1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/regmask.hpp"
  45 #include "utilities/copy.hpp"
  46 
  47 // Portions of code courtesy of Clifford Click
  48 
  49 // Optimization - Graph Style
  50 
  51 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  52 
  53 //=============================================================================
  54 uint MemNode::size_of() const { return sizeof(*this); }
  55 
  56 const TypePtr *MemNode::adr_type() const {
  57   Node* adr = in(Address);
  58   if (adr == NULL)  return NULL; // node is dead
  59   const TypePtr* cross_check = NULL;
  60   DEBUG_ONLY(cross_check = _adr_type);
  61   return calculate_adr_type(adr->bottom_type(), cross_check);
  62 }
  63 
  64 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  65   if (adr != NULL) {
  66     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  67       return true;
  68     }
  69   }
  70   return false;
  71 }
  72 
  73 #ifndef PRODUCT
  74 void MemNode::dump_spec(outputStream *st) const {
  75   if (in(Address) == NULL)  return; // node is dead
  76 #ifndef ASSERT
  77   // fake the missing field
  78   const TypePtr* _adr_type = NULL;
  79   if (in(Address) != NULL)
  80     _adr_type = in(Address)->bottom_type()->isa_ptr();
  81 #endif
  82   dump_adr_type(this, _adr_type, st);
  83 
  84   Compile* C = Compile::current();
  85   if (C->alias_type(_adr_type)->is_volatile()) {
  86     st->print(" Volatile!");
  87   }
  88   if (_unaligned_access) {
  89     st->print(" unaligned");
  90   }
  91   if (_mismatched_access) {
  92     st->print(" mismatched");
  93   }
  94 }
  95 
  96 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  97   st->print(" @");
  98   if (adr_type == NULL) {
  99     st->print("NULL");
 100   } else {
 101     adr_type->dump_on(st);
 102     Compile* C = Compile::current();
 103     Compile::AliasType* atp = NULL;
 104     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 105     if (atp == NULL)
 106       st->print(", idx=?\?;");
 107     else if (atp->index() == Compile::AliasIdxBot)
 108       st->print(", idx=Bot;");
 109     else if (atp->index() == Compile::AliasIdxTop)
 110       st->print(", idx=Top;");
 111     else if (atp->index() == Compile::AliasIdxRaw)
 112       st->print(", idx=Raw;");
 113     else {
 114       ciField* field = atp->field();
 115       if (field) {
 116         st->print(", name=");
 117         field->print_name_on(st);
 118       }
 119       st->print(", idx=%d;", atp->index());
 120     }
 121   }
 122 }
 123 
 124 extern void print_alias_types();
 125 
 126 #endif
 127 
 128 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 129   assert((t_oop != NULL), "sanity");
 130   bool is_instance = t_oop->is_known_instance_field();
 131   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 132                              (load != NULL) && load->is_Load() &&
 133                              (phase->is_IterGVN() != NULL);
 134   if (!(is_instance || is_boxed_value_load))
 135     return mchain;  // don't try to optimize non-instance types
 136   uint instance_id = t_oop->instance_id();
 137   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 138   Node *prev = NULL;
 139   Node *result = mchain;
 140   while (prev != result) {
 141     prev = result;
 142     if (result == start_mem)
 143       break;  // hit one of our sentinels
 144     // skip over a call which does not affect this memory slice
 145     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 146       Node *proj_in = result->in(0);
 147       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 148         break;  // hit one of our sentinels
 149       } else if (proj_in->is_Call()) {
 150         // ArrayCopyNodes processed here as well
 151         CallNode *call = proj_in->as_Call();
 152         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 153           result = call->in(TypeFunc::Memory);
 154         }
 155       } else if (proj_in->is_Initialize()) {
 156         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 157         // Stop if this is the initialization for the object instance which
 158         // contains this memory slice, otherwise skip over it.
 159         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 160           break;
 161         }
 162         if (is_instance) {
 163           result = proj_in->in(TypeFunc::Memory);
 164         } else if (is_boxed_value_load) {
 165           Node* klass = alloc->in(AllocateNode::KlassNode);
 166           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 167           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 168             result = proj_in->in(TypeFunc::Memory); // not related allocation
 169           }
 170         }
 171       } else if (proj_in->is_MemBar()) {
 172         ArrayCopyNode* ac = NULL;
 173         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 174           break;
 175         }
 176         result = proj_in->in(TypeFunc::Memory);
 177       } else {
 178         assert(false, "unexpected projection");
 179       }
 180     } else if (result->is_ClearArray()) {
 181       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 182         // Can not bypass initialization of the instance
 183         // we are looking for.
 184         break;
 185       }
 186       // Otherwise skip it (the call updated 'result' value).
 187     } else if (result->is_MergeMem()) {
 188       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 189     }
 190   }
 191   return result;
 192 }
 193 
 194 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 195   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 196   if (t_oop == NULL)
 197     return mchain;  // don't try to optimize non-oop types
 198   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 199   bool is_instance = t_oop->is_known_instance_field();
 200   PhaseIterGVN *igvn = phase->is_IterGVN();
 201   if (is_instance && igvn != NULL  && result->is_Phi()) {
 202     PhiNode *mphi = result->as_Phi();
 203     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 204     const TypePtr *t = mphi->adr_type();
 205     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 206         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 207         t->is_oopptr()->cast_to_exactness(true)
 208          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 209          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 210       // clone the Phi with our address type
 211       result = mphi->split_out_instance(t_adr, igvn);
 212     } else {
 213       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 214     }
 215   }
 216   return result;
 217 }
 218 
 219 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 220   uint alias_idx = phase->C->get_alias_index(tp);
 221   Node *mem = mmem;
 222 #ifdef ASSERT
 223   {
 224     // Check that current type is consistent with the alias index used during graph construction
 225     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 226     bool consistent =  adr_check == NULL || adr_check->empty() ||
 227                        phase->C->must_alias(adr_check, alias_idx );
 228     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 229     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 230         tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 231         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 232         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 233           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 234           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 235       // don't assert if it is dead code.
 236       consistent = true;
 237     }
 238     if( !consistent ) {
 239       st->print("alias_idx==%d, adr_check==", alias_idx);
 240       if( adr_check == NULL ) {
 241         st->print("NULL");
 242       } else {
 243         adr_check->dump();
 244       }
 245       st->cr();
 246       print_alias_types();
 247       assert(consistent, "adr_check must match alias idx");
 248     }
 249   }
 250 #endif
 251   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 252   // means an array I have not precisely typed yet.  Do not do any
 253   // alias stuff with it any time soon.
 254   const TypeOopPtr *toop = tp->isa_oopptr();
 255   if( tp->base() != Type::AnyPtr &&
 256       !(toop &&
 257         toop->klass() != NULL &&
 258         toop->klass()->is_java_lang_Object() &&
 259         toop->offset() == Type::OffsetBot) ) {
 260     // compress paths and change unreachable cycles to TOP
 261     // If not, we can update the input infinitely along a MergeMem cycle
 262     // Equivalent code in PhiNode::Ideal
 263     Node* m  = phase->transform(mmem);
 264     // If transformed to a MergeMem, get the desired slice
 265     // Otherwise the returned node represents memory for every slice
 266     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 267     // Update input if it is progress over what we have now
 268   }
 269   return mem;
 270 }
 271 
 272 //--------------------------Ideal_common---------------------------------------
 273 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 274 // Unhook non-raw memories from complete (macro-expanded) initializations.
 275 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 276   // If our control input is a dead region, kill all below the region
 277   Node *ctl = in(MemNode::Control);
 278   if (ctl && remove_dead_region(phase, can_reshape))
 279     return this;
 280   ctl = in(MemNode::Control);
 281   // Don't bother trying to transform a dead node
 282   if (ctl && ctl->is_top())  return NodeSentinel;
 283 
 284   PhaseIterGVN *igvn = phase->is_IterGVN();
 285   // Wait if control on the worklist.
 286   if (ctl && can_reshape && igvn != NULL) {
 287     Node* bol = NULL;
 288     Node* cmp = NULL;
 289     if (ctl->in(0)->is_If()) {
 290       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 291       bol = ctl->in(0)->in(1);
 292       if (bol->is_Bool())
 293         cmp = ctl->in(0)->in(1)->in(1);
 294     }
 295     if (igvn->_worklist.member(ctl) ||
 296         (bol != NULL && igvn->_worklist.member(bol)) ||
 297         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 298       // This control path may be dead.
 299       // Delay this memory node transformation until the control is processed.
 300       phase->is_IterGVN()->_worklist.push(this);
 301       return NodeSentinel; // caller will return NULL
 302     }
 303   }
 304   // Ignore if memory is dead, or self-loop
 305   Node *mem = in(MemNode::Memory);
 306   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 307   assert(mem != this, "dead loop in MemNode::Ideal");
 308 
 309   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 310     // This memory slice may be dead.
 311     // Delay this mem node transformation until the memory is processed.
 312     phase->is_IterGVN()->_worklist.push(this);
 313     return NodeSentinel; // caller will return NULL
 314   }
 315 
 316   Node *address = in(MemNode::Address);
 317   const Type *t_adr = phase->type(address);
 318   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 319 
 320   if (can_reshape && igvn != NULL &&
 321       (igvn->_worklist.member(address) ||
 322        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 323     // The address's base and type may change when the address is processed.
 324     // Delay this mem node transformation until the address is processed.
 325     phase->is_IterGVN()->_worklist.push(this);
 326     return NodeSentinel; // caller will return NULL
 327   }
 328 
 329   // Do NOT remove or optimize the next lines: ensure a new alias index
 330   // is allocated for an oop pointer type before Escape Analysis.
 331   // Note: C++ will not remove it since the call has side effect.
 332   if (t_adr->isa_oopptr()) {
 333     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 334   }
 335 
 336   Node* base = NULL;
 337   if (address->is_AddP()) {
 338     base = address->in(AddPNode::Base);
 339   }
 340   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 341       !t_adr->isa_rawptr()) {
 342     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 343     // Skip this node optimization if its address has TOP base.
 344     return NodeSentinel; // caller will return NULL
 345   }
 346 
 347   // Avoid independent memory operations
 348   Node* old_mem = mem;
 349 
 350   // The code which unhooks non-raw memories from complete (macro-expanded)
 351   // initializations was removed. After macro-expansion all stores catched
 352   // by Initialize node became raw stores and there is no information
 353   // which memory slices they modify. So it is unsafe to move any memory
 354   // operation above these stores. Also in most cases hooked non-raw memories
 355   // were already unhooked by using information from detect_ptr_independence()
 356   // and find_previous_store().
 357 
 358   if (mem->is_MergeMem()) {
 359     MergeMemNode* mmem = mem->as_MergeMem();
 360     const TypePtr *tp = t_adr->is_ptr();
 361 
 362     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 363   }
 364 
 365   if (mem != old_mem) {
 366     set_req(MemNode::Memory, mem);
 367     if (can_reshape && old_mem->outcnt() == 0) {
 368         igvn->_worklist.push(old_mem);
 369     }
 370     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 371     return this;
 372   }
 373 
 374   // let the subclass continue analyzing...
 375   return NULL;
 376 }
 377 
 378 // Helper function for proving some simple control dominations.
 379 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 380 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 381 // is not a constant (dominated by the method's StartNode).
 382 // Used by MemNode::find_previous_store to prove that the
 383 // control input of a memory operation predates (dominates)
 384 // an allocation it wants to look past.
 385 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 386   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 387     return false; // Conservative answer for dead code
 388 
 389   // Check 'dom'. Skip Proj and CatchProj nodes.
 390   dom = dom->find_exact_control(dom);
 391   if (dom == NULL || dom->is_top())
 392     return false; // Conservative answer for dead code
 393 
 394   if (dom == sub) {
 395     // For the case when, for example, 'sub' is Initialize and the original
 396     // 'dom' is Proj node of the 'sub'.
 397     return false;
 398   }
 399 
 400   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 401     return true;
 402 
 403   // 'dom' dominates 'sub' if its control edge and control edges
 404   // of all its inputs dominate or equal to sub's control edge.
 405 
 406   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 407   // Or Region for the check in LoadNode::Ideal();
 408   // 'sub' should have sub->in(0) != NULL.
 409   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 410          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 411 
 412   // Get control edge of 'sub'.
 413   Node* orig_sub = sub;
 414   sub = sub->find_exact_control(sub->in(0));
 415   if (sub == NULL || sub->is_top())
 416     return false; // Conservative answer for dead code
 417 
 418   assert(sub->is_CFG(), "expecting control");
 419 
 420   if (sub == dom)
 421     return true;
 422 
 423   if (sub->is_Start() || sub->is_Root())
 424     return false;
 425 
 426   {
 427     // Check all control edges of 'dom'.
 428 
 429     ResourceMark rm;
 430     Arena* arena = Thread::current()->resource_area();
 431     Node_List nlist(arena);
 432     Unique_Node_List dom_list(arena);
 433 
 434     dom_list.push(dom);
 435     bool only_dominating_controls = false;
 436 
 437     for (uint next = 0; next < dom_list.size(); next++) {
 438       Node* n = dom_list.at(next);
 439       if (n == orig_sub)
 440         return false; // One of dom's inputs dominated by sub.
 441       if (!n->is_CFG() && n->pinned()) {
 442         // Check only own control edge for pinned non-control nodes.
 443         n = n->find_exact_control(n->in(0));
 444         if (n == NULL || n->is_top())
 445           return false; // Conservative answer for dead code
 446         assert(n->is_CFG(), "expecting control");
 447         dom_list.push(n);
 448       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 449         only_dominating_controls = true;
 450       } else if (n->is_CFG()) {
 451         if (n->dominates(sub, nlist))
 452           only_dominating_controls = true;
 453         else
 454           return false;
 455       } else {
 456         // First, own control edge.
 457         Node* m = n->find_exact_control(n->in(0));
 458         if (m != NULL) {
 459           if (m->is_top())
 460             return false; // Conservative answer for dead code
 461           dom_list.push(m);
 462         }
 463         // Now, the rest of edges.
 464         uint cnt = n->req();
 465         for (uint i = 1; i < cnt; i++) {
 466           m = n->find_exact_control(n->in(i));
 467           if (m == NULL || m->is_top())
 468             continue;
 469           dom_list.push(m);
 470         }
 471       }
 472     }
 473     return only_dominating_controls;
 474   }
 475 }
 476 
 477 //---------------------detect_ptr_independence---------------------------------
 478 // Used by MemNode::find_previous_store to prove that two base
 479 // pointers are never equal.
 480 // The pointers are accompanied by their associated allocations,
 481 // if any, which have been previously discovered by the caller.
 482 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 483                                       Node* p2, AllocateNode* a2,
 484                                       PhaseTransform* phase) {
 485   // Attempt to prove that these two pointers cannot be aliased.
 486   // They may both manifestly be allocations, and they should differ.
 487   // Or, if they are not both allocations, they can be distinct constants.
 488   // Otherwise, one is an allocation and the other a pre-existing value.
 489   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 490     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 491   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 492     return (a1 != a2);
 493   } else if (a1 != NULL) {                  // one allocation a1
 494     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 495     return all_controls_dominate(p2, a1);
 496   } else { //(a2 != NULL)                   // one allocation a2
 497     return all_controls_dominate(p1, a2);
 498   }
 499   return false;
 500 }
 501 
 502 
 503 // Find an arraycopy that must have set (can_see_stored_value=true) or
 504 // could have set (can_see_stored_value=false) the value for this load
 505 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 506   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 507                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 508     Node* mb = mem->in(0);
 509     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 510         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 511       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 512       if (ac->is_clonebasic()) {
 513         intptr_t offset;
 514         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 515         assert(alloc != NULL && (!ReduceBulkZeroing || alloc->initialization()->is_complete_with_arraycopy()), "broken allocation");
 516         if (alloc == ld_alloc) {
 517           return ac;
 518         }
 519       }
 520     }
 521   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 522     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 523 
 524     if (ac->is_arraycopy_validated() ||
 525         ac->is_copyof_validated() ||
 526         ac->is_copyofrange_validated()) {
 527       Node* ld_addp = in(MemNode::Address);
 528       if (ld_addp->is_AddP()) {
 529         Node* ld_base = ld_addp->in(AddPNode::Address);
 530         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 531 
 532         Node* dest = ac->in(ArrayCopyNode::Dest);
 533 
 534         if (dest == ld_base) {
 535           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 536           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 537             return ac;
 538           }
 539           if (!can_see_stored_value) {
 540             mem = ac->in(TypeFunc::Memory);
 541           }
 542         }
 543       }
 544     }
 545   }
 546   return NULL;
 547 }
 548 
 549 // The logic for reordering loads and stores uses four steps:
 550 // (a) Walk carefully past stores and initializations which we
 551 //     can prove are independent of this load.
 552 // (b) Observe that the next memory state makes an exact match
 553 //     with self (load or store), and locate the relevant store.
 554 // (c) Ensure that, if we were to wire self directly to the store,
 555 //     the optimizer would fold it up somehow.
 556 // (d) Do the rewiring, and return, depending on some other part of
 557 //     the optimizer to fold up the load.
 558 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 559 // specific to loads and stores, so they are handled by the callers.
 560 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 561 //
 562 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 563   Node*         ctrl   = in(MemNode::Control);
 564   Node*         adr    = in(MemNode::Address);
 565   intptr_t      offset = 0;
 566   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 567   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 568 
 569   if (offset == Type::OffsetBot)
 570     return NULL;            // cannot unalias unless there are precise offsets
 571 
 572   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 573   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 574 
 575   intptr_t size_in_bytes = memory_size();
 576 
 577   Node* mem = in(MemNode::Memory);   // start searching here...
 578 
 579   int cnt = 50;             // Cycle limiter
 580   for (;;) {                // While we can dance past unrelated stores...
 581     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 582 
 583     Node* prev = mem;
 584     if (mem->is_Store()) {
 585       Node* st_adr = mem->in(MemNode::Address);
 586       intptr_t st_offset = 0;
 587       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 588       if (st_base == NULL)
 589         break;              // inscrutable pointer
 590 
 591       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 592       // We need the bases to be the equal in order for the offset check to make sense.
 593       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 594         break;
 595       }
 596 
 597       if (st_offset != offset && st_offset != Type::OffsetBot) {
 598         const int MAX_STORE = BytesPerLong;
 599         if (st_offset >= offset + size_in_bytes ||
 600             st_offset <= offset - MAX_STORE ||
 601             st_offset <= offset - mem->as_Store()->memory_size()) {
 602           // Success:  The offsets are provably independent.
 603           // (You may ask, why not just test st_offset != offset and be done?
 604           // The answer is that stores of different sizes can co-exist
 605           // in the same sequence of RawMem effects.  We sometimes initialize
 606           // a whole 'tile' of array elements with a single jint or jlong.)
 607           mem = mem->in(MemNode::Memory);
 608           continue;           // (a) advance through independent store memory
 609         }
 610       }
 611       if (st_base != base &&
 612           detect_ptr_independence(base, alloc,
 613                                   st_base,
 614                                   AllocateNode::Ideal_allocation(st_base, phase),
 615                                   phase)) {
 616         // Success:  The bases are provably independent.
 617         mem = mem->in(MemNode::Memory);
 618         continue;           // (a) advance through independent store memory
 619       }
 620 
 621       // (b) At this point, if the bases or offsets do not agree, we lose,
 622       // since we have not managed to prove 'this' and 'mem' independent.
