1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "code/vmreg.inline.hpp"
  35 #include "runtime/timerTrace.hpp"
  36 #include "utilities/bitMap.inline.hpp"
  37 
  38 #ifndef PRODUCT
  39 
  40   static LinearScanStatistic _stat_before_alloc;
  41   static LinearScanStatistic _stat_after_asign;
  42   static LinearScanStatistic _stat_final;
  43 
  44   static LinearScanTimers _total_timer;
  45 
  46   // helper macro for short definition of timer
  47   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  48 
  49   // helper macro for short definition of trace-output inside code
  50   #define TRACE_LINEAR_SCAN(level, code)       \
  51     if (TraceLinearScanLevel >= level) {       \
  52       code;                                    \
  53     }
  54 
  55 #else
  56 
  57   #define TIME_LINEAR_SCAN(timer_name)
  58   #define TRACE_LINEAR_SCAN(level, code)
  59 
  60 #endif
  61 
  62 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  63 #ifdef _LP64
  64 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  65 #else
  66 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  67 #endif
  68 
  69 
  70 // Implementation of LinearScan
  71 
  72 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  73  : _compilation(ir->compilation())
  74  , _ir(ir)
  75  , _gen(gen)
  76  , _frame_map(frame_map)
  77  , _num_virtual_regs(gen->max_virtual_register_number())
  78  , _has_fpu_registers(false)
  79  , _num_calls(-1)
  80  , _max_spills(0)
  81  , _unused_spill_slot(-1)
  82  , _intervals(0)   // initialized later with correct length
  83  , _new_intervals_from_allocation(new IntervalList())
  84  , _sorted_intervals(NULL)
  85  , _needs_full_resort(false)
  86  , _lir_ops(0)     // initialized later with correct length
  87  , _block_of_op(0) // initialized later with correct length
  88  , _has_info(0)
  89  , _has_call(0)
  90  , _scope_value_cache(0) // initialized later with correct length
  91  , _interval_in_loop(0)  // initialized later with correct length
  92  , _cached_blocks(*ir->linear_scan_order())
  93 #ifdef X86
  94  , _fpu_stack_allocator(NULL)
  95 #endif
  96 {
  97   assert(this->ir() != NULL,          "check if valid");
  98   assert(this->compilation() != NULL, "check if valid");
  99   assert(this->gen() != NULL,         "check if valid");
 100   assert(this->frame_map() != NULL,   "check if valid");
 101 }
 102 
 103 
 104 // ********** functions for converting LIR-Operands to register numbers
 105 //
 106 // Emulate a flat register file comprising physical integer registers,
 107 // physical floating-point registers and virtual registers, in that order.
 108 // Virtual registers already have appropriate numbers, since V0 is
 109 // the number of physical registers.
 110 // Returns -1 for hi word if opr is a single word operand.
 111 //
 112 // Note: the inverse operation (calculating an operand for register numbers)
 113 //       is done in calc_operand_for_interval()
 114 
 115 int LinearScan::reg_num(LIR_Opr opr) {
 116   assert(opr->is_register(), "should not call this otherwise");
 117 
 118   if (opr->is_virtual_register()) {
 119     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 120     return opr->vreg_number();
 121   } else if (opr->is_single_cpu()) {
 122     return opr->cpu_regnr();
 123   } else if (opr->is_double_cpu()) {
 124     return opr->cpu_regnrLo();
 125 #ifdef X86
 126   } else if (opr->is_single_xmm()) {
 127     return opr->fpu_regnr() + pd_first_xmm_reg;
 128   } else if (opr->is_double_xmm()) {
 129     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 130 #endif
 131   } else if (opr->is_single_fpu()) {
 132     return opr->fpu_regnr() + pd_first_fpu_reg;
 133   } else if (opr->is_double_fpu()) {
 134     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 135   } else {
 136     ShouldNotReachHere();
 137     return -1;
 138   }
 139 }
 140 
 141 int LinearScan::reg_numHi(LIR_Opr opr) {
 142   assert(opr->is_register(), "should not call this otherwise");
 143 
 144   if (opr->is_virtual_register()) {
 145     return -1;
 146   } else if (opr->is_single_cpu()) {
 147     return -1;
 148   } else if (opr->is_double_cpu()) {
 149     return opr->cpu_regnrHi();
 150 #ifdef X86
 151   } else if (opr->is_single_xmm()) {
 152     return -1;
 153   } else if (opr->is_double_xmm()) {
 154     return -1;
 155 #endif
 156   } else if (opr->is_single_fpu()) {
 157     return -1;
 158   } else if (opr->is_double_fpu()) {
 159     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 160   } else {
 161     ShouldNotReachHere();
 162     return -1;
 163   }
 164 }
 165 
 166 
 167 // ********** functions for classification of intervals
 168 
 169 bool LinearScan::is_precolored_interval(const Interval* i) {
 170   return i->reg_num() < LinearScan::nof_regs;
 171 }
 172 
 173 bool LinearScan::is_virtual_interval(const Interval* i) {
 174   return i->reg_num() >= LIR_OprDesc::vreg_base;
 175 }
 176 
 177 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 178   return i->reg_num() < LinearScan::nof_cpu_regs;
 179 }
 180 
 181 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 182 #if defined(__SOFTFP__) || defined(E500V2)
 183   return i->reg_num() >= LIR_OprDesc::vreg_base;
 184 #else
 185   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 186 #endif // __SOFTFP__ or E500V2
 187 }
 188 
 189 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 190   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 191 }
 192 
 193 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 194 #if defined(__SOFTFP__) || defined(E500V2)
 195   return false;
 196 #else
 197   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 198 #endif // __SOFTFP__ or E500V2
 199 }
 200 
 201 bool LinearScan::is_in_fpu_register(const Interval* i) {
 202   // fixed intervals not needed for FPU stack allocation
 203   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 204 }
 205 
 206 bool LinearScan::is_oop_interval(const Interval* i) {
 207   // fixed intervals never contain oops
 208   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 209 }
 210 
 211 
 212 // ********** General helper functions
 213 
 214 // compute next unused stack index that can be used for spilling
 215 int LinearScan::allocate_spill_slot(bool double_word) {
 216   int spill_slot;
 217   if (double_word) {
 218     if ((_max_spills & 1) == 1) {
 219       // alignment of double-word values
 220       // the hole because of the alignment is filled with the next single-word value
 221       assert(_unused_spill_slot == -1, "wasting a spill slot");
 222       _unused_spill_slot = _max_spills;
 223       _max_spills++;
 224     }
 225     spill_slot = _max_spills;
 226     _max_spills += 2;
 227 
 228   } else if (_unused_spill_slot != -1) {
 229     // re-use hole that was the result of a previous double-word alignment
 230     spill_slot = _unused_spill_slot;
 231     _unused_spill_slot = -1;
 232 
 233   } else {
 234     spill_slot = _max_spills;
 235     _max_spills++;
 236   }
 237 
 238   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 239 
 240   // the class OopMapValue uses only 11 bits for storing the name of the
 241   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 242   // that is not reported in product builds. Prevent this by checking the
 243   // spill slot here (altough this value and the later used location name
 244   // are slightly different)
 245   if (result > 2000) {
 246     bailout("too many stack slots used");
 247   }
 248 
 249   return result;
 250 }
 251 
 252 void LinearScan::assign_spill_slot(Interval* it) {
 253   // assign the canonical spill slot of the parent (if a part of the interval
 254   // is already spilled) or allocate a new spill slot
 255   if (it->canonical_spill_slot() >= 0) {
 256     it->assign_reg(it->canonical_spill_slot());
 257   } else {
 258     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 259     it->set_canonical_spill_slot(spill);
 260     it->assign_reg(spill);
 261   }
 262 }
 263 
 264 void LinearScan::propagate_spill_slots() {
 265   if (!frame_map()->finalize_frame(max_spills())) {
 266     bailout("frame too large");
 267   }
 268 }
 269 
 270 // create a new interval with a predefined reg_num
 271 // (only used for parent intervals that are created during the building phase)
 272 Interval* LinearScan::create_interval(int reg_num) {
 273   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 274 
 275   Interval* interval = new Interval(reg_num);
 276   _intervals.at_put(reg_num, interval);
 277 
 278   // assign register number for precolored intervals
 279   if (reg_num < LIR_OprDesc::vreg_base) {
 280     interval->assign_reg(reg_num);
 281   }
 282   return interval;
 283 }
 284 
 285 // assign a new reg_num to the interval and append it to the list of intervals
 286 // (only used for child intervals that are created during register allocation)
 287 void LinearScan::append_interval(Interval* it) {
 288   it->set_reg_num(_intervals.length());
 289   _intervals.append(it);
 290   _new_intervals_from_allocation->append(it);
 291 }
 292 
 293 // copy the vreg-flags if an interval is split
 294 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 295   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 296     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 297   }
 298   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 299     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 300   }
 301 
 302   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 303   //       intervals (only the very beginning of the interval must be in memory)
 304 }
 305 
 306 
 307 // ********** spill move optimization
 308 // eliminate moves from register to stack if stack slot is known to be correct
 309 
 310 // called during building of intervals
 311 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 312   assert(interval->is_split_parent(), "can only be called for split parents");
 313 
 314   switch (interval->spill_state()) {
 315     case noDefinitionFound:
 316       assert(interval->spill_definition_pos() == -1, "must no be set before");
 317       interval->set_spill_definition_pos(def_pos);
 318       interval->set_spill_state(oneDefinitionFound);
 319       break;
 320 
 321     case oneDefinitionFound:
 322       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 323       if (def_pos < interval->spill_definition_pos() - 2) {
 324         // second definition found, so no spill optimization possible for this interval
 325         interval->set_spill_state(noOptimization);
 326       } else {
 327         // two consecutive definitions (because of two-operand LIR form)
 328         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 329       }
 330       break;
 331 
 332     case noOptimization:
 333       // nothing to do
 334       break;
 335 
 336     default:
 337       assert(false, "other states not allowed at this time");
 338   }
 339 }
 340 
 341 // called during register allocation
 342 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 343   switch (interval->spill_state()) {
 344     case oneDefinitionFound: {
 345       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 346       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 347 
 348       if (def_loop_depth < spill_loop_depth) {
 349         // the loop depth of the spilling position is higher then the loop depth
 350         // at the definition of the interval -> move write to memory out of loop
 351         // by storing at definitin of the interval
 352         interval->set_spill_state(storeAtDefinition);
 353       } else {
 354         // the interval is currently spilled only once, so for now there is no
 355         // reason to store the interval at the definition
 356         interval->set_spill_state(oneMoveInserted);
 357       }
 358       break;
 359     }
 360 
 361     case oneMoveInserted: {
 362       // the interval is spilled more then once, so it is better to store it to
 363       // memory at the definition
 364       interval->set_spill_state(storeAtDefinition);
 365       break;
 366     }
 367 
 368     case storeAtDefinition:
 369     case startInMemory:
 370     case noOptimization:
 371     case noDefinitionFound:
 372       // nothing to do
 373       break;
 374 
 375     default:
 376       assert(false, "other states not allowed at this time");
 377   }
 378 }
 379 
 380 
 381 bool LinearScan::must_store_at_definition(const Interval* i) {
 382   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 383 }
 384 
 385 // called once before asignment of register numbers
 386 void LinearScan::eliminate_spill_moves() {
 387   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 388   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 389 
 390   // collect all intervals that must be stored after their definion.
 391   // the list is sorted by Interval::spill_definition_pos
 392   Interval* interval;
 393   Interval* temp_list;
 394   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 395 
 396 #ifdef ASSERT
 397   Interval* prev = NULL;
 398   Interval* temp = interval;
 399   while (temp != Interval::end()) {
 400     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 401     if (prev != NULL) {
 402       assert(temp->from() >= prev->from(), "intervals not sorted");
 403       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 404     }
 405 
 406     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 407     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 408     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 409 
 410     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 411 
 412     temp = temp->next();
 413   }
 414 #endif
 415 
 416   LIR_InsertionBuffer insertion_buffer;
 417   int num_blocks = block_count();
 418   for (int i = 0; i < num_blocks; i++) {
 419     BlockBegin* block = block_at(i);
 420     LIR_OpList* instructions = block->lir()->instructions_list();
 421     int         num_inst = instructions->length();
 422     bool        has_new = false;
 423 
 424     // iterate all instructions of the block. skip the first because it is always a label
 425     for (int j = 1; j < num_inst; j++) {
 426       LIR_Op* op = instructions->at(j);
 427       int op_id = op->id();
 428 
 429       if (op_id == -1) {
 430         // remove move from register to stack if the stack slot is guaranteed to be correct.
 431         // only moves that have been inserted by LinearScan can be removed.
 432         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 433         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 434         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 435 
 436         LIR_Op1* op1 = (LIR_Op1*)op;
 437         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 438 
 439         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 440           // move target is a stack slot that is always correct, so eliminate instruction
 441           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 442           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 443         }
 444 
 445       } else {
 446         // insert move from register to stack just after the beginning of the interval
 447         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 448         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 449 
 450         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 451           if (!has_new) {
 452             // prepare insertion buffer (appended when all instructions of the block are processed)
 453             insertion_buffer.init(block->lir());
 454             has_new = true;
 455           }
 456 
 457           LIR_Opr from_opr = operand_for_interval(interval);
 458           LIR_Opr to_opr = canonical_spill_opr(interval);
 459           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 460           assert(to_opr->is_stack(), "to operand must be a stack slot");
 461 
 462           insertion_buffer.move(j, from_opr, to_opr);
 463           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 464 
 465           interval = interval->next();
 466         }
 467       }
 468     } // end of instruction iteration
 469 
 470     if (has_new) {
 471       block->lir()->append(&insertion_buffer);
 472     }
 473   } // end of block iteration
 474 
 475   assert(interval == Interval::end(), "missed an interval");
 476 }
 477 
 478 
 479 // ********** Phase 1: number all instructions in all blocks
 480 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 481 
 482 void LinearScan::number_instructions() {
 483   {
 484     // dummy-timer to measure the cost of the timer itself
 485     // (this time is then subtracted from all other timers to get the real value)
 486     TIME_LINEAR_SCAN(timer_do_nothing);
 487   }
 488   TIME_LINEAR_SCAN(timer_number_instructions);
 489 
 490   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 491   int num_blocks = block_count();
 492   int num_instructions = 0;
 493   int i;
 494   for (i = 0; i < num_blocks; i++) {
 495     num_instructions += block_at(i)->lir()->instructions_list()->length();
 496   }
 497 
 498   // initialize with correct length
 499   _lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL);
 500   _block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL);
 501 
 502   int op_id = 0;
 503   int idx = 0;
 504 
 505   for (i = 0; i < num_blocks; i++) {
 506     BlockBegin* block = block_at(i);
 507     block->set_first_lir_instruction_id(op_id);
 508     LIR_OpList* instructions = block->lir()->instructions_list();
 509 
 510     int num_inst = instructions->length();
 511     for (int j = 0; j < num_inst; j++) {
 512       LIR_Op* op = instructions->at(j);
 513       op->set_id(op_id);
 514 
 515       _lir_ops.at_put(idx, op);
 516       _block_of_op.at_put(idx, block);
 517       assert(lir_op_with_id(op_id) == op, "must match");
 518 
 519       idx++;
 520       op_id += 2; // numbering of lir_ops by two
 521     }
 522     block->set_last_lir_instruction_id(op_id - 2);
 523   }
 524   assert(idx == num_instructions, "must match");
 525   assert(idx * 2 == op_id, "must match");
 526 
 527   _has_call.initialize(num_instructions);
 528   _has_info.initialize(num_instructions);
 529 }
 530 
 531 
 532 // ********** Phase 2: compute local live sets separately for each block
 533 // (sets live_gen and live_kill for each block)
 534 
 535 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 536   LIR_Opr opr = value->operand();
 537   Constant* con = value->as_Constant();
 538 
 539   // check some asumptions about debug information
 540   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 541   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 542   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 543 
 544   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 545     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 546     int reg = opr->vreg_number();
 547     if (!live_kill.at(reg)) {
 548       live_gen.set_bit(reg);
 549       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 550     }
 551   }
 552 }
 553 
 554 
 555 void LinearScan::compute_local_live_sets() {
 556   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 557 
 558   int  num_blocks = block_count();
 559   int  live_size = live_set_size();
 560   bool local_has_fpu_registers = false;
 561   int  local_num_calls = 0;
 562   LIR_OpVisitState visitor;
 563 
 564   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 565 
 566   // iterate all blocks
 567   for (int i = 0; i < num_blocks; i++) {
 568     BlockBegin* block = block_at(i);
 569 
 570     ResourceBitMap live_gen(live_size);
 571     ResourceBitMap live_kill(live_size);
 572 
 573     if (block->is_set(BlockBegin::exception_entry_flag)) {
 574       // Phi functions at the begin of an exception handler are
 575       // implicitly defined (= killed) at the beginning of the block.
 576       for_each_phi_fun(block, phi,
 577         live_kill.set_bit(phi->operand()->vreg_number())
 578       );
 579     }
 580 
 581     LIR_OpList* instructions = block->lir()->instructions_list();
 582     int num_inst = instructions->length();
 583 
 584     // iterate all instructions of the block. skip the first because it is always a label
 585     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 586     for (int j = 1; j < num_inst; j++) {
 587       LIR_Op* op = instructions->at(j);
 588 
 589       // visit operation to collect all operands
 590       visitor.visit(op);
 591 
 592       if (visitor.has_call()) {
 593         _has_call.set_bit(op->id() >> 1);
 594         local_num_calls++;
 595       }
 596       if (visitor.info_count() > 0) {
 597         _has_info.set_bit(op->id() >> 1);
 598       }
 599 
 600       // iterate input operands of instruction
 601       int k, n, reg;
 602       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 603       for (k = 0; k < n; k++) {
 604         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 605         assert(opr->is_register(), "visitor should only return register operands");
 606 
 607         if (opr->is_virtual_register()) {
 608           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 609           reg = opr->vreg_number();
 610           if (!live_kill.at(reg)) {
 611             live_gen.set_bit(reg);
 612             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 613           }
 614           if (block->loop_index() >= 0) {
 615             local_interval_in_loop.set_bit(reg, block->loop_index());
 616           }
 617           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 618         }
 619 
 620 #ifdef ASSERT
 621         // fixed intervals are never live at block boundaries, so
 622         // they need not be processed in live sets.
