VecX] = NULL;
 112   idealreg2mhdebugmask[Op_VecY] = NULL;
 113   idealreg2mhdebugmask[Op_VecZ] = NULL;
 114   idealreg2mhdebugmask[Op_RegFlags] = NULL;
 115 
 116   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 117 }
 118 
 119 //------------------------------warp_incoming_stk_arg------------------------
 120 // This warps a VMReg into an OptoReg::Name
 121 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 122   OptoReg::Name warped;
 123   if( reg->is_stack() ) {  // Stack slot argument?
 124     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 125     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 126     if( warped >= _in_arg_limit )
 127       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 128     if (!RegMask::can_represent_arg(warped)) {
 129       // the compiler cannot represent this method's calling sequence
 130       C->record_method_not_compilable("unsupported incoming calling sequence");
 131       return OptoReg::Bad;
 132     }
 133     return warped;
 134   }
 135   return OptoReg::as_OptoReg(reg);
 136 }
 137 
 138 //---------------------------compute_old_SP------------------------------------
 139 OptoReg::Name Compile::compute_old_SP() {
 140   int fixed    = fixed_slots();
 141   int preserve = in_preserve_stack_slots();
 142   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 143 }
 144 
 145 
 146 
 147 #ifdef ASSERT
 148 void Matcher::verify_new_nodes_only(Node* xroot) {
 149   // Make sure that the new graph only references new nodes
 150   ResourceMark rm;
 151   Unique_Node_List worklist;
 152   VectorSet visited(Thread::current()->resource_area());
 153   worklist.push(xroot);
 154   while (worklist.size() > 0) {
 155     Node* n = worklist.pop();
 156     visited <<= n->_idx;
 157     assert(C->node_arena()->contains(n), "dead node");
 158     for (uint j = 0; j < n->req(); j++) {
 159       Node* in = n->in(j);
 160       if (in != NULL) {
 161         assert(C->node_arena()->contains(in), "dead node");
 162         if (!visited.test(in->_idx)) {
 163           worklist.push(in);
 164         }
 165       }
 166     }
 167   }
 168 }
 169 #endif
 170 
 171 // Array of RegMask, one per returned values (value type instances can
 172 // be returned as multiple return values, one per field)
 173 RegMask* Matcher::return_values_mask(const TypeTuple *range) {
 174   uint cnt = range->cnt() - TypeFunc::Parms;
 175   if (cnt == 0) {
 176     return NULL;
 177   }
 178   RegMask* mask = NEW_RESOURCE_ARRAY(RegMask, cnt);
 179 
 180   if (!ValueTypeReturnedAsFields) {
 181     // Get ideal-register return type
 182     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 183     // Get machine return register
 184     OptoRegPair regs = return_value(ireg, false);
 185 
 186     // And mask for same
 187     mask[0].Clear();
 188     mask[0].Insert(regs.first());
 189     if (OptoReg::is_valid(regs.second())) {
 190       mask[0].Insert(regs.second());
 191     }
 192   } else {
 193     BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, cnt);
 194     VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY(VMRegPair, cnt);
 195 
 196     for (uint i = 0; i < cnt; i++) {
 197       sig_bt[i] = range->field_at(i+TypeFunc::Parms)->basic_type();
 198     }
 199 
 200     int regs = SharedRuntime::java_return_convention(sig_bt, vm_parm_regs, cnt);
 201     assert(regs > 0, "should have been tested during graph construction");
 202     for (uint i = 0; i < cnt; i++) {
 203       mask[i].Clear();
 204 
 205       OptoReg::Name reg1 = OptoReg::as_OptoReg(vm_parm_regs[i].first());
 206       if (OptoReg::is_valid(reg1)) {
 207         mask[i].Insert(reg1);
 208       }
 209       OptoReg::Name reg2 = OptoReg::as_OptoReg(vm_parm_regs[i].second());
 210       if (OptoReg::is_valid(reg2)) {
 211         mask[i].Insert(reg2);
 212       }
 213     }
 214   }
 215   return mask;
 216 }
 217 
 218 //---------------------------match---------------------------------------------
 219 void Matcher::match( ) {
 220   if( MaxLabelRootDepth < 100 ) { // Too small?
 221     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 222     MaxLabelRootDepth = 100;
 223   }
 224   // One-time initialization of some register masks.
 225   init_spill_mask( C->root()->in(1) );
 226   _return_addr_mask = return_addr();
 227 #ifdef _LP64
 228   // Pointers take 2 slots in 64-bit land
 229   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 230 #endif
 231 
 232   // Map Java-signature return types into return register-value
 233   // machine registers.
 234   const TypeTuple *range = C->tf()->range_cc();
 235   _return_values_mask = return_values_mask(range);
 236 
 237   // ---------------
 238   // Frame Layout
 239 
 240   // Need the method signature to determine the incoming argument types,
 241   // because the types determine which registers the incoming arguments are
 242   // in, and this affects the matched code.
 243   const TypeTuple *domain = C->tf()->domain_cc();
 244   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 245   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 246   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 247   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 248   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 249   uint i;
 250   for( i = 0; i<argcnt; i++ ) {
 251     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 252   }
 253 
 254   // Pass array of ideal registers and length to USER code (from the AD file)
 255   // that will convert this to an array of register numbers.
 256   const StartNode *start = C->start();
 257   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 258 #ifdef ASSERT
 259   // Sanity check users' calling convention.  Real handy while trying to
 260   // get the initial port correct.
 261   { for (uint i = 0; i<argcnt; i++) {
 262       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 263         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 264         _parm_regs[i].set_bad();
 265         continue;
 266       }
 267       VMReg parm_reg = vm_parm_regs[i].first();
 268       assert(parm_reg->is_valid(), "invalid arg?");
 269       if (parm_reg->is_reg()) {
 270         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 271         assert(can_be_java_arg(opto_parm_reg) ||
 272                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 273                opto_parm_reg == inline_cache_reg(),
 274                "parameters in register must be preserved by runtime stubs");
 275       }
 276       for (uint j = 0; j < i; j++) {
 277         assert(parm_reg != vm_parm_regs[j].first(),
 278                "calling conv. must produce distinct regs");
 279       }
 280     }
 281   }
 282 #endif
 283 
 284   // Do some initial frame layout.
 285 
 286   // Compute the old incoming SP (may be called FP) as
 287   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 288   _old_SP = C->compute_old_SP();
 289   assert( is_even(_old_SP), "must be even" );
 290 
 291   // Compute highest incoming stack argument as
 292   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 293   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 294   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 295   for( i = 0; i < argcnt; i++ ) {
 296     // Permit args to have no register
 297     _calling_convention_mask[i].Clear();
 298     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 299       continue;
 300     }
 301     // calling_convention returns stack arguments as a count of
 302     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 303     // the allocators point of view, taking into account all the
 304     // preserve area, locks & pad2.
 305 
 306     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 307     if( OptoReg::is_valid(reg1))
 308       _calling_convention_mask[i].Insert(reg1);
 309 
 310     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 311     if( OptoReg::is_valid(reg2))
 312       _calling_convention_mask[i].Insert(reg2);
 313 
 314     // Saved biased stack-slot register number
 315     _parm_regs[i].set_pair(reg2, reg1);
 316   }
 317 
 318   // Finally, make sure the incoming arguments take up an even number of
 319   // words, in case the arguments or locals need to contain doubleword stack
 320   // slots.  The rest of the system assumes that stack slot pairs (in
 321   // particular, in the spill area) which look aligned will in fact be
 322   // aligned relative to the stack pointer in the target machine.  Double
 323   // stack slots will always be allocated aligned.
 324   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 325 
 326   // Compute highest outgoing stack argument as
 327   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 328   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 329   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 330 
 331   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 332     // the compiler cannot represent this method's calling sequence
 333     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 334   }
 335 
 336   if (C->failing())  return;  // bailed out on incoming arg failure
 337 
 338   // ---------------
 339   // Collect roots of matcher trees.  Every node for which
 340   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 341   // can be a valid interior of some tree.
 342   find_shared( C->root() );
 343   find_shared( C->top() );
 344 
 345   C->print_method(PHASE_BEFORE_MATCHING);
 346 
 347   // Create new ideal node ConP #NULL even if it does exist in old space
 348   // to avoid false sharing if the corresponding mach node is not used.
 349   // The corresponding mach node is only used in rare cases for derived
 350   // pointers.
 351   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
 352 
 353   // Swap out to old-space; emptying new-space
 354   Arena *old = C->node_arena()->move_contents(C->old_arena());
 355 
 356   // Save debug and profile information for nodes in old space:
 357   _old_node_note_array = C->node_note_array();
 358   if (_old_node_note_array != NULL) {
 359     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 360                            (C->comp_arena(), _old_node_note_array->length(),
 361                             0, NULL));
 362   }
 363 
 364   // Pre-size the new_node table to avoid the need for range checks.
 365   grow_new_node_array(C->unique());
 366 
 367   // Reset node counter so MachNodes start with _idx at 0
 368   int live_nodes = C->live_nodes();
 369   C->set_unique(0);
 370   C->reset_dead_node_list();
 371 
 372   // Recursively match trees from old space into new space.
 373   // Correct leaves of new-space Nodes; they point to old-space.
 374   _visited.Clear();             // Clear visit bits for xform call
 375   C->set_cached_top_node(xform( C->top(), live_nodes ));
 376   if (!C->failing()) {
 377     Node* xroot =        xform( C->root(), 1 );
 378     if (xroot == NULL) {
 379       Matcher::soft_match_failure();  // recursive matching process failed
 380       C->record_method_not_compilable("instruction match failed");
 381     } else {
 382       // During matching shared constants were attached to C->root()
 383       // because xroot wasn't available yet, so transfer the uses to
 384       // the xroot.
 385       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 386         Node* n = C->root()->fast_out(j);
 387         if (C->node_arena()->contains(n)) {
 388           assert(n->in(0) == C->root(), "should be control user");
 389           n->set_req(0, xroot);
 390           --j;
 391           --jmax;
 392         }
 393       }
 394 
 395       // Generate new mach node for ConP #NULL
 396       assert(new_ideal_null != NULL, "sanity");
 397       _mach_null = match_tree(new_ideal_null);
 398       // Don't set control, it will confuse GCM since there are no uses.
 399       // The control will be set when this node is used first time
 400       // in find_base_for_derived().