 623       if (st_base == base && st_offset == offset) {
 624         return mem;         // let caller handle steps (c), (d)
 625       }
 626 
 627     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 628       InitializeNode* st_init = mem->in(0)->as_Initialize();
 629       AllocateNode*  st_alloc = st_init->allocation();
 630       if (st_alloc == NULL)
 631         break;              // something degenerated
 632       bool known_identical = false;
 633       bool known_independent = false;
 634       if (alloc == st_alloc)
 635         known_identical = true;
 636       else if (alloc != NULL)
 637         known_independent = true;
 638       else if (all_controls_dominate(this, st_alloc))
 639         known_independent = true;
 640 
 641       if (known_independent) {
 642         // The bases are provably independent: Either they are
 643         // manifestly distinct allocations, or else the control
 644         // of this load dominates the store's allocation.
 645         int alias_idx = phase->C->get_alias_index(adr_type());
 646         if (alias_idx == Compile::AliasIdxRaw) {
 647           mem = st_alloc->in(TypeFunc::Memory);
 648         } else {
 649           mem = st_init->memory(alias_idx);
 650         }
 651         continue;           // (a) advance through independent store memory
 652       }
 653 
 654       // (b) at this point, if we are not looking at a store initializing
 655       // the same allocation we are loading from, we lose.
 656       if (known_identical) {
 657         // From caller, can_see_stored_value will consult find_captured_store.
 658         return mem;         // let caller handle steps (c), (d)
 659       }
 660 
 661     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 662       if (prev != mem) {
 663         // Found an arraycopy but it doesn't affect that load
 664         continue;
 665       }
 666       // Found an arraycopy that may affect that load
 667       return mem;
 668     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 669       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 670       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 671         // ArrayCopyNodes processed here as well.
 672         CallNode *call = mem->in(0)->as_Call();
 673         if (!call->may_modify(addr_t, phase)) {
 674           mem = call->in(TypeFunc::Memory);
 675           continue;         // (a) advance through independent call memory
 676         }
 677       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 678         ArrayCopyNode* ac = NULL;
 679         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 680           break;
 681         }
 682         mem = mem->in(0)->in(TypeFunc::Memory);
 683         continue;           // (a) advance through independent MemBar memory
 684       } else if (mem->is_ClearArray()) {
 685         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 686           // (the call updated 'mem' value)
 687           continue;         // (a) advance through independent allocation memory
 688         } else {
 689           // Can not bypass initialization of the instance
 690           // we are looking for.
 691           return mem;
 692         }
 693       } else if (mem->is_MergeMem()) {
 694         int alias_idx = phase->C->get_alias_index(adr_type());
 695         mem = mem->as_MergeMem()->memory_at(alias_idx);
 696         continue;           // (a) advance through independent MergeMem memory
 697       }
 698     }
 699 
 700     // Unless there is an explicit 'continue', we must bail out here,
 701     // because 'mem' is an inscrutable memory state (e.g., a call).
 702     break;
 703   }
 704 
 705   return NULL;              // bail out
 706 }
 707 
 708 //----------------------calculate_adr_type-------------------------------------
 709 // Helper function.  Notices when the given type of address hits top or bottom.
 710 // Also, asserts a cross-check of the type against the expected address type.
 711 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 712   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 713   #ifdef PRODUCT
 714   cross_check = NULL;
 715   #else
 716   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 717   #endif
 718   const TypePtr* tp = t->isa_ptr();
 719   if (tp == NULL) {
 720     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 721     return TypePtr::BOTTOM;           // touches lots of memory
 722   } else {
 723     #ifdef ASSERT
 724     // %%%% [phh] We don't check the alias index if cross_check is
 725     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 726     if (cross_check != NULL &&
 727         cross_check != TypePtr::BOTTOM &&
 728         cross_check != TypeRawPtr::BOTTOM) {
 729       // Recheck the alias index, to see if it has changed (due to a bug).
 730       Compile* C = Compile::current();
 731       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 732              "must stay in the original alias category");
 733       // The type of the address must be contained in the adr_type,
 734       // disregarding "null"-ness.
 735       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 736       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 737       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 738              "real address must not escape from expected memory type");
 739     }
 740     #endif
 741     return tp;
 742   }
 743 }
 744 
 745 //=============================================================================
 746 // Should LoadNode::Ideal() attempt to remove control edges?
 747 bool LoadNode::can_remove_control() const {
 748   return true;
 749 }
 750 uint LoadNode::size_of() const { return sizeof(*this); }
 751 uint LoadNode::cmp( const Node &n ) const
 752 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 753 const Type *LoadNode::bottom_type() const { return _type; }
 754 uint LoadNode::ideal_reg() const {
 755   return _type->ideal_reg();
 756 }
 757 
 758 #ifndef PRODUCT
 759 void LoadNode::dump_spec(outputStream *st) const {
 760   MemNode::dump_spec(st);
 761   if( !Verbose && !WizardMode ) {
 762     // standard dump does this in Verbose and WizardMode
 763     st->print(" #"); _type->dump_on(st);
 764   }
 765   if (!depends_only_on_test()) {
 766     st->print(" (does not depend only on test)");
 767   }
 768 }
 769 #endif
 770 
 771 #ifdef ASSERT
 772 //----------------------------is_immutable_value-------------------------------
 773 // Helper function to allow a raw load without control edge for some cases
 774 bool LoadNode::is_immutable_value(Node* adr) {
 775   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 776           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 777           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 778            in_bytes(JavaThread::osthread_offset())));
 779 }
 780 #endif
 781 
 782 //----------------------------LoadNode::make-----------------------------------
 783 // Polymorphic factory method:
 784 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 785                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 786   Compile* C = gvn.C;
 787 
 788   // sanity check the alias category against the created node type
 789   assert(!(adr_type->isa_oopptr() &&
 790            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 791          "use LoadKlassNode instead");
 792   assert(!(adr_type->isa_aryptr() &&
 793            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 794          "use LoadRangeNode instead");
 795   // Check control edge of raw loads
 796   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 797           // oop will be recorded in oop map if load crosses safepoint
 798           rt->isa_oopptr() || is_immutable_value(adr),
 799           "raw memory operations should have control edge");
 800   LoadNode* load = NULL;
 801   switch (bt) {
 802   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 803   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 804   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 805   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 806   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 807   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 808   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 809   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 810   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 811   case T_VALUETYPE:
 812   case T_OBJECT:
 813 #ifdef _LP64
 814     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 815       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 816     } else
 817 #endif
 818     {
 819       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 820       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 821     }
 822     break;
 823   }
 824   assert(load != NULL, "LoadNode should have been created");
 825   if (unaligned) {
 826     load->set_unaligned_access();
 827   }
 828   if (mismatched) {
 829     load->set_mismatched_access();
 830   }
 831   if (load->Opcode() == Op_LoadN) {
 832     Node* ld = gvn.transform(load);
 833     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 834   }
 835 
 836   return load;
 837 }
 838 
 839 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 840                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 841   bool require_atomic = true;
 842   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 843   if (unaligned) {
 844     load->set_unaligned_access();
 845   }
 846   if (mismatched) {
 847     load->set_mismatched_access();
 848   }
 849   return load;
 850 }
 851 
 852 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 853                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 854   bool require_atomic = true;
 855   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 856   if (unaligned) {
 857     load->set_unaligned_access();
 858   }
 859   if (mismatched) {
 860     load->set_mismatched_access();
 861   }
 862   return load;
 863 }
 864 
 865 
 866 
 867 //------------------------------hash-------------------------------------------
 868 uint LoadNode::hash() const {
 869   // unroll addition of interesting fields
 870   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 871 }
 872 
 873 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 874   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 875     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 876     bool is_stable_ary = FoldStableValues &&
 877                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 878                          tp->isa_aryptr()->is_stable();
 879 
 880     return (eliminate_boxing && non_volatile) || is_stable_ary;
 881   }
 882 
 883   return false;
 884 }
 885 
 886 // Is the value loaded previously stored by an arraycopy? If so return
 887 // a load node that reads from the source array so we may be able to
 888 // optimize out the ArrayCopy node later.
 889 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseTransform* phase) const {
 890   Node* ld_adr = in(MemNode::Address);
 891   intptr_t ld_off = 0;
 892   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 893   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 894   if (ac != NULL) {
 895     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 896 
 897     Node* ld = clone();
 898     if (ac->as_ArrayCopy()->is_clonebasic()) {
 899       assert(ld_alloc != NULL, "need an alloc");
 900       Node* addp = in(MemNode::Address)->clone();
 901       assert(addp->is_AddP(), "address must be addp");
 902       assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
 903       assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
 904       addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src)->in(AddPNode::Base));
 905       addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src)->in(AddPNode::Address));
 906       ld->set_req(MemNode::Address, phase->transform(addp));
 907       if (in(0) != NULL) {
 908         assert(ld_alloc->in(0) != NULL, "alloc must have control");
 909         ld->set_req(0, ld_alloc->in(0));
 910       }
 911     } else {
 912       Node* addp = in(MemNode::Address)->clone();
 913       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 914       addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src));
 915       addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src));
 916 
 917       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 918       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 919       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 920       uint shift  = exact_log2(type2aelembytes(ary_elem));
 921 
 922       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 923 #ifdef _LP64
 924       diff = phase->transform(new ConvI2LNode(diff));
 925 #endif
 926       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 927 
 928       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 929       addp->set_req(AddPNode::Offset, offset);
 930       ld->set_req(MemNode::Address, phase->transform(addp));
 931 
 932       if (in(0) != NULL) {
 933         assert(ac->in(0) != NULL, "alloc must have control");
 934         ld->set_req(0, ac->in(0));
 935       }
 936     }
 937     // load depends on the tests that validate the arraycopy
 938     ld->as_Load()->_control_dependency = Pinned;
 939     return ld;
 940   }
 941   return NULL;
 942 }
 943 
 944 
 945 //---------------------------can_see_stored_value------------------------------
 946 // This routine exists to make sure this set of tests is done the same
 947 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 948 // will change the graph shape in a way which makes memory alive twice at the
 949 // same time (uses the Oracle model of aliasing), then some
 950 // LoadXNode::Identity will fold things back to the equivalence-class model
 951 // of aliasing.
 952 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 953   Node* ld_adr = in(MemNode::Address);
 954   intptr_t ld_off = 0;
 955   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 956   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 957   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 958   // This is more general than load from boxing objects.
 959   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 960     uint alias_idx = atp->index();
 961     bool final = !atp->is_rewritable();
 962     Node* result = NULL;
 963     Node* current = st;
 964     // Skip through chains of MemBarNodes checking the MergeMems for
 965     // new states for the slice of this load.  Stop once any other
 966     // kind of node is encountered.  Loads from final memory can skip
 967     // through any kind of MemBar but normal loads shouldn't skip
 968     // through MemBarAcquire since the could allow them to move out of
 969     // a synchronized region.
 970     while (current->is_Proj()) {
 971       int opc = current->in(0)->Opcode();
 972       if ((final && (opc == Op_MemBarAcquire ||
 973                      opc == Op_MemBarAcquireLock ||
 974                      opc == Op_LoadFence)) ||
 975           opc == Op_MemBarRelease ||
 976           opc == Op_StoreFence ||
 977           opc == Op_MemBarReleaseLock ||
 978           opc == Op_MemBarStoreStore ||
 979           opc == Op_MemBarCPUOrder) {
 980         Node* mem = current->in(0)->in(TypeFunc::Memory);
 981         if (mem->is_MergeMem()) {
 982           MergeMemNode* merge = mem->as_MergeMem();
 983           Node* new_st = merge->memory_at(alias_idx);
 984           if (new_st == merge->base_memory()) {
 985             // Keep searching
 986             current = new_st;
 987             continue;
 988           }
 989           // Save the new memory state for the slice and fall through
 990           // to exit.
 991           result = new_st;
 992         }
 993       }
 994       break;
 995     }
 996     if (result != NULL) {
 997       st = result;
 998     }
 999   }
1000 
1001   // Loop around twice in the case Load -> Initialize -> Store.
1002   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1003   for (int trip = 0; trip <= 1; trip++) {
1004 
1005     if (st->is_Store()) {
1006       Node* st_adr = st->in(MemNode::Address);
1007       if (!phase->eqv(st_adr, ld_adr)) {
1008         // Try harder before giving up...  Match raw and non-raw pointers.
1009         intptr_t st_off = 0;
1010         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1011         if (alloc == NULL)       return NULL;
1012         if (alloc != ld_alloc)   return NULL;
1013         if (ld_off != st_off)    return NULL;
1014         // At this point we have proven something like this setup:
1015         //  A = Allocate(...)
1016         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1017         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1018         // (Actually, we haven't yet proven the Q's are the same.)
1019         // In other words, we are loading from a casted version of
1020         // the same pointer-and-offset that we stored to.
1021         // Thus, we are able to replace L by V.
1022       }
1023       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1024       if (store_Opcode() != st->Opcode())
1025         return NULL;
1026       return st->in(MemNode::ValueIn);
1027     }
1028 
1029     // A load from a freshly-created object always returns zero.
1030     // (This can happen after LoadNode::Ideal resets the load's memory input
1031     // to find_captured_store, which returned InitializeNode::zero_memory.)
1032     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1033         (st->in(0) == ld_alloc) &&
1034         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1035       // return a zero value for the load's basic type
1036       // (This is one of the few places where a generic PhaseTransform
1037       // can create new nodes.  Think of it as lazily manifesting
1038       // virtually pre-existing constants.)
1039       assert(memory_type() != T_VALUETYPE, "should not be used for value types");
1040       return phase->zerocon(memory_type());
1041     }
1042 
1043     // A load from an initialization barrier can match a captured store.
1044     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1045       InitializeNode* init = st->in(0)->as_Initialize();
1046       AllocateNode* alloc = init->allocation();
1047       if ((alloc != NULL) && (alloc == ld_alloc)) {
1048         // examine a captured store value
1049         st = init->find_captured_store(ld_off, memory_size(), phase);
1050         if (st != NULL) {
1051           continue;             // take one more trip around
1052         }
1053       }
1054     }
1055 
1056     // Load boxed value from result of valueOf() call is input parameter.
1057     if (this->is_Load() && ld_adr->is_AddP() &&
1058         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1059       intptr_t ignore = 0;
1060       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1061       if (base != NULL && base->is_Proj() &&
1062           base->as_Proj()->_con == TypeFunc::Parms &&
1063           base->in(0)->is_CallStaticJava() &&
1064           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1065         return base->in(0)->in(TypeFunc::Parms);
1066       }
1067     }
1068 
1069     break;
1070   }
1071 
1072   return NULL;
1073 }
1074 
1075 //----------------------is_instance_field_load_with_local_phi------------------
1076 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1077   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1078       in(Address)->is_AddP() ) {
1079     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1080     // Only instances and boxed values.
1081     if( t_oop != NULL &&
1082         (t_oop->is_ptr_to_boxed_value() ||
1083          t_oop->is_known_instance_field()) &&
1084         t_oop->offset() != Type::OffsetBot &&
1085         t_oop->offset() != Type::OffsetTop) {
1086       return true;
1087     }
1088   }
1089   return false;
1090 }
1091 
1092 //------------------------------Identity---------------------------------------
1093 // Loads are identity if previous store is to same address
1094 Node* LoadNode::Identity(PhaseGVN* phase) {
1095   // If the previous store-maker is the right kind of Store, and the store is
1096   // to the same address, then we are equal to the value stored.
1097   Node* mem = in(Memory);
1098   Node* value = can_see_stored_value(mem, phase);
1099   if( value ) {
1100     // byte, short & char stores truncate naturally.
1101     // A load has to load the truncated value which requires
1102     // some sort of masking operation and that requires an
1103     // Ideal call instead of an Identity call.
1104     if (memory_size() < BytesPerInt) {
1105       // If the input to the store does not fit with the load's result type,
1106       // it must be truncated via an Ideal call.
1107       if (!phase->type(value)->higher_equal(phase->type(this)))
1108         return this;
1109     }
1110     // (This works even when value is a Con, but LoadNode::Value
1111     // usually runs first, producing the singleton type of the Con.)
1112     return value;
1113   }
1114 
1115   // Search for an existing data phi which was generated before for the same
1116   // instance's field to avoid infinite generation of phis in a loop.
1117   Node *region = mem->in(0);
1118   if (is_instance_field_load_with_local_phi(region)) {
1119     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1120     int this_index  = phase->C->get_alias_index(addr_t);
1121     int this_offset = addr_t->offset();
1122     int this_iid    = addr_t->instance_id();
1123     if (!addr_t->is_known_instance() &&
1124          addr_t->is_ptr_to_boxed_value()) {
1125       // Use _idx of address base (could be Phi node) for boxed values.
1126       intptr_t   ignore = 0;
1127       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1128       this_iid = base->_idx;
1129     }
1130     const Type* this_type = bottom_type();
1131     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1132       Node* phi = region->fast_out(i);
1133       if (phi->is_Phi() && phi != mem &&
1134           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1135         return phi;
1136       }
1137     }
1138   }
1139 
1140   return this;
1141 }
1142 
1143 // Construct an equivalent unsigned load.
1144 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1145   BasicType bt = T_ILLEGAL;
1146   const Type* rt = NULL;
1147   switch (Opcode()) {
1148     case Op_LoadUB: return this;
1149     case Op_LoadUS: return this;
1150     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1151     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1152     default:
1153       assert(false, "no unsigned variant: %s", Name());
1154       return NULL;
1155   }
1156   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1157                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1158                         is_unaligned_access(), is_mismatched_access());
1159 }
1160 
1161 // Construct an equivalent signed load.
1162 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1163   BasicType bt = T_ILLEGAL;
1164   const Type* rt = NULL;
1165   switch (Opcode()) {
1166     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1167     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1168     case Op_LoadB: // fall through
1169     case Op_LoadS: // fall through
1170     case Op_LoadI: // fall through
1171     case Op_LoadL: return this;
1172     default:
1173       assert(false, "no signed variant: %s", Name());
1174       return NULL;
1175   }
1176   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1177                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1178                         is_unaligned_access(), is_mismatched_access());
1179 }
1180 
1181 // We're loading from an object which has autobox behaviour.
1182 // If this object is result of a valueOf call we'll have a phi
1183 // merging a newly allocated object and a load from the cache.
1184 // We want to replace this load with the original incoming
1185 // argument to the valueOf call.
1186 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1187   assert(phase->C->eliminate_boxing(), "sanity");
1188   intptr_t ignore = 0;
1189   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1190   if ((base == NULL) || base->is_Phi()) {
1191     // Push the loads from the phi that comes from valueOf up
1192     // through it to allow elimination of the loads and the recovery
1193     // of the original value. It is done in split_through_phi().
1194     return NULL;
1195   } else if (base->is_Load() ||
1196              base->is_DecodeN() && base->in(1)->is_Load()) {
1197     // Eliminate the load of boxed value for integer types from the cache
1198     // array by deriving the value from the index into the array.
1199     // Capture the offset of the load and then reverse the computation.
1200 
1201     // Get LoadN node which loads a boxing object from 'cache' array.
1202     if (base->is_DecodeN()) {
1203       base = base->in(1);
1204     }
1205     if (!base->in(Address)->is_AddP()) {
1206       return NULL; // Complex address
1207     }
1208     AddPNode* address = base->in(Address)->as_AddP();
1209     Node* cache_base = address->in(AddPNode::Base);
1210     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1211       // Get ConP node which is static 'cache' field.