 623         // this is checked by these assertions to be sure about it.
 624         // the entry block may have incoming values in registers, which is ok.
 625         if (!opr->is_virtual_register() && block != ir()->start()) {
 626           reg = reg_num(opr);
 627           if (is_processed_reg_num(reg)) {
 628             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 629           }
 630           reg = reg_numHi(opr);
 631           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 632             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 633           }
 634         }
 635 #endif
 636       }
 637 
 638       // Add uses of live locals from interpreter's point of view for proper debug information generation
 639       n = visitor.info_count();
 640       for (k = 0; k < n; k++) {
 641         CodeEmitInfo* info = visitor.info_at(k);
 642         ValueStack* stack = info->stack();
 643         for_each_state_value(stack, value,
 644           set_live_gen_kill(value, op, live_gen, live_kill)
 645         );
 646       }
 647 
 648       // iterate temp operands of instruction
 649       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 650       for (k = 0; k < n; k++) {
 651         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 652         assert(opr->is_register(), "visitor should only return register operands");
 653 
 654         if (opr->is_virtual_register()) {
 655           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 656           reg = opr->vreg_number();
 657           live_kill.set_bit(reg);
 658           if (block->loop_index() >= 0) {
 659             local_interval_in_loop.set_bit(reg, block->loop_index());
 660           }
 661           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 662         }
 663 
 664 #ifdef ASSERT
 665         // fixed intervals are never live at block boundaries, so
 666         // they need not be processed in live sets
 667         // process them only in debug mode so that this can be checked
 668         if (!opr->is_virtual_register()) {
 669           reg = reg_num(opr);
 670           if (is_processed_reg_num(reg)) {
 671             live_kill.set_bit(reg_num(opr));
 672           }
 673           reg = reg_numHi(opr);
 674           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 675             live_kill.set_bit(reg);
 676           }
 677         }
 678 #endif
 679       }
 680 
 681       // iterate output operands of instruction
 682       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 683       for (k = 0; k < n; k++) {
 684         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 685         assert(opr->is_register(), "visitor should only return register operands");
 686 
 687         if (opr->is_virtual_register()) {
 688           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 689           reg = opr->vreg_number();
 690           live_kill.set_bit(reg);
 691           if (block->loop_index() >= 0) {
 692             local_interval_in_loop.set_bit(reg, block->loop_index());
 693           }
 694           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 695         }
 696 
 697 #ifdef ASSERT
 698         // fixed intervals are never live at block boundaries, so
 699         // they need not be processed in live sets
 700         // process them only in debug mode so that this can be checked
 701         if (!opr->is_virtual_register()) {
 702           reg = reg_num(opr);
 703           if (is_processed_reg_num(reg)) {
 704             live_kill.set_bit(reg_num(opr));
 705           }
 706           reg = reg_numHi(opr);
 707           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 708             live_kill.set_bit(reg);
 709           }
 710         }
 711 #endif
 712       }
 713     } // end of instruction iteration
 714 
 715     block->set_live_gen (live_gen);
 716     block->set_live_kill(live_kill);
 717     block->set_live_in  (ResourceBitMap(live_size));
 718     block->set_live_out (ResourceBitMap(live_size));
 719 
 720     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 721     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 722   } // end of block iteration
 723 
 724   // propagate local calculated information into LinearScan object
 725   _has_fpu_registers = local_has_fpu_registers;
 726   compilation()->set_has_fpu_code(local_has_fpu_registers);
 727 
 728   _num_calls = local_num_calls;
 729   _interval_in_loop = local_interval_in_loop;
 730 }
 731 
 732 
 733 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 734 // (sets live_in and live_out for each block)
 735 
 736 void LinearScan::compute_global_live_sets() {
 737   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 738 
 739   int  num_blocks = block_count();
 740   bool change_occurred;
 741   bool change_occurred_in_block;
 742   int  iteration_count = 0;
 743   ResourceBitMap live_out(live_set_size()); // scratch set for calculations
 744 
 745   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 746   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 747   // Exception handlers must be processed because not all live values are
 748   // present in the state array, e.g. because of global value numbering
 749   do {
 750     change_occurred = false;
 751 
 752     // iterate all blocks in reverse order
 753     for (int i = num_blocks - 1; i >= 0; i--) {
 754       BlockBegin* block = block_at(i);
 755 
 756       change_occurred_in_block = false;
 757 
 758       // live_out(block) is the union of live_in(sux), for successors sux of block
 759       int n = block->number_of_sux();
 760       int e = block->number_of_exception_handlers();
 761       if (n + e > 0) {
 762         // block has successors
 763         if (n > 0) {
 764           live_out.set_from(block->sux_at(0)->live_in());
 765           for (int j = 1; j < n; j++) {
 766             live_out.set_union(block->sux_at(j)->live_in());
 767           }
 768         } else {
 769           live_out.clear();
 770         }
 771         for (int j = 0; j < e; j++) {
 772           live_out.set_union(block->exception_handler_at(j)->live_in());
 773         }
 774 
 775         if (!block->live_out().is_same(live_out)) {
 776           // A change occurred.  Swap the old and new live out sets to avoid copying.
 777           ResourceBitMap temp = block->live_out();
 778           block->set_live_out(live_out);
 779           live_out = temp;
 780 
 781           change_occurred = true;
 782           change_occurred_in_block = true;
 783         }
 784       }
 785 
 786       if (iteration_count == 0 || change_occurred_in_block) {
 787         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 788         // note: live_in has to be computed only in first iteration or if live_out has changed!
 789         ResourceBitMap live_in = block->live_in();
 790         live_in.set_from(block->live_out());
 791         live_in.set_difference(block->live_kill());
 792         live_in.set_union(block->live_gen());
 793       }
 794 
 795 #ifndef PRODUCT
 796       if (TraceLinearScanLevel >= 4) {
 797         char c = ' ';
 798         if (iteration_count == 0 || change_occurred_in_block) {
 799           c = '*';
 800         }
 801         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 802         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 803       }
 804 #endif
 805     }
 806     iteration_count++;
 807 
 808     if (change_occurred && iteration_count > 50) {
 809       BAILOUT("too many iterations in compute_global_live_sets");
 810     }
 811   } while (change_occurred);
 812 
 813 
 814 #ifdef ASSERT
 815   // check that fixed intervals are not live at block boundaries
 816   // (live set must be empty at fixed intervals)
 817   for (int i = 0; i < num_blocks; i++) {
 818     BlockBegin* block = block_at(i);
 819     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 820       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 821       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 822       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 823     }
 824   }
 825 #endif
 826 
 827   // check that the live_in set of the first block is empty
 828   ResourceBitMap live_in_args(ir()->start()->live_in().size());
 829   if (!ir()->start()->live_in().is_same(live_in_args)) {
 830 #ifdef ASSERT
 831     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 832     tty->print_cr("affected registers:");
 833     print_bitmap(ir()->start()->live_in());
 834 
 835     // print some additional information to simplify debugging
 836     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 837       if (ir()->start()->live_in().at(i)) {
 838         Instruction* instr = gen()->instruction_for_vreg(i);
 839         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 840 
 841         for (int j = 0; j < num_blocks; j++) {
 842           BlockBegin* block = block_at(j);
 843           if (block->live_gen().at(i)) {
 844             tty->print_cr("  used in block B%d", block->block_id());
 845           }
 846           if (block->live_kill().at(i)) {
 847             tty->print_cr("  defined in block B%d", block->block_id());
 848           }
 849         }
 850       }
 851     }
 852 
 853 #endif
 854     // when this fails, virtual registers are used before they are defined.
 855     assert(false, "live_in set of first block must be empty");
 856     // bailout of if this occurs in product mode.
 857     bailout("live_in set of first block not empty");
 858   }
 859 }
 860 
 861 
 862 // ********** Phase 4: build intervals
 863 // (fills the list _intervals)
 864 
 865 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 866   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 867   LIR_Opr opr = value->operand();
 868   Constant* con = value->as_Constant();
 869 
 870   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 871     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 872     add_use(opr, from, to, use_kind);
 873   }
 874 }
 875 
 876 
 877 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 878   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 879   assert(opr->is_register(), "should not be called otherwise");
 880 
 881   if (opr->is_virtual_register()) {
 882     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 883     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 884 
 885   } else {
 886     int reg = reg_num(opr);
 887     if (is_processed_reg_num(reg)) {
 888       add_def(reg, def_pos, use_kind, opr->type_register());
 889     }
 890     reg = reg_numHi(opr);
 891     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 892       add_def(reg, def_pos, use_kind, opr->type_register());
 893     }
 894   }
 895 }
 896 
 897 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 898   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 899   assert(opr->is_register(), "should not be called otherwise");
 900 
 901   if (opr->is_virtual_register()) {
 902     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 903     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 904 
 905   } else {
 906     int reg = reg_num(opr);
 907     if (is_processed_reg_num(reg)) {
 908       add_use(reg, from, to, use_kind, opr->type_register());
 909     }
 910     reg = reg_numHi(opr);
 911     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 912       add_use(reg, from, to, use_kind, opr->type_register());
 913     }
 914   }
 915 }
 916 
 917 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 918   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 919   assert(opr->is_register(), "should not be called otherwise");
 920 
 921   if (opr->is_virtual_register()) {
 922     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 923     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 924 
 925   } else {
 926     int reg = reg_num(opr);
 927     if (is_processed_reg_num(reg)) {
 928       add_temp(reg, temp_pos, use_kind, opr->type_register());
 929     }
 930     reg = reg_numHi(opr);
 931     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 932       add_temp(reg, temp_pos, use_kind, opr->type_register());
 933     }
 934   }
 935 }
 936 
 937 
 938 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 939   Interval* interval = interval_at(reg_num);
 940   if (interval != NULL) {
 941     assert(interval->reg_num() == reg_num, "wrong interval");
 942 
 943     if (type != T_ILLEGAL) {
 944       interval->set_type(type);
 945     }
 946 
 947     Range* r = interval->first();
 948     if (r->from() <= def_pos) {
 949       // Update the starting point (when a range is first created for a use, its
 950       // start is the beginning of the current block until a def is encountered.)
 951       r->set_from(def_pos);
 952       interval->add_use_pos(def_pos, use_kind);
 953 
 954     } else {
 955       // Dead value - make vacuous interval
 956       // also add use_kind for dead intervals
 957       interval->add_range(def_pos, def_pos + 1);
 958       interval->add_use_pos(def_pos, use_kind);
 959       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 960     }
 961 
 962   } else {
 963     // Dead value - make vacuous interval
 964     // also add use_kind for dead intervals
 965     interval = create_interval(reg_num);
 966     if (type != T_ILLEGAL) {
 967       interval->set_type(type);
 968     }
 969 
 970     interval->add_range(def_pos, def_pos + 1);
 971     interval->add_use_pos(def_pos, use_kind);
 972     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 973   }
 974 
 975   change_spill_definition_pos(interval, def_pos);
 976   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 977         // detection of method-parameters and roundfp-results
 978         // TODO: move this directly to position where use-kind is computed
 979     interval->set_spill_state(startInMemory);
 980   }
 981 }
 982 
 983 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 984   Interval* interval = interval_at(reg_num);
 985   if (interval == NULL) {
 986     interval = create_interval(reg_num);
 987   }
 988   assert(interval->reg_num() == reg_num, "wrong interval");
 989 
 990   if (type != T_ILLEGAL) {
 991     interval->set_type(type);
 992   }
 993 
 994   interval->add_range(from, to);
 995   interval->add_use_pos(to, use_kind);
 996 }
 997 
 998 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
 999   Interval* interval = interval_at(reg_num);
1000   if (interval == NULL) {
1001     interval = create_interval(reg_num);
1002   }
1003   assert(interval->reg_num() == reg_num, "wrong interval");
1004 
1005   if (type != T_ILLEGAL) {
1006     interval->set_type(type);
1007   }
1008 
1009   interval->add_range(temp_pos, temp_pos + 1);
1010   interval->add_use_pos(temp_pos, use_kind);
1011 }
1012 
1013 
1014 // the results of this functions are used for optimizing spilling and reloading
1015 // if the functions return shouldHaveRegister and the interval is spilled,
1016 // it is not reloaded to a register.
1017 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1018   if (op->code() == lir_move) {
1019     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1020     LIR_Op1* move = (LIR_Op1*)op;
1021     LIR_Opr res = move->result_opr();
1022     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1023 
1024     if (result_in_memory) {
1025       // Begin of an interval with must_start_in_memory set.
1026       // This interval will always get a stack slot first, so return noUse.
1027       return noUse;
1028 
1029     } else if (move->in_opr()->is_stack()) {
1030       // method argument (condition must be equal to handle_method_arguments)
1031       return noUse;
1032 
1033     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1034       // Move from register to register
1035       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1036         // special handling of phi-function moves inside osr-entry blocks
1037         // input operand must have a register instead of output operand (leads to better register allocation)
1038         return shouldHaveRegister;
1039       }
1040     }
1041   }
1042 
1043   if (opr->is_virtual() &&
1044       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1045     // result is a stack-slot, so prevent immediate reloading
1046     return noUse;
1047   }
1048 
1049   // all other operands require a register
1050   return mustHaveRegister;
1051 }
1052 
1053 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1054   if (op->code() == lir_move) {
1055     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1056     LIR_Op1* move = (LIR_Op1*)op;
1057     LIR_Opr res = move->result_opr();
1058     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1059 
1060     if (result_in_memory) {
1061       // Move to an interval with must_start_in_memory set.
1062       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1063       return mustHaveRegister;
1064 
1065     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1066       // Move from register to register
1067       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1068         // special handling of phi-function moves inside osr-entry blocks
1069         // input operand must have a register instead of output operand (leads to better register allocation)
1070         return mustHaveRegister;
1071       }
1072 
1073       // The input operand is not forced to a register (moves from stack to register are allowed),
1074       // but it is faster if the input operand is in a register
1075       return shouldHaveRegister;
1076     }
1077   }
1078 
1079 
1080 #if defined(X86) || defined(S390)
1081   if (op->code() == lir_cmove) {
1082     // conditional moves can handle stack operands
1083     assert(op->result_opr()->is_register(), "result must always be in a register");
1084     return shouldHaveRegister;
1085   }
1086 
1087   // optimizations for second input operand of arithmehtic operations on Intel
1088   // this operand is allowed to be on the stack in some cases
1089   BasicType opr_type = opr->type_register();
1090   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1091 #ifdef X86
1092     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1093 #endif
1094       // SSE float instruction (T_DOUBLE only supported with SSE2)
1095       switch (op->code()) {
1096         case lir_cmp:
1097         case lir_add:
1098         case lir_sub:
1099         case lir_mul:
1100         case lir_div:
1101         {
1102           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1103           LIR_Op2* op2 = (LIR_Op2*)op;
1104           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1105             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1106             return shouldHaveRegister;
1107           }
1108         }
1109         default:
1110           break;
1111       }
1112 #ifdef X86
1113     } else {
1114       // FPU stack float instruction
1115       switch (op->code()) {
1116         case lir_add:
1117         case lir_sub:
1118         case lir_mul:
1119         case lir_div:
1120         {
1121           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1122           LIR_Op2* op2 = (LIR_Op2*)op;
1123           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1124             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1125             return shouldHaveRegister;
1126           }
1127         }
1128         default:
1129           break;
1130       }
1131     }
1132 #endif
1133     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1134     // Since 64bit logical operations do not current support operands on stack, we have to make sure
1135     // T_OBJECT doesn't get spilled along with T_LONG.
1136   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1137     // integer instruction (note: long operands must always be in register)
1138     switch (op->code()) {
1139       case lir_cmp:
1140       case lir_add:
1141       case lir_sub:
1142       case lir_logic_and:
1143       case lir_logic_or:
1144       case lir_logic_xor:
1145       {
1146         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1147         LIR_Op2* op2 = (LIR_Op2*)op;
1148         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1149           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1150           return shouldHaveRegister;
1151         }
1152       }
1153       default:
1154         break;
1155     }
1156   }
1157 #endif // X86 S390
1158 
1159   // all other operands require a register
1160   return mustHaveRegister;
1161 }
1162 
1163 
1164 void LinearScan::handle_method_arguments(LIR_Op* op) {
1165   // special handling for method arguments (moves from stack to virtual register):
1166   // the interval gets no register assigned, but the stack slot.
1167   // it is split before the first use by the register allocator.
