1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "code/compiledMethod.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "oops/klass.hpp"
  49 #include "oops/method.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "prims/forte.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/methodHandles.hpp"
  55 #include "prims/nativeLookup.hpp"
  56 #include "runtime/arguments.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/vframe.inline.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/hashtable.inline.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/xmlstream.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Runtime1.hpp"
  78 #endif
  79 #if INCLUDE_G1GC
  80 #include "gc/g1/g1ThreadLocalData.hpp"
  81 #endif // INCLUDE_G1GC
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  86 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  90 address             SharedRuntime::_resolve_static_call_entry;
  91 
  92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  96 
  97 #ifdef COMPILER2
  98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  99 #endif // COMPILER2
 100 
 101 
 102 //----------------------------generate_stubs-----------------------------------
 103 void SharedRuntime::generate_stubs() {
 104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 105   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 106   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 107   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 108   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 109   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 110   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 111 
 112 #if COMPILER2_OR_JVMCI
 113   // Vectors are generated only by C2 and JVMCI.
 114   bool support_wide = is_wide_vector(MaxVectorSize);
 115   if (support_wide) {
 116     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 117   }
 118 #endif // COMPILER2_OR_JVMCI
 119   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 120   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 121 
 122   generate_deopt_blob();
 123 
 124 #ifdef COMPILER2
 125   generate_uncommon_trap_blob();
 126 #endif // COMPILER2
 127 }
 128 
 129 #include <math.h>
 130 
 131 // Implementation of SharedRuntime
 132 
 133 #ifndef PRODUCT
 134 // For statistics
 135 int SharedRuntime::_ic_miss_ctr = 0;
 136 int SharedRuntime::_wrong_method_ctr = 0;
 137 int SharedRuntime::_resolve_static_ctr = 0;
 138 int SharedRuntime::_resolve_virtual_ctr = 0;
 139 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 140 int SharedRuntime::_implicit_null_throws = 0;
 141 int SharedRuntime::_implicit_div0_throws = 0;
 142 int SharedRuntime::_throw_null_ctr = 0;
 143 
 144 int SharedRuntime::_nof_normal_calls = 0;
 145 int SharedRuntime::_nof_optimized_calls = 0;
 146 int SharedRuntime::_nof_inlined_calls = 0;
 147 int SharedRuntime::_nof_megamorphic_calls = 0;
 148 int SharedRuntime::_nof_static_calls = 0;
 149 int SharedRuntime::_nof_inlined_static_calls = 0;
 150 int SharedRuntime::_nof_interface_calls = 0;
 151 int SharedRuntime::_nof_optimized_interface_calls = 0;
 152 int SharedRuntime::_nof_inlined_interface_calls = 0;
 153 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 154 int SharedRuntime::_nof_removable_exceptions = 0;
 155 
 156 int SharedRuntime::_new_instance_ctr=0;
 157 int SharedRuntime::_new_array_ctr=0;
 158 int SharedRuntime::_multi1_ctr=0;
 159 int SharedRuntime::_multi2_ctr=0;
 160 int SharedRuntime::_multi3_ctr=0;
 161 int SharedRuntime::_multi4_ctr=0;
 162 int SharedRuntime::_multi5_ctr=0;
 163 int SharedRuntime::_mon_enter_stub_ctr=0;
 164 int SharedRuntime::_mon_exit_stub_ctr=0;
 165 int SharedRuntime::_mon_enter_ctr=0;
 166 int SharedRuntime::_mon_exit_ctr=0;
 167 int SharedRuntime::_partial_subtype_ctr=0;
 168 int SharedRuntime::_jbyte_array_copy_ctr=0;
 169 int SharedRuntime::_jshort_array_copy_ctr=0;
 170 int SharedRuntime::_jint_array_copy_ctr=0;
 171 int SharedRuntime::_jlong_array_copy_ctr=0;
 172 int SharedRuntime::_oop_array_copy_ctr=0;
 173 int SharedRuntime::_checkcast_array_copy_ctr=0;
 174 int SharedRuntime::_unsafe_array_copy_ctr=0;
 175 int SharedRuntime::_generic_array_copy_ctr=0;
 176 int SharedRuntime::_slow_array_copy_ctr=0;
 177 int SharedRuntime::_find_handler_ctr=0;
 178 int SharedRuntime::_rethrow_ctr=0;
 179 
 180 int     SharedRuntime::_ICmiss_index                    = 0;
 181 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 182 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 183 
 184 
 185 void SharedRuntime::trace_ic_miss(address at) {
 186   for (int i = 0; i < _ICmiss_index; i++) {
 187     if (_ICmiss_at[i] == at) {
 188       _ICmiss_count[i]++;
 189       return;
 190     }
 191   }
 192   int index = _ICmiss_index++;
 193   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 194   _ICmiss_at[index] = at;
 195   _ICmiss_count[index] = 1;
 196 }
 197 
 198 void SharedRuntime::print_ic_miss_histogram() {
 199   if (ICMissHistogram) {
 200     tty->print_cr("IC Miss Histogram:");
 201     int tot_misses = 0;
 202     for (int i = 0; i < _ICmiss_index; i++) {
 203       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 204       tot_misses += _ICmiss_count[i];
 205     }
 206     tty->print_cr("Total IC misses: %7d", tot_misses);
 207   }
 208 }
 209 #endif // PRODUCT
 210 
 211 #if INCLUDE_G1GC
 212 
 213 // G1 write-barrier pre: executed before a pointer store.
 214 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 215   if (orig == NULL) {
 216     assert(false, "should be optimized out");
 217     return;
 218   }
 219   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 220   // store the original value that was in the field reference
 221   G1ThreadLocalData::satb_mark_queue(thread).enqueue(orig);
 222 JRT_END
 223 
 224 // G1 write-barrier post: executed after a pointer store.
 225 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 226   G1ThreadLocalData::dirty_card_queue(thread).enqueue(card_addr);
 227 JRT_END
 228 
 229 #endif // INCLUDE_G1GC
 230 
 231 
 232 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 233   return x * y;
 234 JRT_END
 235 
 236 
 237 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 238   if (x == min_jlong && y == CONST64(-1)) {
 239     return x;
 240   } else {
 241     return x / y;
 242   }
 243 JRT_END
 244 
 245 
 246 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 247   if (x == min_jlong && y == CONST64(-1)) {
 248     return 0;
 249   } else {
 250     return x % y;
 251   }
 252 JRT_END
 253 
 254 
 255 const juint  float_sign_mask  = 0x7FFFFFFF;
 256 const juint  float_infinity   = 0x7F800000;
 257 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 258 const julong double_infinity  = CONST64(0x7FF0000000000000);
 259 
 260 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 261 #ifdef _WIN64
 262   // 64-bit Windows on amd64 returns the wrong values for
 263   // infinity operands.
 264   union { jfloat f; juint i; } xbits, ybits;
 265   xbits.f = x;
 266   ybits.f = y;
 267   // x Mod Infinity == x unless x is infinity
 268   if (((xbits.i & float_sign_mask) != float_infinity) &&
 269        ((ybits.i & float_sign_mask) == float_infinity) ) {
 270     return x;
 271   }
 272   return ((jfloat)fmod_winx64((double)x, (double)y));
 273 #else
 274   return ((jfloat)fmod((double)x,(double)y));
 275 #endif
 276 JRT_END
 277 
 278 
 279 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 280 #ifdef _WIN64
 281   union { jdouble d; julong l; } xbits, ybits;
 282   xbits.d = x;
 283   ybits.d = y;
 284   // x Mod Infinity == x unless x is infinity
 285   if (((xbits.l & double_sign_mask) != double_infinity) &&
 286        ((ybits.l & double_sign_mask) == double_infinity) ) {
 287     return x;
 288   }
 289   return ((jdouble)fmod_winx64((double)x, (double)y));
 290 #else
 291   return ((jdouble)fmod((double)x,(double)y));
 292 #endif
 293 JRT_END
 294 
 295 #ifdef __SOFTFP__
 296 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 297   return x + y;
 298 JRT_END
 299 
 300 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 301   return x - y;
 302 JRT_END
 303 
 304 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 305   return x * y;
 306 JRT_END
 307 
 308 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 309   return x / y;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 313   return x + y;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 317   return x - y;
 318 JRT_END
 319 
 320 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 321   return x * y;
 322 JRT_END
 323 
 324 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 325   return x / y;
 326 JRT_END
 327 
 328 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 329   return (jfloat)x;
 330 JRT_END
 331 
 332 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 333   return (jdouble)x;
 334 JRT_END
 335 
 336 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 337   return (jdouble)x;
 338 JRT_END
 339 
 340 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 341   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 342 JRT_END
 343 
 344 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 345   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 346 JRT_END
 347 
 348 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 349   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 350 JRT_END
 351 
 352 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 353   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 354 JRT_END
 355 
 356 // Functions to return the opposite of the aeabi functions for nan.
 357 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 358   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 362   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 366   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 370   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 374   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 375 JRT_END
 376 
 377 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 378   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 379 JRT_END
 380 
 381 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 382   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 383 JRT_END
 384 
 385 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 386   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 387 JRT_END
 388 
 389 // Intrinsics make gcc generate code for these.
 390 float  SharedRuntime::fneg(float f)   {
 391   return -f;
 392 }
 393 
 394 double SharedRuntime::dneg(double f)  {
 395   return -f;
 396 }
 397 
 398 #endif // __SOFTFP__
 399 
 400 #if defined(__SOFTFP__) || defined(E500V2)
 401 // Intrinsics make gcc generate code for these.
 402 double SharedRuntime::dabs(double f)  {
 403   return (f <= (double)0.0) ? (double)0.0 - f : f;
 404 }
 405 
 406 #endif
 407 
 408 #if defined(__SOFTFP__) || defined(PPC)
 409 double SharedRuntime::dsqrt(double f) {
 410   return sqrt(f);
 411 }
 412 #endif
 413 
 414 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jfloat) max_jint)
 418     return max_jint;
 419   if (x <= (jfloat) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jfloat) max_jlong)
 429     return max_jlong;
 430   if (x <= (jfloat) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jdouble) max_jint)
 440     return max_jint;
 441   if (x <= (jdouble) min_jint)
 442     return min_jint;
 443   return (jint) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 448   if (g_isnan(x))
 449     return 0;
 450   if (x >= (jdouble) max_jlong)
 451     return max_jlong;
 452   if (x <= (jdouble) min_jlong)
 453     return min_jlong;
 454   return (jlong) x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 459   return (jfloat)x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 464   return (jfloat)x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 469   return (jdouble)x;
 470 JRT_END
 471 
 472 // Exception handling across interpreter/compiler boundaries
 473 //
 474 // exception_handler_for_return_address(...) returns the continuation address.
 475 // The continuation address is the entry point of the exception handler of the
 476 // previous frame depending on the return address.
 477 
 478 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 479   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 480   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 481 
 482   // Reset method handle flag.
 483   thread->set_is_method_handle_return(false);
 484 
 485 #if INCLUDE_JVMCI
 486   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 487   // and other exception handler continuations do not read it
 488   thread->set_exception_pc(NULL);
 489 #endif // INCLUDE_JVMCI
 490 
 491   // The fastest case first
 492   CodeBlob* blob = CodeCache::find_blob(return_address);
 493   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 494   if (nm != NULL) {
 495     // Set flag if return address is a method handle call site.
 496     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 497     // native nmethods don't have exception handlers
 498     assert(!nm->is_native_method(), "no exception handler");
 499     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 500     if (nm->is_deopt_pc(return_address)) {
 501       // If we come here because of a stack overflow, the stack may be
 502       // unguarded. Reguard the stack otherwise if we return to the
 503       // deopt blob and the stack bang causes a stack overflow we
 504       // crash.
