1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/valueArrayKlass.hpp"
  43 #include "oops/valueArrayOop.hpp"
  44 #include "oops/valueKlass.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/compilationPolicy.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/signature.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/thread.hpp"
  55 #include "runtime/vframe.hpp"
  56 #include "runtime/vframeArray.hpp"
  57 #include "runtime/vframe_hp.hpp"
  58 #include "utilities/events.hpp"
  59 #include "utilities/xmlstream.hpp"
  60 
  61 #if INCLUDE_JVMCI
  62 #include "jvmci/jvmciRuntime.hpp"
  63 #include "jvmci/jvmciJavaClasses.hpp"
  64 #endif
  65 
  66 
  67 bool DeoptimizationMarker::_is_active = false;
  68 
  69 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  70                                          int  caller_adjustment,
  71                                          int  caller_actual_parameters,
  72                                          int  number_of_frames,
  73                                          intptr_t* frame_sizes,
  74                                          address* frame_pcs,
  75                                          BasicType return_type,
  76                                          int exec_mode) {
  77   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  78   _caller_adjustment         = caller_adjustment;
  79   _caller_actual_parameters  = caller_actual_parameters;
  80   _number_of_frames          = number_of_frames;
  81   _frame_sizes               = frame_sizes;
  82   _frame_pcs                 = frame_pcs;
  83   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  84   _return_type               = return_type;
  85   _initial_info              = 0;
  86   // PD (x86 only)
  87   _counter_temp              = 0;
  88   _unpack_kind               = exec_mode;
  89   _sender_sp_temp            = 0;
  90 
  91   _total_frame_sizes         = size_of_frames();
  92   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  93 }
  94 
  95 
  96 Deoptimization::UnrollBlock::~UnrollBlock() {
  97   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  98   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  99   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 100 }
 101 
 102 
 103 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 104   assert(register_number < RegisterMap::reg_count, "checking register number");
 105   return &_register_block[register_number * 2];
 106 }
 107 
 108 
 109 
 110 int Deoptimization::UnrollBlock::size_of_frames() const {
 111   // Acount first for the adjustment of the initial frame
 112   int result = _caller_adjustment;
 113   for (int index = 0; index < number_of_frames(); index++) {
 114     result += frame_sizes()[index];
 115   }
 116   return result;
 117 }
 118 
 119 
 120 void Deoptimization::UnrollBlock::print() {
 121   ttyLocker ttyl;
 122   tty->print_cr("UnrollBlock");
 123   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 124   tty->print(   "  frame_sizes: ");
 125   for (int index = 0; index < number_of_frames(); index++) {
 126     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 127   }
 128   tty->cr();
 129 }
 130 
 131 
 132 // In order to make fetch_unroll_info work properly with escape
 133 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 134 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 135 // of previously eliminated objects occurs in realloc_objects, which is
 136 // called from the method fetch_unroll_info_helper below.
 137 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 138   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 139   // but makes the entry a little slower. There is however a little dance we have to
 140   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 141 
 142   // fetch_unroll_info() is called at the beginning of the deoptimization
 143   // handler. Note this fact before we start generating temporary frames
 144   // that can confuse an asynchronous stack walker. This counter is
 145   // decremented at the end of unpack_frames().
 146   if (TraceDeoptimization) {
 147     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 148   }
 149   thread->inc_in_deopt_handler();
 150 
 151   return fetch_unroll_info_helper(thread, exec_mode);
 152 JRT_END
 153 
 154 
 155 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 156 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 157 
 158   // Note: there is a safepoint safety issue here. No matter whether we enter
 159   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 160   // the vframeArray is created.
 161   //
 162 
 163   // Allocate our special deoptimization ResourceMark
 164   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 165   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 166   thread->set_deopt_mark(dmark);
 167 
 168   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 169   RegisterMap map(thread, true);
 170   RegisterMap dummy_map(thread, false);
 171   // Now get the deoptee with a valid map
 172   frame deoptee = stub_frame.sender(&map);
 173   // Set the deoptee nmethod
 174   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 175   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 176   thread->set_deopt_compiled_method(cm);
 177 
 178   if (VerifyStack) {
 179     thread->validate_frame_layout();
 180   }
 181 
 182   // Create a growable array of VFrames where each VFrame represents an inlined
 183   // Java frame.  This storage is allocated with the usual system arena.
 184   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 185   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 186   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 187   while (!vf->is_top()) {
 188     assert(vf->is_compiled_frame(), "Wrong frame type");
 189     chunk->push(compiledVFrame::cast(vf));
 190     vf = vf->sender();
 191   }
 192   assert(vf->is_compiled_frame(), "Wrong frame type");
 193   chunk->push(compiledVFrame::cast(vf));
 194 
 195   bool realloc_failures = false;
 196 
 197 #if defined(COMPILER2) || INCLUDE_JVMCI
 198   // Reallocate the non-escaping objects and restore their fields. Then
 199   // relock objects if synchronization on them was eliminated.
 200 #ifndef INCLUDE_JVMCI
 201   if (DoEscapeAnalysis || EliminateNestedLocks) {
 202     if (EliminateAllocations) {
 203 #endif // INCLUDE_JVMCI
 204       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 205       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 206 
 207       // The flag return_oop() indicates call sites which return oop
 208       // in compiled code. Such sites include java method calls,
 209       // runtime calls (for example, used to allocate new objects/arrays
 210       // on slow code path) and any other calls generated in compiled code.
 211       // It is not guaranteed that we can get such information here only
 212       // by analyzing bytecode in deoptimized frames. This is why this flag
 213       // is set during method compilation (see Compile::Process_OopMap_Node()).
 214       // If the previous frame was popped or if we are dispatching an exception,
 215       // we don't have an oop result.
 216       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 217       Handle return_value;
 218       if (save_oop_result) {
 219         // Reallocation may trigger GC. If deoptimization happened on return from
 220         // call which returns oop we need to save it since it is not in oopmap.
 221         oop result = deoptee.saved_oop_result(&map);
 222         assert(result == NULL || result->is_oop(), "must be oop");
 223         return_value = Handle(thread, result);
 224         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 225         if (TraceDeoptimization) {
 226           ttyLocker ttyl;
 227           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 228         }
 229       }
 230       if (objects != NULL) {
 231         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 232         JRT_BLOCK
 233           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 234           reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD);
 235         JRT_END
 236 #ifndef PRODUCT
 237         if (TraceDeoptimization) {
 238           ttyLocker ttyl;
 239           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 240           print_objects(objects, realloc_failures);
 241         }
 242 #endif
 243       }
 244       if (save_oop_result) {
 245         // Restore result.
 246         deoptee.set_saved_oop_result(&map, return_value());
 247       }
 248 #ifndef INCLUDE_JVMCI
 249     }
 250     if (EliminateLocks) {
 251 #endif // INCLUDE_JVMCI
 252 #ifndef PRODUCT
 253       bool first = true;
 254 #endif
 255       for (int i = 0; i < chunk->length(); i++) {
 256         compiledVFrame* cvf = chunk->at(i);
 257         assert (cvf->scope() != NULL,"expect only compiled java frames");
 258         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 259         if (monitors->is_nonempty()) {
 260           relock_objects(monitors, thread, realloc_failures);
 261 #ifndef PRODUCT
 262           if (PrintDeoptimizationDetails) {
 263             ttyLocker ttyl;
 264             for (int j = 0; j < monitors->length(); j++) {
 265               MonitorInfo* mi = monitors->at(j);
 266               if (mi->eliminated()) {
 267                 if (first) {
 268                   first = false;
 269                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 270                 }
 271                 if (mi->owner_is_scalar_replaced()) {
 272                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 273                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 274                 } else {
 275                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 276                 }
 277               }
 278             }
 279           }
 280 #endif // !PRODUCT
 281         }
 282       }
 283 #ifndef INCLUDE_JVMCI
 284     }
 285   }
 286 #endif // INCLUDE_JVMCI
 287 #endif // COMPILER2 || INCLUDE_JVMCI
 288 
 289   ScopeDesc* trap_scope = chunk->at(0)->scope();
 290   Handle exceptionObject;
 291   if (trap_scope->rethrow_exception()) {
 292     if (PrintDeoptimizationDetails) {
 293       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 294     }
 295     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 296     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 297     ScopeValue* topOfStack = expressions->top();
 298     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 299     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 300   }
 301 
 302   // Ensure that no safepoint is taken after pointers have been stored
 303   // in fields of rematerialized objects.  If a safepoint occurs from here on
 304   // out the java state residing in the vframeArray will be missed.
 305   NoSafepointVerifier no_safepoint;
 306 
 307   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 308 #if defined(COMPILER2) || INCLUDE_JVMCI
 309   if (realloc_failures) {
 310     pop_frames_failed_reallocs(thread, array);
 311   }
 312 #endif
 313 
 314   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 315   thread->set_vframe_array_head(array);
 316 
 317   // Now that the vframeArray has been created if we have any deferred local writes
 318   // added by jvmti then we can free up that structure as the data is now in the
 319   // vframeArray
 320 
 321   if (thread->deferred_locals() != NULL) {
 322     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 323     int i = 0;
 324     do {
 325       // Because of inlining we could have multiple vframes for a single frame
 326       // and several of the vframes could have deferred writes. Find them all.
 327       if (list->at(i)->id() == array->original().id()) {
 328         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 329         list->remove_at(i);
 330         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 331         delete dlv;
 332       } else {
 333         i++;
 334       }
 335     } while ( i < list->length() );
 336     if (list->length() == 0) {
 337       thread->set_deferred_locals(NULL);
 338       // free the list and elements back to C heap.
