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The following is intended to outline our general product direction. It is 
intended for information purposes only, and may not be incorporated into 
any contract. It is not a commitment to deliver any material, code, or 
functionality, and should not be relied upon in making purchasing 
decisions. The development, release, and timing of any features or 
functionality described for Oracle’s products remains at the sole discretion 
of Oracle. 

Safe Harbor Statement
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Project Loom

• Continuations 
• Fibers 
• Tail-calls
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Why Fibers

Today, developers are forced to choose between

App

Connections

simple (blocking / synchronous),  
but less scalable code (with threads)

App

Connections

complex, non-legacy-interoperable, 
but scalable code (asynchronous)

and
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Why Fibers

With fibers, devs have both: simple, familiar, maintainable, 
interoperable code, that is also scalable

App

Connections

Fibers make even existing server applications consume fewer 
machines (by increasing utilization), significantly reducing costs
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Continuations: The User Perspective
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What

A continuation (precisely: delimited continuation) is a 
program object representing a computation that may be 
suspended and resumed (also, possibly, cloned or even 
serialized).
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Continuations: User Perspective

package java.lang;

public class Continuation implements Runnable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public static void yield(ContinuationScope scope);
public boolean isDone();

protected void onPinned(Reason reason)
      { throw new IllegalStateException("Pinned: " + reason); }
}
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Continuations: User Perspective

Continuation cont = new Continuation(SCOPE, () -> {
    while (true) {
        System.out.println("before");
        Continuation.yield(SCOPE);
        System.out.println("after");
    }
});

while (!cont.isDone()) {
    cont.run();
}
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Fibers
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• A light weight or user mode thread, scheduled by the 
Java virtual machine, not the operating system


• Fibers are low footprint and have negilgible task-
switching overhead. You can have millions of them!

What is a fiber?
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• The runtime is well positioned to manage and schedule 
application threads, esp. if they interleave computation 
and I/O and interact very often (exactly how server threads 
behave)


• Make concurrency simple again

Why fibers?
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fiber  = continuation + scheduler
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• A fiber wraps a task in a continuation


• The continuation yields when the task needs to block


• The continuation is continued when the task is ready to continue


• Scheduler executes tasks on a pool of carrier threads


• java.util.concurrent.Executor in the current prototype


• Default/built-in scheduler is a ForkJoinPool

fiber = continuation + scheduler
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• Current focus is on the control flow and concepts, not the API


• Minimal java.lang.Fiber in current prototype that supports


1. Starting a fiber to execute a task


2. Parking/unparking


3. Waiting for a fiber to terminate

User facing API
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Implementing Fibers
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• A fiber wraps a user’s task in a continuation


• The fiber task is submited to the scheduler to start or 
continue the continuation, essentially:

mount();
try {
    cont.run();
} finally {
    unmount();
}
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LockSupport.park

ForkJoinPool.runWorker

ForkJoinWorkerThread.run

Unsafe.park

Carrier thread waiting for work



Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !20

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run
A fiber is scheduled on the 
carrier thread. The fiber task 
runs.
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Main.lambda$main$0

Continuation.enter0

Continuation.enter

Continuation.run

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The fiber runs the continuation 
to run the user’s task.
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Contuation.yield

Fiber.park

java.util.concurrent.LockSupport.park

:

java.util.concurrent.ReentrantLock.lock

Main.lambda$main$0

Continuation.enter0

Continuation.enter

Continuation.run

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The task attempts acquire a lock 
which leads to the continuation 
yielding
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Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The continuation stack is saved and 
control returns to the fiber’s 
task at the instruction following 
the call to Continuation.run 
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LockSupport.park

ForkJoinPool.runWorker

ForkJoinWorkerThread.run

Unsafe.park

The fiber task terminates. The 
carrier thread goes back 
to waiting for work.
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The owner of the lock releases it. This unparks the 
Fiber waiting to acquire the lock by scheduling its 
task to run again. 

ReentrantLock.unlock

LockSupport.unpark

Fiber.unpark

ForkJoinPool.execute
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Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The fiber task runs again, maybe  
on a different carrier thread
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Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The fiber task invokes Continuation 
run (again) to continue it

Continuation.run
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java.util.concurrent.ReentrantLock.lock

Fiber.park

java.util.concurrent.LockSupport.park

:

Main.lambda$main$0

Continuation.enter0

Continuation.enter

Continuation.run

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The stack is restored and control 
continues at the instruction following 
the call to Continuation.yield
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Continuation.enter

Main.lambda$main$0

Continuation.enter0

Continuation.run

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The user’s task continues. 
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Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The user’s task completes and the 
continuation terminates. Control returns 
to the fiber’s task at the instruction 
following the call to Continuation.run
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• A big question, lots of trade-offs


• Do we completely re-imagine threads?


• Do we attempt to allow all existing code to run in the context of a fiber?


• Likely to wrestle with this topic for a long time


• Current prototype can run existing code


… but with some limitations, as we will see 

How much existing code can fibers run?
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• Example uses Jetty and Jersey

Example using existing code/libraries
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• Assume servlet or REST service that spends a long time waiting

Example with existing code/libraries

assume this takes 100ms 
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Default configuration (maxThreads = 200), load = 5000 HTTP request/s
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maxThreads = 400, load = 5000 HTTP request/s
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fiber per request,  load = 5000 HTTP request/s
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• Can’t yield with native frames on continuation stack

native method

may park/yield

Limitations
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• Can’t yield while holding or waiting for a monitor

may park carrier thread

Limitations

may park carrier thread
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• Current limitations


• Can’t yield with native frames on continuation stack


• Can’t yield while holding or waiting for a monitor


• In both cases, parking may pin the carrier thread


• What about the existing Thread API and Thread.currentThread() ? 

Limitations
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Relationship between Fiber and Thread in current prototype

Strand

Thread Fiber
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• Current prototype


• First use of Thread.currentThread() in a fiber creates a shadow Thread


• “unstarted” Thread from perspective of VM, no VM meta data


• Shadow Thread implements Thread API except for stop, suspend, resume, and uncaught 
exception handlers 


• Thread locals become fiber local (for now)


• ThreadLocal and the baggage that is InheritableThreadLocal, context ClassLoader, ..


• Special case ThreadLocal for now to avoid needing Thread object

Thread.currentThread() and Thread API in current prototype
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Thread Locals

• Spectrum of uses


• Container managed cache of connection or credentials context


• Approximating processor/core local in lower level libraries


• …


• Significant topic for later
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Footprint

• Thread


• Typically 1MB reserved for stack + 16KB of kernel data structures


• ~2300 bytes per started Thread, includes VM meta data


• Fiber


• Continuation stack: hundreds of bytes to KBs


• 200-240 bytes per fiber in current prototype
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• Thread sleep, join


• java.util.concurrent and LockSupport.park


• I/O


• Networking I/O: socket read/write/connect/accept


• File I/O


• Pipe I/O

APIs that potentially park
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• Current prototype executes tasks as Runnable. Easy to 
use CompletableFuture too.


• j.u.concurrent just works so can share objects or share 
by communicating


• Not an explicit goal at this time to introduce new 
concurrency APIs but new APIs may emerge

Communication between fibers
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Implementing Continuations
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We need: 

• Millions of continuations (=> low RAM overhead) 
• Fast task-switching (=> no stack copying)
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Native Stack Continuation

stack refStack
run
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Native Stack Continuation

stack refStack

Entry

run

enter
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Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter
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Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

freeze
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Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

yield

freeze
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Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

yield

Examine the frame 
for pinning

freeze
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Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

yield

C“Raw” copy

freeze
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Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

yield

CExtract oops

freeze
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Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

freeze

yield

A

B

C
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Native Stack Continuation

stack refStack
run

yield

A

B

C
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Native Stack Continuation

stack refStack

Entry

run

enter

doContinue

yield

A

B

C
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

A

“Raw” copy

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

A
Restore oops

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

A
Patch

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

A

yield

B

C

Yield
thaw
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Native Stack Continuation

stack refStack

Entry

run

enter

A

yield

B

C

Yield
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

Lazy copy
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

doContinue
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

Cyield

C

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

C

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

C
Install return barrier 
(if there are more frozen frames)

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

C

Yield
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Native Stack Continuation

stack refStack

Entry

run

enter A

BC
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Native Stack Continuation

stack refStack

Entry

run

enter A

B

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter A

BB

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter A

B

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter A

B
Install return barrier

thaw
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Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

D

Yield
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Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

D

B

yield

D

freeze

Yield
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Native Stack Continuation

stack refStack
run

A

B

yield

D
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Epilogue
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Features not in current prototype

• Serialization and cloning 
• JVM TI and debugging support for fibers 
• Tail calls
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Next Steps

• Design behavior and API 
• Add missing features 
• Improve performance
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More information

• Project Loom page: http://openjdk.java.net/projects/loom/ 

• Mailing list: loom-dev@openjdk.java.net 

• Repo: http://hg.openjdk.java/net/loom/loom

http://openjdk.java.net/projects/loom/
mailto:loom-dev@openjdk.java.net
http://hg.openjdk.java/net/loom/loom