 505       bool guard_pages_enabled = thread->stack_guards_enabled();
 506       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 507       if (thread->reserved_stack_activation() != thread->stack_base()) {
 508         thread->set_reserved_stack_activation(thread->stack_base());
 509       }
 510       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 511       return SharedRuntime::deopt_blob()->unpack_with_exception();
 512     } else {
 513       return nm->exception_begin();
 514     }
 515   }
 516 
 517   // Entry code
 518   if (StubRoutines::returns_to_call_stub(return_address)) {
 519     return StubRoutines::catch_exception_entry();
 520   }
 521   // Interpreted code
 522   if (Interpreter::contains(return_address)) {
 523     return Interpreter::rethrow_exception_entry();
 524   }
 525 
 526   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 527   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 528 
 529 #ifndef PRODUCT
 530   { ResourceMark rm;
 531     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 532     os::print_location(tty, (intptr_t)return_address);
 533     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 534     tty->print_cr("b) other problem");
 535   }
 536 #endif // PRODUCT
 537 
 538   ShouldNotReachHere();
 539   return NULL;
 540 }
 541 
 542 
 543 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 544   return raw_exception_handler_for_return_address(thread, return_address);
 545 JRT_END
 546 
 547 
 548 address SharedRuntime::get_poll_stub(address pc) {
 549   address stub;
 550   // Look up the code blob
 551   CodeBlob *cb = CodeCache::find_blob(pc);
 552 
 553   // Should be an nmethod
 554   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 555 
 556   // Look up the relocation information
 557   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 558     "safepoint polling: type must be poll");
 559 
 560 #ifdef ASSERT
 561   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 562     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 563     Disassembler::decode(cb);
 564     fatal("Only polling locations are used for safepoint");
 565   }
 566 #endif
 567 
 568   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 569   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 570   if (at_poll_return) {
 571     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 572            "polling page return stub not created yet");
 573     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 574   } else if (has_wide_vectors) {
 575     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 576            "polling page vectors safepoint stub not created yet");
 577     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 578   } else {
 579     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 580            "polling page safepoint stub not created yet");
 581     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 582   }
 583   log_debug(safepoint)("... found polling page %s exception at pc = "
 584                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 585                        at_poll_return ? "return" : "loop",
 586                        (intptr_t)pc, (intptr_t)stub);
 587   return stub;
 588 }
 589 
 590 
 591 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 592   assert(caller.is_interpreted_frame(), "");
 593   int args_size = ArgumentSizeComputer(sig).size() + 1;
 594   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 595   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 596   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 597   return result;
 598 }
 599 
 600 
 601 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 602   if (JvmtiExport::can_post_on_exceptions()) {
 603     vframeStream vfst(thread, true);
 604     methodHandle method = methodHandle(thread, vfst.method());
 605     address bcp = method()->bcp_from(vfst.bci());
 606     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 607   }
 608   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 609 }
 610 
 611 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 612   Handle h_exception = Exceptions::new_exception(thread, name, message);
 613   throw_and_post_jvmti_exception(thread, h_exception);
 614 }
 615 
 616 // The interpreter code to call this tracing function is only
 617 // called/generated when UL is on for redefine, class and has the right level
 618 // and tags. Since obsolete methods are never compiled, we don't have
 619 // to modify the compilers to generate calls to this function.
 620 //
 621 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 622     JavaThread* thread, Method* method))
 623   if (method->is_obsolete()) {
 624     // We are calling an obsolete method, but this is not necessarily
 625     // an error. Our method could have been redefined just after we
 626     // fetched the Method* from the constant pool.
 627     ResourceMark rm;
 628     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 629   }
 630   return 0;
 631 JRT_END
 632 
 633 // ret_pc points into caller; we are returning caller's exception handler
 634 // for given exception
 635 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 636                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 637   assert(cm != NULL, "must exist");
 638   ResourceMark rm;
 639 
 640 #if INCLUDE_JVMCI
 641   if (cm->is_compiled_by_jvmci()) {
 642     // lookup exception handler for this pc
 643     int catch_pco = ret_pc - cm->code_begin();
 644     ExceptionHandlerTable table(cm);
 645     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 646     if (t != NULL) {
 647       return cm->code_begin() + t->pco();
 648     } else {
 649       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 650     }
 651   }
 652 #endif // INCLUDE_JVMCI
 653 
 654   nmethod* nm = cm->as_nmethod();
 655   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 656   // determine handler bci, if any
 657   EXCEPTION_MARK;
 658 
 659   int handler_bci = -1;
 660   int scope_depth = 0;
 661   if (!force_unwind) {
 662     int bci = sd->bci();
 663     bool recursive_exception = false;
 664     do {
 665       bool skip_scope_increment = false;
 666       // exception handler lookup
 667       Klass* ek = exception->klass();
 668       methodHandle mh(THREAD, sd->method());
 669       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 670       if (HAS_PENDING_EXCEPTION) {
 671         recursive_exception = true;
 672         // We threw an exception while trying to find the exception handler.
 673         // Transfer the new exception to the exception handle which will
 674         // be set into thread local storage, and do another lookup for an
 675         // exception handler for this exception, this time starting at the
 676         // BCI of the exception handler which caused the exception to be
 677         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 678         // argument to ensure that the correct exception is thrown (4870175).
 679         recursive_exception_occurred = true;
 680         exception = Handle(THREAD, PENDING_EXCEPTION);
 681         CLEAR_PENDING_EXCEPTION;
 682         if (handler_bci >= 0) {
 683           bci = handler_bci;
 684           handler_bci = -1;
 685           skip_scope_increment = true;
 686         }
 687       }
 688       else {
 689         recursive_exception = false;
 690       }
 691       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 692         sd = sd->sender();
 693         if (sd != NULL) {
 694           bci = sd->bci();
 695         }
 696         ++scope_depth;
 697       }
 698     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 699   }
 700 
 701   // found handling method => lookup exception handler
 702   int catch_pco = ret_pc - nm->code_begin();
 703 
 704   ExceptionHandlerTable table(nm);
 705   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 706   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 707     // Allow abbreviated catch tables.  The idea is to allow a method
 708     // to materialize its exceptions without committing to the exact
 709     // routing of exceptions.  In particular this is needed for adding
 710     // a synthetic handler to unlock monitors when inlining
 711     // synchronized methods since the unlock path isn't represented in
 712     // the bytecodes.
 713     t = table.entry_for(catch_pco, -1, 0);
 714   }
 715 
 716 #ifdef COMPILER1
 717   if (t == NULL && nm->is_compiled_by_c1()) {
 718     assert(nm->unwind_handler_begin() != NULL, "");
 719     return nm->unwind_handler_begin();
 720   }
 721 #endif
 722 
 723   if (t == NULL) {
 724     ttyLocker ttyl;
 725     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 726     tty->print_cr("   Exception:");
 727     exception->print();
 728     tty->cr();
 729     tty->print_cr(" Compiled exception table :");
 730     table.print();
 731     nm->print_code();
 732     guarantee(false, "missing exception handler");
 733     return NULL;
 734   }
 735 
 736   return nm->code_begin() + t->pco();
 737 }
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 740   // These errors occur only at call sites
 741   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 745   // These errors occur only at call sites
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 758   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 759   // cache sites (when the callee activation is not yet set up) so we are at a call site
 760   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 761 JRT_END
 762 
 763 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 764   throw_StackOverflowError_common(thread, false);
 765 JRT_END
 766 
 767 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 768   throw_StackOverflowError_common(thread, true);
 769 JRT_END
 770 
 771 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 772   // We avoid using the normal exception construction in this case because
 773   // it performs an upcall to Java, and we're already out of stack space.
 774   Thread* THREAD = thread;
 775   Klass* k = SystemDictionary::StackOverflowError_klass();
 776   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 777   if (delayed) {
 778     java_lang_Throwable::set_message(exception_oop,
 779                                      Universe::delayed_stack_overflow_error_message());
 780   }
 781   Handle exception (thread, exception_oop);
 782   if (StackTraceInThrowable) {
 783     java_lang_Throwable::fill_in_stack_trace(exception);
 784   }
 785   // Increment counter for hs_err file reporting
 786   Atomic::inc(&Exceptions::_stack_overflow_errors);
 787   throw_and_post_jvmti_exception(thread, exception);
 788 }
 789 
 790 #if INCLUDE_JVMCI
 791 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 792   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 793   thread->set_jvmci_implicit_exception_pc(pc);
 794   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 795   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 796 }
 797 #endif // INCLUDE_JVMCI
 798 
 799 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 800                                                            address pc,
 801                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 802 {
 803   address target_pc = NULL;
 804 
 805   if (Interpreter::contains(pc)) {
 806 #ifdef CC_INTERP
 807     // C++ interpreter doesn't throw implicit exceptions
 808     ShouldNotReachHere();
 809 #else
 810     switch (exception_kind) {
 811       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 812       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 813       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 814       default:                      ShouldNotReachHere();
 815     }
 816 #endif // !CC_INTERP
 817   } else {
 818     switch (exception_kind) {
 819       case STACK_OVERFLOW: {
 820         // Stack overflow only occurs upon frame setup; the callee is
 821         // going to be unwound. Dispatch to a shared runtime stub
 822         // which will cause the StackOverflowError to be fabricated
 823         // and processed.
 824         // Stack overflow should never occur during deoptimization:
 825         // the compiled method bangs the stack by as much as the
 826         // interpreter would need in case of a deoptimization. The
 827         // deoptimization blob and uncommon trap blob bang the stack
 828         // in a debug VM to verify the correctness of the compiled
 829         // method stack banging.
 830         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 831         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 832         return StubRoutines::throw_StackOverflowError_entry();
 833       }
 834 
 835       case IMPLICIT_NULL: {
 836         if (VtableStubs::contains(pc)) {
 837           // We haven't yet entered the callee frame. Fabricate an
 838           // exception and begin dispatching it in the caller. Since
 839           // the caller was at a call site, it's safe to destroy all
 840           // caller-saved registers, as these entry points do.
 841           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 842 
 843           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 844           if (vt_stub == NULL) return NULL;
 845 
 846           if (vt_stub->is_abstract_method_error(pc)) {
 847             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 848             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 849             // Instead of throwing the abstract method error here directly, we re-resolve
 850             // and will throw the AbstractMethodError during resolve. As a result, we'll
 851             // get a more detailed error message.
 852             return SharedRuntime::get_handle_wrong_method_stub();
 853           } else {
 854             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 855             // Assert that the signal comes from the expected location in stub code.
 856             assert(vt_stub->is_null_pointer_exception(pc),
 857                    "obtained signal from unexpected location in stub code");
 858             return StubRoutines::throw_NullPointerException_at_call_entry();
 859           }
 860         } else {
 861           CodeBlob* cb = CodeCache::find_blob(pc);
 862 
 863           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 864           if (cb == NULL) return NULL;
 865 
 866           // Exception happened in CodeCache. Must be either:
 867           // 1. Inline-cache check in C2I handler blob,
 868           // 2. Inline-cache check in nmethod, or
 869           // 3. Implicit null exception in nmethod
 870 
 871           if (!cb->is_compiled()) {
 872             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 873             if (!is_in_blob) {
 874               // Allow normal crash reporting to handle this
 875               return NULL;
 876             }
 877             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 878             // There is no handler here, so we will simply unwind.
 879             return StubRoutines::throw_NullPointerException_at_call_entry();
 880           }
 881 
 882           // Otherwise, it's a compiled method.  Consult its exception handlers.
 883           CompiledMethod* cm = (CompiledMethod*)cb;
 884           if (cm->inlinecache_check_contains(pc)) {
 885             // exception happened inside inline-cache check code
 886             // => the nmethod is not yet active (i.e., the frame
 887             // is not set up yet) => use return address pushed by
 888             // caller => don't push another return address
 889             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 890             return StubRoutines::throw_NullPointerException_at_call_entry();
 891           }
 892 
 893           if (cm->method()->is_method_handle_intrinsic()) {
 894             // exception happened inside MH dispatch code, similar to a vtable stub
 895             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 896             return StubRoutines::throw_NullPointerException_at_call_entry();
 897           }
 898 
 899 #ifndef PRODUCT
 900           _implicit_null_throws++;
 901 #endif
 902 #if INCLUDE_JVMCI
 903           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 904             // If there's no PcDesc then we'll die way down inside of
 905             // deopt instead of just getting normal error reporting,
 906             // so only go there if it will succeed.