1168 
1169   if (op->code() == lir_move) {
1170     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1171     LIR_Op1* move = (LIR_Op1*)op;
1172 
1173     if (move->in_opr()->is_stack()) {
1174 #ifdef ASSERT
1175       int arg_size = compilation()->method()->arg_size();
1176       LIR_Opr o = move->in_opr();
1177       if (o->is_single_stack()) {
1178         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1179       } else if (o->is_double_stack()) {
1180         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1181       } else {
1182         ShouldNotReachHere();
1183       }
1184 
1185       assert(move->id() > 0, "invalid id");
1186       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1187       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1188 
1189       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1190 #endif
1191 
1192       Interval* interval = interval_at(reg_num(move->result_opr()));
1193 
1194       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1195       interval->set_canonical_spill_slot(stack_slot);
1196       interval->assign_reg(stack_slot);
1197     }
1198   }
1199 }
1200 
1201 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1202   // special handling for doubleword move from memory to register:
1203   // in this case the registers of the input address and the result
1204   // registers must not overlap -> add a temp range for the input registers
1205   if (op->code() == lir_move) {
1206     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1207     LIR_Op1* move = (LIR_Op1*)op;
1208 
1209     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1210       LIR_Address* address = move->in_opr()->as_address_ptr();
1211       if (address != NULL) {
1212         if (address->base()->is_valid()) {
1213           add_temp(address->base(), op->id(), noUse);
1214         }
1215         if (address->index()->is_valid()) {
1216           add_temp(address->index(), op->id(), noUse);
1217         }
1218       }
1219     }
1220   }
1221 }
1222 
1223 void LinearScan::add_register_hints(LIR_Op* op) {
1224   switch (op->code()) {
1225     case lir_move:      // fall through
1226     case lir_convert: {
1227       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1228       LIR_Op1* move = (LIR_Op1*)op;
1229 
1230       LIR_Opr move_from = move->in_opr();
1231       LIR_Opr move_to = move->result_opr();
1232 
1233       if (move_to->is_register() && move_from->is_register()) {
1234         Interval* from = interval_at(reg_num(move_from));
1235         Interval* to = interval_at(reg_num(move_to));
1236         if (from != NULL && to != NULL) {
1237           to->set_register_hint(from);
1238           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1239         }
1240       }
1241       break;
1242     }
1243     case lir_cmove: {
1244       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1245       LIR_Op2* cmove = (LIR_Op2*)op;
1246 
1247       LIR_Opr move_from = cmove->in_opr1();
1248       LIR_Opr move_to = cmove->result_opr();
1249 
1250       if (move_to->is_register() && move_from->is_register()) {
1251         Interval* from = interval_at(reg_num(move_from));
1252         Interval* to = interval_at(reg_num(move_to));
1253         if (from != NULL && to != NULL) {
1254           to->set_register_hint(from);
1255           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1256         }
1257       }
1258       break;
1259     }
1260     default:
1261       break;
1262   }
1263 }
1264 
1265 
1266 void LinearScan::build_intervals() {
1267   TIME_LINEAR_SCAN(timer_build_intervals);
1268 
1269   // initialize interval list with expected number of intervals
1270   // (32 is added to have some space for split children without having to resize the list)
1271   _intervals = IntervalList(num_virtual_regs() + 32);
1272   // initialize all slots that are used by build_intervals
1273   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1274 
1275   // create a list with all caller-save registers (cpu, fpu, xmm)
1276   // when an instruction is a call, a temp range is created for all these registers
1277   int num_caller_save_registers = 0;
1278   int caller_save_registers[LinearScan::nof_regs];
1279 
1280   int i;
1281   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1282     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1283     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1284     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1285     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1286   }
1287 
1288   // temp ranges for fpu registers are only created when the method has
1289   // virtual fpu operands. Otherwise no allocation for fpu registers is
1290   // perfomed and so the temp ranges would be useless
1291   if (has_fpu_registers()) {
1292 #ifdef X86
1293     if (UseSSE < 2) {
1294 #endif
1295       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1296         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1297         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1298         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1299         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1300       }
1301 #ifdef X86
1302     }
1303     if (UseSSE > 0) {
1304       int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
1305       for (i = 0; i < num_caller_save_xmm_regs; i ++) {
1306         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1307         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1308         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1309         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1310       }
1311     }
1312 #endif
1313   }
1314   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1315 
1316 
1317   LIR_OpVisitState visitor;
1318 
1319   // iterate all blocks in reverse order
1320   for (i = block_count() - 1; i >= 0; i--) {
1321     BlockBegin* block = block_at(i);
1322     LIR_OpList* instructions = block->lir()->instructions_list();
1323     int         block_from =   block->first_lir_instruction_id();
1324     int         block_to =     block->last_lir_instruction_id();
1325 
1326     assert(block_from == instructions->at(0)->id(), "must be");
1327     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1328 
1329     // Update intervals for registers live at the end of this block;
1330     ResourceBitMap live = block->live_out();
1331     int size = (int)live.size();
1332     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1333       assert(live.at(number), "should not stop here otherwise");
1334       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1335       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1336 
1337       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1338 
1339       // add special use positions for loop-end blocks when the
1340       // interval is used anywhere inside this loop.  It's possible
1341       // that the block was part of a non-natural loop, so it might
1342       // have an invalid loop index.
1343       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1344           block->loop_index() != -1 &&
1345           is_interval_in_loop(number, block->loop_index())) {
1346         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1347       }
1348     }
1349 
1350     // iterate all instructions of the block in reverse order.
1351     // skip the first instruction because it is always a label
1352     // definitions of intervals are processed before uses
1353     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1354     for (int j = instructions->length() - 1; j >= 1; j--) {
1355       LIR_Op* op = instructions->at(j);
1356       int op_id = op->id();
1357 
1358       // visit operation to collect all operands
1359       visitor.visit(op);
1360 
1361       // add a temp range for each register if operation destroys caller-save registers
1362       if (visitor.has_call()) {
1363         for (int k = 0; k < num_caller_save_registers; k++) {
1364           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1365         }
1366         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1367       }
1368 
1369       // Add any platform dependent temps
1370       pd_add_temps(op);
1371 
1372       // visit definitions (output and temp operands)
1373       int k, n;
1374       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1375       for (k = 0; k < n; k++) {
1376         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1377         assert(opr->is_register(), "visitor should only return register operands");
1378         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1379       }
1380 
1381       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1382       for (k = 0; k < n; k++) {
1383         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1384         assert(opr->is_register(), "visitor should only return register operands");
1385         add_temp(opr, op_id, mustHaveRegister);
1386       }
1387 
1388       // visit uses (input operands)
1389       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1390       for (k = 0; k < n; k++) {
1391         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1392         assert(opr->is_register(), "visitor should only return register operands");
1393         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1394       }
1395 
1396       // Add uses of live locals from interpreter's point of view for proper
1397       // debug information generation
1398       // Treat these operands as temp values (if the life range is extended
1399       // to a call site, the value would be in a register at the call otherwise)
1400       n = visitor.info_count();
1401       for (k = 0; k < n; k++) {
1402         CodeEmitInfo* info = visitor.info_at(k);
1403         ValueStack* stack = info->stack();
1404         for_each_state_value(stack, value,
1405           add_use(value, block_from, op_id + 1, noUse);
1406         );
1407       }
1408 
1409       // special steps for some instructions (especially moves)
1410       handle_method_arguments(op);
1411       handle_doubleword_moves(op);
1412       add_register_hints(op);
1413 
1414     } // end of instruction iteration
1415   } // end of block iteration
1416 
1417 
1418   // add the range [0, 1[ to all fixed intervals
1419   // -> the register allocator need not handle unhandled fixed intervals
1420   for (int n = 0; n < LinearScan::nof_regs; n++) {
1421     Interval* interval = interval_at(n);
1422     if (interval != NULL) {
1423       interval->add_range(0, 1);
1424     }
1425   }
1426 }
1427 
1428 
1429 // ********** Phase 5: actual register allocation
1430 
1431 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1432   if (*a != NULL) {
1433     if (*b != NULL) {
1434       return (*a)->from() - (*b)->from();
1435     } else {
1436       return -1;
1437     }
1438   } else {
1439     if (*b != NULL) {
1440       return 1;
1441     } else {
1442       return 0;
1443     }
1444   }
1445 }
1446 
1447 #ifndef PRODUCT
1448 int interval_cmp(Interval* const& l, Interval* const& r) {
1449   return l->from() - r->from();
1450 }
1451 
1452 bool find_interval(Interval* interval, IntervalArray* intervals) {
1453   bool found;
1454   int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found);
1455 
1456   if (!found) {
1457     return false;
1458   }
1459 
1460   int from = interval->from();
1461 
1462   // The index we've found using binary search is pointing to an interval
1463   // that is defined in the same place as the interval we were looking for.
1464   // So now we have to look around that index and find exact interval.
1465   for (int i = idx; i >= 0; i--) {
1466     if (intervals->at(i) == interval) {
1467       return true;
1468     }
1469     if (intervals->at(i)->from() != from) {
1470       break;
1471     }
1472   }
1473 
1474   for (int i = idx + 1; i < intervals->length(); i++) {
1475     if (intervals->at(i) == interval) {
1476       return true;
1477     }
1478     if (intervals->at(i)->from() != from) {
1479       break;
1480     }
1481   }
1482 
1483   return false;
1484 }
1485 
1486 bool LinearScan::is_sorted(IntervalArray* intervals) {
1487   int from = -1;
1488   int null_count = 0;
1489 
1490   for (int i = 0; i < intervals->length(); i++) {
1491     Interval* it = intervals->at(i);
1492     if (it != NULL) {
1493       assert(from <= it->from(), "Intervals are unordered");
1494       from = it->from();
1495     } else {
1496       null_count++;
1497     }
1498   }
1499 
1500   assert(null_count == 0, "Sorted intervals should not contain nulls");
1501 
1502   null_count = 0;
1503 
1504   for (int i = 0; i < interval_count(); i++) {
1505     Interval* interval = interval_at(i);
1506     if (interval != NULL) {
1507       assert(find_interval(interval, intervals), "Lists do not contain same intervals");
1508     } else {
1509       null_count++;
1510     }
1511   }
1512 
1513   assert(interval_count() - null_count == intervals->length(),
1514       "Sorted list should contain the same amount of non-NULL intervals as unsorted list");
1515 
1516   return true;
1517 }
1518 #endif
1519 
1520 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1521   if (*prev != NULL) {
1522     (*prev)->set_next(interval);
1523   } else {
1524     *first = interval;
1525   }
1526   *prev = interval;
1527 }
1528 
1529 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1530   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1531 
1532   *list1 = *list2 = Interval::end();
1533 
1534   Interval* list1_prev = NULL;
1535   Interval* list2_prev = NULL;
1536   Interval* v;
1537 
1538   const int n = _sorted_intervals->length();
1539   for (int i = 0; i < n; i++) {
1540     v = _sorted_intervals->at(i);
1541     if (v == NULL) continue;
1542 
1543     if (is_list1(v)) {
1544       add_to_list(list1, &list1_prev, v);
1545     } else if (is_list2 == NULL || is_list2(v)) {
1546       add_to_list(list2, &list2_prev, v);
1547     }
1548   }
1549 
1550   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1551   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1552 
1553   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1554   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1555 }
1556 
1557 
1558 void LinearScan::sort_intervals_before_allocation() {
1559   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1560 
1561   if (_needs_full_resort) {
1562     // There is no known reason why this should occur but just in case...
1563     assert(false, "should never occur");
1564     // Re-sort existing interval list because an Interval::from() has changed
1565     _sorted_intervals->sort(interval_cmp);
1566     _needs_full_resort = false;
1567   }
1568 
1569   IntervalList* unsorted_list = &_intervals;
1570   int unsorted_len = unsorted_list->length();
1571   int sorted_len = 0;
1572   int unsorted_idx;
1573   int sorted_idx = 0;
1574   int sorted_from_max = -1;
1575 
1576   // calc number of items for sorted list (sorted list must not contain NULL values)
1577   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1578     if (unsorted_list->at(unsorted_idx) != NULL) {
1579       sorted_len++;
1580     }
1581   }
1582   IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL);
1583 
1584   // special sorting algorithm: the original interval-list is almost sorted,
1585   // only some intervals are swapped. So this is much faster than a complete QuickSort
1586   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1587     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1588 
1589     if (cur_interval != NULL) {
1590       int cur_from = cur_interval->from();
1591 
1592       if (sorted_from_max <= cur_from) {
1593         sorted_list->at_put(sorted_idx++, cur_interval);
1594         sorted_from_max = cur_interval->from();
1595       } else {
1596         // the asumption that the intervals are already sorted failed,
1597         // so this interval must be sorted in manually
1598         int j;
1599         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1600           sorted_list->at_put(j + 1, sorted_list->at(j));
1601         }
1602         sorted_list->at_put(j + 1, cur_interval);
1603         sorted_idx++;
1604       }
1605     }
1606   }
1607   _sorted_intervals = sorted_list;
1608   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1609 }
1610 
1611 void LinearScan::sort_intervals_after_allocation() {
1612   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1613 
1614   if (_needs_full_resort) {
1615     // Re-sort existing interval list because an Interval::from() has changed
1616     _sorted_intervals->sort(interval_cmp);
1617     _needs_full_resort = false;
1618   }
1619 
1620   IntervalArray* old_list = _sorted_intervals;
1621   IntervalList* new_list = _new_intervals_from_allocation;
1622   int old_len = old_list->length();
1623   int new_len = new_list->length();
1624 
1625   if (new_len == 0) {
1626     // no intervals have been added during allocation, so sorted list is already up to date
1627     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1628     return;
1629   }
1630 
1631   // conventional sort-algorithm for new intervals
1632   new_list->sort(interval_cmp);
1633 
1634   // merge old and new list (both already sorted) into one combined list
1635   int combined_list_len = old_len + new_len;
1636   IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL);
1637   int old_idx = 0;
1638   int new_idx = 0;
1639 
1640   while (old_idx + new_idx < old_len + new_len) {
1641     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1642       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1643       old_idx++;
1644     } else {
1645       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1646       new_idx++;
1647     }
1648   }
1649 
1650   _sorted_intervals = combined_list;
1651   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1652 }
1653 
1654 
1655 void LinearScan::allocate_registers() {
1656   TIME_LINEAR_SCAN(timer_allocate_registers);
1657 
1658   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1659   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1660 
1661   // allocate cpu registers
1662   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1663                          is_precolored_cpu_interval, is_virtual_cpu_interval);
1664 
1665   // allocate fpu registers
1666   create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1667                          is_precolored_fpu_interval, is_virtual_fpu_interval);
1668 
1669   // the fpu interval allocation cannot be moved down below with the fpu section as
1670   // the cpu_lsw.walk() changes interval positions.
1671 
1672   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1673   cpu_lsw.walk();
1674   cpu_lsw.finish_allocation();
1675 
1676   if (has_fpu_registers()) {
1677     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1678     fpu_lsw.walk();
1679     fpu_lsw.finish_allocation();
1680   }
1681 }
1682 
1683 
1684 // ********** Phase 6: resolve data flow
1685 // (insert moves at edges between blocks if intervals have been split)
1686 
1687 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1688 // instead of returning NULL
1689 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1690   Interval* result = interval->split_child_at_op_id(op_id, mode);
1691   if (result != NULL) {
1692     return result;
1693   }
1694 
1695   assert(false, "must find an interval, but do a clean bailout in product mode");
1696   result = new Interval(LIR_OprDesc::vreg_base);
1697   result->assign_reg(0);
1698   result->set_type(T_INT);
1699   BAILOUT_("LinearScan: interval is NULL", result);
1700 }
1701 
1702 
1703 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1704   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1705   assert(interval_at(reg_num) != NULL, "no interval found");
1706 
1707   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1708 }
1709 
1710 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1711   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1712   assert(interval_at(reg_num) != NULL, "no interval found");
1713 
1714   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1715 }
1716 
1717 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1718   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1719   assert(interval_at(reg_num) != NULL, "no interval found");
1720 
1721   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1722 }
1723 
1724 
1725 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1726   DEBUG_ONLY(move_resolver.check_empty());
1727 
1728   const int num_regs = num_virtual_regs();
1729   const int size = live_set_size();
1730   const ResourceBitMap live_at_edge = to_block->live_in();
1731 
1732   // visit all registers where the live_at_edge bit is set
1733   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1734     assert(r < num_regs, "live information set for not exisiting interval");
1735     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1736 
1737     Interval* from_interval = interval_at_block_end(from_block, r);
1738     Interval* to_interval = interval_at_block_begin(to_block, r);
1739 
1740     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1741       // need to insert move instruction
1742       move_resolver.add_mapping(from_interval, to_interval);
1743     }
1744   }
1745 }
1746 
1747 
1748 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1749   if (from_block->number_of_sux() <= 1) {
1750     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1751 
1752     LIR_OpList* instructions = from_block->lir()->instructions_list();
1753     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1754     if (branch != NULL) {
1755       // insert moves before branch
1756       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1757       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1758     } else {
1759       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1760     }
1761 
1762   } else {
1763     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1764 #ifdef ASSERT
1765     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1766 
1767     // because the number of predecessor edges matches the number of
1768     // successor edges, blocks which are reached by switch statements
1769     // may have be more than one predecessor but it will be guaranteed
1770     // that all predecessors will be the same.
