1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // jobjects
 297   void clear_jweak_tag(Register possibly_jweak);
 298   void resolve_jobject(Register value, Register thread, Register tmp);
 299 
 300   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 301   void c2bool(Register x);
 302 
 303   // C++ bool manipulation
 304 
 305   void movbool(Register dst, Address src);
 306   void movbool(Address dst, bool boolconst);
 307   void movbool(Address dst, Register src);
 308   void testbool(Register dst);
 309 
 310   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 311   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 312 
 313   // oop manipulations
 314   void load_klass(Register dst, Register src);
 315   void store_klass(Register dst, Register src);
 316 
 317   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 318                       Register tmp1, Register thread_tmp);
 319   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 320                        Register tmp1, Register tmp2);
 321 
 322   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 323                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 324   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 325                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 326   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 327                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 328 
 329   // Used for storing NULL. All other oop constants should be
 330   // stored using routines that take a jobject.
 331   void store_heap_oop_null(Address dst);
 332 
 333   void load_prototype_header(Register dst, Register src);
 334 
 335 #ifdef _LP64
 336   void store_klass_gap(Register dst, Register src);
 337 
 338   // This dummy is to prevent a call to store_heap_oop from
 339   // converting a zero (like NULL) into a Register by giving
 340   // the compiler two choices it can't resolve
 341 
 342   void store_heap_oop(Address dst, void* dummy);
 343 
 344   void encode_heap_oop(Register r);
 345   void decode_heap_oop(Register r);
 346   void encode_heap_oop_not_null(Register r);
 347   void decode_heap_oop_not_null(Register r);
 348   void encode_heap_oop_not_null(Register dst, Register src);
 349   void decode_heap_oop_not_null(Register dst, Register src);
 350 
 351   void set_narrow_oop(Register dst, jobject obj);
 352   void set_narrow_oop(Address dst, jobject obj);
 353   void cmp_narrow_oop(Register dst, jobject obj);
 354   void cmp_narrow_oop(Address dst, jobject obj);
 355 
 356   void encode_klass_not_null(Register r);
 357   void decode_klass_not_null(Register r);
 358   void encode_klass_not_null(Register dst, Register src);
 359   void decode_klass_not_null(Register dst, Register src);
 360   void set_narrow_klass(Register dst, Klass* k);
 361   void set_narrow_klass(Address dst, Klass* k);
 362   void cmp_narrow_klass(Register dst, Klass* k);
 363   void cmp_narrow_klass(Address dst, Klass* k);
 364 
 365   // Returns the byte size of the instructions generated by decode_klass_not_null()
 366   // when compressed klass pointers are being used.
 367   static int instr_size_for_decode_klass_not_null();
 368 
 369   // if heap base register is used - reinit it with the correct value
 370   void reinit_heapbase();
 371 
 372   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 373 
 374 #endif // _LP64
 375 
 376   // Int division/remainder for Java
 377   // (as idivl, but checks for special case as described in JVM spec.)
 378   // returns idivl instruction offset for implicit exception handling
 379   int corrected_idivl(Register reg);
 380 
 381   // Long division/remainder for Java
 382   // (as idivq, but checks for special case as described in JVM spec.)
 383   // returns idivq instruction offset for implicit exception handling
 384   int corrected_idivq(Register reg);
 385 
 386   void int3();
 387 
 388   // Long operation macros for a 32bit cpu
 389   // Long negation for Java
 390   void lneg(Register hi, Register lo);
 391 
 392   // Long multiplication for Java
 393   // (destroys contents of eax, ebx, ecx and edx)
 394   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 395 
 396   // Long shifts for Java
 397   // (semantics as described in JVM spec.)
 398   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 399   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 400 
 401   // Long compare for Java
 402   // (semantics as described in JVM spec.)
 403   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 404 
 405 
 406   // misc
 407 
 408   // Sign extension
 409   void sign_extend_short(Register reg);
 410   void sign_extend_byte(Register reg);
 411 
 412   // Division by power of 2, rounding towards 0
 413   void division_with_shift(Register reg, int shift_value);
 414 
 415   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 416   //
 417   // CF (corresponds to C0) if x < y
 418   // PF (corresponds to C2) if unordered
 419   // ZF (corresponds to C3) if x = y
 420   //
 421   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 422   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 423   void fcmp(Register tmp);
 424   // Variant of the above which allows y to be further down the stack
 425   // and which only pops x and y if specified. If pop_right is
 426   // specified then pop_left must also be specified.
 427   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 428 
 429   // Floating-point comparison for Java
 430   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 431   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 432   // (semantics as described in JVM spec.)
 433   void fcmp2int(Register dst, bool unordered_is_less);
 434   // Variant of the above which allows y to be further down the stack
 435   // and which only pops x and y if specified. If pop_right is
 436   // specified then pop_left must also be specified.