 907             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 908           } else {
 909 #endif // INCLUDE_JVMCI
 910           assert (cm->is_nmethod(), "Expect nmethod");
 911           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 912 #if INCLUDE_JVMCI
 913           }
 914 #endif // INCLUDE_JVMCI
 915           // If there's an unexpected fault, target_pc might be NULL,
 916           // in which case we want to fall through into the normal
 917           // error handling code.
 918         }
 919 
 920         break; // fall through
 921       }
 922 
 923 
 924       case IMPLICIT_DIVIDE_BY_ZERO: {
 925         CompiledMethod* cm = CodeCache::find_compiled(pc);
 926         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 927 #ifndef PRODUCT
 928         _implicit_div0_throws++;
 929 #endif
 930 #if INCLUDE_JVMCI
 931         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 932           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 933         } else {
 934 #endif // INCLUDE_JVMCI
 935         target_pc = cm->continuation_for_implicit_exception(pc);
 936 #if INCLUDE_JVMCI
 937         }
 938 #endif // INCLUDE_JVMCI
 939         // If there's an unexpected fault, target_pc might be NULL,
 940         // in which case we want to fall through into the normal
 941         // error handling code.
 942         break; // fall through
 943       }
 944 
 945       default: ShouldNotReachHere();
 946     }
 947 
 948     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 949 
 950     if (exception_kind == IMPLICIT_NULL) {
 951 #ifndef PRODUCT
 952       // for AbortVMOnException flag
 953       Exceptions::debug_check_abort("java.lang.NullPointerException");
 954 #endif //PRODUCT
 955       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 956     } else {
 957 #ifndef PRODUCT
 958       // for AbortVMOnException flag
 959       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 960 #endif //PRODUCT
 961       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 962     }
 963     return target_pc;
 964   }
 965 
 966   ShouldNotReachHere();
 967   return NULL;
 968 }
 969 
 970 
 971 /**
 972  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 973  * installed in the native function entry of all native Java methods before
 974  * they get linked to their actual native methods.
 975  *
 976  * \note
 977  * This method actually never gets called!  The reason is because
 978  * the interpreter's native entries call NativeLookup::lookup() which
 979  * throws the exception when the lookup fails.  The exception is then
 980  * caught and forwarded on the return from NativeLookup::lookup() call
 981  * before the call to the native function.  This might change in the future.
 982  */
 983 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 984 {
 985   // We return a bad value here to make sure that the exception is
 986   // forwarded before we look at the return value.
 987   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 988 }
 989 JNI_END
 990 
 991 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 992   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 993 }
 994 
 995 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 996 #if INCLUDE_JVMCI
 997   if (!obj->klass()->has_finalizer()) {
 998     return;
 999   }
1000 #endif // INCLUDE_JVMCI
1001   assert(oopDesc::is_oop(obj), "must be a valid oop");
1002   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1003   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1004 JRT_END
1005 
1006 
1007 jlong SharedRuntime::get_java_tid(Thread* thread) {
1008   if (thread != NULL) {
1009     if (thread->is_Java_thread()) {
1010       oop obj = ((JavaThread*)thread)->threadObj();
1011       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1012     }
1013   }
1014   return 0;
1015 }
1016 
1017 /**
1018  * This function ought to be a void function, but cannot be because
1019  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1020  * 6254741.  Once that is fixed we can remove the dummy return value.
1021  */
1022 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1023   return dtrace_object_alloc_base(Thread::current(), o, size);
1024 }
1025 
1026 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1027   assert(DTraceAllocProbes, "wrong call");
1028   Klass* klass = o->klass();
1029   Symbol* name = klass->name();
1030   HOTSPOT_OBJECT_ALLOC(
1031                    get_java_tid(thread),
1032                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1033   return 0;
1034 }
1035 
1036 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1037     JavaThread* thread, Method* method))
1038   assert(DTraceMethodProbes, "wrong call");
1039   Symbol* kname = method->klass_name();
1040   Symbol* name = method->name();
1041   Symbol* sig = method->signature();
1042   HOTSPOT_METHOD_ENTRY(
1043       get_java_tid(thread),
1044       (char *) kname->bytes(), kname->utf8_length(),
1045       (char *) name->bytes(), name->utf8_length(),
1046       (char *) sig->bytes(), sig->utf8_length());
1047   return 0;
1048 JRT_END
1049 
1050 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1051     JavaThread* thread, Method* method))
1052   assert(DTraceMethodProbes, "wrong call");
1053   Symbol* kname = method->klass_name();
1054   Symbol* name = method->name();
1055   Symbol* sig = method->signature();
1056   HOTSPOT_METHOD_RETURN(
1057       get_java_tid(thread),
1058       (char *) kname->bytes(), kname->utf8_length(),
1059       (char *) name->bytes(), name->utf8_length(),
1060       (char *) sig->bytes(), sig->utf8_length());
1061   return 0;
1062 JRT_END
1063 
1064 
1065 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1066 // for a call current in progress, i.e., arguments has been pushed on stack
1067 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1068 // vtable updates, etc.  Caller frame must be compiled.
1069 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1070   ResourceMark rm(THREAD);
1071 
1072   // last java frame on stack (which includes native call frames)
1073   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1074 
1075   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1076 }
1077 
1078 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1079   CompiledMethod* caller = vfst.nm();
1080 
1081   nmethodLocker caller_lock(caller);
1082 
1083   address pc = vfst.frame_pc();
1084   { // Get call instruction under lock because another thread may be busy patching it.
1085     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1086     return caller->attached_method_before_pc(pc);
1087   }
1088   return NULL;
1089 }
1090 
1091 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1092 // for a call current in progress, i.e., arguments has been pushed on stack
1093 // but callee has not been invoked yet.  Caller frame must be compiled.
1094 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1095                                               vframeStream& vfst,
1096                                               Bytecodes::Code& bc,
1097                                               CallInfo& callinfo, TRAPS) {
1098   Handle receiver;
1099   Handle nullHandle;  //create a handy null handle for exception returns
1100 
1101   assert(!vfst.at_end(), "Java frame must exist");
1102 
1103   // Find caller and bci from vframe
1104   methodHandle caller(THREAD, vfst.method());
1105   int          bci   = vfst.bci();
1106 
1107   Bytecode_invoke bytecode(caller, bci);
1108   int bytecode_index = bytecode.index();
1109 
1110   methodHandle attached_method = extract_attached_method(vfst);
1111   if (attached_method.not_null()) {
1112     methodHandle callee = bytecode.static_target(CHECK_NH);
1113     vmIntrinsics::ID id = callee->intrinsic_id();
1114     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1115     // it attaches statically resolved method to the call site.
1116     if (MethodHandles::is_signature_polymorphic(id) &&
1117         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1118       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1119 
1120       // Adjust invocation mode according to the attached method.
1121       switch (bc) {
1122         case Bytecodes::_invokeinterface:
1123           if (!attached_method->method_holder()->is_interface()) {
1124             bc = Bytecodes::_invokevirtual;
1125           }
1126           break;
1127         case Bytecodes::_invokehandle:
1128           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1129             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1130                                               : Bytecodes::_invokevirtual;
1131           }
1132           break;
1133         default:
1134           break;
1135       }
1136     }
1137   } else {
1138     bc = bytecode.invoke_code();
1139   }
1140 
1141   bool has_receiver = bc != Bytecodes::_invokestatic &&
1142                       bc != Bytecodes::_invokedynamic &&
1143                       bc != Bytecodes::_invokehandle;
1144 
1145   // Find receiver for non-static call
1146   if (has_receiver) {
1147     // This register map must be update since we need to find the receiver for
1148     // compiled frames. The receiver might be in a register.
1149     RegisterMap reg_map2(thread);
1150     frame stubFrame   = thread->last_frame();
1151     // Caller-frame is a compiled frame
1152     frame callerFrame = stubFrame.sender(&reg_map2);
1153 
1154     if (attached_method.is_null()) {
1155       methodHandle callee = bytecode.static_target(CHECK_NH);
1156       if (callee.is_null()) {
1157         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1158       }
1159     }
1160 
1161     // Retrieve from a compiled argument list
1162     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1163 
1164     if (receiver.is_null()) {
1165       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1166     }
1167   }
1168 
1169   // Resolve method
1170   if (attached_method.not_null()) {
1171     // Parameterized by attached method.
1172     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1173   } else {
1174     // Parameterized by bytecode.
1175     constantPoolHandle constants(THREAD, caller->constants());
1176     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1177   }
1178 
1179 #ifdef ASSERT
1180   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1181   if (has_receiver) {
1182     assert(receiver.not_null(), "should have thrown exception");
1183     Klass* receiver_klass = receiver->klass();
1184     Klass* rk = NULL;
1185     if (attached_method.not_null()) {
1186       // In case there's resolved method attached, use its holder during the check.
1187       rk = attached_method->method_holder();
1188     } else {
1189       // Klass is already loaded.
1190       constantPoolHandle constants(THREAD, caller->constants());
1191       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1192     }
1193     Klass* static_receiver_klass = rk;
1194     methodHandle callee = callinfo.selected_method();
1195     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1196            "actual receiver must be subclass of static receiver klass");
1197     if (receiver_klass->is_instance_klass()) {
1198       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1199         tty->print_cr("ERROR: Klass not yet initialized!!");
1200         receiver_klass->print();
1201       }
1202       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1203     }
1204   }
1205 #endif
1206 
1207   return receiver;
1208 }
1209 
1210 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1211   ResourceMark rm(THREAD);
1212   // We need first to check if any Java activations (compiled, interpreted)
1213   // exist on the stack since last JavaCall.  If not, we need
1214   // to get the target method from the JavaCall wrapper.
1215   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1216   methodHandle callee_method;
1217   if (vfst.at_end()) {
1218     // No Java frames were found on stack since we did the JavaCall.
1219     // Hence the stack can only contain an entry_frame.  We need to
1220     // find the target method from the stub frame.
1221     RegisterMap reg_map(thread, false);
1222     frame fr = thread->last_frame();
1223     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1224     fr = fr.sender(&reg_map);
1225     assert(fr.is_entry_frame(), "must be");
1226     // fr is now pointing to the entry frame.
1227     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1228   } else {
1229     Bytecodes::Code bc;
1230     CallInfo callinfo;
1231     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1232     callee_method = callinfo.selected_method();
1233   }
1234   assert(callee_method()->is_method(), "must be");
1235   return callee_method;
1236 }
1237 
1238 // Resolves a call.
1239 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1240                                            bool is_virtual,
1241                                            bool is_optimized, TRAPS) {
1242   methodHandle callee_method;
1243   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1244   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1245     int retry_count = 0;
1246     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1247            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1248       // If has a pending exception then there is no need to re-try to
1249       // resolve this method.
1250       // If the method has been redefined, we need to try again.
1251       // Hack: we have no way to update the vtables of arrays, so don't
1252       // require that java.lang.Object has been updated.
1253 
1254       // It is very unlikely that method is redefined more than 100 times
1255       // in the middle of resolve. If it is looping here more than 100 times
1256       // means then there could be a bug here.
1257       guarantee((retry_count++ < 100),
1258                 "Could not resolve to latest version of redefined method");
1259       // method is redefined in the middle of resolve so re-try.
1260       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1261     }
1262   }
1263   return callee_method;
1264 }
1265 
1266 // Resolves a call.  The compilers generate code for calls that go here
1267 // and are patched with the real destination of the call.
1268 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1269                                            bool is_virtual,
1270                                            bool is_optimized, TRAPS) {
1271 
1272   ResourceMark rm(thread);
1273   RegisterMap cbl_map(thread, false);
1274   frame caller_frame = thread->last_frame().sender(&cbl_map);
1275 
1276   CodeBlob* caller_cb = caller_frame.cb();
1277   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1278   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1279 
1280   // make sure caller is not getting deoptimized
1281   // and removed before we are done with it.