1212       cache_base = cache_base->in(1);
1213     }
1214     if ((cache_base != NULL) && cache_base->is_Con()) {
1215       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1216       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1217         Node* elements[4];
1218         int shift = exact_log2(type2aelembytes(T_OBJECT));
1219         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1220         if ((count >  0) && elements[0]->is_Con() &&
1221             ((count == 1) ||
1222              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1223                              elements[1]->in(2) == phase->intcon(shift))) {
1224           ciObjArray* array = base_type->const_oop()->as_obj_array();
1225           // Fetch the box object cache[0] at the base of the array and get its value
1226           ciInstance* box = array->obj_at(0)->as_instance();
1227           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1228           assert(ik->is_box_klass(), "sanity");
1229           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1230           if (ik->nof_nonstatic_fields() == 1) {
1231             // This should be true nonstatic_field_at requires calling
1232             // nof_nonstatic_fields so check it anyway
1233             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1234             BasicType bt = c.basic_type();
1235             // Only integer types have boxing cache.
1236             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1237                    bt == T_BYTE    || bt == T_SHORT ||
1238                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1239             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1240             if (cache_low != (int)cache_low) {
1241               return NULL; // should not happen since cache is array indexed by value
1242             }
1243             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1244             if (offset != (int)offset) {
1245               return NULL; // should not happen since cache is array indexed by value
1246             }
1247            // Add up all the offsets making of the address of the load
1248             Node* result = elements[0];
1249             for (int i = 1; i < count; i++) {
1250               result = phase->transform(new AddXNode(result, elements[i]));
1251             }
1252             // Remove the constant offset from the address and then
1253             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1254             // remove the scaling of the offset to recover the original index.
1255             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1256               // Peel the shift off directly but wrap it in a dummy node
1257               // since Ideal can't return existing nodes
1258               result = new RShiftXNode(result->in(1), phase->intcon(0));
1259             } else if (result->is_Add() && result->in(2)->is_Con() &&
1260                        result->in(1)->Opcode() == Op_LShiftX &&
1261                        result->in(1)->in(2) == phase->intcon(shift)) {
1262               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1263               // but for boxing cache access we know that X<<Z will not overflow
1264               // (there is range check) so we do this optimizatrion by hand here.
1265               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1266               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1267             } else {
1268               result = new RShiftXNode(result, phase->intcon(shift));
1269             }
1270 #ifdef _LP64
1271             if (bt != T_LONG) {
1272               result = new ConvL2INode(phase->transform(result));
1273             }
1274 #else
1275             if (bt == T_LONG) {
1276               result = new ConvI2LNode(phase->transform(result));
1277             }
1278 #endif
1279             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1280             // Need to preserve unboxing load type if it is unsigned.
1281             switch(this->Opcode()) {
1282               case Op_LoadUB:
1283                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1284                 break;
1285               case Op_LoadUS:
1286                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1287                 break;
1288             }
1289             return result;
1290           }
1291         }
1292       }
1293     }
1294   }
1295   return NULL;
1296 }
1297 
1298 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1299   Node* region = phi->in(0);
1300   if (region == NULL) {
1301     return false; // Wait stable graph
1302   }
1303   uint cnt = phi->req();
1304   for (uint i = 1; i < cnt; i++) {
1305     Node* rc = region->in(i);
1306     if (rc == NULL || phase->type(rc) == Type::TOP)
1307       return false; // Wait stable graph
1308     Node* in = phi->in(i);
1309     if (in == NULL || phase->type(in) == Type::TOP)
1310       return false; // Wait stable graph
1311   }
1312   return true;
1313 }
1314 //------------------------------split_through_phi------------------------------
1315 // Split instance or boxed field load through Phi.
1316 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1317   Node* mem     = in(Memory);
1318   Node* address = in(Address);
1319   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1320 
1321   assert((t_oop != NULL) &&
1322          (t_oop->is_known_instance_field() ||
1323           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1324 
1325   Compile* C = phase->C;
1326   intptr_t ignore = 0;
1327   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1328   bool base_is_phi = (base != NULL) && base->is_Phi();
1329   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1330                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1331                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1332 
1333   if (!((mem->is_Phi() || base_is_phi) &&
1334         (load_boxed_values || t_oop->is_known_instance_field()))) {
1335     return NULL; // memory is not Phi
1336   }
1337 
1338   if (mem->is_Phi()) {
1339     if (!stable_phi(mem->as_Phi(), phase)) {
1340       return NULL; // Wait stable graph
1341     }
1342     uint cnt = mem->req();
1343     // Check for loop invariant memory.
1344     if (cnt == 3) {
1345       for (uint i = 1; i < cnt; i++) {
1346         Node* in = mem->in(i);
1347         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1348         if (m == mem) {
1349           set_req(Memory, mem->in(cnt - i));
1350           return this; // made change
1351         }
1352       }
1353     }
1354   }
1355   if (base_is_phi) {
1356     if (!stable_phi(base->as_Phi(), phase)) {
1357       return NULL; // Wait stable graph
1358     }
1359     uint cnt = base->req();
1360     // Check for loop invariant memory.
1361     if (cnt == 3) {
1362       for (uint i = 1; i < cnt; i++) {
1363         if (base->in(i) == base) {
1364           return NULL; // Wait stable graph
1365         }
1366       }
1367     }
1368   }
1369 
1370   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1371 
1372   // Split through Phi (see original code in loopopts.cpp).
1373   assert(C->have_alias_type(t_oop), "instance should have alias type");
1374 
1375   // Do nothing here if Identity will find a value
1376   // (to avoid infinite chain of value phis generation).
1377   if (!phase->eqv(this, this->Identity(phase)))
1378     return NULL;
1379 
1380   // Select Region to split through.
1381   Node* region;
1382   if (!base_is_phi) {
1383     assert(mem->is_Phi(), "sanity");
1384     region = mem->in(0);
1385     // Skip if the region dominates some control edge of the address.
1386     if (!MemNode::all_controls_dominate(address, region))
1387       return NULL;
1388   } else if (!mem->is_Phi()) {
1389     assert(base_is_phi, "sanity");
1390     region = base->in(0);
1391     // Skip if the region dominates some control edge of the memory.
1392     if (!MemNode::all_controls_dominate(mem, region))
1393       return NULL;
1394   } else if (base->in(0) != mem->in(0)) {
1395     assert(base_is_phi && mem->is_Phi(), "sanity");
1396     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1397       region = base->in(0);
1398     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1399       region = mem->in(0);
1400     } else {
1401       return NULL; // complex graph
1402     }
1403   } else {
1404     assert(base->in(0) == mem->in(0), "sanity");
1405     region = mem->in(0);
1406   }
1407 
1408   const Type* this_type = this->bottom_type();
1409   int this_index  = C->get_alias_index(t_oop);
1410   int this_offset = t_oop->offset();
1411   int this_iid    = t_oop->instance_id();
1412   if (!t_oop->is_known_instance() && load_boxed_values) {
1413     // Use _idx of address base for boxed values.
1414     this_iid = base->_idx;
1415   }
1416   PhaseIterGVN* igvn = phase->is_IterGVN();
1417   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1418   for (uint i = 1; i < region->req(); i++) {
1419     Node* x;
1420     Node* the_clone = NULL;
1421     if (region->in(i) == C->top()) {
1422       x = C->top();      // Dead path?  Use a dead data op
1423     } else {
1424       x = this->clone();        // Else clone up the data op
1425       the_clone = x;            // Remember for possible deletion.
1426       // Alter data node to use pre-phi inputs
1427       if (this->in(0) == region) {
1428         x->set_req(0, region->in(i));
1429       } else {
1430         x->set_req(0, NULL);
1431       }
1432       if (mem->is_Phi() && (mem->in(0) == region)) {
1433         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1434       }
1435       if (address->is_Phi() && address->in(0) == region) {
1436         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1437       }
1438       if (base_is_phi && (base->in(0) == region)) {
1439         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1440         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1441         x->set_req(Address, adr_x);
1442       }
1443     }
1444     // Check for a 'win' on some paths
1445     const Type *t = x->Value(igvn);
1446 
1447     bool singleton = t->singleton();
1448 
1449     // See comments in PhaseIdealLoop::split_thru_phi().
1450     if (singleton && t == Type::TOP) {
1451       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1452     }
1453 
1454     if (singleton) {
1455       x = igvn->makecon(t);
1456     } else {
1457       // We now call Identity to try to simplify the cloned node.
1458       // Note that some Identity methods call phase->type(this).
1459       // Make sure that the type array is big enough for
1460       // our new node, even though we may throw the node away.
1461       // (This tweaking with igvn only works because x is a new node.)
1462       igvn->set_type(x, t);
1463       // If x is a TypeNode, capture any more-precise type permanently into Node
1464       // otherwise it will be not updated during igvn->transform since
1465       // igvn->type(x) is set to x->Value() already.
1466       x->raise_bottom_type(t);
1467       Node *y = x->Identity(igvn);
1468       if (y != x) {
1469         x = y;
1470       } else {
1471         y = igvn->hash_find_insert(x);
1472         if (y) {
1473           x = y;
1474         } else {
1475           // Else x is a new node we are keeping
1476           // We do not need register_new_node_with_optimizer
1477           // because set_type has already been called.
1478           igvn->_worklist.push(x);
1479         }
1480       }
1481     }
1482     if (x != the_clone && the_clone != NULL) {
1483       igvn->remove_dead_node(the_clone);
1484     }
1485     phi->set_req(i, x);
1486   }
1487   // Record Phi
1488   igvn->register_new_node_with_optimizer(phi);
1489   return phi;
1490 }
1491 
1492 //------------------------------Ideal------------------------------------------
1493 // If the load is from Field memory and the pointer is non-null, it might be possible to
1494 // zero out the control input.
1495 // If the offset is constant and the base is an object allocation,
1496 // try to hook me up to the exact initializing store.
1497 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1498   Node* p = MemNode::Ideal_common(phase, can_reshape);
1499   if (p)  return (p == NodeSentinel) ? NULL : p;
1500 
1501   Node* ctrl    = in(MemNode::Control);
1502   Node* address = in(MemNode::Address);
1503   bool progress = false;
1504 
1505   // Skip up past a SafePoint control.  Cannot do this for Stores because
1506   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1507   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1508       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1509     ctrl = ctrl->in(0);
1510     set_req(MemNode::Control,ctrl);
1511     progress = true;
1512   }
1513 
1514   intptr_t ignore = 0;
1515   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1516   if (base != NULL
1517       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1518     // Check for useless control edge in some common special cases
1519     if (in(MemNode::Control) != NULL
1520         && can_remove_control()
1521         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1522         && all_controls_dominate(base, phase->C->start())) {
1523       // A method-invariant, non-null address (constant or 'this' argument).
1524       set_req(MemNode::Control, NULL);
1525       progress = true;
1526     }
1527   }
1528 
1529   Node* mem = in(MemNode::Memory);
1530   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1531 
1532   if (can_reshape && (addr_t != NULL)) {
1533     // try to optimize our memory input
1534     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1535     if (opt_mem != mem) {
1536       set_req(MemNode::Memory, opt_mem);
1537       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1538       return this;
1539     }
1540     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1541     if ((t_oop != NULL) &&
1542         (t_oop->is_known_instance_field() ||
1543          t_oop->is_ptr_to_boxed_value())) {
1544       PhaseIterGVN *igvn = phase->is_IterGVN();
1545       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1546         // Delay this transformation until memory Phi is processed.
1547         phase->is_IterGVN()->_worklist.push(this);
1548         return NULL;
1549       }
1550       // Split instance field load through Phi.
1551       Node* result = split_through_phi(phase);
1552       if (result != NULL) return result;
1553 
1554       if (t_oop->is_ptr_to_boxed_value()) {
1555         Node* result = eliminate_autobox(phase);
1556         if (result != NULL) return result;
1557       }
1558     }
1559   }
1560 
1561   // Is there a dominating load that loads the same value?  Leave
1562   // anything that is not a load of a field/array element (like
1563   // barriers etc.) alone
1564   if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1565     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1566       Node *use = mem->fast_out(i);
1567       if (use != this &&
1568           use->Opcode() == Opcode() &&
1569           use->in(0) != NULL &&
1570           use->in(0) != in(0) &&
1571           use->in(Address) == in(Address)) {
1572         Node* ctl = in(0);
1573         for (int i = 0; i < 10 && ctl != NULL; i++) {
1574           ctl = IfNode::up_one_dom(ctl);
1575           if (ctl == use->in(0)) {
1576             set_req(0, use->in(0));
1577             return this;
1578           }
1579         }
1580       }
1581     }
1582   }
1583 
1584   // Check for prior store with a different base or offset; make Load
1585   // independent.  Skip through any number of them.  Bail out if the stores
1586   // are in an endless dead cycle and report no progress.  This is a key
1587   // transform for Reflection.  However, if after skipping through the Stores
1588   // we can't then fold up against a prior store do NOT do the transform as
1589   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1590   // array memory alive twice: once for the hoisted Load and again after the
1591   // bypassed Store.  This situation only works if EVERYBODY who does
1592   // anti-dependence work knows how to bypass.  I.e. we need all
1593   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1594   // the alias index stuff.  So instead, peek through Stores and IFF we can
1595   // fold up, do so.
1596   Node* prev_mem = find_previous_store(phase);
1597   if (prev_mem != NULL) {
1598     Node* value = can_see_arraycopy_value(prev_mem, phase);
1599     if (value != NULL) {
1600       return value;
1601     }
1602   }
1603   // Steps (a), (b):  Walk past independent stores to find an exact match.
1604   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1605     // (c) See if we can fold up on the spot, but don't fold up here.
1606     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1607     // just return a prior value, which is done by Identity calls.
1608     if (can_see_stored_value(prev_mem, phase)) {
1609       // Make ready for step (d):
1610       set_req(MemNode::Memory, prev_mem);
1611       return this;
1612     }
1613   }
1614 
1615   return progress ? this : NULL;
1616 }
1617 
1618 // Helper to recognize certain Klass fields which are invariant across
1619 // some group of array types (e.g., int[] or all T[] where T < Object).
1620 const Type*
1621 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1622                                  ciKlass* klass) const {
1623   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1624     // The field is Klass::_modifier_flags.  Return its (constant) value.
1625     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1626     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1627     return TypeInt::make(klass->modifier_flags());
1628   }
1629   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1630     // The field is Klass::_access_flags.  Return its (constant) value.
1631     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1632     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1633     return TypeInt::make(klass->access_flags());
1634   }
1635   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1636     // The field is Klass::_layout_helper.  Return its constant value if known.
1637     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1638     return TypeInt::make(klass->layout_helper());
1639   }
1640 
1641   // No match.
1642   return NULL;
1643 }
1644 
1645 //------------------------------Value-----------------------------------------
1646 const Type* LoadNode::Value(PhaseGVN* phase) const {
1647   // Either input is TOP ==> the result is TOP
1648   Node* mem = in(MemNode::Memory);
1649   const Type *t1 = phase->type(mem);
1650   if (t1 == Type::TOP)  return Type::TOP;
1651   Node* adr = in(MemNode::Address);
1652   const TypePtr* tp = phase->type(adr)->isa_ptr();
1653   if (tp == NULL || tp->empty())  return Type::TOP;
1654   int off = tp->offset();
1655   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1656   Compile* C = phase->C;
1657 
1658   // Try to guess loaded type from pointer type
1659   if (tp->isa_aryptr()) {
1660     const TypeAryPtr* ary = tp->is_aryptr();
1661     const Type* t = ary->elem();
1662 
1663     // Determine whether the reference is beyond the header or not, by comparing
1664     // the offset against the offset of the start of the array's data.
1665     // Different array types begin at slightly different offsets (12 vs. 16).
1666     // We choose T_BYTE as an example base type that is least restrictive
1667     // as to alignment, which will therefore produce the smallest
1668     // possible base offset.
1669     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1670     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1671 
1672     // Try to constant-fold a stable array element.
1673     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1674       // Make sure the reference is not into the header and the offset is constant
1675       ciObject* aobj = ary->const_oop();
1676       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1677         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1678         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1679                                                                       stable_dimension,
1680                                                                       memory_type(), is_unsigned());
1681         if (con_type != NULL) {
1682           return con_type;
1683         }
1684       }
1685     }
1686 
1687     // Don't do this for integer types. There is only potential profit if
1688     // the element type t is lower than _type; that is, for int types, if _type is
1689     // more restrictive than t.  This only happens here if one is short and the other
1690     // char (both 16 bits), and in those cases we've made an intentional decision
1691     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1692     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1693     //
1694     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1695     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1696     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1697     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1698     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1699     // In fact, that could have been the original type of p1, and p1 could have
1700     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1701     // expression (LShiftL quux 3) independently optimized to the constant 8.
1702     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1703         && (_type->isa_vect() == NULL)
1704         && t->isa_valuetype() == NULL
1705         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1706       // t might actually be lower than _type, if _type is a unique
1707       // concrete subclass of abstract class t.
1708       if (off_beyond_header) {  // is the offset beyond the header?
1709         const Type* jt = t->join_speculative(_type);
1710         // In any case, do not allow the join, per se, to empty out the type.
1711         if (jt->empty() && !t->empty()) {
1712           // This can happen if a interface-typed array narrows to a class type.
1713           jt = _type;
1714         }
1715 #ifdef ASSERT
1716         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1717           // The pointers in the autobox arrays are always non-null
1718           Node* base = adr->in(AddPNode::Base);
1719           if ((base != NULL) && base->is_DecodeN()) {
1720             // Get LoadN node which loads IntegerCache.cache field
1721             base = base->in(1);
1722           }
1723           if ((base != NULL) && base->is_Con()) {
1724             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1725             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1726               // It could be narrow oop
1727               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1728             }
1729           }
1730         }
1731 #endif
1732         return jt;
1733       }
1734     }
1735   } else if (tp->base() == Type::InstPtr) {
1736     assert( off != Type::OffsetBot ||
1737             // arrays can be cast to Objects
1738             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1739             // unsafe field access may not have a constant offset
1740             C->has_unsafe_access(),
1741             "Field accesses must be precise" );
1742     // For oop loads, we expect the _type to be precise.
1743 
1744     // Optimize loads from constant fields.
1745     const TypeInstPtr* tinst = tp->is_instptr();
1746     ciObject* const_oop = tinst->const_oop();
1747     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1748       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1749       if (con_type != NULL) {
1750         return con_type;
1751       }
1752     }
1753   } else if (tp->base() == Type::KlassPtr) {
1754     assert( off != Type::OffsetBot ||
1755             // arrays can be cast to Objects
1756             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1757             // also allow array-loading from the primary supertype
1758             // array during subtype checks
1759             Opcode() == Op_LoadKlass,
1760             "Field accesses must be precise" );
1761     // For klass/static loads, we expect the _type to be precise
1762   }
1763 
1764   const TypeKlassPtr *tkls = tp->isa_klassptr();
1765   if (tkls != NULL && !StressReflectiveCode) {
1766     ciKlass* klass = tkls->klass();
1767     if (klass->is_loaded() && tkls->klass_is_exact()) {
1768       // We are loading a field from a Klass metaobject whose identity
1769       // is known at compile time (the type is "exact" or "precise").
1770       // Check for fields we know are maintained as constants by the VM.