 437   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 438 
 439   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 440   // tmp is a temporary register, if none is available use noreg
 441   void fremr(Register tmp);
 442 
 443   // dst = c = a * b + c
 444   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 445   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 446 
 447   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 448   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 449   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 450   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 451 
 452 
 453   // same as fcmp2int, but using SSE2
 454   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 455   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 456 
 457   // branch to L if FPU flag C2 is set/not set
 458   // tmp is a temporary register, if none is available use noreg
 459   void jC2 (Register tmp, Label& L);
 460   void jnC2(Register tmp, Label& L);
 461 
 462   // Pop ST (ffree & fincstp combined)
 463   void fpop();
 464 
 465   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 466   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 467   void load_float(Address src);
 468 
 469   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 470   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 471   void store_float(Address dst);
 472 
 473   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 474   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 475   void load_double(Address src);
 476 
 477   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 478   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 479   void store_double(Address dst);
 480 
 481   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 482   void push_fTOS();
 483 
 484   // pops double TOS element from CPU stack and pushes on FPU stack
 485   void pop_fTOS();
 486 
 487   void empty_FPU_stack();
 488 
 489   void push_IU_state();
 490   void pop_IU_state();
 491 
 492   void push_FPU_state();
 493   void pop_FPU_state();
 494 
 495   void push_CPU_state();
 496   void pop_CPU_state();
 497 
 498   DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
 499 
 500   // Round up to a power of two
 501   void round_to(Register reg, int modulus);
 502 
 503   // Callee saved registers handling
 504   void push_callee_saved_registers();
 505   void pop_callee_saved_registers();
 506 
 507   // allocation
 508   void eden_allocate(
 509     Register obj,                      // result: pointer to object after successful allocation
 510     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 511     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 512     Register t1,                       // temp register
 513     Label&   slow_case                 // continuation point if fast allocation fails
 514   );
 515   void tlab_allocate(
 516     Register obj,                      // result: pointer to object after successful allocation
 517     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 518     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 519     Register t1,                       // temp register
 520     Register t2,                       // temp register
 521     Label&   slow_case                 // continuation point if fast allocation fails
 522   );
 523   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 524 
 525   void incr_allocated_bytes(Register thread,
 526                             Register var_size_in_bytes, int con_size_in_bytes,
 527                             Register t1 = noreg);
 528 
 529   // interface method calling
 530   void lookup_interface_method(Register recv_klass,
 531                                Register intf_klass,
 532                                RegisterOrConstant itable_index,
 533                                Register method_result,
 534                                Register scan_temp,
 535                                Label& no_such_interface,
 536                                bool return_method = true);
 537 
 538   // virtual method calling
 539   void lookup_virtual_method(Register recv_klass,
 540                              RegisterOrConstant vtable_index,
 541                              Register method_result);
 542 
 543   // Test sub_klass against super_klass, with fast and slow paths.
 544 
 545   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 546   // One of the three labels can be NULL, meaning take the fall-through.
 547   // If super_check_offset is -1, the value is loaded up from super_klass.
 548   // No registers are killed, except temp_reg.
 549   void check_klass_subtype_fast_path(Register sub_klass,
 550                                      Register super_klass,
 551                                      Register temp_reg,
 552                                      Label* L_success,
 553                                      Label* L_failure,
 554                                      Label* L_slow_path,
 555                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 556 
 557   // The rest of the type check; must be wired to a corresponding fast path.
 558   // It does not repeat the fast path logic, so don't use it standalone.
 559   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 560   // Updates the sub's secondary super cache as necessary.
 561   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 562   void check_klass_subtype_slow_path(Register sub_klass,
 563                                      Register super_klass,
 564                                      Register temp_reg,
 565                                      Register temp2_reg,
 566                                      Label* L_success,
 567                                      Label* L_failure,
 568                                      bool set_cond_codes = false);
 569 
 570   // Simplified, combined version, good for typical uses.
 571   // Falls through on failure.
 572   void check_klass_subtype(Register sub_klass,
 573                            Register super_klass,
 574                            Register temp_reg,
 575                            Label& L_success);
 576 
 577   // method handles (JSR 292)
 578   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 579 
 580   //----
 581   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 582 
 583   // Debugging
 584 
 585   // only if +VerifyOops
 586   // TODO: Make these macros with file and line like sparc version!
 587   void verify_oop(Register reg, const char* s = "broken oop");
 588   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 589 
 590   // TODO: verify method and klass metadata (compare against vptr?)
 591   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 592   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 593 
 594 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 595 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 596 
 597   // only if +VerifyFPU
 598   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 599 
 600   // Verify or restore cpu control state after JNI call
 601   void restore_cpu_control_state_after_jni();
 602 
 603   // prints msg, dumps registers and stops execution
 604   void stop(const char* msg);
 605 
 606   // prints msg and continues
 607   void warn(const char* msg);
 608 
 609   // dumps registers and other state
 610   void print_state();
 611 
 612   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 613   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 614   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 615   static void print_state64(int64_t pc, int64_t regs[]);
 616 
 617   void os_breakpoint();
 618 
 619   void untested()                                { stop("untested"); }
 620 
 621   void unimplemented(const char* what = "");
 622 
 623   void should_not_reach_here()                   { stop("should not reach here"); }
 624 
 625   void print_CPU_state();
 626 
 627   // Stack overflow checking
 628   void bang_stack_with_offset(int offset) {
 629     // stack grows down, caller passes positive offset
 630     assert(offset > 0, "must bang with negative offset");
 631     movl(Address(rsp, (-offset)), rax);
 632   }
 633 
 634   // Writes to stack successive pages until offset reached to check for
 635   // stack overflow + shadow pages.  Also, clobbers tmp
 636   void bang_stack_size(Register size, Register tmp);
 637 
 638   // Check for reserved stack access in method being exited (for JIT)
 639   void reserved_stack_check();
 640 
 641   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 642                                                 Register tmp,
 643                                                 int offset);
 644 
 645   // Support for serializing memory accesses between threads
 646   void serialize_memory(Register thread, Register tmp);
 647 
 648   // If thread_reg is != noreg the code assumes the register passed contains
 649   // the thread (required on 64 bit).