1282   // CLEANUP - with lazy deopt shouldn't need this lock
1283   nmethodLocker caller_lock(caller_nm);
1284 
1285   // determine call info & receiver
1286   // note: a) receiver is NULL for static calls
1287   //       b) an exception is thrown if receiver is NULL for non-static calls
1288   CallInfo call_info;
1289   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1290   Handle receiver = find_callee_info(thread, invoke_code,
1291                                      call_info, CHECK_(methodHandle()));
1292   methodHandle callee_method = call_info.selected_method();
1293 
1294   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1295          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1296          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1297          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1298          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1299 
1300   assert(caller_nm->is_alive(), "It should be alive");
1301 
1302 #ifndef PRODUCT
1303   // tracing/debugging/statistics
1304   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1305                 (is_virtual) ? (&_resolve_virtual_ctr) :
1306                                (&_resolve_static_ctr);
1307   Atomic::inc(addr);
1308 
1309   if (TraceCallFixup) {
1310     ResourceMark rm(thread);
1311     tty->print("resolving %s%s (%s) call to",
1312       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1313       Bytecodes::name(invoke_code));
1314     callee_method->print_short_name(tty);
1315     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1316                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1317   }
1318 #endif
1319 
1320   // JSR 292 key invariant:
1321   // If the resolved method is a MethodHandle invoke target, the call
1322   // site must be a MethodHandle call site, because the lambda form might tail-call
1323   // leaving the stack in a state unknown to either caller or callee
1324   // TODO detune for now but we might need it again
1325 //  assert(!callee_method->is_compiled_lambda_form() ||
1326 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1327 
1328   // Compute entry points. This might require generation of C2I converter
1329   // frames, so we cannot be holding any locks here. Furthermore, the
1330   // computation of the entry points is independent of patching the call.  We
1331   // always return the entry-point, but we only patch the stub if the call has
1332   // not been deoptimized.  Return values: For a virtual call this is an
1333   // (cached_oop, destination address) pair. For a static call/optimized
1334   // virtual this is just a destination address.
1335 
1336   StaticCallInfo static_call_info;
1337   CompiledICInfo virtual_call_info;
1338 
1339   // Make sure the callee nmethod does not get deoptimized and removed before
1340   // we are done patching the code.
1341   CompiledMethod* callee = callee_method->code();
1342 
1343   if (callee != NULL) {
1344     assert(callee->is_compiled(), "must be nmethod for patching");
1345   }
1346 
1347   if (callee != NULL && !callee->is_in_use()) {
1348     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1349     callee = NULL;
1350   }
1351   nmethodLocker nl_callee(callee);
1352 #ifdef ASSERT
1353   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1354 #endif
1355 
1356   bool is_nmethod = caller_nm->is_nmethod();
1357 
1358   if (is_virtual) {
1359     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1360     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1361     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1362     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1363                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1364                      CHECK_(methodHandle()));
1365   } else {
1366     // static call
1367     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1368   }
1369 
1370   // grab lock, check for deoptimization and potentially patch caller
1371   {
1372     MutexLocker ml_patch(CompiledIC_lock);
1373 
1374     // Lock blocks for safepoint during which both nmethods can change state.
1375 
1376     // Now that we are ready to patch if the Method* was redefined then
1377     // don't update call site and let the caller retry.
1378     // Don't update call site if callee nmethod was unloaded or deoptimized.
1379     // Don't update call site if callee nmethod was replaced by an other nmethod
1380     // which may happen when multiply alive nmethod (tiered compilation)
1381     // will be supported.
1382     if (!callee_method->is_old() &&
1383         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1384 #ifdef ASSERT
1385       // We must not try to patch to jump to an already unloaded method.
1386       if (dest_entry_point != 0) {
1387         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1388         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1389                "should not call unloaded nmethod");
1390       }
1391 #endif
1392       if (is_virtual) {
1393         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1394         if (inline_cache->is_clean()) {
1395           inline_cache->set_to_monomorphic(virtual_call_info);
1396         }
1397       } else {
1398         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1399         if (ssc->is_clean()) ssc->set(static_call_info);
1400       }
1401     }
1402 
1403   } // unlock CompiledIC_lock
1404 
1405   return callee_method;
1406 }
1407 
1408 
1409 // Inline caches exist only in compiled code
1410 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1411 #ifdef ASSERT
1412   RegisterMap reg_map(thread, false);
1413   frame stub_frame = thread->last_frame();
1414   assert(stub_frame.is_runtime_frame(), "sanity check");
1415   frame caller_frame = stub_frame.sender(&reg_map);
1416   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1417 #endif /* ASSERT */
1418 
1419   methodHandle callee_method;
1420   JRT_BLOCK
1421     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1422     // Return Method* through TLS
1423     thread->set_vm_result_2(callee_method());
1424   JRT_BLOCK_END
1425   // return compiled code entry point after potential safepoints
1426   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1427   return callee_method->verified_code_entry();
1428 JRT_END
1429 
1430 
1431 // Handle call site that has been made non-entrant
1432 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1433   // 6243940 We might end up in here if the callee is deoptimized
1434   // as we race to call it.  We don't want to take a safepoint if
1435   // the caller was interpreted because the caller frame will look
1436   // interpreted to the stack walkers and arguments are now
1437   // "compiled" so it is much better to make this transition
1438   // invisible to the stack walking code. The i2c path will
1439   // place the callee method in the callee_target. It is stashed
1440   // there because if we try and find the callee by normal means a
1441   // safepoint is possible and have trouble gc'ing the compiled args.
1442   RegisterMap reg_map(thread, false);
1443   frame stub_frame = thread->last_frame();
1444   assert(stub_frame.is_runtime_frame(), "sanity check");
1445   frame caller_frame = stub_frame.sender(&reg_map);
1446 
1447   if (caller_frame.is_interpreted_frame() ||
1448       caller_frame.is_entry_frame()) {
1449     Method* callee = thread->callee_target();
1450     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1451     thread->set_vm_result_2(callee);
1452     thread->set_callee_target(NULL);
1453     return callee->get_c2i_entry();
1454   }
1455 
1456   // Must be compiled to compiled path which is safe to stackwalk
1457   methodHandle callee_method;
1458   JRT_BLOCK
1459     // Force resolving of caller (if we called from compiled frame)
1460     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1461     thread->set_vm_result_2(callee_method());
1462   JRT_BLOCK_END
1463   // return compiled code entry point after potential safepoints
1464   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1465   return callee_method->verified_code_entry();
1466 JRT_END
1467 
1468 // Handle abstract method call
1469 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1470   // Verbose error message for AbstractMethodError.
1471   // Get the called method from the invoke bytecode.
1472   vframeStream vfst(thread, true);
1473   assert(!vfst.at_end(), "Java frame must exist");
1474   methodHandle caller(vfst.method());
1475   Bytecode_invoke invoke(caller, vfst.bci());
1476   DEBUG_ONLY( invoke.verify(); )
1477 
1478   // Find the compiled caller frame.
1479   RegisterMap reg_map(thread);
1480   frame stubFrame = thread->last_frame();
1481   assert(stubFrame.is_runtime_frame(), "must be");
1482   frame callerFrame = stubFrame.sender(&reg_map);
1483   assert(callerFrame.is_compiled_frame(), "must be");
1484 
1485   // Install exception and return forward entry.
1486   address res = StubRoutines::throw_AbstractMethodError_entry();
1487   JRT_BLOCK
1488     methodHandle callee = invoke.static_target(thread);
1489     if (!callee.is_null()) {
1490       oop recv = callerFrame.retrieve_receiver(&reg_map);
1491       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1492       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1493       res = StubRoutines::forward_exception_entry();
1494     }
1495   JRT_BLOCK_END
1496   return res;
1497 JRT_END
1498 
1499 
1500 // resolve a static call and patch code
1501 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1502   methodHandle callee_method;
1503   JRT_BLOCK
1504     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1505     thread->set_vm_result_2(callee_method());
1506   JRT_BLOCK_END
1507   // return compiled code entry point after potential safepoints
1508   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1509   return callee_method->verified_code_entry();
1510 JRT_END
1511 
1512 
1513 // resolve virtual call and update inline cache to monomorphic
1514 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1515   methodHandle callee_method;
1516   JRT_BLOCK
1517     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1518     thread->set_vm_result_2(callee_method());
1519   JRT_BLOCK_END
1520   // return compiled code entry point after potential safepoints
1521   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1522   return callee_method->verified_code_entry();
1523 JRT_END
1524 
1525 
1526 // Resolve a virtual call that can be statically bound (e.g., always
1527 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1528 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1529   methodHandle callee_method;
1530   JRT_BLOCK
1531     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1532     thread->set_vm_result_2(callee_method());
1533   JRT_BLOCK_END
1534   // return compiled code entry point after potential safepoints
1535   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1536   return callee_method->verified_code_entry();
1537 JRT_END
1538 
1539 
1540 
1541 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1542   ResourceMark rm(thread);
1543   CallInfo call_info;
1544   Bytecodes::Code bc;
1545 
1546   // receiver is NULL for static calls. An exception is thrown for NULL
1547   // receivers for non-static calls
1548   Handle receiver = find_callee_info(thread, bc, call_info,
1549                                      CHECK_(methodHandle()));
1550   // Compiler1 can produce virtual call sites that can actually be statically bound
1551   // If we fell thru to below we would think that the site was going megamorphic
1552   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1553   // we'd try and do a vtable dispatch however methods that can be statically bound
1554   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1555   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1556   // plain ic_miss) and the site will be converted to an optimized virtual call site
1557   // never to miss again. I don't believe C2 will produce code like this but if it
1558   // did this would still be the correct thing to do for it too, hence no ifdef.
1559   //
1560   if (call_info.resolved_method()->can_be_statically_bound()) {
1561     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1562     if (TraceCallFixup) {
1563       RegisterMap reg_map(thread, false);
1564       frame caller_frame = thread->last_frame().sender(&reg_map);
1565       ResourceMark rm(thread);
1566       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1567       callee_method->print_short_name(tty);
1568       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1569       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1570     }
1571     return callee_method;
1572   }
1573 
1574   methodHandle callee_method = call_info.selected_method();
1575 
1576   bool should_be_mono = false;
1577 
1578 #ifndef PRODUCT
1579   Atomic::inc(&_ic_miss_ctr);
1580 
1581   // Statistics & Tracing
1582   if (TraceCallFixup) {
1583     ResourceMark rm(thread);
1584     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1585     callee_method->print_short_name(tty);
1586     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1587   }
1588 
1589   if (ICMissHistogram) {
1590     MutexLocker m(VMStatistic_lock);
1591     RegisterMap reg_map(thread, false);
1592     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1593     // produce statistics under the lock
1594     trace_ic_miss(f.pc());
1595   }
1596 #endif
1597 
1598   // install an event collector so that when a vtable stub is created the
1599   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1600   // event can't be posted when the stub is created as locks are held
1601   // - instead the event will be deferred until the event collector goes
1602   // out of scope.
1603   JvmtiDynamicCodeEventCollector event_collector;
1604 
1605   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1606   { MutexLocker ml_patch (CompiledIC_lock);
1607     RegisterMap reg_map(thread, false);
1608     frame caller_frame = thread->last_frame().sender(&reg_map);
1609     CodeBlob* cb = caller_frame.cb();
1610     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1611     if (cb->is_compiled()) {
1612       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1613       bool should_be_mono = false;
1614       if (inline_cache->is_optimized()) {
1615         if (TraceCallFixup) {
1616           ResourceMark rm(thread);
1617           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1618           callee_method->print_short_name(tty);
1619           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1620         }
1621         should_be_mono = true;
1622       } else if (inline_cache->is_icholder_call()) {
1623         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1624         if (ic_oop != NULL) {
1625 
1626           if (receiver()->klass() == ic_oop->holder_klass()) {
1627             // This isn't a real miss. We must have seen that compiled code
1628             // is now available and we want the call site converted to a
1629             // monomorphic compiled call site.