 339       delete list;
 340     }
 341 
 342   }
 343 
 344 #ifndef SHARK
 345   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 346   CodeBlob* cb = stub_frame.cb();
 347   // Verify we have the right vframeArray
 348   assert(cb->frame_size() >= 0, "Unexpected frame size");
 349   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 350 
 351   // If the deopt call site is a MethodHandle invoke call site we have
 352   // to adjust the unpack_sp.
 353   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 354   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 355     unpack_sp = deoptee.unextended_sp();
 356 
 357 #ifdef ASSERT
 358   assert(cb->is_deoptimization_stub() ||
 359          cb->is_uncommon_trap_stub() ||
 360          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 361          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 362          "unexpected code blob: %s", cb->name());
 363 #endif
 364 #else
 365   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 366 #endif // !SHARK
 367 
 368   // This is a guarantee instead of an assert because if vframe doesn't match
 369   // we will unpack the wrong deoptimized frame and wind up in strange places
 370   // where it will be very difficult to figure out what went wrong. Better
 371   // to die an early death here than some very obscure death later when the
 372   // trail is cold.
 373   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 374   // in that it will fail to detect a problem when there is one. This needs
 375   // more work in tiger timeframe.
 376   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 377 
 378   int number_of_frames = array->frames();
 379 
 380   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 381   // virtual activation, which is the reverse of the elements in the vframes array.
 382   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 383   // +1 because we always have an interpreter return address for the final slot.
 384   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 385   int popframe_extra_args = 0;
 386   // Create an interpreter return address for the stub to use as its return
 387   // address so the skeletal frames are perfectly walkable
 388   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 389 
 390   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 391   // activation be put back on the expression stack of the caller for reexecution
 392   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 393     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 394   }
 395 
 396   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 397   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 398   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 399   //
 400   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 401   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 402 
 403   // It's possible that the number of parameters at the call site is
 404   // different than number of arguments in the callee when method
 405   // handles are used.  If the caller is interpreted get the real
 406   // value so that the proper amount of space can be added to it's
 407   // frame.
 408   bool caller_was_method_handle = false;
 409   if (deopt_sender.is_interpreted_frame()) {
 410     methodHandle method = deopt_sender.interpreter_frame_method();
 411     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 412     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 413       // Method handle invokes may involve fairly arbitrary chains of
 414       // calls so it's impossible to know how much actual space the
 415       // caller has for locals.
 416       caller_was_method_handle = true;
 417     }
 418   }
 419 
 420   //
 421   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 422   // frame_sizes/frame_pcs[1] next oldest frame (int)
 423   // frame_sizes/frame_pcs[n] youngest frame (int)
 424   //
 425   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 426   // owns the space for the return address to it's caller).  Confusing ain't it.
 427   //
 428   // The vframe array can address vframes with indices running from
 429   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 430   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 431   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 432   // so things look a little strange in this loop.
 433   //
 434   int callee_parameters = 0;
 435   int callee_locals = 0;
 436   for (int index = 0; index < array->frames(); index++ ) {
 437     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 438     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 439     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 440     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 441                                                                                                     callee_locals,
 442                                                                                                     index == 0,
 443                                                                                                     popframe_extra_args);
 444     // This pc doesn't have to be perfect just good enough to identify the frame
 445     // as interpreted so the skeleton frame will be walkable
 446     // The correct pc will be set when the skeleton frame is completely filled out
 447     // The final pc we store in the loop is wrong and will be overwritten below
 448     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 449 
 450     callee_parameters = array->element(index)->method()->size_of_parameters();
 451     callee_locals = array->element(index)->method()->max_locals();
 452     popframe_extra_args = 0;
 453   }
 454 
 455   // Compute whether the root vframe returns a float or double value.
 456   BasicType return_type;
 457   {
 458     methodHandle method(thread, array->element(0)->method());
 459     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 460     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 461   }
 462 
 463   // Compute information for handling adapters and adjusting the frame size of the caller.
 464   int caller_adjustment = 0;
 465 
 466   // Compute the amount the oldest interpreter frame will have to adjust
 467   // its caller's stack by. If the caller is a compiled frame then
 468   // we pretend that the callee has no parameters so that the
 469   // extension counts for the full amount of locals and not just
 470   // locals-parms. This is because without a c2i adapter the parm
 471   // area as created by the compiled frame will not be usable by
 472   // the interpreter. (Depending on the calling convention there
 473   // may not even be enough space).
 474 
 475   // QQQ I'd rather see this pushed down into last_frame_adjust
 476   // and have it take the sender (aka caller).
 477 
 478   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 479     caller_adjustment = last_frame_adjust(0, callee_locals);
 480   } else if (callee_locals > callee_parameters) {
 481     // The caller frame may need extending to accommodate
 482     // non-parameter locals of the first unpacked interpreted frame.
 483     // Compute that adjustment.
 484     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 485   }
 486 
 487   // If the sender is deoptimized the we must retrieve the address of the handler
 488   // since the frame will "magically" show the original pc before the deopt
 489   // and we'd undo the deopt.
 490 
 491   frame_pcs[0] = deopt_sender.raw_pc();
 492 
 493 #ifndef SHARK
 494   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 495 #endif // SHARK
 496 
 497 #ifdef INCLUDE_JVMCI
 498   if (exceptionObject() != NULL) {
 499     thread->set_exception_oop(exceptionObject());
 500     exec_mode = Unpack_exception;
 501   }
 502 #endif
 503 
 504   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 505     assert(thread->has_pending_exception(), "should have thrown OOME");
 506     thread->set_exception_oop(thread->pending_exception());
 507     thread->clear_pending_exception();
 508     exec_mode = Unpack_exception;
 509   }
 510 
 511 #if INCLUDE_JVMCI
 512   if (thread->frames_to_pop_failed_realloc() > 0) {
 513     thread->set_pending_monitorenter(false);
 514   }
 515 #endif
 516 
 517   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 518                                       caller_adjustment * BytesPerWord,
 519                                       caller_was_method_handle ? 0 : callee_parameters,
 520                                       number_of_frames,
 521                                       frame_sizes,
 522                                       frame_pcs,
 523                                       return_type,
 524                                       exec_mode);
 525   // On some platforms, we need a way to pass some platform dependent
 526   // information to the unpacking code so the skeletal frames come out
 527   // correct (initial fp value, unextended sp, ...)
 528   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 529 
 530   if (array->frames() > 1) {
 531     if (VerifyStack && TraceDeoptimization) {
 532       ttyLocker ttyl;
 533       tty->print_cr("Deoptimizing method containing inlining");
 534     }
 535   }
 536 
 537   array->set_unroll_block(info);
 538   return info;
 539 }
 540 
 541 // Called to cleanup deoptimization data structures in normal case
 542 // after unpacking to stack and when stack overflow error occurs
 543 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 544                                         vframeArray *array) {
 545 
 546   // Get array if coming from exception
 547   if (array == NULL) {
 548     array = thread->vframe_array_head();
 549   }
 550   thread->set_vframe_array_head(NULL);
 551 
 552   // Free the previous UnrollBlock
 553   vframeArray* old_array = thread->vframe_array_last();
 554   thread->set_vframe_array_last(array);
 555 
 556   if (old_array != NULL) {
 557     UnrollBlock* old_info = old_array->unroll_block();
 558     old_array->set_unroll_block(NULL);
 559     delete old_info;
 560     delete old_array;
 561   }
 562 
 563   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 564   // inside the vframeArray (StackValueCollections)
 565 
 566   delete thread->deopt_mark();
 567   thread->set_deopt_mark(NULL);
 568   thread->set_deopt_compiled_method(NULL);
 569 
 570 
 571   if (JvmtiExport::can_pop_frame()) {
 572 #ifndef CC_INTERP
 573     // Regardless of whether we entered this routine with the pending
 574     // popframe condition bit set, we should always clear it now
 575     thread->clear_popframe_condition();
 576 #else
 577     // C++ interpreter will clear has_pending_popframe when it enters
 578     // with method_resume. For deopt_resume2 we clear it now.
 579     if (thread->popframe_forcing_deopt_reexecution())
 580         thread->clear_popframe_condition();
 581 #endif /* CC_INTERP */
 582   }
 583 
 584   // unpack_frames() is called at the end of the deoptimization handler
 585   // and (in C2) at the end of the uncommon trap handler. Note this fact
 586   // so that an asynchronous stack walker can work again. This counter is
 587   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 588   // the beginning of uncommon_trap().
 589   thread->dec_in_deopt_handler();
 590 }
 591 
 592 // Moved from cpu directories because none of the cpus has callee save values.
 593 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 594 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 595 
 596   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 597   // the days we had adapter frames. When we deoptimize a situation where a
 598   // compiled caller calls a compiled caller will have registers it expects
 599   // to survive the call to the callee. If we deoptimize the callee the only
 600   // way we can restore these registers is to have the oldest interpreter
 601   // frame that we create restore these values. That is what this routine
 602   // will accomplish.
 603 
 604   // At the moment we have modified c2 to not have any callee save registers
 605   // so this problem does not exist and this routine is just a place holder.
 606 
 607   assert(f->is_interpreted_frame(), "must be interpreted");
 608 }
 609 
 610 // Return BasicType of value being returned
 611 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 612 
 613   // We are already active int he special DeoptResourceMark any ResourceObj's we
 614   // allocate will be freed at the end of the routine.
 615 
 616   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 617   // but makes the entry a little slower. There is however a little dance we have to
 618   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 619   ResetNoHandleMark rnhm; // No-op in release/product versions
 620   HandleMark hm;
 621 
 622   frame stub_frame = thread->last_frame();
 623 
 624   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 625   // must point to the vframeArray for the unpack frame.
 626   vframeArray* array = thread->vframe_array_head();
 627 
 628 #ifndef PRODUCT
 629   if (TraceDeoptimization) {
 630     ttyLocker ttyl;
 631     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 632                   p2i(thread), p2i(array), exec_mode);
 633   }
 634 #endif
 635   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 636               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 637 
 638   UnrollBlock* info = array->unroll_block();
 639 
 640   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 641   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 642 
 643   BasicType bt = info->return_type();
 644 
 645   // If we have an exception pending, claim that the return type is an oop
 646   // so the deopt_blob does not overwrite the exception_oop.
