1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.lang.ref.*;
  28 import java.util.Objects;
  29 import java.util.concurrent.atomic.AtomicInteger;
  30 import java.util.function.Supplier;
  31 
  32 /**
  33  * This class provides thread-local variables.  These variables differ from
  34  * their normal counterparts in that each thread that accesses one (via its
  35  * {@code get} or {@code set} method) has its own, independently initialized
  36  * copy of the variable.  {@code ThreadLocal} instances are typically private
  37  * static fields in classes that wish to associate state with a thread (e.g.,
  38  * a user ID or Transaction ID).
  39  *
  40  * <p>For example, the class below generates unique identifiers local to each
  41  * thread.
  42  * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
  43  * and remains unchanged on subsequent calls.
  44  * <pre>
  45  * import java.util.concurrent.atomic.AtomicInteger;
  46  *
  47  * public class ThreadId {
  48  *     // Atomic integer containing the next thread ID to be assigned
  49  *     private static final AtomicInteger nextId = new AtomicInteger(0);
  50  *
  51  *     // Thread local variable containing each thread's ID
  52  *     private static final ThreadLocal&lt;Integer&gt; threadId =
  53  *         new ThreadLocal&lt;Integer&gt;() {
  54  *             @Override protected Integer initialValue() {
  55  *                 return nextId.getAndIncrement();
  56  *         }
  57  *     };
  58  *
  59  *     // Returns the current thread's unique ID, assigning it if necessary
  60  *     public static int get() {
  61  *         return threadId.get();
  62  *     }
  63  * }
  64  * </pre>
  65  * <p>Each thread holds an implicit reference to its copy of a thread-local
  66  * variable as long as the thread is alive and the {@code ThreadLocal}
  67  * instance is accessible; after a thread goes away, all of its copies of
  68  * thread-local instances are subject to garbage collection (unless other
  69  * references to these copies exist).
  70  *
  71  * @author  Josh Bloch and Doug Lea
  72  * @since   1.2
  73  */
  74 public class ThreadLocal<T> {
  75     /**
  76      * ThreadLocals rely on per-thread linear-probe hash maps attached
  77      * to each thread (Thread.threadLocals and
  78      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
  79      * searched via threadLocalHashCode.  This is a custom hash code
  80      * (useful only within ThreadLocalMaps) that eliminates collisions
  81      * in the common case where consecutively constructed ThreadLocals
  82      * are used by the same threads, while remaining well-behaved in
  83      * less common cases.
  84      */
  85     private final int threadLocalHashCode = nextHashCode();
  86 
  87     /**
  88      * The next hash code to be given out. Updated atomically. Starts at
  89      * zero.
  90      */
  91     private static AtomicInteger nextHashCode =
  92         new AtomicInteger();
  93 
  94     /**
  95      * The difference between successively generated hash codes - turns
  96      * implicit sequential thread-local IDs into near-optimally spread
  97      * multiplicative hash values for power-of-two-sized tables.
  98      */
  99     private static final int HASH_INCREMENT = 0x61c88647;
 100 
 101     /**
 102      * Returns the next hash code.
 103      */
 104     private static int nextHashCode() {
 105         return nextHashCode.getAndAdd(HASH_INCREMENT);
 106     }
 107 
 108     /**
 109      * Returns the current thread's "initial value" for this
 110      * thread-local variable.  This method will be invoked the first
 111      * time a thread accesses the variable with the {@link #get}
 112      * method, unless the thread previously invoked the {@link #set}
 113      * method, in which case the {@code initialValue} method will not
 114      * be invoked for the thread.  Normally, this method is invoked at
 115      * most once per thread, but it may be invoked again in case of
 116      * subsequent invocations of {@link #remove} followed by {@link #get}.
 117      *
 118      * <p>This implementation simply returns {@code null}; if the
 119      * programmer desires thread-local variables to have an initial
 120      * value other than {@code null}, {@code ThreadLocal} must be
 121      * subclassed, and this method overridden.  Typically, an
 122      * anonymous inner class will be used.
