1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCacheExtensions.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateInterpreter.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "runtime/logTimer.hpp"
  35 
  36 #ifndef CC_INTERP
  37 
  38 # define __ _masm->
  39 
  40 void TemplateInterpreter::initialize() {
  41   if (_code != NULL) return;
  42   // assertions
  43   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
  44          "dispatch table too small");
  45 
  46   AbstractInterpreter::initialize();
  47 
  48   TemplateTable::initialize();
  49 
  50   // generate interpreter
  51   { ResourceMark rm;
  52     TraceStartupTime timer("Interpreter generation");
  53     int code_size = InterpreterCodeSize;
  54     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
  55 #if INCLUDE_JVMTI
  56     if (CodeCacheExtensions::saving_generated_interpreter()) {
  57       // May requires several versions of the codelets.
  58       // Final size will automatically be optimized.
  59       code_size *= 2;
  60     }
  61 #endif
  62     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
  63                           "Interpreter");
  64     TemplateInterpreterGenerator g(_code);
  65   }
  66   if (PrintInterpreter) {
  67     if (CodeCacheExtensions::saving_generated_interpreter() &&
  68         CodeCacheExtensions::use_pregenerated_interpreter()) {
  69       ResourceMark rm;
  70       tty->print("Printing the newly generated interpreter first");
  71       print();
  72       tty->print("Printing the pregenerated interpreter next");
  73     }
  74   }
  75 
  76   // Install the pregenerated interpreter code before printing it
  77   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::TemplateInterpreter);
  78 
  79   if (PrintInterpreter) {
  80     ResourceMark rm;
  81     print();
  82   }
  83 
  84   // initialize dispatch table
  85   _active_table = _normal_table;
  86 }
  87 
  88 //------------------------------------------------------------------------------------------------------------------------
  89 // Implementation of EntryPoint
  90 
  91 EntryPoint::EntryPoint() {
  92   assert(number_of_states == 9, "check the code below");
  93   _entry[btos] = NULL;
  94   _entry[ctos] = NULL;
  95   _entry[stos] = NULL;
  96   _entry[atos] = NULL;
  97   _entry[itos] = NULL;
  98   _entry[ltos] = NULL;
  99   _entry[ftos] = NULL;
 100   _entry[dtos] = NULL;
 101   _entry[vtos] = NULL;
 102 }
 103 
 104 
 105 EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
 106   assert(number_of_states == 9, "check the code below");
 107   _entry[btos] = bentry;
 108   _entry[ctos] = centry;
 109   _entry[stos] = sentry;
 110   _entry[atos] = aentry;
 111   _entry[itos] = ientry;
 112   _entry[ltos] = lentry;
 113   _entry[ftos] = fentry;
 114   _entry[dtos] = dentry;
 115   _entry[vtos] = ventry;
 116 }
 117 
 118 
 119 void EntryPoint::set_entry(TosState state, address entry) {
 120   assert(0 <= state && state < number_of_states, "state out of bounds");
 121   _entry[state] = entry;
 122 }
 123 
 124 
 125 address EntryPoint::entry(TosState state) const {
 126   assert(0 <= state && state < number_of_states, "state out of bounds");
 127   return _entry[state];
 128 }
 129 
 130 
 131 void EntryPoint::print() {
 132   tty->print("[");
 133   for (int i = 0; i < number_of_states; i++) {
 134     if (i > 0) tty->print(", ");
 135     tty->print(INTPTR_FORMAT, p2i(_entry[i]));
 136   }
 137   tty->print("]");
 138 }
 139 
 140 
 141 bool EntryPoint::operator == (const EntryPoint& y) {
 142   int i = number_of_states;
 143   while (i-- > 0) {
 144     if (_entry[i] != y._entry[i]) return false;
 145   }
 146   return true;
 147 }
 148 
 149 
 150 //------------------------------------------------------------------------------------------------------------------------
 151 // Implementation of DispatchTable
 152 
 153 EntryPoint DispatchTable::entry(int i) const {
 154   assert(0 <= i && i < length, "index out of bounds");
 155   return
 156     EntryPoint(
 157       _table[btos][i],
 158       _table[ctos][i],
 159       _table[stos][i],
 160       _table[atos][i],
 161       _table[itos][i],
 162       _table[ltos][i],
 163       _table[ftos][i],
 164       _table[dtos][i],
 165       _table[vtos][i]
 166     );
 167 }
 168 
 169 
 170 void DispatchTable::set_entry(int i, EntryPoint& entry) {
 171   assert(0 <= i && i < length, "index out of bounds");
 172   assert(number_of_states == 9, "check the code below");
 173   _table[btos][i] = entry.entry(btos);
 174   _table[ctos][i] = entry.entry(ctos);
 175   _table[stos][i] = entry.entry(stos);
 176   _table[atos][i] = entry.entry(atos);
 177   _table[itos][i] = entry.entry(itos);
 178   _table[ltos][i] = entry.entry(ltos);
 179   _table[ftos][i] = entry.entry(ftos);
 180   _table[dtos][i] = entry.entry(dtos);
 181   _table[vtos][i] = entry.entry(vtos);
 182 }
 183 
 184 
 185 bool DispatchTable::operator == (DispatchTable& y) {
 186   int i = length;
 187   while (i-- > 0) {
 188     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
 189     if (!(entry(i) == t)) return false;
 190   }
 191   return true;
 192 }
 193 
 194 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
 195 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
 196 
 197 
 198 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
 199 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
 200 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
 201 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
 202 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
 203 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
 204 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
 205 
 206 #ifndef PRODUCT
 207 EntryPoint TemplateInterpreter::_trace_code;
 208 #endif // !PRODUCT
 209 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
 210 EntryPoint TemplateInterpreter::_earlyret_entry;
 211 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
 212 EntryPoint TemplateInterpreter::_continuation_entry;
 213 EntryPoint TemplateInterpreter::_safept_entry;
 214 
 215 address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
 216 address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
 217 address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
 218 
 219 DispatchTable TemplateInterpreter::_active_table;
 220 DispatchTable TemplateInterpreter::_normal_table;
 221 DispatchTable TemplateInterpreter::_safept_table;
 222 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
 223 
 224 
 225 //------------------------------------------------------------------------------------------------------------------------
 226 // Entry points
 227 
 228 /**
 229  * Returns the return entry table for the given invoke bytecode.
 230  */
 231 address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
 232   switch (code) {
 233   case Bytecodes::_invokestatic:
 234   case Bytecodes::_invokespecial:
 235   case Bytecodes::_invokevirtual:
 236   case Bytecodes::_invokehandle:
 237     return Interpreter::invoke_return_entry_table();
 238   case Bytecodes::_invokeinterface:
 239     return Interpreter::invokeinterface_return_entry_table();
 240   case Bytecodes::_invokedynamic:
 241     return Interpreter::invokedynamic_return_entry_table();
 242   default:
 243     fatal("invalid bytecode: %s", Bytecodes::name(code));
 244     return NULL;
 245   }
 246 }
 247 
 248 /**
 249  * Returns the return entry address for the given top-of-stack state and bytecode.
 250  */
 251 address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
 252   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
 253   const int index = TosState_as_index(state);
 254   switch (code) {
 255   case Bytecodes::_invokestatic:
 256   case Bytecodes::_invokespecial:
 257   case Bytecodes::_invokevirtual:
 258   case Bytecodes::_invokehandle:
 259     return _invoke_return_entry[index];
 260   case Bytecodes::_invokeinterface:
 261     return _invokeinterface_return_entry[index];
 262   case Bytecodes::_invokedynamic:
 263     return _invokedynamic_return_entry[index];
 264   default:
 265     assert(!Bytecodes::is_invoke(code), "invoke instructions should be handled separately: %s", Bytecodes::name(code));
 266     return _return_entry[length].entry(state);
 267   }
 268 }
 269 
 270 
 271 address TemplateInterpreter::deopt_entry(TosState state, int length) {
 272   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
 273   return _deopt_entry[length].entry(state);
 274 }
 275 
 276 //------------------------------------------------------------------------------------------------------------------------
 277 // Suport for invokes
 278 
 279 int TemplateInterpreter::TosState_as_index(TosState state) {
 280   assert( state < number_of_states , "Invalid state in TosState_as_index");
 281   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
 282   return (int)state;
 283 }
 284 
 285 
 286 //------------------------------------------------------------------------------------------------------------------------
 287 // Safepoint suppport
 288 
 289 static inline void copy_table(address* from, address* to, int size) {
 290   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
 291   while (size-- > 0) *to++ = *from++;
 292 }
 293 
 294 void TemplateInterpreter::notice_safepoints() {
 295   if (!_notice_safepoints) {
 296     // switch to safepoint dispatch table
 297     _notice_safepoints = true;
 298     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 299   }
 300 }
 301 
 302 // switch from the dispatch table which notices safepoints back to the
 303 // normal dispatch table.  So that we can notice single stepping points,
 304 // keep the safepoint dispatch table if we are single stepping in JVMTI.
 305 // Note that the should_post_single_step test is exactly as fast as the
 306 // JvmtiExport::_enabled test and covers both cases.
 307 void TemplateInterpreter::ignore_safepoints() {
 308   if (_notice_safepoints) {
 309     if (!JvmtiExport::should_post_single_step()) {
 310       // switch to normal dispatch table
 311       _notice_safepoints = false;
 312       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 313     }
 314   }
 315 }
 316 
 317 //------------------------------------------------------------------------------------------------------------------------
 318 // Deoptimization support
 319 
 320 // If deoptimization happens, this function returns the point of next bytecode to continue execution
 321 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
 322   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
 323 }
 324 
 325 // If deoptimization happens, this function returns the point where the interpreter reexecutes
 326 // the bytecode.
 327 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
 328 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
 329 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
 330   assert(method->contains(bcp), "just checkin'");
 331   Bytecodes::Code code   = Bytecodes::java_code_at(method, bcp);
 332   if (code == Bytecodes::_return) {
 333     // This is used for deopt during registration of finalizers
 334     // during Object.<init>.  We simply need to resume execution at
 335     // the standard return vtos bytecode to pop the frame normally.
 336     // reexecuting the real bytecode would cause double registration
 337     // of the finalizable object.
 338     return _normal_table.entry(Bytecodes::_return).entry(vtos);
 339   } else {
 340     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
 341   }
 342 }
 343 
 344 // If deoptimization happens, the interpreter should reexecute this bytecode.
 345 // This function mainly helps the compilers to set up the reexecute bit.
 346 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
 347   if (code == Bytecodes::_return) {
 348     //Yes, we consider Bytecodes::_return as a special case of reexecution
 349     return true;
 350   } else {
 351     return AbstractInterpreter::bytecode_should_reexecute(code);
 352   }
 353 }
 354 
 355 InterpreterCodelet* TemplateInterpreter::codelet_containing(address pc) {
 356   return (InterpreterCodelet*)_code->stub_containing(pc);
 357 }
 358 
 359 #endif // !CC_INTERP