 647 
 648   if (exec_mode == Unpack_exception)
 649     bt = T_OBJECT;
 650 
 651   // Cleanup thread deopt data
 652   cleanup_deopt_info(thread, array);
 653 
 654 #ifndef PRODUCT
 655   if (VerifyStack) {
 656     ResourceMark res_mark;
 657 
 658     thread->validate_frame_layout();
 659 
 660     // Verify that the just-unpacked frames match the interpreter's
 661     // notions of expression stack and locals
 662     vframeArray* cur_array = thread->vframe_array_last();
 663     RegisterMap rm(thread, false);
 664     rm.set_include_argument_oops(false);
 665     bool is_top_frame = true;
 666     int callee_size_of_parameters = 0;
 667     int callee_max_locals = 0;
 668     for (int i = 0; i < cur_array->frames(); i++) {
 669       vframeArrayElement* el = cur_array->element(i);
 670       frame* iframe = el->iframe();
 671       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 672 
 673       // Get the oop map for this bci
 674       InterpreterOopMap mask;
 675       int cur_invoke_parameter_size = 0;
 676       bool try_next_mask = false;
 677       int next_mask_expression_stack_size = -1;
 678       int top_frame_expression_stack_adjustment = 0;
 679       methodHandle mh(thread, iframe->interpreter_frame_method());
 680       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 681       BytecodeStream str(mh);
 682       str.set_start(iframe->interpreter_frame_bci());
 683       int max_bci = mh->code_size();
 684       // Get to the next bytecode if possible
 685       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 686       // Check to see if we can grab the number of outgoing arguments
 687       // at an uncommon trap for an invoke (where the compiler
 688       // generates debug info before the invoke has executed)
 689       Bytecodes::Code cur_code = str.next();
 690       if (cur_code == Bytecodes::_invokevirtual   ||
 691           cur_code == Bytecodes::_invokespecial   ||
 692           cur_code == Bytecodes::_invokestatic    ||
 693           cur_code == Bytecodes::_invokeinterface ||
 694           cur_code == Bytecodes::_invokedynamic) {
 695         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 696         Symbol* signature = invoke.signature();
 697         ArgumentSizeComputer asc(signature);
 698         cur_invoke_parameter_size = asc.size();
 699         if (invoke.has_receiver()) {
 700           // Add in receiver
 701           ++cur_invoke_parameter_size;
 702         }
 703         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 704           callee_size_of_parameters++;
 705         }
 706       }
 707       if (str.bci() < max_bci) {
 708         Bytecodes::Code bc = str.next();
 709         if (bc >= 0) {
 710           // The interpreter oop map generator reports results before
 711           // the current bytecode has executed except in the case of
 712           // calls. It seems to be hard to tell whether the compiler
 713           // has emitted debug information matching the "state before"
 714           // a given bytecode or the state after, so we try both
 715           switch (cur_code) {
 716             case Bytecodes::_invokevirtual:
 717             case Bytecodes::_invokespecial:
 718             case Bytecodes::_invokestatic:
 719             case Bytecodes::_invokeinterface:
 720             case Bytecodes::_invokedynamic:
 721             case Bytecodes::_athrow:
 722               break;
 723             default: {
 724               InterpreterOopMap next_mask;
 725               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 726               next_mask_expression_stack_size = next_mask.expression_stack_size();
 727               // Need to subtract off the size of the result type of
 728               // the bytecode because this is not described in the
 729               // debug info but returned to the interpreter in the TOS
 730               // caching register
 731               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 732               if (bytecode_result_type != T_ILLEGAL) {
 733                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 734               }
 735               assert(top_frame_expression_stack_adjustment >= 0, "");
 736               try_next_mask = true;
 737               break;
 738             }
 739           }
 740         }
 741       }
 742 
 743       // Verify stack depth and oops in frame
 744       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 745       if (!(
 746             /* SPARC */
 747             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 748             /* x86 */
 749             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 750             (try_next_mask &&
 751              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 752                                                                     top_frame_expression_stack_adjustment))) ||
 753             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 754             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 755              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 756             )) {
 757         ttyLocker ttyl;
 758 
 759         // Print out some information that will help us debug the problem
 760         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 761         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 762         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 763                       iframe->interpreter_frame_expression_stack_size());
 764         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 765         tty->print_cr("  try_next_mask = %d", try_next_mask);
 766         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 767         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 768         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 769         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 770         tty->print_cr("  exec_mode = %d", exec_mode);
 771         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 772         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 773         tty->print_cr("  Interpreted frames:");
 774         for (int k = 0; k < cur_array->frames(); k++) {
 775           vframeArrayElement* el = cur_array->element(k);
 776           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 777         }
 778         cur_array->print_on_2(tty);
 779         guarantee(false, "wrong number of expression stack elements during deopt");
 780       }
 781       VerifyOopClosure verify;
 782       iframe->oops_interpreted_do(&verify, &rm, false);
 783       callee_size_of_parameters = mh->size_of_parameters();
 784       callee_max_locals = mh->max_locals();
 785       is_top_frame = false;
 786     }
 787   }
 788 #endif /* !PRODUCT */
 789 
 790 
 791   return bt;
 792 JRT_END
 793 
 794 
 795 int Deoptimization::deoptimize_dependents() {
 796   Threads::deoptimized_wrt_marked_nmethods();
 797   return 0;
 798 }
 799 
 800 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 801   = Deoptimization::Action_reinterpret;
 802 
 803 #if defined(COMPILER2) || INCLUDE_JVMCI
 804 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 805   Handle pending_exception(THREAD, thread->pending_exception());
 806   const char* exception_file = thread->exception_file();
 807   int exception_line = thread->exception_line();
 808   thread->clear_pending_exception();
 809 
 810   bool failures = false;
 811 
 812   for (int i = 0; i < objects->length(); i++) {
 813     assert(objects->at(i)->is_object(), "invalid debug information");
 814     ObjectValue* sv = (ObjectValue*) objects->at(i);
 815 
 816     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 817     oop obj = NULL;
 818 
 819     if (k->is_instance_klass()) {
 820       InstanceKlass* ik = InstanceKlass::cast(k);
 821       obj = ik->allocate_instance(THREAD);
 822     } else if (k->is_valueArray_klass()) {
 823       ValueArrayKlass* ak = ValueArrayKlass::cast(k);
 824       // Value type array must be zeroed because not all memory is reassigned
 825       obj = ak->allocate(sv->field_size(), true, THREAD);
 826     } else if (k->is_typeArray_klass()) {
 827       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 828       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 829       int len = sv->field_size() / type2size[ak->element_type()];
 830       obj = ak->allocate(len, THREAD);
 831     } else if (k->is_objArray_klass()) {
 832       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 833       obj = ak->allocate(sv->field_size(), THREAD);
 834     }
 835 
 836     if (obj == NULL) {
 837       failures = true;
 838     }
 839 
 840     assert(sv->value().is_null(), "redundant reallocation");
 841     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 842     CLEAR_PENDING_EXCEPTION;
 843     sv->set_value(obj);
 844   }
 845 
 846   if (failures) {
 847     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 848   } else if (pending_exception.not_null()) {
 849     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 850   }
 851 
 852   return failures;
 853 }
 854 
 855 // restore elements of an eliminated type array
 856 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 857   int index = 0;
 858   intptr_t val;
 859 
 860   for (int i = 0; i < sv->field_size(); i++) {
 861     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 862     switch(type) {
 863     case T_LONG: case T_DOUBLE: {
 864       assert(value->type() == T_INT, "Agreement.");
 865       StackValue* low =
 866         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 867 #ifdef _LP64
 868       jlong res = (jlong)low->get_int();
 869 #else
 870 #ifdef SPARC
 871       // For SPARC we have to swap high and low words.
 872       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 873 #else
 874       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 875 #endif //SPARC
 876 #endif
 877       obj->long_at_put(index, res);
 878       break;
 879     }
 880 
 881     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 882     case T_INT: case T_FLOAT: { // 4 bytes.
 883       assert(value->type() == T_INT, "Agreement.");
 884       bool big_value = false;
 885       if (i + 1 < sv->field_size() && type == T_INT) {
 886         if (sv->field_at(i)->is_location()) {
 887           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 888           if (type == Location::dbl || type == Location::lng) {
 889             big_value = true;
 890           }
 891         } else if (sv->field_at(i)->is_constant_int()) {
 892           ScopeValue* next_scope_field = sv->field_at(i + 1);
 893           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 894             big_value = true;
 895           }
 896         }
 897       }
 898 
 899       if (big_value) {
 900         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 901   #ifdef _LP64
 902         jlong res = (jlong)low->get_int();
 903   #else
 904   #ifdef SPARC
 905         // For SPARC we have to swap high and low words.