 650   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 651 
 652   void verify_tlab();
 653 
 654   // Biased locking support
 655   // lock_reg and obj_reg must be loaded up with the appropriate values.
 656   // swap_reg must be rax, and is killed.
 657   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 658   // be killed; if not supplied, push/pop will be used internally to
 659   // allocate a temporary (inefficient, avoid if possible).
 660   // Optional slow case is for implementations (interpreter and C1) which branch to
 661   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 662   // Returns offset of first potentially-faulting instruction for null
 663   // check info (currently consumed only by C1). If
 664   // swap_reg_contains_mark is true then returns -1 as it is assumed
 665   // the calling code has already passed any potential faults.
 666   int biased_locking_enter(Register lock_reg, Register obj_reg,
 667                            Register swap_reg, Register tmp_reg,
 668                            bool swap_reg_contains_mark,
 669                            Label& done, Label* slow_case = NULL,
 670                            BiasedLockingCounters* counters = NULL);
 671   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 672 #ifdef COMPILER2
 673   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 674   // See full desription in macroAssembler_x86.cpp.
 675   void fast_lock(Register obj, Register box, Register tmp,
 676                  Register scr, Register cx1, Register cx2,
 677                  BiasedLockingCounters* counters,
 678                  RTMLockingCounters* rtm_counters,
 679                  RTMLockingCounters* stack_rtm_counters,
 680                  Metadata* method_data,
 681                  bool use_rtm, bool profile_rtm);
 682   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 683 #if INCLUDE_RTM_OPT
 684   void rtm_counters_update(Register abort_status, Register rtm_counters);
 685   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 686   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 687                                    RTMLockingCounters* rtm_counters,
 688                                    Metadata* method_data);
 689   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 690                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 691   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 692   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 693   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 694                          Register retry_on_abort_count,
 695                          RTMLockingCounters* stack_rtm_counters,
 696                          Metadata* method_data, bool profile_rtm,
 697                          Label& DONE_LABEL, Label& IsInflated);
 698   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 699                             Register scr, Register retry_on_busy_count,
 700                             Register retry_on_abort_count,
 701                             RTMLockingCounters* rtm_counters,
 702                             Metadata* method_data, bool profile_rtm,
 703                             Label& DONE_LABEL);
 704 #endif
 705 #endif
 706 
 707   Condition negate_condition(Condition cond);
 708 
 709   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 710   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 711   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 712   // here in MacroAssembler. The major exception to this rule is call
 713 
 714   // Arithmetics
 715 
 716 
 717   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 718   void addptr(Address dst, Register src);
 719 
 720   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 721   void addptr(Register dst, int32_t src);
 722   void addptr(Register dst, Register src);
 723   void addptr(Register dst, RegisterOrConstant src) {
 724     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 725     else                   addptr(dst,       src.as_register());
 726   }
 727 
 728   void andptr(Register dst, int32_t src);
 729   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 730 
 731   void cmp8(AddressLiteral src1, int imm);
 732 
 733   // renamed to drag out the casting of address to int32_t/intptr_t
 734   void cmp32(Register src1, int32_t imm);
 735 
 736   void cmp32(AddressLiteral src1, int32_t imm);
 737   // compare reg - mem, or reg - &mem
 738   void cmp32(Register src1, AddressLiteral src2);
 739 
 740   void cmp32(Register src1, Address src2);
 741 
 742 #ifndef _LP64
 743   void cmpklass(Address dst, Metadata* obj);
 744   void cmpklass(Register dst, Metadata* obj);
 745   void cmpoop(Address dst, jobject obj);
 746 #endif // _LP64
 747 
 748   void cmpoop(Register src1, Register src2);
 749   void cmpoop(Register src1, Address src2);
 750   void cmpoop(Register dst, jobject obj);
 751 
 752   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 753   void cmpptr(Address src1, AddressLiteral src2);
 754 
 755   void cmpptr(Register src1, AddressLiteral src2);
 756 
 757   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 759   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 760 
 761   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 762   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 763 
 764   // cmp64 to avoild hiding cmpq
 765   void cmp64(Register src1, AddressLiteral src);
 766 
 767   void cmpxchgptr(Register reg, Address adr);
 768 
 769   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 770 
 771 
 772   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 773   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 774 
 775 
 776   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 777 
 778   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 779 
 780   void shlptr(Register dst, int32_t shift);
 781   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 782 
 783   void shrptr(Register dst, int32_t shift);
 784   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 785 
 786   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 787   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 788 
 789   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 790 
 791   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 792   void subptr(Register dst, int32_t src);
 793   // Force generation of a 4 byte immediate value even if it fits into 8bit
 794   void subptr_imm32(Register dst, int32_t src);
 795   void subptr(Register dst, Register src);
 796   void subptr(Register dst, RegisterOrConstant src) {
 797     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 798     else                   subptr(dst,       src.as_register());
 799   }
 800 
 801   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 802   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 803 
 804   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 805   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 806 
 807   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 808 
 809 
 810 
 811   // Helper functions for statistics gathering.
 812   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 813   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 814   // Unconditional atomic increment.