1771       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1772         // The field is Klass::_super_check_offset.  Return its (constant) value.
1773         // (Folds up type checking code.)
1774         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1775         return TypeInt::make(klass->super_check_offset());
1776       }
1777       // Compute index into primary_supers array
1778       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1779       // Check for overflowing; use unsigned compare to handle the negative case.
1780       if( depth < ciKlass::primary_super_limit() ) {
1781         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1782         // (Folds up type checking code.)
1783         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1784         ciKlass *ss = klass->super_of_depth(depth);
1785         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1786       }
1787       const Type* aift = load_array_final_field(tkls, klass);
1788       if (aift != NULL)  return aift;
1789       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1790         // The field is Klass::_java_mirror.  Return its (constant) value.
1791         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1792         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1793         return TypeInstPtr::make(klass->java_mirror());
1794       }
1795     }
1796 
1797     // We can still check if we are loading from the primary_supers array at a
1798     // shallow enough depth.  Even though the klass is not exact, entries less
1799     // than or equal to its super depth are correct.
1800     if (klass->is_loaded() ) {
1801       ciType *inner = klass;
1802       while( inner->is_obj_array_klass() )
1803         inner = inner->as_obj_array_klass()->base_element_type();
1804       if( inner->is_instance_klass() &&
1805           !inner->as_instance_klass()->flags().is_interface() ) {
1806         // Compute index into primary_supers array
1807         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1808         // Check for overflowing; use unsigned compare to handle the negative case.
1809         if( depth < ciKlass::primary_super_limit() &&
1810             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1811           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1812           // (Folds up type checking code.)
1813           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1814           ciKlass *ss = klass->super_of_depth(depth);
1815           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1816         }
1817       }
1818     }
1819 
1820     // If the type is enough to determine that the thing is not an array,
1821     // we can give the layout_helper a positive interval type.
1822     // This will help short-circuit some reflective code.
1823     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1824         && !klass->is_array_klass() // not directly typed as an array
1825         && !klass->is_interface()  // specifically not Serializable & Cloneable
1826         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1827         ) {
1828       // Note:  When interfaces are reliable, we can narrow the interface
1829       // test to (klass != Serializable && klass != Cloneable).
1830       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1831       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1832       // The key property of this type is that it folds up tests
1833       // for array-ness, since it proves that the layout_helper is positive.
1834       // Thus, a generic value like the basic object layout helper works fine.
1835       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1836     }
1837   }
1838 
1839   // If we are loading from a freshly-allocated object, produce a zero,
1840   // if the load is provably beyond the header of the object.
1841   // (Also allow a variable load from a fresh array to produce zero.)
1842   const TypeOopPtr *tinst = tp->isa_oopptr();
1843   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1844   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1845   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1846     Node* value = can_see_stored_value(mem,phase);
1847     if (value != NULL && value->is_Con()) {
1848       assert(value->bottom_type()->higher_equal(_type),"sanity");
1849       return value->bottom_type();
1850     }
1851   }
1852 
1853   if (is_instance) {
1854     // If we have an instance type and our memory input is the
1855     // programs's initial memory state, there is no matching store,
1856     // so just return a zero of the appropriate type
1857     Node *mem = in(MemNode::Memory);
1858     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1859       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1860       return Type::get_zero_type(_type->basic_type());
1861     }
1862   }
1863   return _type;
1864 }
1865 
1866 //------------------------------match_edge-------------------------------------
1867 // Do we Match on this edge index or not?  Match only the address.
1868 uint LoadNode::match_edge(uint idx) const {
1869   return idx == MemNode::Address;
1870 }
1871 
1872 //--------------------------LoadBNode::Ideal--------------------------------------
1873 //
1874 //  If the previous store is to the same address as this load,
1875 //  and the value stored was larger than a byte, replace this load
1876 //  with the value stored truncated to a byte.  If no truncation is
1877 //  needed, the replacement is done in LoadNode::Identity().
1878 //
1879 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1880   Node* mem = in(MemNode::Memory);
1881   Node* value = can_see_stored_value(mem,phase);
1882   if( value && !phase->type(value)->higher_equal( _type ) ) {
1883     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1884     return new RShiftINode(result, phase->intcon(24));
1885   }
1886   // Identity call will handle the case where truncation is not needed.
1887   return LoadNode::Ideal(phase, can_reshape);
1888 }
1889 
1890 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1891   Node* mem = in(MemNode::Memory);
1892   Node* value = can_see_stored_value(mem,phase);
1893   if (value != NULL && value->is_Con() &&
1894       !value->bottom_type()->higher_equal(_type)) {
1895     // If the input to the store does not fit with the load's result type,
1896     // it must be truncated. We can't delay until Ideal call since
1897     // a singleton Value is needed for split_thru_phi optimization.
1898     int con = value->get_int();
1899     return TypeInt::make((con << 24) >> 24);
1900   }
1901   return LoadNode::Value(phase);
1902 }
1903 
1904 //--------------------------LoadUBNode::Ideal-------------------------------------
1905 //
1906 //  If the previous store is to the same address as this load,
1907 //  and the value stored was larger than a byte, replace this load
1908 //  with the value stored truncated to a byte.  If no truncation is
1909 //  needed, the replacement is done in LoadNode::Identity().
1910 //
1911 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1912   Node* mem = in(MemNode::Memory);
1913   Node* value = can_see_stored_value(mem, phase);
1914   if (value && !phase->type(value)->higher_equal(_type))
1915     return new AndINode(value, phase->intcon(0xFF));
1916   // Identity call will handle the case where truncation is not needed.
1917   return LoadNode::Ideal(phase, can_reshape);
1918 }
1919 
1920 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1921   Node* mem = in(MemNode::Memory);
1922   Node* value = can_see_stored_value(mem,phase);
1923   if (value != NULL && value->is_Con() &&
1924       !value->bottom_type()->higher_equal(_type)) {
1925     // If the input to the store does not fit with the load's result type,
1926     // it must be truncated. We can't delay until Ideal call since
1927     // a singleton Value is needed for split_thru_phi optimization.
1928     int con = value->get_int();
1929     return TypeInt::make(con & 0xFF);
1930   }
1931   return LoadNode::Value(phase);
1932 }
1933 
1934 //--------------------------LoadUSNode::Ideal-------------------------------------
1935 //
1936 //  If the previous store is to the same address as this load,
1937 //  and the value stored was larger than a char, replace this load
1938 //  with the value stored truncated to a char.  If no truncation is
1939 //  needed, the replacement is done in LoadNode::Identity().
1940 //
1941 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1942   Node* mem = in(MemNode::Memory);
1943   Node* value = can_see_stored_value(mem,phase);
1944   if( value && !phase->type(value)->higher_equal( _type ) )
1945     return new AndINode(value,phase->intcon(0xFFFF));
1946   // Identity call will handle the case where truncation is not needed.
1947   return LoadNode::Ideal(phase, can_reshape);
1948 }
1949 
1950 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1951   Node* mem = in(MemNode::Memory);
1952   Node* value = can_see_stored_value(mem,phase);
1953   if (value != NULL && value->is_Con() &&
1954       !value->bottom_type()->higher_equal(_type)) {
1955     // If the input to the store does not fit with the load's result type,
1956     // it must be truncated. We can't delay until Ideal call since
1957     // a singleton Value is needed for split_thru_phi optimization.
1958     int con = value->get_int();
1959     return TypeInt::make(con & 0xFFFF);
1960   }
1961   return LoadNode::Value(phase);
1962 }
1963 
1964 //--------------------------LoadSNode::Ideal--------------------------------------
1965 //
1966 //  If the previous store is to the same address as this load,
1967 //  and the value stored was larger than a short, replace this load
1968 //  with the value stored truncated to a short.  If no truncation is
1969 //  needed, the replacement is done in LoadNode::Identity().
1970 //
1971 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1972   Node* mem = in(MemNode::Memory);
1973   Node* value = can_see_stored_value(mem,phase);
1974   if( value && !phase->type(value)->higher_equal( _type ) ) {
1975     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
1976     return new RShiftINode(result, phase->intcon(16));
1977   }
1978   // Identity call will handle the case where truncation is not needed.
1979   return LoadNode::Ideal(phase, can_reshape);
1980 }
1981 
1982 const Type* LoadSNode::Value(PhaseGVN* phase) const {
1983   Node* mem = in(MemNode::Memory);
1984   Node* value = can_see_stored_value(mem,phase);
1985   if (value != NULL && value->is_Con() &&
1986       !value->bottom_type()->higher_equal(_type)) {
1987     // If the input to the store does not fit with the load's result type,
1988     // it must be truncated. We can't delay until Ideal call since
1989     // a singleton Value is needed for split_thru_phi optimization.
1990     int con = value->get_int();
1991     return TypeInt::make((con << 16) >> 16);
1992   }
1993   return LoadNode::Value(phase);
1994 }
1995 
1996 //=============================================================================
1997 //----------------------------LoadKlassNode::make------------------------------
1998 // Polymorphic factory method:
1999 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2000   // sanity check the alias category against the created node type
2001   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2002   assert(adr_type != NULL, "expecting TypeKlassPtr");
2003 #ifdef _LP64
2004   if (adr_type->is_ptr_to_narrowklass()) {
2005     assert(UseCompressedClassPointers, "no compressed klasses");
2006     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2007     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2008   }
2009 #endif
2010   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2011   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2012 }
2013 
2014 //------------------------------Value------------------------------------------
2015 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2016   return klass_value_common(phase);
2017 }
2018 
2019 // In most cases, LoadKlassNode does not have the control input set. If the control
2020 // input is set, it must not be removed (by LoadNode::Ideal()).
2021 bool LoadKlassNode::can_remove_control() const {
2022   return false;
2023 }
2024 
2025 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2026   // Either input is TOP ==> the result is TOP
2027   const Type *t1 = phase->type( in(MemNode::Memory) );
2028   if (t1 == Type::TOP)  return Type::TOP;
2029   Node *adr = in(MemNode::Address);
2030   const Type *t2 = phase->type( adr );
2031   if (t2 == Type::TOP)  return Type::TOP;
2032   const TypePtr *tp = t2->is_ptr();
2033   if (TypePtr::above_centerline(tp->ptr()) ||
2034       tp->ptr() == TypePtr::Null)  return Type::TOP;
2035 
2036   // Return a more precise klass, if possible
2037   const TypeInstPtr *tinst = tp->isa_instptr();
2038   if (tinst != NULL) {
2039     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2040     int offset = tinst->offset();
2041     if (ik == phase->C->env()->Class_klass()
2042         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2043             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2044       // We are loading a special hidden field from a Class mirror object,
2045       // the field which points to the VM's Klass metaobject.
2046       ciType* t = tinst->java_mirror_type();
2047       // java_mirror_type returns non-null for compile-time Class constants.
2048       if (t != NULL) {
2049         // constant oop => constant klass
2050         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2051           if (t->is_void()) {
2052             // We cannot create a void array.  Since void is a primitive type return null
2053             // klass.  Users of this result need to do a null check on the returned klass.
2054             return TypePtr::NULL_PTR;
2055           }
2056           return TypeKlassPtr::make(ciArrayKlass::make(t));
2057         }
2058         if (!t->is_klass()) {
2059           // a primitive Class (e.g., int.class) has NULL for a klass field
2060           return TypePtr::NULL_PTR;
2061         }
2062         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2063         return TypeKlassPtr::make(t->as_klass());
2064       }
2065       // non-constant mirror, so we can't tell what's going on
2066     }
2067     if( !ik->is_loaded() )
2068       return _type;             // Bail out if not loaded
2069     if (offset == oopDesc::klass_offset_in_bytes()) {
2070       if (tinst->klass_is_exact()) {
2071         return TypeKlassPtr::make(ik);
2072       }
2073       // See if we can become precise: no subklasses and no interface
2074       // (Note:  We need to support verified interfaces.)
2075       if (!ik->is_interface() && !ik->has_subklass()) {
2076         //assert(!UseExactTypes, "this code should be useless with exact types");
2077         // Add a dependence; if any subclass added we need to recompile
2078         if (!ik->is_final()) {
2079           // %%% should use stronger assert_unique_concrete_subtype instead
2080           phase->C->dependencies()->assert_leaf_type(ik);
2081         }
2082         // Return precise klass
2083         return TypeKlassPtr::make(ik);
2084       }
2085 
2086       // Return root of possible klass
2087       return TypeKlassPtr::make(TypePtr::NotNull, ik, Type::Offset(0));
2088     }
2089   }
2090 
2091   // Check for loading klass from an array
2092   const TypeAryPtr *tary = tp->isa_aryptr();
2093   if( tary != NULL ) {
2094     ciKlass *tary_klass = tary->klass();
2095     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2096         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2097       if (tary->klass_is_exact()) {
2098         return TypeKlassPtr::make(tary_klass);
2099       }
2100       ciArrayKlass *ak = tary->klass()->as_array_klass();
2101       // If the klass is an object array, we defer the question to the
2102       // array component klass.
2103       if( ak->is_obj_array_klass() ) {
2104         assert( ak->is_loaded(), "" );
2105         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2106         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2107           ciInstanceKlass* ik = base_k->as_instance_klass();
2108           // See if we can become precise: no subklasses and no interface
2109           if (!ik->is_interface() && !ik->has_subklass()) {
2110             //assert(!UseExactTypes, "this code should be useless with exact types");
2111             // Add a dependence; if any subclass added we need to recompile
2112             if (!ik->is_final()) {
2113               phase->C->dependencies()->assert_leaf_type(ik);
2114             }
2115             // Return precise array klass
2116             return TypeKlassPtr::make(ak);
2117           }
2118         }
2119         return TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
2120       } else {                  // Found a type-array?
2121         //assert(!UseExactTypes, "this code should be useless with exact types");
2122         assert( ak->is_type_array_klass(), "" );
2123         return TypeKlassPtr::make(ak); // These are always precise
2124       }
2125     }
2126   }
2127 
2128   // Check for loading klass from an array klass
2129   const TypeKlassPtr *tkls = tp->isa_klassptr();
2130   if (tkls != NULL && !StressReflectiveCode) {
2131     ciKlass* klass = tkls->klass();
2132     if( !klass->is_loaded() )
2133       return _type;             // Bail out if not loaded
2134     if( klass->is_obj_array_klass() &&
2135         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2136       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2137       // // Always returning precise element type is incorrect,
2138       // // e.g., element type could be object and array may contain strings
2139       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2140 
2141       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2142       // according to the element type's subclassing.
2143       return TypeKlassPtr::make(tkls->ptr(), elem, Type::Offset(0));
2144     }
2145     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2146         tkls->offset() == in_bytes(Klass::super_offset())) {
2147       ciKlass* sup = klass->as_instance_klass()->super();
2148       // The field is Klass::_super.  Return its (constant) value.
2149       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2150       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2151     }
2152   }
2153 
2154   // Bailout case
2155   return LoadNode::Value(phase);
2156 }
2157 
2158 //------------------------------Identity---------------------------------------
2159 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2160 // Also feed through the klass in Allocate(...klass...)._klass.
2161 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2162   return klass_identity_common(phase);
2163 }
2164 
2165 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2166   Node* x = LoadNode::Identity(phase);
2167   if (x != this)  return x;
2168 
2169   // Take apart the address into an oop and and offset.
2170   // Return 'this' if we cannot.
2171   Node*    adr    = in(MemNode::Address);
2172   intptr_t offset = 0;
2173   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2174   if (base == NULL)     return this;
2175   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2176   if (toop == NULL)     return this;
2177 
2178   // We can fetch the klass directly through an AllocateNode.
2179   // This works even if the klass is not constant (clone or newArray).
2180   if (offset == oopDesc::klass_offset_in_bytes()) {
2181     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2182     if (allocated_klass != NULL) {
2183       return allocated_klass;
2184     }
2185   }
2186 
2187   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2188   // See inline_native_Class_query for occurrences of these patterns.
2189   // Java Example:  x.getClass().isAssignableFrom(y)
2190   //
2191   // This improves reflective code, often making the Class
2192   // mirror go completely dead.  (Current exception:  Class
2193   // mirrors may appear in debug info, but we could clean them out by
2194   // introducing a new debug info operator for Klass*.java_mirror).
2195   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2196       && offset == java_lang_Class::klass_offset_in_bytes()) {
2197     // We are loading a special hidden field from a Class mirror,
2198     // the field which points to its Klass or ArrayKlass metaobject.
2199     if (base->is_Load()) {
2200       Node* adr2 = base->in(MemNode::Address);
2201       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2202       if (tkls != NULL && !tkls->empty()
2203           && (tkls->klass()->is_instance_klass() ||
2204               tkls->klass()->is_array_klass())
2205           && adr2->is_AddP()
2206           ) {
2207         int mirror_field = in_bytes(Klass::java_mirror_offset());
2208         if (tkls->offset() == mirror_field) {
2209           return adr2->in(AddPNode::Base);
2210         }
2211       }
2212     }
2213   }
2214 
2215   return this;
2216 }
2217 
2218 
2219 //------------------------------Value------------------------------------------
2220 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2221   const Type *t = klass_value_common(phase);
2222   if (t == Type::TOP)
2223     return t;
2224 
2225   return t->make_narrowklass();
2226 }
2227 
2228 //------------------------------Identity---------------------------------------
2229 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2230 // Also feed through the klass in Allocate(...klass...)._klass.
2231 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2232   Node *x = klass_identity_common(phase);
2233 
2234   const Type *t = phase->type( x );
2235   if( t == Type::TOP ) return x;
2236   if( t->isa_narrowklass()) return x;
2237   assert (!t->isa_narrowoop(), "no narrow oop here");
2238 
2239   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2240 }
2241 
2242 //------------------------------Value-----------------------------------------
2243 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2244   // Either input is TOP ==> the result is TOP
2245   const Type *t1 = phase->type( in(MemNode::Memory) );
2246   if( t1 == Type::TOP ) return Type::TOP;
2247   Node *adr = in(MemNode::Address);
2248   const Type *t2 = phase->type( adr );
2249   if( t2 == Type::TOP ) return Type::TOP;
2250   const TypePtr *tp = t2->is_ptr();
2251   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2252   const TypeAryPtr *tap = tp->isa_aryptr();
2253   if( !tap ) return _type;
2254   return tap->size();
2255 }
2256 
2257 //-------------------------------Ideal---------------------------------------
2258 // Feed through the length in AllocateArray(...length...)._length.
2259 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2260   Node* p = MemNode::Ideal_common(phase, can_reshape);
2261   if (p)  return (p == NodeSentinel) ? NULL : p;
2262 
2263   // Take apart the address into an oop and and offset.
2264   // Return 'this' if we cannot.
2265   Node*    adr    = in(MemNode::Address);
2266   intptr_t offset = 0;
2267   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2268   if (base == NULL)     return NULL;
2269   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2270   if (tary == NULL)     return NULL;
2271 
2272   // We can fetch the length directly through an AllocateArrayNode.
2273   // This works even if the length is not constant (clone or newArray).
2274   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2275     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2276     if (alloc != NULL) {
2277       Node* allocated_length = alloc->Ideal_length();
2278       Node* len = alloc->make_ideal_length(tary, phase);
2279       if (allocated_length != len) {
2280         // New CastII improves on this.
2281         return len;
2282       }
2283     }
2284   }
2285 
2286   return NULL;
2287 }
2288 
2289 //------------------------------Identity---------------------------------------
2290 // Feed through the length in AllocateArray(...length...)._length.