 906         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 907   #else
 908         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 909   #endif //SPARC
 910   #endif
 911         obj->int_at_put(index, (jint)*((jint*)&res));
 912         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 913       } else {
 914         val = value->get_int();
 915         obj->int_at_put(index, (jint)*((jint*)&val));
 916       }
 917       break;
 918     }
 919 
 920     case T_SHORT:
 921       assert(value->type() == T_INT, "Agreement.");
 922       val = value->get_int();
 923       obj->short_at_put(index, (jshort)*((jint*)&val));
 924       break;
 925 
 926     case T_CHAR:
 927       assert(value->type() == T_INT, "Agreement.");
 928       val = value->get_int();
 929       obj->char_at_put(index, (jchar)*((jint*)&val));
 930       break;
 931 
 932     case T_BYTE:
 933       assert(value->type() == T_INT, "Agreement.");
 934       val = value->get_int();
 935       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 936       break;
 937 
 938     case T_BOOLEAN:
 939       assert(value->type() == T_INT, "Agreement.");
 940       val = value->get_int();
 941       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 942       break;
 943 
 944       default:
 945         ShouldNotReachHere();
 946     }
 947     index++;
 948   }
 949 }
 950 
 951 
 952 // restore fields of an eliminated object array
 953 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 954   for (int i = 0; i < sv->field_size(); i++) {
 955     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 956     assert(value->type() == T_OBJECT, "object element expected");
 957     obj->obj_at_put(i, value->get_obj()());
 958   }
 959 }
 960 
 961 class ReassignedField {
 962 public:
 963   int _offset;
 964   BasicType _type;
 965   InstanceKlass* _klass;
 966 public:
 967   ReassignedField() {
 968     _offset = 0;
 969     _type = T_ILLEGAL;
 970     _klass = NULL;
 971   }
 972 };
 973 
 974 int compare(ReassignedField* left, ReassignedField* right) {
 975   return left->_offset - right->_offset;
 976 }
 977 
 978 // Restore fields of an eliminated instance object using the same field order
 979 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 980 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) {
 981   if (klass->superklass() != NULL) {
 982     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal, 0, CHECK_0);
 983   }
 984 
 985   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 986   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 987     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 988       ReassignedField field;
 989       field._offset = fs.offset();
 990       field._type = FieldType::basic_type(fs.signature());
 991       if (field._type == T_VALUETYPE) {
 992         // Resolve klass of flattened value type field
 993         SignatureStream ss(fs.signature(), false);
 994         Klass* vk = ss.as_klass(Handle(THREAD, klass->class_loader()), Handle(THREAD, klass->protection_domain()), SignatureStream::NCDFError, THREAD);
 995         guarantee(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 996         assert(vk->is_value(), "must be a ValueKlass");
 997         field._klass = InstanceKlass::cast(vk);
 998       }
 999       fields->append(field);
1000     }
1001   }
1002   fields->sort(compare);
1003   for (int i = 0; i < fields->length(); i++) {
1004     intptr_t val;
1005     ScopeValue* scope_field = sv->field_at(svIndex);
1006     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1007     int offset = base_offset + fields->at(i)._offset;
1008     BasicType type = fields->at(i)._type;
1009     switch (type) {
1010       case T_OBJECT: case T_ARRAY:
1011         assert(value->type() == T_OBJECT, "Agreement.");
1012         obj->obj_field_put(offset, value->get_obj()());
1013         break;
1014 
1015       case T_VALUETYPE: {
1016         // Recursively re-assign flattened value type fields
1017         InstanceKlass* vk = fields->at(i)._klass;
1018         assert(vk != NULL, "must be resolved");
1019         offset -= ValueKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header
1020         svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0);
1021         continue; // Continue because we don't need to increment svIndex
1022       }
1023 
1024       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1025       case T_INT: case T_FLOAT: { // 4 bytes.
1026         assert(value->type() == T_INT, "Agreement.");
1027         bool big_value = false;
1028         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1029           if (scope_field->is_location()) {
1030             Location::Type type = ((LocationValue*) scope_field)->location().type();
1031             if (type == Location::dbl || type == Location::lng) {
1032               big_value = true;
1033             }
1034           }
1035           if (scope_field->is_constant_int()) {
1036             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1037             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1038               big_value = true;
1039             }
1040           }
1041         }
1042 
1043         if (big_value) {
1044           i++;
1045           assert(i < fields->length(), "second T_INT field needed");
1046           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1047         } else {
1048           val = value->get_int();
1049           obj->int_field_put(offset, (jint)*((jint*)&val));
1050           break;
1051         }
1052       }
1053         /* no break */
1054 
1055       case T_LONG: case T_DOUBLE: {
1056         assert(value->type() == T_INT, "Agreement.");
1057         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1058 #ifdef _LP64
1059         jlong res = (jlong)low->get_int();
1060 #else
1061 #ifdef SPARC
1062         // For SPARC we have to swap high and low words.
1063         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1064 #else
1065         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1066 #endif //SPARC
1067 #endif
1068         obj->long_field_put(offset, res);
1069         break;
1070       }
1071 
1072       case T_SHORT:
1073         assert(value->type() == T_INT, "Agreement.");
1074         val = value->get_int();
1075         obj->short_field_put(offset, (jshort)*((jint*)&val));
1076         break;
1077 
1078       case T_CHAR:
1079         assert(value->type() == T_INT, "Agreement.");
1080         val = value->get_int();
1081         obj->char_field_put(offset, (jchar)*((jint*)&val));
1082         break;
1083 
1084       case T_BYTE:
1085         assert(value->type() == T_INT, "Agreement.");
1086         val = value->get_int();
1087         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1088         break;
1089 
1090       case T_BOOLEAN:
1091         assert(value->type() == T_INT, "Agreement.");
1092         val = value->get_int();
1093         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1094         break;
1095 
1096       default:
1097         ShouldNotReachHere();
1098     }
1099     svIndex++;
1100   }
1101   return svIndex;
1102 }
1103 
1104 // restore fields of an eliminated value type array
1105 void Deoptimization::reassign_value_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, valueArrayOop obj, ValueArrayKlass* vak, TRAPS) {
1106   ValueKlass* vk = vak->element_klass();
1107   assert(vk->flatten_array(), "should only be used for flattened value type arrays");
1108   // Adjust offset to omit oop header
1109   int base_offset = arrayOopDesc::base_offset_in_bytes(T_VALUETYPE) - ValueKlass::cast(vk)->first_field_offset();
1110   // Initialize all elements of the flattened value type array
1111   for (int i = 0; i < sv->field_size(); i++) {
1112     ScopeValue* val = sv->field_at(i);
1113     int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper()));
1114     reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, false /* skip_internal */, offset, CHECK);
1115   }
1116 }
1117 
1118 // restore fields of all eliminated objects and arrays
1119 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) {
1120   for (int i = 0; i < objects->length(); i++) {
1121     ObjectValue* sv = (ObjectValue*) objects->at(i);
1122     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1123     Handle obj = sv->value();
1124     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1125     if (PrintDeoptimizationDetails) {
1126       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1127     }
1128     if (obj.is_null()) {
1129       continue;
1130     }
1131 
1132     if (k->is_instance_klass()) {
1133       InstanceKlass* ik = InstanceKlass::cast(k);
1134       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK);
1135     } else if (k->is_valueArray_klass()) {
1136       ValueArrayKlass* vak = ValueArrayKlass::cast(k);
1137       reassign_value_array_elements(fr, reg_map, sv, (valueArrayOop) obj(), vak, CHECK);
1138     } else if (k->is_typeArray_klass()) {
1139       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1140       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1141     } else if (k->is_objArray_klass()) {
1142       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1143     }
1144   }
1145 }
1146 
1147 
1148 // relock objects for which synchronization was eliminated
1149 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1150   for (int i = 0; i < monitors->length(); i++) {
1151     MonitorInfo* mon_info = monitors->at(i);
1152     if (mon_info->eliminated()) {
1153       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1154       if (!mon_info->owner_is_scalar_replaced()) {
1155         Handle obj(thread, mon_info->owner());
1156         markOop mark = obj->mark();
1157         if (UseBiasedLocking && mark->has_bias_pattern()) {
1158           // New allocated objects may have the mark set to anonymously biased.
1159           // Also the deoptimized method may called methods with synchronization
1160           // where the thread-local object is bias locked to the current thread.
1161           assert(mark->is_biased_anonymously() ||
1162                  mark->biased_locker() == thread, "should be locked to current thread");
1163           // Reset mark word to unbiased prototype.
1164           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1165           obj->set_mark(unbiased_prototype);
1166         }
1167         BasicLock* lock = mon_info->lock();
1168         ObjectSynchronizer::slow_enter(obj, lock, thread);
1169         assert(mon_info->owner()->is_locked(), "object must be locked now");
1170       }
1171     }
1172   }
1173 }
1174 
1175 
1176 #ifndef PRODUCT
1177 // print information about reallocated objects
1178 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1179   fieldDescriptor fd;
1180 
1181   for (int i = 0; i < objects->length(); i++) {
1182     ObjectValue* sv = (ObjectValue*) objects->at(i);
1183     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1184     Handle obj = sv->value();
1185 
1186     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1187     k->print_value();
1188     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1189     if (obj.is_null()) {
1190       tty->print(" allocation failed");
1191     } else {
1192       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1193     }
1194     tty->cr();
1195 
1196     if (Verbose && !obj.is_null()) {
1197       k->oop_print_on(obj(), tty);
1198     }
1199   }
1200 }
1201 #endif
1202 #endif // COMPILER2 || INCLUDE_JVMCI
1203 
1204 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1205   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1206 
1207 #ifndef PRODUCT
1208   if (PrintDeoptimizationDetails) {
1209     ttyLocker ttyl;
1210     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1211     fr.print_on(tty);
1212     tty->print_cr("     Virtual frames (innermost first):");
1213     for (int index = 0; index < chunk->length(); index++) {
1214       compiledVFrame* vf = chunk->at(index);
1215       tty->print("       %2d - ", index);
1216       vf->print_value();
1217       int bci = chunk->at(index)->raw_bci();
1218       const char* code_name;
1219       if (bci == SynchronizationEntryBCI) {
1220         code_name = "sync entry";
1221       } else {
1222         Bytecodes::Code code = vf->method()->code_at(bci);
1223         code_name = Bytecodes::name(code);
1224       }
1225       tty->print(" - %s", code_name);
1226       tty->print_cr(" @ bci %d ", bci);
1227       if (Verbose) {
1228         vf->print();
1229         tty->cr();
1230       }
1231     }
1232   }
1233 #endif
1234 
1235   // Register map for next frame (used for stack crawl).  We capture
1236   // the state of the deopt'ing frame's caller.  Thus if we need to
1237   // stuff a C2I adapter we can properly fill in the callee-save
1238   // register locations.