 815   void atomic_incl(Address counter_addr);
 816   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 817 #ifdef _LP64
 818   void atomic_incq(Address counter_addr);
 819   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 820 #endif
 821   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 822   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 823 
 824   void lea(Register dst, AddressLiteral adr);
 825   void lea(Address dst, AddressLiteral adr);
 826   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 827 
 828   void leal32(Register dst, Address src) { leal(dst, src); }
 829 
 830   // Import other testl() methods from the parent class or else
 831   // they will be hidden by the following overriding declaration.
 832   using Assembler::testl;
 833   void testl(Register dst, AddressLiteral src);
 834 
 835   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 836   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 837   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 838   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 839 
 840   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 841   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 842   void testptr(Register src1, Register src2);
 843 
 844   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 845   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 846 
 847   // Calls
 848 
 849   void call(Label& L, relocInfo::relocType rtype);
 850   void call(Register entry);
 851 
 852   // NOTE: this call transfers to the effective address of entry NOT
 853   // the address contained by entry. This is because this is more natural
 854   // for jumps/calls.
 855   void call(AddressLiteral entry);
 856 
 857   // Emit the CompiledIC call idiom
 858   void ic_call(address entry, jint method_index = 0);
 859 
 860   // Jumps
 861 
 862   // NOTE: these jumps tranfer to the effective address of dst NOT
 863   // the address contained by dst. This is because this is more natural
 864   // for jumps/calls.
 865   void jump(AddressLiteral dst);
 866   void jump_cc(Condition cc, AddressLiteral dst);
 867 
 868   // 32bit can do a case table jump in one instruction but we no longer allow the base
 869   // to be installed in the Address class. This jump will tranfers to the address
 870   // contained in the location described by entry (not the address of entry)
 871   void jump(ArrayAddress entry);
 872 
 873   // Floating
 874 
 875   void push_f(XMMRegister r);
 876   void pop_f(XMMRegister r);
 877   void push_d(XMMRegister r);
 878   void pop_d(XMMRegister r);
 879   
 880   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 881   void andpd(XMMRegister dst, AddressLiteral src);
 882   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 883 
 884   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 885   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 886   void andps(XMMRegister dst, AddressLiteral src);
 887 
 888   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 889   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 890   void comiss(XMMRegister dst, AddressLiteral src);
 891 
 892   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 893   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 894   void comisd(XMMRegister dst, AddressLiteral src);
 895 
 896   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 897   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 898 
 899   void fldcw(Address src) { Assembler::fldcw(src); }
 900   void fldcw(AddressLiteral src);
 901 
 902   void fld_s(int index)   { Assembler::fld_s(index); }
 903   void fld_s(Address src) { Assembler::fld_s(src); }
 904   void fld_s(AddressLiteral src);
 905 
 906   void fld_d(Address src) { Assembler::fld_d(src); }
 907   void fld_d(AddressLiteral src);
 908 
 909   void fld_x(Address src) { Assembler::fld_x(src); }
 910   void fld_x(AddressLiteral src);
 911 
 912   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 913   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 914 
 915   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 916   void ldmxcsr(AddressLiteral src);
 917 
 918 #ifdef _LP64
 919  private:
 920   void sha256_AVX2_one_round_compute(
 921     Register  reg_old_h,
 922     Register  reg_a,
 923     Register  reg_b,
 924     Register  reg_c,
 925     Register  reg_d,
 926     Register  reg_e,
 927     Register  reg_f,
 928     Register  reg_g,
 929     Register  reg_h,
 930     int iter);
 931   void sha256_AVX2_four_rounds_compute_first(int start);
 932   void sha256_AVX2_four_rounds_compute_last(int start);
 933   void sha256_AVX2_one_round_and_sched(
 934         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 935         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 936         XMMRegister xmm_2,     /* ymm6 */
 937         XMMRegister xmm_3,     /* ymm7 */
 938         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 939         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 940         Register    reg_c,      /* edi */
 941         Register    reg_d,      /* esi */
 942         Register    reg_e,      /* r8d */
 943         Register    reg_f,      /* r9d */
 944         Register    reg_g,      /* r10d */
 945         Register    reg_h,      /* r11d */
 946         int iter);
 947 
 948   void addm(int disp, Register r1, Register r2);
 949 
 950  public:
 951   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 952                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 953                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 954                    bool multi_block, XMMRegister shuf_mask);
 955 #endif
 956 
 957 #ifdef _LP64
 958  private:
 959   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 960                                      Register e, Register f, Register g, Register h, int iteration);
 961 
 962   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 963                                           Register a, Register b, Register c, Register d, Register e, Register f,
 964                                           Register g, Register h, int iteration);
 965 
 966   void addmq(int disp, Register r1, Register r2);
 967  public:
 968   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 969                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 970                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 971                    XMMRegister shuf_mask);
 972 #endif
 973 
 974   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 975                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 976                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 977                  bool multi_block);
 978 
 979 #ifdef _LP64
 980   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 981                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 982                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 983                    bool multi_block, XMMRegister shuf_mask);
 984 #else
 985   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 986                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 987                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 988                    bool multi_block);
 989 #endif
 990 
 991   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 992                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 993                 Register rax, Register rcx, Register rdx, Register tmp);
 994 
 995 #ifdef _LP64
 996   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 997                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 998                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 999 