2291 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2292   Node* x = LoadINode::Identity(phase);
2293   if (x != this)  return x;
2294 
2295   // Take apart the address into an oop and and offset.
2296   // Return 'this' if we cannot.
2297   Node*    adr    = in(MemNode::Address);
2298   intptr_t offset = 0;
2299   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2300   if (base == NULL)     return this;
2301   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2302   if (tary == NULL)     return this;
2303 
2304   // We can fetch the length directly through an AllocateArrayNode.
2305   // This works even if the length is not constant (clone or newArray).
2306   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2307     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2308     if (alloc != NULL) {
2309       Node* allocated_length = alloc->Ideal_length();
2310       // Do not allow make_ideal_length to allocate a CastII node.
2311       Node* len = alloc->make_ideal_length(tary, phase, false);
2312       if (allocated_length == len) {
2313         // Return allocated_length only if it would not be improved by a CastII.
2314         return allocated_length;
2315       }
2316     }
2317   }
2318 
2319   return this;
2320 
2321 }
2322 
2323 //=============================================================================
2324 //---------------------------StoreNode::make-----------------------------------
2325 // Polymorphic factory method:
2326 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2327   assert((mo == unordered || mo == release), "unexpected");
2328   Compile* C = gvn.C;
2329   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2330          ctl != NULL, "raw memory operations should have control edge");
2331 
2332   switch (bt) {
2333   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2334   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2335   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2336   case T_CHAR:
2337   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2338   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2339   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2340   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2341   case T_METADATA:
2342   case T_ADDRESS:
2343   case T_VALUETYPE:
2344   case T_OBJECT:
2345 #ifdef _LP64
2346     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2347       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2348       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2349     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2350                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2351                 adr->bottom_type()->isa_rawptr())) {
2352       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2353       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2354     }
2355 #endif
2356     {
2357       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2358     }
2359   }
2360   ShouldNotReachHere();
2361   return (StoreNode*)NULL;
2362 }
2363 
2364 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2365   bool require_atomic = true;
2366   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2367 }
2368 
2369 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2370   bool require_atomic = true;
2371   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2372 }
2373 
2374 
2375 //--------------------------bottom_type----------------------------------------
2376 const Type *StoreNode::bottom_type() const {
2377   return Type::MEMORY;
2378 }
2379 
2380 //------------------------------hash-------------------------------------------
2381 uint StoreNode::hash() const {
2382   // unroll addition of interesting fields
2383   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2384 
2385   // Since they are not commoned, do not hash them:
2386   return NO_HASH;
2387 }
2388 
2389 //------------------------------Ideal------------------------------------------
2390 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2391 // When a store immediately follows a relevant allocation/initialization,
2392 // try to capture it into the initialization, or hoist it above.
2393 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2394   Node* p = MemNode::Ideal_common(phase, can_reshape);
2395   if (p)  return (p == NodeSentinel) ? NULL : p;
2396 
2397   Node* mem     = in(MemNode::Memory);
2398   Node* address = in(MemNode::Address);
2399   // Back-to-back stores to same address?  Fold em up.  Generally
2400   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2401   // since they must follow each StoreP operation.  Redundant StoreCMs
2402   // are eliminated just before matching in final_graph_reshape.
2403   {
2404     Node* st = mem;
2405     // If Store 'st' has more than one use, we cannot fold 'st' away.
2406     // For example, 'st' might be the final state at a conditional
2407     // return.  Or, 'st' might be used by some node which is live at
2408     // the same time 'st' is live, which might be unschedulable.  So,
2409     // require exactly ONE user until such time as we clone 'mem' for
2410     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2411     // true).
2412     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2413       // Looking at a dead closed cycle of memory?
2414       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2415       assert(Opcode() == st->Opcode() ||
2416              st->Opcode() == Op_StoreVector ||
2417              Opcode() == Op_StoreVector ||
2418              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2419              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2420              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2421              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2422 
2423       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2424           st->as_Store()->memory_size() <= this->memory_size()) {
2425         Node* use = st->raw_out(0);
2426         phase->igvn_rehash_node_delayed(use);
2427         if (can_reshape) {
2428           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2429         } else {
2430           // It's OK to do this in the parser, since DU info is always accurate,
2431           // and the parser always refers to nodes via SafePointNode maps.
2432           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2433         }
2434         return this;
2435       }
2436       st = st->in(MemNode::Memory);
2437     }
2438   }
2439 
2440 
2441   // Capture an unaliased, unconditional, simple store into an initializer.
2442   // Or, if it is independent of the allocation, hoist it above the allocation.
2443   if (ReduceFieldZeroing && /*can_reshape &&*/
2444       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2445     InitializeNode* init = mem->in(0)->as_Initialize();
2446     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2447     if (offset > 0) {
2448       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2449       // If the InitializeNode captured me, it made a raw copy of me,
2450       // and I need to disappear.
2451       if (moved != NULL) {
2452         // %%% hack to ensure that Ideal returns a new node:
2453         mem = MergeMemNode::make(mem);
2454         return mem;             // fold me away
2455       }
2456     }
2457   }
2458 
2459   return NULL;                  // No further progress
2460 }
2461 
2462 //------------------------------Value-----------------------------------------
2463 const Type* StoreNode::Value(PhaseGVN* phase) const {
2464   // Either input is TOP ==> the result is TOP
2465   const Type *t1 = phase->type( in(MemNode::Memory) );
2466   if( t1 == Type::TOP ) return Type::TOP;
2467   const Type *t2 = phase->type( in(MemNode::Address) );
2468   if( t2 == Type::TOP ) return Type::TOP;
2469   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2470   if( t3 == Type::TOP ) return Type::TOP;
2471   return Type::MEMORY;
2472 }
2473 
2474 //------------------------------Identity---------------------------------------
2475 // Remove redundant stores:
2476 //   Store(m, p, Load(m, p)) changes to m.
2477 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2478 Node* StoreNode::Identity(PhaseGVN* phase) {
2479   Node* mem = in(MemNode::Memory);
2480   Node* adr = in(MemNode::Address);
2481   Node* val = in(MemNode::ValueIn);
2482 
2483   // Load then Store?  Then the Store is useless
2484   if (val->is_Load() &&
2485       val->in(MemNode::Address)->eqv_uncast(adr) &&
2486       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2487       val->as_Load()->store_Opcode() == Opcode()) {
2488     return mem;
2489   }
2490 
2491   // Two stores in a row of the same value?
2492   if (mem->is_Store() &&
2493       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2494       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2495       mem->Opcode() == Opcode()) {
2496     return mem;
2497   }
2498 
2499   // Store of zero anywhere into a freshly-allocated object?
2500   // Then the store is useless.
2501   // (It must already have been captured by the InitializeNode.)
2502   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2503     // a newly allocated object is already all-zeroes everywhere
2504     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2505       return mem;
2506     }
2507 
2508     // the store may also apply to zero-bits in an earlier object
2509     Node* prev_mem = find_previous_store(phase);
2510     // Steps (a), (b):  Walk past independent stores to find an exact match.
2511     if (prev_mem != NULL) {
2512       Node* prev_val = can_see_stored_value(prev_mem, phase);
2513       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2514         // prev_val and val might differ by a cast; it would be good
2515         // to keep the more informative of the two.
2516         return mem;
2517       }
2518     }
2519   }
2520 
2521   return this;
2522 }
2523 
2524 //------------------------------match_edge-------------------------------------
2525 // Do we Match on this edge index or not?  Match only memory & value
2526 uint StoreNode::match_edge(uint idx) const {
2527   return idx == MemNode::Address || idx == MemNode::ValueIn;
2528 }
2529 
2530 //------------------------------cmp--------------------------------------------
2531 // Do not common stores up together.  They generally have to be split
2532 // back up anyways, so do not bother.
2533 uint StoreNode::cmp( const Node &n ) const {
2534   return (&n == this);          // Always fail except on self
2535 }
2536 
2537 //------------------------------Ideal_masked_input-----------------------------
2538 // Check for a useless mask before a partial-word store
2539 // (StoreB ... (AndI valIn conIa) )
2540 // If (conIa & mask == mask) this simplifies to
2541 // (StoreB ... (valIn) )
2542 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2543   Node *val = in(MemNode::ValueIn);
2544   if( val->Opcode() == Op_AndI ) {
2545     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2546     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2547       set_req(MemNode::ValueIn, val->in(1));
2548       return this;
2549     }
2550   }
2551   return NULL;
2552 }
2553 
2554 
2555 //------------------------------Ideal_sign_extended_input----------------------
2556 // Check for useless sign-extension before a partial-word store
2557 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2558 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2559 // (StoreB ... (valIn) )
2560 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2561   Node *val = in(MemNode::ValueIn);
2562   if( val->Opcode() == Op_RShiftI ) {
2563     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2564     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2565       Node *shl = val->in(1);
2566       if( shl->Opcode() == Op_LShiftI ) {
2567         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2568         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2569           set_req(MemNode::ValueIn, shl->in(1));
2570           return this;
2571         }
2572       }
2573     }
2574   }
2575   return NULL;
2576 }
2577 
2578 //------------------------------value_never_loaded-----------------------------------
2579 // Determine whether there are any possible loads of the value stored.
2580 // For simplicity, we actually check if there are any loads from the
2581 // address stored to, not just for loads of the value stored by this node.
2582 //
2583 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2584   Node *adr = in(Address);
2585   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2586   if (adr_oop == NULL)
2587     return false;
2588   if (!adr_oop->is_known_instance_field())
2589     return false; // if not a distinct instance, there may be aliases of the address
2590   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2591     Node *use = adr->fast_out(i);
2592     if (use->is_Load() || use->is_LoadStore()) {
2593       return false;
2594     }
2595   }
2596   return true;
2597 }
2598 
2599 //=============================================================================
2600 //------------------------------Ideal------------------------------------------
2601 // If the store is from an AND mask that leaves the low bits untouched, then
2602 // we can skip the AND operation.  If the store is from a sign-extension
2603 // (a left shift, then right shift) we can skip both.
2604 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2605   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2606   if( progress != NULL ) return progress;
2607 
2608   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2609   if( progress != NULL ) return progress;
2610 
2611   // Finally check the default case
2612   return StoreNode::Ideal(phase, can_reshape);
2613 }
2614 
2615 //=============================================================================
2616 //------------------------------Ideal------------------------------------------
2617 // If the store is from an AND mask that leaves the low bits untouched, then
2618 // we can skip the AND operation
2619 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2620   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2621   if( progress != NULL ) return progress;
2622 
2623   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2624   if( progress != NULL ) return progress;
2625 
2626   // Finally check the default case
2627   return StoreNode::Ideal(phase, can_reshape);
2628 }
2629 
2630 //=============================================================================
2631 //------------------------------Identity---------------------------------------
2632 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2633   // No need to card mark when storing a null ptr
2634   Node* my_store = in(MemNode::OopStore);
2635   if (my_store->is_Store()) {
2636     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2637     if( t1 == TypePtr::NULL_PTR ) {
2638       return in(MemNode::Memory);
2639     }
2640   }
2641   return this;
2642 }
2643 
2644 //=============================================================================
2645 //------------------------------Ideal---------------------------------------
2646 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2647   Node* progress = StoreNode::Ideal(phase, can_reshape);
2648   if (progress != NULL) return progress;
2649 
2650   Node* my_store = in(MemNode::OopStore);
2651   if (my_store->is_MergeMem()) {
2652     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2653     set_req(MemNode::OopStore, mem);
2654     return this;
2655   }
2656 
2657   return NULL;
2658 }
2659 
2660 //------------------------------Value-----------------------------------------
2661 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2662   // Either input is TOP ==> the result is TOP
2663   const Type *t = phase->type( in(MemNode::Memory) );
2664   if( t == Type::TOP ) return Type::TOP;
2665   t = phase->type( in(MemNode::Address) );
2666   if( t == Type::TOP ) return Type::TOP;
2667   t = phase->type( in(MemNode::ValueIn) );
2668   if( t == Type::TOP ) return Type::TOP;
2669   // If extra input is TOP ==> the result is TOP
2670   t = phase->type( in(MemNode::OopStore) );
2671   if( t == Type::TOP ) return Type::TOP;
2672 
2673   return StoreNode::Value( phase );
2674 }
2675 
2676 
2677 //=============================================================================
2678 //----------------------------------SCMemProjNode------------------------------
2679 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2680 {
2681   return bottom_type();
2682 }
2683 
2684 //=============================================================================
2685 //----------------------------------LoadStoreNode------------------------------
2686 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2687   : Node(required),
2688     _type(rt),
2689     _adr_type(at)
2690 {
2691   init_req(MemNode::Control, c  );
2692   init_req(MemNode::Memory , mem);
2693   init_req(MemNode::Address, adr);
2694   init_req(MemNode::ValueIn, val);
2695   init_class_id(Class_LoadStore);
2696 }
2697 
2698 uint LoadStoreNode::ideal_reg() const {
2699   return _type->ideal_reg();
2700 }
2701 
2702 bool LoadStoreNode::result_not_used() const {
2703   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2704     Node *x = fast_out(i);
2705     if (x->Opcode() == Op_SCMemProj) continue;
2706     return false;
2707   }
2708   return true;
2709 }
2710 
2711 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2712 
2713 //=============================================================================
2714 //----------------------------------LoadStoreConditionalNode--------------------
2715 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2716   init_req(ExpectedIn, ex );
2717 }
2718 
2719 //=============================================================================
2720 //-------------------------------adr_type--------------------------------------
2721 const TypePtr* ClearArrayNode::adr_type() const {
2722   Node *adr = in(3);
2723   if (adr == NULL)  return NULL; // node is dead
2724   return MemNode::calculate_adr_type(adr->bottom_type());
2725 }
2726 
2727 //------------------------------match_edge-------------------------------------
2728 // Do we Match on this edge index or not?  Do not match memory
2729 uint ClearArrayNode::match_edge(uint idx) const {
2730   return idx > 1;
2731 }
2732 
2733 //------------------------------Identity---------------------------------------
2734 // Clearing a zero length array does nothing
2735 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2736   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2737 }
2738 
2739 //------------------------------Idealize---------------------------------------
2740 // Clearing a short array is faster with stores
2741 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2742   // Already know this is a large node, do not try to ideal it
2743   if (!IdealizeClearArrayNode || _is_large) return NULL;
2744 
2745   const int unit = BytesPerLong;
2746   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2747   if (!t)  return NULL;
2748   if (!t->is_con())  return NULL;
2749   intptr_t raw_count = t->get_con();
2750   intptr_t size = raw_count;
2751   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2752   // Clearing nothing uses the Identity call.
2753   // Negative clears are possible on dead ClearArrays
2754   // (see jck test stmt114.stmt11402.val).
2755   if (size <= 0 || size % unit != 0)  return NULL;
2756   intptr_t count = size / unit;
2757   // Length too long; communicate this to matchers and assemblers.
2758   // Assemblers are responsible to produce fast hardware clears for it.
2759   if (size > InitArrayShortSize) {
2760     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2761   }
2762   Node *mem = in(1);
2763   if( phase->type(mem)==Type::TOP ) return NULL;
2764   Node *adr = in(3);
2765   const Type* at = phase->type(adr);
2766   if( at==Type::TOP ) return NULL;
2767   const TypePtr* atp = at->isa_ptr();
2768   // adjust atp to be the correct array element address type
2769   if (atp == NULL)  atp = TypePtr::BOTTOM;
2770   else              atp = atp->add_offset(Type::OffsetBot);
2771   // Get base for derived pointer purposes
2772   if( adr->Opcode() != Op_AddP ) Unimplemented();
2773   Node *base = adr->in(1);
2774 
2775   Node *zero = phase->makecon(TypeLong::ZERO);
2776   Node *off  = phase->MakeConX(BytesPerLong);
2777   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2778   count--;
2779   while( count-- ) {
2780     mem = phase->transform(mem);
2781     adr = phase->transform(new AddPNode(base,adr,off));
2782     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2783   }
2784   return mem;
2785 }
2786 
2787 //----------------------------step_through----------------------------------
2788 // Return allocation input memory edge if it is different instance
2789 // or itself if it is the one we are looking for.
2790 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2791   Node* n = *np;
2792   assert(n->is_ClearArray(), "sanity");
2793   intptr_t offset;
2794   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2795   // This method is called only before Allocate nodes are expanded
2796   // during macro nodes expansion. Before that ClearArray nodes are
2797   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2798   // Allocate nodes are expanded) which follows allocations.
2799   assert(alloc != NULL, "should have allocation");
2800   if (alloc->_idx == instance_id) {
2801     // Can not bypass initialization of the instance we are looking for.
2802     return false;
2803   }
2804   // Otherwise skip it.
2805   InitializeNode* init = alloc->initialization();
2806   if (init != NULL)
2807     *np = init->in(TypeFunc::Memory);
2808   else
2809     *np = alloc->in(TypeFunc::Memory);
2810   return true;
2811 }
2812 
2813 //----------------------------clear_memory-------------------------------------
2814 // Generate code to initialize object storage to zero.
2815 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2816                                    intptr_t start_offset,
2817                                    Node* end_offset,
2818                                    PhaseGVN* phase) {
2819   intptr_t offset = start_offset;
2820 
2821   int unit = BytesPerLong;
2822   if ((offset % unit) != 0) {
2823     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2824     adr = phase->transform(adr);
2825     const TypePtr* atp = TypeRawPtr::BOTTOM;
2826     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2827     mem = phase->transform(mem);
2828     offset += BytesPerInt;
2829   }
2830   assert((offset % unit) == 0, "");
2831 
2832   // Initialize the remaining stuff, if any, with a ClearArray.
2833   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2834 }
2835 
2836 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2837                                    Node* start_offset,
2838                                    Node* end_offset,
2839                                    PhaseGVN* phase) {
2840   if (start_offset == end_offset) {
2841     // nothing to do
2842     return mem;
2843   }
2844 
2845   int unit = BytesPerLong;
2846   Node* zbase = start_offset;
2847   Node* zend  = end_offset;
2848 
2849   // Scale to the unit required by the CPU:
2850   if (!Matcher::init_array_count_is_in_bytes) {
2851     Node* shift = phase->intcon(exact_log2(unit));
2852     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2853     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2854   }
2855 
2856   // Bulk clear double-words
2857   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2858   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2859   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2860   return phase->transform(mem);
2861 }
2862 
2863 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2864                                    intptr_t start_offset,
2865                                    intptr_t end_offset,
2866                                    PhaseGVN* phase) {
2867   if (start_offset == end_offset) {
2868     // nothing to do
2869     return mem;
2870   }
2871 
2872   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2873   intptr_t done_offset = end_offset;
2874   if ((done_offset % BytesPerLong) != 0) {
2875     done_offset -= BytesPerInt;
2876   }
2877   if (done_offset > start_offset) {
2878     mem = clear_memory(ctl, mem, dest,
2879                        start_offset, phase->MakeConX(done_offset), phase);
2880   }
2881   if (done_offset < end_offset) { // emit the final 32-bit store
2882     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2883     adr = phase->transform(adr);
2884     const TypePtr* atp = TypeRawPtr::BOTTOM;
2885     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2886     mem = phase->transform(mem);
2887     done_offset += BytesPerInt;
2888   }
2889   assert(done_offset == end_offset, "");
2890   return mem;
2891 }
2892 
2893 //=============================================================================
2894 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2895   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2896     _adr_type(C->get_adr_type(alias_idx))
2897 {
2898   init_class_id(Class_MemBar);
2899   Node* top = C->top();
2900   init_req(TypeFunc::I_O,top);
2901   init_req(TypeFunc::FramePtr,top);
2902   init_req(TypeFunc::ReturnAdr,top);
2903   if (precedent != NULL)
2904     init_req(TypeFunc::Parms, precedent);
2905 }
2906 
2907 //------------------------------cmp--------------------------------------------
2908 uint MemBarNode::hash() const { return NO_HASH; }
2909 uint MemBarNode::cmp( const Node &n ) const {
2910   return (&n == this);          // Always fail except on self
2911 }
2912 
2913 //------------------------------make-------------------------------------------
2914 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2915   switch (opcode) {
2916   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2917   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2918   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2919   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2920   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2921   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2922   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2923   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2924   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
2925   case Op_Initialize:        return new InitializeNode(C, atp, pn);
2926   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2927   default: ShouldNotReachHere(); return NULL;
2928   }
2929 }
2930 
2931 //------------------------------Ideal------------------------------------------
2932 // Return a node which is more "ideal" than the current node.  Strip out
2933 // control copies
2934 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2935   if (remove_dead_region(phase, can_reshape)) return this;
2936   // Don't bother trying to transform a dead node
2937   if (in(0) && in(0)->is_top()) {
2938     return NULL;
2939   }
2940 
2941   bool progress = false;
2942   // Eliminate volatile MemBars for scalar replaced objects.