1771     for (int i = 0; i < to_block->number_of_preds(); i++) {
1772       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1773     }
1774 #endif
1775 
1776     move_resolver.set_insert_position(to_block->lir(), 0);
1777   }
1778 }
1779 
1780 
1781 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1782 void LinearScan::resolve_data_flow() {
1783   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1784 
1785   int num_blocks = block_count();
1786   MoveResolver move_resolver(this);
1787   ResourceBitMap block_completed(num_blocks);
1788   ResourceBitMap already_resolved(num_blocks);
1789 
1790   int i;
1791   for (i = 0; i < num_blocks; i++) {
1792     BlockBegin* block = block_at(i);
1793 
1794     // check if block has only one predecessor and only one successor
1795     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1796       LIR_OpList* instructions = block->lir()->instructions_list();
1797       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1798       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1799       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1800 
1801       // check if block is empty (only label and branch)
1802       if (instructions->length() == 2) {
1803         BlockBegin* pred = block->pred_at(0);
1804         BlockBegin* sux = block->sux_at(0);
1805 
1806         // prevent optimization of two consecutive blocks
1807         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1808           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1809           block_completed.set_bit(block->linear_scan_number());
1810 
1811           // directly resolve between pred and sux (without looking at the empty block between)
1812           resolve_collect_mappings(pred, sux, move_resolver);
1813           if (move_resolver.has_mappings()) {
1814             move_resolver.set_insert_position(block->lir(), 0);
1815             move_resolver.resolve_and_append_moves();
1816           }
1817         }
1818       }
1819     }
1820   }
1821 
1822 
1823   for (i = 0; i < num_blocks; i++) {
1824     if (!block_completed.at(i)) {
1825       BlockBegin* from_block = block_at(i);
1826       already_resolved.set_from(block_completed);
1827 
1828       int num_sux = from_block->number_of_sux();
1829       for (int s = 0; s < num_sux; s++) {
1830         BlockBegin* to_block = from_block->sux_at(s);
1831 
1832         // check for duplicate edges between the same blocks (can happen with switch blocks)
1833         if (!already_resolved.at(to_block->linear_scan_number())) {
1834           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1835           already_resolved.set_bit(to_block->linear_scan_number());
1836 
1837           // collect all intervals that have been split between from_block and to_block
1838           resolve_collect_mappings(from_block, to_block, move_resolver);
1839           if (move_resolver.has_mappings()) {
1840             resolve_find_insert_pos(from_block, to_block, move_resolver);
1841             move_resolver.resolve_and_append_moves();
1842           }
1843         }
1844       }
1845     }
1846   }
1847 }
1848 
1849 
1850 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1851   if (interval_at(reg_num) == NULL) {
1852     // if a phi function is never used, no interval is created -> ignore this
1853     return;
1854   }
1855 
1856   Interval* interval = interval_at_block_begin(block, reg_num);
1857   int reg = interval->assigned_reg();
1858   int regHi = interval->assigned_regHi();
1859 
1860   if ((reg < nof_regs && interval->always_in_memory()) ||
1861       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1862     // the interval is split to get a short range that is located on the stack
1863     // in the following two cases:
1864     // * the interval started in memory (e.g. method parameter), but is currently in a register
1865     //   this is an optimization for exception handling that reduces the number of moves that
1866     //   are necessary for resolving the states when an exception uses this exception handler
1867     // * the interval would be on the fpu stack at the begin of the exception handler
1868     //   this is not allowed because of the complicated fpu stack handling on Intel
1869 
1870     // range that will be spilled to memory
1871     int from_op_id = block->first_lir_instruction_id();
1872     int to_op_id = from_op_id + 1;  // short live range of length 1
1873     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1874            "no split allowed between exception entry and first instruction");
1875 
1876     if (interval->from() != from_op_id) {
1877       // the part before from_op_id is unchanged
1878       interval = interval->split(from_op_id);
1879       interval->assign_reg(reg, regHi);
1880       append_interval(interval);
1881     } else {
1882       _needs_full_resort = true;
1883     }
1884     assert(interval->from() == from_op_id, "must be true now");
1885 
1886     Interval* spilled_part = interval;
1887     if (interval->to() != to_op_id) {
1888       // the part after to_op_id is unchanged
1889       spilled_part = interval->split_from_start(to_op_id);
1890       append_interval(spilled_part);
1891       move_resolver.add_mapping(spilled_part, interval);
1892     }
1893     assign_spill_slot(spilled_part);
1894 
1895     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1896   }
1897 }
1898 
1899 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1900   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1901   DEBUG_ONLY(move_resolver.check_empty());
1902 
1903   // visit all registers where the live_in bit is set
1904   int size = live_set_size();
1905   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1906     resolve_exception_entry(block, r, move_resolver);
1907   }
1908 
1909   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1910   for_each_phi_fun(block, phi,
1911     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1912   );
1913 
1914   if (move_resolver.has_mappings()) {
1915     // insert moves after first instruction
1916     move_resolver.set_insert_position(block->lir(), 0);
1917     move_resolver.resolve_and_append_moves();
1918   }
1919 }
1920 
1921 
1922 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1923   if (interval_at(reg_num) == NULL) {
1924     // if a phi function is never used, no interval is created -> ignore this
1925     return;
1926   }
1927 
1928   // the computation of to_interval is equal to resolve_collect_mappings,
1929   // but from_interval is more complicated because of phi functions
1930   BlockBegin* to_block = handler->entry_block();
1931   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1932 
1933   if (phi != NULL) {
1934     // phi function of the exception entry block
1935     // no moves are created for this phi function in the LIR_Generator, so the
1936     // interval at the throwing instruction must be searched using the operands
1937     // of the phi function
1938     Value from_value = phi->operand_at(handler->phi_operand());
1939 
1940     // with phi functions it can happen that the same from_value is used in
1941     // multiple mappings, so notify move-resolver that this is allowed
1942     move_resolver.set_multiple_reads_allowed();
1943 
1944     Constant* con = from_value->as_Constant();
1945     if (con != NULL && !con->is_pinned()) {
1946       // unpinned constants may have no register, so add mapping from constant to interval
1947       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1948     } else {
1949       // search split child at the throwing op_id
1950       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1951       move_resolver.add_mapping(from_interval, to_interval);
1952     }
1953 
1954   } else {
1955     // no phi function, so use reg_num also for from_interval
1956     // search split child at the throwing op_id
1957     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1958     if (from_interval != to_interval) {
1959       // optimization to reduce number of moves: when to_interval is on stack and
1960       // the stack slot is known to be always correct, then no move is necessary
1961       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1962         move_resolver.add_mapping(from_interval, to_interval);
1963       }
1964     }
1965   }
1966 }
1967 
1968 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1969   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1970 
1971   DEBUG_ONLY(move_resolver.check_empty());
1972   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1973   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1974   assert(handler->entry_code() == NULL, "code already present");
1975 
1976   // visit all registers where the live_in bit is set
1977   BlockBegin* block = handler->entry_block();
1978   int size = live_set_size();
1979   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1980     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1981   }
1982 
1983   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1984   for_each_phi_fun(block, phi,
1985     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1986   );
1987 
1988   if (move_resolver.has_mappings()) {
1989     LIR_List* entry_code = new LIR_List(compilation());
1990     move_resolver.set_insert_position(entry_code, 0);
1991     move_resolver.resolve_and_append_moves();
1992 
1993     entry_code->jump(handler->entry_block());
1994     handler->set_entry_code(entry_code);
1995   }
1996 }
1997 
1998 
1999 void LinearScan::resolve_exception_handlers() {
2000   MoveResolver move_resolver(this);
2001   LIR_OpVisitState visitor;
2002   int num_blocks = block_count();
2003 
2004   int i;
2005   for (i = 0; i < num_blocks; i++) {
2006     BlockBegin* block = block_at(i);
2007     if (block->is_set(BlockBegin::exception_entry_flag)) {
2008       resolve_exception_entry(block, move_resolver);
2009     }
2010   }
2011 
2012   for (i = 0; i < num_blocks; i++) {
2013     BlockBegin* block = block_at(i);
2014     LIR_List* ops = block->lir();
2015     int num_ops = ops->length();
2016 
2017     // iterate all instructions of the block. skip the first because it is always a label
2018     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
2019     for (int j = 1; j < num_ops; j++) {
2020       LIR_Op* op = ops->at(j);
2021       int op_id = op->id();
2022 
2023       if (op_id != -1 && has_info(op_id)) {
2024         // visit operation to collect all operands
2025         visitor.visit(op);
2026         assert(visitor.info_count() > 0, "should not visit otherwise");
2027 
2028         XHandlers* xhandlers = visitor.all_xhandler();
2029         int n = xhandlers->length();
2030         for (int k = 0; k < n; k++) {
2031           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2032         }
2033 
2034 #ifdef ASSERT
2035       } else {
2036         visitor.visit(op);
2037         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2038 #endif
2039       }
2040     }
2041   }
2042 }
2043 
2044 
2045 // ********** Phase 7: assign register numbers back to LIR
2046 // (includes computation of debug information and oop maps)
2047 
2048 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2049   VMReg reg = interval->cached_vm_reg();
2050   if (!reg->is_valid() ) {
2051     reg = vm_reg_for_operand(operand_for_interval(interval));
2052     interval->set_cached_vm_reg(reg);
2053   }
2054   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2055   return reg;
2056 }
2057 
2058 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2059   assert(opr->is_oop(), "currently only implemented for oop operands");
2060   return frame_map()->regname(opr);
2061 }
2062 
2063 
2064 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2065   LIR_Opr opr = interval->cached_opr();
2066   if (opr->is_illegal()) {
2067     opr = calc_operand_for_interval(interval);
2068     interval->set_cached_opr(opr);
2069   }
2070 
2071   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2072   return opr;
2073 }
2074 
2075 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2076   int assigned_reg = interval->assigned_reg();
2077   BasicType type = interval->type();
2078 
2079   if (assigned_reg >= nof_regs) {
2080     // stack slot
2081     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2082     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2083 
2084   } else {
2085     // register
2086     switch (type) {
2087       case T_OBJECT: {
2088         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2089         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2090         return LIR_OprFact::single_cpu_oop(assigned_reg);
2091       }
2092 
2093       case T_ADDRESS: {
2094         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2095         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2096         return LIR_OprFact::single_cpu_address(assigned_reg);
2097       }
2098 
2099       case T_METADATA: {
2100         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2101         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2102         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2103       }
2104 
2105 #ifdef __SOFTFP__
2106       case T_FLOAT:  // fall through
2107 #endif // __SOFTFP__
2108       case T_INT: {
2109         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2110         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2111         return LIR_OprFact::single_cpu(assigned_reg);
2112       }
2113 
2114 #ifdef __SOFTFP__
2115       case T_DOUBLE:  // fall through
2116 #endif // __SOFTFP__
2117       case T_LONG: {
2118         int assigned_regHi = interval->assigned_regHi();
2119         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2120         assert(num_physical_regs(T_LONG) == 1 ||
2121                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2122 
2123         assert(assigned_reg != assigned_regHi, "invalid allocation");
2124         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2125                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2126         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2127         if (requires_adjacent_regs(T_LONG)) {
2128           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2129         }
2130 
2131 #ifdef _LP64
2132         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2133 #else
2134 #if defined(SPARC) || defined(PPC32)
2135         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2136 #else
2137         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2138 #endif // SPARC
2139 #endif // LP64
2140       }
2141 
2142 #ifndef __SOFTFP__
2143       case T_FLOAT: {
2144 #ifdef X86
2145         if (UseSSE >= 1) {
2146           int last_xmm_reg = pd_last_xmm_reg;
2147 #ifdef _LP64
2148           if (UseAVX < 3) {
2149             last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2150           }
2151 #endif
2152           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2153           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2154           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2155         }
2156 #endif
2157 
2158         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2159         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2160         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2161       }
2162 
2163       case T_DOUBLE: {
2164 #ifdef X86
2165         if (UseSSE >= 2) {
2166           int last_xmm_reg = pd_last_xmm_reg;
2167 #ifdef _LP64
2168           if (UseAVX < 3) {
2169             last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2170           }
2171 #endif
2172           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2173           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2174           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2175         }
2176 #endif
2177 
2178 #ifdef SPARC
2179         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2180         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2181         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2182         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2183 #elif defined(ARM32)
2184         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2185         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2186         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2187         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2188 #else
2189         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2190         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2191         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2192 #endif
2193         return result;
2194       }
2195 #endif // __SOFTFP__
2196 
2197       default: {
2198         ShouldNotReachHere();
2199         return LIR_OprFact::illegalOpr;
2200       }
2201     }
2202   }
2203 }
2204 
2205 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2206   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2207   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2208 }
2209 
2210 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2211   assert(opr->is_virtual(), "should not call this otherwise");
2212 
2213   Interval* interval = interval_at(opr->vreg_number());
2214   assert(interval != NULL, "interval must exist");
2215 
2216   if (op_id != -1) {
2217 #ifdef ASSERT
2218     BlockBegin* block = block_of_op_with_id(op_id);
2219     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2220       // check if spill moves could have been appended at the end of this block, but
2221       // before the branch instruction. So the split child information for this branch would
2222       // be incorrect.
2223       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2224       if (branch != NULL) {
2225         if (block->live_out().at(opr->vreg_number())) {
2226           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2227           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2228         }
2229       }
2230     }
2231 #endif
2232 
2233     // operands are not changed when an interval is split during allocation,
2234     // so search the right interval here
2235     interval = split_child_at_op_id(interval, op_id, mode);
2236   }
2237 
2238   LIR_Opr res = operand_for_interval(interval);
2239 
2240 #ifdef X86
2241   // new semantic for is_last_use: not only set on definite end of interval,
2242   // but also before hole
2243   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2244   // last use information is completely correct
2245   // information is only needed for fpu stack allocation
2246   if (res->is_fpu_register()) {
2247     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2248       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2249       res = res->make_last_use();
2250     }
2251   }
2252 #endif
2253 
2254   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2255 
2256   return res;
2257 }
2258 
2259 
2260 #ifdef ASSERT
2261 // some methods used to check correctness of debug information
2262 
2263 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2264   if (values == NULL) {
2265     return;
2266   }
2267 
2268   for (int i = 0; i < values->length(); i++) {
2269     ScopeValue* value = values->at(i);
2270 
2271     if (value->is_location()) {
2272       Location location = ((LocationValue*)value)->location();
2273       assert(location.where() == Location::on_stack, "value is in register");
2274     }
2275   }
2276 }
2277 
2278 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2279   if (values == NULL) {
2280     return;
2281   }
2282 
2283   for (int i = 0; i < values->length(); i++) {
2284     MonitorValue* value = values->at(i);
2285 
2286     if (value->owner()->is_location()) {
2287       Location location = ((LocationValue*)value->owner())->location();
2288       assert(location.where() == Location::on_stack, "owner is in register");
2289     }
2290     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2291   }
2292 }
2293 
2294 void assert_equal(Location l1, Location l2) {
2295   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2296 }
2297 
2298 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2299   if (v1->is_location()) {
2300     assert(v2->is_location(), "");
2301     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2302   } else if (v1->is_constant_int()) {
2303     assert(v2->is_constant_int(), "");
2304     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2305   } else if (v1->is_constant_double()) {
2306     assert(v2->is_constant_double(), "");
2307     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2308   } else if (v1->is_constant_long()) {
2309     assert(v2->is_constant_long(), "");
2310     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2311   } else if (v1->is_constant_oop()) {
2312     assert(v2->is_constant_oop(), "");
2313     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2314   } else {
2315     ShouldNotReachHere();
2316   }
2317 }
2318 
2319 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2320   assert_equal(m1->owner(), m2->owner());
2321   assert_equal(m1->basic_lock(), m2->basic_lock());
2322 }
2323 
2324 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2325   assert(d1->scope() == d2->scope(), "not equal");
2326   assert(d1->bci() == d2->bci(), "not equal");
2327 
2328   if (d1->locals() != NULL) {
2329     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2330     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2331     for (int i = 0; i < d1->locals()->length(); i++) {
2332       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2333     }
2334   } else {
2335     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2336   }
2337 
2338   if (d1->expressions() != NULL) {
2339     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2340     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2341     for (int i = 0; i < d1->expressions()->length(); i++) {
2342       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2343     }
2344   } else {
2345     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2346   }
2347 
2348   if (d1->monitors() != NULL) {
2349     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2350     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2351     for (int i = 0; i < d1->monitors()->length(); i++) {
2352       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2353     }
2354   } else {
2355     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2356   }
2357 
2358   if (d1->caller() != NULL) {
2359     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2360     assert_equal(d1->caller(), d2->caller());
2361   } else {
2362     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2363   }
2364 }
2365 
2366 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2367   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2368     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2369     switch (code) {
2370       case Bytecodes::_ifnull    : // fall through
2371       case Bytecodes::_ifnonnull : // fall through
2372       case Bytecodes::_ifeq      : // fall through
2373       case Bytecodes::_ifne      : // fall through
2374       case Bytecodes::_iflt      : // fall through
2375       case Bytecodes::_ifge      : // fall through
2376       case Bytecodes::_ifgt      : // fall through
2377       case Bytecodes::_ifle      : // fall through
2378       case Bytecodes::_if_icmpeq : // fall through
2379       case Bytecodes::_if_icmpne : // fall through
2380       case Bytecodes::_if_icmplt : // fall through
2381       case Bytecodes::_if_icmpge : // fall through
2382       case Bytecodes::_if_icmpgt : // fall through
2383       case Bytecodes::_if_icmple : // fall through
2384       case Bytecodes::_if_acmpeq : // fall through
2385       case Bytecodes::_if_acmpne :
2386         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2387         break;
2388       default:
2389         break;
2390     }
2391   }
2392 }
2393 
2394 #endif // ASSERT
2395 
2396 
2397 IntervalWalker* LinearScan::init_compute_oop_maps() {
2398   // setup lists of potential oops for walking
2399   Interval* oop_intervals;
2400   Interval* non_oop_intervals;
2401 
2402   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2403 
2404   // intervals that have no oops inside need not to be processed
2405   // to ensure a walking until the last instruction id, add a dummy interval
2406   // with a high operation id
2407   non_oop_intervals = new Interval(any_reg);
2408   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2409 
2410   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2411 }
2412 
2413 
2414 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2415   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2416 
2417   // walk before the current operation -> intervals that start at
2418   // the operation (= output operands of the operation) are not
2419   // included in the oop map
2420   iw->walk_before(op->id());
2421 
2422   int frame_size = frame_map()->framesize();
2423   int arg_count = frame_map()->oop_map_arg_count();
2424   OopMap* map = new OopMap(frame_size, arg_count);
2425 
2426   // Iterate through active intervals
2427   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2428     int assigned_reg = interval->assigned_reg();
2429 
2430     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2431     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2432     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2433 
2434     // Check if this range covers the instruction. Intervals that
2435     // start or end at the current operation are not included in the
2436     // oop map, except in the case of patching moves.  For patching
2437     // moves, any intervals which end at this instruction are included
2438     // in the oop map since we may safepoint while doing the patch
2439     // before we've consumed the inputs.