1239   frame caller = fr.sender(reg_map);
1240   int frame_size = caller.sp() - fr.sp();
1241 
1242   frame sender = caller;
1243 
1244   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1245   // the vframeArray containing the unpacking information is allocated in the C heap.
1246   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1247   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1248 
1249   // Compare the vframeArray to the collected vframes
1250   assert(array->structural_compare(thread, chunk), "just checking");
1251 
1252 #ifndef PRODUCT
1253   if (PrintDeoptimizationDetails) {
1254     ttyLocker ttyl;
1255     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1256   }
1257 #endif // PRODUCT
1258 
1259   return array;
1260 }
1261 
1262 #if defined(COMPILER2) || INCLUDE_JVMCI
1263 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1264   // Reallocation of some scalar replaced objects failed. Record
1265   // that we need to pop all the interpreter frames for the
1266   // deoptimized compiled frame.
1267   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1268   thread->set_frames_to_pop_failed_realloc(array->frames());
1269   // Unlock all monitors here otherwise the interpreter will see a
1270   // mix of locked and unlocked monitors (because of failed
1271   // reallocations of synchronized objects) and be confused.
1272   for (int i = 0; i < array->frames(); i++) {
1273     MonitorChunk* monitors = array->element(i)->monitors();
1274     if (monitors != NULL) {
1275       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1276         BasicObjectLock* src = monitors->at(j);
1277         if (src->obj() != NULL) {
1278           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1279         }
1280       }
1281       array->element(i)->free_monitors(thread);
1282 #ifdef ASSERT
1283       array->element(i)->set_removed_monitors();
1284 #endif
1285     }
1286   }
1287 }
1288 #endif
1289 
1290 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1291   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1292   Thread* thread = Thread::current();
1293   for (int i = 0; i < monitors->length(); i++) {
1294     MonitorInfo* mon_info = monitors->at(i);
1295     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1296       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1297     }
1298   }
1299 }
1300 
1301 
1302 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1303   if (!UseBiasedLocking) {
1304     return;
1305   }
1306 
1307   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1308 
1309   // Unfortunately we don't have a RegisterMap available in most of
1310   // the places we want to call this routine so we need to walk the
1311   // stack again to update the register map.
1312   if (map == NULL || !map->update_map()) {
1313     StackFrameStream sfs(thread, true);
1314     bool found = false;
1315     while (!found && !sfs.is_done()) {
1316       frame* cur = sfs.current();
1317       sfs.next();
1318       found = cur->id() == fr.id();
1319     }
1320     assert(found, "frame to be deoptimized not found on target thread's stack");
1321     map = sfs.register_map();
1322   }
1323 
1324   vframe* vf = vframe::new_vframe(&fr, map, thread);
1325   compiledVFrame* cvf = compiledVFrame::cast(vf);
1326   // Revoke monitors' biases in all scopes
1327   while (!cvf->is_top()) {
1328     collect_monitors(cvf, objects_to_revoke);
1329     cvf = compiledVFrame::cast(cvf->sender());
1330   }
1331   collect_monitors(cvf, objects_to_revoke);
1332 
1333   if (SafepointSynchronize::is_at_safepoint()) {
1334     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1335   } else {
1336     BiasedLocking::revoke(objects_to_revoke);
1337   }
1338 }
1339 
1340 
1341 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1342   if (!UseBiasedLocking) {
1343     return;
1344   }
1345 
1346   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1347   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1348   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1349     if (jt->has_last_Java_frame()) {
1350       StackFrameStream sfs(jt, true);
1351       while (!sfs.is_done()) {
1352         frame* cur = sfs.current();
1353         if (cb->contains(cur->pc())) {
1354           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1355           compiledVFrame* cvf = compiledVFrame::cast(vf);
1356           // Revoke monitors' biases in all scopes
1357           while (!cvf->is_top()) {
1358             collect_monitors(cvf, objects_to_revoke);
1359             cvf = compiledVFrame::cast(cvf->sender());
1360           }
1361           collect_monitors(cvf, objects_to_revoke);
1362         }
1363         sfs.next();
1364       }
1365     }
1366   }
1367   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1368 }
1369 
1370 
1371 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1372   assert(fr.can_be_deoptimized(), "checking frame type");
1373 
1374   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1375 
1376   if (LogCompilation && xtty != NULL) {
1377     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1378     assert(cm != NULL, "only compiled methods can deopt");
1379 
1380     ttyLocker ttyl;
1381     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1382     cm->log_identity(xtty);
1383     xtty->end_head();
1384     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1385       xtty->begin_elem("jvms bci='%d'", sd->bci());
1386       xtty->method(sd->method());
1387       xtty->end_elem();
1388       if (sd->is_top())  break;
1389     }
1390     xtty->tail("deoptimized");
1391   }
1392 
1393   // Patch the compiled method so that when execution returns to it we will
1394   // deopt the execution state and return to the interpreter.
1395   fr.deoptimize(thread);
1396 }
1397 
1398 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1399   deoptimize(thread, fr, map, Reason_constraint);
1400 }
1401 
1402 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1403   // Deoptimize only if the frame comes from compile code.
1404   // Do not deoptimize the frame which is already patched
1405   // during the execution of the loops below.
1406   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1407     return;
1408   }
1409   ResourceMark rm;
1410   DeoptimizationMarker dm;
1411   if (UseBiasedLocking) {
1412     revoke_biases_of_monitors(thread, fr, map);
1413   }
1414   deoptimize_single_frame(thread, fr, reason);
1415 
1416 }
1417 
1418 
1419 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1420   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1421          "can only deoptimize other thread at a safepoint");
1422   // Compute frame and register map based on thread and sp.
1423   RegisterMap reg_map(thread, UseBiasedLocking);
1424   frame fr = thread->last_frame();
1425   while (fr.id() != id) {
1426     fr = fr.sender(&reg_map);
1427   }
1428   deoptimize(thread, fr, &reg_map, reason);
1429 }
1430 
1431 
1432 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1433   if (thread == Thread::current()) {
1434     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1435   } else {
1436     VM_DeoptimizeFrame deopt(thread, id, reason);
1437     VMThread::execute(&deopt);
1438   }
1439 }
1440 
1441 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1442   deoptimize_frame(thread, id, Reason_constraint);
1443 }
1444 
1445 // JVMTI PopFrame support
1446 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1447 {
1448   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1449 }
1450 JRT_END
1451 
1452 MethodData*
1453 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1454                                 bool create_if_missing) {
1455   Thread* THREAD = thread;
1456   MethodData* mdo = m()->method_data();
1457   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1458     // Build an MDO.  Ignore errors like OutOfMemory;
1459     // that simply means we won't have an MDO to update.
1460     Method::build_interpreter_method_data(m, THREAD);
1461     if (HAS_PENDING_EXCEPTION) {
1462       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1463       CLEAR_PENDING_EXCEPTION;
1464     }
1465     mdo = m()->method_data();
1466   }
1467   return mdo;
1468 }
1469 
1470 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1471 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1472   // in case of an unresolved klass entry, load the class.
1473   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1474     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1475     return;
1476   }
1477 
1478   if (!constant_pool->tag_at(index).is_symbol()) return;
1479 
1480   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1481   Symbol*  symbol  = constant_pool->symbol_at(index);
1482 
1483   // class name?
1484   if (symbol->byte_at(0) != '(') {
1485     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1486     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1487     return;
1488   }
1489 
1490   // then it must be a signature!
1491   ResourceMark rm(THREAD);
1492   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1493     if (ss.is_object()) {
1494       Symbol* class_name = ss.as_symbol(CHECK);
1495       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1496       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1497     }
1498   }
1499 }
1500 
1501 
1502 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1503   EXCEPTION_MARK;
1504   load_class_by_index(constant_pool, index, THREAD);
1505   if (HAS_PENDING_EXCEPTION) {
1506     // Exception happened during classloading. We ignore the exception here, since it
1507     // is going to be rethrown since the current activation is going to be deoptimized and
1508     // the interpreter will re-execute the bytecode.
1509     CLEAR_PENDING_EXCEPTION;
1510     // Class loading called java code which may have caused a stack
1511     // overflow. If the exception was thrown right before the return
1512     // to the runtime the stack is no longer guarded. Reguard the
1513     // stack otherwise if we return to the uncommon trap blob and the
1514     // stack bang causes a stack overflow we crash.
1515     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1516     JavaThread* thread = (JavaThread*)THREAD;
1517     bool guard_pages_enabled = thread->stack_guards_enabled();
1518     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1519     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1520   }
1521 }
1522 
1523 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1524   HandleMark hm;
1525 
1526   // uncommon_trap() is called at the beginning of the uncommon trap
1527   // handler. Note this fact before we start generating temporary frames
1528   // that can confuse an asynchronous stack walker. This counter is
1529   // decremented at the end of unpack_frames().
1530   thread->inc_in_deopt_handler();
1531 
1532   // We need to update the map if we have biased locking.
1533 #if INCLUDE_JVMCI
1534   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1535   RegisterMap reg_map(thread, true);
1536 #else
1537   RegisterMap reg_map(thread, UseBiasedLocking);
1538 #endif
1539   frame stub_frame = thread->last_frame();
1540   frame fr = stub_frame.sender(&reg_map);
1541   // Make sure the calling nmethod is not getting deoptimized and removed
1542   // before we are done with it.