2943   if (can_reshape && req() == (Precedent+1)) {
2944     bool eliminate = false;
2945     int opc = Opcode();
2946     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2947       // Volatile field loads and stores.
2948       Node* my_mem = in(MemBarNode::Precedent);
2949       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2950       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2951         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2952         // replace this Precedent (decodeN) with the Load instead.
2953         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2954           Node* load_node = my_mem->in(1);
2955           set_req(MemBarNode::Precedent, load_node);
2956           phase->is_IterGVN()->_worklist.push(my_mem);
2957           my_mem = load_node;
2958         } else {
2959           assert(my_mem->unique_out() == this, "sanity");
2960           del_req(Precedent);
2961           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2962           my_mem = NULL;
2963         }
2964         progress = true;
2965       }
2966       if (my_mem != NULL && my_mem->is_Mem()) {
2967         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2968         // Check for scalar replaced object reference.
2969         if( t_oop != NULL && t_oop->is_known_instance_field() &&
2970             t_oop->offset() != Type::OffsetBot &&
2971             t_oop->offset() != Type::OffsetTop) {
2972           eliminate = true;
2973         }
2974       }
2975     } else if (opc == Op_MemBarRelease) {
2976       // Final field stores.
2977       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2978       if ((alloc != NULL) && alloc->is_Allocate() &&
2979           alloc->as_Allocate()->does_not_escape_thread()) {
2980         // The allocated object does not escape.
2981         eliminate = true;
2982       }
2983     }
2984     if (eliminate) {
2985       // Replace MemBar projections by its inputs.
2986       PhaseIterGVN* igvn = phase->is_IterGVN();
2987       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2988       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2989       // Must return either the original node (now dead) or a new node
2990       // (Do not return a top here, since that would break the uniqueness of top.)
2991       return new ConINode(TypeInt::ZERO);
2992     }
2993   }
2994   return progress ? this : NULL;
2995 }
2996 
2997 //------------------------------Value------------------------------------------
2998 const Type* MemBarNode::Value(PhaseGVN* phase) const {
2999   if( !in(0) ) return Type::TOP;
3000   if( phase->type(in(0)) == Type::TOP )
3001     return Type::TOP;
3002   return TypeTuple::MEMBAR;
3003 }
3004 
3005 //------------------------------match------------------------------------------
3006 // Construct projections for memory.
3007 Node *MemBarNode::match(const ProjNode *proj, const Matcher *m, const RegMask* mask) {
3008   switch (proj->_con) {
3009   case TypeFunc::Control:
3010   case TypeFunc::Memory:
3011     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3012   }
3013   ShouldNotReachHere();
3014   return NULL;
3015 }
3016 
3017 //===========================InitializeNode====================================
3018 // SUMMARY:
3019 // This node acts as a memory barrier on raw memory, after some raw stores.
3020 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3021 // The Initialize can 'capture' suitably constrained stores as raw inits.
3022 // It can coalesce related raw stores into larger units (called 'tiles').
3023 // It can avoid zeroing new storage for memory units which have raw inits.
3024 // At macro-expansion, it is marked 'complete', and does not optimize further.
3025 //
3026 // EXAMPLE:
3027 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3028 //   ctl = incoming control; mem* = incoming memory
3029 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3030 // First allocate uninitialized memory and fill in the header:
3031 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3032 //   ctl := alloc.Control; mem* := alloc.Memory*
3033 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3034 // Then initialize to zero the non-header parts of the raw memory block:
3035 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3036 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3037 // After the initialize node executes, the object is ready for service:
3038 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3039 // Suppose its body is immediately initialized as {1,2}:
3040 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3041 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3042 //   mem.SLICE(#short[*]) := store2
3043 //
3044 // DETAILS:
3045 // An InitializeNode collects and isolates object initialization after
3046 // an AllocateNode and before the next possible safepoint.  As a
3047 // memory barrier (MemBarNode), it keeps critical stores from drifting
3048 // down past any safepoint or any publication of the allocation.
3049 // Before this barrier, a newly-allocated object may have uninitialized bits.
3050 // After this barrier, it may be treated as a real oop, and GC is allowed.
3051 //
3052 // The semantics of the InitializeNode include an implicit zeroing of
3053 // the new object from object header to the end of the object.
3054 // (The object header and end are determined by the AllocateNode.)
3055 //
3056 // Certain stores may be added as direct inputs to the InitializeNode.
3057 // These stores must update raw memory, and they must be to addresses
3058 // derived from the raw address produced by AllocateNode, and with
3059 // a constant offset.  They must be ordered by increasing offset.
3060 // The first one is at in(RawStores), the last at in(req()-1).
3061 // Unlike most memory operations, they are not linked in a chain,
3062 // but are displayed in parallel as users of the rawmem output of
3063 // the allocation.
3064 //
3065 // (See comments in InitializeNode::capture_store, which continue
3066 // the example given above.)
3067 //
3068 // When the associated Allocate is macro-expanded, the InitializeNode
3069 // may be rewritten to optimize collected stores.  A ClearArrayNode
3070 // may also be created at that point to represent any required zeroing.
3071 // The InitializeNode is then marked 'complete', prohibiting further
3072 // capturing of nearby memory operations.
3073 //
3074 // During macro-expansion, all captured initializations which store
3075 // constant values of 32 bits or smaller are coalesced (if advantageous)
3076 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3077 // initialized in fewer memory operations.  Memory words which are
3078 // covered by neither tiles nor non-constant stores are pre-zeroed
3079 // by explicit stores of zero.  (The code shape happens to do all
3080 // zeroing first, then all other stores, with both sequences occurring
3081 // in order of ascending offsets.)
3082 //
3083 // Alternatively, code may be inserted between an AllocateNode and its
3084 // InitializeNode, to perform arbitrary initialization of the new object.
3085 // E.g., the object copying intrinsics insert complex data transfers here.
3086 // The initialization must then be marked as 'complete' disable the
3087 // built-in zeroing semantics and the collection of initializing stores.
3088 //
3089 // While an InitializeNode is incomplete, reads from the memory state
3090 // produced by it are optimizable if they match the control edge and
3091 // new oop address associated with the allocation/initialization.
3092 // They return a stored value (if the offset matches) or else zero.
3093 // A write to the memory state, if it matches control and address,
3094 // and if it is to a constant offset, may be 'captured' by the
3095 // InitializeNode.  It is cloned as a raw memory operation and rewired
3096 // inside the initialization, to the raw oop produced by the allocation.
3097 // Operations on addresses which are provably distinct (e.g., to
3098 // other AllocateNodes) are allowed to bypass the initialization.
3099 //
3100 // The effect of all this is to consolidate object initialization
3101 // (both arrays and non-arrays, both piecewise and bulk) into a
3102 // single location, where it can be optimized as a unit.
3103 //
3104 // Only stores with an offset less than TrackedInitializationLimit words
3105 // will be considered for capture by an InitializeNode.  This puts a
3106 // reasonable limit on the complexity of optimized initializations.
3107 
3108 //---------------------------InitializeNode------------------------------------
3109 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3110   : _is_complete(Incomplete), _does_not_escape(false),
3111     MemBarNode(C, adr_type, rawoop)
3112 {
3113   init_class_id(Class_Initialize);
3114 
3115   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3116   assert(in(RawAddress) == rawoop, "proper init");
3117   // Note:  allocation() can be NULL, for secondary initialization barriers
3118 }
3119 
3120 // Since this node is not matched, it will be processed by the
3121 // register allocator.  Declare that there are no constraints
3122 // on the allocation of the RawAddress edge.
3123 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3124   // This edge should be set to top, by the set_complete.  But be conservative.
3125   if (idx == InitializeNode::RawAddress)
3126     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3127   return RegMask::Empty;
3128 }
3129 
3130 Node* InitializeNode::memory(uint alias_idx) {
3131   Node* mem = in(Memory);
3132   if (mem->is_MergeMem()) {
3133     return mem->as_MergeMem()->memory_at(alias_idx);
3134   } else {
3135     // incoming raw memory is not split
3136     return mem;
3137   }
3138 }
3139 
3140 bool InitializeNode::is_non_zero() {
3141   if (is_complete())  return false;
3142   remove_extra_zeroes();
3143   return (req() > RawStores);
3144 }
3145 
3146 void InitializeNode::set_complete(PhaseGVN* phase) {
3147   assert(!is_complete(), "caller responsibility");
3148   _is_complete = Complete;
3149 
3150   // After this node is complete, it contains a bunch of
3151   // raw-memory initializations.  There is no need for
3152   // it to have anything to do with non-raw memory effects.
3153   // Therefore, tell all non-raw users to re-optimize themselves,
3154   // after skipping the memory effects of this initialization.
3155   PhaseIterGVN* igvn = phase->is_IterGVN();
3156   if (igvn)  igvn->add_users_to_worklist(this);
3157 }
3158 
3159 // convenience function
3160 // return false if the init contains any stores already
3161 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3162   InitializeNode* init = initialization();
3163   if (init == NULL || init->is_complete())  return false;
3164   init->remove_extra_zeroes();
3165   // for now, if this allocation has already collected any inits, bail:
3166   if (init->is_non_zero())  return false;
3167   init->set_complete(phase);
3168   return true;
3169 }
3170 
3171 void InitializeNode::remove_extra_zeroes() {
3172   if (req() == RawStores)  return;
3173   Node* zmem = zero_memory();
3174   uint fill = RawStores;
3175   for (uint i = fill; i < req(); i++) {
3176     Node* n = in(i);
3177     if (n->is_top() || n == zmem)  continue;  // skip
3178     if (fill < i)  set_req(fill, n);          // compact
3179     ++fill;
3180   }
3181   // delete any empty spaces created:
3182   while (fill < req()) {
3183     del_req(fill);
3184   }
3185 }
3186 
3187 // Helper for remembering which stores go with which offsets.
3188 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3189   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3190   intptr_t offset = -1;
3191   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3192                                                phase, offset);
3193   if (base == NULL)     return -1;  // something is dead,
3194   if (offset < 0)       return -1;  //        dead, dead
3195   return offset;
3196 }
3197 
3198 // Helper for proving that an initialization expression is
3199 // "simple enough" to be folded into an object initialization.
3200 // Attempts to prove that a store's initial value 'n' can be captured
3201 // within the initialization without creating a vicious cycle, such as:
3202 //     { Foo p = new Foo(); p.next = p; }
3203 // True for constants and parameters and small combinations thereof.
3204 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3205   if (n == NULL)      return true;   // (can this really happen?)
3206   if (n->is_Proj())   n = n->in(0);
3207   if (n == this)      return false;  // found a cycle
3208   if (n->is_Con())    return true;
3209   if (n->is_Start())  return true;   // params, etc., are OK
3210   if (n->is_Root())   return true;   // even better
3211 
3212   Node* ctl = n->in(0);
3213   if (ctl != NULL && !ctl->is_top()) {
3214     if (ctl->is_Proj())  ctl = ctl->in(0);
3215     if (ctl == this)  return false;
3216 
3217     // If we already know that the enclosing memory op is pinned right after
3218     // the init, then any control flow that the store has picked up
3219     // must have preceded the init, or else be equal to the init.
3220     // Even after loop optimizations (which might change control edges)
3221     // a store is never pinned *before* the availability of its inputs.
3222     if (!MemNode::all_controls_dominate(n, this))
3223       return false;                  // failed to prove a good control
3224   }
3225 
3226   // Check data edges for possible dependencies on 'this'.
3227   if ((count += 1) > 20)  return false;  // complexity limit
3228   for (uint i = 1; i < n->req(); i++) {
3229     Node* m = n->in(i);
3230     if (m == NULL || m == n || m->is_top())  continue;
3231     uint first_i = n->find_edge(m);
3232     if (i != first_i)  continue;  // process duplicate edge just once
3233     if (!detect_init_independence(m, count)) {
3234       return false;
3235     }
3236   }
3237 
3238   return true;
3239 }
3240 
3241 // Here are all the checks a Store must pass before it can be moved into
3242 // an initialization.  Returns zero if a check fails.
3243 // On success, returns the (constant) offset to which the store applies,
3244 // within the initialized memory.
3245 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3246   const int FAIL = 0;
3247   if (st->is_unaligned_access()) {
3248     return FAIL;
3249   }
3250   if (st->req() != MemNode::ValueIn + 1)
3251     return FAIL;                // an inscrutable StoreNode (card mark?)
3252   Node* ctl = st->in(MemNode::Control);
3253   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3254     return FAIL;                // must be unconditional after the initialization
3255   Node* mem = st->in(MemNode::Memory);
3256   if (!(mem->is_Proj() && mem->in(0) == this))
3257     return FAIL;                // must not be preceded by other stores
3258   Node* adr = st->in(MemNode::Address);
3259   intptr_t offset;
3260   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3261   if (alloc == NULL)
3262     return FAIL;                // inscrutable address
3263   if (alloc != allocation())
3264     return FAIL;                // wrong allocation!  (store needs to float up)
3265   Node* val = st->in(MemNode::ValueIn);
3266   int complexity_count = 0;
3267   if (!detect_init_independence(val, complexity_count))
3268     return FAIL;                // stored value must be 'simple enough'
3269 
3270   // The Store can be captured only if nothing after the allocation
3271   // and before the Store is using the memory location that the store
3272   // overwrites.
3273   bool failed = false;
3274   // If is_complete_with_arraycopy() is true the shape of the graph is
3275   // well defined and is safe so no need for extra checks.
3276   if (!is_complete_with_arraycopy()) {
3277     // We are going to look at each use of the memory state following
3278     // the allocation to make sure nothing reads the memory that the
3279     // Store writes.
3280     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3281     int alias_idx = phase->C->get_alias_index(t_adr);
3282     ResourceMark rm;
3283     Unique_Node_List mems;
3284     mems.push(mem);
3285     Node* unique_merge = NULL;
3286     for (uint next = 0; next < mems.size(); ++next) {
3287       Node *m  = mems.at(next);
3288       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3289         Node *n = m->fast_out(j);
3290         if (n->outcnt() == 0) {
3291           continue;
3292         }
3293         if (n == st) {
3294           continue;
3295         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3296           // If the control of this use is different from the control
3297           // of the Store which is right after the InitializeNode then
3298           // this node cannot be between the InitializeNode and the
3299           // Store.
3300           continue;
3301         } else if (n->is_MergeMem()) {
3302           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3303             // We can hit a MergeMemNode (that will likely go away
3304             // later) that is a direct use of the memory state
3305             // following the InitializeNode on the same slice as the
3306             // store node that we'd like to capture. We need to check
3307             // the uses of the MergeMemNode.
3308             mems.push(n);
3309           }
3310         } else if (n->is_Mem()) {
3311           Node* other_adr = n->in(MemNode::Address);
3312           if (other_adr == adr) {
3313             failed = true;
3314             break;
3315           } else {
3316             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3317             if (other_t_adr != NULL) {
3318               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3319               if (other_alias_idx == alias_idx) {
3320                 // A load from the same memory slice as the store right
3321                 // after the InitializeNode. We check the control of the
3322                 // object/array that is loaded from. If it's the same as
3323                 // the store control then we cannot capture the store.
3324                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3325                 Node* base = other_adr;
3326                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3327                 base = base->in(AddPNode::Base);
3328                 if (base != NULL) {
3329                   base = base->uncast();
3330                   if (base->is_Proj() && base->in(0) == alloc) {
3331                     failed = true;
3332                     break;
3333                   }
3334                 }
3335               }
3336             }
3337           }
3338         } else {
3339           failed = true;
3340           break;
3341         }
3342       }
3343     }
3344   }
3345   if (failed) {
3346     if (!can_reshape) {
3347       // We decided we couldn't capture the store during parsing. We
3348       // should try again during the next IGVN once the graph is
3349       // cleaner.
3350       phase->C->record_for_igvn(st);
3351     }
3352     return FAIL;
3353   }
3354 
3355   return offset;                // success
3356 }
3357 
3358 // Find the captured store in(i) which corresponds to the range
3359 // [start..start+size) in the initialized object.
3360 // If there is one, return its index i.  If there isn't, return the
3361 // negative of the index where it should be inserted.
3362 // Return 0 if the queried range overlaps an initialization boundary
3363 // or if dead code is encountered.
3364 // If size_in_bytes is zero, do not bother with overlap checks.
3365 int InitializeNode::captured_store_insertion_point(intptr_t start,
3366                                                    int size_in_bytes,
3367                                                    PhaseTransform* phase) {
3368   const int FAIL = 0, MAX_STORE = BytesPerLong;
3369 
3370   if (is_complete())
3371     return FAIL;                // arraycopy got here first; punt
3372 
3373   assert(allocation() != NULL, "must be present");
3374 
3375   // no negatives, no header fields:
3376   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3377 
3378   // after a certain size, we bail out on tracking all the stores:
3379   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3380   if (start >= ti_limit)  return FAIL;
3381 
3382   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3383     if (i >= limit)  return -(int)i; // not found; here is where to put it
3384 
3385     Node*    st     = in(i);
3386     intptr_t st_off = get_store_offset(st, phase);
3387     if (st_off < 0) {
3388       if (st != zero_memory()) {
3389         return FAIL;            // bail out if there is dead garbage
3390       }
3391     } else if (st_off > start) {
3392       // ...we are done, since stores are ordered
3393       if (st_off < start + size_in_bytes) {
3394         return FAIL;            // the next store overlaps
3395       }
3396       return -(int)i;           // not found; here is where to put it
3397     } else if (st_off < start) {
3398       if (size_in_bytes != 0 &&
3399           start < st_off + MAX_STORE &&
3400           start < st_off + st->as_Store()->memory_size()) {
3401         return FAIL;            // the previous store overlaps
3402       }
3403     } else {
3404       if (size_in_bytes != 0 &&
3405           st->as_Store()->memory_size() != size_in_bytes) {
3406         return FAIL;            // mismatched store size
3407       }
3408       return i;
3409     }
3410 
3411     ++i;
3412   }
3413 }
3414 
3415 // Look for a captured store which initializes at the offset 'start'
3416 // with the given size.  If there is no such store, and no other
3417 // initialization interferes, then return zero_memory (the memory
3418 // projection of the AllocateNode).
3419 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3420                                           PhaseTransform* phase) {
3421   assert(stores_are_sane(phase), "");
3422   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3423   if (i == 0) {
3424     return NULL;                // something is dead
3425   } else if (i < 0) {
3426     return zero_memory();       // just primordial zero bits here
3427   } else {
3428     Node* st = in(i);           // here is the store at this position
3429     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3430     return st;
3431   }
3432 }
3433 
3434 // Create, as a raw pointer, an address within my new object at 'offset'.
3435 Node* InitializeNode::make_raw_address(intptr_t offset,
3436                                        PhaseTransform* phase) {
3437   Node* addr = in(RawAddress);
3438   if (offset != 0) {
3439     Compile* C = phase->C;
3440     addr = phase->transform( new AddPNode(C->top(), addr,
3441                                                  phase->MakeConX(offset)) );
3442   }
3443   return addr;
3444 }
3445 
3446 // Clone the given store, converting it into a raw store
3447 // initializing a field or element of my new object.
3448 // Caller is responsible for retiring the original store,
3449 // with subsume_node or the like.
3450 //
3451 // From the example above InitializeNode::InitializeNode,
3452 // here are the old stores to be captured:
3453 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3454 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3455 //
3456 // Here is the changed code; note the extra edges on init:
3457 //   alloc = (Allocate ...)
3458 //   rawoop = alloc.RawAddress
3459 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3460 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3461 //   init = (Initialize alloc.Control alloc.Memory rawoop
3462 //                      rawstore1 rawstore2)
3463 //
3464 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3465                                     PhaseTransform* phase, bool can_reshape) {
3466   assert(stores_are_sane(phase), "");
3467 
3468   if (start < 0)  return NULL;
3469   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3470 
3471   Compile* C = phase->C;
3472   int size_in_bytes = st->memory_size();
3473   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3474   if (i == 0)  return NULL;     // bail out
3475   Node* prev_mem = NULL;        // raw memory for the captured store
3476   if (i > 0) {
3477     prev_mem = in(i);           // there is a pre-existing store under this one
3478     set_req(i, C->top());       // temporarily disconnect it
3479     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3480   } else {
3481     i = -i;                     // no pre-existing store
3482     prev_mem = zero_memory();   // a slice of the newly allocated object
3483     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3484       set_req(--i, C->top());   // reuse this edge; it has been folded away
3485     else
3486       ins_req(i, C->top());     // build a new edge
3487   }
3488   Node* new_st = st->clone();
3489   new_st->set_req(MemNode::Control, in(Control));
3490   new_st->set_req(MemNode::Memory,  prev_mem);
3491   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3492   new_st = phase->transform(new_st);
3493 
3494   // At this point, new_st might have swallowed a pre-existing store
3495   // at the same offset, or perhaps new_st might have disappeared,
3496   // if it redundantly stored the same value (or zero to fresh memory).
3497 
3498   // In any case, wire it in:
3499   phase->igvn_rehash_node_delayed(this);
3500   set_req(i, new_st);
3501 
3502   // The caller may now kill the old guy.
3503   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3504   assert(check_st == new_st || check_st == NULL, "must be findable");
3505   assert(!is_complete(), "");
3506   return new_st;
3507 }
3508 
3509 static bool store_constant(jlong* tiles, int num_tiles,
3510                            intptr_t st_off, int st_size,
3511                            jlong con) {
3512   if ((st_off & (st_size-1)) != 0)
3513     return false;               // strange store offset (assume size==2**N)
3514   address addr = (address)tiles + st_off;
3515   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3516   switch (st_size) {
3517   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3518   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3519   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3520   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3521   default: return false;        // strange store size (detect size!=2**N here)
3522   }
3523   return true;                  // return success to caller
3524 }
3525 
3526 // Coalesce subword constants into int constants and possibly
3527 // into long constants.  The goal, if the CPU permits,
3528 // is to initialize the object with a small number of 64-bit tiles.
3529 // Also, convert floating-point constants to bit patterns.
3530 // Non-constants are not relevant to this pass.
3531 //
3532 // In terms of the running example on InitializeNode::InitializeNode
3533 // and InitializeNode::capture_store, here is the transformation
3534 // of rawstore1 and rawstore2 into rawstore12:
3535 //   alloc = (Allocate ...)
3536 //   rawoop = alloc.RawAddress
3537 //   tile12 = 0x00010002
3538 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3539 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3540 //
3541 void
3542 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3543                                         Node* size_in_bytes,
3544                                         PhaseGVN* phase) {
3545   Compile* C = phase->C;
3546 
3547   assert(stores_are_sane(phase), "");
3548   // Note:  After this pass, they are not completely sane,
3549   // since there may be some overlaps.
3550 
3551   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3552 
3553   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3554   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3555   size_limit = MIN2(size_limit, ti_limit);
3556   size_limit = align_size_up(size_limit, BytesPerLong);
3557   int num_tiles = size_limit / BytesPerLong;
3558 
3559   // allocate space for the tile map:
3560   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3561   jlong  tiles_buf[small_len];
3562   Node*  nodes_buf[small_len];
3563   jlong  inits_buf[small_len];
3564   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3565                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3566   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3567                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3568   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3569                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3570   // tiles: exact bitwise model of all primitive constants
3571   // nodes: last constant-storing node subsumed into the tiles model
3572   // inits: which bytes (in each tile) are touched by any initializations
3573 
3574   //// Pass A: Fill in the tile model with any relevant stores.
3575 
3576   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3577   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3578   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3579   Node* zmem = zero_memory(); // initially zero memory state
3580   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3581     Node* st = in(i);
3582     intptr_t st_off = get_store_offset(st, phase);
3583 
3584     // Figure out the store's offset and constant value:
3585     if (st_off < header_size)             continue; //skip (ignore header)
3586     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3587     int st_size = st->as_Store()->memory_size();
3588     if (st_off + st_size > size_limit)    break;
3589 
3590     // Record which bytes are touched, whether by constant or not.
3591     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3592       continue;                 // skip (strange store size)
3593 
3594     const Type* val = phase->type(st->in(MemNode::ValueIn));
3595     if (!val->singleton())                continue; //skip (non-con store)
3596     BasicType type = val->basic_type();
3597 
3598     jlong con = 0;
3599     switch (type) {
3600     case T_INT:    con = val->is_int()->get_con();  break;
3601     case T_LONG:   con = val->is_long()->get_con(); break;
3602     case T_FLOAT:  con = jint_cast(val->getf());    break;
3603     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3604     default:                              continue; //skip (odd store type)
3605     }
3606 
3607     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3608         st->Opcode() == Op_StoreL) {
3609       continue;                 // This StoreL is already optimal.
3610     }
3611 
3612     // Store down the constant.
3613     store_constant(tiles, num_tiles, st_off, st_size, con);
3614 
3615     intptr_t j = st_off >> LogBytesPerLong;
3616 
3617     if (type == T_INT && st_size == BytesPerInt
3618         && (st_off & BytesPerInt) == BytesPerInt) {
3619       jlong lcon = tiles[j];
3620       if (!Matcher::isSimpleConstant64(lcon) &&
3621           st->Opcode() == Op_StoreI) {
3622         // This StoreI is already optimal by itself.
3623         jint* intcon = (jint*) &tiles[j];
3624         intcon[1] = 0;  // undo the store_constant()
3625 
3626         // If the previous store is also optimal by itself, back up and
3627         // undo the action of the previous loop iteration... if we can.
3628         // But if we can't, just let the previous half take care of itself.
3629         st = nodes[j];
3630         st_off -= BytesPerInt;
3631         con = intcon[0];
3632         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3633           assert(st_off >= header_size, "still ignoring header");
3634           assert(get_store_offset(st, phase) == st_off, "must be");
3635           assert(in(i-1) == zmem, "must be");
3636           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3637           assert(con == tcon->is_int()->get_con(), "must be");
3638           // Undo the effects of the previous loop trip, which swallowed st:
3639           intcon[0] = 0;        // undo store_constant()
3640           set_req(i-1, st);     // undo set_req(i, zmem)
3641           nodes[j] = NULL;      // undo nodes[j] = st
3642           --old_subword;        // undo ++old_subword
3643         }
3644         continue;               // This StoreI is already optimal.
3645       }
3646     }
3647 
3648     // This store is not needed.
3649     set_req(i, zmem);
3650     nodes[j] = st;              // record for the moment
3651     if (st_size < BytesPerLong) // something has changed
3652           ++old_subword;        // includes int/float, but who's counting...
3653     else  ++old_long;
3654   }
3655 
3656   if ((old_subword + old_long) == 0)
3657     return;                     // nothing more to do
3658 
3659   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3660   // Be sure to insert them before overlapping non-constant stores.
3661   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3662   for (int j = 0; j < num_tiles; j++) {
3663     jlong con  = tiles[j];
3664     jlong init = inits[j];
3665     if (con == 0)  continue;
3666     jint con0,  con1;           // split the constant, address-wise
3667     jint init0, init1;          // split the init map, address-wise
3668     { union { jlong con; jint intcon[2]; } u;
3669       u.con = con;
3670       con0  = u.intcon[0];
3671       con1  = u.intcon[1];
3672       u.con = init;
3673       init0 = u.intcon[0];
3674       init1 = u.intcon[1];
3675     }
3676 
3677     Node* old = nodes[j];
3678     assert(old != NULL, "need the prior store");
3679     intptr_t offset = (j * BytesPerLong);
3680 
3681     bool split = !Matcher::isSimpleConstant64(con);
3682 
3683     if (offset < header_size) {
3684       assert(offset + BytesPerInt >= header_size, "second int counts");
3685       assert(*(jint*)&tiles[j] == 0, "junk in header");
3686       split = true;             // only the second word counts
3687       // Example:  int a[] = { 42 ... }
3688     } else if (con0 == 0 && init0 == -1) {
3689       split = true;             // first word is covered by full inits
3690       // Example:  int a[] = { ... foo(), 42 ... }
3691     } else if (con1 == 0 && init1 == -1) {
3692       split = true;             // second word is covered by full inits
3693       // Example:  int a[] = { ... 42, foo() ... }
3694     }
3695 
3696     // Here's a case where init0 is neither 0 nor -1:
3697     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3698     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3699     // In this case the tile is not split; it is (jlong)42.
3700     // The big tile is stored down, and then the foo() value is inserted.
3701     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3702 
3703     Node* ctl = old->in(MemNode::Control);
3704     Node* adr = make_raw_address(offset, phase);
3705     const TypePtr* atp = TypeRawPtr::BOTTOM;
3706 
3707     // One or two coalesced stores to plop down.
3708     Node*    st[2];
3709     intptr_t off[2];
3710     int  nst = 0;
3711     if (!split) {
3712       ++new_long;
3713       off[nst] = offset;
3714       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3715                                   phase->longcon(con), T_LONG, MemNode::unordered);
3716     } else {
3717       // Omit either if it is a zero.
3718       if (con0 != 0) {
3719         ++new_int;
3720         off[nst]  = offset;
3721         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3722                                     phase->intcon(con0), T_INT, MemNode::unordered);
3723       }
3724       if (con1 != 0) {
3725         ++new_int;
3726         offset += BytesPerInt;
3727         adr = make_raw_address(offset, phase);
3728         off[nst]  = offset;
3729         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3730                                     phase->intcon(con1), T_INT, MemNode::unordered);
3731       }
3732     }
3733 
3734     // Insert second store first, then the first before the second.
3735     // Insert each one just before any overlapping non-constant stores.
3736     while (nst > 0) {
3737       Node* st1 = st[--nst];
3738       C->copy_node_notes_to(st1, old);
3739       st1 = phase->transform(st1);
3740       offset = off[nst];
3741       assert(offset >= header_size, "do not smash header");
3742       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3743       guarantee(ins_idx != 0, "must re-insert constant store");
3744       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3745       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3746         set_req(--ins_idx, st1);
3747       else
3748         ins_req(ins_idx, st1);
3749     }
3750   }
3751 
3752   if (PrintCompilation && WizardMode)
3753     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3754                   old_subword, old_long, new_int, new_long);
3755   if (C->log() != NULL)
3756     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3757                    old_subword, old_long, new_int, new_long);
3758 
3759   // Clean up any remaining occurrences of zmem:
3760   remove_extra_zeroes();
3761 }
3762 
3763 // Explore forward from in(start) to find the first fully initialized
3764 // word, and return its offset.  Skip groups of subword stores which
3765 // together initialize full words.  If in(start) is itself part of a
3766 // fully initialized word, return the offset of in(start).  If there
3767 // are no following full-word stores, or if something is fishy, return
3768 // a negative value.
3769 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3770   int       int_map = 0;
3771   intptr_t  int_map_off = 0;
3772   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3773 
3774   for (uint i = start, limit = req(); i < limit; i++) {
3775     Node* st = in(i);
3776 
3777     intptr_t st_off = get_store_offset(st, phase);
3778     if (st_off < 0)  break;  // return conservative answer
3779 
3780     int st_size = st->as_Store()->memory_size();
3781     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3782       return st_off;            // we found a complete word init
3783     }
3784 
3785     // update the map:
3786 
3787     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3788     if (this_int_off != int_map_off) {
3789       // reset the map:
3790       int_map = 0;
3791       int_map_off = this_int_off;
3792     }
3793 
3794     int subword_off = st_off - this_int_off;
3795     int_map |= right_n_bits(st_size) << subword_off;
3796     if ((int_map & FULL_MAP) == FULL_MAP) {
3797       return this_int_off;      // we found a complete word init
3798     }
3799 
3800     // Did this store hit or cross the word boundary?
3801     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3802     if (next_int_off == this_int_off + BytesPerInt) {
3803       // We passed the current int, without fully initializing it.
3804       int_map_off = next_int_off;
3805       int_map >>= BytesPerInt;
3806     } else if (next_int_off > this_int_off + BytesPerInt) {
3807       // We passed the current and next int.
3808       return this_int_off + BytesPerInt;
3809     }
3810   }
3811 
3812   return -1;
3813 }
3814 
3815 
3816 // Called when the associated AllocateNode is expanded into CFG.
3817 // At this point, we may perform additional optimizations.
3818 // Linearize the stores by ascending offset, to make memory
3819 // activity as coherent as possible.
3820 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3821                                       intptr_t header_size,
3822                                       Node* size_in_bytes,
3823                                       PhaseGVN* phase) {
3824   assert(!is_complete(), "not already complete");
3825   assert(stores_are_sane(phase), "");
3826   assert(allocation() != NULL, "must be present");
3827 
3828   remove_extra_zeroes();
3829 
3830   if (ReduceFieldZeroing || ReduceBulkZeroing)
3831     // reduce instruction count for common initialization patterns
3832     coalesce_subword_stores(header_size, size_in_bytes, phase);
3833 
3834   Node* zmem = zero_memory();   // initially zero memory state
3835   Node* inits = zmem;           // accumulating a linearized chain of inits
3836   #ifdef ASSERT
3837   intptr_t first_offset = allocation()->minimum_header_size();
3838   intptr_t last_init_off = first_offset;  // previous init offset
3839   intptr_t last_init_end = first_offset;  // previous init offset+size
3840   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3841   #endif
3842   intptr_t zeroes_done = header_size;
3843 
3844   bool do_zeroing = true;       // we might give up if inits are very sparse
3845   int  big_init_gaps = 0;       // how many large gaps have we seen?
3846 
3847   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3848   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3849 
3850   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3851     Node* st = in(i);
3852     intptr_t st_off = get_store_offset(st, phase);
3853     if (st_off < 0)
3854       break;                    // unknown junk in the inits
3855     if (st->in(MemNode::Memory) != zmem)
3856       break;                    // complicated store chains somehow in list
3857 
3858     int st_size = st->as_Store()->memory_size();
3859     intptr_t next_init_off = st_off + st_size;
3860 
3861     if (do_zeroing && zeroes_done < next_init_off) {
3862       // See if this store needs a zero before it or under it.
3863       intptr_t zeroes_needed = st_off;
3864 
3865       if (st_size < BytesPerInt) {
3866         // Look for subword stores which only partially initialize words.
3867         // If we find some, we must lay down some word-level zeroes first,
3868         // underneath the subword stores.
3869         //
3870         // Examples:
3871         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3872         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3873         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3874         //
3875         // Note:  coalesce_subword_stores may have already done this,
3876         // if it was prompted by constant non-zero subword initializers.
3877         // But this case can still arise with non-constant stores.
3878 
3879         intptr_t next_full_store = find_next_fullword_store(i, phase);
3880 
3881         // In the examples above:
3882         //   in(i)          p   q   r   s     x   y     z
3883         //   st_off        12  13  14  15    12  13    14
3884         //   st_size        1   1   1   1     1   1     1
3885         //   next_full_s.  12  16  16  16    16  16    16
3886         //   z's_done      12  16  16  16    12  16    12
3887         //   z's_needed    12  16  16  16    16  16    16
3888         //   zsize          0   0   0   0     4   0     4
3889         if (next_full_store < 0) {
3890           // Conservative tack:  Zero to end of current word.
3891           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3892         } else {
3893           // Zero to beginning of next fully initialized word.
3894           // Or, don't zero at all, if we are already in that word.
3895           assert(next_full_store >= zeroes_needed, "must go forward");
3896           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3897           zeroes_needed = next_full_store;
3898         }
3899       }
3900 
3901       if (zeroes_needed > zeroes_done) {
3902         intptr_t zsize = zeroes_needed - zeroes_done;
3903         // Do some incremental zeroing on rawmem, in parallel with inits.
3904         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3905         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3906                                               zeroes_done, zeroes_needed,
3907                                               phase);
3908         zeroes_done = zeroes_needed;
3909         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
3910           do_zeroing = false;   // leave the hole, next time
3911       }
3912     }
3913 
3914     // Collect the store and move on:
3915     st->set_req(MemNode::Memory, inits);
3916     inits = st;                 // put it on the linearized chain
3917     set_req(i, zmem);           // unhook from previous position
3918 
3919     if (zeroes_done == st_off)
3920       zeroes_done = next_init_off;
3921 
3922     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3923 
3924     #ifdef ASSERT
3925     // Various order invariants.  Weaker than stores_are_sane because
3926     // a large constant tile can be filled in by smaller non-constant stores.
3927     assert(st_off >= last_init_off, "inits do not reverse");
3928     last_init_off = st_off;
3929     const Type* val = NULL;
3930     if (st_size >= BytesPerInt &&
3931         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3932         (int)val->basic_type() < (int)T_OBJECT) {
3933       assert(st_off >= last_tile_end, "tiles do not overlap");
3934       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3935       last_tile_end = MAX2(last_tile_end, next_init_off);
3936     } else {
3937       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3938       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3939       assert(st_off      >= last_init_end, "inits do not overlap");
3940       last_init_end = next_init_off;  // it's a non-tile
3941     }
3942     #endif //ASSERT
3943   }
3944 
3945   remove_extra_zeroes();        // clear out all the zmems left over
3946   add_req(inits);
3947 
3948   if (!(UseTLAB && ZeroTLAB)) {
3949     // If anything remains to be zeroed, zero it all now.
3950     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3951     // if it is the last unused 4 bytes of an instance, forget about it
3952     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3953     if (zeroes_done + BytesPerLong >= size_limit) {
3954       assert(allocation() != NULL, "");
3955       if (allocation()->Opcode() == Op_Allocate) {
3956         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3957         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3958         if (zeroes_done == k->layout_helper())
3959           zeroes_done = size_limit;
3960       }
3961     }
3962     if (zeroes_done < size_limit) {
3963       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3964                                             zeroes_done, size_in_bytes, phase);
3965     }
3966   }
3967 
3968   set_complete(phase);
3969   return rawmem;
3970 }
3971 
3972 
3973 #ifdef ASSERT
3974 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3975   if (is_complete())
3976     return true;                // stores could be anything at this point
3977   assert(allocation() != NULL, "must be present");
3978   intptr_t last_off = allocation()->minimum_header_size();
3979   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3980     Node* st = in(i);
3981     intptr_t st_off = get_store_offset(st, phase);
3982     if (st_off < 0)  continue;  // ignore dead garbage
3983     if (last_off > st_off) {
3984       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3985       this->dump(2);
3986       assert(false, "ascending store offsets");
3987       return false;
3988     }
3989     last_off = st_off + st->as_Store()->memory_size();
3990   }
3991   return true;
3992 }
3993 #endif //ASSERT
3994 
3995 
3996 
3997 
3998 //============================MergeMemNode=====================================
3999 //
4000 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4001 // contributing store or call operations.  Each contributor provides the memory
4002 // state for a particular "alias type" (see Compile::alias_type).  For example,
4003 // if a MergeMem has an input X for alias category #6, then any memory reference
4004 // to alias category #6 may use X as its memory state input, as an exact equivalent
4005 // to using the MergeMem as a whole.
4006 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4007 //
4008 // (Here, the <N> notation gives the index of the relevant adr_type.)
4009 //
4010 // In one special case (and more cases in the future), alias categories overlap.
4011 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4012 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4013 // it is exactly equivalent to that state W:
4014 //   MergeMem(<Bot>: W) <==> W
4015 //
4016 // Usually, the merge has more than one input.  In that case, where inputs
4017 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4018 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4019 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4020 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4021 //
4022 // A merge can take a "wide" memory state as one of its narrow inputs.
4023 // This simply means that the merge observes out only the relevant parts of
4024 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4025 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4026 //
4027 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4028 // and that memory slices "leak through":
4029 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4030 //
4031 // But, in such a cascade, repeated memory slices can "block the leak":
4032 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4033 //
4034 // In the last example, Y is not part of the combined memory state of the
4035 // outermost MergeMem.  The system must, of course, prevent unschedulable
4036 // memory states from arising, so you can be sure that the state Y is somehow
4037 // a precursor to state Y'.
4038 //
4039 //
4040 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4041 // of each MergeMemNode array are exactly the numerical alias indexes, including
4042 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4043 // Compile::alias_type (and kin) produce and manage these indexes.
4044 //
4045 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4046 // (Note that this provides quick access to the top node inside MergeMem methods,
4047 // without the need to reach out via TLS to Compile::current.)
4048 //
4049 // As a consequence of what was just described, a MergeMem that represents a full
4050 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4051 // containing all alias categories.
4052 //
4053 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4054 //
4055 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4056 // a memory state for the alias type <N>, or else the top node, meaning that
4057 // there is no particular input for that alias type.  Note that the length of
4058 // a MergeMem is variable, and may be extended at any time to accommodate new
4059 // memory states at larger alias indexes.  When merges grow, they are of course
4060 // filled with "top" in the unused in() positions.
4061 //
4062 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4063 // (Top was chosen because it works smoothly with passes like GCM.)
4064 //
4065 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4066 // the type of random VM bits like TLS references.)  Since it is always the
4067 // first non-Bot memory slice, some low-level loops use it to initialize an
4068 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4069 //
4070 //
4071 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4072 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4073 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4074 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4075 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4076 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4077 //
4078 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4079 // really that different from the other memory inputs.  An abbreviation called
4080 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4081 //
4082 //
4083 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4084 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4085 // that "emerges though" the base memory will be marked as excluding the alias types
4086 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4087 //
4088 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4089 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4090 //
4091 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4092 // (It is currently unimplemented.)  As you can see, the resulting merge is
4093 // actually a disjoint union of memory states, rather than an overlay.
4094 //
4095 
4096 //------------------------------MergeMemNode-----------------------------------
4097 Node* MergeMemNode::make_empty_memory() {
4098   Node* empty_memory = (Node*) Compile::current()->top();
4099   assert(empty_memory->is_top(), "correct sentinel identity");
4100   return empty_memory;
4101 }
4102 
4103 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4104   init_class_id(Class_MergeMem);
4105   // all inputs are nullified in Node::Node(int)
4106   // set_input(0, NULL);  // no control input
4107 
4108   // Initialize the edges uniformly to top, for starters.
4109   Node* empty_mem = make_empty_memory();
4110   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4111     init_req(i,empty_mem);
4112   }
4113   assert(empty_memory() == empty_mem, "");
4114 
4115   if( new_base != NULL && new_base->is_MergeMem() ) {
4116     MergeMemNode* mdef = new_base->as_MergeMem();
4117     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4118     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4119       mms.set_memory(mms.memory2());
4120     }
4121     assert(base_memory() == mdef->base_memory(), "");
4122   } else {
4123     set_base_memory(new_base);
4124   }
4125 }
4126 
4127 // Make a new, untransformed MergeMem with the same base as 'mem'.
4128 // If mem is itself a MergeMem, populate the result with the same edges.
4129 MergeMemNode* MergeMemNode::make(Node* mem) {
4130   return new MergeMemNode(mem);
4131 }
4132 
4133 //------------------------------cmp--------------------------------------------
4134 uint MergeMemNode::hash() const { return NO_HASH; }
4135 uint MergeMemNode::cmp( const Node &n ) const {
4136   return (&n == this);          // Always fail except on self
4137 }
4138 
4139 //------------------------------Identity---------------------------------------
4140 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4141   // Identity if this merge point does not record any interesting memory
4142   // disambiguations.
4143   Node* base_mem = base_memory();
4144   Node* empty_mem = empty_memory();
4145   if (base_mem != empty_mem) {  // Memory path is not dead?
4146     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4147       Node* mem = in(i);
4148       if (mem != empty_mem && mem != base_mem) {
4149         return this;            // Many memory splits; no change
4150       }
4151     }
4152   }
4153   return base_mem;              // No memory splits; ID on the one true input
4154 }
4155 
4156 //------------------------------Ideal------------------------------------------
4157 // This method is invoked recursively on chains of MergeMem nodes
4158 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4159   // Remove chain'd MergeMems
4160   //
4161   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4162   // relative to the "in(Bot)".  Since we are patching both at the same time,
4163   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4164   // but rewrite each "in(i)" relative to the new "in(Bot)".
4165   Node *progress = NULL;
4166 
4167 
4168   Node* old_base = base_memory();
4169   Node* empty_mem = empty_memory();
4170   if (old_base == empty_mem)
4171     return NULL; // Dead memory path.
4172 
4173   MergeMemNode* old_mbase;
4174   if (old_base != NULL && old_base->is_MergeMem())
4175     old_mbase = old_base->as_MergeMem();
4176   else
4177     old_mbase = NULL;
4178   Node* new_base = old_base;
4179 
4180   // simplify stacked MergeMems in base memory
4181   if (old_mbase)  new_base = old_mbase->base_memory();
4182 
4183   // the base memory might contribute new slices beyond my req()
4184   if (old_mbase)  grow_to_match(old_mbase);
4185 
4186   // Look carefully at the base node if it is a phi.
4187   PhiNode* phi_base;
4188   if (new_base != NULL && new_base->is_Phi())
4189     phi_base = new_base->as_Phi();
4190   else
4191     phi_base = NULL;
4192 
4193   Node*    phi_reg = NULL;
4194   uint     phi_len = (uint)-1;
4195   if (phi_base != NULL && !phi_base->is_copy()) {
4196     // do not examine phi if degraded to a copy
4197     phi_reg = phi_base->region();
4198     phi_len = phi_base->req();
4199     // see if the phi is unfinished
4200     for (uint i = 1; i < phi_len; i++) {
4201       if (phi_base->in(i) == NULL) {
4202         // incomplete phi; do not look at it yet!
4203         phi_reg = NULL;
4204         phi_len = (uint)-1;
4205         break;
4206       }
4207     }
4208   }
4209 
4210   // Note:  We do not call verify_sparse on entry, because inputs
4211   // can normalize to the base_memory via subsume_node or similar
4212   // mechanisms.  This method repairs that damage.
4213 
4214   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4215 
4216   // Look at each slice.
4217   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4218     Node* old_in = in(i);
4219     // calculate the old memory value
4220     Node* old_mem = old_in;
4221     if (old_mem == empty_mem)  old_mem = old_base;
4222     assert(old_mem == memory_at(i), "");
4223 
4224     // maybe update (reslice) the old memory value
4225 
4226     // simplify stacked MergeMems
4227     Node* new_mem = old_mem;
4228     MergeMemNode* old_mmem;
4229     if (old_mem != NULL && old_mem->is_MergeMem())
4230       old_mmem = old_mem->as_MergeMem();
4231     else
4232       old_mmem = NULL;
4233     if (old_mmem == this) {
4234       // This can happen if loops break up and safepoints disappear.
4235       // A merge of BotPtr (default) with a RawPtr memory derived from a
4236       // safepoint can be rewritten to a merge of the same BotPtr with
4237       // the BotPtr phi coming into the loop.  If that phi disappears
4238       // also, we can end up with a self-loop of the mergemem.
4239       // In general, if loops degenerate and memory effects disappear,
4240       // a mergemem can be left looking at itself.  This simply means
4241       // that the mergemem's default should be used, since there is
4242       // no longer any apparent effect on this slice.
4243       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4244       //       from start.  Update the input to TOP.
4245       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4246     }
4247     else if (old_mmem != NULL) {
4248       new_mem = old_mmem->memory_at(i);
4249     }
4250     // else preceding memory was not a MergeMem
4251 
4252     // replace equivalent phis (unfortunately, they do not GVN together)
4253     if (new_mem != NULL && new_mem != new_base &&
4254         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4255       if (new_mem->is_Phi()) {
4256         PhiNode* phi_mem = new_mem->as_Phi();
4257         for (uint i = 1; i < phi_len; i++) {
4258           if (phi_base->in(i) != phi_mem->in(i)) {
4259             phi_mem = NULL;
4260             break;
4261           }
4262         }
4263         if (phi_mem != NULL) {
4264           // equivalent phi nodes; revert to the def
4265           new_mem = new_base;
4266         }
4267       }
4268     }
4269 
4270     // maybe store down a new value
4271     Node* new_in = new_mem;
4272     if (new_in == new_base)  new_in = empty_mem;
4273 
4274     if (new_in != old_in) {
4275       // Warning:  Do not combine this "if" with the previous "if"
4276       // A memory slice might have be be rewritten even if it is semantically
4277       // unchanged, if the base_memory value has changed.
4278       set_req(i, new_in);
4279       progress = this;          // Report progress
4280     }
4281   }
4282 
4283   if (new_base != old_base) {
4284     set_req(Compile::AliasIdxBot, new_base);
4285     // Don't use set_base_memory(new_base), because we need to update du.
4286     assert(base_memory() == new_base, "");
4287     progress = this;
4288   }
4289 
4290   if( base_memory() == this ) {
4291     // a self cycle indicates this memory path is dead
4292     set_req(Compile::AliasIdxBot, empty_mem);
4293   }
4294 
4295   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4296   // Recursion must occur after the self cycle check above
4297   if( base_memory()->is_MergeMem() ) {
4298     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4299     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4300     if( m != NULL && (m->is_top() ||
4301         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4302       // propagate rollup of dead cycle to self
4303       set_req(Compile::AliasIdxBot, empty_mem);
4304     }
4305   }
4306 
4307   if( base_memory() == empty_mem ) {
4308     progress = this;
4309     // Cut inputs during Parse phase only.
4310     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4311     if( !can_reshape ) {
4312       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4313         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4314       }
4315     }
4316   }
4317 
4318   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4319     // Check if PhiNode::Ideal's "Split phis through memory merges"
4320     // transform should be attempted. Look for this->phi->this cycle.
4321     uint merge_width = req();
4322     if (merge_width > Compile::AliasIdxRaw) {
4323       PhiNode* phi = base_memory()->as_Phi();
4324       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4325         if (phi->in(i) == this) {
4326           phase->is_IterGVN()->_worklist.push(phi);
4327           break;
4328         }
4329       }
4330     }
4331   }
4332 
4333   assert(progress || verify_sparse(), "please, no dups of base");
4334   return progress;
4335 }
4336 
4337 //-------------------------set_base_memory-------------------------------------
4338 void MergeMemNode::set_base_memory(Node *new_base) {
4339   Node* empty_mem = empty_memory();
4340   set_req(Compile::AliasIdxBot, new_base);
4341   assert(memory_at(req()) == new_base, "must set default memory");
4342   // Clear out other occurrences of new_base:
4343   if (new_base != empty_mem) {
4344     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4345       if (in(i) == new_base)  set_req(i, empty_mem);
4346     }
4347   }
4348 }
4349 
4350 //------------------------------out_RegMask------------------------------------
4351 const RegMask &MergeMemNode::out_RegMask() const {
4352   return RegMask::Empty;
4353 }
4354 
4355 //------------------------------dump_spec--------------------------------------
4356 #ifndef PRODUCT
4357 void MergeMemNode::dump_spec(outputStream *st) const {
4358   st->print(" {");
4359   Node* base_mem = base_memory();
4360   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4361     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4362     if (mem == base_mem) { st->print(" -"); continue; }
4363     st->print( " N%d:", mem->_idx );
4364     Compile::current()->get_adr_type(i)->dump_on(st);
4365   }
4366   st->print(" }");
4367 }
4368 #endif // !PRODUCT
4369 
4370 
4371 #ifdef ASSERT
4372 static bool might_be_same(Node* a, Node* b) {
4373   if (a == b)  return true;
4374   if (!(a->is_Phi() || b->is_Phi()))  return false;
4375   // phis shift around during optimization
4376   return true;  // pretty stupid...
4377 }
4378 
4379 // verify a narrow slice (either incoming or outgoing)
4380 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4381   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4382   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4383   if (Node::in_dump())      return;  // muzzle asserts when printing
4384   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4385   assert(n != NULL, "");
4386   // Elide intervening MergeMem's
4387   while (n->is_MergeMem()) {
4388     n = n->as_MergeMem()->memory_at(alias_idx);
4389   }
4390   Compile* C = Compile::current();
4391   const TypePtr* n_adr_type = n->adr_type();
4392   if (n == m->empty_memory()) {
4393     // Implicit copy of base_memory()
4394   } else if (n_adr_type != TypePtr::BOTTOM) {
4395     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4396     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4397   } else {
4398     // A few places like make_runtime_call "know" that VM calls are narrow,
4399     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4400     bool expected_wide_mem = false;
4401     if (n == m->base_memory()) {
4402       expected_wide_mem = true;
4403     } else if (alias_idx == Compile::AliasIdxRaw ||
4404                n == m->memory_at(Compile::AliasIdxRaw)) {
4405       expected_wide_mem = true;
4406     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4407       // memory can "leak through" calls on channels that
4408       // are write-once.  Allow this also.
4409       expected_wide_mem = true;
4410     }
4411     assert(expected_wide_mem, "expected narrow slice replacement");
4412   }
4413 }
4414 #else // !ASSERT
4415 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4416 #endif
4417 
4418 
4419 //-----------------------------memory_at---------------------------------------
4420 Node* MergeMemNode::memory_at(uint alias_idx) const {
4421   assert(alias_idx >= Compile::AliasIdxRaw ||
4422          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4423          "must avoid base_memory and AliasIdxTop");
4424 
4425   // Otherwise, it is a narrow slice.
4426   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4427   Compile *C = Compile::current();
4428   if (is_empty_memory(n)) {
4429     // the array is sparse; empty slots are the "top" node
4430     n = base_memory();
4431     assert(Node::in_dump()
4432            || n == NULL || n->bottom_type() == Type::TOP
4433            || n->adr_type() == NULL // address is TOP
4434            || n->adr_type() == TypePtr::BOTTOM
4435            || n->adr_type() == TypeRawPtr::BOTTOM
4436            || Compile::current()->AliasLevel() == 0,
4437            "must be a wide memory");
4438     // AliasLevel == 0 if we are organizing the memory states manually.
4439     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4440   } else {
4441     // make sure the stored slice is sane
4442     #ifdef ASSERT
4443     if (is_error_reported() || Node::in_dump()) {
4444     } else if (might_be_same(n, base_memory())) {
4445       // Give it a pass:  It is a mostly harmless repetition of the base.
4446       // This can arise normally from node subsumption during optimization.
4447     } else {
4448       verify_memory_slice(this, alias_idx, n);
4449     }
4450     #endif
4451   }
4452   return n;
4453 }
4454 
4455 //---------------------------set_memory_at-------------------------------------
4456 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4457   verify_memory_slice(this, alias_idx, n);
4458   Node* empty_mem = empty_memory();
4459   if (n == base_memory())  n = empty_mem;  // collapse default
4460   uint need_req = alias_idx+1;
4461   if (req() < need_req) {
4462     if (n == empty_mem)  return;  // already the default, so do not grow me
4463     // grow the sparse array
4464     do {
4465       add_req(empty_mem);
4466     } while (req() < need_req);
4467   }
4468   set_req( alias_idx, n );
4469 }
4470 
4471 
4472 
4473 //--------------------------iteration_setup------------------------------------
4474 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4475   if (other != NULL) {
4476     grow_to_match(other);
4477     // invariant:  the finite support of mm2 is within mm->req()
4478     #ifdef ASSERT
4479     for (uint i = req(); i < other->req(); i++) {
4480       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4481     }
4482     #endif
4483   }
4484   // Replace spurious copies of base_memory by top.
4485   Node* base_mem = base_memory();
4486   if (base_mem != NULL && !base_mem->is_top()) {
4487     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4488       if (in(i) == base_mem)
4489         set_req(i, empty_memory());
4490     }
4491   }
4492 }
4493 
4494 //---------------------------grow_to_match-------------------------------------
4495 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4496   Node* empty_mem = empty_memory();
4497   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4498   // look for the finite support of the other memory
4499   for (uint i = other->req(); --i >= req(); ) {
4500     if (other->in(i) != empty_mem) {
4501       uint new_len = i+1;
4502       while (req() < new_len)  add_req(empty_mem);
4503       break;
4504     }
4505   }
4506 }
4507 
4508 //---------------------------verify_sparse-------------------------------------
4509 #ifndef PRODUCT
4510 bool MergeMemNode::verify_sparse() const {
4511   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4512   Node* base_mem = base_memory();
4513   // The following can happen in degenerate cases, since empty==top.
4514   if (is_empty_memory(base_mem))  return true;
4515   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4516     assert(in(i) != NULL, "sane slice");
4517     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4518   }
4519   return true;
4520 }
4521 
4522 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4523   Node* n;
4524   n = mm->in(idx);
4525   if (mem == n)  return true;  // might be empty_memory()
4526   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4527   if (mem == n)  return true;
4528   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4529     if (mem == n)  return true;
4530     if (n == NULL)  break;
4531   }
4532   return false;
4533 }
4534 #endif // !PRODUCT