2440     if (op->is_patching() || op->id() < interval->current_to()) {
2441 
2442       // caller-save registers must not be included into oop-maps at calls
2443       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2444 
2445       VMReg name = vm_reg_for_interval(interval);
2446       set_oop(map, name);
2447 
2448       // Spill optimization: when the stack value is guaranteed to be always correct,
2449       // then it must be added to the oop map even if the interval is currently in a register
2450       if (interval->always_in_memory() &&
2451           op->id() > interval->spill_definition_pos() &&
2452           interval->assigned_reg() != interval->canonical_spill_slot()) {
2453         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2454         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2455         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2456 
2457         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2458       }
2459     }
2460   }
2461 
2462   // add oops from lock stack
2463   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2464   int locks_count = info->stack()->total_locks_size();
2465   for (int i = 0; i < locks_count; i++) {
2466     set_oop(map, frame_map()->monitor_object_regname(i));
2467   }
2468 
2469   return map;
2470 }
2471 
2472 
2473 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2474   assert(visitor.info_count() > 0, "no oop map needed");
2475 
2476   // compute oop_map only for first CodeEmitInfo
2477   // because it is (in most cases) equal for all other infos of the same operation
2478   CodeEmitInfo* first_info = visitor.info_at(0);
2479   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2480 
2481   for (int i = 0; i < visitor.info_count(); i++) {
2482     CodeEmitInfo* info = visitor.info_at(i);
2483     OopMap* oop_map = first_oop_map;
2484 
2485     // compute worst case interpreter size in case of a deoptimization
2486     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2487 
2488     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2489       // this info has a different number of locks then the precomputed oop map
2490       // (possible for lock and unlock instructions) -> compute oop map with
2491       // correct lock information
2492       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2493     }
2494 
2495     if (info->_oop_map == NULL) {
2496       info->_oop_map = oop_map;
2497     } else {
2498       // a CodeEmitInfo can not be shared between different LIR-instructions
2499       // because interval splitting can occur anywhere between two instructions
2500       // and so the oop maps must be different
2501       // -> check if the already set oop_map is exactly the one calculated for this operation
2502       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2503     }
2504   }
2505 }
2506 
2507 
2508 // frequently used constants
2509 // Allocate them with new so they are never destroyed (otherwise, a
2510 // forced exit could destroy these objects while they are still in
2511 // use).
2512 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2513 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2514 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue((jint)0);
2515 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2516 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2517 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2518 
2519 void LinearScan::init_compute_debug_info() {
2520   // cache for frequently used scope values
2521   // (cpu registers and stack slots)
2522   int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2;
2523   _scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL);
2524 }
2525 
2526 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2527   Location loc;
2528   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2529     bailout("too large frame");
2530   }
2531   ScopeValue* object_scope_value = new LocationValue(loc);
2532 
2533   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2534     bailout("too large frame");
2535   }
2536   return new MonitorValue(object_scope_value, loc);
2537 }
2538 
2539 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2540   Location loc;
2541   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2542     bailout("too large frame");
2543   }
2544   return new LocationValue(loc);
2545 }
2546 
2547 
2548 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2549   assert(opr->is_constant(), "should not be called otherwise");
2550 
2551   LIR_Const* c = opr->as_constant_ptr();
2552   BasicType t = c->type();
2553   switch (t) {
2554     case T_OBJECT: {
2555       jobject value = c->as_jobject();
2556       if (value == NULL) {
2557         scope_values->append(_oop_null_scope_value);
2558       } else {
2559         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2560       }
2561       return 1;
2562     }
2563 
2564     case T_INT: // fall through
2565     case T_FLOAT: {
2566       int value = c->as_jint_bits();
2567       switch (value) {
2568         case -1: scope_values->append(_int_m1_scope_value); break;
2569         case 0:  scope_values->append(_int_0_scope_value); break;
2570         case 1:  scope_values->append(_int_1_scope_value); break;
2571         case 2:  scope_values->append(_int_2_scope_value); break;
2572         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2573       }
2574       return 1;
2575     }
2576 
2577     case T_LONG: // fall through
2578     case T_DOUBLE: {
2579 #ifdef _LP64
2580       scope_values->append(_int_0_scope_value);
2581       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2582 #else
2583       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2584         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2585         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2586       } else {
2587         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2588         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2589       }
2590 #endif
2591       return 2;
2592     }
2593 
2594     case T_ADDRESS: {
2595 #ifdef _LP64
2596       scope_values->append(new ConstantLongValue(c->as_jint()));
2597 #else
2598       scope_values->append(new ConstantIntValue(c->as_jint()));
2599 #endif
2600       return 1;
2601     }
2602 
2603     default:
2604       ShouldNotReachHere();
2605       return -1;
2606   }
2607 }
2608 
2609 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2610   if (opr->is_single_stack()) {
2611     int stack_idx = opr->single_stack_ix();
2612     bool is_oop = opr->is_oop_register();
2613     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2614 
2615     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2616     if (sv == NULL) {
2617       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2618       sv = location_for_name(stack_idx, loc_type);
2619       _scope_value_cache.at_put(cache_idx, sv);
2620     }
2621 
2622     // check if cached value is correct
2623     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2624 
2625     scope_values->append(sv);
2626     return 1;
2627 
2628   } else if (opr->is_single_cpu()) {
2629     bool is_oop = opr->is_oop_register();
2630     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2631     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2632 
2633     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2634     if (sv == NULL) {
2635       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2636       VMReg rname = frame_map()->regname(opr);
2637       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2638       _scope_value_cache.at_put(cache_idx, sv);
2639     }
2640 
2641     // check if cached value is correct
2642     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2643 
2644     scope_values->append(sv);
2645     return 1;
2646 
2647 #ifdef X86
2648   } else if (opr->is_single_xmm()) {
2649     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2650     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2651 
2652     scope_values->append(sv);
2653     return 1;
2654 #endif
2655 
2656   } else if (opr->is_single_fpu()) {
2657 #ifdef X86
2658     // the exact location of fpu stack values is only known
2659     // during fpu stack allocation, so the stack allocator object
2660     // must be present
2661     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2662     assert(_fpu_stack_allocator != NULL, "must be present");
2663     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2664 #endif
2665 
2666     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2667     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2668 #ifndef __SOFTFP__
2669 #ifndef VM_LITTLE_ENDIAN
2670     // On S390 a (single precision) float value occupies only the high
2671     // word of the full double register. So when the double register is
2672     // stored to memory (e.g. by the RegisterSaver), then the float value
2673     // is found at offset 0. I.e. the code below is not needed on S390.
2674 #ifndef S390
2675     if (! float_saved_as_double) {
2676       // On big endian system, we may have an issue if float registers use only
2677       // the low half of the (same) double registers.
2678       // Both the float and the double could have the same regnr but would correspond
2679       // to two different addresses once saved.
2680 
2681       // get next safely (no assertion checks)
2682       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2683       if (next->is_reg() &&
2684           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2685         // the back-end does use the same numbering for the double and the float
2686         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2687       }
2688     }
2689 #endif // !S390
2690 #endif
2691 #endif
2692     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2693 
2694     scope_values->append(sv);
2695     return 1;
2696 
2697   } else {
2698     // double-size operands
2699 
2700     ScopeValue* first;
2701     ScopeValue* second;
2702 
2703     if (opr->is_double_stack()) {
2704 #ifdef _LP64
2705       Location loc1;
2706       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2707       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2708         bailout("too large frame");
2709       }
2710       // Does this reverse on x86 vs. sparc?
2711       first =  new LocationValue(loc1);
2712       second = _int_0_scope_value;
2713 #else
2714       Location loc1, loc2;
2715       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2716         bailout("too large frame");
2717       }
2718       first =  new LocationValue(loc1);
2719       second = new LocationValue(loc2);
2720 #endif // _LP64
2721 
2722     } else if (opr->is_double_cpu()) {
2723 #ifdef _LP64
2724       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2725       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2726       second = _int_0_scope_value;
2727 #else
2728       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2729       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2730 
2731       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2732         // lo/hi and swapped relative to first and second, so swap them
2733         VMReg tmp = rname_first;
2734         rname_first = rname_second;
2735         rname_second = tmp;
2736       }
2737 
2738       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2739       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2740 #endif //_LP64
2741 
2742 
2743 #ifdef X86
2744     } else if (opr->is_double_xmm()) {
2745       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2746       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2747 #  ifdef _LP64
2748       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2749       second = _int_0_scope_value;
2750 #  else
2751       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2752       // %%% This is probably a waste but we'll keep things as they were for now
2753       if (true) {
2754         VMReg rname_second = rname_first->next();
2755         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2756       }
2757 #  endif
2758 #endif
2759 
2760     } else if (opr->is_double_fpu()) {
2761       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2762       // the double as float registers in the native ordering. On X86,
2763       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2764       // the low-order word of the double and fpu_regnrLo + 1 is the
2765       // name for the other half.  *first and *second must represent the
2766       // least and most significant words, respectively.
2767 
2768 #ifdef X86
2769       // the exact location of fpu stack values is only known
2770       // during fpu stack allocation, so the stack allocator object
2771       // must be present
2772       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2773       assert(_fpu_stack_allocator != NULL, "must be present");
2774       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2775 
2776       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2777 #endif
2778 #ifdef SPARC
2779       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2780 #endif
2781 #ifdef ARM32
2782       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2783 #endif
2784 #ifdef PPC32
2785       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2786 #endif
2787 
2788 #ifdef VM_LITTLE_ENDIAN
2789       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2790 #else
2791       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2792 #endif
2793 
2794 #ifdef _LP64
2795       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2796       second = _int_0_scope_value;
2797 #else
2798       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2799       // %%% This is probably a waste but we'll keep things as they were for now
2800       if (true) {
2801         VMReg rname_second = rname_first->next();
2802         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2803       }
2804 #endif
2805 
2806     } else {
2807       ShouldNotReachHere();
2808       first = NULL;
2809       second = NULL;
2810     }
2811 
2812     assert(first != NULL && second != NULL, "must be set");
2813     // The convention the interpreter uses is that the second local
2814     // holds the first raw word of the native double representation.
2815     // This is actually reasonable, since locals and stack arrays
2816     // grow downwards in all implementations.
2817     // (If, on some machine, the interpreter's Java locals or stack
2818     // were to grow upwards, the embedded doubles would be word-swapped.)
2819     scope_values->append(second);
2820     scope_values->append(first);
2821     return 2;
2822   }
2823 }
2824 
2825 
2826 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2827   if (value != NULL) {
2828     LIR_Opr opr = value->operand();
2829     Constant* con = value->as_Constant();
2830 
2831     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2832     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2833 
2834     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2835       // Unpinned constants may have a virtual operand for a part of the lifetime
2836       // or may be illegal when it was optimized away,
2837       // so always use a constant operand
2838       opr = LIR_OprFact::value_type(con->type());
2839     }
2840     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2841 
2842     if (opr->is_virtual()) {
2843       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2844 
2845       BlockBegin* block = block_of_op_with_id(op_id);
2846       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2847         // generating debug information for the last instruction of a block.
2848         // if this instruction is a branch, spill moves are inserted before this branch
2849         // and so the wrong operand would be returned (spill moves at block boundaries are not
2850         // considered in the live ranges of intervals)
2851         // Solution: use the first op_id of the branch target block instead.
2852         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2853           if (block->live_out().at(opr->vreg_number())) {
2854             op_id = block->sux_at(0)->first_lir_instruction_id();
2855             mode = LIR_OpVisitState::outputMode;
2856           }
2857         }
2858       }
2859 
2860       // Get current location of operand
2861       // The operand must be live because debug information is considered when building the intervals
2862       // if the interval is not live, color_lir_opr will cause an assertion failure
2863       opr = color_lir_opr(opr, op_id, mode);
2864       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2865 
2866       // Append to ScopeValue array
2867       return append_scope_value_for_operand(opr, scope_values);
2868 
2869     } else {
2870       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2871       assert(opr->is_constant(), "operand must be constant");
2872 
2873       return append_scope_value_for_constant(opr, scope_values);
2874     }
2875   } else {
2876     // append a dummy value because real value not needed
2877     scope_values->append(_illegal_value);
2878     return 1;
2879   }
2880 }
2881 
2882 
2883 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2884   IRScopeDebugInfo* caller_debug_info = NULL;
2885 
2886   ValueStack* caller_state = cur_state->caller_state();
2887   if (caller_state != NULL) {
2888     // process recursively to compute outermost scope first
2889     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2890   }
2891 
2892   // initialize these to null.
2893   // If we don't need deopt info or there are no locals, expressions or monitors,
2894   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2895   GrowableArray<ScopeValue*>*   locals      = NULL;
2896   GrowableArray<ScopeValue*>*   expressions = NULL;
2897   GrowableArray<MonitorValue*>* monitors    = NULL;
2898 
2899   // describe local variable values
2900   int nof_locals = cur_state->locals_size();
2901   if (nof_locals > 0) {
2902     locals = new GrowableArray<ScopeValue*>(nof_locals);
2903 
2904     int pos = 0;
2905     while (pos < nof_locals) {
2906       assert(pos < cur_state->locals_size(), "why not?");
2907 
2908       Value local = cur_state->local_at(pos);
2909       pos += append_scope_value(op_id, local, locals);
2910 
2911       assert(locals->length() == pos, "must match");
2912     }
2913     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2914     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2915   } else if (cur_scope->method()->max_locals() > 0) {
2916     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2917     nof_locals = cur_scope->method()->max_locals();
2918     locals = new GrowableArray<ScopeValue*>(nof_locals);
2919     for(int i = 0; i < nof_locals; i++) {
2920       locals->append(_illegal_value);
2921     }
2922   }
2923 
2924   // describe expression stack
2925   int nof_stack = cur_state->stack_size();
2926   if (nof_stack > 0) {
2927     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2928 
2929     int pos = 0;
2930     while (pos < nof_stack) {
2931       Value expression = cur_state->stack_at_inc(pos);
2932       append_scope_value(op_id, expression, expressions);
2933 
2934       assert(expressions->length() == pos, "must match");
2935     }
2936     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2937   }
2938 
2939   // describe monitors
2940   int nof_locks = cur_state->locks_size();
2941   if (nof_locks > 0) {
2942     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2943     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2944     for (int i = 0; i < nof_locks; i++) {
2945       monitors->append(location_for_monitor_index(lock_offset + i));
2946     }
2947   }
2948 
2949   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2950 }
2951 
2952 
2953 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2954   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2955 
2956   IRScope* innermost_scope = info->scope();
2957   ValueStack* innermost_state = info->stack();
2958 
2959   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2960 
2961   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2962 
2963   if (info->_scope_debug_info == NULL) {
2964     // compute debug information
2965     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2966   } else {
2967     // debug information already set. Check that it is correct from the current point of view
2968     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2969   }
2970 }
2971 
2972 
2973 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2974   LIR_OpVisitState visitor;
2975   int num_inst = instructions->length();
2976   bool has_dead = false;
2977 
2978   for (int j = 0; j < num_inst; j++) {
2979     LIR_Op* op = instructions->at(j);
2980     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2981       has_dead = true;
2982       continue;
2983     }
2984     int op_id = op->id();
2985 
2986     // visit instruction to get list of operands
2987     visitor.visit(op);
2988 
2989     // iterate all modes of the visitor and process all virtual operands
2990     for_each_visitor_mode(mode) {
2991       int n = visitor.opr_count(mode);
2992       for (int k = 0; k < n; k++) {
2993         LIR_Opr opr = visitor.opr_at(mode, k);
2994         if (opr->is_virtual_register()) {
2995           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2996         }
2997       }
2998     }
2999 
3000     if (visitor.info_count() > 0) {
3001       // exception handling
3002       if (compilation()->has_exception_handlers()) {
3003         XHandlers* xhandlers = visitor.all_xhandler();
3004         int n = xhandlers->length();
3005         for (int k = 0; k < n; k++) {
3006           XHandler* handler = xhandlers->handler_at(k);
3007           if (handler->entry_code() != NULL) {
3008             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
3009           }
3010         }
3011       } else {
3012         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
3013       }
3014 
3015       // compute oop map
3016       assert(iw != NULL, "needed for compute_oop_map");
3017       compute_oop_map(iw, visitor, op);
3018 
3019       // compute debug information
3020       if (!use_fpu_stack_allocation()) {
3021         // compute debug information if fpu stack allocation is not needed.
3022         // when fpu stack allocation is needed, the debug information can not
3023         // be computed here because the exact location of fpu operands is not known
3024         // -> debug information is created inside the fpu stack allocator
3025         int n = visitor.info_count();
3026         for (int k = 0; k < n; k++) {
3027           compute_debug_info(visitor.info_at(k), op_id);
3028         }
3029       }
3030     }
3031 
3032 #ifdef ASSERT
3033     // make sure we haven't made the op invalid.
