1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "opto/ad.hpp"
  53 #include "opto/addnode.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/cfgnode.hpp"
  56 #include "opto/graphKit.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/matcher.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/subnode.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/signature.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "utilities/copy.hpp"
  75 #include "utilities/preserveException.hpp"
  76 
  77 
  78 // For debugging purposes:
  79 //  To force FullGCALot inside a runtime function, add the following two lines
  80 //
  81 //  Universe::release_fullgc_alot_dummy();
  82 //  MarkSweep::invoke(0, "Debugging");
  83 //
  84 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  85 
  86 
  87 
  88 
  89 // Compiled code entry points
  90 address OptoRuntime::_new_instance_Java                           = NULL;
  91 address OptoRuntime::_new_array_Java                              = NULL;
  92 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  93 address OptoRuntime::_multianewarray2_Java                        = NULL;
  94 address OptoRuntime::_multianewarray3_Java                        = NULL;
  95 address OptoRuntime::_multianewarray4_Java                        = NULL;
  96 address OptoRuntime::_multianewarray5_Java                        = NULL;
  97 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  98 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  99 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 100 address OptoRuntime::_monitor_notify_Java                         = NULL;
 101 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 102 address OptoRuntime::_rethrow_Java                                = NULL;
 103 
 104 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 105 address OptoRuntime::_register_finalizer_Java                     = NULL;
 106 address OptoRuntime::_continuation_getFP_Java                     = NULL;
 107 
 108 ExceptionBlob* OptoRuntime::_exception_blob;
 109 
 110 // This should be called in an assertion at the start of OptoRuntime routines
 111 // which are entered from compiled code (all of them)
 112 #ifdef ASSERT
 113 static bool check_compiled_frame(JavaThread* thread) {
 114   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 115   RegisterMap map(thread, false);
 116   frame caller = thread->last_frame().sender(&map);
 117   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 118   return true;
 119 }
 120 #endif // ASSERT
 121 
 122 
 123 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 124   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 125   if (var == NULL) { return false; }
 126 
 127 bool OptoRuntime::generate(ciEnv* env) {
 128 
 129   generate_exception_blob();
 130 
 131   // Note: tls: Means fetching the return oop out of the thread-local storage
 132   //
 133   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 134   // -------------------------------------------------------------------------------------------------------------------------------
 135   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 136   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 137   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 138   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 139   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 142   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 143   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 144   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 145   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 146   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 147 
 148   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 149   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 150   gen(env, _continuation_getFP_Java        , void_long_Type               , SharedRuntime::continuation_getFP,    0 , false, false, false);
 151 
 152   return true;
 153 }
 154 
 155 #undef gen
 156 
 157 
 158 // Helper method to do generation of RunTimeStub's
 159 address OptoRuntime::generate_stub( ciEnv* env,
 160                                     TypeFunc_generator gen, address C_function,
 161                                     const char *name, int is_fancy_jump,
 162                                     bool pass_tls,
 163                                     bool save_argument_registers,
 164                                     bool return_pc) {
 165 
 166   // Matching the default directive, we currently have no method to match.
 167   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 168   ResourceMark rm;
 169   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 170   DirectivesStack::release(directive);
 171   return  C.stub_entry_point();
 172 }
 173 
 174 const char* OptoRuntime::stub_name(address entry) {
 175 #ifndef PRODUCT
 176   CodeBlob* cb = CodeCache::find_blob(entry);
 177   RuntimeStub* rs =(RuntimeStub *)cb;
 178   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 179   return rs->name();
 180 #else
 181   // Fast implementation for product mode (maybe it should be inlined too)
 182   return "runtime stub";
 183 #endif
 184 }
 185 
 186 
 187 //=============================================================================
 188 // Opto compiler runtime routines
 189 //=============================================================================
 190 
 191 
 192 //=============================allocation======================================
 193 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 194 // and try allocation again.
 195 
 196 // object allocation
 197 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 198   JRT_BLOCK;
 199 #ifndef PRODUCT
 200   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 201 #endif
 202   assert(check_compiled_frame(thread), "incorrect caller");
 203 
 204   // These checks are cheap to make and support reflective allocation.
 205   int lh = klass->layout_helper();
 206   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 207     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 208     klass->check_valid_for_instantiation(false, THREAD);
 209     if (!HAS_PENDING_EXCEPTION) {
 210       InstanceKlass::cast(klass)->initialize(THREAD);
 211     }
 212   }
 213 
 214   if (!HAS_PENDING_EXCEPTION) {
 215     // Scavenge and allocate an instance.
 216     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 217     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 218     thread->set_vm_result(result);
 219 
 220     // Pass oops back through thread local storage.  Our apparent type to Java
 221     // is that we return an oop, but we can block on exit from this routine and
 222     // a GC can trash the oop in C's return register.  The generated stub will
 223     // fetch the oop from TLS after any possible GC.
 224   }
 225 
 226   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 227   JRT_BLOCK_END;
 228 
 229   // inform GC that we won't do card marks for initializing writes.
 230   SharedRuntime::on_slowpath_allocation_exit(thread);
 231 JRT_END
 232 
 233 
 234 // array allocation
 235 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 236   JRT_BLOCK;
 237 #ifndef PRODUCT
 238   SharedRuntime::_new_array_ctr++;            // new array requires GC
 239 #endif
 240   assert(check_compiled_frame(thread), "incorrect caller");
 241 
 242   // Scavenge and allocate an instance.
 243   oop result;
 244 
 245   if (array_type->is_typeArray_klass()) {
 246     // The oopFactory likes to work with the element type.
 247     // (We could bypass the oopFactory, since it doesn't add much value.)
 248     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 249     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 250   } else {
 251     // Although the oopFactory likes to work with the elem_type,
 252     // the compiler prefers the array_type, since it must already have
 253     // that latter value in hand for the fast path.
 254     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 255     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 256     result = oopFactory::new_objArray(elem_type, len, THREAD);
 257   }
 258 
 259   // Pass oops back through thread local storage.  Our apparent type to Java
 260   // is that we return an oop, but we can block on exit from this routine and
 261   // a GC can trash the oop in C's return register.  The generated stub will
 262   // fetch the oop from TLS after any possible GC.