 401       assert(_mach_null != NULL, "");
 402 
 403       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 404 
 405 #ifdef ASSERT
 406       verify_new_nodes_only(xroot);
 407 #endif
 408     }
 409   }
 410   if (C->top() == NULL || C->root() == NULL) {
 411     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 412   }
 413   if (C->failing()) {
 414     // delete old;
 415     old->destruct_contents();
 416     return;
 417   }
 418   assert( C->top(), "" );
 419   assert( C->root(), "" );
 420   validate_null_checks();
 421 
 422   // Now smoke old-space
 423   NOT_DEBUG( old->destruct_contents() );
 424 
 425   // ------------------------
 426   // Set up save-on-entry registers
 427   Fixup_Save_On_Entry( );
 428 }
 429 
 430 
 431 //------------------------------Fixup_Save_On_Entry----------------------------
 432 // The stated purpose of this routine is to take care of save-on-entry
 433 // registers.  However, the overall goal of the Match phase is to convert into
 434 // machine-specific instructions which have RegMasks to guide allocation.
 435 // So what this procedure really does is put a valid RegMask on each input
 436 // to the machine-specific variations of all Return, TailCall and Halt
 437 // instructions.  It also adds edgs to define the save-on-entry values (and of
 438 // course gives them a mask).
 439 
 440 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 441   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 442   // Do all the pre-defined register masks
 443   rms[TypeFunc::Control  ] = RegMask::Empty;
 444   rms[TypeFunc::I_O      ] = RegMask::Empty;
 445   rms[TypeFunc::Memory   ] = RegMask::Empty;
 446   rms[TypeFunc::ReturnAdr] = ret_adr;
 447   rms[TypeFunc::FramePtr ] = fp;
 448   return rms;
 449 }
 450 
 451 //---------------------------init_first_stack_mask-----------------------------
 452 // Create the initial stack mask used by values spilling to the stack.
 453 // Disallow any debug info in outgoing argument areas by setting the
 454 // initial mask accordingly.
 455 void Matcher::init_first_stack_mask() {
 456 
 457   // Allocate storage for spill masks as masks for the appropriate load type.
 458   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
 459 
 460   idealreg2spillmask  [Op_RegN] = &rms[0];
 461   idealreg2spillmask  [Op_RegI] = &rms[1];
 462   idealreg2spillmask  [Op_RegL] = &rms[2];
 463   idealreg2spillmask  [Op_RegF] = &rms[3];
 464   idealreg2spillmask  [Op_RegD] = &rms[4];
 465   idealreg2spillmask  [Op_RegP] = &rms[5];
 466 
 467   idealreg2debugmask  [Op_RegN] = &rms[6];
 468   idealreg2debugmask  [Op_RegI] = &rms[7];
 469   idealreg2debugmask  [Op_RegL] = &rms[8];
 470   idealreg2debugmask  [Op_RegF] = &rms[9];
 471   idealreg2debugmask  [Op_RegD] = &rms[10];
 472   idealreg2debugmask  [Op_RegP] = &rms[11];
 473 
 474   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 475   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 476   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 477   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 478   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 479   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 480 
 481   idealreg2spillmask  [Op_VecS] = &rms[18];
 482   idealreg2spillmask  [Op_VecD] = &rms[19];
 483   idealreg2spillmask  [Op_VecX] = &rms[20];
 484   idealreg2spillmask  [Op_VecY] = &rms[21];
 485   idealreg2spillmask  [Op_VecZ] = &rms[22];
 486 
 487   OptoReg::Name i;
 488 
 489   // At first, start with the empty mask
 490   C->FIRST_STACK_mask().Clear();
 491 
 492   // Add in the incoming argument area
 493   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 494   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 495     C->FIRST_STACK_mask().Insert(i);
 496   }
 497   // Add in all bits past the outgoing argument area
 498   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 499             "must be able to represent all call arguments in reg mask");
 500   OptoReg::Name init = _out_arg_limit;
 501   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 502     C->FIRST_STACK_mask().Insert(i);
 503   }
 504   // Finally, set the "infinite stack" bit.
 505   C->FIRST_STACK_mask().set_AllStack();
 506 
 507   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 508   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 509   // Keep spill masks aligned.
 510   aligned_stack_mask.clear_to_pairs();
 511   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 512 
 513   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 514 #ifdef _LP64
 515   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 516    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 517    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 518 #else
 519    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 520 #endif
 521   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 522    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 523   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 524    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 525   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 526    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 527   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 528    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 529 
 530   if (Matcher::vector_size_supported(T_BYTE,4)) {
 531     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 532      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 533   }
 534   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 535     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 536     // RA guarantees such alignment since it is needed for Double and Long values.
 537     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 538      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 539   }
 540   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 541     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 542     //
 543     // RA can use input arguments stack slots for spills but until RA
 544     // we don't know frame size and offset of input arg stack slots.
 545     //
 546     // Exclude last input arg stack slots to avoid spilling vectors there
 547     // otherwise vector spills could stomp over stack slots in caller frame.
 548     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 549     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 550       aligned_stack_mask.Remove(in);
 551       in = OptoReg::add(in, -1);
 552     }
 553      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 554      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 555     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 556      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 557   }
 558   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 559     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 560     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 561     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 562       aligned_stack_mask.Remove(in);
 563       in = OptoReg::add(in, -1);
 564     }
 565      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 566      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 567     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 568      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 569   }
 570   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 571     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 572     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 573     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 574       aligned_stack_mask.Remove(in);
 575       in = OptoReg::add(in, -1);
 576     }
 577      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 578      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 579     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 580      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 581   }
 582    if (UseFPUForSpilling) {
 583      // This mask logic assumes that the spill operations are
 584      // symmetric and that the registers involved are the same size.
 585      // On sparc for instance we may have to use 64 bit moves will
 586      // kill 2 registers when used with F0-F31.
 587      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 588      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 589 #ifdef _LP64
 590      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 591      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 592      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 593      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 594 #else
 595      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 596 #ifdef ARM
 597      // ARM has support for moving 64bit values between a pair of
 598      // integer registers and a double register
 599      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 600      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 601 #endif
 602 #endif
 603    }
 604 
 605   // Make up debug masks.  Any spill slot plus callee-save registers.
 606   // Caller-save registers are assumed to be trashable by the various
 607   // inline-cache fixup routines.
 608   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 609   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 610   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 611   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 612   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 613   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 614 
 615   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 616   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 617   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 618   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 619   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 620   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 621 
 622   // Prevent stub compilations from attempting to reference
 623   // callee-saved registers from debug info
 624   bool exclude_soe = !Compile::current()->is_method_compilation();
 625 
 626   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 627     // registers the caller has to save do not work
 628     if( _register_save_policy[i] == 'C' ||
 629         _register_save_policy[i] == 'A' ||
 630         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 631       idealreg2debugmask  [Op_RegN]->Remove(i);
 632       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 633       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 634       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 635       idealreg2debugmask  [Op_RegD]->Remove(i);
 636       idealreg2debugmask  [Op_RegP]->Remove(i);
 637 
 638       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 639       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 640       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 641       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 642       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 643       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 644     }
 645   }
 646 
 647   // Subtract the register we use to save the SP for MethodHandle
 648   // invokes to from the debug mask.
 649   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 650   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 651   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 652   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 653   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 654   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 655   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 656 }
 657 
 658 //---------------------------is_save_on_entry----------------------------------
 659 bool Matcher::is_save_on_entry( int reg ) {
 660   return
 661     _register_save_policy[reg] == 'E' ||
 662     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 663     // Also save argument registers in the trampolining stubs
 664     (C->save_argument_registers() && is_spillable_arg(reg));
 665 }
 666 
 667 //---------------------------Fixup_Save_On_Entry-------------------------------
 668 void Matcher::Fixup_Save_On_Entry( ) {
 669   init_first_stack_mask();
 670 
 671   Node *root = C->root();       // Short name for root
 672   // Count number of save-on-entry registers.
 673   uint soe_cnt = number_of_saved_registers();
 674   uint i;
 675 
 676   // Find the procedure Start Node
 677   StartNode *start = C->start();
 678   assert( start, "Expect a start node" );
 679 
 680   // Save argument registers in the trampolining stubs
 681   if( C->save_argument_registers() )
 682     for( i = 0; i < _last_Mach_Reg; i++ )
 683       if( is_spillable_arg(i) )
 684         soe_cnt++;
 685 
 686   // Input RegMask array shared by all Returns.
 687   // The type for doubles and longs has a count of 2, but
 688   // there is only 1 returned value
 689   uint ret_edge_cnt = C->tf()->range_cc()->cnt();
 690   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 691   for (i = TypeFunc::Parms; i < ret_edge_cnt; i++) {
 692     ret_rms[i] = _return_values_mask[i-TypeFunc::Parms];
 693   }
 694 
 695   // Input RegMask array shared by all Rethrows.
 696   uint reth_edge_cnt = TypeFunc::Parms+1;
 697   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 698   // Rethrow takes exception oop only, but in the argument 0 slot.
 699   OptoReg::Name reg = find_receiver(false);
 700   if (reg >= 0) {
 701     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
 702 #ifdef _LP64
 703     // Need two slots for ptrs in 64-bit land
 704     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
 705 #endif
 706   }
 707 
 708   // Input RegMask array shared by all TailCalls
 709   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 710   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 711 
 712   // Input RegMask array shared by all TailJumps
 713   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 714   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 715 
 716   // TailCalls have 2 returned values (target & moop), whose masks come
 717   // from the usual MachNode/MachOper mechanism.  Find a sample
 718   // TailCall to extract these masks and put the correct masks into
 719   // the tail_call_rms array.
 720   for( i=1; i < root->req(); i++ ) {
 721     MachReturnNode *m = root->in(i)->as_MachReturn();
 722     if( m->ideal_Opcode() == Op_TailCall ) {
 723       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 724       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 725       break;
 726     }
 727   }
 728 
 729   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 730   // from the usual MachNode/MachOper mechanism.  Find a sample
 731   // TailJump to extract these masks and put the correct masks into
 732   // the tail_jump_rms array.
 733   for( i=1; i < root->req(); i++ ) {
 734     MachReturnNode *m = root->in(i)->as_MachReturn();
 735     if( m->ideal_Opcode() == Op_TailJump ) {
 736       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 737       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 738       break;
 739     }
 740   }
 741 
 742   // Input RegMask array shared by all Halts
 743   uint halt_edge_cnt = TypeFunc::Parms;
 744   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 745 
 746   // Capture the return input masks into each exit flavor
 747   for( i=1; i < root->req(); i++ ) {
 748     MachReturnNode *exit = root->in(i)->as_MachReturn();
 749     switch( exit->ideal_Opcode() ) {
 750       case Op_Return   : exit->_in_rms = ret_rms;  break;
 751       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 752       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 753       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 754       case Op_Halt     : exit->_in_rms = halt_rms; break;
 755       default          : ShouldNotReachHere();
 756     }
 757   }
 758 
 759   // Next unused projection number from Start.
 760   int proj_cnt = C->tf()->domain_cc()->cnt();
 761 
 762   // Do all the save-on-entry registers.  Make projections from Start for
 763   // them, and give them a use at the exit points.  To the allocator, they
 764   // look like incoming register arguments.