3034     op->verify();
3035 #endif
3036 
3037     // remove useless moves
3038     if (op->code() == lir_move) {
3039       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
3040       LIR_Op1* move = (LIR_Op1*)op;
3041       LIR_Opr src = move->in_opr();
3042       LIR_Opr dst = move->result_opr();
3043       if (dst == src ||
3044           (!dst->is_pointer() && !src->is_pointer() &&
3045            src->is_same_register(dst))) {
3046         instructions->at_put(j, NULL);
3047         has_dead = true;
3048       }
3049     }
3050   }
3051 
3052   if (has_dead) {
3053     // iterate all instructions of the block and remove all null-values.
3054     int insert_point = 0;
3055     for (int j = 0; j < num_inst; j++) {
3056       LIR_Op* op = instructions->at(j);
3057       if (op != NULL) {
3058         if (insert_point != j) {
3059           instructions->at_put(insert_point, op);
3060         }
3061         insert_point++;
3062       }
3063     }
3064     instructions->trunc_to(insert_point);
3065   }
3066 }
3067 
3068 void LinearScan::assign_reg_num() {
3069   TIME_LINEAR_SCAN(timer_assign_reg_num);
3070 
3071   init_compute_debug_info();
3072   IntervalWalker* iw = init_compute_oop_maps();
3073 
3074   int num_blocks = block_count();
3075   for (int i = 0; i < num_blocks; i++) {
3076     BlockBegin* block = block_at(i);
3077     assign_reg_num(block->lir()->instructions_list(), iw);
3078   }
3079 }
3080 
3081 
3082 void LinearScan::do_linear_scan() {
3083   NOT_PRODUCT(_total_timer.begin_method());
3084 
3085   number_instructions();
3086 
3087   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3088 
3089   compute_local_live_sets();
3090   compute_global_live_sets();
3091   CHECK_BAILOUT();
3092 
3093   build_intervals();
3094   CHECK_BAILOUT();
3095   sort_intervals_before_allocation();
3096 
3097   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3098   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3099 
3100   allocate_registers();
3101   CHECK_BAILOUT();
3102 
3103   resolve_data_flow();
3104   if (compilation()->has_exception_handlers()) {
3105     resolve_exception_handlers();
3106   }
3107   // fill in number of spill slots into frame_map
3108   propagate_spill_slots();
3109   CHECK_BAILOUT();
3110 
3111   NOT_PRODUCT(print_intervals("After Register Allocation"));
3112   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3113 
3114   sort_intervals_after_allocation();
3115 
3116   DEBUG_ONLY(verify());
3117 
3118   eliminate_spill_moves();
3119   assign_reg_num();
3120   CHECK_BAILOUT();
3121 
3122   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3123   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3124 
3125   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3126 
3127     if (use_fpu_stack_allocation()) {
3128       allocate_fpu_stack(); // Only has effect on Intel
3129       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3130     }
3131   }
3132 
3133   { TIME_LINEAR_SCAN(timer_optimize_lir);
3134 
3135     EdgeMoveOptimizer::optimize(ir()->code());
3136     ControlFlowOptimizer::optimize(ir()->code());
3137     // check that cfg is still correct after optimizations
3138     ir()->verify();
3139   }
3140 
3141   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3142   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3143   NOT_PRODUCT(_total_timer.end_method(this));
3144 }
3145 
3146 
3147 // ********** Printing functions
3148 
3149 #ifndef PRODUCT
3150 
3151 void LinearScan::print_timers(double total) {
3152   _total_timer.print(total);
3153 }
3154 
3155 void LinearScan::print_statistics() {
3156   _stat_before_alloc.print("before allocation");
3157   _stat_after_asign.print("after assignment of register");
3158   _stat_final.print("after optimization");
3159 }
3160 
3161 void LinearScan::print_bitmap(BitMap& b) {
3162   for (unsigned int i = 0; i < b.size(); i++) {
3163     if (b.at(i)) tty->print("%d ", i);
3164   }
3165   tty->cr();
3166 }
3167 
3168 void LinearScan::print_intervals(const char* label) {
3169   if (TraceLinearScanLevel >= 1) {
3170     int i;
3171     tty->cr();
3172     tty->print_cr("%s", label);
3173 
3174     for (i = 0; i < interval_count(); i++) {
3175       Interval* interval = interval_at(i);
3176       if (interval != NULL) {
3177         interval->print();
3178       }
3179     }
3180 
3181     tty->cr();
3182     tty->print_cr("--- Basic Blocks ---");
3183     for (i = 0; i < block_count(); i++) {
3184       BlockBegin* block = block_at(i);
3185       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3186     }
3187     tty->cr();
3188     tty->cr();
3189   }
3190 
3191   if (PrintCFGToFile) {
3192     CFGPrinter::print_intervals(&_intervals, label);
3193   }
3194 }
3195 
3196 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3197   if (TraceLinearScanLevel >= level) {
3198     tty->cr();
3199     tty->print_cr("%s", label);
3200     print_LIR(ir()->linear_scan_order());
3201     tty->cr();
3202   }
3203 
3204   if (level == 1 && PrintCFGToFile) {
3205     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3206   }
3207 }
3208 
3209 #endif //PRODUCT
3210 
3211 
3212 // ********** verification functions for allocation
3213 // (check that all intervals have a correct register and that no registers are overwritten)
3214 #ifdef ASSERT
3215 
3216 void LinearScan::verify() {
3217   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3218   verify_intervals();
3219 
3220   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3221   verify_no_oops_in_fixed_intervals();
3222 
3223   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3224   verify_constants();
3225 
3226   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3227   verify_registers();
3228 
3229   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3230 }
3231 
3232 void LinearScan::verify_intervals() {
3233   int len = interval_count();
3234   bool has_error = false;
3235 
3236   for (int i = 0; i < len; i++) {
3237     Interval* i1 = interval_at(i);
3238     if (i1 == NULL) continue;
3239 
3240     i1->check_split_children();
3241 
3242     if (i1->reg_num() != i) {
3243       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3244       has_error = true;
3245     }
3246 
3247     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3248       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3249       has_error = true;
3250     }
3251 
3252     if (i1->assigned_reg() == any_reg) {
3253       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3254       has_error = true;
3255     }
3256 
3257     if (i1->assigned_reg() == i1->assigned_regHi()) {
3258       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3259       has_error = true;
3260     }
3261 
3262     if (!is_processed_reg_num(i1->assigned_reg())) {
3263       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3264       has_error = true;
3265     }
3266 
3267     // special intervals that are created in MoveResolver
3268     // -> ignore them because the range information has no meaning there
3269     if (i1->from() == 1 && i1->to() == 2) continue;
3270 
3271     if (i1->first() == Range::end()) {
3272       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3273       has_error = true;
3274     }
3275 
3276     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3277       if (r->from() >= r->to()) {
3278         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3279         has_error = true;
3280       }
3281     }
3282 
3283     for (int j = i + 1; j < len; j++) {
3284       Interval* i2 = interval_at(j);
3285       if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue;
3286 
3287       int r1 = i1->assigned_reg();
3288       int r1Hi = i1->assigned_regHi();
3289       int r2 = i2->assigned_reg();
3290       int r2Hi = i2->assigned_regHi();
3291       if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) {
3292         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3293         i1->print(); tty->cr();
3294         i2->print(); tty->cr();
3295         has_error = true;
3296       }
3297     }
3298   }
3299 
3300   assert(has_error == false, "register allocation invalid");
3301 }
3302 
3303 
3304 void LinearScan::verify_no_oops_in_fixed_intervals() {
3305   Interval* fixed_intervals;
3306   Interval* other_intervals;
3307   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3308 
3309   // to ensure a walking until the last instruction id, add a dummy interval
3310   // with a high operation id
3311   other_intervals = new Interval(any_reg);
3312   other_intervals->add_range(max_jint - 2, max_jint - 1);
3313   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3314 
3315   LIR_OpVisitState visitor;
3316   for (int i = 0; i < block_count(); i++) {
3317     BlockBegin* block = block_at(i);
3318 
3319     LIR_OpList* instructions = block->lir()->instructions_list();
3320 
3321     for (int j = 0; j < instructions->length(); j++) {
3322       LIR_Op* op = instructions->at(j);
3323       int op_id = op->id();
3324 
3325       visitor.visit(op);
3326 
3327       if (visitor.info_count() > 0) {
3328         iw->walk_before(op->id());
3329         bool check_live = true;
3330         if (op->code() == lir_move) {
3331           LIR_Op1* move = (LIR_Op1*)op;
3332           check_live = (move->patch_code() == lir_patch_none);
3333         }
3334         LIR_OpBranch* branch = op->as_OpBranch();
3335         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3336           // Don't bother checking the stub in this case since the
3337           // exception stub will never return to normal control flow.
3338           check_live = false;
3339         }
3340 
3341         // Make sure none of the fixed registers is live across an
3342         // oopmap since we can't handle that correctly.
3343         if (check_live) {
3344           for (Interval* interval = iw->active_first(fixedKind);
3345                interval != Interval::end();
3346                interval = interval->next()) {
3347             if (interval->current_to() > op->id() + 1) {
3348               // This interval is live out of this op so make sure
3349               // that this interval represents some value that's
3350               // referenced by this op either as an input or output.
3351               bool ok = false;
3352               for_each_visitor_mode(mode) {
3353                 int n = visitor.opr_count(mode);
3354                 for (int k = 0; k < n; k++) {
3355                   LIR_Opr opr = visitor.opr_at(mode, k);
3356                   if (opr->is_fixed_cpu()) {
3357                     if (interval_at(reg_num(opr)) == interval) {
3358                       ok = true;
3359                       break;
3360                     }
3361                     int hi = reg_numHi(opr);
3362                     if (hi != -1 && interval_at(hi) == interval) {
3363                       ok = true;
3364                       break;
3365                     }
3366                   }
3367                 }
3368               }
3369               assert(ok, "fixed intervals should never be live across an oopmap point");
3370             }
3371           }
3372         }
3373       }
3374 
3375       // oop-maps at calls do not contain registers, so check is not needed
3376       if (!visitor.has_call()) {
3377 
3378         for_each_visitor_mode(mode) {
3379           int n = visitor.opr_count(mode);
3380           for (int k = 0; k < n; k++) {
3381             LIR_Opr opr = visitor.opr_at(mode, k);
3382 
3383             if (opr->is_fixed_cpu() && opr->is_oop()) {
3384               // operand is a non-virtual cpu register and contains an oop
3385               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3386 
3387               Interval* interval = interval_at(reg_num(opr));
3388               assert(interval != NULL, "no interval");
3389 
3390               if (mode == LIR_OpVisitState::inputMode) {
3391                 if (interval->to() >= op_id + 1) {
3392                   assert(interval->to() < op_id + 2 ||
3393                          interval->has_hole_between(op_id, op_id + 2),
3394                          "oop input operand live after instruction");
3395                 }
3396               } else if (mode == LIR_OpVisitState::outputMode) {
3397                 if (interval->from() <= op_id - 1) {
3398                   assert(interval->has_hole_between(op_id - 1, op_id),
3399                          "oop input operand live after instruction");
3400                 }
3401               }
3402             }
3403           }
3404         }
3405       }
3406     }
3407   }
3408 }
3409 
3410 
3411 void LinearScan::verify_constants() {
3412   int num_regs = num_virtual_regs();
3413   int size = live_set_size();
3414   int num_blocks = block_count();
3415 
3416   for (int i = 0; i < num_blocks; i++) {
3417     BlockBegin* block = block_at(i);
3418     ResourceBitMap live_at_edge = block->live_in();
3419 
3420     // visit all registers where the live_at_edge bit is set
3421     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3422       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3423 
3424       Value value = gen()->instruction_for_vreg(r);
3425 
3426       assert(value != NULL, "all intervals live across block boundaries must have Value");
3427       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3428       assert(value->operand()->vreg_number() == r, "register number must match");
3429       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3430     }
3431   }
3432 }
3433 
3434 
3435 class RegisterVerifier: public StackObj {
3436  private:
3437   LinearScan*   _allocator;
3438   BlockList     _work_list;      // all blocks that must be processed
3439   IntervalsList _saved_states;   // saved information of previous check
3440 
3441   // simplified access to methods of LinearScan
3442   Compilation*  compilation() const              { return _allocator->compilation(); }
3443   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3444   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3445 
3446   // currently, only registers are processed
3447   int           state_size()                     { return LinearScan::nof_regs; }
3448 
3449   // accessors
3450   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3451   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3452   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3453 
3454   // helper functions
3455   IntervalList* copy(IntervalList* input_state);
3456   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3457   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3458 
3459   void process_block(BlockBegin* block);
3460   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3461   void process_successor(BlockBegin* block, IntervalList* input_state);
3462   void process_operations(LIR_List* ops, IntervalList* input_state);
3463 
3464  public:
3465   RegisterVerifier(LinearScan* allocator)
3466     : _allocator(allocator)
3467     , _work_list(16)
3468     , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL)
3469   { }
3470 
3471   void verify(BlockBegin* start);
3472 };
3473 
3474 
3475 // entry function from LinearScan that starts the verification
3476 void LinearScan::verify_registers() {
3477   RegisterVerifier verifier(this);
3478   verifier.verify(block_at(0));
3479 }
3480 
3481 
3482 void RegisterVerifier::verify(BlockBegin* start) {
3483   // setup input registers (method arguments) for first block
3484   int input_state_len = state_size();
3485   IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL);
3486   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3487   for (int n = 0; n < args->length(); n++) {
3488     LIR_Opr opr = args->at(n);
3489     if (opr->is_register()) {
3490       Interval* interval = interval_at(reg_num(opr));
3491 
3492       if (interval->assigned_reg() < state_size()) {
3493         input_state->at_put(interval->assigned_reg(), interval);
3494       }
3495       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3496         input_state->at_put(interval->assigned_regHi(), interval);
3497       }
3498     }
3499   }
3500 
3501   set_state_for_block(start, input_state);
3502   add_to_work_list(start);
3503 
3504   // main loop for verification
3505   do {
3506     BlockBegin* block = _work_list.at(0);
3507     _work_list.remove_at(0);
3508 
3509     process_block(block);
3510   } while (!_work_list.is_empty());
3511 }
3512 
3513 void RegisterVerifier::process_block(BlockBegin* block) {
3514   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3515 
3516   // must copy state because it is modified
3517   IntervalList* input_state = copy(state_for_block(block));
3518 
3519   if (TraceLinearScanLevel >= 4) {
3520     tty->print_cr("Input-State of intervals:");
3521     tty->print("    ");
3522     for (int i = 0; i < state_size(); i++) {
3523       if (input_state->at(i) != NULL) {
3524         tty->print(" %4d", input_state->at(i)->reg_num());
3525       } else {
3526         tty->print("   __");
3527       }
3528     }
3529     tty->cr();
3530     tty->cr();
3531   }
3532 
3533   // process all operations of the block
3534   process_operations(block->lir(), input_state);
3535 
3536   // iterate all successors
3537   for (int i = 0; i < block->number_of_sux(); i++) {
3538     process_successor(block->sux_at(i), input_state);
3539   }
3540 }
3541 
3542 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3543   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3544 
3545   // must copy state because it is modified
3546   input_state = copy(input_state);
3547 
3548   if (xhandler->entry_code() != NULL) {
3549     process_operations(xhandler->entry_code(), input_state);
3550   }
3551   process_successor(xhandler->entry_block(), input_state);
3552 }
3553 
3554 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3555   IntervalList* saved_state = state_for_block(block);
3556 
3557   if (saved_state != NULL) {
3558     // this block was already processed before.
3559     // check if new input_state is consistent with saved_state
3560 
3561     bool saved_state_correct = true;
3562     for (int i = 0; i < state_size(); i++) {
3563       if (input_state->at(i) != saved_state->at(i)) {
3564         // current input_state and previous saved_state assume a different
3565         // interval in this register -> assume that this register is invalid
3566         if (saved_state->at(i) != NULL) {
3567           // invalidate old calculation only if it assumed that
3568           // register was valid. when the register was already invalid,
3569           // then the old calculation was correct.