1000   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1001                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1002                   Register rax, Register rcx, Register rdx, Register r11);
1003 
1004   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1005                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1006                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1007 
1008   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1009                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1010                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1011                 Register tmp3, Register tmp4);
1012 
1013   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1014                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1015                 Register rax, Register rcx, Register rdx, Register tmp1,
1016                 Register tmp2, Register tmp3, Register tmp4);
1017   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1018                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1019                 Register rax, Register rcx, Register rdx, Register tmp1,
1020                 Register tmp2, Register tmp3, Register tmp4);
1021 #else
1022   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1023                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1024                 Register rax, Register rcx, Register rdx, Register tmp1);
1025 
1026   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rcx, Register rdx, Register tmp);
1029 
1030   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1031                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1032                 Register rdx, Register tmp);
1033 
1034   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1035                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1036                 Register rax, Register rbx, Register rdx);
1037 
1038   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1039                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1040                 Register rax, Register rcx, Register rdx, Register tmp);
1041 
1042   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1043                         Register edx, Register ebx, Register esi, Register edi,
1044                         Register ebp, Register esp);
1045 
1046   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1047                          Register esi, Register edi, Register ebp, Register esp);
1048 
1049   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1050                         Register edx, Register ebx, Register esi, Register edi,
1051                         Register ebp, Register esp);
1052 
1053   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1054                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1055                 Register rax, Register rcx, Register rdx, Register tmp);
1056 #endif
1057 
1058   void increase_precision();
1059   void restore_precision();
1060 
1061 private:
1062 
1063   // these are private because users should be doing movflt/movdbl
1064 
1065   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1066   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1067   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1068   void movss(XMMRegister dst, AddressLiteral src);
1069 
1070   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1071   void movlpd(XMMRegister dst, AddressLiteral src);
1072 
1073 public:
1074 
1075   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1076   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1077   void addsd(XMMRegister dst, AddressLiteral src);
1078 
1079   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1080   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1081   void addss(XMMRegister dst, AddressLiteral src);
1082 
1083   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1084   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1085   void addpd(XMMRegister dst, AddressLiteral src);
1086 
1087   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1088   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1089   void divsd(XMMRegister dst, AddressLiteral src);
1090 
1091   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1092   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1093   void divss(XMMRegister dst, AddressLiteral src);
1094 
1095   // Move Unaligned Double Quadword
1096   void movdqu(Address     dst, XMMRegister src);
1097   void movdqu(XMMRegister dst, Address src);
1098   void movdqu(XMMRegister dst, XMMRegister src);
1099   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1100   // AVX Unaligned forms
1101   void vmovdqu(Address     dst, XMMRegister src);
1102   void vmovdqu(XMMRegister dst, Address src);
1103   void vmovdqu(XMMRegister dst, XMMRegister src);
1104   void vmovdqu(XMMRegister dst, AddressLiteral src);
1105 
1106   // Move Aligned Double Quadword
1107   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1108   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1109   void movdqa(XMMRegister dst, AddressLiteral src);
1110 
1111   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1112   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1113   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1114   void movsd(XMMRegister dst, AddressLiteral src);
1115 
1116   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1117   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1118   void mulpd(XMMRegister dst, AddressLiteral src);
1119 
1120   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1121   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1122   void mulsd(XMMRegister dst, AddressLiteral src);
1123 
1124   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1125   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1126   void mulss(XMMRegister dst, AddressLiteral src);
1127 
1128   // Carry-Less Multiplication Quadword
1129   void pclmulldq(XMMRegister dst, XMMRegister src) {
1130     // 0x00 - multiply lower 64 bits [0:63]
1131     Assembler::pclmulqdq(dst, src, 0x00);
1132   }
1133   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1134     // 0x11 - multiply upper 64 bits [64:127]
1135     Assembler::pclmulqdq(dst, src, 0x11);
1136   }
1137 
1138   void pcmpeqb(XMMRegister dst, XMMRegister src);
1139   void pcmpeqw(XMMRegister dst, XMMRegister src);
1140 
1141   void pcmpestri(XMMRegister dst, Address src, int imm8);
1142   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1143 
1144   void pmovzxbw(XMMRegister dst, XMMRegister src);
1145   void pmovzxbw(XMMRegister dst, Address src);
1146 
1147   void pmovmskb(Register dst, XMMRegister src);
1148 
1149   void ptest(XMMRegister dst, XMMRegister src);
1150 
1151   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1152   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1153   void sqrtsd(XMMRegister dst, AddressLiteral src);
1154 
1155   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1156   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1157   void sqrtss(XMMRegister dst, AddressLiteral src);
1158 
1159   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1160   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1161   void subsd(XMMRegister dst, AddressLiteral src);
1162 
1163   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1164   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1165   void subss(XMMRegister dst, AddressLiteral src);
1166 
1167   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1168   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1169   void ucomiss(XMMRegister dst, AddressLiteral src);
1170 