1543   nmethodLocker nl(fr.pc());
1544 
1545   // Log a message
1546   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1547               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1548 
1549   {
1550     ResourceMark rm;
1551 
1552     // Revoke biases of any monitors in the frame to ensure we can migrate them
1553     revoke_biases_of_monitors(thread, fr, &reg_map);
1554 
1555     DeoptReason reason = trap_request_reason(trap_request);
1556     DeoptAction action = trap_request_action(trap_request);
1557 #if INCLUDE_JVMCI
1558     int debug_id = trap_request_debug_id(trap_request);
1559 #endif
1560     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1561 
1562     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1563     compiledVFrame* cvf = compiledVFrame::cast(vf);
1564 
1565     CompiledMethod* nm = cvf->code();
1566 
1567     ScopeDesc*      trap_scope  = cvf->scope();
1568 
1569     if (TraceDeoptimization) {
1570       ttyLocker ttyl;
1571       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1572 #if INCLUDE_JVMCI
1573           , debug_id
1574 #endif
1575           );
1576     }
1577 
1578     methodHandle    trap_method = trap_scope->method();
1579     int             trap_bci    = trap_scope->bci();
1580 #if INCLUDE_JVMCI
1581     oop speculation = thread->pending_failed_speculation();
1582     if (nm->is_compiled_by_jvmci()) {
1583       if (speculation != NULL) {
1584         oop speculation_log = nm->as_nmethod()->speculation_log();
1585         if (speculation_log != NULL) {
1586           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1587             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1588               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1589             }
1590           }
1591           if (TraceDeoptimization) {
1592             tty->print_cr("Saving speculation to speculation log");
1593           }
1594           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1595         } else {
1596           if (TraceDeoptimization) {
1597             tty->print_cr("Speculation present but no speculation log");
1598           }
1599         }
1600         thread->set_pending_failed_speculation(NULL);
1601       } else {
1602         if (TraceDeoptimization) {
1603           tty->print_cr("No speculation");
1604         }
1605       }
1606     } else {
1607       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1608     }
1609 
1610     if (trap_bci == SynchronizationEntryBCI) {
1611       trap_bci = 0;
1612       thread->set_pending_monitorenter(true);
1613     }
1614 
1615     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1616       thread->set_pending_transfer_to_interpreter(true);
1617     }
1618 #endif
1619 
1620     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1621     // Record this event in the histogram.
1622     gather_statistics(reason, action, trap_bc);
1623 
1624     // Ensure that we can record deopt. history:
1625     // Need MDO to record RTM code generation state.
1626     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1627 
1628     methodHandle profiled_method;
1629 #if INCLUDE_JVMCI
1630     if (nm->is_compiled_by_jvmci()) {
1631       profiled_method = nm->method();
1632     } else {
1633       profiled_method = trap_method;
1634     }
1635 #else
1636     profiled_method = trap_method;
1637 #endif
1638 
1639     MethodData* trap_mdo =
1640       get_method_data(thread, profiled_method, create_if_missing);
1641 
1642     // Log a message
1643     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1644                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1645                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1646 
1647     // Print a bunch of diagnostics, if requested.
1648     if (TraceDeoptimization || LogCompilation) {
1649       ResourceMark rm;
1650       ttyLocker ttyl;
1651       char buf[100];
1652       if (xtty != NULL) {
1653         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1654                          os::current_thread_id(),
1655                          format_trap_request(buf, sizeof(buf), trap_request));
1656         nm->log_identity(xtty);
1657       }
1658       Symbol* class_name = NULL;
1659       bool unresolved = false;
1660       if (unloaded_class_index >= 0) {
1661         constantPoolHandle constants (THREAD, trap_method->constants());
1662         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1663           class_name = constants->klass_name_at(unloaded_class_index);
1664           unresolved = true;
1665           if (xtty != NULL)
1666             xtty->print(" unresolved='1'");
1667         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1668           class_name = constants->symbol_at(unloaded_class_index);
1669         }
1670         if (xtty != NULL)
1671           xtty->name(class_name);
1672       }
1673       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1674         // Dump the relevant MDO state.
1675         // This is the deopt count for the current reason, any previous
1676         // reasons or recompiles seen at this point.
1677         int dcnt = trap_mdo->trap_count(reason);
1678         if (dcnt != 0)
1679           xtty->print(" count='%d'", dcnt);
1680         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1681         int dos = (pdata == NULL)? 0: pdata->trap_state();
1682         if (dos != 0) {
1683           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1684           if (trap_state_is_recompiled(dos)) {
1685             int recnt2 = trap_mdo->overflow_recompile_count();
1686             if (recnt2 != 0)
1687               xtty->print(" recompiles2='%d'", recnt2);
1688           }
1689         }
1690       }
1691       if (xtty != NULL) {
1692         xtty->stamp();
1693         xtty->end_head();
1694       }
1695       if (TraceDeoptimization) {  // make noise on the tty
1696         tty->print("Uncommon trap occurred in");
1697         nm->method()->print_short_name(tty);
1698         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1699 #if INCLUDE_JVMCI
1700         if (nm->is_nmethod()) {
1701           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1702           if (installedCode != NULL) {
1703             oop installedCodeName = NULL;
1704             if (installedCode->is_a(InstalledCode::klass())) {
1705               installedCodeName = InstalledCode::name(installedCode);
1706             }
1707             if (installedCodeName != NULL) {
1708               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1709             } else {
1710               tty->print(" (JVMCI: installed code has no name) ");
1711             }
1712           } else if (nm->is_compiled_by_jvmci()) {
1713             tty->print(" (JVMCI: no installed code) ");
1714           }
1715         }
1716 #endif
1717         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1718                    p2i(fr.pc()),
1719                    os::current_thread_id(),
1720                    trap_reason_name(reason),
1721                    trap_action_name(action),
1722                    unloaded_class_index
1723 #if INCLUDE_JVMCI
1724                    , debug_id
1725 #endif
1726                    );
1727         if (class_name != NULL) {
1728           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1729           class_name->print_symbol_on(tty);
1730         }
1731         tty->cr();
1732       }
1733       if (xtty != NULL) {
1734         // Log the precise location of the trap.
1735         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1736           xtty->begin_elem("jvms bci='%d'", sd->bci());
1737           xtty->method(sd->method());
1738           xtty->end_elem();
1739           if (sd->is_top())  break;
1740         }
1741         xtty->tail("uncommon_trap");
1742       }
1743     }
1744     // (End diagnostic printout.)
1745 
1746     // Load class if necessary
1747     if (unloaded_class_index >= 0) {
1748       constantPoolHandle constants(THREAD, trap_method->constants());
1749       load_class_by_index(constants, unloaded_class_index);
1750     }
1751 
1752     // Flush the nmethod if necessary and desirable.
1753     //
1754     // We need to avoid situations where we are re-flushing the nmethod
1755     // because of a hot deoptimization site.  Repeated flushes at the same
1756     // point need to be detected by the compiler and avoided.  If the compiler
1757     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1758     // module must take measures to avoid an infinite cycle of recompilation
1759     // and deoptimization.  There are several such measures:
1760     //
1761     //   1. If a recompilation is ordered a second time at some site X
1762     //   and for the same reason R, the action is adjusted to 'reinterpret',
1763     //   to give the interpreter time to exercise the method more thoroughly.
1764     //   If this happens, the method's overflow_recompile_count is incremented.
1765     //
1766     //   2. If the compiler fails to reduce the deoptimization rate, then
1767     //   the method's overflow_recompile_count will begin to exceed the set
1768     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1769     //   is adjusted to 'make_not_compilable', and the method is abandoned
1770     //   to the interpreter.  This is a performance hit for hot methods,
1771     //   but is better than a disastrous infinite cycle of recompilations.
1772     //   (Actually, only the method containing the site X is abandoned.)
1773     //
1774     //   3. In parallel with the previous measures, if the total number of
1775     //   recompilations of a method exceeds the much larger set limit
1776     //   PerMethodRecompilationCutoff, the method is abandoned.
1777     //   This should only happen if the method is very large and has
1778     //   many "lukewarm" deoptimizations.  The code which enforces this
1779     //   limit is elsewhere (class nmethod, class Method).
1780     //
1781     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1782     // to recompile at each bytecode independently of the per-BCI cutoff.
1783     //
1784     // The decision to update code is up to the compiler, and is encoded
1785     // in the Action_xxx code.  If the compiler requests Action_none
1786     // no trap state is changed, no compiled code is changed, and the
1787     // computation suffers along in the interpreter.
1788     //
1789     // The other action codes specify various tactics for decompilation
1790     // and recompilation.  Action_maybe_recompile is the loosest, and
1791     // allows the compiled code to stay around until enough traps are seen,
1792     // and until the compiler gets around to recompiling the trapping method.
1793     //
1794     // The other actions cause immediate removal of the present code.
1795 
1796     // Traps caused by injected profile shouldn't pollute trap counts.
1797     bool injected_profile_trap = trap_method->has_injected_profile() &&
1798                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1799 
1800     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1801     bool make_not_entrant = false;
1802     bool make_not_compilable = false;
1803     bool reprofile = false;
1804     switch (action) {
1805     case Action_none:
1806       // Keep the old code.
1807       update_trap_state = false;
1808       break;
1809     case Action_maybe_recompile:
1810       // Do not need to invalidate the present code, but we can
1811       // initiate another
1812       // Start compiler without (necessarily) invalidating the nmethod.
1813       // The system will tolerate the old code, but new code should be
1814       // generated when possible.
1815       break;
1816     case Action_reinterpret:
1817       // Go back into the interpreter for a while, and then consider
1818       // recompiling form scratch.
1819       make_not_entrant = true;
1820       // Reset invocation counter for outer most method.
1821       // This will allow the interpreter to exercise the bytecodes
1822       // for a while before recompiling.
1823       // By contrast, Action_make_not_entrant is immediate.
1824       //
1825       // Note that the compiler will track null_check, null_assert,
1826       // range_check, and class_check events and log them as if they
1827       // had been traps taken from compiled code.  This will update
1828       // the MDO trap history so that the next compilation will
1829       // properly detect hot trap sites.