3570           saved_state_correct = false;
3571           saved_state->at_put(i, NULL);
3572 
3573           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3574         }
3575       }
3576     }
3577 
3578     if (saved_state_correct) {
3579       // already processed block with correct input_state
3580       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3581     } else {
3582       // must re-visit this block
3583       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3584       add_to_work_list(block);
3585     }
3586 
3587   } else {
3588     // block was not processed before, so set initial input_state
3589     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3590 
3591     set_state_for_block(block, copy(input_state));
3592     add_to_work_list(block);
3593   }
3594 }
3595 
3596 
3597 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3598   IntervalList* copy_state = new IntervalList(input_state->length());
3599   copy_state->appendAll(input_state);
3600   return copy_state;
3601 }
3602 
3603 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3604   if (reg != LinearScan::any_reg && reg < state_size()) {
3605     if (interval != NULL) {
3606       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3607     } else if (input_state->at(reg) != NULL) {
3608       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3609     }
3610 
3611     input_state->at_put(reg, interval);
3612   }
3613 }
3614 
3615 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3616   if (reg != LinearScan::any_reg && reg < state_size()) {
3617     if (input_state->at(reg) != interval) {
3618       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3619       return true;
3620     }
3621   }
3622   return false;
3623 }
3624 
3625 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3626   // visit all instructions of the block
3627   LIR_OpVisitState visitor;
3628   bool has_error = false;
3629 
3630   for (int i = 0; i < ops->length(); i++) {
3631     LIR_Op* op = ops->at(i);
3632     visitor.visit(op);
3633 
3634     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3635 
3636     // check if input operands are correct
3637     int j;
3638     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3639     for (j = 0; j < n; j++) {
3640       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3641       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3642         Interval* interval = interval_at(reg_num(opr));
3643         if (op->id() != -1) {
3644           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3645         }
3646 
3647         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3648         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3649 
3650         // When an operand is marked with is_last_use, then the fpu stack allocator
3651         // removes the register from the fpu stack -> the register contains no value
3652         if (opr->is_last_use()) {
3653           state_put(input_state, interval->assigned_reg(),   NULL);
3654           state_put(input_state, interval->assigned_regHi(), NULL);
3655         }
3656       }
3657     }
3658 
3659     // invalidate all caller save registers at calls
3660     if (visitor.has_call()) {
3661       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3662         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3663       }
3664       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3665         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3666       }
3667 
3668 #ifdef X86
3669       int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
3670       for (j = 0; j < num_caller_save_xmm_regs; j++) {
3671         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3672       }
3673 #endif
3674     }
3675 
3676     // process xhandler before output and temp operands
3677     XHandlers* xhandlers = visitor.all_xhandler();
3678     n = xhandlers->length();
3679     for (int k = 0; k < n; k++) {
3680       process_xhandler(xhandlers->handler_at(k), input_state);
3681     }
3682 
3683     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3684     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3685     for (j = 0; j < n; j++) {
3686       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3687       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3688         Interval* interval = interval_at(reg_num(opr));
3689         if (op->id() != -1) {
3690           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3691         }
3692 
3693         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3694         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3695       }
3696     }
3697 
3698     // set output operands
3699     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3700     for (j = 0; j < n; j++) {
3701       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3702       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3703         Interval* interval = interval_at(reg_num(opr));
3704         if (op->id() != -1) {
3705           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3706         }
3707 
3708         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3709         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3710       }
3711     }
3712   }
3713   assert(has_error == false, "Error in register allocation");
3714 }
3715 
3716 #endif // ASSERT
3717 
3718 
3719 
3720 // **** Implementation of MoveResolver ******************************
3721 
3722 MoveResolver::MoveResolver(LinearScan* allocator) :
3723   _allocator(allocator),
3724   _multiple_reads_allowed(false),
3725   _mapping_from(8),
3726   _mapping_from_opr(8),
3727   _mapping_to(8),
3728   _insert_list(NULL),
3729   _insert_idx(-1),
3730   _insertion_buffer()
3731 {
3732   for (int i = 0; i < LinearScan::nof_regs; i++) {
3733     _register_blocked[i] = 0;
3734   }
3735   DEBUG_ONLY(check_empty());
3736 }
3737 
3738 
3739 #ifdef ASSERT
3740 
3741 void MoveResolver::check_empty() {
3742   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3743   for (int i = 0; i < LinearScan::nof_regs; i++) {
3744     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3745   }
3746   assert(_multiple_reads_allowed == false, "must have default value");
3747 }
3748 
3749 void MoveResolver::verify_before_resolve() {
3750   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3751   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3752   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3753 
3754   int i, j;
3755   if (!_multiple_reads_allowed) {
3756     for (i = 0; i < _mapping_from.length(); i++) {
3757       for (j = i + 1; j < _mapping_from.length(); j++) {
3758         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3759       }
3760     }
3761   }
3762 
3763   for (i = 0; i < _mapping_to.length(); i++) {
3764     for (j = i + 1; j < _mapping_to.length(); j++) {
3765       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3766     }
3767   }
3768 
3769 
3770   ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3771   if (!_multiple_reads_allowed) {
3772     for (i = 0; i < _mapping_from.length(); i++) {
3773       Interval* it = _mapping_from.at(i);
3774       if (it != NULL) {
3775         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3776         used_regs.set_bit(it->assigned_reg());
3777 
3778         if (it->assigned_regHi() != LinearScan::any_reg) {
3779           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3780           used_regs.set_bit(it->assigned_regHi());
3781         }
3782       }
3783     }
3784   }
3785 
3786   used_regs.clear();
3787   for (i = 0; i < _mapping_to.length(); i++) {
3788     Interval* it = _mapping_to.at(i);
3789     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3790     used_regs.set_bit(it->assigned_reg());
3791 
3792     if (it->assigned_regHi() != LinearScan::any_reg) {
3793       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3794       used_regs.set_bit(it->assigned_regHi());
3795     }
3796   }
3797 
3798   used_regs.clear();
3799   for (i = 0; i < _mapping_from.length(); i++) {
3800     Interval* it = _mapping_from.at(i);
3801     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3802       used_regs.set_bit(it->assigned_reg());
3803     }
3804   }
3805   for (i = 0; i < _mapping_to.length(); i++) {
3806     Interval* it = _mapping_to.at(i);
3807     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3808   }
3809 }
3810 
3811 #endif // ASSERT
3812 
3813 
3814 // mark assigned_reg and assigned_regHi of the interval as blocked
3815 void MoveResolver::block_registers(Interval* it) {
3816   int reg = it->assigned_reg();
3817   if (reg < LinearScan::nof_regs) {
3818     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3819     set_register_blocked(reg, 1);
3820   }
3821   reg = it->assigned_regHi();
3822   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3823     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3824     set_register_blocked(reg, 1);
3825   }
3826 }
3827 
3828 // mark assigned_reg and assigned_regHi of the interval as unblocked
3829 void MoveResolver::unblock_registers(Interval* it) {
3830   int reg = it->assigned_reg();
3831   if (reg < LinearScan::nof_regs) {
3832     assert(register_blocked(reg) > 0, "register already marked as unused");
3833     set_register_blocked(reg, -1);
3834   }
3835   reg = it->assigned_regHi();
3836   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3837     assert(register_blocked(reg) > 0, "register already marked as unused");
3838     set_register_blocked(reg, -1);
3839   }
3840 }
3841 
3842 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3843 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3844   int from_reg = -1;
3845   int from_regHi = -1;
3846   if (from != NULL) {
3847     from_reg = from->assigned_reg();
3848     from_regHi = from->assigned_regHi();
3849   }
3850 
3851   int reg = to->assigned_reg();
3852   if (reg < LinearScan::nof_regs) {
3853     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3854       return false;
3855     }
3856   }
3857   reg = to->assigned_regHi();
3858   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3859     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3860       return false;
3861     }
3862   }
3863 
3864   return true;
3865 }
3866 
3867 
3868 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3869   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3870   _insertion_buffer.init(list);
3871 }
3872 
3873 void MoveResolver::append_insertion_buffer() {
3874   if (_insertion_buffer.initialized()) {
3875     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3876   }
3877   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3878 
3879   _insert_list = NULL;
3880   _insert_idx = -1;
3881 }
3882 
3883 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3884   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3885   assert(from_interval->type() == to_interval->type(), "move between different types");
3886   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3887   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3888 
3889   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3890   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3891 
3892   if (!_multiple_reads_allowed) {
3893     // the last_use flag is an optimization for FPU stack allocation. When the same
3894     // input interval is used in more than one move, then it is too difficult to determine
3895     // if this move is really the last use.
3896     from_opr = from_opr->make_last_use();
3897   }
3898   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3899 
3900   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3901 }
3902 
3903 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3904   assert(from_opr->type() == to_interval->type(), "move between different types");
3905   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3906   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3907 
3908   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3909   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3910 
3911   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3912 }
3913 
3914 
3915 void MoveResolver::resolve_mappings() {
3916   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3917   DEBUG_ONLY(verify_before_resolve());
3918 
3919   // Block all registers that are used as input operands of a move.
3920   // When a register is blocked, no move to this register is emitted.
3921   // This is necessary for detecting cycles in moves.
3922   int i;
3923   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3924     Interval* from_interval = _mapping_from.at(i);
3925     if (from_interval != NULL) {
3926       block_registers(from_interval);
3927     }
3928   }
3929 
3930   int spill_candidate = -1;
3931   while (_mapping_from.length() > 0) {
3932     bool processed_interval = false;
3933 
3934     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3935       Interval* from_interval = _mapping_from.at(i);
3936       Interval* to_interval = _mapping_to.at(i);
3937 
3938       if (save_to_process_move(from_interval, to_interval)) {
3939         // this inverval can be processed because target is free
3940         if (from_interval != NULL) {
3941           insert_move(from_interval, to_interval);
3942           unblock_registers(from_interval);
3943         } else {
3944           insert_move(_mapping_from_opr.at(i), to_interval);
3945         }
3946         _mapping_from.remove_at(i);
3947         _mapping_from_opr.remove_at(i);
3948         _mapping_to.remove_at(i);
3949 
3950         processed_interval = true;
3951       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3952         // this interval cannot be processed now because target is not free
3953         // it starts in a register, so it is a possible candidate for spilling
3954         spill_candidate = i;
3955       }
3956     }
3957 
3958     if (!processed_interval) {
3959       // no move could be processed because there is a cycle in the move list
3960       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3961       assert(spill_candidate != -1, "no interval in register for spilling found");
3962 
3963       // create a new spill interval and assign a stack slot to it
3964       Interval* from_interval = _mapping_from.at(spill_candidate);
3965       Interval* spill_interval = new Interval(-1);
3966       spill_interval->set_type(from_interval->type());
3967 
3968       // add a dummy range because real position is difficult to calculate
3969       // Note: this range is a special case when the integrity of the allocation is checked
3970       spill_interval->add_range(1, 2);
3971 
3972       //       do not allocate a new spill slot for temporary interval, but
3973       //       use spill slot assigned to from_interval. Otherwise moves from
3974       //       one stack slot to another can happen (not allowed by LIR_Assembler
3975       int spill_slot = from_interval->canonical_spill_slot();
3976       if (spill_slot < 0) {
3977         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3978         from_interval->set_canonical_spill_slot(spill_slot);
3979       }
3980       spill_interval->assign_reg(spill_slot);
3981       allocator()->append_interval(spill_interval);
3982 
3983       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3984 
3985       // insert a move from register to stack and update the mapping
3986       insert_move(from_interval, spill_interval);
3987       _mapping_from.at_put(spill_candidate, spill_interval);
3988       unblock_registers(from_interval);
3989     }
3990   }
3991 
3992   // reset to default value
3993   _multiple_reads_allowed = false;
3994 
3995   // check that all intervals have been processed
3996   DEBUG_ONLY(check_empty());
3997 }
3998 
3999 
4000 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
4001   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
4002   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
4003 
4004   create_insertion_buffer(insert_list);
4005   _insert_list = insert_list;
4006   _insert_idx = insert_idx;
4007 }
4008 
4009 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
4010   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
4011 
4012   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
4013     // insert position changed -> resolve current mappings
4014     resolve_mappings();
4015   }
4016 
4017   if (insert_list != _insert_list) {
4018     // block changed -> append insertion_buffer because it is
4019     // bound to a specific block and create a new insertion_buffer
4020     append_insertion_buffer();
4021     create_insertion_buffer(insert_list);
4022   }
4023 
4024   _insert_list = insert_list;
4025   _insert_idx = insert_idx;
4026 }
4027 
4028 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
4029   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4030 
4031   _mapping_from.append(from_interval);
4032   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
4033   _mapping_to.append(to_interval);
4034 }
4035 
4036 
4037 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
4038   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4039   assert(from_opr->is_constant(), "only for constants");
4040 
4041   _mapping_from.append(NULL);
4042   _mapping_from_opr.append(from_opr);
4043   _mapping_to.append(to_interval);
4044 }
4045 
4046 void MoveResolver::resolve_and_append_moves() {
4047   if (has_mappings()) {
4048     resolve_mappings();
4049   }
4050   append_insertion_buffer();
4051 }
4052 
4053 
4054 
4055 // **** Implementation of Range *************************************
4056 
4057 Range::Range(int from, int to, Range* next) :
4058   _from(from),
4059   _to(to),
4060   _next(next)
4061 {
4062 }
4063 
4064 // initialize sentinel
4065 Range* Range::_end = NULL;
4066 void Range::initialize(Arena* arena) {
4067   _end = new (arena) Range(max_jint, max_jint, NULL);
4068 }
4069 
4070 int Range::intersects_at(Range* r2) const {
4071   const Range* r1 = this;
4072 
4073   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4074   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4075 
4076   do {
4077     if (r1->from() < r2->from()) {
4078       if (r1->to() <= r2->from()) {
4079         r1 = r1->next(); if (r1 == _end) return -1;
4080       } else {
4081         return r2->from();
4082       }
4083     } else if (r2->from() < r1->from()) {
4084       if (r2->to() <= r1->from()) {
4085         r2 = r2->next(); if (r2 == _end) return -1;
4086       } else {
4087         return r1->from();
4088       }
4089     } else { // r1->from() == r2->from()
4090       if (r1->from() == r1->to()) {
4091         r1 = r1->next(); if (r1 == _end) return -1;
4092       } else if (r2->from() == r2->to()) {
4093         r2 = r2->next(); if (r2 == _end) return -1;
4094       } else {
4095         return r1->from();
4096       }
4097     }
4098   } while (true);
4099 }
4100 
4101 #ifndef PRODUCT
4102 void Range::print(outputStream* out) const {
4103   out->print("[%d, %d[ ", _from, _to);
4104 }
4105 #endif
4106 
4107 
4108 
4109 // **** Implementation of Interval **********************************
4110 
4111 // initialize sentinel
4112 Interval* Interval::_end = NULL;
4113 void Interval::initialize(Arena* arena) {
4114   Range::initialize(arena);
4115   _end = new (arena) Interval(-1);
4116 }
4117 
4118 Interval::Interval(int reg_num) :
4119   _reg_num(reg_num),
4120   _type(T_ILLEGAL),
4121   _first(Range::end()),
4122   _use_pos_and_kinds(12),
4123   _current(Range::end()),
4124   _next(_end),
4125   _state(invalidState),
4126   _assigned_reg(LinearScan::any_reg),
4127   _assigned_regHi(LinearScan::any_reg),
4128   _cached_to(-1),
4129   _cached_opr(LIR_OprFact::illegalOpr),
4130   _cached_vm_reg(VMRegImpl::Bad()),
4131   _split_children(0),
4132   _canonical_spill_slot(-1),
4133   _insert_move_when_activated(false),
4134   _register_hint(NULL),
4135   _spill_state(noDefinitionFound),
4136   _spill_definition_pos(-1)
4137 {
4138   _split_parent = this;
4139   _current_split_child = this;
4140 }
4141 
4142 int Interval::calc_to() {
4143   assert(_first != Range::end(), "interval has no range");
4144 
4145   Range* r = _first;
4146   while (r->next() != Range::end()) {
4147     r = r->next();
4148   }
4149   return r->to();
4150 }
4151 
4152 
4153 #ifdef ASSERT
4154 // consistency check of split-children
4155 void Interval::check_split_children() {
4156   if (_split_children.length() > 0) {
4157     assert(is_split_parent(), "only split parents can have children");
4158 
4159     for (int i = 0; i < _split_children.length(); i++) {
4160       Interval* i1 = _split_children.at(i);
4161 
4162       assert(i1->split_parent() == this, "not a split child of this interval");
4163       assert(i1->type() == type(), "must be equal for all split children");
4164       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4165 
4166       for (int j = i + 1; j < _split_children.length(); j++) {
4167         Interval* i2 = _split_children.at(j);
4168 
4169         assert(i1->reg_num() != i2->reg_num(), "same register number");
4170 
4171         if (i1->from() < i2->from()) {
4172           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4173         } else {
4174           assert(i2->from() < i1->from(), "intervals start at same op_id");
4175           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4176         }
4177       }
4178     }
4179   }
4180 }
4181 #endif // ASSERT
4182 
4183 Interval* Interval::register_hint(bool search_split_child) const {
4184   if (!search_split_child) {
4185     return _register_hint;
4186   }
4187 
4188   if (_register_hint != NULL) {
4189     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4190 
4191     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4192       return _register_hint;
4193 
4194     } else if (_register_hint->_split_children.length() > 0) {
4195       // search the first split child that has a register assigned
4196       int len = _register_hint->_split_children.length();
4197       for (int i = 0; i < len; i++) {
4198         Interval* cur = _register_hint->_split_children.at(i);
4199 
4200         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4201           return cur;
4202         }
4203       }
4204     }
4205   }
4206 
4207   // no hint interval found that has a register assigned
4208   return NULL;
4209 }
4210 
4211 
4212 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4213   assert(is_split_parent(), "can only be called for split parents");
4214   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4215 
4216   Interval* result;
4217   if (_split_children.length() == 0) {
4218     result = this;
4219   } else {
4220     result = NULL;
4221     int len = _split_children.length();
4222 
4223     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4224     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4225 
4226     int i;
4227     for (i = 0; i < len; i++) {
4228       Interval* cur = _split_children.at(i);
4229       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4230         if (i > 0) {
4231           // exchange current split child to start of list (faster access for next call)
4232           _split_children.at_put(i, _split_children.at(0));
4233           _split_children.at_put(0, cur);
4234         }
4235 
4236         // interval found
4237         result = cur;
4238         break;
4239       }
4240     }
4241 
4242 #ifdef ASSERT
4243     for (i = 0; i < len; i++) {
4244       Interval* tmp = _split_children.at(i);
4245       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4246         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4247         result->print();
4248         tmp->print();
4249         assert(false, "two valid result intervals found");
4250       }
4251     }
4252 #endif
4253   }
4254 
4255   assert(result != NULL, "no matching interval found");
4256   assert(result->covers(op_id, mode), "op_id not covered by interval");
4257 
4258   return result;
4259 }
4260 
4261 
4262 // returns the last split child that ends before the given op_id
4263 Interval* Interval::split_child_before_op_id(int op_id) {
4264   assert(op_id >= 0, "invalid op_id");
4265 
4266   Interval* parent = split_parent();
4267   Interval* result = NULL;
4268 
4269   int len = parent->_split_children.length();
4270   assert(len > 0, "no split children available");
4271 
4272   for (int i = len - 1; i >= 0; i--) {
4273     Interval* cur = parent->_split_children.at(i);
4274     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4275       result = cur;
4276     }
4277   }
4278 
4279   assert(result != NULL, "no split child found");
4280   return result;
4281 }
4282 
4283 
4284 // checks if op_id is covered by any split child
4285 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4286   assert(is_split_parent(), "can only be called for split parents");
4287   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4288 
4289   if (_split_children.length() == 0) {
4290     // simple case if interval was not split
4291     return covers(op_id, mode);
4292 
4293   } else {
4294     // extended case: check all split children
4295     int len = _split_children.length();
4296     for (int i = 0; i < len; i++) {
4297       Interval* cur = _split_children.at(i);
4298       if (cur->covers(op_id, mode)) {
4299         return true;
4300       }
4301     }
4302     return false;
4303   }
4304 }
4305 
4306 
4307 // Note: use positions are sorted descending -> first use has highest index
4308 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4309   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4310 
4311   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4312     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4313       return _use_pos_and_kinds.at(i);
4314     }
4315   }
4316   return max_jint;
4317 }
4318 
4319 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4320   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4321 
4322   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4323     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4324       return _use_pos_and_kinds.at(i);
4325     }
4326   }
4327   return max_jint;
4328 }
4329 
4330 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4331   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4332 
4333   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4334     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4335       return _use_pos_and_kinds.at(i);
4336     }
4337   }
4338   return max_jint;
4339 }
4340 
4341 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4342   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4343 
4344   int prev = 0;
4345   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4346     if (_use_pos_and_kinds.at(i) > from) {
4347       return prev;
4348     }
4349     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4350       prev = _use_pos_and_kinds.at(i);
4351     }
4352   }
4353   return prev;
4354 }
4355 
4356 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4357   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4358 
4359   // do not add use positions for precolored intervals because
4360   // they are never used
4361   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4362 #ifdef ASSERT
4363     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4364     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4365       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4366       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4367       if (i > 0) {
4368         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4369       }
4370     }
4371 #endif
4372 
4373     // Note: add_use is called in descending order, so list gets sorted
4374     //       automatically by just appending new use positions
4375     int len = _use_pos_and_kinds.length();
4376     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4377       _use_pos_and_kinds.append(pos);
4378       _use_pos_and_kinds.append(use_kind);
4379     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4380       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4381       _use_pos_and_kinds.at_put(len - 1, use_kind);
4382     }
4383   }
4384 }
4385 
4386 void Interval::add_range(int from, int to) {
4387   assert(from < to, "invalid range");
4388   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4389   assert(from <= first()->to(), "not inserting at begin of interval");
4390 
4391   if (first()->from() <= to) {
4392     // join intersecting ranges
4393     first()->set_from(MIN2(from, first()->from()));
4394     first()->set_to  (MAX2(to,   first()->to()));
4395   } else {
4396     // insert new range
4397     _first = new Range(from, to, first());
4398   }
4399 }
4400 
4401 Interval* Interval::new_split_child() {
4402   // allocate new interval
4403   Interval* result = new Interval(-1);
4404   result->set_type(type());
4405 
4406   Interval* parent = split_parent();
4407   result->_split_parent = parent;
4408   result->set_register_hint(parent);
4409 
4410   // insert new interval in children-list of parent
4411   if (parent->_split_children.length() == 0) {
4412     assert(is_split_parent(), "list must be initialized at first split");
4413 
4414     parent->_split_children = IntervalList(4);
4415     parent->_split_children.append(this);
4416   }
4417   parent->_split_children.append(result);
4418 
4419   return result;
4420 }
4421 
4422 // split this interval at the specified position and return
4423 // the remainder as a new interval.