1171   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1172   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1173   void ucomisd(XMMRegister dst, AddressLiteral src);
1174 
1175   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1176   void xorpd(XMMRegister dst, XMMRegister src);
1177   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1178   void xorpd(XMMRegister dst, AddressLiteral src);
1179 
1180   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1181   void xorps(XMMRegister dst, XMMRegister src);
1182   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1183   void xorps(XMMRegister dst, AddressLiteral src);
1184 
1185   // Shuffle Bytes
1186   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1187   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1188   void pshufb(XMMRegister dst, AddressLiteral src);
1189   // AVX 3-operands instructions
1190 
1191   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1192   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1193   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1194 
1195   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1196   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1197   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1198 
1199   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1200   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1201 
1202   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1203   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1204 
1205   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1206   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1207 
1208   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1209   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1210   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1211 
1212   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1213 
1214   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1215   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1216 
1217   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1218   void vpmovmskb(Register dst, XMMRegister src);
1219 
1220   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1221   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1222 
1223   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1224   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1225 
1226   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1227   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1228 
1229   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1230   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1231 
1232   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1233   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1234 
1235   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1236   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1237 
1238   void vptest(XMMRegister dst, XMMRegister src);
1239 
1240   void punpcklbw(XMMRegister dst, XMMRegister src);
1241   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1242 
1243   void pshufd(XMMRegister dst, Address src, int mode);
1244   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1245 
1246   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1247   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1248 
1249   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1250   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1251   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1252 
1253   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1254   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1255   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1256 
1257   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1258   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1259   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1260 
1261   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1262   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1263   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1264 
1265   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1266   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1267   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1268 
1269   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1270   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1271   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1272 
1273   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1274   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1275   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1276 
1277   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1278   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1279   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1280 
1281   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1282   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1283 
1284   // AVX Vector instructions
1285 
1286   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1287   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1288   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1289 
1290   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1291   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1292   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1293 
1294   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1295     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1296       Assembler::vpxor(dst, nds, src, vector_len);
1297     else
1298       Assembler::vxorpd(dst, nds, src, vector_len);
1299   }
1300   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1301     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1302       Assembler::vpxor(dst, nds, src, vector_len);
1303     else
1304       Assembler::vxorpd(dst, nds, src, vector_len);
1305   }
1306 
1307   // Simple version for AVX2 256bit vectors
1308   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1309   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1310 
1311   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1312     if (UseAVX > 2) {
1313       Assembler::vinserti32x4(dst, dst, src, imm8);
1314     } else if (UseAVX > 1) {
1315       // vinserti128 is available only in AVX2
1316       Assembler::vinserti128(dst, nds, src, imm8);
1317     } else {
1318       Assembler::vinsertf128(dst, nds, src, imm8);
1319     }
1320   }
1321 
1322   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1323     if (UseAVX > 2) {
1324       Assembler::vinserti32x4(dst, dst, src, imm8);
1325     } else if (UseAVX > 1) {
1326       // vinserti128 is available only in AVX2
1327       Assembler::vinserti128(dst, nds, src, imm8);
1328     } else {
1329       Assembler::vinsertf128(dst, nds, src, imm8);
1330     }
1331   }
1332 
1333   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1334     if (UseAVX > 2) {
1335       Assembler::vextracti32x4(dst, src, imm8);
1336     } else if (UseAVX > 1) {
1337       // vextracti128 is available only in AVX2
1338       Assembler::vextracti128(dst, src, imm8);
1339     } else {
1340       Assembler::vextractf128(dst, src, imm8);
1341     }
1342   }
1343 
1344   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1345     if (UseAVX > 2) {
1346       Assembler::vextracti32x4(dst, src, imm8);
1347     } else if (UseAVX > 1) {
1348       // vextracti128 is available only in AVX2
1349       Assembler::vextracti128(dst, src, imm8);
1350     } else {
1351       Assembler::vextractf128(dst, src, imm8);
1352     }
1353   }
1354 
1355   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1356   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1357     vinserti128(dst, dst, src, 1);
1358   }
1359   void vinserti128_high(XMMRegister dst, Address src) {
1360     vinserti128(dst, dst, src, 1);