1830       reprofile = true;
1831       break;
1832     case Action_make_not_entrant:
1833       // Request immediate recompilation, and get rid of the old code.
1834       // Make them not entrant, so next time they are called they get
1835       // recompiled.  Unloaded classes are loaded now so recompile before next
1836       // time they are called.  Same for uninitialized.  The interpreter will
1837       // link the missing class, if any.
1838       make_not_entrant = true;
1839       break;
1840     case Action_make_not_compilable:
1841       // Give up on compiling this method at all.
1842       make_not_entrant = true;
1843       make_not_compilable = true;
1844       break;
1845     default:
1846       ShouldNotReachHere();
1847     }
1848 
1849     // Setting +ProfileTraps fixes the following, on all platforms:
1850     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1851     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1852     // recompile relies on a MethodData* to record heroic opt failures.
1853 
1854     // Whether the interpreter is producing MDO data or not, we also need
1855     // to use the MDO to detect hot deoptimization points and control
1856     // aggressive optimization.
1857     bool inc_recompile_count = false;
1858     ProfileData* pdata = NULL;
1859     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1860       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1861       uint this_trap_count = 0;
1862       bool maybe_prior_trap = false;
1863       bool maybe_prior_recompile = false;
1864       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1865 #if INCLUDE_JVMCI
1866                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1867 #endif
1868                                    nm->method(),
1869                                    //outputs:
1870                                    this_trap_count,
1871                                    maybe_prior_trap,
1872                                    maybe_prior_recompile);
1873       // Because the interpreter also counts null, div0, range, and class
1874       // checks, these traps from compiled code are double-counted.
1875       // This is harmless; it just means that the PerXTrapLimit values
1876       // are in effect a little smaller than they look.
1877 
1878       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1879       if (per_bc_reason != Reason_none) {
1880         // Now take action based on the partially known per-BCI history.
1881         if (maybe_prior_trap
1882             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1883           // If there are too many traps at this BCI, force a recompile.
1884           // This will allow the compiler to see the limit overflow, and
1885           // take corrective action, if possible.  The compiler generally
1886           // does not use the exact PerBytecodeTrapLimit value, but instead
1887           // changes its tactics if it sees any traps at all.  This provides
1888           // a little hysteresis, delaying a recompile until a trap happens
1889           // several times.
1890           //
1891           // Actually, since there is only one bit of counter per BCI,
1892           // the possible per-BCI counts are {0,1,(per-method count)}.
1893           // This produces accurate results if in fact there is only
1894           // one hot trap site, but begins to get fuzzy if there are
1895           // many sites.  For example, if there are ten sites each
1896           // trapping two or more times, they each get the blame for
1897           // all of their traps.
1898           make_not_entrant = true;
1899         }
1900 
1901         // Detect repeated recompilation at the same BCI, and enforce a limit.
1902         if (make_not_entrant && maybe_prior_recompile) {
1903           // More than one recompile at this point.
1904           inc_recompile_count = maybe_prior_trap;
1905         }
1906       } else {
1907         // For reasons which are not recorded per-bytecode, we simply
1908         // force recompiles unconditionally.
1909         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1910         make_not_entrant = true;
1911       }
1912 
1913       // Go back to the compiler if there are too many traps in this method.
1914       if (this_trap_count >= per_method_trap_limit(reason)) {
1915         // If there are too many traps in this method, force a recompile.
1916         // This will allow the compiler to see the limit overflow, and
1917         // take corrective action, if possible.
1918         // (This condition is an unlikely backstop only, because the
1919         // PerBytecodeTrapLimit is more likely to take effect first,
1920         // if it is applicable.)
1921         make_not_entrant = true;
1922       }
1923 
1924       // Here's more hysteresis:  If there has been a recompile at
1925       // this trap point already, run the method in the interpreter
1926       // for a while to exercise it more thoroughly.
1927       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1928         reprofile = true;
1929       }
1930     }
1931 
1932     // Take requested actions on the method:
1933 
1934     // Recompile
1935     if (make_not_entrant) {
1936       if (!nm->make_not_entrant()) {
1937         return; // the call did not change nmethod's state
1938       }
1939 
1940       if (pdata != NULL) {
1941         // Record the recompilation event, if any.
1942         int tstate0 = pdata->trap_state();
1943         int tstate1 = trap_state_set_recompiled(tstate0, true);
1944         if (tstate1 != tstate0)
1945           pdata->set_trap_state(tstate1);
1946       }
1947 
1948 #if INCLUDE_RTM_OPT
1949       // Restart collecting RTM locking abort statistic if the method
1950       // is recompiled for a reason other than RTM state change.
1951       // Assume that in new recompiled code the statistic could be different,
1952       // for example, due to different inlining.
1953       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1954           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1955         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1956       }
1957 #endif
1958       // For code aging we count traps separately here, using make_not_entrant()
1959       // as a guard against simultaneous deopts in multiple threads.
1960       if (reason == Reason_tenured && trap_mdo != NULL) {
1961         trap_mdo->inc_tenure_traps();
1962       }
1963     }
1964 
1965     if (inc_recompile_count) {
1966       trap_mdo->inc_overflow_recompile_count();
1967       if ((uint)trap_mdo->overflow_recompile_count() >
1968           (uint)PerBytecodeRecompilationCutoff) {
1969         // Give up on the method containing the bad BCI.
1970         if (trap_method() == nm->method()) {
1971           make_not_compilable = true;
1972         } else {
1973           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1974           // But give grace to the enclosing nm->method().
1975         }
1976       }
1977     }
1978 
1979     // Reprofile
1980     if (reprofile) {
1981       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1982     }
1983 
1984     // Give up compiling
1985     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1986       assert(make_not_entrant, "consistent");
1987       nm->method()->set_not_compilable(CompLevel_full_optimization);
1988     }
1989 
1990   } // Free marked resources
1991 
1992 }
1993 JRT_END
1994 
1995 ProfileData*
1996 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1997                                          int trap_bci,
1998                                          Deoptimization::DeoptReason reason,
1999                                          bool update_total_trap_count,
2000 #if INCLUDE_JVMCI
2001                                          bool is_osr,
2002 #endif
2003                                          Method* compiled_method,
2004                                          //outputs:
2005                                          uint& ret_this_trap_count,
2006                                          bool& ret_maybe_prior_trap,
2007                                          bool& ret_maybe_prior_recompile) {
2008   bool maybe_prior_trap = false;
2009   bool maybe_prior_recompile = false;
2010   uint this_trap_count = 0;
2011   if (update_total_trap_count) {
2012     uint idx = reason;
2013 #if INCLUDE_JVMCI
2014     if (is_osr) {
2015       idx += Reason_LIMIT;
2016     }
2017 #endif
2018     uint prior_trap_count = trap_mdo->trap_count(idx);
2019     this_trap_count  = trap_mdo->inc_trap_count(idx);
2020 
2021     // If the runtime cannot find a place to store trap history,
2022     // it is estimated based on the general condition of the method.
2023     // If the method has ever been recompiled, or has ever incurred
2024     // a trap with the present reason , then this BCI is assumed
2025     // (pessimistically) to be the culprit.
2026     maybe_prior_trap      = (prior_trap_count != 0);
2027     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2028   }
2029   ProfileData* pdata = NULL;
2030 
2031 
2032   // For reasons which are recorded per bytecode, we check per-BCI data.
2033   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2034   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2035   if (per_bc_reason != Reason_none) {
2036     // Find the profile data for this BCI.  If there isn't one,
2037     // try to allocate one from the MDO's set of spares.
2038     // This will let us detect a repeated trap at this point.
2039     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2040 
2041     if (pdata != NULL) {
2042       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2043         if (LogCompilation && xtty != NULL) {
2044           ttyLocker ttyl;
2045           // no more room for speculative traps in this MDO
2046           xtty->elem("speculative_traps_oom");
2047         }
2048       }
2049       // Query the trap state of this profile datum.
2050       int tstate0 = pdata->trap_state();
2051       if (!trap_state_has_reason(tstate0, per_bc_reason))
2052         maybe_prior_trap = false;
2053       if (!trap_state_is_recompiled(tstate0))
2054         maybe_prior_recompile = false;
2055 
2056       // Update the trap state of this profile datum.
2057       int tstate1 = tstate0;
2058       // Record the reason.
2059       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2060       // Store the updated state on the MDO, for next time.
2061       if (tstate1 != tstate0)
2062         pdata->set_trap_state(tstate1);
2063     } else {
2064       if (LogCompilation && xtty != NULL) {
2065         ttyLocker ttyl;
2066         // Missing MDP?  Leave a small complaint in the log.
2067         xtty->elem("missing_mdp bci='%d'", trap_bci);
2068       }
2069     }
2070   }
2071 
2072   // Return results:
2073   ret_this_trap_count = this_trap_count;
2074   ret_maybe_prior_trap = maybe_prior_trap;
2075   ret_maybe_prior_recompile = maybe_prior_recompile;
2076   return pdata;
2077 }
2078 
2079 void
2080 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2081   ResourceMark rm;
2082   // Ignored outputs:
2083   uint ignore_this_trap_count;
2084   bool ignore_maybe_prior_trap;
2085   bool ignore_maybe_prior_recompile;
2086   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2087   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2088   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2089   query_update_method_data(trap_mdo, trap_bci,
2090                            (DeoptReason)reason,
2091                            update_total_counts,
2092 #if INCLUDE_JVMCI
2093                            false,
2094 #endif
2095                            NULL,
2096                            ignore_this_trap_count,
2097                            ignore_maybe_prior_trap,
2098                            ignore_maybe_prior_recompile);
2099 }
2100 
2101 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2102   if (TraceDeoptimization) {
2103     tty->print("Uncommon trap ");
2104   }
2105   // Still in Java no safepoints
2106   {
2107     // This enters VM and may safepoint
2108     uncommon_trap_inner(thread, trap_request);
2109   }
2110   return fetch_unroll_info_helper(thread, exec_mode);
2111 }
2112 
2113 // Local derived constants.
