
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !1

Project Loom

June 2018
Ron Pressler, Alan Bateman

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !2

The following is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion
of Oracle.

Safe Harbor Statement

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !3

Project Loom

• Continuations
• Fibers
• Tail-calls

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !4

Why Fibers

Today, developers are forced to choose between

App

Connections

simple (blocking / synchronous),
but less scalable code (with threads)

App

Connections

complex, non-legacy-interoperable,
but scalable code (asynchronous)

and

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !5

Why Fibers

With fibers, devs have both: simple, familiar, maintainable,
interoperable code, that is also scalable

App

Connections

Fibers make even existing server applications consume fewer
machines (by increasing utilization), significantly reducing costs

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !6

Continuations: The User Perspective

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !7

What

A continuation (precisely: delimited continuation) is a
program object representing a computation that may be
suspended and resumed (also, possibly, cloned or even
serialized).

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !8

Continuations: User Perspective

package java.lang;

public class Continuation implements Runnable {
public Continuation(ContinuationScope scope, Runnable body);

public final void run();
public static void yield(ContinuationScope scope);
public boolean isDone();

protected void onPinned(Reason reason)
 { throw new IllegalStateException("Pinned: " + reason); }
}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !9

Continuations: User Perspective

Continuation cont = new Continuation(SCOPE, () -> {
 while (true) {
 System.out.println("before");
 Continuation.yield(SCOPE);
 System.out.println("after");
 }
});

while (!cont.isDone()) {
 cont.run();
}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !10

Fibers

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !11

• A light weight or user mode thread, scheduled by the
Java virtual machine, not the operating system

• Fibers are low footprint and have negilgible task-
switching overhead. You can have millions of them!

What is a fiber?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !12

• The runtime is well positioned to manage and schedule
application threads, esp. if they interleave computation
and I/O and interact very often (exactly how server threads
behave)

• Make concurrency simple again

Why fibers?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !13

fiber = continuation + scheduler

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !14

• A fiber wraps a task in a continuation

• The continuation yields when the task needs to block

• The continuation is continued when the task is ready to continue

• Scheduler executes tasks on a pool of carrier threads

• java.util.concurrent.Executor in the current prototype

• Default/built-in scheduler is a ForkJoinPool

fiber = continuation + scheduler

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !15

• Current focus is on the control flow and concepts, not the API

• Minimal java.lang.Fiber in current prototype that supports

1. Starting a fiber to execute a task

2. Parking/unparking

3. Waiting for a fiber to terminate

User facing API

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !16

Implementing Fibers

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !17

• A fiber wraps a user’s task in a continuation

• The fiber task is submited to the scheduler to start or
continue the continuation, essentially:

mount();
try {
 cont.run();
} finally {
 unmount();
}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !18

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !19

LockSupport.park

ForkJoinPool.runWorker

ForkJoinWorkerThread.run

Unsafe.park

Carrier thread waiting for work

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !20

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run
A fiber is scheduled on the
carrier thread. The fiber task
runs.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !21

Main.lambda$main$0

Continuation.enter0

Continuation.enter

Continuation.run

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The fiber runs the continuation
to run the user’s task.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !22

Contuation.yield

Fiber.park

java.util.concurrent.LockSupport.park

:

java.util.concurrent.ReentrantLock.lock

Main.lambda$main$0

Continuation.enter0

Continuation.enter

Continuation.run

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The task attempts acquire a lock
which leads to the continuation
yielding

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !23

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The continuation stack is saved and
control returns to the fiber’s
task at the instruction following
the call to Continuation.run

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !24

LockSupport.park

ForkJoinPool.runWorker

ForkJoinWorkerThread.run

Unsafe.park

The fiber task terminates. The
carrier thread goes back
to waiting for work.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !25

The owner of the lock releases it. This unparks the
Fiber waiting to acquire the lock by scheduling its
task to run again.

ReentrantLock.unlock

LockSupport.unpark

Fiber.unpark

ForkJoinPool.execute

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !26

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The fiber task runs again, maybe
on a different carrier thread

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !27

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The fiber task invokes Continuation
run (again) to continue it

Continuation.run

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !28

java.util.concurrent.ReentrantLock.lock

Fiber.park

java.util.concurrent.LockSupport.park

:

Main.lambda$main$0

Continuation.enter0

Continuation.enter

Continuation.run

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The stack is restored and control
continues at the instruction following
the call to Continuation.yield

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !29

Continuation.enter

Main.lambda$main$0

Continuation.enter0

Continuation.run

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The user’s task continues.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. !30

Fiber.runContinuation

ForkJoinTask$RunnableExecuteAction.exec

:

ForkJoinWorkerThread.run

The user’s task completes and the
continuation terminates. Control returns
to the fiber’s task at the instruction
following the call to Continuation.run

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !31

• A big question, lots of trade-offs

• Do we completely re-imagine threads?

• Do we attempt to allow all existing code to run in the context of a fiber?