 263   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 264   thread->set_vm_result(result);
 265   JRT_BLOCK_END;
 266 
 267   // inform GC that we won't do card marks for initializing writes.
 268   SharedRuntime::on_slowpath_allocation_exit(thread);
 269 JRT_END
 270 
 271 // array allocation without zeroing
 272 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 273   JRT_BLOCK;
 274 #ifndef PRODUCT
 275   SharedRuntime::_new_array_ctr++;            // new array requires GC
 276 #endif
 277   assert(check_compiled_frame(thread), "incorrect caller");
 278 
 279   // Scavenge and allocate an instance.
 280   oop result;
 281 
 282   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 283   // The oopFactory likes to work with the element type.
 284   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 285   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 286 
 287   // Pass oops back through thread local storage.  Our apparent type to Java
 288   // is that we return an oop, but we can block on exit from this routine and
 289   // a GC can trash the oop in C's return register.  The generated stub will
 290   // fetch the oop from TLS after any possible GC.
 291   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 292   thread->set_vm_result(result);
 293   JRT_BLOCK_END;
 294 
 295 
 296   // inform GC that we won't do card marks for initializing writes.
 297   SharedRuntime::on_slowpath_allocation_exit(thread);
 298 
 299   oop result = thread->vm_result();
 300   if ((len > 0) && (result != NULL) &&
 301       is_deoptimized_caller_frame(thread)) {
 302     // Zero array here if the caller is deoptimized.
 303     int size = ((typeArrayOop)result)->object_size();
 304     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 305     const size_t hs = arrayOopDesc::header_size(elem_type);
 306     // Align to next 8 bytes to avoid trashing arrays's length.
 307     const size_t aligned_hs = align_object_offset(hs);
 308     HeapWord* obj = (HeapWord*)result;
 309     if (aligned_hs > hs) {
 310       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 311     }
 312     // Optimized zeroing.
 313     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 314   }
 315 
 316 JRT_END
 317 
 318 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 319 
 320 // multianewarray for 2 dimensions
 321 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 322 #ifndef PRODUCT
 323   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 324 #endif
 325   assert(check_compiled_frame(thread), "incorrect caller");
 326   assert(elem_type->is_klass(), "not a class");
 327   jint dims[2];
 328   dims[0] = len1;
 329   dims[1] = len2;
 330   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 331   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 332   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 333   thread->set_vm_result(obj);
 334 JRT_END
 335 
 336 // multianewarray for 3 dimensions
 337 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 338 #ifndef PRODUCT
 339   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 340 #endif
 341   assert(check_compiled_frame(thread), "incorrect caller");
 342   assert(elem_type->is_klass(), "not a class");
 343   jint dims[3];
 344   dims[0] = len1;
 345   dims[1] = len2;
 346   dims[2] = len3;
 347   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 348   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 349   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 350   thread->set_vm_result(obj);
 351 JRT_END
 352 
 353 // multianewarray for 4 dimensions
 354 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 355 #ifndef PRODUCT
 356   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 357 #endif
 358   assert(check_compiled_frame(thread), "incorrect caller");
 359   assert(elem_type->is_klass(), "not a class");
 360   jint dims[4];
 361   dims[0] = len1;
 362   dims[1] = len2;
 363   dims[2] = len3;
 364   dims[3] = len4;
 365   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 366   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 367   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 368   thread->set_vm_result(obj);
 369 JRT_END
 370 
 371 // multianewarray for 5 dimensions
 372 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 373 #ifndef PRODUCT
 374   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 375 #endif
 376   assert(check_compiled_frame(thread), "incorrect caller");
 377   assert(elem_type->is_klass(), "not a class");
 378   jint dims[5];
 379   dims[0] = len1;
 380   dims[1] = len2;
 381   dims[2] = len3;
 382   dims[3] = len4;
 383   dims[4] = len5;
 384   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 385   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 386   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 387   thread->set_vm_result(obj);
 388 JRT_END
 389 
 390 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 391   assert(check_compiled_frame(thread), "incorrect caller");
 392   assert(elem_type->is_klass(), "not a class");
 393   assert(oop(dims)->is_typeArray(), "not an array");
 394 
 395   ResourceMark rm;
 396   jint len = dims->length();
 397   assert(len > 0, "Dimensions array should contain data");
 398   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 399   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 400   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 401 
 402   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 403   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 404   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 405   thread->set_vm_result(obj);
 406 JRT_END
 407 
 408 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 409 
 410   // Very few notify/notifyAll operations find any threads on the waitset, so
 411   // the dominant fast-path is to simply return.
 412   // Relatedly, it's critical that notify/notifyAll be fast in order to
 413   // reduce lock hold times.
 414   if (!SafepointSynchronize::is_synchronizing()) {
 415     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 416       return;
 417     }
 418   }
 419 
 420   // This is the case the fast-path above isn't provisioned to handle.
 421   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 422   // (The fast-path is just a degenerate variant of the slow-path).
 423   // Perform the dreaded state transition and pass control into the slow-path.
 424   JRT_BLOCK;
 425   Handle h_obj(THREAD, obj);
 426   ObjectSynchronizer::notify(h_obj, CHECK);
 427   JRT_BLOCK_END;
 428 JRT_END
 429 
 430 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 431 
 432   if (!SafepointSynchronize::is_synchronizing() ) {
 433     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 434       return;
 435     }
 436   }
 437 
 438   // This is the case the fast-path above isn't provisioned to handle.
 439   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 440   // (The fast-path is just a degenerate variant of the slow-path).
 441   // Perform the dreaded state transition and pass control into the slow-path.