1361   }
1362   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1363     vextracti128(dst, src, 1);
1364   }
1365   void vextracti128_high(Address dst, XMMRegister src) {
1366     vextracti128(dst, src, 1);
1367   }
1368 
1369   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1370     if (UseAVX > 2) {
1371       Assembler::vinsertf32x4(dst, dst, src, 1);
1372     } else {
1373       Assembler::vinsertf128(dst, dst, src, 1);
1374     }
1375   }
1376 
1377   void vinsertf128_high(XMMRegister dst, Address src) {
1378     if (UseAVX > 2) {
1379       Assembler::vinsertf32x4(dst, dst, src, 1);
1380     } else {
1381       Assembler::vinsertf128(dst, dst, src, 1);
1382     }
1383   }
1384 
1385   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1386     if (UseAVX > 2) {
1387       Assembler::vextractf32x4(dst, src, 1);
1388     } else {
1389       Assembler::vextractf128(dst, src, 1);
1390     }
1391   }
1392 
1393   void vextractf128_high(Address dst, XMMRegister src) {
1394     if (UseAVX > 2) {
1395       Assembler::vextractf32x4(dst, src, 1);
1396     } else {
1397       Assembler::vextractf128(dst, src, 1);
1398     }
1399   }
1400 
1401   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1402   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1403     Assembler::vinserti64x4(dst, dst, src, 1);
1404   }
1405   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1406     Assembler::vinsertf64x4(dst, dst, src, 1);
1407   }
1408   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1409     Assembler::vextracti64x4(dst, src, 1);
1410   }
1411   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1412     Assembler::vextractf64x4(dst, src, 1);
1413   }
1414   void vextractf64x4_high(Address dst, XMMRegister src) {
1415     Assembler::vextractf64x4(dst, src, 1);
1416   }
1417   void vinsertf64x4_high(XMMRegister dst, Address src) {
1418     Assembler::vinsertf64x4(dst, dst, src, 1);
1419   }
1420 
1421   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1422   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1423     vinserti128(dst, dst, src, 0);
1424   }
1425   void vinserti128_low(XMMRegister dst, Address src) {
1426     vinserti128(dst, dst, src, 0);
1427   }
1428   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1429     vextracti128(dst, src, 0);
1430   }
1431   void vextracti128_low(Address dst, XMMRegister src) {
1432     vextracti128(dst, src, 0);
1433   }
1434 
1435   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1436     if (UseAVX > 2) {
1437       Assembler::vinsertf32x4(dst, dst, src, 0);
1438     } else {
1439       Assembler::vinsertf128(dst, dst, src, 0);
1440     }
1441   }
1442 
1443   void vinsertf128_low(XMMRegister dst, Address src) {
1444     if (UseAVX > 2) {
1445       Assembler::vinsertf32x4(dst, dst, src, 0);
1446     } else {
1447       Assembler::vinsertf128(dst, dst, src, 0);
1448     }
1449   }
1450 
1451   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1452     if (UseAVX > 2) {
1453       Assembler::vextractf32x4(dst, src, 0);
1454     } else {
1455       Assembler::vextractf128(dst, src, 0);
1456     }
1457   }
1458 
1459   void vextractf128_low(Address dst, XMMRegister src) {
1460     if (UseAVX > 2) {
1461       Assembler::vextractf32x4(dst, src, 0);
1462     } else {
1463       Assembler::vextractf128(dst, src, 0);
1464     }
1465   }
1466 
1467   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1468   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1469     Assembler::vinserti64x4(dst, dst, src, 0);
1470   }
1471   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1472     Assembler::vinsertf64x4(dst, dst, src, 0);
1473   }
1474   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1475     Assembler::vextracti64x4(dst, src, 0);
1476   }
1477   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1478     Assembler::vextractf64x4(dst, src, 0);
1479   }
1480   void vextractf64x4_low(Address dst, XMMRegister src) {
1481     Assembler::vextractf64x4(dst, src, 0);
1482   }
1483   void vinsertf64x4_low(XMMRegister dst, Address src) {
1484     Assembler::vinsertf64x4(dst, dst, src, 0);
1485   }
1486 
1487   // Carry-Less Multiplication Quadword
1488   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1489     // 0x00 - multiply lower 64 bits [0:63]
1490     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1491   }
1492   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1493     // 0x11 - multiply upper 64 bits [64:127]
1494     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1495   }
1496   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1497     // 0x00 - multiply lower 64 bits [0:63]
1498     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1499   }
1500   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1501     // 0x11 - multiply upper 64 bits [64:127]
1502     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1503   }
1504 
1505   // Data
1506 
1507   void cmov32( Condition cc, Register dst, Address  src);
1508   void cmov32( Condition cc, Register dst, Register src);
1509 
1510   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1511 
1512   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1513   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1514 
1515   void movoop(Register dst, jobject obj);
1516   void movoop(Address dst, jobject obj);
1517 
1518   void mov_metadata(Register dst, Metadata* obj);
1519   void mov_metadata(Address dst, Metadata* obj);
1520 
1521   void movptr(ArrayAddress dst, Register src);
1522   // can this do an lea?
1523   void movptr(Register dst, ArrayAddress src);
1524 
1525   void movptr(Register dst, Address src);
1526 
1527 #ifdef _LP64
1528   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1529 #else
1530   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1531 #endif
1532 
1533   void movptr(Register dst, intptr_t src);
1534   void movptr(Register dst, Register src);
1535   void movptr(Address dst, intptr_t src);
1536 
1537   void movptr(Address dst, Register src);
1538 
1539   void movptr(Register dst, RegisterOrConstant src) {
1540     if (src.is_constant()) movptr(dst, src.as_constant());
1541     else                   movptr(dst, src.as_register());
1542   }
1543 
1544 #ifdef _LP64
1545   // Generally the next two are only used for moving NULL
1546   // Although there are situations in initializing the mark word where
1547   // they could be used. They are dangerous.
1548 
1549   // They only exist on LP64 so that int32_t and intptr_t are not the same
1550   // and we have ambiguous declarations.
1551 
1552   void movptr(Address dst, int32_t imm32);
1553   void movptr(Register dst, int32_t imm32);
1554 #endif // _LP64
1555 
1556   // to avoid hiding movl
1557   void mov32(AddressLiteral dst, Register src);
1558   void mov32(Register dst, AddressLiteral src);
1559 
1560   // to avoid hiding movb
1561   void movbyte(ArrayAddress dst, int src);
1562 
1563   // Import other mov() methods from the parent class or else
1564   // they will be hidden by the following overriding declaration.
1565   using Assembler::movdl;
1566   using Assembler::movq;
1567   void movdl(XMMRegister dst, AddressLiteral src);
1568   void movq(XMMRegister dst, AddressLiteral src);
1569 
1570   // Can push value or effective address
1571   void pushptr(AddressLiteral src);
1572 
1573   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1574   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1575 
1576   void pushoop(jobject obj);
1577   void pushklass(Metadata* obj);
1578 
1579   // sign extend as need a l to ptr sized element
1580   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1581   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1582 
1583   // C2 compiled method's prolog code.