 123      *
 124      * @return the initial value for this thread-local
 125      */
 126     protected T initialValue() {
 127         return null;
 128     }
 129 
 130     /**
 131      * Creates a thread local variable. The initial value of the variable is
 132      * determined by invoking the {@code get} method on the {@code Supplier}.
 133      *
 134      * @param <S> the type of the thread local's value
 135      * @param supplier the supplier to be used to determine the initial value
 136      * @return a new thread local variable
 137      * @throws NullPointerException if the specified supplier is null
 138      * @since 1.8
 139      */
 140     public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
 141         return new SuppliedThreadLocal<>(supplier);
 142     }
 143 
 144     /**
 145      * Creates a thread local variable.
 146      * @see #withInitial(java.util.function.Supplier)
 147      */
 148     public ThreadLocal() {
 149     }
 150 
 151     /**
 152      * Returns the value in the current thread's copy of this
 153      * thread-local variable.  If the variable has no value for the
 154      * current thread, it is first initialized to the value returned
 155      * by an invocation of the {@link #initialValue} method.
 156      *
 157      * @return the current thread's value of this thread-local
 158      */
 159     public T get() {
 160         Thread t = Thread.currentThread();
 161         ThreadLocalMap map = getMap(t);
 162         if (map != null) {
 163             ThreadLocalMap.Entry e = map.getEntry(this);
 164             if (e != null) {
 165                 @SuppressWarnings("unchecked")
 166                 T result = (T)e.value;
 167                 return result;
 168             }
 169         }
 170         return setInitialValue();
 171     }
 172 
 173     /**
 174      * Variant of set() to establish initialValue. Used instead
 175      * of set() in case user has overridden the set() method.
 176      *
 177      * @return the initial value
 178      */
 179     private T setInitialValue() {
 180         T value = initialValue();
 181         Thread t = Thread.currentThread();
 182         ThreadLocalMap map = getMap(t);
 183         if (map != null)
 184             map.set(this, value);
 185         else
 186             createMap(t, value);
 187         return value;
 188     }
 189 
 190     /**
 191      * Sets the current thread's copy of this thread-local variable
 192      * to the specified value.  Most subclasses will have no need to
 193      * override this method, relying solely on the {@link #initialValue}
 194      * method to set the values of thread-locals.
 195      *
 196      * @param value the value to be stored in the current thread's copy of
 197      *        this thread-local.
 198      */
 199     public void set(T value) {
 200         Thread t = Thread.currentThread();
 201         ThreadLocalMap map = getMap(t);
 202         if (map != null)
 203             map.set(this, value);
 204         else
 205             createMap(t, value);
 206     }
 207 
 208     /**
 209      * Removes the current thread's value for this thread-local
 210      * variable.  If this thread-local variable is subsequently
 211      * {@linkplain #get read} by the current thread, its value will be
 212      * reinitialized by invoking its {@link #initialValue} method,
 213      * unless its value is {@linkplain #set set} by the current thread
 214      * in the interim.  This may result in multiple invocations of the
 215      * {@code initialValue} method in the current thread.
 216      *
 217      * @since 1.5
 218      */
 219      public void remove() {
 220          ThreadLocalMap m = getMap(Thread.currentThread());
 221          if (m != null)
 222              m.remove(this);
 223      }
 224 
 225     /**
 226      * Get the map associated with a ThreadLocal. Overridden in
 227      * InheritableThreadLocal.
 228      *
 229      * @param  t the current thread
 230      * @return the map
 231      */
 232     ThreadLocalMap getMap(Thread t) {
 233         return t.threadLocals;
 234     }
 235 
 236     /**
 237      * Create the map associated with a ThreadLocal. Overridden in
 238      * InheritableThreadLocal.
 239      *
 240      * @param t the current thread
 241      * @param firstValue value for the initial entry of the map
 242      */
 243     void createMap(Thread t, T firstValue) {
 244         t.threadLocals = new ThreadLocalMap(this, firstValue);
 245     }
 246 
 247     /**
 248      * Factory method to create map of inherited thread locals.
 249      * Designed to be called only from Thread constructor.
 250      *
 251      * @param  parentMap the map associated with parent thread
 252      * @return a map containing the parent's inheritable bindings
 253      */
 254     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
 255         return new ThreadLocalMap(parentMap);
 256     }
 257 
 258     /**
 259      * Method childValue is visibly defined in subclass
 260      * InheritableThreadLocal, but is internally defined here for the
 261      * sake of providing createInheritedMap factory method without
 262      * needing to subclass the map class in InheritableThreadLocal.
 263      * This technique is preferable to the alternative of embedding
 264      * instanceof tests in methods.
 265      */
 266     T childValue(T parentValue) {
 267         throw new UnsupportedOperationException();
 268     }
 269 
 270     /**
 271      * An extension of ThreadLocal that obtains its initial value from
 272      * the specified {@code Supplier}.
 273      */
 274     static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
 275 
 276         private final Supplier<? extends T> supplier;
 277 
 278         SuppliedThreadLocal(Supplier<? extends T> supplier) {
 279             this.supplier = Objects.requireNonNull(supplier);
 280         }
 281 
 282         @Override
 283         protected T initialValue() {
 284             return supplier.get();
 285         }
 286     }
 287 
 288     /**
 289      * ThreadLocalMap is a customized hash map suitable only for
 290      * maintaining thread local values. No operations are exported
 291      * outside of the ThreadLocal class. The class is package private to
 292      * allow declaration of fields in class Thread.  To help deal with
 293      * very large and long-lived usages, the hash table entries use
 294      * WeakReferences for keys. However, since reference queues are not
 295      * used, stale entries are guaranteed to be removed only when
 296      * the table starts running out of space.
 297      */
 298     static class ThreadLocalMap {
 299 
 300         /**
 301          * The entries in this hash map extend WeakReference, using
 302          * its main ref field as the key (which is always a
 303          * ThreadLocal object).  Note that null keys (i.e. entry.get()
 304          * == null) mean that the key is no longer referenced, so the
 305          * entry can be expunged from table.  Such entries are referred to
 306          * as "stale entries" in the code that follows.
 307          */
 308         static class Entry extends WeakReference<ThreadLocal<?>> {
 309             /** The value associated with this ThreadLocal. */
 310             Object value;
 311 
 312             Entry(ThreadLocal<?> k, Object v) {
 313                 super(k);
 314                 value = v;
 315             }
 316         }
 317 
 318         /**
 319          * The initial capacity -- MUST be a power of two.
 320          */
 321         private static final int INITIAL_CAPACITY = 16;
 322 
 323         /**
 324          * The table, resized as necessary.
 325          * table.length MUST always be a power of two.
 326          */
 327         private Entry[] table;
 328 
 329         /**
 330          * The number of entries in the table.
 331          */
 332         private int size = 0;
 333 
 334         /**
 335          * The next size value at which to resize.
 336          */
 337         private int threshold; // Default to 0
 338 
 339         /**
 340          * Set the resize threshold to maintain at worst a 2/3 load factor.
 341          */
 342         private void setThreshold(int len) {
 343             threshold = len * 2 / 3;
 344         }
 345 
 346         /**
 347          * Increment i modulo len.
 348          */
 349         private static int nextIndex(int i, int len) {
 350             return ((i + 1 < len) ? i + 1 : 0);
 351         }
 352 
 353         /**
 354          * Decrement i modulo len.
 355          */
 356         private static int prevIndex(int i, int len) {
 357             return ((i - 1 >= 0) ? i - 1 : len - 1);
 358         }
 359 
 360         /**
 361          * Construct a new map initially containing (firstKey, firstValue).
 362          * ThreadLocalMaps are constructed lazily, so we only create
 363          * one when we have at least one entry to put in it.
 364          */
 365         ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
 366             table = new Entry[INITIAL_CAPACITY];
 367             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
 368             table[i] = new Entry(firstKey, firstValue);
 369             size = 1;
 370             setThreshold(INITIAL_CAPACITY);
 371         }
 372 
 373         /**
 374          * Construct a new map including all Inheritable ThreadLocals
 375          * from given parent map. Called only by createInheritedMap.
 376          *
 377          * @param parentMap the map associated with parent thread.
 378          */
 379         private ThreadLocalMap(ThreadLocalMap parentMap) {
 380             Entry[] parentTable = parentMap.table;
 381             int len = parentTable.length;
 382             setThreshold(len);
 383             table = new Entry[len];
 384 
 385             for (Entry e : parentTable) {
 386                 if (e != null) {
 387                     @SuppressWarnings("unchecked")
 388                     ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
 389                     if (key != null) {
 390                         Object value = key.childValue(e.value);
 391                         Entry c = new Entry(key, value);
 392                         int h = key.threadLocalHashCode & (len - 1);
 393                         while (table[h] != null)
 394                             h = nextIndex(h, len);
 395                         table[h] = c;
 396                         size++;
 397                     }
 398                 }
 399             }
 400         }
 401 
 402         /**
 403          * Get the entry associated with key.  This method
 404          * itself handles only the fast path: a direct hit of existing
 405          * key. It otherwise relays to getEntryAfterMiss.  This is
 406          * designed to maximize performance for direct hits, in part
 407          * by making this method readily inlinable.
 408          *
 409          * @param  key the thread local object
 410          * @return the entry associated with key, or null if no such
 411          */
 412         private Entry getEntry(ThreadLocal<?> key) {
 413             int i = key.threadLocalHashCode & (table.length - 1);
 414             Entry e = table[i];
 415             if (e != null && e.get() == key)
 416                 return e;
 417             else
 418                 return getEntryAfterMiss(key, i, e);
 419         }
 420 
 421         /**
 422          * Version of getEntry method for use when key is not found in
 423          * its direct hash slot.
 424          *
 425          * @param  key the thread local object
 426          * @param  i the table index for key's hash code
 427          * @param  e the entry at table[i]
 428          * @return the entry associated with key, or null if no such
 429          */
 430         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
 431             Entry[] tab = table;
 432             int len = tab.length;
 433 
 434             while (e != null) {
 435                 ThreadLocal<?> k = e.get();
 436                 if (k == key)
 437                     return e;
 438                 if (k == null)
 439                     expungeStaleEntry(i);
 440                 else
 441                     i = nextIndex(i, len);
 442                 e = tab[i];
 443             }
 444             return null;
 445         }
 446 
 447         /**
 448          * Set the value associated with key.
 449          *
 450          * @param key the thread local object
 451          * @param value the value to be set
 452          */
 453         private void set(ThreadLocal<?> key, Object value) {
 454 
 455             // We don't use a fast path as with get() because it is at
 456             // least as common to use set() to create new entries as
 457             // it is to replace existing ones, in which case, a fast
 458             // path would fail more often than not.
 459 
 460             Entry[] tab = table;
 461             int len = tab.length;
 462             int i = key.threadLocalHashCode & (len-1);
 463 
 464             for (Entry e = tab[i];
 465                  e != null;
 466                  e = tab[i = nextIndex(i, len)]) {
 467                 ThreadLocal<?> k = e.get();
 468 
 469                 if (k == key) {
 470                     e.value = value;
 471                     return;
 472                 }
 473 
 474                 if (k == null) {
 475                     replaceStaleEntry(key, value, i);
 476                     return;
 477                 }
 478             }
 479 
 480             tab[i] = new Entry(key, value);
 481             int sz = ++size;
 482             if (!cleanSomeSlots(i, sz) && sz >= threshold)
 483                 rehash();
 484         }
 485 
 486         /**
 487          * Remove the entry for key.