1630             // We can't assert for callee_method->code() != NULL because it
1631             // could have been deoptimized in the meantime
1632             if (TraceCallFixup) {
1633               ResourceMark rm(thread);
1634               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1635               callee_method->print_short_name(tty);
1636               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1637             }
1638             should_be_mono = true;
1639           }
1640         }
1641       }
1642 
1643       if (should_be_mono) {
1644 
1645         // We have a path that was monomorphic but was going interpreted
1646         // and now we have (or had) a compiled entry. We correct the IC
1647         // by using a new icBuffer.
1648         CompiledICInfo info;
1649         Klass* receiver_klass = receiver()->klass();
1650         inline_cache->compute_monomorphic_entry(callee_method,
1651                                                 receiver_klass,
1652                                                 inline_cache->is_optimized(),
1653                                                 false, caller_nm->is_nmethod(),
1654                                                 info, CHECK_(methodHandle()));
1655         inline_cache->set_to_monomorphic(info);
1656       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1657         // Potential change to megamorphic
1658         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1659         if (!successful) {
1660           inline_cache->set_to_clean();
1661         }
1662       } else {
1663         // Either clean or megamorphic
1664       }
1665     } else {
1666       fatal("Unimplemented");
1667     }
1668   } // Release CompiledIC_lock
1669 
1670   return callee_method;
1671 }
1672 
1673 //
1674 // Resets a call-site in compiled code so it will get resolved again.
1675 // This routines handles both virtual call sites, optimized virtual call
1676 // sites, and static call sites. Typically used to change a call sites
1677 // destination from compiled to interpreted.
1678 //
1679 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1680   ResourceMark rm(thread);
1681   RegisterMap reg_map(thread, false);
1682   frame stub_frame = thread->last_frame();
1683   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1684   frame caller = stub_frame.sender(&reg_map);
1685 
1686   // Do nothing if the frame isn't a live compiled frame.
1687   // nmethod could be deoptimized by the time we get here
1688   // so no update to the caller is needed.
1689 
1690   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1691 
1692     address pc = caller.pc();
1693 
1694     // Check for static or virtual call
1695     bool is_static_call = false;
1696     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1697 
1698     // Default call_addr is the location of the "basic" call.
1699     // Determine the address of the call we a reresolving. With
1700     // Inline Caches we will always find a recognizable call.
1701     // With Inline Caches disabled we may or may not find a
1702     // recognizable call. We will always find a call for static
1703     // calls and for optimized virtual calls. For vanilla virtual
1704     // calls it depends on the state of the UseInlineCaches switch.
1705     //
1706     // With Inline Caches disabled we can get here for a virtual call
1707     // for two reasons:
1708     //   1 - calling an abstract method. The vtable for abstract methods
1709     //       will run us thru handle_wrong_method and we will eventually
1710     //       end up in the interpreter to throw the ame.
1711     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1712     //       call and between the time we fetch the entry address and
1713     //       we jump to it the target gets deoptimized. Similar to 1
1714     //       we will wind up in the interprter (thru a c2i with c2).
1715     //
1716     address call_addr = NULL;
1717     {
1718       // Get call instruction under lock because another thread may be
1719       // busy patching it.
1720       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1721       // Location of call instruction
1722       call_addr = caller_nm->call_instruction_address(pc);
1723     }
1724     // Make sure nmethod doesn't get deoptimized and removed until
1725     // this is done with it.
1726     // CLEANUP - with lazy deopt shouldn't need this lock
1727     nmethodLocker nmlock(caller_nm);
1728 
1729     if (call_addr != NULL) {
1730       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1731       int ret = iter.next(); // Get item
1732       if (ret) {
1733         assert(iter.addr() == call_addr, "must find call");
1734         if (iter.type() == relocInfo::static_call_type) {
1735           is_static_call = true;
1736         } else {
1737           assert(iter.type() == relocInfo::virtual_call_type ||
1738                  iter.type() == relocInfo::opt_virtual_call_type
1739                 , "unexpected relocInfo. type");
1740         }
1741       } else {
1742         assert(!UseInlineCaches, "relocation info. must exist for this address");
1743       }
1744 
1745       // Cleaning the inline cache will force a new resolve. This is more robust
1746       // than directly setting it to the new destination, since resolving of calls
1747       // is always done through the same code path. (experience shows that it
1748       // leads to very hard to track down bugs, if an inline cache gets updated
1749       // to a wrong method). It should not be performance critical, since the
1750       // resolve is only done once.
1751 
1752       bool is_nmethod = caller_nm->is_nmethod();
1753       MutexLocker ml(CompiledIC_lock);
1754       if (is_static_call) {
1755         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1756         ssc->set_to_clean();
1757       } else {
1758         // compiled, dispatched call (which used to call an interpreted method)
1759         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1760         inline_cache->set_to_clean();
1761       }
1762     }
1763   }
1764 
1765   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1766 
1767 
1768 #ifndef PRODUCT
1769   Atomic::inc(&_wrong_method_ctr);
1770 
1771   if (TraceCallFixup) {
1772     ResourceMark rm(thread);
1773     tty->print("handle_wrong_method reresolving call to");
1774     callee_method->print_short_name(tty);
1775     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1776   }
1777 #endif
1778 
1779   return callee_method;
1780 }
1781 
1782 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1783   // The faulting unsafe accesses should be changed to throw the error
1784   // synchronously instead. Meanwhile the faulting instruction will be
1785   // skipped over (effectively turning it into a no-op) and an
1786   // asynchronous exception will be raised which the thread will
1787   // handle at a later point. If the instruction is a load it will
1788   // return garbage.
1789 
1790   // Request an async exception.
1791   thread->set_pending_unsafe_access_error();
1792 
1793   // Return address of next instruction to execute.
1794   return next_pc;
1795 }
1796 
1797 #ifdef ASSERT
1798 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1799                                                                 const BasicType* sig_bt,
1800                                                                 const VMRegPair* regs) {
1801   ResourceMark rm;
1802   const int total_args_passed = method->size_of_parameters();
1803   const VMRegPair*    regs_with_member_name = regs;
1804         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1805 
1806   const int member_arg_pos = total_args_passed - 1;
1807   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1808   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1809 
1810   const bool is_outgoing = method->is_method_handle_intrinsic();
1811   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1812 
1813   for (int i = 0; i < member_arg_pos; i++) {
1814     VMReg a =    regs_with_member_name[i].first();
1815     VMReg b = regs_without_member_name[i].first();
1816     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1817   }
1818   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1819 }
1820 #endif
1821 
1822 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1823   if (destination != entry_point) {
1824     CodeBlob* callee = CodeCache::find_blob(destination);
1825     // callee == cb seems weird. It means calling interpreter thru stub.
1826     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1827       // static call or optimized virtual
1828       if (TraceCallFixup) {
1829         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1830         moop->print_short_name(tty);
1831         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1832       }
1833       return true;
1834     } else {
1835       if (TraceCallFixup) {
1836         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1837         moop->print_short_name(tty);
1838         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1839       }
1840       // assert is too strong could also be resolve destinations.
1841       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1842     }
1843   } else {
1844     if (TraceCallFixup) {
1845       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1846       moop->print_short_name(tty);
1847       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1848     }
1849   }
1850   return false;
1851 }
1852 
1853 // ---------------------------------------------------------------------------
1854 // We are calling the interpreter via a c2i. Normally this would mean that
1855 // we were called by a compiled method. However we could have lost a race
1856 // where we went int -> i2c -> c2i and so the caller could in fact be
1857 // interpreted. If the caller is compiled we attempt to patch the caller
1858 // so he no longer calls into the interpreter.
1859 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1860   Method* moop(method);
1861 
1862   address entry_point = moop->from_compiled_entry_no_trampoline();
1863 
1864   // It's possible that deoptimization can occur at a call site which hasn't
1865   // been resolved yet, in which case this function will be called from
1866   // an nmethod that has been patched for deopt and we can ignore the
1867   // request for a fixup.
1868   // Also it is possible that we lost a race in that from_compiled_entry
1869   // is now back to the i2c in that case we don't need to patch and if
1870   // we did we'd leap into space because the callsite needs to use
1871   // "to interpreter" stub in order to load up the Method*. Don't
1872   // ask me how I know this...
1873 
1874   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1875   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1876     return;
1877   }
1878 
1879   // The check above makes sure this is a nmethod.
1880   CompiledMethod* nm = cb->as_compiled_method_or_null();
1881   assert(nm, "must be");
1882 
1883   // Get the return PC for the passed caller PC.
1884   address return_pc = caller_pc + frame::pc_return_offset;
1885 
1886   // There is a benign race here. We could be attempting to patch to a compiled
1887   // entry point at the same time the callee is being deoptimized. If that is
1888   // the case then entry_point may in fact point to a c2i and we'd patch the
1889   // call site with the same old data. clear_code will set code() to NULL
1890   // at the end of it. If we happen to see that NULL then we can skip trying
1891   // to patch. If we hit the window where the callee has a c2i in the
1892   // from_compiled_entry and the NULL isn't present yet then we lose the race
1893   // and patch the code with the same old data. Asi es la vida.
1894 
1895   if (moop->code() == NULL) return;
1896 
1897   if (nm->is_in_use()) {
1898 
1899     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1900     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1901     if (NativeCall::is_call_before(return_pc)) {
1902       ResourceMark mark;
1903       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1904       //
1905       // bug 6281185. We might get here after resolving a call site to a vanilla
1906       // virtual call. Because the resolvee uses the verified entry it may then
1907       // see compiled code and attempt to patch the site by calling us. This would
1908       // then incorrectly convert the call site to optimized and its downhill from
1909       // there. If you're lucky you'll get the assert in the bugid, if not you've
1910       // just made a call site that could be megamorphic into a monomorphic site
1911       // for the rest of its life! Just another racing bug in the life of
1912       // fixup_callers_callsite ...
1913       //
1914       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1915       iter.next();
1916       assert(iter.has_current(), "must have a reloc at java call site");
1917       relocInfo::relocType typ = iter.reloc()->type();
1918       if (typ != relocInfo::static_call_type &&
1919            typ != relocInfo::opt_virtual_call_type &&
1920            typ != relocInfo::static_stub_type) {
1921         return;
1922       }
1923       address destination = call->destination();
1924       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1925         call->set_destination_mt_safe(entry_point);
1926       }
1927     }
1928   }
1929 IRT_END
1930 
1931 
1932 // same as JVM_Arraycopy, but called directly from compiled code
1933 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1934                                                 oopDesc* dest, jint dest_pos,
1935                                                 jint length,
1936                                                 JavaThread* thread)) {
1937 #ifndef PRODUCT
1938   _slow_array_copy_ctr++;
1939 #endif
1940   // Check if we have null pointers
1941   if (src == NULL || dest == NULL) {
1942     THROW(vmSymbols::java_lang_NullPointerException());
1943   }
1944   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1945   // even though the copy_array API also performs dynamic checks to ensure
1946   // that src and dest are truly arrays (and are conformable).
1947   // The copy_array mechanism is awkward and could be removed, but
1948   // the compilers don't call this function except as a last resort,
1949   // so it probably doesn't matter.
1950   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1951                                         (arrayOopDesc*)dest, dest_pos,
1952                                         length, thread);
1953 }
1954 JRT_END
1955 
1956 // The caller of generate_class_cast_message() (or one of its callers)
1957 // must use a ResourceMark in order to correctly free the result.
1958 char* SharedRuntime::generate_class_cast_message(
1959     JavaThread* thread, Klass* caster_klass) {
1960 
1961   // Get target class name from the checkcast instruction
1962   vframeStream vfst(thread, true);
1963   assert(!vfst.at_end(), "Java frame must exist");
1964   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1965   constantPoolHandle cpool(thread, vfst.method()->constants());
1966   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1967   Symbol* target_klass_name = NULL;
1968   if (target_klass == NULL) {
1969     // This klass should be resolved, but just in case, get the name in the klass slot.