 442   JRT_BLOCK;
 443   Handle h_obj(THREAD, obj);
 444   ObjectSynchronizer::notifyall(h_obj, CHECK);
 445   JRT_BLOCK_END;
 446 JRT_END
 447 
 448 const TypeFunc *OptoRuntime::new_instance_Type() {
 449   // create input type (domain)
 450   const Type **fields = TypeTuple::fields(1);
 451   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 452   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 453 
 454   // create result type (range)
 455   fields = TypeTuple::fields(1);
 456   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 457 
 458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 459 
 460   return TypeFunc::make(domain, range);
 461 }
 462 
 463 
 464 const TypeFunc *OptoRuntime::athrow_Type() {
 465   // create input type (domain)
 466   const Type **fields = TypeTuple::fields(1);
 467   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 469 
 470   // create result type (range)
 471   fields = TypeTuple::fields(0);
 472 
 473   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 474 
 475   return TypeFunc::make(domain, range);
 476 }
 477 
 478 
 479 const TypeFunc *OptoRuntime::new_array_Type() {
 480   // create input type (domain)
 481   const Type **fields = TypeTuple::fields(2);
 482   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 483   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 484   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 485 
 486   // create result type (range)
 487   fields = TypeTuple::fields(1);
 488   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 489 
 490   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 491 
 492   return TypeFunc::make(domain, range);
 493 }
 494 
 495 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 496   // create input type (domain)
 497   const int nargs = ndim + 1;
 498   const Type **fields = TypeTuple::fields(nargs);
 499   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 500   for( int i = 1; i < nargs; i++ )
 501     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 502   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 503 
 504   // create result type (range)
 505   fields = TypeTuple::fields(1);
 506   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 508 
 509   return TypeFunc::make(domain, range);
 510 }
 511 
 512 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 513   return multianewarray_Type(2);
 514 }
 515 
 516 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 517   return multianewarray_Type(3);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 521   return multianewarray_Type(4);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 525   return multianewarray_Type(5);
 526 }
 527 
 528 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 529   // create input type (domain)
 530   const Type **fields = TypeTuple::fields(2);
 531   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 532   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 533   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 534 
 535   // create result type (range)
 536   fields = TypeTuple::fields(1);
 537   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 538   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 539 
 540   return TypeFunc::make(domain, range);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 544   // create input type (domain)
 545   const Type **fields = TypeTuple::fields(1);
 546   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 547   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 548 
 549   // create result type (range)
 550   fields = TypeTuple::fields(0);
 551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 552 
 553   return TypeFunc::make(domain, range);
 554 }
 555 
 556 //-----------------------------------------------------------------------------
 557 // Monitor Handling
 558 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 559   // create input type (domain)
 560   const Type **fields = TypeTuple::fields(2);
 561   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 562   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 563   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 564 
 565   // create result type (range)
 566   fields = TypeTuple::fields(0);
 567 
 568   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 569 
 570   return TypeFunc::make(domain,range);
 571 }
 572 
 573 
 574 //-----------------------------------------------------------------------------
 575 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 576   // create input type (domain)
 577   const Type **fields = TypeTuple::fields(3);
 578   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 579   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 580   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 581   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 582 
 583   // create result type (range)
 584   fields = TypeTuple::fields(0);
 585 
 586   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 587 
 588   return TypeFunc::make(domain, range);
 589 }
 590 
 591 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 592   // create input type (domain)
 593   const Type **fields = TypeTuple::fields(1);
 594   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 595   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 596 
 597   // create result type (range)
 598   fields = TypeTuple::fields(0);
 599   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 600   return TypeFunc::make(domain, range);
 601 }
 602 
 603 const TypeFunc* OptoRuntime::flush_windows_Type() {
 604   // create input type (domain)
 605   const Type** fields = TypeTuple::fields(1);
 606   fields[TypeFunc::Parms+0] = NULL; // void
 607   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 608 
 609   // create result type
 610   fields = TypeTuple::fields(1);
 611   fields[TypeFunc::Parms+0] = NULL; // void
 612   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 613 
 614   return TypeFunc::make(domain, range);
 615 }
 616 
 617 const TypeFunc* OptoRuntime::l2f_Type() {
 618   // create input type (domain)
 619   const Type **fields = TypeTuple::fields(2);
 620   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 621   fields[TypeFunc::Parms+1] = Type::HALF;
 622   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 623 
 624   // create result type (range)
 625   fields = TypeTuple::fields(1);
 626   fields[TypeFunc::Parms+0] = Type::FLOAT;
 627   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 628 
 629   return TypeFunc::make(domain, range);
 630 }
 631 
 632 const TypeFunc* OptoRuntime::modf_Type() {
 633   const Type **fields = TypeTuple::fields(2);
 634   fields[TypeFunc::Parms+0] = Type::FLOAT;
 635   fields[TypeFunc::Parms+1] = Type::FLOAT;
 636   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 637 
 638   // create result type (range)
 639   fields = TypeTuple::fields(1);
 640   fields[TypeFunc::Parms+0] = Type::FLOAT;
 641 
 642   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 643 
 644   return TypeFunc::make(domain, range);
 645 }
 646 
 647 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 648   // create input type (domain)
 649   const Type **fields = TypeTuple::fields(2);
 650   // Symbol* name of class to be loaded
 651   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 652   fields[TypeFunc::Parms+1] = Type::HALF;
 653   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 654 
 655   // create result type (range)
 656   fields = TypeTuple::fields(2);
 657   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 658   fields[TypeFunc::Parms+1] = Type::HALF;
 659   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 660 
 661   return TypeFunc::make(domain, range);
 662 }
 663 
 664 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 665   const Type **fields = TypeTuple::fields(4);
 666   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 667   fields[TypeFunc::Parms+1] = Type::HALF;
 668   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 669   fields[TypeFunc::Parms+3] = Type::HALF;
 670   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 671 
 672   // create result type (range)
 673   fields = TypeTuple::fields(2);
 674   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 675   fields[TypeFunc::Parms+1] = Type::HALF;
 676   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 677 
 678   return TypeFunc::make(domain, range);
 679 }
 680 
 681 //-------------- currentTimeMillis, currentTimeNanos, etc
 682 
 683 const TypeFunc* OptoRuntime::void_long_Type() {
 684   // create input type (domain)
 685   const Type **fields = TypeTuple::fields(0);
 686   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 687 
 688   // create result type (range)
 689   fields = TypeTuple::fields(2);
 690   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 691   fields[TypeFunc::Parms+1] = Type::HALF;
 692   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 693 
 694   return TypeFunc::make(domain, range);
 695 }
 696 
 697 const TypeFunc* OptoRuntime::void_void_Type() {
 698    // create input type (domain)
 699    const Type **fields = TypeTuple::fields(0);
 700    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 701  
 702    // create result type (range)
 703    fields = TypeTuple::fields(0);
 704    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 705    return TypeFunc::make(domain, range);
 706  }
 707  
 708  const TypeFunc* OptoRuntime::continuation_doYield_Type() {
 709    const Type**fields = TypeTuple::fields(1);
 710    fields[TypeFunc::Parms+0] = TypeInt::INT;
 711    const TypeTuple *args = TypeTuple::make(TypeFunc::Parms+1, fields);
 712  
 713    fields = TypeTuple::fields(0);
 714    const TypeTuple *result = TypeTuple::make(TypeFunc::Parms+0, fields);
 715    return TypeFunc::make(args, result);
 716  }
 717 
 718 // arraycopy stub variations:
 719 enum ArrayCopyType {
 720   ac_fast,                      // void(ptr, ptr, size_t)
 721   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 722   ac_slow,                      // void(ptr, int, ptr, int, int)
 723   ac_generic                    //  int(ptr, int, ptr, int, int)
 724 };
 725 
 726 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 727   // create input type (domain)
 728   int num_args      = (act == ac_fast ? 3 : 5);
 729   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 730   int argcnt = num_args;
 731   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 732   const Type** fields = TypeTuple::fields(argcnt);
 733   int argp = TypeFunc::Parms;
 734   fields[argp++] = TypePtr::NOTNULL;    // src
 735   if (num_size_args == 0) {
 736     fields[argp++] = TypeInt::INT;      // src_pos
 737   }
 738   fields[argp++] = TypePtr::NOTNULL;    // dest
 739   if (num_size_args == 0) {
 740     fields[argp++] = TypeInt::INT;      // dest_pos
 741     fields[argp++] = TypeInt::INT;      // length
 742   }
 743   while (num_size_args-- > 0) {
 744     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 745     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 746   }
 747   if (act == ac_checkcast) {
 748     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 749   }
 750   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 751   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 752 
 753   // create result type if needed
 754   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 755   fields = TypeTuple::fields(1);
 756   if (retcnt == 0)
 757     fields[TypeFunc::Parms+0] = NULL; // void
 758   else
 759     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 760   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 761   return TypeFunc::make(domain, range);
 762 }
 763 
 764 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 765   // This signature is simple:  Two base pointers and a size_t.
 766   return make_arraycopy_Type(ac_fast);
 767 }
 768 
 769 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 770   // An extension of fast_arraycopy_Type which adds type checking.
 771   return make_arraycopy_Type(ac_checkcast);
 772 }
 773 
 774 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 775   // This signature is exactly the same as System.arraycopy.
 776   // There are no intptr_t (int/long) arguments.
 777   return make_arraycopy_Type(ac_slow);
 778 }
 779 
 780 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 781   // This signature is like System.arraycopy, except that it returns status.
 782   return make_arraycopy_Type(ac_generic);
 783 }
 784 
 785 
 786 const TypeFunc* OptoRuntime::array_fill_Type() {
 787   const Type** fields;
 788   int argp = TypeFunc::Parms;
 789   // create input type (domain): pointer, int, size_t
 790   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 791   fields[argp++] = TypePtr::NOTNULL;
 792   fields[argp++] = TypeInt::INT;
 793   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 794   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 795   const TypeTuple *domain = TypeTuple::make(argp, fields);
 796 
 797   // create result type
 798   fields = TypeTuple::fields(1);
 799   fields[TypeFunc::Parms+0] = NULL; // void
 800   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 801 
 802   return TypeFunc::make(domain, range);
 803 }
 804 
 805 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 806 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 807   // create input type (domain)
 808   int num_args      = 3;
 809   if (Matcher::pass_original_key_for_aes()) {
 810     num_args = 4;
 811   }
 812   int argcnt = num_args;
 813   const Type** fields = TypeTuple::fields(argcnt);
 814   int argp = TypeFunc::Parms;
 815   fields[argp++] = TypePtr::NOTNULL;    // src
 816   fields[argp++] = TypePtr::NOTNULL;    // dest
 817   fields[argp++] = TypePtr::NOTNULL;    // k array
 818   if (Matcher::pass_original_key_for_aes()) {
 819     fields[argp++] = TypePtr::NOTNULL;    // original k array
 820   }
 821   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 822   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 823 
 824   // no result type needed
 825   fields = TypeTuple::fields(1);
 826   fields[TypeFunc::Parms+0] = NULL; // void
 827   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 828   return TypeFunc::make(domain, range);
 829 }
 830 
 831 /**
 832  * int updateBytesCRC32(int crc, byte* b, int len)
 833  */
 834 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 835   // create input type (domain)
 836   int num_args      = 3;
 837   int argcnt = num_args;
 838   const Type** fields = TypeTuple::fields(argcnt);
 839   int argp = TypeFunc::Parms;
 840   fields[argp++] = TypeInt::INT;        // crc
 841   fields[argp++] = TypePtr::NOTNULL;    // src
 842   fields[argp++] = TypeInt::INT;        // len
 843   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 844   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 845 
 846   // result type needed
 847   fields = TypeTuple::fields(1);
 848   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 849   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 850   return TypeFunc::make(domain, range);
 851 }
 852 
 853 /**
 854  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 855  */
 856 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 857   // create input type (domain)
 858   int num_args      = 4;
 859   int argcnt = num_args;
 860   const Type** fields = TypeTuple::fields(argcnt);
 861   int argp = TypeFunc::Parms;
 862   fields[argp++] = TypeInt::INT;        // crc
 863   fields[argp++] = TypePtr::NOTNULL;    // buf
 864   fields[argp++] = TypeInt::INT;        // len
 865   fields[argp++] = TypePtr::NOTNULL;    // table
 866   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 867   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 868 
 869   // result type needed
 870   fields = TypeTuple::fields(1);
 871   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 872   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 873   return TypeFunc::make(domain, range);
 874 }
 875 
 876 /**
 877 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 878 */
 879 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 880   // create input type (domain)
 881   int num_args      = 3;
 882   int argcnt = num_args;
 883   const Type** fields = TypeTuple::fields(argcnt);
 884   int argp = TypeFunc::Parms;
 885   fields[argp++] = TypeInt::INT;        // crc
 886   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 887   fields[argp++] = TypeInt::INT;        // len
 888   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 889   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 890 
 891   // result type needed
 892   fields = TypeTuple::fields(1);
 893   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 894   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 895   return TypeFunc::make(domain, range);
 896 }
 897 
 898 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 899 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 900   // create input type (domain)
 901   int num_args      = 5;
 902   if (Matcher::pass_original_key_for_aes()) {
 903     num_args = 6;
 904   }
 905   int argcnt = num_args;
 906   const Type** fields = TypeTuple::fields(argcnt);
 907   int argp = TypeFunc::Parms;
 908   fields[argp++] = TypePtr::NOTNULL;    // src
 909   fields[argp++] = TypePtr::NOTNULL;    // dest
 910   fields[argp++] = TypePtr::NOTNULL;    // k array
 911   fields[argp++] = TypePtr::NOTNULL;    // r array
 912   fields[argp++] = TypeInt::INT;        // src len
 913   if (Matcher::pass_original_key_for_aes()) {
 914     fields[argp++] = TypePtr::NOTNULL;    // original k array
 915   }
 916   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 917   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 918 
 919   // returning cipher len (int)
 920   fields = TypeTuple::fields(1);
 921   fields[TypeFunc::Parms+0] = TypeInt::INT;
 922   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 923   return TypeFunc::make(domain, range);
 924 }
 925 
 926 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 927 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 928   // create input type (domain)
 929   int num_args = 7;
 930   if (Matcher::pass_original_key_for_aes()) {
 931     num_args = 8;
 932   }
 933   int argcnt = num_args;
 934   const Type** fields = TypeTuple::fields(argcnt);
 935   int argp = TypeFunc::Parms;
 936   fields[argp++] = TypePtr::NOTNULL; // src
 937   fields[argp++] = TypePtr::NOTNULL; // dest
 938   fields[argp++] = TypePtr::NOTNULL; // k array
 939   fields[argp++] = TypePtr::NOTNULL; // counter array
 940   fields[argp++] = TypeInt::INT; // src len
 941   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 942   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 943   if (Matcher::pass_original_key_for_aes()) {
 944     fields[argp++] = TypePtr::NOTNULL; // original k array
 945   }
 946   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 947   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 948   // returning cipher len (int)
 949   fields = TypeTuple::fields(1);
 950   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 951   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 952   return TypeFunc::make(domain, range);
 953 }
 954 
 955 /*
 956  * void implCompress(byte[] buf, int ofs)
 957  */
 958 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 959   // create input type (domain)
 960   int num_args = 2;
 961   int argcnt = num_args;
 962   const Type** fields = TypeTuple::fields(argcnt);
 963   int argp = TypeFunc::Parms;
 964   fields[argp++] = TypePtr::NOTNULL; // buf
 965   fields[argp++] = TypePtr::NOTNULL; // state
 966   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 967   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 968 
 969   // no result type needed
 970   fields = TypeTuple::fields(1);
 971   fields[TypeFunc::Parms+0] = NULL; // void
 972   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 973   return TypeFunc::make(domain, range);
 974 }
 975 
 976 /*
 977  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 978  */
 979 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 980   // create input type (domain)
 981   int num_args = 4;
 982   int argcnt = num_args;
 983   const Type** fields = TypeTuple::fields(argcnt);
 984   int argp = TypeFunc::Parms;
 985   fields[argp++] = TypePtr::NOTNULL; // buf
 986   fields[argp++] = TypePtr::NOTNULL; // state
 987   fields[argp++] = TypeInt::INT;     // ofs
 988   fields[argp++] = TypeInt::INT;     // limit
 989   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 990   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 991 
 992   // returning ofs (int)
 993   fields = TypeTuple::fields(1);
 994   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 995   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 996   return TypeFunc::make(domain, range);
 997 }
 998 
 999 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1000   // create input type (domain)
1001   int num_args      = 6;
1002   int argcnt = num_args;
1003   const Type** fields = TypeTuple::fields(argcnt);
1004   int argp = TypeFunc::Parms;
1005   fields[argp++] = TypePtr::NOTNULL;    // x
1006   fields[argp++] = TypeInt::INT;        // xlen
1007   fields[argp++] = TypePtr::NOTNULL;    // y
1008   fields[argp++] = TypeInt::INT;        // ylen
1009   fields[argp++] = TypePtr::NOTNULL;    // z
1010   fields[argp++] = TypeInt::INT;        // zlen
1011   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1012   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1013 
1014   // no result type needed
1015   fields = TypeTuple::fields(1);
1016   fields[TypeFunc::Parms+0] = NULL;
1017   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1018   return TypeFunc::make(domain, range);
1019 }
1020 
1021 const TypeFunc* OptoRuntime::squareToLen_Type() {
1022   // create input type (domain)
1023   int num_args      = 4;
1024   int argcnt = num_args;
1025   const Type** fields = TypeTuple::fields(argcnt);
1026   int argp = TypeFunc::Parms;
1027   fields[argp++] = TypePtr::NOTNULL;    // x
1028   fields[argp++] = TypeInt::INT;        // len
1029   fields[argp++] = TypePtr::NOTNULL;    // z
1030   fields[argp++] = TypeInt::INT;        // zlen
1031   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1032   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1033 
1034   // no result type needed
1035   fields = TypeTuple::fields(1);
1036   fields[TypeFunc::Parms+0] = NULL;
1037   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1038   return TypeFunc::make(domain, range);
1039 }
1040 
1041 // for mulAdd calls, 2 pointers and 3 ints, returning int
1042 const TypeFunc* OptoRuntime::mulAdd_Type() {
1043   // create input type (domain)
1044   int num_args      = 5;
1045   int argcnt = num_args;
1046   const Type** fields = TypeTuple::fields(argcnt);
1047   int argp = TypeFunc::Parms;
1048   fields[argp++] = TypePtr::NOTNULL;    // out
1049   fields[argp++] = TypePtr::NOTNULL;    // in
1050   fields[argp++] = TypeInt::INT;        // offset
1051   fields[argp++] = TypeInt::INT;        // len
1052   fields[argp++] = TypeInt::INT;        // k
1053   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1054   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1055 
1056   // returning carry (int)
1057   fields = TypeTuple::fields(1);
1058   fields[TypeFunc::Parms+0] = TypeInt::INT;
1059   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1060   return TypeFunc::make(domain, range);
1061 }
1062 
1063 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1064   // create input type (domain)
1065   int num_args      = 7;
1066   int argcnt = num_args;
1067   const Type** fields = TypeTuple::fields(argcnt);
1068   int argp = TypeFunc::Parms;
1069   fields[argp++] = TypePtr::NOTNULL;    // a
1070   fields[argp++] = TypePtr::NOTNULL;    // b
1071   fields[argp++] = TypePtr::NOTNULL;    // n
1072   fields[argp++] = TypeInt::INT;        // len
1073   fields[argp++] = TypeLong::LONG;      // inv
1074   fields[argp++] = Type::HALF;
1075   fields[argp++] = TypePtr::NOTNULL;    // result
1076   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1077   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1078 
1079   // result type needed
1080   fields = TypeTuple::fields(1);
1081   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1082 
1083   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1084   return TypeFunc::make(domain, range);
1085 }
1086 
1087 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1088   // create input type (domain)
1089   int num_args      = 6;
1090   int argcnt = num_args;
1091   const Type** fields = TypeTuple::fields(argcnt);
1092   int argp = TypeFunc::Parms;
1093   fields[argp++] = TypePtr::NOTNULL;    // a
1094   fields[argp++] = TypePtr::NOTNULL;    // n
1095   fields[argp++] = TypeInt::INT;        // len
1096   fields[argp++] = TypeLong::LONG;      // inv
1097   fields[argp++] = Type::HALF;
1098   fields[argp++] = TypePtr::NOTNULL;    // result
1099   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1100   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1101 
1102   // result type needed
1103   fields = TypeTuple::fields(1);
1104   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1105 
1106   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1107   return TypeFunc::make(domain, range);
1108 }
1109 
1110 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1111   // create input type (domain)
1112   int num_args = 4;
1113   int argcnt = num_args;
1114   const Type** fields = TypeTuple::fields(argcnt);
1115   int argp = TypeFunc::Parms;
1116   fields[argp++] = TypePtr::NOTNULL;    // obja
1117   fields[argp++] = TypePtr::NOTNULL;    // objb
1118   fields[argp++] = TypeInt::INT;        // length, number of elements
1119   fields[argp++] = TypeInt::INT;        // log2scale, element size
1120   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1121   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1122 
1123   //return mismatch index (int)
1124   fields = TypeTuple::fields(1);
1125   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1126   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1127   return TypeFunc::make(domain, range);
1128 }
1129 
1130 // GHASH block processing
1131 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1132     int argcnt = 4;
1133 
1134     const Type** fields = TypeTuple::fields(argcnt);
1135     int argp = TypeFunc::Parms;
1136     fields[argp++] = TypePtr::NOTNULL;    // state
1137     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1138     fields[argp++] = TypePtr::NOTNULL;    // data
1139     fields[argp++] = TypeInt::INT;        // blocks
1140     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1141     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1142 
1143     // result type needed
1144     fields = TypeTuple::fields(1);
1145     fields[TypeFunc::Parms+0] = NULL; // void
1146     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1147     return TypeFunc::make(domain, range);
1148 }
1149 
1150 //------------- Interpreter state access for on stack replacement
1151 const TypeFunc* OptoRuntime::osr_end_Type() {
1152   // create input type (domain)
1153   const Type **fields = TypeTuple::fields(1);
1154   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1155   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1156 
1157   // create result type
1158   fields = TypeTuple::fields(1);
1159   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1160   fields[TypeFunc::Parms+0] = NULL; // void
1161   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1162   return TypeFunc::make(domain, range);
1163 }
1164 
1165 //-------------- methodData update helpers
1166 
1167 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1168   // create input type (domain)
1169   const Type **fields = TypeTuple::fields(2);
1170   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1171   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1172   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1173 
1174   // create result type
1175   fields = TypeTuple::fields(1);
1176   fields[TypeFunc::Parms+0] = NULL; // void
1177   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1178   return TypeFunc::make(domain,range);
1179 }
1180 
1181 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1182   if (receiver == NULL) return;
1183   Klass* receiver_klass = receiver->klass();
1184 
1185   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1186   int empty_row = -1;           // free row, if any is encountered
1187 
1188   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1189   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1190     // if (vc->receiver(row) == receiver_klass)
1191     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1192     intptr_t row_recv = *(mdp + receiver_off);
1193     if (row_recv == (intptr_t) receiver_klass) {
1194       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1195       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1196       *(mdp + count_off) += DataLayout::counter_increment;
1197       return;
1198     } else if (row_recv == 0) {
1199       // else if (vc->receiver(row) == NULL)
1200       empty_row = (int) row;
1201     }
1202   }
1203 
1204   if (empty_row != -1) {
1205     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1206     // vc->set_receiver(empty_row, receiver_klass);
1207     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1208     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1209     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1210     *(mdp + count_off) = DataLayout::counter_increment;
1211   } else {
1212     // Receiver did not match any saved receiver and there is no empty row for it.
1213     // Increment total counter to indicate polymorphic case.
1214     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1215     *count_p += DataLayout::counter_increment;
1216   }
1217 JRT_END
1218 
1219 //-------------------------------------------------------------------------------------
1220 // register policy
1221 
1222 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1223   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1224   switch (register_save_policy[reg]) {
1225     case 'C': return false; //SOC
1226     case 'E': return true ; //SOE
1227     case 'N': return false; //NS
1228     case 'A': return false; //AS
1229   }
1230   ShouldNotReachHere();
1231   return false;
1232 }
1233 
1234 //-----------------------------------------------------------------------
1235 // Exceptions
1236 //
1237 
1238 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1239 
1240 // The method is an entry that is always called by a C++ method not
1241 // directly from compiled code. Compiled code will call the C++ method following.
1242 // We can't allow async exception to be installed during  exception processing.
1243 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1244 
1245   // Do not confuse exception_oop with pending_exception. The exception_oop
1246   // is only used to pass arguments into the method. Not for general
1247   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1248   // the runtime stubs checks this on exit.
1249   assert(thread->exception_oop() != NULL, "exception oop is found");
1250   address handler_address = NULL;
1251 
1252   Handle exception(thread, thread->exception_oop());
1253   address pc = thread->exception_pc();
1254 
1255   // Clear out the exception oop and pc since looking up an
1256   // exception handler can cause class loading, which might throw an
1257   // exception and those fields are expected to be clear during
1258   // normal bytecode execution.
1259   thread->clear_exception_oop_and_pc();
1260 
1261   LogTarget(Info, exceptions) lt;
1262   if (lt.is_enabled()) {
1263     ResourceMark rm;
1264     LogStream ls(lt);
1265     trace_exception(&ls, exception(), pc, "");
1266   }
1267 
1268   // for AbortVMOnException flag
1269   Exceptions::debug_check_abort(exception);
1270 
1271 #ifdef ASSERT
1272   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1273     // should throw an exception here
1274     ShouldNotReachHere();
1275   }
1276 #endif
1277 
1278   // new exception handling: this method is entered only from adapters
1279   // exceptions from compiled java methods are handled in compiled code
1280   // using rethrow node
1281 
1282   nm = CodeCache::find_nmethod(pc);
1283   assert(nm != NULL, "No NMethod found");
1284   if (nm->is_native_method()) {
1285     fatal("Native method should not have path to exception handling");
1286   } else {
1287     // we are switching to old paradigm: search for exception handler in caller_frame
1288     // instead in exception handler of caller_frame.sender()
1289 
1290     if (JvmtiExport::can_post_on_exceptions()) {
1291       // "Full-speed catching" is not necessary here,
1292       // since we're notifying the VM on every catch.
1293       // Force deoptimization and the rest of the lookup
1294       // will be fine.
1295       deoptimize_caller_frame(thread);
1296     }
1297 
1298     // Check the stack guard pages.  If enabled, look for handler in this frame;
1299     // otherwise, forcibly unwind the frame.
1300     //
1301     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1302     bool force_unwind = !thread->reguard_stack();
1303     bool deopting = false;
1304     if (nm->is_deopt_pc(pc)) {
1305       deopting = true;
1306       RegisterMap map(thread, false);
1307       frame deoptee = thread->last_frame().sender(&map);
1308       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1309       // Adjust the pc back to the original throwing pc
1310       pc = deoptee.pc();
1311     }
1312 
1313     // If we are forcing an unwind because of stack overflow then deopt is
1314     // irrelevant since we are throwing the frame away anyway.
1315 
1316     if (deopting && !force_unwind) {
1317       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1318     } else {
1319 
1320       handler_address =
1321         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1322 
1323       if (handler_address == NULL) {
1324         bool recursive_exception = false;
1325         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1326         assert (handler_address != NULL, "must have compiled handler");
1327         // Update the exception cache only when the unwind was not forced
1328         // and there didn't happen another exception during the computation of the
1329         // compiled exception handler. Checking for exception oop equality is not
1330         // sufficient because some exceptions are pre-allocated and reused.
1331         if (!force_unwind && !recursive_exception) {
1332           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1333         }
1334       } else {
1335 #ifdef ASSERT
1336         bool recursive_exception = false;
1337         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1338         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1339                  p2i(handler_address), p2i(computed_address));
1340 #endif
1341       }
1342     }
1343 
1344     thread->set_exception_pc(pc);
1345     thread->set_exception_handler_pc(handler_address);
1346 
1347     // Check if the exception PC is a MethodHandle call site.
1348     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1349   }
1350 
1351   // Restore correct return pc.  Was saved above.
1352   thread->set_exception_oop(exception());
1353   return handler_address;
1354 
1355 JRT_END
1356 
1357 // We are entering here from exception_blob
1358 // If there is a compiled exception handler in this method, we will continue there;
1359 // otherwise we will unwind the stack and continue at the caller of top frame method
1360 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1361 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1362 // we looked up the handler for has been deoptimized in the meantime. If it has been
1363 // we must not use the handler and instead return the deopt blob.
1364 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1365 //
1366 // We are in Java not VM and in debug mode we have a NoHandleMark
1367 //
1368 #ifndef PRODUCT
1369   SharedRuntime::_find_handler_ctr++;          // find exception handler
1370 #endif
1371   debug_only(NoHandleMark __hm;)
1372   nmethod* nm = NULL;
1373   address handler_address = NULL;
1374   {
1375     // Enter the VM
1376 
1377     ResetNoHandleMark rnhm;
1378     handler_address = handle_exception_C_helper(thread, nm);
1379   }
1380 
1381   // Back in java: Use no oops, DON'T safepoint
1382 
1383   // Now check to see if the handler we are returning is in a now
1384   // deoptimized frame
1385 
1386   if (nm != NULL) {
1387     RegisterMap map(thread, false);
1388     frame caller = thread->last_frame().sender(&map);
1389 #ifdef ASSERT
1390     assert(caller.is_compiled_frame(), "must be");
1391 #endif // ASSERT
1392     if (caller.is_deoptimized_frame()) {
1393       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1394     }
1395   }
1396   return handler_address;
1397 }
1398 
1399 //------------------------------rethrow----------------------------------------
1400 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1401 // is either throwing or rethrowing an exception.  The callee-save registers
1402 // have been restored, synchronized objects have been unlocked and the callee
1403 // stack frame has been removed.  The return address was passed in.
1404 // Exception oop is passed as the 1st argument.  This routine is then called
1405 // from the stub.  On exit, we know where to jump in the caller's code.
1406 // After this C code exits, the stub will pop his frame and end in a jump
1407 // (instead of a return).  We enter the caller's default handler.
1408 //
1409 // This must be JRT_LEAF:
1410 //     - caller will not change its state as we cannot block on exit,
1411 //       therefore raw_exception_handler_for_return_address is all it takes
1412 //       to handle deoptimized blobs
1413 //
1414 // However, there needs to be a safepoint check in the middle!  So compiled
1415 // safepoints are completely watertight.
1416 //
1417 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1418 //
1419 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1420 //
1421 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1422 #ifndef PRODUCT
1423   SharedRuntime::_rethrow_ctr++;               // count rethrows
1424 #endif
1425   assert (exception != NULL, "should have thrown a NULLPointerException");
1426 #ifdef ASSERT
1427   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1428     // should throw an exception here
1429     ShouldNotReachHere();
1430   }
1431 #endif
1432 
1433   thread->set_vm_result(exception);
1434   // Frame not compiled (handles deoptimization blob)
1435   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1436 }
1437 
1438 
1439 const TypeFunc *OptoRuntime::rethrow_Type() {
1440   // create input type (domain)
1441   const Type **fields = TypeTuple::fields(1);
1442   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1443   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1444 
1445   // create result type (range)
1446   fields = TypeTuple::fields(1);
1447   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1448   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1449 
1450   return TypeFunc::make(domain, range);
1451 }
1452 
1453 
1454 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1455   // Deoptimize the caller before continuing, as the compiled
1456   // exception handler table may not be valid.
1457   if (!StressCompiledExceptionHandlers && doit) {
1458     deoptimize_caller_frame(thread);
1459   }
1460 }
1461 
1462 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1463   // Called from within the owner thread, so no need for safepoint
1464   RegisterMap reg_map(thread);
1465   frame stub_frame = thread->last_frame();
1466   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1467   frame caller_frame = stub_frame.sender(&reg_map);
1468 
1469   // Deoptimize the caller frame.
1470   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1471 }
1472 
1473 
1474 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1475   // Called from within the owner thread, so no need for safepoint
1476   RegisterMap reg_map(thread);
1477   frame stub_frame = thread->last_frame();
1478   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1479   frame caller_frame = stub_frame.sender(&reg_map);
1480   return caller_frame.is_deoptimized_frame();
1481 }
1482 
1483 
1484 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1485   // create input type (domain)
1486   const Type **fields = TypeTuple::fields(1);
1487   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1488   // // The JavaThread* is passed to each routine as the last argument
1489   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1490   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1491 
1492   // create result type (range)
1493   fields = TypeTuple::fields(0);
1494 
1495   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1496 
1497   return TypeFunc::make(domain,range);
1498 }
1499 
1500 
1501 //-----------------------------------------------------------------------------
1502 // Dtrace support.  entry and exit probes have the same signature
1503 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1504   // create input type (domain)
1505   const Type **fields = TypeTuple::fields(2);
1506   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1507   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1508   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1509 
1510   // create result type (range)
1511   fields = TypeTuple::fields(0);
1512 
1513   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1514 
1515   return TypeFunc::make(domain,range);
1516 }
1517 
1518 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1519   // create input type (domain)
1520   const Type **fields = TypeTuple::fields(2);
1521   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1522   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1523 
1524   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1525 
1526   // create result type (range)
1527   fields = TypeTuple::fields(0);
1528 
1529   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1530 
1531   return TypeFunc::make(domain,range);
1532 }
1533 
1534 
1535 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1536   assert(oopDesc::is_oop(obj), "must be a valid oop");
1537   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1538   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1539 JRT_END
1540 
1541 //-----------------------------------------------------------------------------
1542 
1543 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1544 
1545 //
1546 // dump the collected NamedCounters.
1547 //
1548 void OptoRuntime::print_named_counters() {
1549   int total_lock_count = 0;
1550   int eliminated_lock_count = 0;
1551 
1552   NamedCounter* c = _named_counters;
1553   while (c) {
1554     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1555       int count = c->count();
1556       if (count > 0) {
1557         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1558         if (Verbose) {
1559           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1560         }
1561         total_lock_count += count;
1562         if (eliminated) {
1563           eliminated_lock_count += count;
1564         }
1565       }
1566     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1567       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1568       if (blc->nonzero()) {
1569         tty->print_cr("%s", c->name());
1570         blc->print_on(tty);
1571       }
1572 #if INCLUDE_RTM_OPT
1573     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1574       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1575       if (rlc->nonzero()) {
1576         tty->print_cr("%s", c->name());
1577         rlc->print_on(tty);
1578       }
1579 #endif
1580     }
1581     c = c->next();
1582   }
1583   if (total_lock_count > 0) {
1584     tty->print_cr("dynamic locks: %d", total_lock_count);
1585     if (eliminated_lock_count) {
1586       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1587                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1588     }
1589   }
1590 }
1591 
1592 //
1593 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1594 //  name which consists of method@line for the inlining tree.
1595 //
1596 
1597 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1598   int max_depth = youngest_jvms->depth();
1599 
1600   // Visit scopes from youngest to oldest.
1601   bool first = true;
1602   stringStream st;
1603   for (int depth = max_depth; depth >= 1; depth--) {
1604     JVMState* jvms = youngest_jvms->of_depth(depth);
1605     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1606     if (!first) {
1607       st.print(" ");
1608     } else {
1609       first = false;
1610     }
1611     int bci = jvms->bci();
1612     if (bci < 0) bci = 0;
1613     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1614     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1615   }
1616   NamedCounter* c;
1617   if (tag == NamedCounter::BiasedLockingCounter) {
1618     c = new BiasedLockingNamedCounter(st.as_string());
1619   } else if (tag == NamedCounter::RTMLockingCounter) {
1620     c = new RTMLockingNamedCounter(st.as_string());
1621   } else {
1622     c = new NamedCounter(st.as_string(), tag);
1623   }
1624 
1625   // atomically add the new counter to the head of the list.  We only
1626   // add counters so this is safe.
1627   NamedCounter* head;
1628   do {
1629     c->set_next(NULL);
1630     head = _named_counters;
1631     c->set_next(head);
1632   } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1633   return c;
1634 }
1635 
1636 int trace_exception_counter = 0;
1637 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1638   trace_exception_counter++;
1639   stringStream tempst;
1640 
1641   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1642   exception_oop->print_value_on(&tempst);
1643   tempst.print(" in ");
1644   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1645   if (blob->is_compiled()) {
1646     CompiledMethod* cm = blob->as_compiled_method_or_null();
1647     cm->method()->print_value_on(&tempst);
1648   } else if (blob->is_runtime_stub()) {
1649     tempst.print("<runtime-stub>");
1650   } else {
1651     tempst.print("<unknown>");
1652   }
1653   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1654   tempst.print("]");
1655 
1656   st->print_raw_cr(tempst.as_string());
1657 }