1584   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1585 
1586   // clear memory of size 'cnt' qwords, starting at 'base';
1587   // if 'is_large' is set, do not try to produce short loop
1588   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1589 
1590 #ifdef COMPILER2
1591   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1592                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1593 
1594   // IndexOf strings.
1595   // Small strings are loaded through stack if they cross page boundary.
1596   void string_indexof(Register str1, Register str2,
1597                       Register cnt1, Register cnt2,
1598                       int int_cnt2,  Register result,
1599                       XMMRegister vec, Register tmp,
1600                       int ae);
1601 
1602   // IndexOf for constant substrings with size >= 8 elements
1603   // which don't need to be loaded through stack.
1604   void string_indexofC8(Register str1, Register str2,
1605                       Register cnt1, Register cnt2,
1606                       int int_cnt2,  Register result,
1607                       XMMRegister vec, Register tmp,
1608                       int ae);
1609 
1610     // Smallest code: we don't need to load through stack,
1611     // check string tail.
1612 
1613   // helper function for string_compare
1614   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1615                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1616                           Address::ScaleFactor scale2, Register index, int ae);
1617   // Compare strings.
1618   void string_compare(Register str1, Register str2,
1619                       Register cnt1, Register cnt2, Register result,
1620                       XMMRegister vec1, int ae);
1621 
1622   // Search for Non-ASCII character (Negative byte value) in a byte array,
1623   // return true if it has any and false otherwise.
1624   void has_negatives(Register ary1, Register len,
1625                      Register result, Register tmp1,
1626                      XMMRegister vec1, XMMRegister vec2);
1627 
1628   // Compare char[] or byte[] arrays.
1629   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1630                      Register limit, Register result, Register chr,
1631                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1632 
1633 #endif
1634 
1635   // Fill primitive arrays
1636   void generate_fill(BasicType t, bool aligned,
1637                      Register to, Register value, Register count,
1638                      Register rtmp, XMMRegister xtmp);
1639 
1640   void encode_iso_array(Register src, Register dst, Register len,
1641                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1642                         XMMRegister tmp4, Register tmp5, Register result);
1643 
1644 #ifdef _LP64
1645   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1646   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1647                              Register y, Register y_idx, Register z,
1648                              Register carry, Register product,
1649                              Register idx, Register kdx);
1650   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1651                               Register yz_idx, Register idx,
1652                               Register carry, Register product, int offset);
1653   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1654                                     Register carry, Register carry2,
1655                                     Register idx, Register jdx,
1656                                     Register yz_idx1, Register yz_idx2,
1657                                     Register tmp, Register tmp3, Register tmp4);
1658   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1659                                Register yz_idx, Register idx, Register jdx,
1660                                Register carry, Register product,
1661                                Register carry2);
1662   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1663                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1664   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1665                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1666   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1667                             Register tmp2);
1668   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1669                        Register rdxReg, Register raxReg);
1670   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1671   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1672                        Register tmp3, Register tmp4);
1673   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1674                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1675 
1676   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1677                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1678                Register raxReg);
1679   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1680                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1681                Register raxReg);
1682   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1683                            Register result, Register tmp1, Register tmp2,
1684                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1685 #endif
1686 
1687   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1688   void update_byte_crc32(Register crc, Register val, Register table);
1689   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1690   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1691   // Note on a naming convention:
1692   // Prefix w = register only used on a Westmere+ architecture
1693   // Prefix n = register only used on a Nehalem architecture
1694 #ifdef _LP64
1695   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1696                        Register tmp1, Register tmp2, Register tmp3);
1697 #else
1698   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1699                        Register tmp1, Register tmp2, Register tmp3,
1700                        XMMRegister xtmp1, XMMRegister xtmp2);
1701 #endif
1702   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1703                         Register in_out,
1704                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1705                         XMMRegister w_xtmp2,
1706                         Register tmp1,
1707                         Register n_tmp2, Register n_tmp3);
1708   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1709                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1710                        Register tmp1, Register tmp2,
1711                        Register n_tmp3);
1712   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1713                          Register in_out1, Register in_out2, Register in_out3,
1714                          Register tmp1, Register tmp2, Register tmp3,
1715                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1716                          Register tmp4, Register tmp5,
1717                          Register n_tmp6);
1718   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1719                             Register tmp1, Register tmp2, Register tmp3,
1720                             Register tmp4, Register tmp5, Register tmp6,
1721                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1722                             bool is_pclmulqdq_supported);
1723   // Fold 128-bit data chunk
1724   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1725   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1726   // Fold 8-bit data
1727   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1728   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1729   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1730 
1731   // Compress char[] array to byte[].
1732   void char_array_compress(Register src, Register dst, Register len,
1733                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1734                            XMMRegister tmp4, Register tmp5, Register result);
1735 
1736   // Inflate byte[] array to char[].
1737   void byte_array_inflate(Register src, Register dst, Register len,
1738                           XMMRegister tmp1, Register tmp2);
1739 
1740 };
1741 
1742 /**
1743  * class SkipIfEqual:
1744  *
1745  * Instantiating this class will result in assembly code being output that will
1746  * jump around any code emitted between the creation of the instance and it's
1747  * automatic destruction at the end of a scope block, depending on the value of
1748  * the flag passed to the constructor, which will be checked at run-time.
1749  */
1750 class SkipIfEqual {
1751  private:
1752   MacroAssembler* _masm;
1753   Label _label;
1754 
1755  public:
1756    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1757    ~SkipIfEqual();
1758 };
1759 
1760 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP