1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/templateInterpreter.hpp"
  30 #include "interpreter/templateInterpreterGenerator.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/methodData.hpp"
  33 
  34 #ifndef CC_INTERP
  35 
  36 # define __ _masm->
  37 
  38 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
  39   _unimplemented_bytecode    = NULL;
  40   _illegal_bytecode_sequence = NULL;
  41   generate_all();
  42 }
  43 
  44 static const BasicType types[Interpreter::number_of_result_handlers] = {
  45   T_BOOLEAN,
  46   T_CHAR   ,
  47   T_BYTE   ,
  48   T_SHORT  ,
  49   T_INT    ,
  50   T_LONG   ,
  51   T_VOID   ,
  52   T_FLOAT  ,
  53   T_DOUBLE ,
  54   T_OBJECT
  55 };
  56 
  57 void TemplateInterpreterGenerator::generate_all() {
  58   { CodeletMark cm(_masm, "slow signature handler");
  59     AbstractInterpreter::_slow_signature_handler = generate_slow_signature_handler();
  60   }
  61 
  62   { CodeletMark cm(_masm, "error exits");
  63     _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
  64     _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
  65   }
  66 
  67 #ifndef PRODUCT
  68   if (TraceBytecodes) {
  69     CodeletMark cm(_masm, "bytecode tracing support");
  70     Interpreter::_trace_code =
  71       EntryPoint(
  72                  generate_trace_code(btos),
  73                  generate_trace_code(ztos),
  74                  generate_trace_code(ctos),
  75                  generate_trace_code(stos),
  76                  generate_trace_code(atos),
  77                  generate_trace_code(itos),
  78                  generate_trace_code(ltos),
  79                  generate_trace_code(ftos),
  80                  generate_trace_code(dtos),
  81                  generate_trace_code(vtos)
  82                  );
  83   }
  84 #endif // !PRODUCT
  85 
  86   { CodeletMark cm(_masm, "return entry points");
  87     const int index_size = sizeof(u2);
  88     Interpreter::_return_entry[0] = EntryPoint();
  89     for (int i = 1; i < Interpreter::number_of_return_entries; i++) {
  90       address return_itos = generate_return_entry_for(itos, i, index_size);
  91       Interpreter::_return_entry[i] =
  92         EntryPoint(
  93                    return_itos,
  94                    return_itos,
  95                    return_itos,
  96                    return_itos,
  97                    generate_return_entry_for(atos, i, index_size),
  98                    return_itos,
  99                    generate_return_entry_for(ltos, i, index_size),
 100                    generate_return_entry_for(ftos, i, index_size),
 101                    generate_return_entry_for(dtos, i, index_size),
 102                    generate_return_entry_for(vtos, i, index_size)
 103                    );
 104     }
 105     Interpreter::_return_entryX[0] = EntryPoint();
 106     for (int i = 1; i < Interpreter::number_of_return_entries; i++) {
 107       address return_itos = generate_return_entry_for(itos, i, index_size, true);
 108       Interpreter::_return_entryX[i] =
 109         EntryPoint(
 110                    return_itos,
 111                    return_itos,
 112                    return_itos,
 113                    return_itos,
 114                    generate_return_entry_for(atos, i, index_size, true),
 115                    return_itos,
 116                    generate_return_entry_for(ltos, i, index_size, true),
 117                    generate_return_entry_for(ftos, i, index_size, true),
 118                    generate_return_entry_for(dtos, i, index_size, true),
 119                    generate_return_entry_for(vtos, i, index_size, true)
 120                    );
 121     }
 122   }
 123 
 124   { CodeletMark cm(_masm, "invoke return entry points");
 125     // These states are in order specified in TosState, except btos/ztos/ctos/stos are
 126     // really the same as itos since there is no top of stack optimization for these types
 127     const TosState states[] = {itos, itos, itos, itos, itos, ltos, ftos, dtos, atos, vtos, ilgl};
 128     const int invoke_length = Bytecodes::length_for(Bytecodes::_invokestatic);
 129     const int invokeinterface_length = Bytecodes::length_for(Bytecodes::_invokeinterface);
 130     const int invokedynamic_length = Bytecodes::length_for(Bytecodes::_invokedynamic);
 131 
 132     for (int i = 0; i < Interpreter::number_of_return_addrs; i++) {
 133       TosState state = states[i];
 134       assert(state != ilgl, "states array is wrong above");
 135       Interpreter::_invoke_return_entry[i] = generate_return_entry_for(state, invoke_length, sizeof(u2));
 136       Interpreter::_invoke_return_entryX[i] = generate_return_entry_for(state, invoke_length, sizeof(u2), true);
 137       Interpreter::_invokeinterface_return_entry[i] = generate_return_entry_for(state, invokeinterface_length, sizeof(u2));
 138       Interpreter::_invokedynamic_return_entry[i] = generate_return_entry_for(state, invokedynamic_length, sizeof(u4));
 139     }
 140   }
 141 
 142   { CodeletMark cm(_masm, "earlyret entry points");
 143     Interpreter::_earlyret_entry =
 144       EntryPoint(
 145                  generate_earlyret_entry_for(btos),
 146                  generate_earlyret_entry_for(ztos),
 147                  generate_earlyret_entry_for(ctos),
 148                  generate_earlyret_entry_for(stos),
 149                  generate_earlyret_entry_for(atos),
 150                  generate_earlyret_entry_for(itos),
 151                  generate_earlyret_entry_for(ltos),
 152                  generate_earlyret_entry_for(ftos),
 153                  generate_earlyret_entry_for(dtos),
 154                  generate_earlyret_entry_for(vtos)
 155                  );
 156   }
 157 
 158   { CodeletMark cm(_masm, "result handlers for native calls");
 159     // The various result converter stublets.
 160     int is_generated[Interpreter::number_of_result_handlers];
 161     memset(is_generated, 0, sizeof(is_generated));
 162 
 163     for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
 164       BasicType type = types[i];
 165       if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
 166         Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
 167       }
 168     }
 169   }
 170 
 171 
 172   { CodeletMark cm(_masm, "safepoint entry points");
 173     Interpreter::_safept_entry =
 174       EntryPoint(
 175                  generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 176                  generate_safept_entry_for(ztos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 177                  generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 178                  generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 179                  generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 180                  generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 181                  generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 182                  generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 183                  generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 184                  generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
 185                  );
 186   }
 187 
 188   { CodeletMark cm(_masm, "exception handling");
 189     // (Note: this is not safepoint safe because thread may return to compiled code)
 190     generate_throw_exception();
 191   }
 192 
 193   { CodeletMark cm(_masm, "throw exception entrypoints");
 194     Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler();
 195     Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException");
 196     Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException", "/ by zero");
 197     Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
 198     Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException", NULL);
 199     Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
 200   }
 201 
 202 
 203 
 204 #define method_entry(kind)                                              \
 205   { CodeletMark cm(_masm, "method entry point (kind = " #kind ")"); \
 206     Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind); \
 207     Interpreter::update_cds_entry_table(Interpreter::kind); \
 208   }
 209 
 210   // all non-native method kinds
 211   method_entry(zerolocals)
 212   method_entry(zerolocals_synchronized)
 213   method_entry(empty)
 214   method_entry(accessor)
 215   method_entry(abstract)
 216   method_entry(java_lang_math_sin  )
 217   method_entry(java_lang_math_cos  )
 218   method_entry(java_lang_math_tan  )
 219   method_entry(java_lang_math_abs  )
 220   method_entry(java_lang_math_sqrt )
 221   method_entry(java_lang_math_log  )
 222   method_entry(java_lang_math_log10)
 223   method_entry(java_lang_math_exp  )
 224   method_entry(java_lang_math_pow  )
 225   method_entry(java_lang_math_fmaF )
 226   method_entry(java_lang_math_fmaD )
 227   method_entry(java_lang_ref_reference_get)
 228 
 229   AbstractInterpreter::initialize_method_handle_entries();
 230 
 231   // all native method kinds (must be one contiguous block)
 232   Interpreter::_native_entry_begin = Interpreter::code()->code_end();
 233   method_entry(native)
 234   method_entry(native_synchronized)
 235   Interpreter::_native_entry_end = Interpreter::code()->code_end();
 236 
 237   method_entry(java_util_zip_CRC32_update)
 238   method_entry(java_util_zip_CRC32_updateBytes)
 239   method_entry(java_util_zip_CRC32_updateByteBuffer)
 240   method_entry(java_util_zip_CRC32C_updateBytes)
 241   method_entry(java_util_zip_CRC32C_updateDirectByteBuffer)
 242 
 243   method_entry(java_lang_Float_intBitsToFloat);
 244   method_entry(java_lang_Float_floatToRawIntBits);
 245   method_entry(java_lang_Double_longBitsToDouble);
 246   method_entry(java_lang_Double_doubleToRawLongBits);
 247 
 248   method_entry(java_lang_continuation_getSP)
 249   method_entry(java_lang_continuation_getFP)
 250   method_entry(java_lang_continuation_getPC)
 251   method_entry(java_lang_continuation_doContinue)
 252   method_entry(java_lang_continuation_doYield)
 253   method_entry(java_lang_continuation_runLevel)
 254 
 255 #undef method_entry
 256 
 257   // Bytecodes
 258   set_entry_points_for_all_bytes();
 259 
 260   // installation of code in other places in the runtime
 261   // (ExcutableCodeManager calls not needed to copy the entries)
 262   set_safepoints_for_all_bytes();
 263 
 264   { CodeletMark cm(_masm, "deoptimization entry points");
 265     Interpreter::_deopt_entry[0] = EntryPoint();
 266     Interpreter::_deopt_entry[0].set_entry(vtos, generate_deopt_entry_for(vtos, 0));
 267     for (int i = 1; i < Interpreter::number_of_deopt_entries; i++) {
 268       address deopt_itos = generate_deopt_entry_for(itos, i);
 269       Interpreter::_deopt_entry[i] =
 270         EntryPoint(
 271                    deopt_itos, /* btos */
 272                    deopt_itos, /* ztos */
 273                    deopt_itos, /* ctos */
 274                    deopt_itos, /* stos */
 275                    generate_deopt_entry_for(atos, i),
 276                    deopt_itos, /* itos */
 277                    generate_deopt_entry_for(ltos, i),
 278                    generate_deopt_entry_for(ftos, i),
 279                    generate_deopt_entry_for(dtos, i),
 280                    generate_deopt_entry_for(vtos, i)
 281                    );
 282     }
 283     address return_continuation = Interpreter::_normal_table.entry(Bytecodes::_return).entry(vtos);
 284     vmassert(return_continuation != NULL, "return entry not generated yet");
 285     Interpreter::_deopt_reexecute_return_entry = generate_deopt_entry_for(vtos, 0, return_continuation);
 286   }
 287 
 288 }
 289 
 290 //------------------------------------------------------------------------------------------------------------------------
 291 
 292 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
 293   address entry = __ pc();
 294   __ stop(msg);
 295   return entry;
 296 }
 297 
 298 
 299 //------------------------------------------------------------------------------------------------------------------------
 300 
 301 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
 302   for (int i = 0; i < DispatchTable::length; i++) {
 303     Bytecodes::Code code = (Bytecodes::Code)i;
 304     if (Bytecodes::is_defined(code)) {
 305       set_entry_points(code);
 306     } else {
 307       set_unimplemented(i);
 308     }
 309   }
 310 }
 311 
 312 
 313 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
 314   for (int i = 0; i < DispatchTable::length; i++) {
 315     Bytecodes::Code code = (Bytecodes::Code)i;
 316     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
 317   }
 318 }
 319 
 320 
 321 void TemplateInterpreterGenerator::set_unimplemented(int i) {
 322   address e = _unimplemented_bytecode;
 323   EntryPoint entry(e, e, e, e, e, e, e, e, e, e);
 324   Interpreter::_normal_table.set_entry(i, entry);
 325   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
 326 }
 327 
 328 
 329 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
 330   CodeletMark cm(_masm, Bytecodes::name(code), code);
 331   // initialize entry points
 332   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
 333   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
 334   address bep = _illegal_bytecode_sequence;
 335   address zep = _illegal_bytecode_sequence;
 336   address cep = _illegal_bytecode_sequence;
 337   address sep = _illegal_bytecode_sequence;
 338   address aep = _illegal_bytecode_sequence;
 339   address iep = _illegal_bytecode_sequence;
 340   address lep = _illegal_bytecode_sequence;
 341   address fep = _illegal_bytecode_sequence;
 342   address dep = _illegal_bytecode_sequence;
 343   address vep = _unimplemented_bytecode;
 344   address wep = _unimplemented_bytecode;
 345   // code for short & wide version of bytecode
 346   if (Bytecodes::is_defined(code)) {
 347     Template* t = TemplateTable::template_for(code);
 348     assert(t->is_valid(), "just checking");
 349     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
 350   }
 351   if (Bytecodes::wide_is_defined(code)) {
 352     Template* t = TemplateTable::template_for_wide(code);
 353     assert(t->is_valid(), "just checking");
 354     set_wide_entry_point(t, wep);
 355   }
 356   // set entry points
 357   EntryPoint entry(bep, zep, cep, sep, aep, iep, lep, fep, dep, vep);
 358   Interpreter::_normal_table.set_entry(code, entry);
 359   Interpreter::_wentry_point[code] = wep;
 360 }
 361 
 362 
 363 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
 364   assert(t->is_valid(), "template must exist");
 365   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
 366   wep = __ pc(); generate_and_dispatch(t);
 367 }
 368 
 369 
 370 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
 371   assert(t->is_valid(), "template must exist");
 372   switch (t->tos_in()) {
 373     case btos:
 374     case ztos:
 375     case ctos:
 376     case stos:
 377       ShouldNotReachHere();  // btos/ctos/stos should use itos.
 378       break;
 379     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
 380     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
 381     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
 382     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
 383     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
 384     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
 385     default  : ShouldNotReachHere();                                                 break;
 386   }
 387 }
 388 
 389 
 390 //------------------------------------------------------------------------------------------------------------------------
 391 
 392 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
 393   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
 394 #ifndef PRODUCT
 395   // debugging code
 396   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
 397   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
 398   if (TraceBytecodes)                                            trace_bytecode(t);
 399   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
 400   __ verify_FPU(1, t->tos_in());
 401 #endif // !PRODUCT
 402   int step = 0;
 403   if (!t->does_dispatch()) {
 404     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
 405     if (tos_out == ilgl) tos_out = t->tos_out();
 406     // compute bytecode size
 407     assert(step > 0, "just checkin'");
 408     // setup stuff for dispatching next bytecode
 409     if (ProfileInterpreter && VerifyDataPointer
 410         && MethodData::bytecode_has_profile(t->bytecode())) {
 411       __ verify_method_data_pointer();
 412     }
 413     __ dispatch_prolog(tos_out, step);
 414   }
 415   // generate template
 416   t->generate(_masm);
 417   // advance
 418   if (t->does_dispatch()) {
 419 #ifdef ASSERT
 420     // make sure execution doesn't go beyond this point if code is broken
 421     __ should_not_reach_here();
 422 #endif // ASSERT
 423   } else {
 424     // dispatch to next bytecode
 425     __ dispatch_epilog(tos_out, step);
 426   }
 427 }
 428 
 429 // Generate method entries
 430 address TemplateInterpreterGenerator::generate_method_entry(
 431                                         AbstractInterpreter::MethodKind kind) {
 432   // determine code generation flags
 433   bool native = false;
 434   bool synchronized = false;
 435   address entry_point = NULL;
 436 
 437   switch (kind) {
 438   case Interpreter::zerolocals             :                                          break;
 439   case Interpreter::zerolocals_synchronized:                synchronized = true;      break;
 440   case Interpreter::native                 : native = true;                           break;
 441   case Interpreter::native_synchronized    : native = true; synchronized = true;      break;
 442   case Interpreter::empty                  : break;
 443   case Interpreter::accessor               : break;
 444   case Interpreter::abstract               : entry_point = generate_abstract_entry(); break;
 445 
 446   case Interpreter::java_lang_math_sin     : // fall thru
 447   case Interpreter::java_lang_math_cos     : // fall thru
 448   case Interpreter::java_lang_math_tan     : // fall thru
 449   case Interpreter::java_lang_math_abs     : // fall thru
 450   case Interpreter::java_lang_math_log     : // fall thru
 451   case Interpreter::java_lang_math_log10   : // fall thru
 452   case Interpreter::java_lang_math_sqrt    : // fall thru
 453   case Interpreter::java_lang_math_pow     : // fall thru
 454   case Interpreter::java_lang_math_exp     : // fall thru
 455   case Interpreter::java_lang_math_fmaD    : // fall thru
 456   case Interpreter::java_lang_math_fmaF    : entry_point = generate_math_entry(kind);      break;
 457   case Interpreter::java_lang_ref_reference_get
 458                                            : entry_point = generate_Reference_get_entry(); break;
 459   case Interpreter::java_lang_continuation_getSP
 460                                            : entry_point = generate_Continuation_getSP_entry(); break;
 461   case Interpreter::java_lang_continuation_getFP
 462                                            : entry_point = generate_Continuation_getFP_entry(); break;
 463   case Interpreter::java_lang_continuation_getPC
 464                                            : entry_point = generate_Continuation_getPC_entry(); break;
 465   case Interpreter::java_lang_continuation_doContinue
 466                                            : entry_point = generate_Continuation_doContinue_entry(); break;
 467   case Interpreter::java_lang_continuation_doYield
 468                                            : entry_point = generate_Continuation_doYield_entry(); break;
 469   case Interpreter::java_lang_continuation_runLevel
 470                                            : entry_point = generate_Continuation_runLevel_entry(); break;
 471   case Interpreter::java_util_zip_CRC32_update
 472                                            : native = true; entry_point = generate_CRC32_update_entry();  break;
 473   case Interpreter::java_util_zip_CRC32_updateBytes
 474                                            : // fall thru
 475   case Interpreter::java_util_zip_CRC32_updateByteBuffer
 476                                            : native = true; entry_point = generate_CRC32_updateBytes_entry(kind); break;
 477   case Interpreter::java_util_zip_CRC32C_updateBytes
 478                                            : // fall thru
 479   case Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer
 480                                            : entry_point = generate_CRC32C_updateBytes_entry(kind); break;
 481 #ifdef IA32
 482   // On x86_32 platforms, a special entry is generated for the following four methods.
 483   // On other platforms the normal entry is used to enter these methods.
 484   case Interpreter::java_lang_Float_intBitsToFloat
 485                                            : native = true; entry_point = generate_Float_intBitsToFloat_entry(); break;
 486   case Interpreter::java_lang_Float_floatToRawIntBits
 487                                            : native = true; entry_point = generate_Float_floatToRawIntBits_entry(); break;
 488   case Interpreter::java_lang_Double_longBitsToDouble
 489                                            : native = true; entry_point = generate_Double_longBitsToDouble_entry(); break;
 490   case Interpreter::java_lang_Double_doubleToRawLongBits
 491                                            : native = true; entry_point = generate_Double_doubleToRawLongBits_entry(); break;
 492 #else
 493   case Interpreter::java_lang_Float_intBitsToFloat:
 494   case Interpreter::java_lang_Float_floatToRawIntBits:
 495   case Interpreter::java_lang_Double_longBitsToDouble:
 496   case Interpreter::java_lang_Double_doubleToRawLongBits:
 497     native = true;
 498     break;
 499 #endif // !IA32
 500   default:
 501     fatal("unexpected method kind: %d", kind);
 502     break;
 503   }
 504 
 505   if (entry_point) {
 506     return entry_point;
 507   }
 508 
 509   // We expect the normal and native entry points to be generated first so we can reuse them.
 510   if (native) {
 511     entry_point = Interpreter::entry_for_kind(synchronized ? Interpreter::native_synchronized : Interpreter::native);
 512     if (entry_point == NULL) {
 513       entry_point = generate_native_entry(synchronized);
 514     }
 515   } else {
 516     entry_point = Interpreter::entry_for_kind(synchronized ? Interpreter::zerolocals_synchronized : Interpreter::zerolocals);
 517     if (entry_point == NULL) {
 518       entry_point = generate_normal_entry(synchronized);
 519     }
 520   }
 521 
 522   return entry_point;
 523 }
 524 #endif // !CC_INTERP