1970     target_klass_name = cpool->klass_name_at(cc.index());
1971   }
1972   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1973 }
1974 
1975 
1976 // The caller of generate_class_cast_message() (or one of its callers)
1977 // must use a ResourceMark in order to correctly free the result.
1978 char* SharedRuntime::generate_class_cast_message(
1979     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1980 
1981   const char* caster_name = caster_klass->class_loader_and_module_name();
1982 
1983   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1984   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
1985                                                    target_klass->class_loader_and_module_name();
1986 
1987   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
1988 
1989   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1990   if (message == NULL) {
1991     // Shouldn't happen, but don't cause even more problems if it does
1992     message = const_cast<char*>(caster_klass->external_name());
1993   } else {
1994     jio_snprintf(message,
1995                  msglen,
1996                  "%s cannot be cast to %s",
1997                  caster_name,
1998                  target_name);
1999   }
2000   return message;
2001 }
2002 
2003 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2004   (void) JavaThread::current()->reguard_stack();
2005 JRT_END
2006 
2007 
2008 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2009 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2010   // Disable ObjectSynchronizer::quick_enter() in default config
2011   // on AARCH64 and ARM until JDK-8153107 is resolved.
2012   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2013       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2014       !SafepointSynchronize::is_synchronizing()) {
2015     // Only try quick_enter() if we're not trying to reach a safepoint
2016     // so that the calling thread reaches the safepoint more quickly.
2017     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2018   }
2019   // NO_ASYNC required because an async exception on the state transition destructor
2020   // would leave you with the lock held and it would never be released.
2021   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2022   // and the model is that an exception implies the method failed.
2023   JRT_BLOCK_NO_ASYNC
2024   oop obj(_obj);
2025   if (PrintBiasedLockingStatistics) {
2026     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2027   }
2028   Handle h_obj(THREAD, obj);
2029   if (UseBiasedLocking) {
2030     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2031     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2032   } else {
2033     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2034   }
2035   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2036   JRT_BLOCK_END
2037 JRT_END
2038 
2039 // Handles the uncommon cases of monitor unlocking in compiled code
2040 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2041    oop obj(_obj);
2042   assert(JavaThread::current() == THREAD, "invariant");
2043   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2044   // testing was unable to ever fire the assert that guarded it so I have removed it.
2045   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2046 #undef MIGHT_HAVE_PENDING
2047 #ifdef MIGHT_HAVE_PENDING
2048   // Save and restore any pending_exception around the exception mark.
2049   // While the slow_exit must not throw an exception, we could come into
2050   // this routine with one set.
2051   oop pending_excep = NULL;
2052   const char* pending_file;
2053   int pending_line;
2054   if (HAS_PENDING_EXCEPTION) {
2055     pending_excep = PENDING_EXCEPTION;
2056     pending_file  = THREAD->exception_file();
2057     pending_line  = THREAD->exception_line();
2058     CLEAR_PENDING_EXCEPTION;
2059   }
2060 #endif /* MIGHT_HAVE_PENDING */
2061 
2062   {
2063     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2064     EXCEPTION_MARK;
2065     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2066   }
2067 
2068 #ifdef MIGHT_HAVE_PENDING
2069   if (pending_excep != NULL) {
2070     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2071   }
2072 #endif /* MIGHT_HAVE_PENDING */
2073 JRT_END
2074 
2075 #ifndef PRODUCT
2076 
2077 void SharedRuntime::print_statistics() {
2078   ttyLocker ttyl;
2079   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2080 
2081   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2082 
2083   SharedRuntime::print_ic_miss_histogram();
2084 
2085   if (CountRemovableExceptions) {
2086     if (_nof_removable_exceptions > 0) {
2087       Unimplemented(); // this counter is not yet incremented
2088       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2089     }
2090   }
2091 
2092   // Dump the JRT_ENTRY counters
2093   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2094   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2095   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2096   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2097   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2098   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2099   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2100 
2101   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2102   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2103   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2104   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2105   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2106 
2107   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2108   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2109   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2110   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2111   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2112   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2113   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2114   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2115   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2116   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2117   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2118   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2119   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2120   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2121   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2122   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2123 
2124   AdapterHandlerLibrary::print_statistics();
2125 
2126   if (xtty != NULL)  xtty->tail("statistics");
2127 }
2128 
2129 inline double percent(int x, int y) {
2130   return 100.0 * x / MAX2(y, 1);
2131 }
2132 
2133 class MethodArityHistogram {
2134  public:
2135   enum { MAX_ARITY = 256 };
2136  private:
2137   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2138   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2139   static int _max_arity;                      // max. arity seen
2140   static int _max_size;                       // max. arg size seen
2141 
2142   static void add_method_to_histogram(nmethod* nm) {
2143     Method* m = nm->method();
2144     ArgumentCount args(m->signature());
2145     int arity   = args.size() + (m->is_static() ? 0 : 1);
2146     int argsize = m->size_of_parameters();
2147     arity   = MIN2(arity, MAX_ARITY-1);
2148     argsize = MIN2(argsize, MAX_ARITY-1);
2149     int count = nm->method()->compiled_invocation_count();
2150     _arity_histogram[arity]  += count;
2151     _size_histogram[argsize] += count;
2152     _max_arity = MAX2(_max_arity, arity);
2153     _max_size  = MAX2(_max_size, argsize);
2154   }
2155 
2156   void print_histogram_helper(int n, int* histo, const char* name) {
2157     const int N = MIN2(5, n);
2158     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2159     double sum = 0;
2160     double weighted_sum = 0;
2161     int i;
2162     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2163     double rest = sum;
2164     double percent = sum / 100;
2165     for (i = 0; i <= N; i++) {
2166       rest -= histo[i];
2167       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2168     }
2169     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2170     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2171   }
2172 
2173   void print_histogram() {
2174     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2175     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2176     tty->print_cr("\nSame for parameter size (in words):");
2177     print_histogram_helper(_max_size, _size_histogram, "size");
2178     tty->cr();
2179   }
2180 
2181  public:
2182   MethodArityHistogram() {
2183     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2184     _max_arity = _max_size = 0;
2185     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2186     CodeCache::nmethods_do(add_method_to_histogram);
2187     print_histogram();
2188   }
2189 };
2190 
2191 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2192 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2193 int MethodArityHistogram::_max_arity;
2194 int MethodArityHistogram::_max_size;
2195 
2196 void SharedRuntime::print_call_statistics(int comp_total) {
2197   tty->print_cr("Calls from compiled code:");
2198   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2199   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2200   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2201   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2202   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2203   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2204   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2205   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2206   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2207   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2208   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2209   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2210   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2211   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2212   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2213   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2214   tty->cr();
2215   tty->print_cr("Note 1: counter updates are not MT-safe.");
2216   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2217   tty->print_cr("        %% in nested categories are relative to their category");
2218   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2219   tty->cr();
2220 
2221   MethodArityHistogram h;
2222 }
2223 #endif
2224 
2225 
2226 // A simple wrapper class around the calling convention information
2227 // that allows sharing of adapters for the same calling convention.
2228 class AdapterFingerPrint : public CHeapObj<mtCode> {
2229  private:
2230   enum {
2231     _basic_type_bits = 4,
2232     _basic_type_mask = right_n_bits(_basic_type_bits),
2233     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2234     _compact_int_count = 3
2235   };
2236   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2237   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2238 
2239   union {
2240     int  _compact[_compact_int_count];
2241     int* _fingerprint;
2242   } _value;
2243   int _length; // A negative length indicates the fingerprint is in the compact form,
2244                // Otherwise _value._fingerprint is the array.
2245 
2246   // Remap BasicTypes that are handled equivalently by the adapters.
2247   // These are correct for the current system but someday it might be
2248   // necessary to make this mapping platform dependent.
2249   static int adapter_encoding(BasicType in) {
2250     switch (in) {
2251       case T_BOOLEAN:
2252       case T_BYTE:
2253       case T_SHORT:
2254       case T_CHAR:
2255         // There are all promoted to T_INT in the calling convention
2256         return T_INT;
2257 
2258       case T_OBJECT:
2259       case T_ARRAY:
2260         // In other words, we assume that any register good enough for
2261         // an int or long is good enough for a managed pointer.
2262 #ifdef _LP64
2263         return T_LONG;
2264 #else
2265         return T_INT;
2266 #endif
2267 
2268       case T_INT:
2269       case T_LONG:
2270       case T_FLOAT:
2271       case T_DOUBLE:
2272       case T_VOID:
2273         return in;
2274 
2275       default:
2276         ShouldNotReachHere();
2277         return T_CONFLICT;
2278     }
2279   }
2280 
2281  public:
2282   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2283     // The fingerprint is based on the BasicType signature encoded
2284     // into an array of ints with eight entries per int.
2285     int* ptr;
2286     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2287     if (len <= _compact_int_count) {
2288       assert(_compact_int_count == 3, "else change next line");
2289       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2290       // Storing the signature encoded as signed chars hits about 98%
2291       // of the time.