2114 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2115 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2116 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2117 
2118 //---------------------------trap_state_reason---------------------------------
2119 Deoptimization::DeoptReason
2120 Deoptimization::trap_state_reason(int trap_state) {
2121   // This assert provides the link between the width of DataLayout::trap_bits
2122   // and the encoding of "recorded" reasons.  It ensures there are enough
2123   // bits to store all needed reasons in the per-BCI MDO profile.
2124   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2125   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2126   trap_state -= recompile_bit;
2127   if (trap_state == DS_REASON_MASK) {
2128     return Reason_many;
2129   } else {
2130     assert((int)Reason_none == 0, "state=0 => Reason_none");
2131     return (DeoptReason)trap_state;
2132   }
2133 }
2134 //-------------------------trap_state_has_reason-------------------------------
2135 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2136   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2137   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2138   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2139   trap_state -= recompile_bit;
2140   if (trap_state == DS_REASON_MASK) {
2141     return -1;  // true, unspecifically (bottom of state lattice)
2142   } else if (trap_state == reason) {
2143     return 1;   // true, definitely
2144   } else if (trap_state == 0) {
2145     return 0;   // false, definitely (top of state lattice)
2146   } else {
2147     return 0;   // false, definitely
2148   }
2149 }
2150 //-------------------------trap_state_add_reason-------------------------------
2151 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2152   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2153   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2154   trap_state -= recompile_bit;
2155   if (trap_state == DS_REASON_MASK) {
2156     return trap_state + recompile_bit;     // already at state lattice bottom
2157   } else if (trap_state == reason) {
2158     return trap_state + recompile_bit;     // the condition is already true
2159   } else if (trap_state == 0) {
2160     return reason + recompile_bit;          // no condition has yet been true
2161   } else {
2162     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2163   }
2164 }
2165 //-----------------------trap_state_is_recompiled------------------------------
2166 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2167   return (trap_state & DS_RECOMPILE_BIT) != 0;
2168 }
2169 //-----------------------trap_state_set_recompiled-----------------------------
2170 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2171   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2172   else    return trap_state & ~DS_RECOMPILE_BIT;
2173 }
2174 //---------------------------format_trap_state---------------------------------
2175 // This is used for debugging and diagnostics, including LogFile output.
2176 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2177                                               int trap_state) {
2178   assert(buflen > 0, "sanity");
2179   DeoptReason reason      = trap_state_reason(trap_state);
2180   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2181   // Re-encode the state from its decoded components.
2182   int decoded_state = 0;
2183   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2184     decoded_state = trap_state_add_reason(decoded_state, reason);
2185   if (recomp_flag)
2186     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2187   // If the state re-encodes properly, format it symbolically.
2188   // Because this routine is used for debugging and diagnostics,
2189   // be robust even if the state is a strange value.
2190   size_t len;
2191   if (decoded_state != trap_state) {
2192     // Random buggy state that doesn't decode??
2193     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2194   } else {
2195     len = jio_snprintf(buf, buflen, "%s%s",
2196                        trap_reason_name(reason),
2197                        recomp_flag ? " recompiled" : "");
2198   }
2199   return buf;
2200 }
2201 
2202 
2203 //--------------------------------statics--------------------------------------
2204 const char* Deoptimization::_trap_reason_name[] = {
2205   // Note:  Keep this in sync. with enum DeoptReason.
2206   "none",
2207   "null_check",
2208   "null_assert" JVMCI_ONLY("_or_unreached0"),
2209   "range_check",
2210   "class_check",
2211   "array_check",
2212   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2213   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2214   "unloaded",
2215   "uninitialized",
2216   "unreached",
2217   "unhandled",
2218   "constraint",
2219   "div0_check",
2220   "age",
2221   "predicate",
2222   "loop_limit_check",
2223   "speculate_class_check",
2224   "speculate_null_check",
2225   "rtm_state_change",
2226   "unstable_if",
2227   "unstable_fused_if",
2228 #if INCLUDE_JVMCI
2229   "aliasing",
2230   "transfer_to_interpreter",
2231   "not_compiled_exception_handler",
2232   "unresolved",
2233   "jsr_mismatch",
2234 #endif
2235   "tenured"
2236 };
2237 const char* Deoptimization::_trap_action_name[] = {
2238   // Note:  Keep this in sync. with enum DeoptAction.
2239   "none",
2240   "maybe_recompile",
2241   "reinterpret",
2242   "make_not_entrant",
2243   "make_not_compilable"
2244 };
2245 
2246 const char* Deoptimization::trap_reason_name(int reason) {
2247   // Check that every reason has a name
2248   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2249 
2250   if (reason == Reason_many)  return "many";
2251   if ((uint)reason < Reason_LIMIT)
2252     return _trap_reason_name[reason];
2253   static char buf[20];
2254   sprintf(buf, "reason%d", reason);
2255   return buf;
2256 }
2257 const char* Deoptimization::trap_action_name(int action) {
2258   // Check that every action has a name
2259   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2260 
2261   if ((uint)action < Action_LIMIT)
2262     return _trap_action_name[action];
2263   static char buf[20];
2264   sprintf(buf, "action%d", action);
2265   return buf;
2266 }
2267 
2268 // This is used for debugging and diagnostics, including LogFile output.
2269 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2270                                                 int trap_request) {
2271   jint unloaded_class_index = trap_request_index(trap_request);
2272   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2273   const char* action = trap_action_name(trap_request_action(trap_request));
2274 #if INCLUDE_JVMCI
2275   int debug_id = trap_request_debug_id(trap_request);
2276 #endif
2277   size_t len;
2278   if (unloaded_class_index < 0) {
2279     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2280                        reason, action
2281 #if INCLUDE_JVMCI
2282                        ,debug_id
2283 #endif
2284                        );
2285   } else {
2286     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2287                        reason, action, unloaded_class_index
2288 #if INCLUDE_JVMCI
2289                        ,debug_id
2290 #endif
2291                        );
2292   }
2293   return buf;
2294 }
2295 
2296 juint Deoptimization::_deoptimization_hist
2297         [Deoptimization::Reason_LIMIT]
2298     [1 + Deoptimization::Action_LIMIT]
2299         [Deoptimization::BC_CASE_LIMIT]
2300   = {0};
2301 
2302 enum {
2303   LSB_BITS = 8,
2304   LSB_MASK = right_n_bits(LSB_BITS)
2305 };
2306 
2307 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2308                                        Bytecodes::Code bc) {
2309   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2310   assert(action >= 0 && action < Action_LIMIT, "oob");
2311   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2312   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2313   juint* cases = _deoptimization_hist[reason][1+action];
2314   juint* bc_counter_addr = NULL;
2315   juint  bc_counter      = 0;
2316   // Look for an unused counter, or an exact match to this BC.
2317   if (bc != Bytecodes::_illegal) {
2318     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2319       juint* counter_addr = &cases[bc_case];
2320       juint  counter = *counter_addr;
2321       if ((counter == 0 && bc_counter_addr == NULL)
2322           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2323         // this counter is either free or is already devoted to this BC
2324         bc_counter_addr = counter_addr;
2325         bc_counter = counter | bc;
2326       }
2327     }
2328   }
2329   if (bc_counter_addr == NULL) {
2330     // Overflow, or no given bytecode.
2331     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2332     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2333   }
2334   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2335 }
2336 
2337 jint Deoptimization::total_deoptimization_count() {
2338   return _deoptimization_hist[Reason_none][0][0];
2339 }
2340 
2341 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2342   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2343   return _deoptimization_hist[reason][0][0];
2344 }
2345 
2346 void Deoptimization::print_statistics() {
2347   juint total = total_deoptimization_count();
2348   juint account = total;
2349   if (total != 0) {
2350     ttyLocker ttyl;
2351     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2352     tty->print_cr("Deoptimization traps recorded:");
2353     #define PRINT_STAT_LINE(name, r) \
2354       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2355     PRINT_STAT_LINE("total", total);
2356     // For each non-zero entry in the histogram, print the reason,
2357     // the action, and (if specifically known) the type of bytecode.
2358     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2359       for (int action = 0; action < Action_LIMIT; action++) {
2360         juint* cases = _deoptimization_hist[reason][1+action];
2361         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2362           juint counter = cases[bc_case];
2363           if (counter != 0) {
2364             char name[1*K];
2365             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2366             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2367               bc = Bytecodes::_illegal;
2368             sprintf(name, "%s/%s/%s",
2369                     trap_reason_name(reason),
2370                     trap_action_name(action),
2371                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2372             juint r = counter >> LSB_BITS;
2373             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2374             account -= r;
2375           }
2376         }
2377       }
2378     }
2379     if (account != 0) {
2380       PRINT_STAT_LINE("unaccounted", account);
2381     }
2382     #undef PRINT_STAT_LINE
2383     if (xtty != NULL)  xtty->tail("statistics");
2384   }
2385 }
2386 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2387 
2388 
2389 // Stubs for C1 only system.
2390 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2391   return false;
2392 }
2393 
2394 const char* Deoptimization::trap_reason_name(int reason) {
2395   return "unknown";
2396 }
2397 
2398 void Deoptimization::print_statistics() {
2399   // no output
2400 }
2401 
2402 void
2403 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2404   // no udpate
2405 }
2406 
2407 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2408   return 0;
2409 }
2410 
2411 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2412                                        Bytecodes::Code bc) {
2413   // no update
2414 }
2415 
2416 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2417                                               int trap_state) {
2418   jio_snprintf(buf, buflen, "#%d", trap_state);
2419   return buf;
2420 }
2421 
2422 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI