1 /*
   2  * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/methodCounters.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/objArrayOop.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/atomic.inline.hpp"
  43 #include "runtime/biasedLocking.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/handles.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/orderAccess.inline.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/threadCritical.hpp"
  50 #include "utilities/exceptions.hpp"
  51 
  52 // no precompiled headers
  53 #ifdef CC_INTERP
  54 
  55 /*
  56  * USELABELS - If using GCC, then use labels for the opcode dispatching
  57  * rather -then a switch statement. This improves performance because it
  58  * gives us the opportunity to have the instructions that calculate the
  59  * next opcode to jump to be intermixed with the rest of the instructions
  60  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  61  */
  62 #undef USELABELS
  63 #ifdef __GNUC__
  64 /*
  65    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  66    don't use the computed goto approach.
  67 */
  68 #ifndef ASSERT
  69 #define USELABELS
  70 #endif
  71 #endif
  72 
  73 #undef CASE
  74 #ifdef USELABELS
  75 #define CASE(opcode) opc ## opcode
  76 #define DEFAULT opc_default
  77 #else
  78 #define CASE(opcode) case Bytecodes:: opcode
  79 #define DEFAULT default
  80 #endif
  81 
  82 /*
  83  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  84  * opcode before going back to the top of the while loop, rather then having
  85  * the top of the while loop handle it. This provides a better opportunity
  86  * for instruction scheduling. Some compilers just do this prefetch
  87  * automatically. Some actually end up with worse performance if you
  88  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  89  */
  90 #undef PREFETCH_OPCCODE
  91 #define PREFETCH_OPCCODE
  92 
  93 /*
  94   Interpreter safepoint: it is expected that the interpreter will have no live
  95   handles of its own creation live at an interpreter safepoint. Therefore we
  96   run a HandleMarkCleaner and trash all handles allocated in the call chain
  97   since the JavaCalls::call_helper invocation that initiated the chain.
  98   There really shouldn't be any handles remaining to trash but this is cheap
  99   in relation to a safepoint.
 100 */
 101 #define SAFEPOINT                                                                 \
 102     if ( SafepointSynchronize::is_synchronizing()) {                              \
 103         {                                                                         \
 104           /* zap freed handles rather than GC'ing them */                         \
 105           HandleMarkCleaner __hmc(THREAD);                                        \
 106         }                                                                         \
 107         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 108     }
 109 
 110 /*
 111  * VM_JAVA_ERROR - Macro for throwing a java exception from
 112  * the interpreter loop. Should really be a CALL_VM but there
 113  * is no entry point to do the transition to vm so we just
 114  * do it by hand here.
 115  */
 116 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 117     DECACHE_STATE();                                                              \
 118     SET_LAST_JAVA_FRAME();                                                        \
 119     {                                                                             \
 120        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 121        ThreadInVMfromJava trans(THREAD);                                          \
 122        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 123     }                                                                             \
 124     RESET_LAST_JAVA_FRAME();                                                      \
 125     CACHE_STATE();
 126 
 127 // Normal throw of a java error.
 128 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 129     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 130     goto handle_exception;
 131 
 132 #ifdef PRODUCT
 133 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 134 #else
 135 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 136 {                                                                                                    \
 137     BytecodeCounter::_counter_value++;                                                               \
 138     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 139     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 140     if (TraceBytecodes) {                                                                            \
 141       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 142                                    topOfStack[Interpreter::expr_index_at(1)],   \
 143                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 144                                    handle_exception);                      \
 145     }                                                                      \
 146 }
 147 #endif
 148 
 149 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 150 #ifdef VM_JVMTI
 151 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 152    incremented. JvmtiExport::at_single_stepping_point() may cause a
 153    breakpoint opcode to get inserted at the current PC to allow the
 154    debugger to coalesce single-step events.
 155 
 156    As a result if we call at_single_stepping_point() we refetch opcode
 157    to get the current opcode. This will override any other prefetching
 158    that might have occurred.
 159 */
 160 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 161 {                                                                                \
 162       if (_jvmti_interp_events) {                                                \
 163         if (JvmtiExport::should_post_single_step()) {                            \
 164           DECACHE_STATE();                                                       \
 165           SET_LAST_JAVA_FRAME();                                                 \
 166           ThreadInVMfromJava trans(THREAD);                                      \
 167           JvmtiExport::at_single_stepping_point(THREAD,                          \
 168                                           istate->method(),                      \
 169                                           pc);                                   \
 170           RESET_LAST_JAVA_FRAME();                                               \
 171           CACHE_STATE();                                                         \
 172           if (THREAD->pop_frame_pending() &&                                     \
 173               !THREAD->pop_frame_in_process()) {                                 \
 174             goto handle_Pop_Frame;                                               \
 175           }                                                                      \
 176           if (THREAD->jvmti_thread_state() &&                                    \
 177               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 178             goto handle_Early_Return;                                            \
 179           }                                                                      \
 180           opcode = *pc;                                                          \
 181         }                                                                        \
 182       }                                                                          \
 183 }
 184 #else
 185 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 186 #endif
 187 
 188 /*
 189  * CONTINUE - Macro for executing the next opcode.
 190  */
 191 #undef CONTINUE
 192 #ifdef USELABELS
 193 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 194 // initialization (which is is the initialization of the table pointer...)
 195 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 196 #define CONTINUE {                              \
 197         opcode = *pc;                           \
 198         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 199         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 200         DISPATCH(opcode);                       \
 201     }
 202 #else
 203 #ifdef PREFETCH_OPCCODE
 204 #define CONTINUE {                              \
 205         opcode = *pc;                           \
 206         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 207         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 208         continue;                               \
 209     }
 210 #else
 211 #define CONTINUE {                              \
 212         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 213         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 214         continue;                               \
 215     }
 216 #endif
 217 #endif
 218 
 219 
 220 #define UPDATE_PC(opsize) {pc += opsize; }
 221 /*
 222  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 223  */
 224 #undef UPDATE_PC_AND_TOS
 225 #define UPDATE_PC_AND_TOS(opsize, stack) \
 226     {pc += opsize; MORE_STACK(stack); }
 227 
 228 /*
 229  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 230  * and executing the next opcode. It's somewhat similar to the combination
 231  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 232  */
 233 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 234 #ifdef USELABELS
 235 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 236         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 237         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 238         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 239         DISPATCH(opcode);                                       \
 240     }
 241 
 242 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 243         pc += opsize; opcode = *pc;                             \
 244         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 245         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 246         DISPATCH(opcode);                                       \
 247     }
 248 #else
 249 #ifdef PREFETCH_OPCCODE
 250 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 251         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 252         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 253         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 254         goto do_continue;                                       \
 255     }
 256 
 257 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 258         pc += opsize; opcode = *pc;                             \
 259         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 260         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 261         goto do_continue;                                       \
 262     }
 263 #else
 264 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 265         pc += opsize; MORE_STACK(stack);                \
 266         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 267         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 268         goto do_continue;                               \
 269     }
 270 
 271 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 272         pc += opsize;                                   \
 273         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 274         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 275         goto do_continue;                               \
 276     }
 277 #endif /* PREFETCH_OPCCODE */
 278 #endif /* USELABELS */
 279 
 280 // About to call a new method, update the save the adjusted pc and return to frame manager
 281 #define UPDATE_PC_AND_RETURN(opsize)  \
 282    DECACHE_TOS();                     \
 283    istate->set_bcp(pc+opsize);        \
 284    return;
 285 
 286 
 287 #define METHOD istate->method()
 288 #define GET_METHOD_COUNTERS(res)    \
 289   res = METHOD->method_counters();  \
 290   if (res == NULL) {                \
 291     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 292   }
 293 
 294 #define OSR_REQUEST(res, branch_pc) \
 295             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 296 /*
 297  * For those opcodes that need to have a GC point on a backwards branch
 298  */
 299 
 300 // Backedge counting is kind of strange. The asm interpreter will increment
 301 // the backedge counter as a separate counter but it does it's comparisons
 302 // to the sum (scaled) of invocation counter and backedge count to make
 303 // a decision. Seems kind of odd to sum them together like that
 304 
 305 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 306 
 307 
 308 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 309     if ((skip) <= 0) {                                                                              \
 310       MethodCounters* mcs;                                                                          \
 311       GET_METHOD_COUNTERS(mcs);                                                                     \
 312       if (UseLoopCounter) {                                                                         \
 313         bool do_OSR = UseOnStackReplacement;                                                        \
 314         mcs->backedge_counter()->increment();                                                       \
 315         if (ProfileInterpreter) {                                                                   \
 316           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 317           /* Check for overflow against MDO count. */                                               \
 318           do_OSR = do_OSR                                                                           \
 319             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 320             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 321             /* from the methodDataOop, which value does not get reset on   */                       \
 322             /* the call to frequency_counter_overflow(). To avoid          */                       \
 323             /* excessive calls to the overflow routine while the method is */                       \
 324             /* being compiled, add a second test to make sure the overflow */                       \
 325             /* function is called only once every overflow_frequency.      */                       \
 326             && (!(mdo_last_branch_taken_count & 1023));                                             \
 327         } else {                                                                                    \
 328           /* check for overflow of backedge counter */                                              \
 329           do_OSR = do_OSR                                                                           \
 330             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 331         }                                                                                           \
 332         if (do_OSR) {                                                                               \
 333           nmethod* osr_nmethod;                                                                     \
 334           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 335           if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
 336             intptr_t* buf;                                                                          \
 337             /* Call OSR migration with last java frame only, no checks. */                          \
 338             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 339             istate->set_msg(do_osr);                                                                \
 340             istate->set_osr_buf((address)buf);                                                      \
 341             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 342             return;                                                                                 \
 343           }                                                                                         \
 344         }                                                                                           \
 345       }  /* UseCompiler ... */                                                                      \
 346       SAFEPOINT;                                                                                    \
 347     }
 348 
 349 /*
 350  * For those opcodes that need to have a GC point on a backwards branch
 351  */
 352 
 353 /*
 354  * Macros for caching and flushing the interpreter state. Some local
 355  * variables need to be flushed out to the frame before we do certain
 356  * things (like pushing frames or becomming gc safe) and some need to
 357  * be recached later (like after popping a frame). We could use one
 358  * macro to cache or decache everything, but this would be less then
 359  * optimal because we don't always need to cache or decache everything
 360  * because some things we know are already cached or decached.
 361  */
 362 #undef DECACHE_TOS
 363 #undef CACHE_TOS
 364 #undef CACHE_PREV_TOS
 365 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 366 
 367 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 368 
 369 #undef DECACHE_PC
 370 #undef CACHE_PC
 371 #define DECACHE_PC()    istate->set_bcp(pc);
 372 #define CACHE_PC()      pc = istate->bcp();
 373 #define CACHE_CP()      cp = istate->constants();
 374 #define CACHE_LOCALS()  locals = istate->locals();
 375 #undef CACHE_FRAME
 376 #define CACHE_FRAME()
 377 
 378 // BCI() returns the current bytecode-index.
 379 #undef  BCI
 380 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 381 
 382 /*
 383  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 384  * passed is a null ref.
 385  * On some architectures/platforms it should be possible to do this implicitly
 386  */
 387 #undef CHECK_NULL
 388 #define CHECK_NULL(obj_)                                                                         \
 389         if ((obj_) == NULL) {                                                                    \
 390           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 391         }                                                                                        \
 392         VERIFY_OOP(obj_)
 393 
 394 #define VMdoubleConstZero() 0.0
 395 #define VMdoubleConstOne() 1.0
 396 #define VMlongConstZero() (max_jlong-max_jlong)
 397 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 398 
 399 /*
 400  * Alignment
 401  */
 402 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 403 
 404 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 405 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 406 
 407 // Reload interpreter state after calling the VM or a possible GC
 408 #define CACHE_STATE()   \
 409         CACHE_TOS();    \
 410         CACHE_PC();     \
 411         CACHE_CP();     \
 412         CACHE_LOCALS();
 413 
 414 // Call the VM with last java frame only.
 415 #define CALL_VM_NAKED_LJF(func)                                    \
 416         DECACHE_STATE();                                           \
 417         SET_LAST_JAVA_FRAME();                                     \
 418         func;                                                      \
 419         RESET_LAST_JAVA_FRAME();                                   \
 420         CACHE_STATE();
 421 
 422 // Call the VM. Don't check for pending exceptions.
 423 #define CALL_VM_NOCHECK(func)                                      \
 424         CALL_VM_NAKED_LJF(func)                                    \
 425         if (THREAD->pop_frame_pending() &&                         \
 426             !THREAD->pop_frame_in_process()) {                     \
 427           goto handle_Pop_Frame;                                   \
 428         }                                                          \
 429         if (THREAD->jvmti_thread_state() &&                        \
 430             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 431           goto handle_Early_Return;                                \
 432         }
 433 
 434 // Call the VM and check for pending exceptions
 435 #define CALL_VM(func, label) {                                     \
 436           CALL_VM_NOCHECK(func);                                   \
 437           if (THREAD->has_pending_exception()) goto label;         \
 438         }
 439 
 440 /*
 441  * BytecodeInterpreter::run(interpreterState istate)
 442  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 443  *
 444  * The real deal. This is where byte codes actually get interpreted.
 445  * Basically it's a big while loop that iterates until we return from
 446  * the method passed in.
 447  *
 448  * The runWithChecks is used if JVMTI is enabled.
 449  *
 450  */
 451 #if defined(VM_JVMTI)
 452 void
 453 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 454 #else
 455 void
 456 BytecodeInterpreter::run(interpreterState istate) {
 457 #endif
 458 
 459   // In order to simplify some tests based on switches set at runtime
 460   // we invoke the interpreter a single time after switches are enabled
 461   // and set simpler to to test variables rather than method calls or complex
 462   // boolean expressions.
 463 
 464   static int initialized = 0;
 465   static int checkit = 0;
 466   static intptr_t* c_addr = NULL;
 467   static intptr_t  c_value;
 468 
 469   if (checkit && *c_addr != c_value) {
 470     os::breakpoint();
 471   }
 472 #ifdef VM_JVMTI
 473   static bool _jvmti_interp_events = 0;
 474 #endif
 475 
 476   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 477 
 478 #ifdef ASSERT
 479   if (istate->_msg != initialize) {
 480     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 481 #ifndef SHARK
 482     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 483 #endif // !SHARK
 484   }
 485   // Verify linkages.
 486   interpreterState l = istate;
 487   do {
 488     assert(l == l->_self_link, "bad link");
 489     l = l->_prev_link;
 490   } while (l != NULL);
 491   // Screwups with stack management usually cause us to overwrite istate
 492   // save a copy so we can verify it.
 493   interpreterState orig = istate;
 494 #endif
 495 
 496   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 497   register address          pc = istate->bcp();
 498   register jubyte opcode;
 499   register intptr_t*        locals = istate->locals();
 500   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 501 #ifdef LOTS_OF_REGS
 502   register JavaThread*      THREAD = istate->thread();
 503 #else
 504 #undef THREAD
 505 #define THREAD istate->thread()
 506 #endif
 507 
 508 #ifdef USELABELS
 509   const static void* const opclabels_data[256] = {
 510 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 511 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 512 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 513 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 514 
 515 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 516 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 517 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 518 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 519 
 520 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 521 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 522 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 523 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 524 
 525 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 526 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 527 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 528 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 529 
 530 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 531 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 532 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 533 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 534 
 535 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 536 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 537 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 538 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 539 
 540 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 541 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 542 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 543 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 544 
 545 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 546 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 547 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 548 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 549 
 550 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 551 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 552 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 553 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 554 
 555 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 556 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 557 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 558 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 559 
 560 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 561 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 562 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 563 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 564 
 565 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 566 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 567 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 568 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 569 
 570 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 571 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 572 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 573 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 
 575 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 576 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 578 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 579 
 580 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 581 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,     &&opc_return_register_finalizer,
 582 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,         &&opc_default,
 583 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 584 
 585 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 586 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 587 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 588 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 589   };
 590   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 591 #endif /* USELABELS */
 592 
 593 #ifdef ASSERT
 594   // this will trigger a VERIFY_OOP on entry
 595   if (istate->msg() != initialize && ! METHOD->is_static()) {
 596     oop rcvr = LOCALS_OBJECT(0);
 597     VERIFY_OOP(rcvr);
 598   }
 599 #endif
 600 // #define HACK
 601 #ifdef HACK
 602   bool interesting = false;
 603 #endif // HACK
 604 
 605   /* QQQ this should be a stack method so we don't know actual direction */
 606   guarantee(istate->msg() == initialize ||
 607          topOfStack >= istate->stack_limit() &&
 608          topOfStack < istate->stack_base(),
 609          "Stack top out of range");
 610 
 611 #ifdef CC_INTERP_PROFILE
 612   // MethodData's last branch taken count.
 613   uint mdo_last_branch_taken_count = 0;
 614 #else
 615   const uint mdo_last_branch_taken_count = 0;
 616 #endif
 617 
 618   switch (istate->msg()) {
 619     case initialize: {
 620       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 621       _compiling = (UseCompiler || CountCompiledCalls);
 622 #ifdef VM_JVMTI
 623       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 624 #endif
 625       return;
 626     }
 627     break;
 628     case method_entry: {
 629       THREAD->set_do_not_unlock();
 630       // count invocations
 631       assert(initialized, "Interpreter not initialized");
 632       if (_compiling) {
 633         MethodCounters* mcs;
 634         GET_METHOD_COUNTERS(mcs);
 635         if (ProfileInterpreter) {
 636           METHOD->increment_interpreter_invocation_count(THREAD);
 637         }
 638         mcs->invocation_counter()->increment();
 639         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 640           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 641           // We no longer retry on a counter overflow.
 642         }
 643         // Get or create profile data. Check for pending (async) exceptions.
 644         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 645         SAFEPOINT;
 646       }
 647 
 648       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 649         // initialize
 650         os::breakpoint();
 651       }
 652 
 653 #ifdef HACK
 654       {
 655         ResourceMark rm;
 656         char *method_name = istate->method()->name_and_sig_as_C_string();
 657         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 658           tty->print_cr("entering: depth %d bci: %d",
 659                          (istate->_stack_base - istate->_stack),
 660                          istate->_bcp - istate->_method->code_base());
 661           interesting = true;
 662         }
 663       }
 664 #endif // HACK
 665 
 666       // Lock method if synchronized.
 667       if (METHOD->is_synchronized()) {
 668         // oop rcvr = locals[0].j.r;
 669         oop rcvr;
 670         if (METHOD->is_static()) {
 671           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 672         } else {
 673           rcvr = LOCALS_OBJECT(0);
 674           VERIFY_OOP(rcvr);
 675         }
 676         // The initial monitor is ours for the taking.
 677         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 678         BasicObjectLock* mon = &istate->monitor_base()[-1];
 679         mon->set_obj(rcvr);
 680         bool success = false;
 681         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 682         markOop mark = rcvr->mark();
 683         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 684         // Implies UseBiasedLocking.
 685         if (mark->has_bias_pattern()) {
 686           uintptr_t thread_ident;
 687           uintptr_t anticipated_bias_locking_value;
 688           thread_ident = (uintptr_t)istate->thread();
 689           anticipated_bias_locking_value =
 690             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 691             ~((uintptr_t) markOopDesc::age_mask_in_place);
 692 
 693           if (anticipated_bias_locking_value == 0) {
 694             // Already biased towards this thread, nothing to do.
 695             if (PrintBiasedLockingStatistics) {
 696               (* BiasedLocking::biased_lock_entry_count_addr())++;
 697             }
 698             success = true;
 699           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 700             // Try to revoke bias.
 701             markOop header = rcvr->klass()->prototype_header();
 702             if (hash != markOopDesc::no_hash) {
 703               header = header->copy_set_hash(hash);
 704             }
 705             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 706               if (PrintBiasedLockingStatistics)
 707                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 708             }
 709           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 710             // Try to rebias.
 711             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 712             if (hash != markOopDesc::no_hash) {
 713               new_header = new_header->copy_set_hash(hash);
 714             }
 715             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 716               if (PrintBiasedLockingStatistics) {
 717                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 718               }
 719             } else {
 720               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 721             }
 722             success = true;
 723           } else {
 724             // Try to bias towards thread in case object is anonymously biased.
 725             markOop header = (markOop) ((uintptr_t) mark &
 726                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 727                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 728             if (hash != markOopDesc::no_hash) {
 729               header = header->copy_set_hash(hash);
 730             }
 731             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 732             // Debugging hint.
 733             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 734             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 735               if (PrintBiasedLockingStatistics) {
 736                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 737               }
 738             } else {
 739               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 740             }
 741             success = true;
 742           }
 743         }
 744 
 745         // Traditional lightweight locking.
 746         if (!success) {
 747           markOop displaced = rcvr->mark()->set_unlocked();
 748           mon->lock()->set_displaced_header(displaced);
 749           bool call_vm = UseHeavyMonitors;
 750           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 751             // Is it simple recursive case?
 752             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 753               mon->lock()->set_displaced_header(NULL);
 754             } else {
 755               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 756             }
 757           }
 758         }
 759       }
 760       THREAD->clr_do_not_unlock();
 761 
 762       // Notify jvmti
 763 #ifdef VM_JVMTI
 764       if (_jvmti_interp_events) {
 765         // Whenever JVMTI puts a thread in interp_only_mode, method
 766         // entry/exit events are sent for that thread to track stack depth.
 767         if (THREAD->is_interp_only_mode()) {
 768           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 769                   handle_exception);
 770         }
 771       }
 772 #endif /* VM_JVMTI */
 773 
 774       goto run;
 775     }
 776 
 777     case popping_frame: {
 778       // returned from a java call to pop the frame, restart the call
 779       // clear the message so we don't confuse ourselves later
 780       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 781       istate->set_msg(no_request);
 782       if (_compiling) {
 783         // Set MDX back to the ProfileData of the invoke bytecode that will be
 784         // restarted.
 785         SET_MDX(NULL);
 786         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 787       }
 788       THREAD->clr_pop_frame_in_process();
 789       goto run;
 790     }
 791 
 792     case method_resume: {
 793       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 794         // resume
 795         os::breakpoint();
 796       }
 797 #ifdef HACK
 798       {
 799         ResourceMark rm;
 800         char *method_name = istate->method()->name_and_sig_as_C_string();
 801         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 802           tty->print_cr("resume: depth %d bci: %d",
 803                          (istate->_stack_base - istate->_stack) ,
 804                          istate->_bcp - istate->_method->code_base());
 805           interesting = true;
 806         }
 807       }
 808 #endif // HACK
 809       // returned from a java call, continue executing.
 810       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 811         goto handle_Pop_Frame;
 812       }
 813       if (THREAD->jvmti_thread_state() &&
 814           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 815         goto handle_Early_Return;
 816       }
 817 
 818       if (THREAD->has_pending_exception()) goto handle_exception;
 819       // Update the pc by the saved amount of the invoke bytecode size
 820       UPDATE_PC(istate->bcp_advance());
 821 
 822       if (_compiling) {
 823         // Get or create profile data. Check for pending (async) exceptions.
 824         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 825       }
 826       goto run;
 827     }
 828 
 829     case deopt_resume2: {
 830       // Returned from an opcode that will reexecute. Deopt was
 831       // a result of a PopFrame request.
 832       //
 833 
 834       if (_compiling) {
 835         // Get or create profile data. Check for pending (async) exceptions.
 836         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 837       }
 838       goto run;
 839     }
 840 
 841     case deopt_resume: {
 842       // Returned from an opcode that has completed. The stack has
 843       // the result all we need to do is skip across the bytecode
 844       // and continue (assuming there is no exception pending)
 845       //
 846       // compute continuation length
 847       //
 848       // Note: it is possible to deopt at a return_register_finalizer opcode
 849       // because this requires entering the vm to do the registering. While the
 850       // opcode is complete we can't advance because there are no more opcodes
 851       // much like trying to deopt at a poll return. In that has we simply
 852       // get out of here
 853       //
 854       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 855         // this will do the right thing even if an exception is pending.
 856         goto handle_return;
 857       }
 858       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 859       if (THREAD->has_pending_exception()) goto handle_exception;
 860 
 861       if (_compiling) {
 862         // Get or create profile data. Check for pending (async) exceptions.
 863         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 864       }
 865       goto run;
 866     }
 867     case got_monitors: {
 868       // continue locking now that we have a monitor to use
 869       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 870       oop lockee = STACK_OBJECT(-1);
 871       VERIFY_OOP(lockee);
 872       // derefing's lockee ought to provoke implicit null check
 873       // find a free monitor
 874       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 875       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 876       entry->set_obj(lockee);
 877       bool success = false;
 878       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 879 
 880       markOop mark = lockee->mark();
 881       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 882       // implies UseBiasedLocking
 883       if (mark->has_bias_pattern()) {
 884         uintptr_t thread_ident;
 885         uintptr_t anticipated_bias_locking_value;
 886         thread_ident = (uintptr_t)istate->thread();
 887         anticipated_bias_locking_value =
 888           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 889           ~((uintptr_t) markOopDesc::age_mask_in_place);
 890 
 891         if  (anticipated_bias_locking_value == 0) {
 892           // already biased towards this thread, nothing to do
 893           if (PrintBiasedLockingStatistics) {
 894             (* BiasedLocking::biased_lock_entry_count_addr())++;
 895           }
 896           success = true;
 897         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 898           // try revoke bias
 899           markOop header = lockee->klass()->prototype_header();
 900           if (hash != markOopDesc::no_hash) {
 901             header = header->copy_set_hash(hash);
 902           }
 903           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 904             if (PrintBiasedLockingStatistics) {
 905               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 906             }
 907           }
 908         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 909           // try rebias
 910           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 911           if (hash != markOopDesc::no_hash) {
 912                 new_header = new_header->copy_set_hash(hash);
 913           }
 914           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 915             if (PrintBiasedLockingStatistics) {
 916               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 917             }
 918           } else {
 919             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 920           }
 921           success = true;
 922         } else {
 923           // try to bias towards thread in case object is anonymously biased
 924           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 925                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 926           if (hash != markOopDesc::no_hash) {
 927             header = header->copy_set_hash(hash);
 928           }
 929           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 930           // debugging hint
 931           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 932           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 933             if (PrintBiasedLockingStatistics) {
 934               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 935             }
 936           } else {
 937             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 938           }
 939           success = true;
 940         }
 941       }
 942 
 943       // traditional lightweight locking
 944       if (!success) {
 945         markOop displaced = lockee->mark()->set_unlocked();
 946         entry->lock()->set_displaced_header(displaced);
 947         bool call_vm = UseHeavyMonitors;
 948         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 949           // Is it simple recursive case?
 950           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 951             entry->lock()->set_displaced_header(NULL);
 952           } else {
 953             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 954           }
 955         }
 956       }
 957       UPDATE_PC_AND_TOS(1, -1);
 958       goto run;
 959     }
 960     default: {
 961       fatal("Unexpected message from frame manager");
 962     }
 963   }
 964 
 965 run:
 966 
 967   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 968   DEBUGGER_SINGLE_STEP_NOTIFY();
 969 #ifdef PREFETCH_OPCCODE
 970   opcode = *pc;  /* prefetch first opcode */
 971 #endif
 972 
 973 #ifndef USELABELS
 974   while (1)
 975 #endif
 976   {
 977 #ifndef PREFETCH_OPCCODE
 978       opcode = *pc;
 979 #endif
 980       // Seems like this happens twice per opcode. At worst this is only
 981       // need at entry to the loop.
 982       // DEBUGGER_SINGLE_STEP_NOTIFY();
 983       /* Using this labels avoids double breakpoints when quickening and
 984        * when returing from transition frames.
 985        */
 986   opcode_switch:
 987       assert(istate == orig, "Corrupted istate");
 988       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 989       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 990       assert(topOfStack < istate->stack_base(), "Stack underrun");
 991 
 992 #ifdef USELABELS
 993       DISPATCH(opcode);
 994 #else
 995       switch (opcode)
 996 #endif
 997       {
 998       CASE(_nop):
 999           UPDATE_PC_AND_CONTINUE(1);
1000 
1001           /* Push miscellaneous constants onto the stack. */
1002 
1003       CASE(_aconst_null):
1004           SET_STACK_OBJECT(NULL, 0);
1005           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1006 
1007 #undef  OPC_CONST_n
1008 #define OPC_CONST_n(opcode, const_type, value)                          \
1009       CASE(opcode):                                                     \
1010           SET_STACK_ ## const_type(value, 0);                           \
1011           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1012 
1013           OPC_CONST_n(_iconst_m1,   INT,       -1);
1014           OPC_CONST_n(_iconst_0,    INT,        0);
1015           OPC_CONST_n(_iconst_1,    INT,        1);
1016           OPC_CONST_n(_iconst_2,    INT,        2);
1017           OPC_CONST_n(_iconst_3,    INT,        3);
1018           OPC_CONST_n(_iconst_4,    INT,        4);
1019           OPC_CONST_n(_iconst_5,    INT,        5);
1020           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1021           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1022           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1023 
1024 #undef  OPC_CONST2_n
1025 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1026       CASE(_##opcname):                                                 \
1027       {                                                                 \
1028           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1029           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1030       }
1031          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1032          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1033          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1034          OPC_CONST2_n(lconst_1, One,  long, LONG);
1035 
1036          /* Load constant from constant pool: */
1037 
1038           /* Push a 1-byte signed integer value onto the stack. */
1039       CASE(_bipush):
1040           SET_STACK_INT((jbyte)(pc[1]), 0);
1041           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1042 
1043           /* Push a 2-byte signed integer constant onto the stack. */
1044       CASE(_sipush):
1045           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1046           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1047 
1048           /* load from local variable */
1049 
1050       CASE(_aload):
1051           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1052           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1053           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1054 
1055       CASE(_iload):
1056       CASE(_fload):
1057           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1058           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1059 
1060       CASE(_lload):
1061           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1062           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1063 
1064       CASE(_dload):
1065           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1066           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1067 
1068 #undef  OPC_LOAD_n
1069 #define OPC_LOAD_n(num)                                                 \
1070       CASE(_aload_##num):                                               \
1071           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1072           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1073           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1074                                                                         \
1075       CASE(_iload_##num):                                               \
1076       CASE(_fload_##num):                                               \
1077           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1078           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1079                                                                         \
1080       CASE(_lload_##num):                                               \
1081           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1082           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1083       CASE(_dload_##num):                                               \
1084           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1085           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1086 
1087           OPC_LOAD_n(0);
1088           OPC_LOAD_n(1);
1089           OPC_LOAD_n(2);
1090           OPC_LOAD_n(3);
1091 
1092           /* store to a local variable */
1093 
1094       CASE(_astore):
1095           astore(topOfStack, -1, locals, pc[1]);
1096           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1097 
1098       CASE(_istore):
1099       CASE(_fstore):
1100           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1101           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1102 
1103       CASE(_lstore):
1104           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1105           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1106 
1107       CASE(_dstore):
1108           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1109           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1110 
1111       CASE(_wide): {
1112           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1113 
1114           opcode = pc[1];
1115 
1116           // Wide and it's sub-bytecode are counted as separate instructions. If we
1117           // don't account for this here, the bytecode trace skips the next bytecode.
1118           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1119 
1120           switch(opcode) {
1121               case Bytecodes::_aload:
1122                   VERIFY_OOP(LOCALS_OBJECT(reg));
1123                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1124                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1125 
1126               case Bytecodes::_iload:
1127               case Bytecodes::_fload:
1128                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1129                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1130 
1131               case Bytecodes::_lload:
1132                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1133                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1134 
1135               case Bytecodes::_dload:
1136                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1137                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1138 
1139               case Bytecodes::_astore:
1140                   astore(topOfStack, -1, locals, reg);
1141                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1142 
1143               case Bytecodes::_istore:
1144               case Bytecodes::_fstore:
1145                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1146                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1147 
1148               case Bytecodes::_lstore:
1149                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1150                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1151 
1152               case Bytecodes::_dstore:
1153                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1154                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1155 
1156               case Bytecodes::_iinc: {
1157                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1158                   // Be nice to see what this generates.... QQQ
1159                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1160                   UPDATE_PC_AND_CONTINUE(6);
1161               }
1162               case Bytecodes::_ret:
1163                   // Profile ret.
1164                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1165                   // Now, update the pc.
1166                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1167                   UPDATE_PC_AND_CONTINUE(0);
1168               default:
1169                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1170           }
1171       }
1172 
1173 
1174 #undef  OPC_STORE_n
1175 #define OPC_STORE_n(num)                                                \
1176       CASE(_astore_##num):                                              \
1177           astore(topOfStack, -1, locals, num);                          \
1178           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1179       CASE(_istore_##num):                                              \
1180       CASE(_fstore_##num):                                              \
1181           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1182           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1183 
1184           OPC_STORE_n(0);
1185           OPC_STORE_n(1);
1186           OPC_STORE_n(2);
1187           OPC_STORE_n(3);
1188 
1189 #undef  OPC_DSTORE_n
1190 #define OPC_DSTORE_n(num)                                               \
1191       CASE(_dstore_##num):                                              \
1192           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1193           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1194       CASE(_lstore_##num):                                              \
1195           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1196           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1197 
1198           OPC_DSTORE_n(0);
1199           OPC_DSTORE_n(1);
1200           OPC_DSTORE_n(2);
1201           OPC_DSTORE_n(3);
1202 
1203           /* stack pop, dup, and insert opcodes */
1204 
1205 
1206       CASE(_pop):                /* Discard the top item on the stack */
1207           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1208 
1209 
1210       CASE(_pop2):               /* Discard the top 2 items on the stack */
1211           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1212 
1213 
1214       CASE(_dup):               /* Duplicate the top item on the stack */
1215           dup(topOfStack);
1216           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1217 
1218       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1219           dup2(topOfStack);
1220           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1221 
1222       CASE(_dup_x1):    /* insert top word two down */
1223           dup_x1(topOfStack);
1224           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1225 
1226       CASE(_dup_x2):    /* insert top word three down  */
1227           dup_x2(topOfStack);
1228           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1229 
1230       CASE(_dup2_x1):   /* insert top 2 slots three down */
1231           dup2_x1(topOfStack);
1232           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1233 
1234       CASE(_dup2_x2):   /* insert top 2 slots four down */
1235           dup2_x2(topOfStack);
1236           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1237 
1238       CASE(_swap): {        /* swap top two elements on the stack */
1239           swap(topOfStack);
1240           UPDATE_PC_AND_CONTINUE(1);
1241       }
1242 
1243           /* Perform various binary integer operations */
1244 
1245 #undef  OPC_INT_BINARY
1246 #define OPC_INT_BINARY(opcname, opname, test)                           \
1247       CASE(_i##opcname):                                                \
1248           if (test && (STACK_INT(-1) == 0)) {                           \
1249               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1250                             "/ by zero", note_div0Check_trap);          \
1251           }                                                             \
1252           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1253                                       STACK_INT(-1)),                   \
1254                                       -2);                              \
1255           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1256       CASE(_l##opcname):                                                \
1257       {                                                                 \
1258           if (test) {                                                   \
1259             jlong l1 = STACK_LONG(-1);                                  \
1260             if (VMlongEqz(l1)) {                                        \
1261               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1262                             "/ by long zero", note_div0Check_trap);     \
1263             }                                                           \
1264           }                                                             \
1265           /* First long at (-1,-2) next long at (-3,-4) */              \
1266           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1267                                         STACK_LONG(-1)),                \
1268                                         -3);                            \
1269           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1270       }
1271 
1272       OPC_INT_BINARY(add, Add, 0);
1273       OPC_INT_BINARY(sub, Sub, 0);
1274       OPC_INT_BINARY(mul, Mul, 0);
1275       OPC_INT_BINARY(and, And, 0);
1276       OPC_INT_BINARY(or,  Or,  0);
1277       OPC_INT_BINARY(xor, Xor, 0);
1278       OPC_INT_BINARY(div, Div, 1);
1279       OPC_INT_BINARY(rem, Rem, 1);
1280 
1281 
1282       /* Perform various binary floating number operations */
1283       /* On some machine/platforms/compilers div zero check can be implicit */
1284 
1285 #undef  OPC_FLOAT_BINARY
1286 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1287       CASE(_d##opcname): {                                                 \
1288           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1289                                             STACK_DOUBLE(-1)),             \
1290                                             -3);                           \
1291           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1292       }                                                                    \
1293       CASE(_f##opcname):                                                   \
1294           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1295                                           STACK_FLOAT(-1)),                \
1296                                           -2);                             \
1297           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1298 
1299 
1300      OPC_FLOAT_BINARY(add, Add);
1301      OPC_FLOAT_BINARY(sub, Sub);
1302      OPC_FLOAT_BINARY(mul, Mul);
1303      OPC_FLOAT_BINARY(div, Div);
1304      OPC_FLOAT_BINARY(rem, Rem);
1305 
1306       /* Shift operations
1307        * Shift left int and long: ishl, lshl
1308        * Logical shift right int and long w/zero extension: iushr, lushr
1309        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1310        */
1311 
1312 #undef  OPC_SHIFT_BINARY
1313 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1314       CASE(_i##opcname):                                                \
1315          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1316                                      STACK_INT(-1)),                    \
1317                                      -2);                               \
1318          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1319       CASE(_l##opcname):                                                \
1320       {                                                                 \
1321          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1322                                        STACK_INT(-1)),                  \
1323                                        -2);                             \
1324          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1325       }
1326 
1327       OPC_SHIFT_BINARY(shl, Shl);
1328       OPC_SHIFT_BINARY(shr, Shr);
1329       OPC_SHIFT_BINARY(ushr, Ushr);
1330 
1331      /* Increment local variable by constant */
1332       CASE(_iinc):
1333       {
1334           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1335           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1336           UPDATE_PC_AND_CONTINUE(3);
1337       }
1338 
1339      /* negate the value on the top of the stack */
1340 
1341       CASE(_ineg):
1342          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1343          UPDATE_PC_AND_CONTINUE(1);
1344 
1345       CASE(_fneg):
1346          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1347          UPDATE_PC_AND_CONTINUE(1);
1348 
1349       CASE(_lneg):
1350       {
1351          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1352          UPDATE_PC_AND_CONTINUE(1);
1353       }
1354 
1355       CASE(_dneg):
1356       {
1357          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1358          UPDATE_PC_AND_CONTINUE(1);
1359       }
1360 
1361       /* Conversion operations */
1362 
1363       CASE(_i2f):       /* convert top of stack int to float */
1364          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1365          UPDATE_PC_AND_CONTINUE(1);
1366 
1367       CASE(_i2l):       /* convert top of stack int to long */
1368       {
1369           // this is ugly QQQ
1370           jlong r = VMint2Long(STACK_INT(-1));
1371           MORE_STACK(-1); // Pop
1372           SET_STACK_LONG(r, 1);
1373 
1374           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1375       }
1376 
1377       CASE(_i2d):       /* convert top of stack int to double */
1378       {
1379           // this is ugly QQQ (why cast to jlong?? )
1380           jdouble r = (jlong)STACK_INT(-1);
1381           MORE_STACK(-1); // Pop
1382           SET_STACK_DOUBLE(r, 1);
1383 
1384           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1385       }
1386 
1387       CASE(_l2i):       /* convert top of stack long to int */
1388       {
1389           jint r = VMlong2Int(STACK_LONG(-1));
1390           MORE_STACK(-2); // Pop
1391           SET_STACK_INT(r, 0);
1392           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1393       }
1394 
1395       CASE(_l2f):   /* convert top of stack long to float */
1396       {
1397           jlong r = STACK_LONG(-1);
1398           MORE_STACK(-2); // Pop
1399           SET_STACK_FLOAT(VMlong2Float(r), 0);
1400           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1401       }
1402 
1403       CASE(_l2d):       /* convert top of stack long to double */
1404       {
1405           jlong r = STACK_LONG(-1);
1406           MORE_STACK(-2); // Pop
1407           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1408           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1409       }
1410 
1411       CASE(_f2i):  /* Convert top of stack float to int */
1412           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1413           UPDATE_PC_AND_CONTINUE(1);
1414 
1415       CASE(_f2l):  /* convert top of stack float to long */
1416       {
1417           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1418           MORE_STACK(-1); // POP
1419           SET_STACK_LONG(r, 1);
1420           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1421       }
1422 
1423       CASE(_f2d):  /* convert top of stack float to double */
1424       {
1425           jfloat f;
1426           jdouble r;
1427           f = STACK_FLOAT(-1);
1428           r = (jdouble) f;
1429           MORE_STACK(-1); // POP
1430           SET_STACK_DOUBLE(r, 1);
1431           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1432       }
1433 
1434       CASE(_d2i): /* convert top of stack double to int */
1435       {
1436           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1437           MORE_STACK(-2);
1438           SET_STACK_INT(r1, 0);
1439           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1440       }
1441 
1442       CASE(_d2f): /* convert top of stack double to float */
1443       {
1444           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1445           MORE_STACK(-2);
1446           SET_STACK_FLOAT(r1, 0);
1447           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1448       }
1449 
1450       CASE(_d2l): /* convert top of stack double to long */
1451       {
1452           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1453           MORE_STACK(-2);
1454           SET_STACK_LONG(r1, 1);
1455           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1456       }
1457 
1458       CASE(_i2b):
1459           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1460           UPDATE_PC_AND_CONTINUE(1);
1461 
1462       CASE(_i2c):
1463           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1464           UPDATE_PC_AND_CONTINUE(1);
1465 
1466       CASE(_i2s):
1467           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1468           UPDATE_PC_AND_CONTINUE(1);
1469 
1470       /* comparison operators */
1471 
1472 
1473 #define COMPARISON_OP(name, comparison)                                      \
1474       CASE(_if_icmp##name): {                                                \
1475           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1476           int skip = cmp                                                     \
1477                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1478           address branch_pc = pc;                                            \
1479           /* Profile branch. */                                              \
1480           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1481           UPDATE_PC_AND_TOS(skip, -2);                                       \
1482           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1483           CONTINUE;                                                          \
1484       }                                                                      \
1485       CASE(_if##name): {                                                     \
1486           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1487           int skip = cmp                                                     \
1488                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1489           address branch_pc = pc;                                            \
1490           /* Profile branch. */                                              \
1491           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1492           UPDATE_PC_AND_TOS(skip, -1);                                       \
1493           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1494           CONTINUE;                                                          \
1495       }
1496 
1497 #define COMPARISON_OP2(name, comparison)                                     \
1498       COMPARISON_OP(name, comparison)                                        \
1499       CASE(_if_acmp##name): {                                                \
1500           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1501           int skip = cmp                                                     \
1502                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1503           address branch_pc = pc;                                            \
1504           /* Profile branch. */                                              \
1505           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1506           UPDATE_PC_AND_TOS(skip, -2);                                       \
1507           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1508           CONTINUE;                                                          \
1509       }
1510 
1511 #define NULL_COMPARISON_NOT_OP(name)                                         \
1512       CASE(_if##name): {                                                     \
1513           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1514           int skip = cmp                                                     \
1515                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1516           address branch_pc = pc;                                            \
1517           /* Profile branch. */                                              \
1518           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1519           UPDATE_PC_AND_TOS(skip, -1);                                       \
1520           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1521           CONTINUE;                                                          \
1522       }
1523 
1524 #define NULL_COMPARISON_OP(name)                                             \
1525       CASE(_if##name): {                                                     \
1526           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1527           int skip = cmp                                                     \
1528                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1529           address branch_pc = pc;                                            \
1530           /* Profile branch. */                                              \
1531           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1532           UPDATE_PC_AND_TOS(skip, -1);                                       \
1533           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1534           CONTINUE;                                                          \
1535       }
1536       COMPARISON_OP(lt, <);
1537       COMPARISON_OP(gt, >);
1538       COMPARISON_OP(le, <=);
1539       COMPARISON_OP(ge, >=);
1540       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1541       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1542       NULL_COMPARISON_OP(null);
1543       NULL_COMPARISON_NOT_OP(nonnull);
1544 
1545       /* Goto pc at specified offset in switch table. */
1546 
1547       CASE(_tableswitch): {
1548           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1549           int32_t  key  = STACK_INT(-1);
1550           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1551           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1552           int32_t  skip;
1553           key -= low;
1554           if (((uint32_t) key > (uint32_t)(high - low))) {
1555             key = -1;
1556             skip = Bytes::get_Java_u4((address)&lpc[0]);
1557           } else {
1558             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1559           }
1560           // Profile switch.
1561           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1562           // Does this really need a full backedge check (osr)?
1563           address branch_pc = pc;
1564           UPDATE_PC_AND_TOS(skip, -1);
1565           DO_BACKEDGE_CHECKS(skip, branch_pc);
1566           CONTINUE;
1567       }
1568 
1569       /* Goto pc whose table entry matches specified key. */
1570 
1571       CASE(_lookupswitch): {
1572           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1573           int32_t  key  = STACK_INT(-1);
1574           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1575           // Remember index.
1576           int      index = -1;
1577           int      newindex = 0;
1578           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1579           while (--npairs >= 0) {
1580             lpc += 2;
1581             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1582               skip = Bytes::get_Java_u4((address)&lpc[1]);
1583               index = newindex;
1584               break;
1585             }
1586             newindex += 1;
1587           }
1588           // Profile switch.
1589           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1590           address branch_pc = pc;
1591           UPDATE_PC_AND_TOS(skip, -1);
1592           DO_BACKEDGE_CHECKS(skip, branch_pc);
1593           CONTINUE;
1594       }
1595 
1596       CASE(_fcmpl):
1597       CASE(_fcmpg):
1598       {
1599           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1600                                         STACK_FLOAT(-1),
1601                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1602                         -2);
1603           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1604       }
1605 
1606       CASE(_dcmpl):
1607       CASE(_dcmpg):
1608       {
1609           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1610                                   STACK_DOUBLE(-1),
1611                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1612           MORE_STACK(-4); // Pop
1613           SET_STACK_INT(r, 0);
1614           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1615       }
1616 
1617       CASE(_lcmp):
1618       {
1619           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1620           MORE_STACK(-4);
1621           SET_STACK_INT(r, 0);
1622           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1623       }
1624 
1625 
1626       /* Return from a method */
1627 
1628       CASE(_areturn):
1629       CASE(_ireturn):
1630       CASE(_freturn):
1631       {
1632           // Allow a safepoint before returning to frame manager.
1633           SAFEPOINT;
1634 
1635           goto handle_return;
1636       }
1637 
1638       CASE(_lreturn):
1639       CASE(_dreturn):
1640       {
1641           // Allow a safepoint before returning to frame manager.
1642           SAFEPOINT;
1643           goto handle_return;
1644       }
1645 
1646       CASE(_return_register_finalizer): {
1647 
1648           oop rcvr = LOCALS_OBJECT(0);
1649           VERIFY_OOP(rcvr);
1650           if (rcvr->klass()->has_finalizer()) {
1651             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1652           }
1653           goto handle_return;
1654       }
1655       CASE(_return): {
1656 
1657           // Allow a safepoint before returning to frame manager.
1658           SAFEPOINT;
1659           goto handle_return;
1660       }
1661 
1662       /* Array access byte-codes */
1663 
1664       /* Every array access byte-code starts out like this */
1665 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1666 #define ARRAY_INTRO(arrayOff)                                                  \
1667       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1668       jint     index  = STACK_INT(arrayOff + 1);                               \
1669       char message[jintAsStringSize];                                          \
1670       CHECK_NULL(arrObj);                                                      \
1671       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1672           sprintf(message, "%d", index);                                       \
1673           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1674                         message, note_rangeCheck_trap);                        \
1675       }
1676 
1677       /* 32-bit loads. These handle conversion from < 32-bit types */
1678 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1679       {                                                                               \
1680           ARRAY_INTRO(-2);                                                            \
1681           (void)extra;                                                                \
1682           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1683                            -2);                                                       \
1684           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1685       }
1686 
1687       /* 64-bit loads */
1688 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1689       {                                                                                    \
1690           ARRAY_INTRO(-2);                                                                 \
1691           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1692           (void)extra;                                                                     \
1693           UPDATE_PC_AND_CONTINUE(1);                                                       \
1694       }
1695 
1696       CASE(_iaload):
1697           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1698       CASE(_faload):
1699           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1700       CASE(_aaload): {
1701           ARRAY_INTRO(-2);
1702           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1703           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1704       }
1705       CASE(_baload):
1706           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1707       CASE(_caload):
1708           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1709       CASE(_saload):
1710           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1711       CASE(_laload):
1712           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1713       CASE(_daload):
1714           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1715 
1716       /* 32-bit stores. These handle conversion to < 32-bit types */
1717 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1718       {                                                                              \
1719           ARRAY_INTRO(-3);                                                           \
1720           (void)extra;                                                               \
1721           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1722           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1723       }
1724 
1725       /* 64-bit stores */
1726 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1727       {                                                                              \
1728           ARRAY_INTRO(-4);                                                           \
1729           (void)extra;                                                               \
1730           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1731           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1732       }
1733 
1734       CASE(_iastore):
1735           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1736       CASE(_fastore):
1737           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1738       /*
1739        * This one looks different because of the assignability check
1740        */
1741       CASE(_aastore): {
1742           oop rhsObject = STACK_OBJECT(-1);
1743           VERIFY_OOP(rhsObject);
1744           ARRAY_INTRO( -3);
1745           // arrObj, index are set
1746           if (rhsObject != NULL) {
1747             /* Check assignability of rhsObject into arrObj */
1748             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1749             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1750             //
1751             // Check for compatibilty. This check must not GC!!
1752             // Seems way more expensive now that we must dispatch
1753             //
1754             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1755               // Decrement counter if subtype check failed.
1756               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1757               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1758             }
1759             // Profile checkcast with null_seen and receiver.
1760             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1761           } else {
1762             // Profile checkcast with null_seen and receiver.
1763             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1764           }
1765           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1766           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1767       }
1768       CASE(_bastore):
1769           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1770       CASE(_castore):
1771           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1772       CASE(_sastore):
1773           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1774       CASE(_lastore):
1775           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1776       CASE(_dastore):
1777           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1778 
1779       CASE(_arraylength):
1780       {
1781           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1782           CHECK_NULL(ary);
1783           SET_STACK_INT(ary->length(), -1);
1784           UPDATE_PC_AND_CONTINUE(1);
1785       }
1786 
1787       /* monitorenter and monitorexit for locking/unlocking an object */
1788 
1789       CASE(_monitorenter): {
1790         oop lockee = STACK_OBJECT(-1);
1791         // derefing's lockee ought to provoke implicit null check
1792         CHECK_NULL(lockee);
1793         // find a free monitor or one already allocated for this object
1794         // if we find a matching object then we need a new monitor
1795         // since this is recursive enter
1796         BasicObjectLock* limit = istate->monitor_base();
1797         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1798         BasicObjectLock* entry = NULL;
1799         while (most_recent != limit ) {
1800           if (most_recent->obj() == NULL) entry = most_recent;
1801           else if (most_recent->obj() == lockee) break;
1802           most_recent++;
1803         }
1804         if (entry != NULL) {
1805           entry->set_obj(lockee);
1806           int success = false;
1807           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1808 
1809           markOop mark = lockee->mark();
1810           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1811           // implies UseBiasedLocking
1812           if (mark->has_bias_pattern()) {
1813             uintptr_t thread_ident;
1814             uintptr_t anticipated_bias_locking_value;
1815             thread_ident = (uintptr_t)istate->thread();
1816             anticipated_bias_locking_value =
1817               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1818               ~((uintptr_t) markOopDesc::age_mask_in_place);
1819 
1820             if  (anticipated_bias_locking_value == 0) {
1821               // already biased towards this thread, nothing to do
1822               if (PrintBiasedLockingStatistics) {
1823                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1824               }
1825               success = true;
1826             }
1827             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1828               // try revoke bias
1829               markOop header = lockee->klass()->prototype_header();
1830               if (hash != markOopDesc::no_hash) {
1831                 header = header->copy_set_hash(hash);
1832               }
1833               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1834                 if (PrintBiasedLockingStatistics)
1835                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1836               }
1837             }
1838             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1839               // try rebias
1840               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1841               if (hash != markOopDesc::no_hash) {
1842                 new_header = new_header->copy_set_hash(hash);
1843               }
1844               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1845                 if (PrintBiasedLockingStatistics)
1846                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1847               }
1848               else {
1849                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1850               }
1851               success = true;
1852             }
1853             else {
1854               // try to bias towards thread in case object is anonymously biased
1855               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1856                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1857                                                               epoch_mask_in_place));
1858               if (hash != markOopDesc::no_hash) {
1859                 header = header->copy_set_hash(hash);
1860               }
1861               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1862               // debugging hint
1863               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1864               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1865                 if (PrintBiasedLockingStatistics)
1866                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1867               }
1868               else {
1869                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1870               }
1871               success = true;
1872             }
1873           }
1874 
1875           // traditional lightweight locking
1876           if (!success) {
1877             markOop displaced = lockee->mark()->set_unlocked();
1878             entry->lock()->set_displaced_header(displaced);
1879             bool call_vm = UseHeavyMonitors;
1880             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1881               // Is it simple recursive case?
1882               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1883                 entry->lock()->set_displaced_header(NULL);
1884               } else {
1885                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1886               }
1887             }
1888           }
1889           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1890         } else {
1891           istate->set_msg(more_monitors);
1892           UPDATE_PC_AND_RETURN(0); // Re-execute
1893         }
1894       }
1895 
1896       CASE(_monitorexit): {
1897         oop lockee = STACK_OBJECT(-1);
1898         CHECK_NULL(lockee);
1899         // derefing's lockee ought to provoke implicit null check
1900         // find our monitor slot
1901         BasicObjectLock* limit = istate->monitor_base();
1902         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1903         while (most_recent != limit ) {
1904           if ((most_recent)->obj() == lockee) {
1905             BasicLock* lock = most_recent->lock();
1906             markOop header = lock->displaced_header();
1907             most_recent->set_obj(NULL);
1908             if (!lockee->mark()->has_bias_pattern()) {
1909               bool call_vm = UseHeavyMonitors;
1910               // If it isn't recursive we either must swap old header or call the runtime
1911               if (header != NULL || call_vm) {
1912                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1913                   // restore object for the slow case
1914                   most_recent->set_obj(lockee);
1915                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1916                 }
1917               }
1918             }
1919             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1920           }
1921           most_recent++;
1922         }
1923         // Need to throw illegal monitor state exception
1924         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1925         ShouldNotReachHere();
1926       }
1927 
1928       /* All of the non-quick opcodes. */
1929 
1930       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1931        *  constant pool index in the instruction.
1932        */
1933       CASE(_getfield):
1934       CASE(_getstatic):
1935         {
1936           u2 index;
1937           ConstantPoolCacheEntry* cache;
1938           index = Bytes::get_native_u2(pc+1);
1939 
1940           // QQQ Need to make this as inlined as possible. Probably need to
1941           // split all the bytecode cases out so c++ compiler has a chance
1942           // for constant prop to fold everything possible away.
1943 
1944           cache = cp->entry_at(index);
1945           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1946             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1947                     handle_exception);
1948             cache = cp->entry_at(index);
1949           }
1950 
1951 #ifdef VM_JVMTI
1952           if (_jvmti_interp_events) {
1953             int *count_addr;
1954             oop obj;
1955             // Check to see if a field modification watch has been set
1956             // before we take the time to call into the VM.
1957             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1958             if ( *count_addr > 0 ) {
1959               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1960                 obj = (oop)NULL;
1961               } else {
1962                 obj = (oop) STACK_OBJECT(-1);
1963                 VERIFY_OOP(obj);
1964               }
1965               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1966                                           obj,
1967                                           cache),
1968                                           handle_exception);
1969             }
1970           }
1971 #endif /* VM_JVMTI */
1972 
1973           oop obj;
1974           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1975             Klass* k = cache->f1_as_klass();
1976             obj = k->java_mirror();
1977             MORE_STACK(1);  // Assume single slot push
1978           } else {
1979             obj = (oop) STACK_OBJECT(-1);
1980             CHECK_NULL(obj);
1981           }
1982 
1983           //
1984           // Now store the result on the stack
1985           //
1986           TosState tos_type = cache->flag_state();
1987           int field_offset = cache->f2_as_index();
1988           if (cache->is_volatile()) {
1989             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1990               OrderAccess::fence();
1991             }
1992             if (tos_type == atos) {
1993               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1994               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1995             } else if (tos_type == itos) {
1996               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1997             } else if (tos_type == ltos) {
1998               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1999               MORE_STACK(1);
2000             } else if (tos_type == btos) {
2001               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2002             } else if (tos_type == ctos) {
2003               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2004             } else if (tos_type == stos) {
2005               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2006             } else if (tos_type == ftos) {
2007               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2008             } else {
2009               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2010               MORE_STACK(1);
2011             }
2012           } else {
2013             if (tos_type == atos) {
2014               VERIFY_OOP(obj->obj_field(field_offset));
2015               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2016             } else if (tos_type == itos) {
2017               SET_STACK_INT(obj->int_field(field_offset), -1);
2018             } else if (tos_type == ltos) {
2019               SET_STACK_LONG(obj->long_field(field_offset), 0);
2020               MORE_STACK(1);
2021             } else if (tos_type == btos) {
2022               SET_STACK_INT(obj->byte_field(field_offset), -1);
2023             } else if (tos_type == ctos) {
2024               SET_STACK_INT(obj->char_field(field_offset), -1);
2025             } else if (tos_type == stos) {
2026               SET_STACK_INT(obj->short_field(field_offset), -1);
2027             } else if (tos_type == ftos) {
2028               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2029             } else {
2030               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2031               MORE_STACK(1);
2032             }
2033           }
2034 
2035           UPDATE_PC_AND_CONTINUE(3);
2036          }
2037 
2038       CASE(_putfield):
2039       CASE(_putstatic):
2040         {
2041           u2 index = Bytes::get_native_u2(pc+1);
2042           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2043           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2044             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2045                     handle_exception);
2046             cache = cp->entry_at(index);
2047           }
2048 
2049 #ifdef VM_JVMTI
2050           if (_jvmti_interp_events) {
2051             int *count_addr;
2052             oop obj;
2053             // Check to see if a field modification watch has been set
2054             // before we take the time to call into the VM.
2055             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2056             if ( *count_addr > 0 ) {
2057               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2058                 obj = (oop)NULL;
2059               }
2060               else {
2061                 if (cache->is_long() || cache->is_double()) {
2062                   obj = (oop) STACK_OBJECT(-3);
2063                 } else {
2064                   obj = (oop) STACK_OBJECT(-2);
2065                 }
2066                 VERIFY_OOP(obj);
2067               }
2068 
2069               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2070                                           obj,
2071                                           cache,
2072                                           (jvalue *)STACK_SLOT(-1)),
2073                                           handle_exception);
2074             }
2075           }
2076 #endif /* VM_JVMTI */
2077 
2078           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2079           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2080 
2081           oop obj;
2082           int count;
2083           TosState tos_type = cache->flag_state();
2084 
2085           count = -1;
2086           if (tos_type == ltos || tos_type == dtos) {
2087             --count;
2088           }
2089           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2090             Klass* k = cache->f1_as_klass();
2091             obj = k->java_mirror();
2092           } else {
2093             --count;
2094             obj = (oop) STACK_OBJECT(count);
2095             CHECK_NULL(obj);
2096           }
2097 
2098           //
2099           // Now store the result
2100           //
2101           int field_offset = cache->f2_as_index();
2102           if (cache->is_volatile()) {
2103             if (tos_type == itos) {
2104               obj->release_int_field_put(field_offset, STACK_INT(-1));
2105             } else if (tos_type == atos) {
2106               VERIFY_OOP(STACK_OBJECT(-1));
2107               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2108             } else if (tos_type == btos) {
2109               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2110             } else if (tos_type == ltos) {
2111               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2112             } else if (tos_type == ctos) {
2113               obj->release_char_field_put(field_offset, STACK_INT(-1));
2114             } else if (tos_type == stos) {
2115               obj->release_short_field_put(field_offset, STACK_INT(-1));
2116             } else if (tos_type == ftos) {
2117               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2118             } else {
2119               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2120             }
2121             OrderAccess::storeload();
2122           } else {
2123             if (tos_type == itos) {
2124               obj->int_field_put(field_offset, STACK_INT(-1));
2125             } else if (tos_type == atos) {
2126               VERIFY_OOP(STACK_OBJECT(-1));
2127               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2128             } else if (tos_type == btos) {
2129               obj->byte_field_put(field_offset, STACK_INT(-1));
2130             } else if (tos_type == ltos) {
2131               obj->long_field_put(field_offset, STACK_LONG(-1));
2132             } else if (tos_type == ctos) {
2133               obj->char_field_put(field_offset, STACK_INT(-1));
2134             } else if (tos_type == stos) {
2135               obj->short_field_put(field_offset, STACK_INT(-1));
2136             } else if (tos_type == ftos) {
2137               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2138             } else {
2139               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2140             }
2141           }
2142 
2143           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2144         }
2145 
2146       CASE(_new): {
2147         u2 index = Bytes::get_Java_u2(pc+1);
2148         ConstantPool* constants = istate->method()->constants();
2149         if (!constants->tag_at(index).is_unresolved_klass()) {
2150           // Make sure klass is initialized and doesn't have a finalizer
2151           Klass* entry = constants->slot_at(index).get_klass();
2152           InstanceKlass* ik = InstanceKlass::cast(entry);
2153           if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2154             size_t obj_size = ik->size_helper();
2155             oop result = NULL;
2156             // If the TLAB isn't pre-zeroed then we'll have to do it
2157             bool need_zero = !ZeroTLAB;
2158             if (UseTLAB) {
2159               result = (oop) THREAD->tlab().allocate(obj_size);
2160             }
2161             // Disable non-TLAB-based fast-path, because profiling requires that all
2162             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2163             // returns NULL.
2164 #ifndef CC_INTERP_PROFILE
2165             if (result == NULL) {
2166               need_zero = true;
2167               // Try allocate in shared eden
2168             retry:
2169               HeapWord* compare_to = *Universe::heap()->top_addr();
2170               HeapWord* new_top = compare_to + obj_size;
2171               if (new_top <= *Universe::heap()->end_addr()) {
2172                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2173                   goto retry;
2174                 }
2175                 result = (oop) compare_to;
2176               }
2177             }
2178 #endif
2179             if (result != NULL) {
2180               // Initialize object (if nonzero size and need) and then the header
2181               if (need_zero ) {
2182                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2183                 obj_size -= sizeof(oopDesc) / oopSize;
2184                 if (obj_size > 0 ) {
2185                   memset(to_zero, 0, obj_size * HeapWordSize);
2186                 }
2187               }
2188               if (UseBiasedLocking) {
2189                 result->set_mark(ik->prototype_header());
2190               } else {
2191                 result->set_mark(markOopDesc::prototype());
2192               }
2193               result->set_klass_gap(0);
2194               result->set_klass(ik);
2195               // Must prevent reordering of stores for object initialization
2196               // with stores that publish the new object.
2197               OrderAccess::storestore();
2198               SET_STACK_OBJECT(result, 0);
2199               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2200             }
2201           }
2202         }
2203         // Slow case allocation
2204         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2205                 handle_exception);
2206         // Must prevent reordering of stores for object initialization
2207         // with stores that publish the new object.
2208         OrderAccess::storestore();
2209         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2210         THREAD->set_vm_result(NULL);
2211         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2212       }
2213       CASE(_anewarray): {
2214         u2 index = Bytes::get_Java_u2(pc+1);
2215         jint size = STACK_INT(-1);
2216         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2217                 handle_exception);
2218         // Must prevent reordering of stores for object initialization
2219         // with stores that publish the new object.
2220         OrderAccess::storestore();
2221         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2222         THREAD->set_vm_result(NULL);
2223         UPDATE_PC_AND_CONTINUE(3);
2224       }
2225       CASE(_multianewarray): {
2226         jint dims = *(pc+3);
2227         jint size = STACK_INT(-1);
2228         // stack grows down, dimensions are up!
2229         jint *dimarray =
2230                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2231                                       Interpreter::stackElementWords-1];
2232         //adjust pointer to start of stack element
2233         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2234                 handle_exception);
2235         // Must prevent reordering of stores for object initialization
2236         // with stores that publish the new object.
2237         OrderAccess::storestore();
2238         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2239         THREAD->set_vm_result(NULL);
2240         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2241       }
2242       CASE(_checkcast):
2243           if (STACK_OBJECT(-1) != NULL) {
2244             VERIFY_OOP(STACK_OBJECT(-1));
2245             u2 index = Bytes::get_Java_u2(pc+1);
2246             // Constant pool may have actual klass or unresolved klass. If it is
2247             // unresolved we must resolve it.
2248             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2249               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2250             }
2251             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2252             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2253             //
2254             // Check for compatibilty. This check must not GC!!
2255             // Seems way more expensive now that we must dispatch.
2256             //
2257             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2258               // Decrement counter at checkcast.
2259               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2260               ResourceMark rm(THREAD);
2261               const char* objName = objKlass->external_name();
2262               const char* klassName = klassOf->external_name();
2263               char* message = SharedRuntime::generate_class_cast_message(
2264                 objName, klassName);
2265               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2266             }
2267             // Profile checkcast with null_seen and receiver.
2268             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2269           } else {
2270             // Profile checkcast with null_seen and receiver.
2271             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2272           }
2273           UPDATE_PC_AND_CONTINUE(3);
2274 
2275       CASE(_instanceof):
2276           if (STACK_OBJECT(-1) == NULL) {
2277             SET_STACK_INT(0, -1);
2278             // Profile instanceof with null_seen and receiver.
2279             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2280           } else {
2281             VERIFY_OOP(STACK_OBJECT(-1));
2282             u2 index = Bytes::get_Java_u2(pc+1);
2283             // Constant pool may have actual klass or unresolved klass. If it is
2284             // unresolved we must resolve it.
2285             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2286               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2287             }
2288             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2289             Klass* objKlass = STACK_OBJECT(-1)->klass();
2290             //
2291             // Check for compatibilty. This check must not GC!!
2292             // Seems way more expensive now that we must dispatch.
2293             //
2294             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2295               SET_STACK_INT(1, -1);
2296             } else {
2297               SET_STACK_INT(0, -1);
2298               // Decrement counter at checkcast.
2299               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2300             }
2301             // Profile instanceof with null_seen and receiver.
2302             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2303           }
2304           UPDATE_PC_AND_CONTINUE(3);
2305 
2306       CASE(_ldc_w):
2307       CASE(_ldc):
2308         {
2309           u2 index;
2310           bool wide = false;
2311           int incr = 2; // frequent case
2312           if (opcode == Bytecodes::_ldc) {
2313             index = pc[1];
2314           } else {
2315             index = Bytes::get_Java_u2(pc+1);
2316             incr = 3;
2317             wide = true;
2318           }
2319 
2320           ConstantPool* constants = METHOD->constants();
2321           switch (constants->tag_at(index).value()) {
2322           case JVM_CONSTANT_Integer:
2323             SET_STACK_INT(constants->int_at(index), 0);
2324             break;
2325 
2326           case JVM_CONSTANT_Float:
2327             SET_STACK_FLOAT(constants->float_at(index), 0);
2328             break;
2329 
2330           case JVM_CONSTANT_String:
2331             {
2332               oop result = constants->resolved_references()->obj_at(index);
2333               if (result == NULL) {
2334                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2335                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2336                 THREAD->set_vm_result(NULL);
2337               } else {
2338                 VERIFY_OOP(result);
2339                 SET_STACK_OBJECT(result, 0);
2340               }
2341             break;
2342             }
2343 
2344           case JVM_CONSTANT_Class:
2345             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2346             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2347             break;
2348 
2349           case JVM_CONSTANT_UnresolvedClass:
2350           case JVM_CONSTANT_UnresolvedClassInError:
2351             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2352             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2353             THREAD->set_vm_result(NULL);
2354             break;
2355 
2356           default:  ShouldNotReachHere();
2357           }
2358           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2359         }
2360 
2361       CASE(_ldc2_w):
2362         {
2363           u2 index = Bytes::get_Java_u2(pc+1);
2364 
2365           ConstantPool* constants = METHOD->constants();
2366           switch (constants->tag_at(index).value()) {
2367 
2368           case JVM_CONSTANT_Long:
2369              SET_STACK_LONG(constants->long_at(index), 1);
2370             break;
2371 
2372           case JVM_CONSTANT_Double:
2373              SET_STACK_DOUBLE(constants->double_at(index), 1);
2374             break;
2375           default:  ShouldNotReachHere();
2376           }
2377           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2378         }
2379 
2380       CASE(_fast_aldc_w):
2381       CASE(_fast_aldc): {
2382         u2 index;
2383         int incr;
2384         if (opcode == Bytecodes::_fast_aldc) {
2385           index = pc[1];
2386           incr = 2;
2387         } else {
2388           index = Bytes::get_native_u2(pc+1);
2389           incr = 3;
2390         }
2391 
2392         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2393         // This kind of CP cache entry does not need to match the flags byte, because
2394         // there is a 1-1 relation between bytecode type and CP entry type.
2395         ConstantPool* constants = METHOD->constants();
2396         oop result = constants->resolved_references()->obj_at(index);
2397         if (result == NULL) {
2398           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2399                   handle_exception);
2400           result = THREAD->vm_result();
2401         }
2402 
2403         VERIFY_OOP(result);
2404         SET_STACK_OBJECT(result, 0);
2405         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2406       }
2407 
2408       CASE(_invokedynamic): {
2409 
2410         u4 index = Bytes::get_native_u4(pc+1);
2411         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2412 
2413         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2414         // This kind of CP cache entry does not need to match the flags byte, because
2415         // there is a 1-1 relation between bytecode type and CP entry type.
2416         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2417           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2418                   handle_exception);
2419           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2420         }
2421 
2422         Method* method = cache->f1_as_method();
2423         if (VerifyOops) method->verify();
2424 
2425         if (cache->has_appendix()) {
2426           ConstantPool* constants = METHOD->constants();
2427           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2428           MORE_STACK(1);
2429         }
2430 
2431         istate->set_msg(call_method);
2432         istate->set_callee(method);
2433         istate->set_callee_entry_point(method->from_interpreted_entry());
2434         istate->set_bcp_advance(5);
2435 
2436         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2437         BI_PROFILE_UPDATE_CALL();
2438 
2439         UPDATE_PC_AND_RETURN(0); // I'll be back...
2440       }
2441 
2442       CASE(_invokehandle): {
2443 
2444         u2 index = Bytes::get_native_u2(pc+1);
2445         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2446 
2447         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2448           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2449                   handle_exception);
2450           cache = cp->entry_at(index);
2451         }
2452 
2453         Method* method = cache->f1_as_method();
2454         if (VerifyOops) method->verify();
2455 
2456         if (cache->has_appendix()) {
2457           ConstantPool* constants = METHOD->constants();
2458           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2459           MORE_STACK(1);
2460         }
2461 
2462         istate->set_msg(call_method);
2463         istate->set_callee(method);
2464         istate->set_callee_entry_point(method->from_interpreted_entry());
2465         istate->set_bcp_advance(3);
2466 
2467         // Invokehandle has got a call counter, just like a final call -> increment!
2468         BI_PROFILE_UPDATE_FINALCALL();
2469 
2470         UPDATE_PC_AND_RETURN(0); // I'll be back...
2471       }
2472 
2473       CASE(_invokeinterface): {
2474         u2 index = Bytes::get_native_u2(pc+1);
2475 
2476         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2477         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2478 
2479         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2480         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2481           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2482                   handle_exception);
2483           cache = cp->entry_at(index);
2484         }
2485 
2486         istate->set_msg(call_method);
2487 
2488         // Special case of invokeinterface called for virtual method of
2489         // java.lang.Object.  See cpCacheOop.cpp for details.
2490         // This code isn't produced by javac, but could be produced by
2491         // another compliant java compiler.
2492         if (cache->is_forced_virtual()) {
2493           Method* callee;
2494           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2495           if (cache->is_vfinal()) {
2496             callee = cache->f2_as_vfinal_method();
2497             // Profile 'special case of invokeinterface' final call.
2498             BI_PROFILE_UPDATE_FINALCALL();
2499           } else {
2500             // Get receiver.
2501             int parms = cache->parameter_size();
2502             // Same comments as invokevirtual apply here.
2503             oop rcvr = STACK_OBJECT(-parms);
2504             VERIFY_OOP(rcvr);
2505             InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2506             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2507             // Profile 'special case of invokeinterface' virtual call.
2508             BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2509           }
2510           istate->set_callee(callee);
2511           istate->set_callee_entry_point(callee->from_interpreted_entry());
2512 #ifdef VM_JVMTI
2513           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2514             istate->set_callee_entry_point(callee->interpreter_entry());
2515           }
2516 #endif /* VM_JVMTI */
2517           istate->set_bcp_advance(5);
2518           UPDATE_PC_AND_RETURN(0); // I'll be back...
2519         }
2520 
2521         // this could definitely be cleaned up QQQ
2522         Method* callee;
2523         Klass* iclass = cache->f1_as_klass();
2524         // InstanceKlass* interface = (InstanceKlass*) iclass;
2525         // get receiver
2526         int parms = cache->parameter_size();
2527         oop rcvr = STACK_OBJECT(-parms);
2528         CHECK_NULL(rcvr);
2529         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2530         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2531         int i;
2532         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2533           if (ki->interface_klass() == iclass) break;
2534         }
2535         // If the interface isn't found, this class doesn't implement this
2536         // interface.  The link resolver checks this but only for the first
2537         // time this interface is called.
2538         if (i == int2->itable_length()) {
2539           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2540         }
2541         int mindex = cache->f2_as_index();
2542         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2543         callee = im[mindex].method();
2544         if (callee == NULL) {
2545           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2546         }
2547 
2548         // Profile virtual call.
2549         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2550 
2551         istate->set_callee(callee);
2552         istate->set_callee_entry_point(callee->from_interpreted_entry());
2553 #ifdef VM_JVMTI
2554         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2555           istate->set_callee_entry_point(callee->interpreter_entry());
2556         }
2557 #endif /* VM_JVMTI */
2558         istate->set_bcp_advance(5);
2559         UPDATE_PC_AND_RETURN(0); // I'll be back...
2560       }
2561 
2562       CASE(_invokevirtual):
2563       CASE(_invokespecial):
2564       CASE(_invokestatic): {
2565         u2 index = Bytes::get_native_u2(pc+1);
2566 
2567         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2568         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2569         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2570 
2571         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2572           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2573                   handle_exception);
2574           cache = cp->entry_at(index);
2575         }
2576 
2577         istate->set_msg(call_method);
2578         {
2579           Method* callee;
2580           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2581             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2582             if (cache->is_vfinal()) {
2583               callee = cache->f2_as_vfinal_method();
2584               // Profile final call.
2585               BI_PROFILE_UPDATE_FINALCALL();
2586             } else {
2587               // get receiver
2588               int parms = cache->parameter_size();
2589               // this works but needs a resourcemark and seems to create a vtable on every call:
2590               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2591               //
2592               // this fails with an assert
2593               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2594               // but this works
2595               oop rcvr = STACK_OBJECT(-parms);
2596               VERIFY_OOP(rcvr);
2597               InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2598               /*
2599                 Executing this code in java.lang.String:
2600                     public String(char value[]) {
2601                           this.count = value.length;
2602                           this.value = (char[])value.clone();
2603                      }
2604 
2605                  a find on rcvr->klass() reports:
2606                  {type array char}{type array class}
2607                   - klass: {other class}
2608 
2609                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2610                   because rcvr->klass()->is_instance_klass() == 0
2611                   However it seems to have a vtable in the right location. Huh?
2612                   Because vtables have the same offset for ArrayKlass and InstanceKlass.
2613               */
2614               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2615               // Profile virtual call.
2616               BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2617             }
2618           } else {
2619             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2620               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2621             }
2622             callee = cache->f1_as_method();
2623 
2624             // Profile call.
2625             BI_PROFILE_UPDATE_CALL();
2626           }
2627 
2628           istate->set_callee(callee);
2629           istate->set_callee_entry_point(callee->from_interpreted_entry());
2630 #ifdef VM_JVMTI
2631           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2632             istate->set_callee_entry_point(callee->interpreter_entry());
2633           }
2634 #endif /* VM_JVMTI */
2635           istate->set_bcp_advance(3);
2636           UPDATE_PC_AND_RETURN(0); // I'll be back...
2637         }
2638       }
2639 
2640       /* Allocate memory for a new java object. */
2641 
2642       CASE(_newarray): {
2643         BasicType atype = (BasicType) *(pc+1);
2644         jint size = STACK_INT(-1);
2645         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2646                 handle_exception);
2647         // Must prevent reordering of stores for object initialization
2648         // with stores that publish the new object.
2649         OrderAccess::storestore();
2650         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2651         THREAD->set_vm_result(NULL);
2652 
2653         UPDATE_PC_AND_CONTINUE(2);
2654       }
2655 
2656       /* Throw an exception. */
2657 
2658       CASE(_athrow): {
2659           oop except_oop = STACK_OBJECT(-1);
2660           CHECK_NULL(except_oop);
2661           // set pending_exception so we use common code
2662           THREAD->set_pending_exception(except_oop, NULL, 0);
2663           goto handle_exception;
2664       }
2665 
2666       /* goto and jsr. They are exactly the same except jsr pushes
2667        * the address of the next instruction first.
2668        */
2669 
2670       CASE(_jsr): {
2671           /* push bytecode index on stack */
2672           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2673           MORE_STACK(1);
2674           /* FALL THROUGH */
2675       }
2676 
2677       CASE(_goto):
2678       {
2679           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2680           // Profile jump.
2681           BI_PROFILE_UPDATE_JUMP();
2682           address branch_pc = pc;
2683           UPDATE_PC(offset);
2684           DO_BACKEDGE_CHECKS(offset, branch_pc);
2685           CONTINUE;
2686       }
2687 
2688       CASE(_jsr_w): {
2689           /* push return address on the stack */
2690           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2691           MORE_STACK(1);
2692           /* FALL THROUGH */
2693       }
2694 
2695       CASE(_goto_w):
2696       {
2697           int32_t offset = Bytes::get_Java_u4(pc + 1);
2698           // Profile jump.
2699           BI_PROFILE_UPDATE_JUMP();
2700           address branch_pc = pc;
2701           UPDATE_PC(offset);
2702           DO_BACKEDGE_CHECKS(offset, branch_pc);
2703           CONTINUE;
2704       }
2705 
2706       /* return from a jsr or jsr_w */
2707 
2708       CASE(_ret): {
2709           // Profile ret.
2710           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2711           // Now, update the pc.
2712           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2713           UPDATE_PC_AND_CONTINUE(0);
2714       }
2715 
2716       /* debugger breakpoint */
2717 
2718       CASE(_breakpoint): {
2719           Bytecodes::Code original_bytecode;
2720           DECACHE_STATE();
2721           SET_LAST_JAVA_FRAME();
2722           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2723                               METHOD, pc);
2724           RESET_LAST_JAVA_FRAME();
2725           CACHE_STATE();
2726           if (THREAD->has_pending_exception()) goto handle_exception;
2727             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2728                                                     handle_exception);
2729 
2730           opcode = (jubyte)original_bytecode;
2731           goto opcode_switch;
2732       }
2733 
2734       DEFAULT:
2735           fatal("Unimplemented opcode %d = %s", opcode,
2736                 Bytecodes::name((Bytecodes::Code)opcode));
2737           goto finish;
2738 
2739       } /* switch(opc) */
2740 
2741 
2742 #ifdef USELABELS
2743     check_for_exception:
2744 #endif
2745     {
2746       if (!THREAD->has_pending_exception()) {
2747         CONTINUE;
2748       }
2749       /* We will be gcsafe soon, so flush our state. */
2750       DECACHE_PC();
2751       goto handle_exception;
2752     }
2753   do_continue: ;
2754 
2755   } /* while (1) interpreter loop */
2756 
2757 
2758   // An exception exists in the thread state see whether this activation can handle it
2759   handle_exception: {
2760 
2761     HandleMarkCleaner __hmc(THREAD);
2762     Handle except_oop(THREAD, THREAD->pending_exception());
2763     // Prevent any subsequent HandleMarkCleaner in the VM
2764     // from freeing the except_oop handle.
2765     HandleMark __hm(THREAD);
2766 
2767     THREAD->clear_pending_exception();
2768     assert(except_oop(), "No exception to process");
2769     intptr_t continuation_bci;
2770     // expression stack is emptied
2771     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2772     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2773             handle_exception);
2774 
2775     except_oop = THREAD->vm_result();
2776     THREAD->set_vm_result(NULL);
2777     if (continuation_bci >= 0) {
2778       // Place exception on top of stack
2779       SET_STACK_OBJECT(except_oop(), 0);
2780       MORE_STACK(1);
2781       pc = METHOD->code_base() + continuation_bci;
2782       if (log_is_enabled(Info, exceptions)) {
2783         ResourceMark rm(thread);
2784         stringStream tempst;
2785         tempst.print("interpreter method <%s>\n"
2786                      " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2787                      METHOD->print_value_string(),
2788                      (int)(istate->bcp() - METHOD->code_base()),
2789                      (int)continuation_bci, p2i(THREAD));
2790         Exceptions::log_exception(except_oop, tempst);
2791       }
2792       // for AbortVMOnException flag
2793       Exceptions::debug_check_abort(except_oop);
2794 
2795       // Update profiling data.
2796       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2797       goto run;
2798     }
2799     if (log_is_enabled(Info, exceptions)) {
2800       ResourceMark rm;
2801       stringStream tempst;
2802       tempst.print("interpreter method <%s>\n"
2803              " at bci %d, unwinding for thread " INTPTR_FORMAT,
2804              METHOD->print_value_string(),
2805              (int)(istate->bcp() - METHOD->code_base()),
2806              p2i(THREAD));
2807       Exceptions::log_exception(except_oop, tempst);
2808     }
2809     // for AbortVMOnException flag
2810     Exceptions::debug_check_abort(except_oop);
2811 
2812     // No handler in this activation, unwind and try again
2813     THREAD->set_pending_exception(except_oop(), NULL, 0);
2814     goto handle_return;
2815   }  // handle_exception:
2816 
2817   // Return from an interpreter invocation with the result of the interpretation
2818   // on the top of the Java Stack (or a pending exception)
2819 
2820   handle_Pop_Frame: {
2821 
2822     // We don't really do anything special here except we must be aware
2823     // that we can get here without ever locking the method (if sync).
2824     // Also we skip the notification of the exit.
2825 
2826     istate->set_msg(popping_frame);
2827     // Clear pending so while the pop is in process
2828     // we don't start another one if a call_vm is done.
2829     THREAD->clr_pop_frame_pending();
2830     // Let interpreter (only) see the we're in the process of popping a frame
2831     THREAD->set_pop_frame_in_process();
2832 
2833     goto handle_return;
2834 
2835   } // handle_Pop_Frame
2836 
2837   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2838   // given by the invoker of the early return.
2839   handle_Early_Return: {
2840 
2841     istate->set_msg(early_return);
2842 
2843     // Clear expression stack.
2844     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2845 
2846     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2847 
2848     // Push the value to be returned.
2849     switch (istate->method()->result_type()) {
2850       case T_BOOLEAN:
2851       case T_SHORT:
2852       case T_BYTE:
2853       case T_CHAR:
2854       case T_INT:
2855         SET_STACK_INT(ts->earlyret_value().i, 0);
2856         MORE_STACK(1);
2857         break;
2858       case T_LONG:
2859         SET_STACK_LONG(ts->earlyret_value().j, 1);
2860         MORE_STACK(2);
2861         break;
2862       case T_FLOAT:
2863         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2864         MORE_STACK(1);
2865         break;
2866       case T_DOUBLE:
2867         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2868         MORE_STACK(2);
2869         break;
2870       case T_ARRAY:
2871       case T_OBJECT:
2872         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2873         MORE_STACK(1);
2874         break;
2875     }
2876 
2877     ts->clr_earlyret_value();
2878     ts->set_earlyret_oop(NULL);
2879     ts->clr_earlyret_pending();
2880 
2881     // Fall through to handle_return.
2882 
2883   } // handle_Early_Return
2884 
2885   handle_return: {
2886     // A storestore barrier is required to order initialization of
2887     // final fields with publishing the reference to the object that
2888     // holds the field. Without the barrier the value of final fields
2889     // can be observed to change.
2890     OrderAccess::storestore();
2891 
2892     DECACHE_STATE();
2893 
2894     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2895     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2896     Handle original_exception(THREAD, THREAD->pending_exception());
2897     Handle illegal_state_oop(THREAD, NULL);
2898 
2899     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2900     // in any following VM entries from freeing our live handles, but illegal_state_oop
2901     // isn't really allocated yet and so doesn't become live until later and
2902     // in unpredicatable places. Instead we must protect the places where we enter the
2903     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2904     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2905     // unfortunately isn't possible.
2906 
2907     THREAD->clear_pending_exception();
2908 
2909     //
2910     // As far as we are concerned we have returned. If we have a pending exception
2911     // that will be returned as this invocation's result. However if we get any
2912     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2913     // will be our final result (i.e. monitor exception trumps a pending exception).
2914     //
2915 
2916     // If we never locked the method (or really passed the point where we would have),
2917     // there is no need to unlock it (or look for other monitors), since that
2918     // could not have happened.
2919 
2920     if (THREAD->do_not_unlock()) {
2921 
2922       // Never locked, reset the flag now because obviously any caller must
2923       // have passed their point of locking for us to have gotten here.
2924 
2925       THREAD->clr_do_not_unlock();
2926     } else {
2927       // At this point we consider that we have returned. We now check that the
2928       // locks were properly block structured. If we find that they were not
2929       // used properly we will return with an illegal monitor exception.
2930       // The exception is checked by the caller not the callee since this
2931       // checking is considered to be part of the invocation and therefore
2932       // in the callers scope (JVM spec 8.13).
2933       //
2934       // Another weird thing to watch for is if the method was locked
2935       // recursively and then not exited properly. This means we must
2936       // examine all the entries in reverse time(and stack) order and
2937       // unlock as we find them. If we find the method monitor before
2938       // we are at the initial entry then we should throw an exception.
2939       // It is not clear the template based interpreter does this
2940       // correctly
2941 
2942       BasicObjectLock* base = istate->monitor_base();
2943       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2944       bool method_unlock_needed = METHOD->is_synchronized();
2945       // We know the initial monitor was used for the method don't check that
2946       // slot in the loop
2947       if (method_unlock_needed) base--;
2948 
2949       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2950       while (end < base) {
2951         oop lockee = end->obj();
2952         if (lockee != NULL) {
2953           BasicLock* lock = end->lock();
2954           markOop header = lock->displaced_header();
2955           end->set_obj(NULL);
2956 
2957           if (!lockee->mark()->has_bias_pattern()) {
2958             // If it isn't recursive we either must swap old header or call the runtime
2959             if (header != NULL) {
2960               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2961                 // restore object for the slow case
2962                 end->set_obj(lockee);
2963                 {
2964                   // Prevent any HandleMarkCleaner from freeing our live handles
2965                   HandleMark __hm(THREAD);
2966                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2967                 }
2968               }
2969             }
2970           }
2971           // One error is plenty
2972           if (illegal_state_oop() == NULL && !suppress_error) {
2973             {
2974               // Prevent any HandleMarkCleaner from freeing our live handles
2975               HandleMark __hm(THREAD);
2976               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2977             }
2978             assert(THREAD->has_pending_exception(), "Lost our exception!");
2979             illegal_state_oop = THREAD->pending_exception();
2980             THREAD->clear_pending_exception();
2981           }
2982         }
2983         end++;
2984       }
2985       // Unlock the method if needed
2986       if (method_unlock_needed) {
2987         if (base->obj() == NULL) {
2988           // The method is already unlocked this is not good.
2989           if (illegal_state_oop() == NULL && !suppress_error) {
2990             {
2991               // Prevent any HandleMarkCleaner from freeing our live handles
2992               HandleMark __hm(THREAD);
2993               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2994             }
2995             assert(THREAD->has_pending_exception(), "Lost our exception!");
2996             illegal_state_oop = THREAD->pending_exception();
2997             THREAD->clear_pending_exception();
2998           }
2999         } else {
3000           //
3001           // The initial monitor is always used for the method
3002           // However if that slot is no longer the oop for the method it was unlocked
3003           // and reused by something that wasn't unlocked!
3004           //
3005           // deopt can come in with rcvr dead because c2 knows
3006           // its value is preserved in the monitor. So we can't use locals[0] at all
3007           // and must use first monitor slot.
3008           //
3009           oop rcvr = base->obj();
3010           if (rcvr == NULL) {
3011             if (!suppress_error) {
3012               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3013               illegal_state_oop = THREAD->pending_exception();
3014               THREAD->clear_pending_exception();
3015             }
3016           } else if (UseHeavyMonitors) {
3017             {
3018               // Prevent any HandleMarkCleaner from freeing our live handles.
3019               HandleMark __hm(THREAD);
3020               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3021             }
3022             if (THREAD->has_pending_exception()) {
3023               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3024               THREAD->clear_pending_exception();
3025             }
3026           } else {
3027             BasicLock* lock = base->lock();
3028             markOop header = lock->displaced_header();
3029             base->set_obj(NULL);
3030 
3031             if (!rcvr->mark()->has_bias_pattern()) {
3032               base->set_obj(NULL);
3033               // If it isn't recursive we either must swap old header or call the runtime
3034               if (header != NULL) {
3035                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3036                   // restore object for the slow case
3037                   base->set_obj(rcvr);
3038                   {
3039                     // Prevent any HandleMarkCleaner from freeing our live handles
3040                     HandleMark __hm(THREAD);
3041                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3042                   }
3043                   if (THREAD->has_pending_exception()) {
3044                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3045                     THREAD->clear_pending_exception();
3046                   }
3047                 }
3048               }
3049             }
3050           }
3051         }
3052       }
3053     }
3054     // Clear the do_not_unlock flag now.
3055     THREAD->clr_do_not_unlock();
3056 
3057     //
3058     // Notify jvmti/jvmdi
3059     //
3060     // NOTE: we do not notify a method_exit if we have a pending exception,
3061     // including an exception we generate for unlocking checks.  In the former
3062     // case, JVMDI has already been notified by our call for the exception handler
3063     // and in both cases as far as JVMDI is concerned we have already returned.
3064     // If we notify it again JVMDI will be all confused about how many frames
3065     // are still on the stack (4340444).
3066     //
3067     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3068     // method_exit events whenever we leave an activation unless it was done
3069     // for popframe. This is nothing like jvmdi. However we are passing the
3070     // tests at the moment (apparently because they are jvmdi based) so rather
3071     // than change this code and possibly fail tests we will leave it alone
3072     // (with this note) in anticipation of changing the vm and the tests
3073     // simultaneously.
3074 
3075 
3076     //
3077     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3078 
3079 
3080 
3081 #ifdef VM_JVMTI
3082       if (_jvmti_interp_events) {
3083         // Whenever JVMTI puts a thread in interp_only_mode, method
3084         // entry/exit events are sent for that thread to track stack depth.
3085         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3086           {
3087             // Prevent any HandleMarkCleaner from freeing our live handles
3088             HandleMark __hm(THREAD);
3089             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3090           }
3091         }
3092       }
3093 #endif /* VM_JVMTI */
3094 
3095     //
3096     // See if we are returning any exception
3097     // A pending exception that was pending prior to a possible popping frame
3098     // overrides the popping frame.
3099     //
3100     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3101     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3102       // Inform the frame manager we have no result.
3103       istate->set_msg(throwing_exception);
3104       if (illegal_state_oop() != NULL)
3105         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3106       else
3107         THREAD->set_pending_exception(original_exception(), NULL, 0);
3108       UPDATE_PC_AND_RETURN(0);
3109     }
3110 
3111     if (istate->msg() == popping_frame) {
3112       // Make it simpler on the assembly code and set the message for the frame pop.
3113       // returns
3114       if (istate->prev() == NULL) {
3115         // We must be returning to a deoptimized frame (because popframe only happens between
3116         // two interpreted frames). We need to save the current arguments in C heap so that
3117         // the deoptimized frame when it restarts can copy the arguments to its expression
3118         // stack and re-execute the call. We also have to notify deoptimization that this
3119         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3120         // java expression stack. Yuck.
3121         //
3122         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3123                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3124         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3125       }
3126     } else {
3127       istate->set_msg(return_from_method);
3128     }
3129 
3130     // Normal return
3131     // Advance the pc and return to frame manager
3132     UPDATE_PC_AND_RETURN(1);
3133   } /* handle_return: */
3134 
3135 // This is really a fatal error return
3136 
3137 finish:
3138   DECACHE_TOS();
3139   DECACHE_PC();
3140 
3141   return;
3142 }
3143 
3144 /*
3145  * All the code following this point is only produced once and is not present
3146  * in the JVMTI version of the interpreter
3147 */
3148 
3149 #ifndef VM_JVMTI
3150 
3151 // This constructor should only be used to contruct the object to signal
3152 // interpreter initialization. All other instances should be created by
3153 // the frame manager.
3154 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3155   if (msg != initialize) ShouldNotReachHere();
3156   _msg = msg;
3157   _self_link = this;
3158   _prev_link = NULL;
3159 }
3160 
3161 // Inline static functions for Java Stack and Local manipulation
3162 
3163 // The implementations are platform dependent. We have to worry about alignment
3164 // issues on some machines which can change on the same platform depending on
3165 // whether it is an LP64 machine also.
3166 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3167   return (address) tos[Interpreter::expr_index_at(-offset)];
3168 }
3169 
3170 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3171   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3172 }
3173 
3174 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3175   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3176 }
3177 
3178 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3179   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3180 }
3181 
3182 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3183   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3184 }
3185 
3186 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3187   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3188 }
3189 
3190 // only used for value types
3191 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3192                                                         int offset) {
3193   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3194 }
3195 
3196 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3197                                                        int offset) {
3198   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3199 }
3200 
3201 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3202                                                          int offset) {
3203   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3204 }
3205 
3206 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3207                                                           int offset) {
3208   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3209 }
3210 
3211 // needs to be platform dep for the 32 bit platforms.
3212 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3213                                                           int offset) {
3214   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3215 }
3216 
3217 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3218                                               address addr, int offset) {
3219   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3220                         ((VMJavaVal64*)addr)->d);
3221 }
3222 
3223 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3224                                                         int offset) {
3225   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3226   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3227 }
3228 
3229 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3230                                             address addr, int offset) {
3231   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3232   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3233                         ((VMJavaVal64*)addr)->l;
3234 }
3235 
3236 // Locals
3237 
3238 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3239   return (address)locals[Interpreter::local_index_at(-offset)];
3240 }
3241 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3242   return (jint)locals[Interpreter::local_index_at(-offset)];
3243 }
3244 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3245   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3246 }
3247 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3248   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3249 }
3250 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3251   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3252 }
3253 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3254   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3255 }
3256 
3257 // Returns the address of locals value.
3258 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3259   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3260 }
3261 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3262   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3263 }
3264 
3265 // Used for local value or returnAddress
3266 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3267                                    address value, int offset) {
3268   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3269 }
3270 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3271                                    jint value, int offset) {
3272   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3273 }
3274 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3275                                    jfloat value, int offset) {
3276   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3277 }
3278 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3279                                    oop value, int offset) {
3280   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3281 }
3282 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3283                                    jdouble value, int offset) {
3284   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3285 }
3286 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3287                                    jlong value, int offset) {
3288   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3289 }
3290 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3291                                    address addr, int offset) {
3292   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3293 }
3294 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3295                                    address addr, int offset) {
3296   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3297 }
3298 
3299 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3300                           intptr_t* locals, int locals_offset) {
3301   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3302   locals[Interpreter::local_index_at(-locals_offset)] = value;
3303 }
3304 
3305 
3306 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3307                                    int to_offset) {
3308   tos[Interpreter::expr_index_at(-to_offset)] =
3309                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3310 }
3311 
3312 void BytecodeInterpreter::dup(intptr_t *tos) {
3313   copy_stack_slot(tos, -1, 0);
3314 }
3315 void BytecodeInterpreter::dup2(intptr_t *tos) {
3316   copy_stack_slot(tos, -2, 0);
3317   copy_stack_slot(tos, -1, 1);
3318 }
3319 
3320 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3321   /* insert top word two down */
3322   copy_stack_slot(tos, -1, 0);
3323   copy_stack_slot(tos, -2, -1);
3324   copy_stack_slot(tos, 0, -2);
3325 }
3326 
3327 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3328   /* insert top word three down  */
3329   copy_stack_slot(tos, -1, 0);
3330   copy_stack_slot(tos, -2, -1);
3331   copy_stack_slot(tos, -3, -2);
3332   copy_stack_slot(tos, 0, -3);
3333 }
3334 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3335   /* insert top 2 slots three down */
3336   copy_stack_slot(tos, -1, 1);
3337   copy_stack_slot(tos, -2, 0);
3338   copy_stack_slot(tos, -3, -1);
3339   copy_stack_slot(tos, 1, -2);
3340   copy_stack_slot(tos, 0, -3);
3341 }
3342 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3343   /* insert top 2 slots four down */
3344   copy_stack_slot(tos, -1, 1);
3345   copy_stack_slot(tos, -2, 0);
3346   copy_stack_slot(tos, -3, -1);
3347   copy_stack_slot(tos, -4, -2);
3348   copy_stack_slot(tos, 1, -3);
3349   copy_stack_slot(tos, 0, -4);
3350 }
3351 
3352 
3353 void BytecodeInterpreter::swap(intptr_t *tos) {
3354   // swap top two elements
3355   intptr_t val = tos[Interpreter::expr_index_at(1)];
3356   // Copy -2 entry to -1
3357   copy_stack_slot(tos, -2, -1);
3358   // Store saved -1 entry into -2
3359   tos[Interpreter::expr_index_at(2)] = val;
3360 }
3361 // --------------------------------------------------------------------------------
3362 // Non-product code
3363 #ifndef PRODUCT
3364 
3365 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3366   switch (msg) {
3367      case BytecodeInterpreter::no_request:  return("no_request");
3368      case BytecodeInterpreter::initialize:  return("initialize");
3369      // status message to C++ interpreter
3370      case BytecodeInterpreter::method_entry:  return("method_entry");
3371      case BytecodeInterpreter::method_resume:  return("method_resume");
3372      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3373      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3374      // requests to frame manager from C++ interpreter
3375      case BytecodeInterpreter::call_method:  return("call_method");
3376      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3377      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3378      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3379      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3380      case BytecodeInterpreter::do_osr:  return("do_osr");
3381      // deopt
3382      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3383      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3384      default: return("BAD MSG");
3385   }
3386 }
3387 void
3388 BytecodeInterpreter::print() {
3389   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3390   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3391   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3392   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3393   {
3394     ResourceMark rm;
3395     char *method_name = _method->name_and_sig_as_C_string();
3396     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3397   }
3398   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3399   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3400   tty->print_cr("msg: %s", C_msg(this->_msg));
3401   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3402   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3403   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3404   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3405   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3406   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3407   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3408   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3409   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3410   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3411 #ifdef SPARC
3412   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3413   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3414   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3415   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3416 #endif
3417 #if !defined(ZERO) && defined(PPC)
3418   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3419 #endif // !ZERO
3420   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3421 }
3422 
3423 extern "C" {
3424   void PI(uintptr_t arg) {
3425     ((BytecodeInterpreter*)arg)->print();
3426   }
3427 }
3428 #endif // PRODUCT
3429 
3430 #endif // JVMTI
3431 #endif // CC_INTERP