2292       _length = -len;
2293       ptr = _value._compact;
2294     } else {
2295       _length = len;
2296       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2297       ptr = _value._fingerprint;
2298     }
2299 
2300     // Now pack the BasicTypes with 8 per int
2301     int sig_index = 0;
2302     for (int index = 0; index < len; index++) {
2303       int value = 0;
2304       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2305         int bt = ((sig_index < total_args_passed)
2306                   ? adapter_encoding(sig_bt[sig_index++])
2307                   : 0);
2308         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2309         value = (value << _basic_type_bits) | bt;
2310       }
2311       ptr[index] = value;
2312     }
2313   }
2314 
2315   ~AdapterFingerPrint() {
2316     if (_length > 0) {
2317       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2318     }
2319   }
2320 
2321   int value(int index) {
2322     if (_length < 0) {
2323       return _value._compact[index];
2324     }
2325     return _value._fingerprint[index];
2326   }
2327   int length() {
2328     if (_length < 0) return -_length;
2329     return _length;
2330   }
2331 
2332   bool is_compact() {
2333     return _length <= 0;
2334   }
2335 
2336   unsigned int compute_hash() {
2337     int hash = 0;
2338     for (int i = 0; i < length(); i++) {
2339       int v = value(i);
2340       hash = (hash << 8) ^ v ^ (hash >> 5);
2341     }
2342     return (unsigned int)hash;
2343   }
2344 
2345   const char* as_string() {
2346     stringStream st;
2347     st.print("0x");
2348     for (int i = 0; i < length(); i++) {
2349       st.print("%08x", value(i));
2350     }
2351     return st.as_string();
2352   }
2353 
2354   bool equals(AdapterFingerPrint* other) {
2355     if (other->_length != _length) {
2356       return false;
2357     }
2358     if (_length < 0) {
2359       assert(_compact_int_count == 3, "else change next line");
2360       return _value._compact[0] == other->_value._compact[0] &&
2361              _value._compact[1] == other->_value._compact[1] &&
2362              _value._compact[2] == other->_value._compact[2];
2363     } else {
2364       for (int i = 0; i < _length; i++) {
2365         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2366           return false;
2367         }
2368       }
2369     }
2370     return true;
2371   }
2372 };
2373 
2374 
2375 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2376 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2377   friend class AdapterHandlerTableIterator;
2378 
2379  private:
2380 
2381 #ifndef PRODUCT
2382   static int _lookups; // number of calls to lookup
2383   static int _buckets; // number of buckets checked
2384   static int _equals;  // number of buckets checked with matching hash
2385   static int _hits;    // number of successful lookups
2386   static int _compact; // number of equals calls with compact signature
2387 #endif
2388 
2389   AdapterHandlerEntry* bucket(int i) {
2390     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2391   }
2392 
2393  public:
2394   AdapterHandlerTable()
2395     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2396 
2397   // Create a new entry suitable for insertion in the table
2398   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2399     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2400     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2401     if (DumpSharedSpaces) {
2402       ((CDSAdapterHandlerEntry*)entry)->init();
2403     }
2404     return entry;
2405   }
2406 
2407   // Insert an entry into the table
2408   void add(AdapterHandlerEntry* entry) {
2409     int index = hash_to_index(entry->hash());
2410     add_entry(index, entry);
2411   }
2412 
2413   void free_entry(AdapterHandlerEntry* entry) {
2414     entry->deallocate();
2415     BasicHashtable<mtCode>::free_entry(entry);
2416   }
2417 
2418   // Find a entry with the same fingerprint if it exists
2419   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2420     NOT_PRODUCT(_lookups++);
2421     AdapterFingerPrint fp(total_args_passed, sig_bt);
2422     unsigned int hash = fp.compute_hash();
2423     int index = hash_to_index(hash);
2424     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2425       NOT_PRODUCT(_buckets++);
2426       if (e->hash() == hash) {
2427         NOT_PRODUCT(_equals++);
2428         if (fp.equals(e->fingerprint())) {
2429 #ifndef PRODUCT
2430           if (fp.is_compact()) _compact++;
2431           _hits++;
2432 #endif
2433           return e;
2434         }
2435       }
2436     }
2437     return NULL;
2438   }
2439 
2440 #ifndef PRODUCT
2441   void print_statistics() {
2442     ResourceMark rm;
2443     int longest = 0;
2444     int empty = 0;
2445     int total = 0;
2446     int nonempty = 0;
2447     for (int index = 0; index < table_size(); index++) {
2448       int count = 0;
2449       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2450         count++;
2451       }
2452       if (count != 0) nonempty++;
2453       if (count == 0) empty++;
2454       if (count > longest) longest = count;
2455       total += count;
2456     }
2457     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2458                   empty, longest, total, total / (double)nonempty);
2459     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2460                   _lookups, _buckets, _equals, _hits, _compact);
2461   }
2462 #endif
2463 };
2464 
2465 
2466 #ifndef PRODUCT
2467 
2468 int AdapterHandlerTable::_lookups;
2469 int AdapterHandlerTable::_buckets;
2470 int AdapterHandlerTable::_equals;
2471 int AdapterHandlerTable::_hits;
2472 int AdapterHandlerTable::_compact;
2473 
2474 #endif
2475 
2476 class AdapterHandlerTableIterator : public StackObj {
2477  private:
2478   AdapterHandlerTable* _table;
2479   int _index;
2480   AdapterHandlerEntry* _current;
2481 
2482   void scan() {
2483     while (_index < _table->table_size()) {
2484       AdapterHandlerEntry* a = _table->bucket(_index);
2485       _index++;
2486       if (a != NULL) {
2487         _current = a;
2488         return;
2489       }
2490     }
2491   }
2492 
2493  public:
2494   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2495     scan();
2496   }
2497   bool has_next() {
2498     return _current != NULL;
2499   }
2500   AdapterHandlerEntry* next() {
2501     if (_current != NULL) {
2502       AdapterHandlerEntry* result = _current;
2503       _current = _current->next();
2504       if (_current == NULL) scan();
2505       return result;
2506     } else {
2507       return NULL;
2508     }
2509   }
2510 };
2511 
2512 
2513 // ---------------------------------------------------------------------------
2514 // Implementation of AdapterHandlerLibrary
2515 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2516 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2517 const int AdapterHandlerLibrary_size = 16*K;
2518 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2519 
2520 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2521   // Should be called only when AdapterHandlerLibrary_lock is active.
2522   if (_buffer == NULL) // Initialize lazily
2523       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2524   return _buffer;
2525 }
2526 
2527 extern "C" void unexpected_adapter_call() {
2528   ShouldNotCallThis();
2529 }
2530 
2531 void AdapterHandlerLibrary::initialize() {
2532   if (_adapters != NULL) return;
2533   _adapters = new AdapterHandlerTable();
2534 
2535   // Create a special handler for abstract methods.  Abstract methods
2536   // are never compiled so an i2c entry is somewhat meaningless, but
2537   // throw AbstractMethodError just in case.
2538   // Pass wrong_method_abstract for the c2i transitions to return
2539   // AbstractMethodError for invalid invocations.
2540   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2541   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2542                                                               StubRoutines::throw_AbstractMethodError_entry(),
2543                                                               wrong_method_abstract, wrong_method_abstract);
2544 }
2545 
2546 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2547                                                       address i2c_entry,
2548                                                       address c2i_entry,
2549                                                       address c2i_unverified_entry) {
2550   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2551 }
2552 
2553 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2554   AdapterHandlerEntry* entry = get_adapter0(method);
2555   if (method->is_shared()) {
2556     // See comments around Method::link_method()
2557     MutexLocker mu(AdapterHandlerLibrary_lock);
2558     if (method->adapter() == NULL) {
2559       method->update_adapter_trampoline(entry);
2560     }
2561     address trampoline = method->from_compiled_entry();
2562     if (*(int*)trampoline == 0) {
2563       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2564       MacroAssembler _masm(&buffer);
2565       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2566       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2567 
2568       if (PrintInterpreter) {
2569         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2570       }
2571     }
2572   }
2573 
2574   return entry;
2575 }
2576 
2577 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2578   // Use customized signature handler.  Need to lock around updates to
2579   // the AdapterHandlerTable (it is not safe for concurrent readers
2580   // and a single writer: this could be fixed if it becomes a
2581   // problem).
2582 
2583   ResourceMark rm;
2584 
2585   NOT_PRODUCT(int insts_size);
2586   AdapterBlob* new_adapter = NULL;
2587   AdapterHandlerEntry* entry = NULL;
2588   AdapterFingerPrint* fingerprint = NULL;
2589   {
2590     MutexLocker mu(AdapterHandlerLibrary_lock);
2591     // make sure data structure is initialized
2592     initialize();
2593 
2594     if (method->is_abstract()) {
2595       return _abstract_method_handler;
2596     }
2597 
2598     // Fill in the signature array, for the calling-convention call.
2599     int total_args_passed = method->size_of_parameters(); // All args on stack
2600 
2601     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2602     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2603     int i = 0;
2604     if (!method->is_static())  // Pass in receiver first
2605       sig_bt[i++] = T_OBJECT;
2606     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2607       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2608       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2609         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2610     }
2611     assert(i == total_args_passed, "");
2612 
2613     // Lookup method signature's fingerprint
2614     entry = _adapters->lookup(total_args_passed, sig_bt);
2615 
2616 #ifdef ASSERT
2617     AdapterHandlerEntry* shared_entry = NULL;
2618     // Start adapter sharing verification only after the VM is booted.
2619     if (VerifyAdapterSharing && (entry != NULL)) {
2620       shared_entry = entry;
2621       entry = NULL;
2622     }
2623 #endif
2624 
2625     if (entry != NULL) {
2626       return entry;
2627     }
2628 
2629     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2630     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2631 
2632     // Make a C heap allocated version of the fingerprint to store in the adapter
2633     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2634 
2635     // StubRoutines::code2() is initialized after this function can be called. As a result,
2636     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2637     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2638     // stub that ensure that an I2C stub is called from an interpreter frame.
2639     bool contains_all_checks = StubRoutines::code2() != NULL;
2640 
2641     // Create I2C & C2I handlers
2642     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2643     if (buf != NULL) {
2644       CodeBuffer buffer(buf);
2645       short buffer_locs[20];
2646       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2647                                              sizeof(buffer_locs)/sizeof(relocInfo));
2648 
2649       MacroAssembler _masm(&buffer);
2650       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2651                                                      total_args_passed,
2652                                                      comp_args_on_stack,
2653                                                      sig_bt,
2654                                                      regs,
2655                                                      fingerprint);
2656 #ifdef ASSERT
2657       if (VerifyAdapterSharing) {
2658         if (shared_entry != NULL) {
2659           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2660           // Release the one just created and return the original
2661           _adapters->free_entry(entry);
2662           return shared_entry;
2663         } else  {
2664           entry->save_code(buf->code_begin(), buffer.insts_size());
2665         }
2666       }
2667 #endif
2668 
2669       new_adapter = AdapterBlob::create(&buffer);
2670       NOT_PRODUCT(insts_size = buffer.insts_size());
2671     }
2672     if (new_adapter == NULL) {
2673       // CodeCache is full, disable compilation
2674       // Ought to log this but compile log is only per compile thread
2675       // and we're some non descript Java thread.
2676       return NULL; // Out of CodeCache space
2677     }
2678     entry->relocate(new_adapter->content_begin());
2679 #ifndef PRODUCT
2680     // debugging suppport
2681     if (PrintAdapterHandlers || PrintStubCode) {
2682       ttyLocker ttyl;
2683       entry->print_adapter_on(tty);
2684       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2685                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2686                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2687       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2688       if (Verbose || PrintStubCode) {
2689         address first_pc = entry->base_address();
2690         if (first_pc != NULL) {
2691           Disassembler::decode(first_pc, first_pc + insts_size);
2692           tty->cr();
2693         }
2694       }
2695     }
2696 #endif
2697     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2698     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2699     if (contains_all_checks || !VerifyAdapterCalls) {
2700       _adapters->add(entry);
2701     }
2702   }
2703   // Outside of the lock
2704   if (new_adapter != NULL) {
2705     char blob_id[256];
2706     jio_snprintf(blob_id,
2707                  sizeof(blob_id),
2708                  "%s(%s)@" PTR_FORMAT,
2709                  new_adapter->name(),
2710                  fingerprint->as_string(),
2711                  new_adapter->content_begin());
2712     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2713 
2714     if (JvmtiExport::should_post_dynamic_code_generated()) {
2715       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2716     }
2717   }
2718   return entry;
2719 }
2720 
2721 address AdapterHandlerEntry::base_address() {
2722   address base = _i2c_entry;
2723   if (base == NULL)  base = _c2i_entry;
2724   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2725   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2726   return base;
2727 }
2728 
2729 void AdapterHandlerEntry::relocate(address new_base) {
2730   address old_base = base_address();
2731   assert(old_base != NULL, "");
2732   ptrdiff_t delta = new_base - old_base;
2733   if (_i2c_entry != NULL)
2734     _i2c_entry += delta;
2735   if (_c2i_entry != NULL)
2736     _c2i_entry += delta;
2737   if (_c2i_unverified_entry != NULL)
2738     _c2i_unverified_entry += delta;
2739   assert(base_address() == new_base, "");
2740 }
2741 
2742 
2743 void AdapterHandlerEntry::deallocate() {
2744   delete _fingerprint;
2745 #ifdef ASSERT
2746   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2747 #endif
2748 }
2749 
2750 
2751 #ifdef ASSERT
2752 // Capture the code before relocation so that it can be compared
2753 // against other versions.  If the code is captured after relocation
2754 // then relative instructions won't be equivalent.
2755 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2756   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2757   _saved_code_length = length;
2758   memcpy(_saved_code, buffer, length);
2759 }
2760 
2761 
2762 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2763   if (length != _saved_code_length) {
2764     return false;
2765   }
2766 
2767   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2768 }
2769 #endif
2770 
2771 
2772 /**
2773  * Create a native wrapper for this native method.  The wrapper converts the
2774  * Java-compiled calling convention to the native convention, handles
2775  * arguments, and transitions to native.  On return from the native we transition
2776  * back to java blocking if a safepoint is in progress.
2777  */
2778 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2779   ResourceMark rm;
2780   nmethod* nm = NULL;
2781 
2782   assert(method->is_native(), "must be native");
2783   assert(method->is_method_handle_intrinsic() ||
2784          method->has_native_function(), "must have something valid to call!");
2785 
2786   {
2787     // Perform the work while holding the lock, but perform any printing outside the lock
2788     MutexLocker mu(AdapterHandlerLibrary_lock);
2789     // See if somebody beat us to it
2790     if (method->code() != NULL) {
2791       return;
2792     }
2793 
2794     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2795     assert(compile_id > 0, "Must generate native wrapper");
2796 
2797 
2798     ResourceMark rm;
2799     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2800     if (buf != NULL) {
2801       CodeBuffer buffer(buf);
2802       double locs_buf[20];
2803       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2804       MacroAssembler _masm(&buffer);
2805 
2806       // Fill in the signature array, for the calling-convention call.
2807       const int total_args_passed = method->size_of_parameters();
2808 
2809       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2810       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2811       int i=0;
2812       if (!method->is_static())  // Pass in receiver first
2813         sig_bt[i++] = T_OBJECT;
2814       SignatureStream ss(method->signature());
2815       for (; !ss.at_return_type(); ss.next()) {
2816         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2817         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2818           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2819       }
2820       assert(i == total_args_passed, "");
2821       BasicType ret_type = ss.type();
2822 
2823       // Now get the compiled-Java layout as input (or output) arguments.
2824       // NOTE: Stubs for compiled entry points of method handle intrinsics
2825       // are just trampolines so the argument registers must be outgoing ones.
2826       const bool is_outgoing = method->is_method_handle_intrinsic();
2827       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2828 
2829       // Generate the compiled-to-native wrapper code
2830       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2831 
2832       if (nm != NULL) {
2833         method->set_code(method, nm);
2834 
2835         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2836         if (directive->PrintAssemblyOption) {
2837           nm->print_code();
2838         }
2839         DirectivesStack::release(directive);
2840       }
2841     }
2842   } // Unlock AdapterHandlerLibrary_lock
2843 
2844 
2845   // Install the generated code.
2846   if (nm != NULL) {
2847     const char *msg = method->is_static() ? "(static)" : "";
2848     CompileTask::print_ul(nm, msg);
2849     if (PrintCompilation) {
2850       ttyLocker ttyl;
2851       CompileTask::print(tty, nm, msg);
2852     }
2853     nm->post_compiled_method_load_event();
2854   }
2855 }
2856 
2857 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2858   assert(thread == JavaThread::current(), "must be");
2859   // The code is about to enter a JNI lazy critical native method and
2860   // _needs_gc is true, so if this thread is already in a critical
2861   // section then just return, otherwise this thread should block
2862   // until needs_gc has been cleared.
2863   if (thread->in_critical()) {
2864     return;
2865   }
2866   // Lock and unlock a critical section to give the system a chance to block
2867   GCLocker::lock_critical(thread);
2868   GCLocker::unlock_critical(thread);
2869 JRT_END
2870 
2871 // -------------------------------------------------------------------------
2872 // Java-Java calling convention
2873 // (what you use when Java calls Java)
2874 
2875 //------------------------------name_for_receiver----------------------------------
2876 // For a given signature, return the VMReg for parameter 0.
2877 VMReg SharedRuntime::name_for_receiver() {
2878   VMRegPair regs;
2879   BasicType sig_bt = T_OBJECT;
2880   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2881   // Return argument 0 register.  In the LP64 build pointers
2882   // take 2 registers, but the VM wants only the 'main' name.
2883   return regs.first();
2884 }
2885 
2886 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2887   // This method is returning a data structure allocating as a
2888   // ResourceObject, so do not put any ResourceMarks in here.
2889   char *s = sig->as_C_string();
2890   int len = (int)strlen(s);
2891   s++; len--;                   // Skip opening paren
2892 
2893   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2894   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2895   int cnt = 0;
2896   if (has_receiver) {
2897     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2898   }
2899 
2900   while (*s != ')') {          // Find closing right paren
2901     switch (*s++) {            // Switch on signature character
2902     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2903     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2904     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2905     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2906     case 'I': sig_bt[cnt++] = T_INT;     break;
2907     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2908     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2909     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2910     case 'V': sig_bt[cnt++] = T_VOID;    break;
2911     case 'L':                   // Oop
2912       while (*s++ != ';');   // Skip signature
2913       sig_bt[cnt++] = T_OBJECT;
2914       break;
2915     case '[': {                 // Array
2916       do {                      // Skip optional size
2917         while (*s >= '0' && *s <= '9') s++;
2918       } while (*s++ == '[');   // Nested arrays?
2919       // Skip element type
2920       if (s[-1] == 'L')
2921         while (*s++ != ';'); // Skip signature
2922       sig_bt[cnt++] = T_ARRAY;
2923       break;
2924     }
2925     default : ShouldNotReachHere();
2926     }
2927   }
2928 
2929   if (has_appendix) {
2930     sig_bt[cnt++] = T_OBJECT;
2931   }
2932 
2933   assert(cnt < 256, "grow table size");
2934 
2935   int comp_args_on_stack;
2936   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2937 
2938   // the calling convention doesn't count out_preserve_stack_slots so
2939   // we must add that in to get "true" stack offsets.
2940 
2941   if (comp_args_on_stack) {
2942     for (int i = 0; i < cnt; i++) {
2943       VMReg reg1 = regs[i].first();
2944       if (reg1->is_stack()) {
2945         // Yuck
2946         reg1 = reg1->bias(out_preserve_stack_slots());
2947       }
2948       VMReg reg2 = regs[i].second();
2949       if (reg2->is_stack()) {
2950         // Yuck
2951         reg2 = reg2->bias(out_preserve_stack_slots());
2952       }
2953       regs[i].set_pair(reg2, reg1);
2954     }
2955   }
2956 
2957   // results
2958   *arg_size = cnt;
2959   return regs;
2960 }
2961 
2962 JRT_LEAF(jlong, SharedRuntime::continuation_getFP(JavaThread* thread) )
2963   RegisterMap reg_map2(thread);
2964   assert(false, "");
2965   frame stubFrame   = thread->last_frame();
2966     // Caller-frame is a compiled frame
2967   frame callerFrame = stubFrame.sender(&reg_map2);
2968   return (jlong) callerFrame.real_fp();
2969 JRT_END
2970 
2971 // OSR Migration Code
2972 //
2973 // This code is used convert interpreter frames into compiled frames.  It is
2974 // called from very start of a compiled OSR nmethod.  A temp array is
2975 // allocated to hold the interesting bits of the interpreter frame.  All
2976 // active locks are inflated to allow them to move.  The displaced headers and
2977 // active interpreter locals are copied into the temp buffer.  Then we return
2978 // back to the compiled code.  The compiled code then pops the current
2979 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2980 // copies the interpreter locals and displaced headers where it wants.
2981 // Finally it calls back to free the temp buffer.
2982 //
2983 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2984 
2985 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2986 
2987   //
2988   // This code is dependent on the memory layout of the interpreter local
2989   // array and the monitors. On all of our platforms the layout is identical
2990   // so this code is shared. If some platform lays the their arrays out
2991   // differently then this code could move to platform specific code or
2992   // the code here could be modified to copy items one at a time using
2993   // frame accessor methods and be platform independent.
2994 
2995   frame fr = thread->last_frame();
2996   assert(fr.is_interpreted_frame(), "");
2997   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2998 
2999   // Figure out how many monitors are active.
3000   int active_monitor_count = 0;
3001   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3002        kptr < fr.interpreter_frame_monitor_begin();
3003        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3004     if (kptr->obj() != NULL) active_monitor_count++;
3005   }
3006 
3007   // QQQ we could place number of active monitors in the array so that compiled code
3008   // could double check it.
3009 
3010   Method* moop = fr.interpreter_frame_method();
3011   int max_locals = moop->max_locals();
3012   // Allocate temp buffer, 1 word per local & 2 per active monitor
3013   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3014   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3015 
3016   // Copy the locals.  Order is preserved so that loading of longs works.
3017   // Since there's no GC I can copy the oops blindly.
3018   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3019   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3020                        (HeapWord*)&buf[0],
3021                        max_locals);
3022 
3023   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3024   int i = max_locals;
3025   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3026        kptr2 < fr.interpreter_frame_monitor_begin();
3027        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3028     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3029       BasicLock *lock = kptr2->lock();
3030       // Inflate so the displaced header becomes position-independent
3031       if (lock->displaced_header()->is_unlocked())
3032         ObjectSynchronizer::inflate_helper(kptr2->obj());
3033       // Now the displaced header is free to move
3034       buf[i++] = (intptr_t)lock->displaced_header();
3035       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3036     }
3037   }
3038   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3039 
3040   return buf;
3041 JRT_END
3042 
3043 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3044   FREE_C_HEAP_ARRAY(intptr_t, buf);
3045 JRT_END
3046 
3047 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3048   AdapterHandlerTableIterator iter(_adapters);
3049   while (iter.has_next()) {
3050     AdapterHandlerEntry* a = iter.next();
3051     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3052   }
3053   return false;
3054 }
3055 
3056 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3057   AdapterHandlerTableIterator iter(_adapters);
3058   while (iter.has_next()) {
3059     AdapterHandlerEntry* a = iter.next();
3060     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3061       st->print("Adapter for signature: ");
3062       a->print_adapter_on(tty);
3063       return;
3064     }
3065   }
3066   assert(false, "Should have found handler");
3067 }
3068 
3069 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3070   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3071                p2i(this), fingerprint()->as_string(),
3072                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3073 
3074 }
3075 
3076 #if INCLUDE_CDS
3077 
3078 void CDSAdapterHandlerEntry::init() {
3079   assert(DumpSharedSpaces, "used during dump time only");
3080   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3081   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3082 };
3083 
3084 #endif // INCLUDE_CDS
3085 
3086 
3087 #ifndef PRODUCT
3088 
3089 void AdapterHandlerLibrary::print_statistics() {
3090   _adapters->print_statistics();
3091 }
3092 
3093 #endif /* PRODUCT */
3094 
3095 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3096   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3097   if (thread->stack_reserved_zone_disabled()) {
3098   thread->enable_stack_reserved_zone();
3099   }
3100   thread->set_reserved_stack_activation(thread->stack_base());
3101 JRT_END
3102 
3103 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3104   ResourceMark rm(thread);
3105   frame activation;
3106   CompiledMethod* nm = NULL;
3107   int count = 1;
3108 
3109   assert(fr.is_java_frame(), "Must start on Java frame");
3110 
3111   while (true) {
3112     Method* method = NULL;
3113     bool found = false;
3114     if (fr.is_interpreted_frame()) {
3115       method = fr.interpreter_frame_method();
3116       if (method != NULL && method->has_reserved_stack_access()) {
3117         found = true;
3118       }
3119     } else {
3120       CodeBlob* cb = fr.cb();
3121       if (cb != NULL && cb->is_compiled()) {
3122         nm = cb->as_compiled_method();
3123         method = nm->method();
3124         // scope_desc_near() must be used, instead of scope_desc_at() because on
3125         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3126         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3127           method = sd->method();
3128           if (method != NULL && method->has_reserved_stack_access()) {
3129             found = true;
3130       }
3131     }
3132       }
3133     }
3134     if (found) {
3135       activation = fr;
3136       warning("Potentially dangerous stack overflow in "
3137               "ReservedStackAccess annotated method %s [%d]",
3138               method->name_and_sig_as_C_string(), count++);
3139       EventReservedStackActivation event;
3140       if (event.should_commit()) {
3141         event.set_method(method);
3142         event.commit();
3143       }
3144     }
3145     if (fr.is_first_java_frame()) {
3146       break;
3147     } else {
3148       fr = fr.java_sender();
3149     }
3150   }
3151   return activation;
3152 }
3153 
3154 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3155   // After any safepoint, just before going back to compiled code,
3156   // we inform the GC that we will be doing initializing writes to
3157   // this object in the future without emitting card-marks, so
3158   // GC may take any compensating steps.
3159 
3160   oop new_obj = thread->vm_result();
3161   if (new_obj == NULL) return;
3162 
3163   BarrierSet *bs = BarrierSet::barrier_set();
3164   bs->on_slowpath_allocation_exit(thread, new_obj);
3165 }