 765   for( i = 0; i < _last_Mach_Reg; i++ ) {
 766     if( is_save_on_entry(i) ) {
 767 
 768       // Add the save-on-entry to the mask array
 769       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 770       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 771       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 772       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 773       // Halts need the SOE registers, but only in the stack as debug info.
 774       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 775       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 776 
 777       Node *mproj;
 778 
 779       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 780       // into a single RegD.
 781       if( (i&1) == 0 &&
 782           _register_save_type[i  ] == Op_RegF &&
 783           _register_save_type[i+1] == Op_RegF &&
 784           is_save_on_entry(i+1) ) {
 785         // Add other bit for double
 786         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 787         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 788         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 789         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 790         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 791         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 792         proj_cnt += 2;          // Skip 2 for doubles
 793       }
 794       else if( (i&1) == 1 &&    // Else check for high half of double
 795                _register_save_type[i-1] == Op_RegF &&
 796                _register_save_type[i  ] == Op_RegF &&
 797                is_save_on_entry(i-1) ) {
 798         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 799         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 800         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 801         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 802         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 803         mproj = C->top();
 804       }
 805       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 806       // into a single RegL.
 807       else if( (i&1) == 0 &&
 808           _register_save_type[i  ] == Op_RegI &&
 809           _register_save_type[i+1] == Op_RegI &&
 810         is_save_on_entry(i+1) ) {
 811         // Add other bit for long
 812         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 813         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 814         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 815         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 816         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 817         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 818         proj_cnt += 2;          // Skip 2 for longs
 819       }
 820       else if( (i&1) == 1 &&    // Else check for high half of long
 821                _register_save_type[i-1] == Op_RegI &&
 822                _register_save_type[i  ] == Op_RegI &&
 823                is_save_on_entry(i-1) ) {
 824         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 825         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 826         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 827         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 828         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 829         mproj = C->top();
 830       } else {
 831         // Make a projection for it off the Start
 832         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 833       }
 834 
 835       ret_edge_cnt ++;
 836       reth_edge_cnt ++;
 837       tail_call_edge_cnt ++;
 838       tail_jump_edge_cnt ++;
 839       halt_edge_cnt ++;
 840 
 841       // Add a use of the SOE register to all exit paths
 842       for( uint j=1; j < root->req(); j++ )
 843         root->in(j)->add_req(mproj);
 844     } // End of if a save-on-entry register
 845   } // End of for all machine registers
 846 }
 847 
 848 //------------------------------init_spill_mask--------------------------------
 849 void Matcher::init_spill_mask( Node *ret ) {
 850   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 851 
 852   OptoReg::c_frame_pointer = c_frame_pointer();
 853   c_frame_ptr_mask = c_frame_pointer();
 854 #ifdef _LP64
 855   // pointers are twice as big
 856   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 857 #endif
 858 
 859   // Start at OptoReg::stack0()
 860   STACK_ONLY_mask.Clear();
 861   OptoReg::Name init = OptoReg::stack2reg(0);
 862   // STACK_ONLY_mask is all stack bits
 863   OptoReg::Name i;
 864   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 865     STACK_ONLY_mask.Insert(i);
 866   // Also set the "infinite stack" bit.
 867   STACK_ONLY_mask.set_AllStack();
 868 
 869   // Copy the register names over into the shared world
 870   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 871     // SharedInfo::regName[i] = regName[i];
 872     // Handy RegMasks per machine register
 873     mreg2regmask[i].Insert(i);
 874   }
 875 
 876   // Grab the Frame Pointer
 877   Node *fp  = ret->in(TypeFunc::FramePtr);
 878   Node *mem = ret->in(TypeFunc::Memory);
 879   const TypePtr* atp = TypePtr::BOTTOM;
 880   // Share frame pointer while making spill ops
 881   set_shared(fp);
 882 
 883   // Compute generic short-offset Loads
 884 #ifdef _LP64
 885   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 886 #endif
 887   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 888   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
 889   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 890   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 891   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 892   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 893          spillD != NULL && spillP != NULL, "");
 894   // Get the ADLC notion of the right regmask, for each basic type.
 895 #ifdef _LP64
 896   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 897 #endif
 898   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 899   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 900   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 901   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 902   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 903 
 904   // Vector regmasks.
 905   if (Matcher::vector_size_supported(T_BYTE,4)) {
 906     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 907     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 908     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 909   }
 910   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 911     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 912     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 913   }
 914   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 915     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 916     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 917   }
 918   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 919     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 920     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 921   }
 922   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 923     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
 924     idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
 925   }
 926 }
 927 
 928 #ifdef ASSERT
 929 static void match_alias_type(Compile* C, Node* n, Node* m) {
 930   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 931   const TypePtr* nat = n->adr_type();
 932   const TypePtr* mat = m->adr_type();
 933   int nidx = C->get_alias_index(nat);
 934   int midx = C->get_alias_index(mat);
 935   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 936   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 937     for (uint i = 1; i < n->req(); i++) {
 938       Node* n1 = n->in(i);
 939       const TypePtr* n1at = n1->adr_type();
 940       if (n1at != NULL) {
 941         nat = n1at;
 942         nidx = C->get_alias_index(n1at);
 943       }
 944     }
 945   }
 946   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 947   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 948     switch (n->Opcode()) {
 949     case Op_PrefetchAllocation:
 950       nidx = Compile::AliasIdxRaw;
 951       nat = TypeRawPtr::BOTTOM;
 952       break;
 953     }
 954   }
 955   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 956     switch (n->Opcode()) {
 957     case Op_ClearArray:
 958       midx = Compile::AliasIdxRaw;
 959       mat = TypeRawPtr::BOTTOM;
 960       break;
 961     }
 962   }
 963   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 964     switch (n->Opcode()) {
 965     case Op_Return:
 966     case Op_Rethrow:
 967     case Op_Halt:
 968     case Op_TailCall:
 969     case Op_TailJump:
 970       nidx = Compile::AliasIdxBot;
 971       nat = TypePtr::BOTTOM;
 972       break;
 973     }
 974   }
 975   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 976     switch (n->Opcode()) {
 977     case Op_StrComp:
 978     case Op_StrEquals:
 979     case Op_StrIndexOf:
 980     case Op_StrIndexOfChar:
 981     case Op_AryEq:
 982     case Op_HasNegatives:
 983     case Op_MemBarVolatile:
 984     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 985     case Op_StrInflatedCopy:
 986     case Op_StrCompressedCopy:
 987     case Op_OnSpinWait:
 988     case Op_EncodeISOArray:
 989       nidx = Compile::AliasIdxTop;
 990       nat = NULL;
 991       break;
 992     }
 993   }
 994   if (nidx != midx) {
 995     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 996       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 997       n->dump();
 998       m->dump();
 999     }
1000     assert(C->subsume_loads() && C->must_alias(nat, midx),
1001            "must not lose alias info when matching");
1002   }
1003 }
1004 #endif
1005 
1006 //------------------------------xform------------------------------------------
1007 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1008 // Node in new-space.  Given a new-space Node, recursively walk his children.
1009 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
1010 Node *Matcher::xform( Node *n, int max_stack ) {
1011   // Use one stack to keep both: child's node/state and parent's node/index
1012   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1013   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
1014 
1015   while (mstack.is_nonempty()) {
1016     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1017     if (C->failing()) return NULL;
1018     n = mstack.node();          // Leave node on stack
1019     Node_State nstate = mstack.state();
1020     if (nstate == Visit) {
1021       mstack.set_state(Post_Visit);
1022       Node *oldn = n;
1023       // Old-space or new-space check
1024       if (!C->node_arena()->contains(n)) {
1025         // Old space!
1026         Node* m;
1027         if (has_new_node(n)) {  // Not yet Label/Reduced
1028           m = new_node(n);
1029         } else {
1030           if (!is_dontcare(n)) { // Matcher can match this guy
1031             // Calls match special.  They match alone with no children.
1032             // Their children, the incoming arguments, match normally.
1033             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1034             if (C->failing())  return NULL;
1035             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1036           } else {                  // Nothing the matcher cares about
1037             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1038               // Convert to machine-dependent projection
1039               RegMask* mask = NULL;
1040               if (n->in(0)->is_Call()) {
1041                 mask = return_values_mask(n->in(0)->as_Call()->tf()->range_cc());
1042               }
1043               m = n->in(0)->as_Multi()->match(n->as_Proj(), this, mask);
1044 #ifdef ASSERT
1045               _new2old_map.map(m->_idx, n);
1046 #endif
1047               if (m->in(0) != NULL) // m might be top
1048                 collect_null_checks(m, n);
1049             } else {                // Else just a regular 'ol guy
1050               m = n->clone();       // So just clone into new-space
1051 #ifdef ASSERT
1052               _new2old_map.map(m->_idx, n);
1053 #endif
1054               // Def-Use edges will be added incrementally as Uses
1055               // of this node are matched.
1056               assert(m->outcnt() == 0, "no Uses of this clone yet");
1057             }
1058           }
1059 
1060           set_new_node(n, m);       // Map old to new
1061           if (_old_node_note_array != NULL) {
1062             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1063                                                   n->_idx);
1064             C->set_node_notes_at(m->_idx, nn);
1065           }
1066           debug_only(match_alias_type(C, n, m));
1067         }
1068         n = m;    // n is now a new-space node
1069         mstack.set_node(n);
1070       }
1071 
1072       // New space!
1073       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1074 
1075       int i;
1076       // Put precedence edges on stack first (match them last).
1077       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1078         Node *m = oldn->in(i);
1079         if (m == NULL) break;
1080         // set -1 to call add_prec() instead of set_req() during Step1
1081         mstack.push(m, Visit, n, -1);
1082       }
1083 
1084       // Handle precedence edges for interior nodes
1085       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1086         Node *m = n->in(i);
1087         if (m == NULL || C->node_arena()->contains(m)) continue;
1088         n->rm_prec(i);
1089         // set -1 to call add_prec() instead of set_req() during Step1
1090         mstack.push(m, Visit, n, -1);
1091       }
1092 
1093       // For constant debug info, I'd rather have unmatched constants.
1094       int cnt = n->req();
1095       JVMState* jvms = n->jvms();
1096       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1097 
1098       // Now do only debug info.  Clone constants rather than matching.
1099       // Constants are represented directly in the debug info without
1100       // the need for executable machine instructions.
1101       // Monitor boxes are also represented directly.
1102       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1103         Node *m = n->in(i);          // Get input
1104         int op = m->Opcode();
1105         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1106         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1107             op == Op_ConF || op == Op_ConD || op == Op_ConL
1108             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1109             ) {
1110           m = m->clone();
1111 #ifdef ASSERT
1112           _new2old_map.map(m->_idx, n);
1113 #endif
1114           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1115           mstack.push(m->in(0), Visit, m, 0);
1116         } else {
1117           mstack.push(m, Visit, n, i);
1118         }
1119       }
1120 
1121       // And now walk his children, and convert his inputs to new-space.
1122       for( ; i >= 0; --i ) { // For all normal inputs do
1123         Node *m = n->in(i);  // Get input
1124         if(m != NULL)
1125           mstack.push(m, Visit, n, i);
1126       }
1127 
1128     }
1129     else if (nstate == Post_Visit) {
1130       // Set xformed input
1131       Node *p = mstack.parent();
1132       if (p != NULL) { // root doesn't have parent
1133         int i = (int)mstack.index();
1134         if (i >= 0)
1135           p->set_req(i, n); // required input
1136         else if (i == -1)
1137           p->add_prec(n);   // precedence input
1138         else
1139           ShouldNotReachHere();
1140       }
1141       mstack.pop(); // remove processed node from stack
1142     }
1143     else {
1144       ShouldNotReachHere();
1145     }
1146   } // while (mstack.is_nonempty())
1147   return n; // Return new-space Node
1148 }
1149 
1150 //------------------------------warp_outgoing_stk_arg------------------------
1151 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1152   // Convert outgoing argument location to a pre-biased stack offset
1153   if (reg->is_stack()) {
1154     OptoReg::Name warped = reg->reg2stack();
1155     // Adjust the stack slot offset to be the register number used
1156     // by the allocator.
1157     warped = OptoReg::add(begin_out_arg_area, warped);
1158     // Keep track of the largest numbered stack slot used for an arg.
1159     // Largest used slot per call-site indicates the amount of stack
1160     // that is killed by the call.
1161     if( warped >= out_arg_limit_per_call )
1162       out_arg_limit_per_call = OptoReg::add(warped,1);
1163     if (!RegMask::can_represent_arg(warped)) {
1164       C->record_method_not_compilable("unsupported calling sequence");
1165       return OptoReg::Bad;
1166     }
1167     return warped;
1168   }
1169   return OptoReg::as_OptoReg(reg);
1170 }
1171 
1172 
1173 //------------------------------match_sfpt-------------------------------------
1174 // Helper function to match call instructions.  Calls match special.
1175 // They match alone with no children.  Their children, the incoming
1176 // arguments, match normally.
1177 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1178   MachSafePointNode *msfpt = NULL;
1179   MachCallNode      *mcall = NULL;
1180   uint               cnt;
1181   // Split out case for SafePoint vs Call
1182   CallNode *call;
1183   const TypeTuple *domain;
1184   ciMethod*        method = NULL;
1185   bool             is_method_handle_invoke = false;  // for special kill effects
1186   if( sfpt->is_Call() ) {
1187     call = sfpt->as_Call();
1188     domain = call->tf()->domain_cc();
1189     cnt = domain->cnt();
1190 
1191     // Match just the call, nothing else
1192     MachNode *m = match_tree(call);
1193     if (C->failing())  return NULL;
1194     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1195 
1196     // Copy data from the Ideal SafePoint to the machine version
1197     mcall = m->as_MachCall();
1198 
1199     mcall->set_tf(         call->tf());
1200     mcall->set_entry_point(call->entry_point());
1201     mcall->set_cnt(        call->cnt());
1202 
1203     if( mcall->is_MachCallJava() ) {
1204       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1205       const CallJavaNode *call_java =  call->as_CallJava();
1206       method = call_java->method();
1207       mcall_java->_method = method;
1208       mcall_java->_bci = call_java->_bci;
1209       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1210       is_method_handle_invoke = call_java->is_method_handle_invoke();
1211       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1212       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1213       if (is_method_handle_invoke) {
1214         C->set_has_method_handle_invokes(true);
1215       }
1216       if( mcall_java->is_MachCallStaticJava() )
1217         mcall_java->as_MachCallStaticJava()->_name =
1218          call_java->as_CallStaticJava()->_name;
1219       if( mcall_java->is_MachCallDynamicJava() )
1220         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1221          call_java->as_CallDynamicJava()->_vtable_index;
1222     }
1223     else if( mcall->is_MachCallRuntime() ) {
1224       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1225     }
1226     msfpt = mcall;
1227   }
1228   // This is a non-call safepoint
1229   else {
1230     call = NULL;
1231     domain = NULL;
1232     MachNode *mn = match_tree(sfpt);
1233     if (C->failing())  return NULL;
1234     msfpt = mn->as_MachSafePoint();
1235     cnt = TypeFunc::Parms;
1236   }
1237 
1238   // Advertise the correct memory effects (for anti-dependence computation).
1239   msfpt->set_adr_type(sfpt->adr_type());
1240 
1241   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1242   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1243   // Empty them all.
1244   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1245 
1246   // Do all the pre-defined non-Empty register masks
1247   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1248   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1249 
1250   // Place first outgoing argument can possibly be put.
1251   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1252   assert( is_even(begin_out_arg_area), "" );
1253   // Compute max outgoing register number per call site.
1254   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1255   // Calls to C may hammer extra stack slots above and beyond any arguments.
1256   // These are usually backing store for register arguments for varargs.
1257   if( call != NULL && call->is_CallRuntime() )
1258     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1259 
1260 
1261   // Do the normal argument list (parameters) register masks
1262   int argcnt = cnt - TypeFunc::Parms;
1263   if( argcnt > 0 ) {          // Skip it all if we have no args
1264     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1265     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1266     int i;
1267     for( i = 0; i < argcnt; i++ ) {
1268       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1269     }
1270     // V-call to pick proper calling convention
1271     call->calling_convention( sig_bt, parm_regs, argcnt );
1272 
1273 #ifdef ASSERT
1274     // Sanity check users' calling convention.  Really handy during
1275     // the initial porting effort.  Fairly expensive otherwise.
1276     { for (int i = 0; i<argcnt; i++) {
1277       if( !parm_regs[i].first()->is_valid() &&
1278           !parm_regs[i].second()->is_valid() ) continue;
1279       VMReg reg1 = parm_regs[i].first();
1280       VMReg reg2 = parm_regs[i].second();
1281       for (int j = 0; j < i; j++) {
1282         if( !parm_regs[j].first()->is_valid() &&
1283             !parm_regs[j].second()->is_valid() ) continue;
1284         VMReg reg3 = parm_regs[j].first();
1285         VMReg reg4 = parm_regs[j].second();
1286         if( !reg1->is_valid() ) {
1287           assert( !reg2->is_valid(), "valid halvsies" );
1288         } else if( !reg3->is_valid() ) {
1289           assert( !reg4->is_valid(), "valid halvsies" );
1290         } else {
1291           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1292           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1293           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1294           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1295           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1296           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1297         }
1298       }
1299     }
1300     }
1301 #endif
1302 
1303     // Visit each argument.  Compute its outgoing register mask.
1304     // Return results now can have 2 bits returned.
1305     // Compute max over all outgoing arguments both per call-site
1306     // and over the entire method.
1307     for( i = 0; i < argcnt; i++ ) {
1308       // Address of incoming argument mask to fill in
1309       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1310       if( !parm_regs[i].first()->is_valid() &&
1311           !parm_regs[i].second()->is_valid() ) {
1312         continue;               // Avoid Halves
1313       }
1314       // Grab first register, adjust stack slots and insert in mask.
1315       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1316       if (OptoReg::is_valid(reg1)) {
1317         rm->Insert( reg1 );
1318       }
1319       // Grab second register (if any), adjust stack slots and insert in mask.
1320       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1321       if (OptoReg::is_valid(reg2)) {
1322         rm->Insert( reg2 );
1323       }
1324     } // End of for all arguments
1325 
1326     // Compute number of stack slots needed to restore stack in case of
1327     // Pascal-style argument popping.
1328     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1329   }
1330 
1331   // Compute the max stack slot killed by any call.  These will not be
1332   // available for debug info, and will be used to adjust FIRST_STACK_mask
1333   // after all call sites have been visited.
1334   if( _out_arg_limit < out_arg_limit_per_call)
1335     _out_arg_limit = out_arg_limit_per_call;
1336 
1337   if (mcall) {
1338     // Kill the outgoing argument area, including any non-argument holes and
1339     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1340     // Since the max-per-method covers the max-per-call-site and debug info
1341     // is excluded on the max-per-method basis, debug info cannot land in
1342     // this killed area.
1343     uint r_cnt = mcall->tf()->range_sig()->cnt();
1344     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1345     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1346       C->record_method_not_compilable("unsupported outgoing calling sequence");
1347     } else {
1348       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1349         proj->_rout.Insert(OptoReg::Name(i));
1350     }
1351     if (proj->_rout.is_NotEmpty()) {
1352       push_projection(proj);
1353     }
1354   }
1355   // Transfer the safepoint information from the call to the mcall
1356   // Move the JVMState list
1357   msfpt->set_jvms(sfpt->jvms());
1358   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1359     jvms->set_map(sfpt);
1360   }
1361 
1362   // Debug inputs begin just after the last incoming parameter
1363   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1364          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain_cc()->cnt()), "");
1365 
1366   // Move the OopMap
1367   msfpt->_oop_map = sfpt->_oop_map;
1368 
1369   // Add additional edges.
1370   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1371     // For these calls we can not add MachConstantBase in expand(), as the
1372     // ins are not complete then.
1373     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1374     if (msfpt->jvms() &&
1375         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1376       // We added an edge before jvms, so we must adapt the position of the ins.
1377       msfpt->jvms()->adapt_position(+1);
1378     }
1379   }
1380 
1381   // Registers killed by the call are set in the local scheduling pass
1382   // of Global Code Motion.
1383   return msfpt;
1384 }
1385 
1386 //---------------------------match_tree----------------------------------------
1387 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1388 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1389 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1390 // a Load's result RegMask for memoization in idealreg2regmask[]
1391 MachNode *Matcher::match_tree( const Node *n ) {
1392   assert( n->Opcode() != Op_Phi, "cannot match" );
1393   assert( !n->is_block_start(), "cannot match" );
1394   // Set the mark for all locally allocated State objects.
1395   // When this call returns, the _states_arena arena will be reset
1396   // freeing all State objects.
1397   ResourceMark rm( &_states_arena );
1398 
1399   LabelRootDepth = 0;
1400 
1401   // StoreNodes require their Memory input to match any LoadNodes
1402   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1403 #ifdef ASSERT
1404   Node* save_mem_node = _mem_node;
1405   _mem_node = n->is_Store() ? (Node*)n : NULL;
1406 #endif
1407   // State object for root node of match tree
1408   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1409   State *s = new (&_states_arena) State;
1410   s->_kids[0] = NULL;
1411   s->_kids[1] = NULL;
1412   s->_leaf = (Node*)n;
1413   // Label the input tree, allocating labels from top-level arena
1414   Label_Root( n, s, n->in(0), mem );
1415   if (C->failing())  return NULL;
1416 
1417   // The minimum cost match for the whole tree is found at the root State
1418   uint mincost = max_juint;
1419   uint cost = max_juint;
1420   uint i;
1421   for( i = 0; i < NUM_OPERANDS; i++ ) {
1422     if( s->valid(i) &&                // valid entry and
1423         s->_cost[i] < cost &&         // low cost and
1424         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1425       cost = s->_cost[mincost=i];
1426   }
1427   if (mincost == max_juint) {
1428 #ifndef PRODUCT
1429     tty->print("No matching rule for:");
1430     s->dump();
1431 #endif
1432     Matcher::soft_match_failure();
1433     return NULL;
1434   }
1435   // Reduce input tree based upon the state labels to machine Nodes
1436   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1437 #ifdef ASSERT
1438   _old2new_map.map(n->_idx, m);
1439   _new2old_map.map(m->_idx, (Node*)n);
1440 #endif
1441 
1442   // Add any Matcher-ignored edges
1443   uint cnt = n->req();
1444   uint start = 1;
1445   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1446   if( n->is_AddP() ) {
1447     assert( mem == (Node*)1, "" );
1448     start = AddPNode::Base+1;
1449   }
1450   for( i = start; i < cnt; i++ ) {
1451     if( !n->match_edge(i) ) {
1452       if( i < m->req() )
1453         m->ins_req( i, n->in(i) );
1454       else
1455         m->add_req( n->in(i) );
1456     }
1457   }
1458 
1459   debug_only( _mem_node = save_mem_node; )
1460   return m;
1461 }
1462 
1463 
1464 //------------------------------match_into_reg---------------------------------
1465 // Choose to either match this Node in a register or part of the current
1466 // match tree.  Return true for requiring a register and false for matching
1467 // as part of the current match tree.
1468 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1469 
1470   const Type *t = m->bottom_type();
1471 
1472   if (t->singleton()) {
1473     // Never force constants into registers.  Allow them to match as
1474     // constants or registers.  Copies of the same value will share
1475     // the same register.  See find_shared_node.
1476     return false;
1477   } else {                      // Not a constant
1478     // Stop recursion if they have different Controls.
1479     Node* m_control = m->in(0);
1480     // Control of load's memory can post-dominates load's control.
1481     // So use it since load can't float above its memory.
1482     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1483     if (control && m_control && control != m_control && control != mem_control) {
1484 
1485       // Actually, we can live with the most conservative control we
1486       // find, if it post-dominates the others.  This allows us to
1487       // pick up load/op/store trees where the load can float a little
1488       // above the store.
1489       Node *x = control;
1490       const uint max_scan = 6;  // Arbitrary scan cutoff
1491       uint j;
1492       for (j=0; j<max_scan; j++) {
1493         if (x->is_Region())     // Bail out at merge points
1494           return true;
1495         x = x->in(0);
1496         if (x == m_control)     // Does 'control' post-dominate
1497           break;                // m->in(0)?  If so, we can use it
1498         if (x == mem_control)   // Does 'control' post-dominate
1499           break;                // mem_control?  If so, we can use it
1500       }
1501       if (j == max_scan)        // No post-domination before scan end?
1502         return true;            // Then break the match tree up
1503     }
1504     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1505         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1506       // These are commonly used in address expressions and can
1507       // efficiently fold into them on X64 in some cases.
1508       return false;
1509     }
1510   }
1511 
1512   // Not forceable cloning.  If shared, put it into a register.
1513   return shared;
1514 }
1515 
1516 
1517 //------------------------------Instruction Selection--------------------------
1518 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1519 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1520 // things the Matcher does not match (e.g., Memory), and things with different
1521 // Controls (hence forced into different blocks).  We pass in the Control
1522 // selected for this entire State tree.
1523 
1524 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1525 // Store and the Load must have identical Memories (as well as identical
1526 // pointers).  Since the Matcher does not have anything for Memory (and
1527 // does not handle DAGs), I have to match the Memory input myself.  If the
1528 // Tree root is a Store, I require all Loads to have the identical memory.
1529 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1530   // Since Label_Root is a recursive function, its possible that we might run
1531   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1532   LabelRootDepth++;
1533   if (LabelRootDepth > MaxLabelRootDepth) {
1534     C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1535     return NULL;
1536   }
1537   uint care = 0;                // Edges matcher cares about
1538   uint cnt = n->req();
1539   uint i = 0;
1540 
1541   // Examine children for memory state
1542   // Can only subsume a child into your match-tree if that child's memory state
1543   // is not modified along the path to another input.
1544   // It is unsafe even if the other inputs are separate roots.
1545   Node *input_mem = NULL;
1546   for( i = 1; i < cnt; i++ ) {
1547     if( !n->match_edge(i) ) continue;
1548     Node *m = n->in(i);         // Get ith input
1549     assert( m, "expect non-null children" );
1550     if( m->is_Load() ) {
1551       if( input_mem == NULL ) {
1552         input_mem = m->in(MemNode::Memory);
1553       } else if( input_mem != m->in(MemNode::Memory) ) {
1554         input_mem = NodeSentinel;
1555       }
1556     }
1557   }
1558 
1559   for( i = 1; i < cnt; i++ ){// For my children
1560     if( !n->match_edge(i) ) continue;
1561     Node *m = n->in(i);         // Get ith input
1562     // Allocate states out of a private arena
1563     State *s = new (&_states_arena) State;
1564     svec->_kids[care++] = s;
1565     assert( care <= 2, "binary only for now" );
1566 
1567     // Recursively label the State tree.
1568     s->_kids[0] = NULL;
1569     s->_kids[1] = NULL;
1570     s->_leaf = m;
1571 
1572     // Check for leaves of the State Tree; things that cannot be a part of
1573     // the current tree.  If it finds any, that value is matched as a
1574     // register operand.  If not, then the normal matching is used.
1575     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1576         //
1577         // Stop recursion if this is LoadNode and the root of this tree is a
1578         // StoreNode and the load & store have different memories.
1579         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1580         // Can NOT include the match of a subtree when its memory state
1581         // is used by any of the other subtrees
1582         (input_mem == NodeSentinel) ) {
1583       // Print when we exclude matching due to different memory states at input-loads
1584       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1585         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1586         tty->print_cr("invalid input_mem");
1587       }
1588       // Switch to a register-only opcode; this value must be in a register
1589       // and cannot be subsumed as part of a larger instruction.
1590       s->DFA( m->ideal_reg(), m );
1591 
1592     } else {
1593       // If match tree has no control and we do, adopt it for entire tree
1594       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1595         control = m->in(0);         // Pick up control
1596       // Else match as a normal part of the match tree.
1597       control = Label_Root(m,s,control,mem);
1598       if (C->failing()) return NULL;
1599     }
1600   }
1601 
1602 
1603   // Call DFA to match this node, and return
1604   svec->DFA( n->Opcode(), n );
1605 
1606 #ifdef ASSERT
1607   uint x;
1608   for( x = 0; x < _LAST_MACH_OPER; x++ )
1609     if( svec->valid(x) )
1610       break;
1611 
1612   if (x >= _LAST_MACH_OPER) {
1613     n->dump();
1614     svec->dump();
1615     assert( false, "bad AD file" );
1616   }
1617 #endif
1618   return control;
1619 }
1620 
1621 
1622 // Con nodes reduced using the same rule can share their MachNode
1623 // which reduces the number of copies of a constant in the final
1624 // program.  The register allocator is free to split uses later to
1625 // split live ranges.
1626 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1627   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1628 
1629   // See if this Con has already been reduced using this rule.
1630   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1631   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1632   if (last != NULL && rule == last->rule()) {
1633     // Don't expect control change for DecodeN
1634     if (leaf->is_DecodeNarrowPtr())
1635       return last;
1636     // Get the new space root.
1637     Node* xroot = new_node(C->root());
1638     if (xroot == NULL) {
1639       // This shouldn't happen give the order of matching.
1640       return NULL;
1641     }
1642 
1643     // Shared constants need to have their control be root so they
1644     // can be scheduled properly.
1645     Node* control = last->in(0);
1646     if (control != xroot) {
1647       if (control == NULL || control == C->root()) {
1648         last->set_req(0, xroot);
1649       } else {
1650         assert(false, "unexpected control");
1651         return NULL;
1652       }
1653     }
1654     return last;
1655   }
1656   return NULL;
1657 }
1658 
1659 
1660 //------------------------------ReduceInst-------------------------------------
1661 // Reduce a State tree (with given Control) into a tree of MachNodes.
1662 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1663 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1664 // Each MachNode has a number of complicated MachOper operands; each
1665 // MachOper also covers a further tree of Ideal Nodes.
1666 
1667 // The root of the Ideal match tree is always an instruction, so we enter
1668 // the recursion here.  After building the MachNode, we need to recurse
1669 // the tree checking for these cases:
1670 // (1) Child is an instruction -
1671 //     Build the instruction (recursively), add it as an edge.
1672 //     Build a simple operand (register) to hold the result of the instruction.
1673 // (2) Child is an interior part of an instruction -
1674 //     Skip over it (do nothing)
1675 // (3) Child is the start of a operand -
1676 //     Build the operand, place it inside the instruction
1677 //     Call ReduceOper.
1678 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1679   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1680 
1681   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1682   if (shared_node != NULL) {
1683     return shared_node;
1684   }
1685 
1686   // Build the object to represent this state & prepare for recursive calls
1687   MachNode *mach = s->MachNodeGenerator(rule);
1688   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1689   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1690   Node *leaf = s->_leaf;
1691   // Check for instruction or instruction chain rule
1692   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1693     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1694            "duplicating node that's already been matched");
1695     // Instruction
1696     mach->add_req( leaf->in(0) ); // Set initial control
1697     // Reduce interior of complex instruction
1698     ReduceInst_Interior( s, rule, mem, mach, 1 );
1699   } else {
1700     // Instruction chain rules are data-dependent on their inputs
1701     mach->add_req(0);             // Set initial control to none
1702     ReduceInst_Chain_Rule( s, rule, mem, mach );
1703   }
1704 
1705   // If a Memory was used, insert a Memory edge
1706   if( mem != (Node*)1 ) {
1707     mach->ins_req(MemNode::Memory,mem);
1708 #ifdef ASSERT
1709     // Verify adr type after matching memory operation
1710     const MachOper* oper = mach->memory_operand();
1711     if (oper != NULL && oper != (MachOper*)-1) {
1712       // It has a unique memory operand.  Find corresponding ideal mem node.
1713       Node* m = NULL;
1714       if (leaf->is_Mem()) {
1715         m = leaf;
1716       } else {
1717         m = _mem_node;
1718         assert(m != NULL && m->is_Mem(), "expecting memory node");
1719       }
1720       const Type* mach_at = mach->adr_type();
1721       // DecodeN node consumed by an address may have different type
1722       // then its input. Don't compare types for such case.
1723       if (m->adr_type() != mach_at &&
1724           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1725            m->in(MemNode::Address)->is_AddP() &&
1726            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1727            m->in(MemNode::Address)->is_AddP() &&
1728            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1729            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1730         mach_at = m->adr_type();
1731       }
1732       if (m->adr_type() != mach_at) {
1733         m->dump();
1734         tty->print_cr("mach:");
1735         mach->dump(1);
1736       }
1737       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1738     }
1739 #endif
1740   }
1741 
1742   // If the _leaf is an AddP, insert the base edge
1743   if (leaf->is_AddP()) {
1744     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1745   }
1746 
1747   uint number_of_projections_prior = number_of_projections();
1748 
1749   // Perform any 1-to-many expansions required
1750   MachNode *ex = mach->Expand(s, _projection_list, mem);
1751   if (ex != mach) {
1752     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1753     if( ex->in(1)->is_Con() )
1754       ex->in(1)->set_req(0, C->root());
1755     // Remove old node from the graph
1756     for( uint i=0; i<mach->req(); i++ ) {
1757       mach->set_req(i,NULL);
1758     }
1759 #ifdef ASSERT
1760     _new2old_map.map(ex->_idx, s->_leaf);
1761 #endif
1762   }
1763 
1764   // PhaseChaitin::fixup_spills will sometimes generate spill code
1765   // via the matcher.  By the time, nodes have been wired into the CFG,
1766   // and any further nodes generated by expand rules will be left hanging
1767   // in space, and will not get emitted as output code.  Catch this.
1768   // Also, catch any new register allocation constraints ("projections")
1769   // generated belatedly during spill code generation.
1770   if (_allocation_started) {
1771     guarantee(ex == mach, "no expand rules during spill generation");
1772     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1773   }
1774 
1775   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1776     // Record the con for sharing
1777     _shared_nodes.map(leaf->_idx, ex);
1778   }
1779 
1780   return ex;
1781 }
1782 
1783 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1784   for (uint i = n->req(); i < n->len(); i++) {
1785     if (n->in(i) != NULL) {
1786       mach->add_prec(n->in(i));
1787     }
1788   }
1789 }
1790 
1791 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1792   // 'op' is what I am expecting to receive
1793   int op = _leftOp[rule];
1794   // Operand type to catch childs result
1795   // This is what my child will give me.
1796   int opnd_class_instance = s->_rule[op];
1797   // Choose between operand class or not.
1798   // This is what I will receive.
1799   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1800   // New rule for child.  Chase operand classes to get the actual rule.
1801   int newrule = s->_rule[catch_op];
1802 
1803   if( newrule < NUM_OPERANDS ) {
1804     // Chain from operand or operand class, may be output of shared node
1805     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1806             "Bad AD file: Instruction chain rule must chain from operand");
1807     // Insert operand into array of operands for this instruction
1808     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1809 
1810     ReduceOper( s, newrule, mem, mach );
1811   } else {
1812     // Chain from the result of an instruction
1813     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1814     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1815     Node *mem1 = (Node*)1;
1816     debug_only(Node *save_mem_node = _mem_node;)
1817     mach->add_req( ReduceInst(s, newrule, mem1) );
1818     debug_only(_mem_node = save_mem_node;)
1819   }
1820   return;
1821 }
1822 
1823 
1824 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1825   handle_precedence_edges(s->_leaf, mach);
1826 
1827   if( s->_leaf->is_Load() ) {
1828     Node *mem2 = s->_leaf->in(MemNode::Memory);
1829     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1830     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1831     mem = mem2;
1832   }
1833   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1834     if( mach->in(0) == NULL )
1835       mach->set_req(0, s->_leaf->in(0));
1836   }
1837 
1838   // Now recursively walk the state tree & add operand list.
1839   for( uint i=0; i<2; i++ ) {   // binary tree
1840     State *newstate = s->_kids[i];
1841     if( newstate == NULL ) break;      // Might only have 1 child
1842     // 'op' is what I am expecting to receive
1843     int op;
1844     if( i == 0 ) {
1845       op = _leftOp[rule];
1846     } else {
1847       op = _rightOp[rule];
1848     }
1849     // Operand type to catch childs result
1850     // This is what my child will give me.
1851     int opnd_class_instance = newstate->_rule[op];
1852     // Choose between operand class or not.
1853     // This is what I will receive.
1854     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1855     // New rule for child.  Chase operand classes to get the actual rule.
1856     int newrule = newstate->_rule[catch_op];
1857 
1858     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1859       // Operand/operandClass
1860       // Insert operand into array of operands for this instruction
1861       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1862       ReduceOper( newstate, newrule, mem, mach );
1863 
1864     } else {                    // Child is internal operand or new instruction
1865       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1866         // internal operand --> call ReduceInst_Interior
1867         // Interior of complex instruction.  Do nothing but recurse.
1868         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1869       } else {
1870         // instruction --> call build operand(  ) to catch result
1871         //             --> ReduceInst( newrule )
1872         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1873         Node *mem1 = (Node*)1;
1874         debug_only(Node *save_mem_node = _mem_node;)
1875         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1876         debug_only(_mem_node = save_mem_node;)
1877       }
1878     }
1879     assert( mach->_opnds[num_opnds-1], "" );
1880   }
1881   return num_opnds;
1882 }
1883 
1884 // This routine walks the interior of possible complex operands.
1885 // At each point we check our children in the match tree:
1886 // (1) No children -
1887 //     We are a leaf; add _leaf field as an input to the MachNode
1888 // (2) Child is an internal operand -
1889 //     Skip over it ( do nothing )
1890 // (3) Child is an instruction -
1891 //     Call ReduceInst recursively and
1892 //     and instruction as an input to the MachNode
1893 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1894   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1895   State *kid = s->_kids[0];
1896   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1897 
1898   // Leaf?  And not subsumed?
1899   if( kid == NULL && !_swallowed[rule] ) {
1900     mach->add_req( s->_leaf );  // Add leaf pointer
1901     return;                     // Bail out
1902   }
1903 
1904   if( s->_leaf->is_Load() ) {
1905     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1906     mem = s->_leaf->in(MemNode::Memory);
1907     debug_only(_mem_node = s->_leaf;)
1908   }
1909 
1910   handle_precedence_edges(s->_leaf, mach);
1911 
1912   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1913     if( !mach->in(0) )
1914       mach->set_req(0,s->_leaf->in(0));
1915     else {
1916       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1917     }
1918   }
1919 
1920   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1921     int newrule;
1922     if( i == 0)
1923       newrule = kid->_rule[_leftOp[rule]];
1924     else
1925       newrule = kid->_rule[_rightOp[rule]];
1926 
1927     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1928       // Internal operand; recurse but do nothing else
1929       ReduceOper( kid, newrule, mem, mach );
1930 
1931     } else {                    // Child is a new instruction
1932       // Reduce the instruction, and add a direct pointer from this
1933       // machine instruction to the newly reduced one.
1934       Node *mem1 = (Node*)1;
1935       debug_only(Node *save_mem_node = _mem_node;)
1936       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1937       debug_only(_mem_node = save_mem_node;)
1938     }
1939   }
1940 }
1941 
1942 
1943 // -------------------------------------------------------------------------
1944 // Java-Java calling convention
1945 // (what you use when Java calls Java)
1946 
1947 //------------------------------find_receiver----------------------------------
1948 // For a given signature, return the OptoReg for parameter 0.
1949 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1950   VMRegPair regs;
1951   BasicType sig_bt = T_OBJECT;
1952   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1953   // Return argument 0 register.  In the LP64 build pointers
1954   // take 2 registers, but the VM wants only the 'main' name.
1955   return OptoReg::as_OptoReg(regs.first());
1956 }
1957 
1958 // This function identifies sub-graphs in which a 'load' node is
1959 // input to two different nodes, and such that it can be matched
1960 // with BMI instructions like blsi, blsr, etc.
1961 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1962 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1963 // refers to the same node.
1964 #ifdef X86
1965 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1966 // This is a temporary solution until we make DAGs expressible in ADL.
1967 template<typename ConType>
1968 class FusedPatternMatcher {
1969   Node* _op1_node;
1970   Node* _mop_node;
1971   int _con_op;
1972 
1973   static int match_next(Node* n, int next_op, int next_op_idx) {
1974     if (n->in(1) == NULL || n->in(2) == NULL) {
1975       return -1;
1976     }
1977 
1978     if (next_op_idx == -1) { // n is commutative, try rotations
1979       if (n->in(1)->Opcode() == next_op) {
1980         return 1;
1981       } else if (n->in(2)->Opcode() == next_op) {
1982         return 2;
1983       }
1984     } else {
1985       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1986       if (n->in(next_op_idx)->Opcode() == next_op) {
1987         return next_op_idx;
1988       }
1989     }
1990     return -1;
1991   }
1992 public:
1993   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1994     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1995 
1996   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1997              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1998              typename ConType::NativeType con_value) {
1999     if (_op1_node->Opcode() != op1) {
2000       return false;
2001     }
2002     if (_mop_node->outcnt() > 2) {
2003       return false;
2004     }
2005     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
2006     if (op1_op2_idx == -1) {
2007       return false;
2008     }
2009     // Memory operation must be the other edge
2010     int op1_mop_idx = (op1_op2_idx & 1) + 1;
2011 
2012     // Check that the mop node is really what we want
2013     if (_op1_node->in(op1_mop_idx) == _mop_node) {
2014       Node *op2_node = _op1_node->in(op1_op2_idx);
2015       if (op2_node->outcnt() > 1) {
2016         return false;
2017       }
2018       assert(op2_node->Opcode() == op2, "Should be");
2019       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
2020       if (op2_con_idx == -1) {
2021         return false;
2022       }
2023       // Memory operation must be the other edge
2024       int op2_mop_idx = (op2_con_idx & 1) + 1;
2025       // Check that the memory operation is the same node
2026       if (op2_node->in(op2_mop_idx) == _mop_node) {
2027         // Now check the constant
2028         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
2029         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
2030           return true;
2031         }
2032       }
2033     }
2034     return false;
2035   }
2036 };
2037 
2038 
2039 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2040   if (n != NULL && m != NULL) {
2041     if (m->Opcode() == Op_LoadI) {
2042       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2043       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2044              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2045              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2046     } else if (m->Opcode() == Op_LoadL) {
2047       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2048       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2049              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2050              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2051     }
2052   }
2053   return false;
2054 }
2055 #endif // X86
2056 
2057 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2058   Node *off = m->in(AddPNode::Offset);
2059   if (off->is_Con()) {
2060     address_visited.test_set(m->_idx); // Flag as address_visited
2061     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2062     // Clone X+offset as it also folds into most addressing expressions
2063     mstack.push(off, Visit);
2064     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2065     return true;
2066   }
2067   return false;
2068 }
2069 
2070 // A method-klass-holder may be passed in the inline_cache_reg
2071 // and then expanded into the inline_cache_reg and a method_oop register
2072 //   defined in ad_<arch>.cpp
2073 
2074 //------------------------------find_shared------------------------------------
2075 // Set bits if Node is shared or otherwise a root
2076 void Matcher::find_shared( Node *n ) {
2077   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2078   MStack mstack(C->live_nodes() * 2);
2079   // Mark nodes as address_visited if they are inputs to an address expression
2080   VectorSet address_visited(Thread::current()->resource_area());
2081   mstack.push(n, Visit);     // Don't need to pre-visit root node
2082   while (mstack.is_nonempty()) {
2083     n = mstack.node();       // Leave node on stack
2084     Node_State nstate = mstack.state();
2085     uint nop = n->Opcode();
2086     if (nstate == Pre_Visit) {
2087       if (address_visited.test(n->_idx)) { // Visited in address already?
2088         // Flag as visited and shared now.
2089         set_visited(n);
2090       }
2091       if (is_visited(n)) {   // Visited already?
2092         // Node is shared and has no reason to clone.  Flag it as shared.
2093         // This causes it to match into a register for the sharing.
2094         set_shared(n);       // Flag as shared and
2095         mstack.pop();        // remove node from stack
2096         continue;
2097       }
2098       nstate = Visit; // Not already visited; so visit now
2099     }
2100     if (nstate == Visit) {
2101       mstack.set_state(Post_Visit);
2102       set_visited(n);   // Flag as visited now
2103       bool mem_op = false;
2104 
2105       switch( nop ) {  // Handle some opcodes special
2106       case Op_Phi:             // Treat Phis as shared roots
2107       case Op_Parm:
2108       case Op_Proj:            // All handled specially during matching
2109       case Op_SafePointScalarObject:
2110         set_shared(n);
2111         set_dontcare(n);
2112         break;
2113       case Op_If:
2114       case Op_CountedLoopEnd:
2115         mstack.set_state(Alt_Post_Visit); // Alternative way
2116         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2117         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2118         // Bool and CmpX side-by-side, because it can only get at constants
2119         // that are at the leaves of Match trees, and the Bool's condition acts
2120         // as a constant here.
2121         mstack.push(n->in(1), Visit);         // Clone the Bool
2122         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2123         continue; // while (mstack.is_nonempty())
2124       case Op_ConvI2D:         // These forms efficiently match with a prior
2125       case Op_ConvI2F:         //   Load but not a following Store
2126         if( n->in(1)->is_Load() &&        // Prior load
2127             n->outcnt() == 1 &&           // Not already shared
2128             n->unique_out()->is_Store() ) // Following store
2129           set_shared(n);       // Force it to be a root
2130         break;
2131       case Op_ReverseBytesI:
2132       case Op_ReverseBytesL:
2133         if( n->in(1)->is_Load() &&        // Prior load
2134             n->outcnt() == 1 )            // Not already shared
2135           set_shared(n);                  // Force it to be a root
2136         break;
2137       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2138       case Op_IfFalse:
2139       case Op_IfTrue:
2140       case Op_MachProj:
2141       case Op_MergeMem:
2142       case Op_Catch:
2143       case Op_CatchProj:
2144       case Op_CProj:
2145       case Op_JumpProj:
2146       case Op_JProj:
2147       case Op_NeverBranch:
2148         set_dontcare(n);
2149         break;
2150       case Op_Jump:
2151         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2152         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2153         continue;                             // while (mstack.is_nonempty())
2154       case Op_StrComp:
2155       case Op_StrEquals:
2156       case Op_StrIndexOf:
2157       case Op_StrIndexOfChar:
2158       case Op_AryEq:
2159       case Op_HasNegatives:
2160       case Op_StrInflatedCopy:
2161       case Op_StrCompressedCopy:
2162       case Op_EncodeISOArray:
2163       case Op_FmaD:
2164       case Op_FmaF:
2165         set_shared(n); // Force result into register (it will be anyways)
2166         break;
2167       case Op_ConP: {  // Convert pointers above the centerline to NUL
2168         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2169         const TypePtr* tp = tn->type()->is_ptr();
2170         if (tp->_ptr == TypePtr::AnyNull) {
2171           tn->set_type(TypePtr::NULL_PTR);
2172         }
2173         break;
2174       }
2175       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2176         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2177         const TypePtr* tp = tn->type()->make_ptr();
2178         if (tp && tp->_ptr == TypePtr::AnyNull) {
2179           tn->set_type(TypeNarrowOop::NULL_PTR);
2180         }
2181         break;
2182       }
2183       case Op_Binary:         // These are introduced in the Post_Visit state.
2184         ShouldNotReachHere();
2185         break;
2186       case Op_ClearArray:
2187       case Op_SafePoint:
2188         mem_op = true;
2189         break;
2190       default:
2191         if( n->is_Store() ) {
2192           // Do match stores, despite no ideal reg
2193           mem_op = true;
2194           break;
2195         }
2196         if( n->is_Mem() ) { // Loads and LoadStores
2197           mem_op = true;
2198           // Loads must be root of match tree due to prior load conflict
2199           if( C->subsume_loads() == false )
2200             set_shared(n);
2201         }
2202         // Fall into default case
2203         if( !n->ideal_reg() )
2204           set_dontcare(n);  // Unmatchable Nodes
2205       } // end_switch
2206 
2207       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2208         Node *m = n->in(i); // Get ith input
2209         if (m == NULL) continue;  // Ignore NULLs
2210         uint mop = m->Opcode();
2211 
2212         // Must clone all producers of flags, or we will not match correctly.
2213         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2214         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2215         // are also there, so we may match a float-branch to int-flags and
2216         // expect the allocator to haul the flags from the int-side to the
2217         // fp-side.  No can do.
2218         if( _must_clone[mop] ) {
2219           mstack.push(m, Visit);
2220           continue; // for(int i = ...)
2221         }
2222 
2223         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2224           // Bases used in addresses must be shared but since
2225           // they are shared through a DecodeN they may appear
2226           // to have a single use so force sharing here.
2227           set_shared(m->in(AddPNode::Base)->in(1));
2228         }
2229 
2230         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2231 #ifdef X86
2232         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2233           mstack.push(m, Visit);
2234           continue;
2235         }
2236 #endif
2237 
2238         // Clone addressing expressions as they are "free" in memory access instructions
2239         if (mem_op && i == MemNode::Address && mop == Op_AddP &&
2240             // When there are other uses besides address expressions
2241             // put it on stack and mark as shared.
2242             !is_visited(m)) {
2243           // Some inputs for address expression are not put on stack
2244           // to avoid marking them as shared and forcing them into register
2245           // if they are used only in address expressions.
2246           // But they should be marked as shared if there are other uses
2247           // besides address expressions.
2248 
2249           if (clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2250             continue;
2251           }
2252         }   // if( mem_op &&
2253         mstack.push(m, Pre_Visit);
2254       }     // for(int i = ...)
2255     }
2256     else if (nstate == Alt_Post_Visit) {
2257       mstack.pop(); // Remove node from stack
2258       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2259       // shared and all users of the Bool need to move the Cmp in parallel.
2260       // This leaves both the Bool and the If pointing at the Cmp.  To
2261       // prevent the Matcher from trying to Match the Cmp along both paths
2262       // BoolNode::match_edge always returns a zero.
2263 
2264       // We reorder the Op_If in a pre-order manner, so we can visit without
2265       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2266       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2267     }
2268     else if (nstate == Post_Visit) {
2269       mstack.pop(); // Remove node from stack
2270 
2271       // Now hack a few special opcodes
2272       switch( n->Opcode() ) {       // Handle some opcodes special
2273       case Op_StorePConditional:
2274       case Op_StoreIConditional:
2275       case Op_StoreLConditional:
2276       case Op_CompareAndExchangeB:
2277       case Op_CompareAndExchangeS:
2278       case Op_CompareAndExchangeI:
2279       case Op_CompareAndExchangeL:
2280       case Op_CompareAndExchangeP:
2281       case Op_CompareAndExchangeN:
2282       case Op_WeakCompareAndSwapB:
2283       case Op_WeakCompareAndSwapS:
2284       case Op_WeakCompareAndSwapI:
2285       case Op_WeakCompareAndSwapL:
2286       case Op_WeakCompareAndSwapP:
2287       case Op_WeakCompareAndSwapN:
2288       case Op_CompareAndSwapB:
2289       case Op_CompareAndSwapS:
2290       case Op_CompareAndSwapI:
2291       case Op_CompareAndSwapL:
2292       case Op_CompareAndSwapP:
2293       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2294         Node *newval = n->in(MemNode::ValueIn );
2295         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2296         Node *pair = new BinaryNode( oldval, newval );
2297         n->set_req(MemNode::ValueIn,pair);
2298         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2299         break;
2300       }
2301       case Op_CMoveD:              // Convert trinary to binary-tree
2302       case Op_CMoveF:
2303       case Op_CMoveI:
2304       case Op_CMoveL:
2305       case Op_CMoveN:
2306       case Op_CMoveP:
2307       case Op_CMoveVD:  {
2308         // Restructure into a binary tree for Matching.  It's possible that
2309         // we could move this code up next to the graph reshaping for IfNodes
2310         // or vice-versa, but I do not want to debug this for Ladybird.
2311         // 10/2/2000 CNC.
2312         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2313         n->set_req(1,pair1);
2314         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2315         n->set_req(2,pair2);
2316         n->del_req(3);
2317         break;
2318       }
2319       case Op_LoopLimit: {
2320         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2321         n->set_req(1,pair1);
2322         n->set_req(2,n->in(3));
2323         n->del_req(3);
2324         break;
2325       }
2326       case Op_StrEquals:
2327       case Op_StrIndexOfChar: {
2328         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2329         n->set_req(2,pair1);
2330         n->set_req(3,n->in(4));
2331         n->del_req(4);
2332         break;
2333       }
2334       case Op_StrComp:
2335       case Op_StrIndexOf: {
2336         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2337         n->set_req(2,pair1);
2338         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2339         n->set_req(3,pair2);
2340         n->del_req(5);
2341         n->del_req(4);
2342         break;
2343       }
2344       case Op_StrCompressedCopy:
2345       case Op_StrInflatedCopy:
2346       case Op_EncodeISOArray: {
2347         // Restructure into a binary tree for Matching.
2348         Node* pair = new BinaryNode(n->in(3), n->in(4));
2349         n->set_req(3, pair);
2350         n->del_req(4);
2351         break;
2352       }
2353       case Op_FmaD:
2354       case Op_FmaF: {
2355         // Restructure into a binary tree for Matching.
2356         Node* pair = new BinaryNode(n->in(1), n->in(2));
2357         n->set_req(2, pair);
2358         n->set_req(1, n->in(3));
2359         n->del_req(3);
2360         break;
2361       }
2362       default:
2363         break;
2364       }
2365     }
2366     else {
2367       ShouldNotReachHere();
2368     }
2369   } // end of while (mstack.is_nonempty())
2370 }
2371 
2372 #ifdef ASSERT
2373 // machine-independent root to machine-dependent root
2374 void Matcher::dump_old2new_map() {
2375   _old2new_map.dump();
2376 }
2377 #endif
2378 
2379 //---------------------------collect_null_checks-------------------------------
2380 // Find null checks in the ideal graph; write a machine-specific node for
2381 // it.  Used by later implicit-null-check handling.  Actually collects
2382 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2383 // value being tested.
2384 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2385   Node *iff = proj->in(0);
2386   if( iff->Opcode() == Op_If ) {
2387     // During matching If's have Bool & Cmp side-by-side
2388     BoolNode *b = iff->in(1)->as_Bool();
2389     Node *cmp = iff->in(2);
2390     int opc = cmp->Opcode();
2391     if (opc != Op_CmpP && opc != Op_CmpN) return;
2392 
2393     const Type* ct = cmp->in(2)->bottom_type();
2394     if (ct == TypePtr::NULL_PTR ||
2395         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2396 
2397       bool push_it = false;
2398       if( proj->Opcode() == Op_IfTrue ) {
2399 #ifndef PRODUCT
2400         extern int all_null_checks_found;
2401         all_null_checks_found++;
2402 #endif
2403         if( b->_test._test == BoolTest::ne ) {
2404           push_it = true;
2405         }
2406       } else {
2407         assert( proj->Opcode() == Op_IfFalse, "" );
2408         if( b->_test._test == BoolTest::eq ) {
2409           push_it = true;
2410         }
2411       }
2412       if( push_it ) {
2413         _null_check_tests.push(proj);
2414         Node* val = cmp->in(1);
2415 #ifdef _LP64
2416         if (val->bottom_type()->isa_narrowoop() &&
2417             !Matcher::narrow_oop_use_complex_address()) {
2418           //
2419           // Look for DecodeN node which should be pinned to orig_proj.
2420           // On platforms (Sparc) which can not handle 2 adds
2421           // in addressing mode we have to keep a DecodeN node and
2422           // use it to do implicit NULL check in address.
2423           //
2424           // DecodeN node was pinned to non-null path (orig_proj) during
2425           // CastPP transformation in final_graph_reshaping_impl().
2426           //
2427           uint cnt = orig_proj->outcnt();
2428           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2429             Node* d = orig_proj->raw_out(i);
2430             if (d->is_DecodeN() && d->in(1) == val) {
2431               val = d;
2432               val->set_req(0, NULL); // Unpin now.
2433               // Mark this as special case to distinguish from
2434               // a regular case: CmpP(DecodeN, NULL).
2435               val = (Node*)(((intptr_t)val) | 1);
2436               break;
2437             }
2438           }
2439         }
2440 #endif
2441         _null_check_tests.push(val);
2442       }
2443     }
2444   }
2445 }
2446 
2447 //---------------------------validate_null_checks------------------------------
2448 // Its possible that the value being NULL checked is not the root of a match
2449 // tree.  If so, I cannot use the value in an implicit null check.
2450 void Matcher::validate_null_checks( ) {
2451   uint cnt = _null_check_tests.size();
2452   for( uint i=0; i < cnt; i+=2 ) {
2453     Node *test = _null_check_tests[i];
2454     Node *val = _null_check_tests[i+1];
2455     bool is_decoden = ((intptr_t)val) & 1;
2456     val = (Node*)(((intptr_t)val) & ~1);
2457     if (has_new_node(val)) {
2458       Node* new_val = new_node(val);
2459       if (is_decoden) {
2460         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2461         // Note: new_val may have a control edge if
2462         // the original ideal node DecodeN was matched before
2463         // it was unpinned in Matcher::collect_null_checks().
2464         // Unpin the mach node and mark it.
2465         new_val->set_req(0, NULL);
2466         new_val = (Node*)(((intptr_t)new_val) | 1);
2467       }
2468       // Is a match-tree root, so replace with the matched value
2469       _null_check_tests.map(i+1, new_val);
2470     } else {
2471       // Yank from candidate list
2472       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2473       _null_check_tests.map(i,_null_check_tests[--cnt]);
2474       _null_check_tests.pop();
2475       _null_check_tests.pop();
2476       i-=2;
2477     }
2478   }
2479 }
2480 
2481 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2482 // atomic instruction acting as a store_load barrier without any
2483 // intervening volatile load, and thus we don't need a barrier here.
2484 // We retain the Node to act as a compiler ordering barrier.
2485 bool Matcher::post_store_load_barrier(const Node* vmb) {
2486   Compile* C = Compile::current();
2487   assert(vmb->is_MemBar(), "");
2488   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2489   const MemBarNode* membar = vmb->as_MemBar();
2490 
2491   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2492   Node* ctrl = NULL;
2493   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2494     Node* p = membar->fast_out(i);
2495     assert(p->is_Proj(), "only projections here");
2496     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2497         !C->node_arena()->contains(p)) { // Unmatched old-space only
2498       ctrl = p;
2499       break;
2500     }
2501   }
2502   assert((ctrl != NULL), "missing control projection");
2503 
2504   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2505     Node *x = ctrl->fast_out(j);
2506     int xop = x->Opcode();
2507 
2508     // We don't need current barrier if we see another or a lock
2509     // before seeing volatile load.
2510     //
2511     // Op_Fastunlock previously appeared in the Op_* list below.
2512     // With the advent of 1-0 lock operations we're no longer guaranteed
2513     // that a monitor exit operation contains a serializing instruction.
2514 
2515     if (xop == Op_MemBarVolatile ||
2516         xop == Op_CompareAndExchangeB ||
2517         xop == Op_CompareAndExchangeS ||
2518         xop == Op_CompareAndExchangeI ||
2519         xop == Op_CompareAndExchangeL ||
2520         xop == Op_CompareAndExchangeP ||
2521         xop == Op_CompareAndExchangeN ||
2522         xop == Op_WeakCompareAndSwapB ||
2523         xop == Op_WeakCompareAndSwapS ||
2524         xop == Op_WeakCompareAndSwapL ||
2525         xop == Op_WeakCompareAndSwapP ||
2526         xop == Op_WeakCompareAndSwapN ||
2527         xop == Op_WeakCompareAndSwapI ||
2528         xop == Op_CompareAndSwapB ||
2529         xop == Op_CompareAndSwapS ||
2530         xop == Op_CompareAndSwapL ||
2531         xop == Op_CompareAndSwapP ||
2532         xop == Op_CompareAndSwapN ||
2533         xop == Op_CompareAndSwapI) {
2534       return true;
2535     }
2536 
2537     // Op_FastLock previously appeared in the Op_* list above.
2538     // With biased locking we're no longer guaranteed that a monitor
2539     // enter operation contains a serializing instruction.
2540     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2541       return true;
2542     }
2543 
2544     if (x->is_MemBar()) {
2545       // We must retain this membar if there is an upcoming volatile
2546       // load, which will be followed by acquire membar.
2547       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2548         return false;
2549       } else {
2550         // For other kinds of barriers, check by pretending we
2551         // are them, and seeing if we can be removed.
2552         return post_store_load_barrier(x->as_MemBar());
2553       }
2554     }
2555 
2556     // probably not necessary to check for these
2557     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2558       return false;
2559     }
2560   }
2561   return false;
2562 }
2563 
2564 // Check whether node n is a branch to an uncommon trap that we could
2565 // optimize as test with very high branch costs in case of going to
2566 // the uncommon trap. The code must be able to be recompiled to use
2567 // a cheaper test.
2568 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2569   // Don't do it for natives, adapters, or runtime stubs
2570   Compile *C = Compile::current();
2571   if (!C->is_method_compilation()) return false;
2572 
2573   assert(n->is_If(), "You should only call this on if nodes.");
2574   IfNode *ifn = n->as_If();
2575 
2576   Node *ifFalse = NULL;
2577   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2578     if (ifn->fast_out(i)->is_IfFalse()) {
2579       ifFalse = ifn->fast_out(i);
2580       break;
2581     }
2582   }
2583   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2584 
2585   Node *reg = ifFalse;
2586   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2587                // Alternatively use visited set?  Seems too expensive.
2588   while (reg != NULL && cnt > 0) {
2589     CallNode *call = NULL;
2590     RegionNode *nxt_reg = NULL;
2591     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2592       Node *o = reg->fast_out(i);
2593       if (o->is_Call()) {
2594         call = o->as_Call();
2595       }
2596       if (o->is_Region()) {
2597         nxt_reg = o->as_Region();
2598       }
2599     }
2600 
2601     if (call &&
2602         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2603       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2604       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2605         jint tr_con = trtype->is_int()->get_con();
2606         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2607         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2608         assert((int)reason < (int)BitsPerInt, "recode bit map");
2609 
2610         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2611             && action != Deoptimization::Action_none) {
2612           // This uncommon trap is sure to recompile, eventually.
2613           // When that happens, C->too_many_traps will prevent
2614           // this transformation from happening again.
2615           return true;
2616         }
2617       }
2618     }
2619 
2620     reg = nxt_reg;
2621     cnt--;
2622   }
2623 
2624   return false;
2625 }
2626 
2627 //=============================================================================
2628 //---------------------------State---------------------------------------------
2629 State::State(void) {
2630 #ifdef ASSERT
2631   _id = 0;
2632   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2633   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2634   //memset(_cost, -1, sizeof(_cost));
2635   //memset(_rule, -1, sizeof(_rule));
2636 #endif
2637   memset(_valid, 0, sizeof(_valid));
2638 }
2639 
2640 #ifdef ASSERT
2641 State::~State() {
2642   _id = 99;
2643   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2644   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2645   memset(_cost, -3, sizeof(_cost));
2646   memset(_rule, -3, sizeof(_rule));
2647 }
2648 #endif
2649 
2650 #ifndef PRODUCT
2651 //---------------------------dump----------------------------------------------
2652 void State::dump() {
2653   tty->print("\n");
2654   dump(0);
2655 }
2656 
2657 void State::dump(int depth) {
2658   for( int j = 0; j < depth; j++ )
2659     tty->print("   ");
2660   tty->print("--N: ");
2661   _leaf->dump();
2662   uint i;
2663   for( i = 0; i < _LAST_MACH_OPER; i++ )
2664     // Check for valid entry
2665     if( valid(i) ) {
2666       for( int j = 0; j < depth; j++ )
2667         tty->print("   ");
2668         assert(_cost[i] != max_juint, "cost must be a valid value");
2669         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2670         tty->print_cr("%s  %d  %s",
2671                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2672       }
2673   tty->cr();
2674 
2675   for( i=0; i<2; i++ )
2676     if( _kids[i] )
2677       _kids[i]->dump(depth+1);
2678 }
2679 #endif