• Likely to wrestle with this topic for a long time

• Current prototype can run existing code

… but with some limitations, as we will see

How much existing code can fibers run?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !32

• Example uses Jetty and Jersey

Example using existing code/libraries

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !33

• Assume servlet or REST service that spends a long time waiting

Example with existing code/libraries

assume this takes 100ms

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !34

Default configuration (maxThreads = 200), load = 5000 HTTP request/s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !35

maxThreads = 400, load = 5000 HTTP request/s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !36

fiber per request, load = 5000 HTTP request/s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !37

• Can’t yield with native frames on continuation stack

native method

may park/yield

Limitations

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !38

• Can’t yield while holding or waiting for a monitor

may park carrier thread

Limitations

may park carrier thread

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !39

• Current limitations

• Can’t yield with native frames on continuation stack

• Can’t yield while holding or waiting for a monitor

• In both cases, parking may pin the carrier thread

• What about the existing Thread API and Thread.currentThread() ?

Limitations

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !40

Relationship between Fiber and Thread in current prototype

Strand

Thread Fiber

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !41

• Current prototype

• First use of Thread.currentThread() in a fiber creates a shadow Thread

• “unstarted” Thread from perspective of VM, no VM meta data

• Shadow Thread implements Thread API except for stop, suspend, resume, and uncaught
exception handlers

• Thread locals become fiber local (for now)

• ThreadLocal and the baggage that is InheritableThreadLocal, context ClassLoader, ..

• Special case ThreadLocal for now to avoid needing Thread object

Thread.currentThread() and Thread API in current prototype

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !42

Thread Locals

• Spectrum of uses

• Container managed cache of connection or credentials context

• Approximating processor/core local in lower level libraries

• …

• Significant topic for later

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !43

Footprint

• Thread

• Typically 1MB reserved for stack + 16KB of kernel data structures

• ~2300 bytes per started Thread, includes VM meta data

• Fiber

• Continuation stack: hundreds of bytes to KBs

• 200-240 bytes per fiber in current prototype

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !44

• Thread sleep, join

• java.util.concurrent and LockSupport.park

• I/O

• Networking I/O: socket read/write/connect/accept

• File I/O

• Pipe I/O

APIs that potentially park

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !45

• Current prototype executes tasks as Runnable. Easy to
use CompletableFuture too.

• j.u.concurrent just works so can share objects or share
by communicating

• Not an explicit goal at this time to introduce new
concurrency APIs but new APIs may emerge

Communication between fibers

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !46

Implementing Continuations

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !47

We need:

• Millions of continuations (=> low RAM overhead)
• Fast task-switching (=> no stack copying)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !48

Native Stack Continuation

stack refStack
run

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !49

Native Stack Continuation

stack refStack

Entry

run

enter

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !50

Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !51

Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

freeze

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !52

Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

yield

freeze

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !53

Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

yield

Examine the frame
for pinning

freeze

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !54

Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

yield

C“Raw” copy

freeze

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !55

Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

yield

CExtract oops

freeze

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !56

Native Stack Continuation

stack refStack

Entry

run

yieldYield

A

B

C

enter

freeze

yield

A

B

C

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !57

Native Stack Continuation

stack refStack
run

yield

A

B

C

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !58

Native Stack Continuation

stack refStack

Entry

run

enter

doContinue

yield

A

B

C

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !59

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !60

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

A

“Raw” copy

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !61

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

A
Restore oops

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !62

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

A
Patch

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !63

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

A

yield

B

C

Yield
thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !64

Native Stack Continuation

stack refStack

Entry

run

enter

A

yield

B

C

Yield

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !65

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

Lazy copy

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !66

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

doContinue

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !67

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

C

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !68

Native Stack Continuation

stack refStack

Entry

run

enter

yield

A

B

Cyield

C

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !69

Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

C

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !70

Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

C
Install return barrier
(if there are more frozen frames)

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !71

Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

C

Yield

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !72

Native Stack Continuation

stack refStack

Entry

run

enter A

BC

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !73

Native Stack Continuation

stack refStack

Entry

run

enter A

B

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !74

Native Stack Continuation

stack refStack

Entry

run

enter A

BB

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !75

Native Stack Continuation

stack refStack

Entry

run

enter A

B

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !76

Native Stack Continuation

stack refStack

Entry

run

enter A

B
Install return barrier

thaw

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !77

Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

D

Yield

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !78

Native Stack Continuation

stack refStack

Entry

run

enter A

B

yield

D

B

yield

D

freeze

Yield

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !79

Native Stack Continuation

stack refStack
run

A

B

yield

D

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !80

Epilogue

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !81

Features not in current prototype

• Serialization and cloning
• JVM TI and debugging support for fibers
• Tail calls

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !82

Next Steps

• Design behavior and API
• Add missing features
• Improve performance

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !83

More information

• Project Loom page: http://openjdk.java.net/projects/loom/

• Mailing list: loom-dev@openjdk.java.net 

• Repo: http://hg.openjdk.java/net/loom/loom

http://openjdk.java.net/projects/loom/
mailto:loom-dev@openjdk.java.net
http://hg.openjdk.java/net/loom/loom