 488          */
 489         private void remove(ThreadLocal<?> key) {
 490             Entry[] tab = table;
 491             int len = tab.length;
 492             int i = key.threadLocalHashCode & (len-1);
 493             for (Entry e = tab[i];
 494                  e != null;
 495                  e = tab[i = nextIndex(i, len)]) {
 496                 if (e.get() == key) {
 497                     e.clear();
 498                     expungeStaleEntry(i);
 499                     return;
 500                 }
 501             }
 502         }
 503 
 504         /**
 505          * Replace a stale entry encountered during a set operation
 506          * with an entry for the specified key.  The value passed in
 507          * the value parameter is stored in the entry, whether or not
 508          * an entry already exists for the specified key.
 509          *
 510          * As a side effect, this method expunges all stale entries in the
 511          * "run" containing the stale entry.  (A run is a sequence of entries
 512          * between two null slots.)
 513          *
 514          * @param  key the key
 515          * @param  value the value to be associated with key
 516          * @param  staleSlot index of the first stale entry encountered while
 517          *         searching for key.
 518          */
 519         private void replaceStaleEntry(ThreadLocal<?> key, Object value,
 520                                        int staleSlot) {
 521             Entry[] tab = table;
 522             int len = tab.length;
 523             Entry e;
 524 
 525             // Back up to check for prior stale entry in current run.
 526             // We clean out whole runs at a time to avoid continual
 527             // incremental rehashing due to garbage collector freeing
 528             // up refs in bunches (i.e., whenever the collector runs).
 529             int slotToExpunge = staleSlot;
 530             for (int i = prevIndex(staleSlot, len);
 531                  (e = tab[i]) != null;
 532                  i = prevIndex(i, len))
 533                 if (e.get() == null)
 534                     slotToExpunge = i;
 535 
 536             // Find either the key or trailing null slot of run, whichever
 537             // occurs first
 538             for (int i = nextIndex(staleSlot, len);
 539                  (e = tab[i]) != null;
 540                  i = nextIndex(i, len)) {
 541                 ThreadLocal<?> k = e.get();
 542 
 543                 // If we find key, then we need to swap it
 544                 // with the stale entry to maintain hash table order.
 545                 // The newly stale slot, or any other stale slot
 546                 // encountered above it, can then be sent to expungeStaleEntry
 547                 // to remove or rehash all of the other entries in run.
 548                 if (k == key) {
 549                     e.value = value;
 550 
 551                     tab[i] = tab[staleSlot];
 552                     tab[staleSlot] = e;
 553 
 554                     // Start expunge at preceding stale entry if it exists
 555                     if (slotToExpunge == staleSlot)
 556                         slotToExpunge = i;
 557                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
 558                     return;
 559                 }
 560 
 561                 // If we didn't find stale entry on backward scan, the
 562                 // first stale entry seen while scanning for key is the
 563                 // first still present in the run.
 564                 if (k == null && slotToExpunge == staleSlot)
 565                     slotToExpunge = i;
 566             }
 567 
 568             // If key not found, put new entry in stale slot
 569             tab[staleSlot].value = null;
 570             tab[staleSlot] = new Entry(key, value);
 571 
 572             // If there are any other stale entries in run, expunge them
 573             if (slotToExpunge != staleSlot)
 574                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
 575         }
 576 
 577         /**
 578          * Expunge a stale entry by rehashing any possibly colliding entries
 579          * lying between staleSlot and the next null slot.  This also expunges
 580          * any other stale entries encountered before the trailing null.  See
 581          * Knuth, Section 6.4
 582          *
 583          * @param staleSlot index of slot known to have null key
 584          * @return the index of the next null slot after staleSlot
 585          * (all between staleSlot and this slot will have been checked
 586          * for expunging).
 587          */
 588         private int expungeStaleEntry(int staleSlot) {
 589             Entry[] tab = table;
 590             int len = tab.length;
 591 
 592             // expunge entry at staleSlot
 593             tab[staleSlot].value = null;
 594             tab[staleSlot] = null;
 595             size--;
 596 
 597             // Rehash until we encounter null
 598             Entry e;
 599             int i;
 600             for (i = nextIndex(staleSlot, len);
 601                  (e = tab[i]) != null;
 602                  i = nextIndex(i, len)) {
 603                 ThreadLocal<?> k = e.get();
 604                 if (k == null) {
 605                     e.value = null;
 606                     tab[i] = null;
 607                     size--;
 608                 } else {
 609                     int h = k.threadLocalHashCode & (len - 1);
 610                     if (h != i) {
 611                         tab[i] = null;
 612 
 613                         // Unlike Knuth 6.4 Algorithm R, we must scan until
 614                         // null because multiple entries could have been stale.
 615                         while (tab[h] != null)
 616                             h = nextIndex(h, len);
 617                         tab[h] = e;
 618                     }
 619                 }
 620             }
 621             return i;
 622         }
 623 
 624         /**
 625          * Heuristically scan some cells looking for stale entries.
 626          * This is invoked when either a new element is added, or
 627          * another stale one has been expunged. It performs a
 628          * logarithmic number of scans, as a balance between no
 629          * scanning (fast but retains garbage) and a number of scans
 630          * proportional to number of elements, that would find all
 631          * garbage but would cause some insertions to take O(n) time.
 632          *
 633          * @param i a position known NOT to hold a stale entry. The
 634          * scan starts at the element after i.
 635          *
 636          * @param n scan control: {@code log2(n)} cells are scanned,
 637          * unless a stale entry is found, in which case
 638          * {@code log2(table.length)-1} additional cells are scanned.
 639          * When called from insertions, this parameter is the number
 640          * of elements, but when from replaceStaleEntry, it is the
 641          * table length. (Note: all this could be changed to be either
 642          * more or less aggressive by weighting n instead of just
 643          * using straight log n. But this version is simple, fast, and
 644          * seems to work well.)
 645          *
 646          * @return true if any stale entries have been removed.
 647          */
 648         private boolean cleanSomeSlots(int i, int n) {
 649             boolean removed = false;
 650             Entry[] tab = table;
 651             int len = tab.length;
 652             do {
 653                 i = nextIndex(i, len);
 654                 Entry e = tab[i];
 655                 if (e != null && e.get() == null) {
 656                     n = len;
 657                     removed = true;
 658                     i = expungeStaleEntry(i);
 659                 }
 660             } while ( (n >>>= 1) != 0);
 661             return removed;
 662         }
 663 
 664         /**
 665          * Re-pack and/or re-size the table. First scan the entire
 666          * table removing stale entries. If this doesn't sufficiently
 667          * shrink the size of the table, double the table size.
 668          */
 669         private void rehash() {
 670             expungeStaleEntries();
 671 
 672             // Use lower threshold for doubling to avoid hysteresis
 673             if (size >= threshold - threshold / 4)
 674                 resize();
 675         }
 676 
 677         /**
 678          * Double the capacity of the table.
 679          */
 680         private void resize() {
 681             Entry[] oldTab = table;
 682             int oldLen = oldTab.length;
 683             int newLen = oldLen * 2;
 684             Entry[] newTab = new Entry[newLen];
 685             int count = 0;
 686 
 687             for (Entry e : oldTab) {
 688                 if (e != null) {
 689                     ThreadLocal<?> k = e.get();
 690                     if (k == null) {
 691                         e.value = null; // Help the GC
 692                     } else {
 693                         int h = k.threadLocalHashCode & (newLen - 1);
 694                         while (newTab[h] != null)
 695                             h = nextIndex(h, newLen);
 696                         newTab[h] = e;
 697                         count++;
 698                     }
 699                 }
 700             }
 701 
 702             setThreshold(newLen);
 703             size = count;
 704             table = newTab;
 705         }
 706 
 707         /**
 708          * Expunge all stale entries in the table.
 709          */
 710         private void expungeStaleEntries() {
 711             Entry[] tab = table;
 712             int len = tab.length;
 713             for (int j = 0; j < len; j++) {
 714                 Entry e = tab[j];
 715                 if (e != null && e.get() == null)
 716                     expungeStaleEntry(j);
 717             }
 718         }
 719     }
 720 }