4424 //
4425 // when an interval is split, a bi-directional link is established between the original interval
4426 // (the split parent) and the intervals that are split off this interval (the split children)
4427 // When a split child is split again, the new created interval is also a direct child
4428 // of the original parent (there is no tree of split children stored, but a flat list)
4429 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4430 //
4431 // Note: The new interval has no valid reg_num
4432 Interval* Interval::split(int split_pos) {
4433   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4434 
4435   // allocate new interval
4436   Interval* result = new_split_child();
4437 
4438   // split the ranges
4439   Range* prev = NULL;
4440   Range* cur = _first;
4441   while (cur != Range::end() && cur->to() <= split_pos) {
4442     prev = cur;
4443     cur = cur->next();
4444   }
4445   assert(cur != Range::end(), "split interval after end of last range");
4446 
4447   if (cur->from() < split_pos) {
4448     result->_first = new Range(split_pos, cur->to(), cur->next());
4449     cur->set_to(split_pos);
4450     cur->set_next(Range::end());
4451 
4452   } else {
4453     assert(prev != NULL, "split before start of first range");
4454     result->_first = cur;
4455     prev->set_next(Range::end());
4456   }
4457   result->_current = result->_first;
4458   _cached_to = -1; // clear cached value
4459 
4460   // split list of use positions
4461   int total_len = _use_pos_and_kinds.length();
4462   int start_idx = total_len - 2;
4463   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4464     start_idx -= 2;
4465   }
4466 
4467   intStack new_use_pos_and_kinds(total_len - start_idx);
4468   int i;
4469   for (i = start_idx + 2; i < total_len; i++) {
4470     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4471   }
4472 
4473   _use_pos_and_kinds.trunc_to(start_idx + 2);
4474   result->_use_pos_and_kinds = _use_pos_and_kinds;
4475   _use_pos_and_kinds = new_use_pos_and_kinds;
4476 
4477 #ifdef ASSERT
4478   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4479   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4480   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4481 
4482   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4483     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4484     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4485   }
4486   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4487     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4488     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4489   }
4490 #endif
4491 
4492   return result;
4493 }
4494 
4495 // split this interval at the specified position and return
4496 // the head as a new interval (the original interval is the tail)
4497 //
4498 // Currently, only the first range can be split, and the new interval
4499 // must not have split positions
4500 Interval* Interval::split_from_start(int split_pos) {
4501   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4502   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4503   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4504   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4505 
4506   // allocate new interval
4507   Interval* result = new_split_child();
4508 
4509   // the new created interval has only one range (checked by assertion above),
4510   // so the splitting of the ranges is very simple
4511   result->add_range(_first->from(), split_pos);
4512 
4513   if (split_pos == _first->to()) {
4514     assert(_first->next() != Range::end(), "must not be at end");
4515     _first = _first->next();
4516   } else {
4517     _first->set_from(split_pos);
4518   }
4519 
4520   return result;
4521 }
4522 
4523 
4524 // returns true if the op_id is inside the interval
4525 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4526   Range* cur  = _first;
4527 
4528   while (cur != Range::end() && cur->to() < op_id) {
4529     cur = cur->next();
4530   }
4531   if (cur != Range::end()) {
4532     assert(cur->to() != cur->next()->from(), "ranges not separated");
4533 
4534     if (mode == LIR_OpVisitState::outputMode) {
4535       return cur->from() <= op_id && op_id < cur->to();
4536     } else {
4537       return cur->from() <= op_id && op_id <= cur->to();
4538     }
4539   }
4540   return false;
4541 }
4542 
4543 // returns true if the interval has any hole between hole_from and hole_to
4544 // (even if the hole has only the length 1)
4545 bool Interval::has_hole_between(int hole_from, int hole_to) {
4546   assert(hole_from < hole_to, "check");
4547   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4548 
4549   Range* cur  = _first;
4550   while (cur != Range::end()) {
4551     assert(cur->to() < cur->next()->from(), "no space between ranges");
4552 
4553     // hole-range starts before this range -> hole
4554     if (hole_from < cur->from()) {
4555       return true;
4556 
4557     // hole-range completely inside this range -> no hole
4558     } else if (hole_to <= cur->to()) {
4559       return false;
4560 
4561     // overlapping of hole-range with this range -> hole
4562     } else if (hole_from <= cur->to()) {
4563       return true;
4564     }
4565 
4566     cur = cur->next();
4567   }
4568 
4569   return false;
4570 }
4571 
4572 
4573 #ifndef PRODUCT
4574 void Interval::print(outputStream* out) const {
4575   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4576   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4577 
4578   const char* type_name;
4579   LIR_Opr opr = LIR_OprFact::illegal();
4580   if (reg_num() < LIR_OprDesc::vreg_base) {
4581     type_name = "fixed";
4582     // need a temporary operand for fixed intervals because type() cannot be called
4583 #ifdef X86
4584     int last_xmm_reg = pd_last_xmm_reg;
4585 #ifdef _LP64
4586     if (UseAVX < 3) {
4587       last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
4588     }
4589 #endif
4590 #endif
4591     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4592       opr = LIR_OprFact::single_cpu(assigned_reg());
4593     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4594       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4595 #ifdef X86
4596     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= last_xmm_reg) {
4597       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4598 #endif
4599     } else {
4600       ShouldNotReachHere();
4601     }
4602   } else {
4603     type_name = type2name(type());
4604     if (assigned_reg() != -1 &&
4605         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4606       opr = LinearScan::calc_operand_for_interval(this);
4607     }
4608   }
4609 
4610   out->print("%d %s ", reg_num(), type_name);
4611   if (opr->is_valid()) {
4612     out->print("\"");
4613     opr->print(out);
4614     out->print("\" ");
4615   }
4616   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4617 
4618   // print ranges
4619   Range* cur = _first;
4620   while (cur != Range::end()) {
4621     cur->print(out);
4622     cur = cur->next();
4623     assert(cur != NULL, "range list not closed with range sentinel");
4624   }
4625 
4626   // print use positions
4627   int prev = 0;
4628   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4629   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4630     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4631     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4632 
4633     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4634     prev = _use_pos_and_kinds.at(i);
4635   }
4636 
4637   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4638   out->cr();
4639 }
4640 #endif
4641 
4642 
4643 
4644 // **** Implementation of IntervalWalker ****************************
4645 
4646 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4647  : _compilation(allocator->compilation())
4648  , _allocator(allocator)
4649 {
4650   _unhandled_first[fixedKind] = unhandled_fixed_first;
4651   _unhandled_first[anyKind]   = unhandled_any_first;
4652   _active_first[fixedKind]    = Interval::end();
4653   _inactive_first[fixedKind]  = Interval::end();
4654   _active_first[anyKind]      = Interval::end();
4655   _inactive_first[anyKind]    = Interval::end();
4656   _current_position = -1;
4657   _current = NULL;
4658   next_interval();
4659 }
4660 
4661 
4662 // append interval at top of list
4663 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4664   interval->set_next(*list); *list = interval;
4665 }
4666 
4667 
4668 // append interval in order of current range from()
4669 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4670   Interval* prev = NULL;
4671   Interval* cur  = *list;
4672   while (cur->current_from() < interval->current_from()) {
4673     prev = cur; cur = cur->next();
4674   }
4675   if (prev == NULL) {
4676     *list = interval;
4677   } else {
4678     prev->set_next(interval);
4679   }
4680   interval->set_next(cur);
4681 }
4682 
4683 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4684   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4685 
4686   Interval* prev = NULL;
4687   Interval* cur  = *list;
4688   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4689     prev = cur; cur = cur->next();
4690   }
4691   if (prev == NULL) {
4692     *list = interval;
4693   } else {
4694     prev->set_next(interval);
4695   }
4696   interval->set_next(cur);
4697 }
4698 
4699 
4700 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4701   while (*list != Interval::end() && *list != i) {
4702     list = (*list)->next_addr();
4703   }
4704   if (*list != Interval::end()) {
4705     assert(*list == i, "check");
4706     *list = (*list)->next();
4707     return true;
4708   } else {
4709     return false;
4710   }
4711 }
4712 
4713 void IntervalWalker::remove_from_list(Interval* i) {
4714   bool deleted;
4715 
4716   if (i->state() == activeState) {
4717     deleted = remove_from_list(active_first_addr(anyKind), i);
4718   } else {
4719     assert(i->state() == inactiveState, "invalid state");
4720     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4721   }
4722 
4723   assert(deleted, "interval has not been found in list");
4724 }
4725 
4726 
4727 void IntervalWalker::walk_to(IntervalState state, int from) {
4728   assert (state == activeState || state == inactiveState, "wrong state");
4729   for_each_interval_kind(kind) {
4730     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4731     Interval* next   = *prev;
4732     while (next->current_from() <= from) {
4733       Interval* cur = next;
4734       next = cur->next();
4735 
4736       bool range_has_changed = false;
4737       while (cur->current_to() <= from) {
4738         cur->next_range();
4739         range_has_changed = true;
4740       }
4741 
4742       // also handle move from inactive list to active list
4743       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4744 
4745       if (range_has_changed) {
4746         // remove cur from list
4747         *prev = next;
4748         if (cur->current_at_end()) {
4749           // move to handled state (not maintained as a list)
4750           cur->set_state(handledState);
4751           interval_moved(cur, kind, state, handledState);
4752         } else if (cur->current_from() <= from){
4753           // sort into active list
4754           append_sorted(active_first_addr(kind), cur);
4755           cur->set_state(activeState);
4756           if (*prev == cur) {
4757             assert(state == activeState, "check");
4758             prev = cur->next_addr();
4759           }
4760           interval_moved(cur, kind, state, activeState);
4761         } else {
4762           // sort into inactive list
4763           append_sorted(inactive_first_addr(kind), cur);
4764           cur->set_state(inactiveState);
4765           if (*prev == cur) {
4766             assert(state == inactiveState, "check");
4767             prev = cur->next_addr();
4768           }
4769           interval_moved(cur, kind, state, inactiveState);
4770         }
4771       } else {
4772         prev = cur->next_addr();
4773         continue;
4774       }
4775     }
4776   }
4777 }
4778 
4779 
4780 void IntervalWalker::next_interval() {
4781   IntervalKind kind;
4782   Interval* any   = _unhandled_first[anyKind];
4783   Interval* fixed = _unhandled_first[fixedKind];
4784 
4785   if (any != Interval::end()) {
4786     // intervals may start at same position -> prefer fixed interval
4787     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4788 
4789     assert (kind == fixedKind && fixed->from() <= any->from() ||
4790             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4791     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4792 
4793   } else if (fixed != Interval::end()) {
4794     kind = fixedKind;
4795   } else {
4796     _current = NULL; return;
4797   }
4798   _current_kind = kind;
4799   _current = _unhandled_first[kind];
4800   _unhandled_first[kind] = _current->next();
4801   _current->set_next(Interval::end());
4802   _current->rewind_range();
4803 }
4804 
4805 
4806 void IntervalWalker::walk_to(int lir_op_id) {
4807   assert(_current_position <= lir_op_id, "can not walk backwards");
4808   while (current() != NULL) {
4809     bool is_active = current()->from() <= lir_op_id;
4810     int id = is_active ? current()->from() : lir_op_id;
4811 
4812     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4813 
4814     // set _current_position prior to call of walk_to
4815     _current_position = id;
4816 
4817     // call walk_to even if _current_position == id
4818     walk_to(activeState, id);
4819     walk_to(inactiveState, id);
4820 
4821     if (is_active) {
4822       current()->set_state(activeState);
4823       if (activate_current()) {
4824         append_sorted(active_first_addr(current_kind()), current());
4825         interval_moved(current(), current_kind(), unhandledState, activeState);
4826       }
4827 
4828       next_interval();
4829     } else {
4830       return;
4831     }
4832   }
4833 }
4834 
4835 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4836 #ifndef PRODUCT
4837   if (TraceLinearScanLevel >= 4) {
4838     #define print_state(state) \
4839     switch(state) {\
4840       case unhandledState: tty->print("unhandled"); break;\
4841       case activeState: tty->print("active"); break;\
4842       case inactiveState: tty->print("inactive"); break;\
4843       case handledState: tty->print("handled"); break;\
4844       default: ShouldNotReachHere(); \
4845     }
4846 
4847     print_state(from); tty->print(" to "); print_state(to);
4848     tty->fill_to(23);
4849     interval->print();
4850 
4851     #undef print_state
4852   }
4853 #endif
4854 }
4855 
4856 
4857 
4858 // **** Implementation of LinearScanWalker **************************
4859 
4860 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4861   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4862   , _move_resolver(allocator)
4863 {
4864   for (int i = 0; i < LinearScan::nof_regs; i++) {
4865     _spill_intervals[i] = new IntervalList(2);
4866   }
4867 }
4868 
4869 
4870 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4871   for (int i = _first_reg; i <= _last_reg; i++) {
4872     _use_pos[i] = max_jint;
4873 
4874     if (!only_process_use_pos) {
4875       _block_pos[i] = max_jint;
4876       _spill_intervals[i]->clear();
4877     }
4878   }
4879 }
4880 
4881 inline void LinearScanWalker::exclude_from_use(int reg) {
4882   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4883   if (reg >= _first_reg && reg <= _last_reg) {
4884     _use_pos[reg] = 0;
4885   }
4886 }
4887 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4888   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4889 
4890   exclude_from_use(i->assigned_reg());
4891   exclude_from_use(i->assigned_regHi());
4892 }
4893 
4894 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4895   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4896 
4897   if (reg >= _first_reg && reg <= _last_reg) {
4898     if (_use_pos[reg] > use_pos) {
4899       _use_pos[reg] = use_pos;
4900     }
4901     if (!only_process_use_pos) {
4902       _spill_intervals[reg]->append(i);
4903     }
4904   }
4905 }
4906 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4907   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4908   if (use_pos != -1) {
4909     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4910     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4911   }
4912 }
4913 
4914 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4915   if (reg >= _first_reg && reg <= _last_reg) {
4916     if (_block_pos[reg] > block_pos) {
4917       _block_pos[reg] = block_pos;
4918     }
4919     if (_use_pos[reg] > block_pos) {
4920       _use_pos[reg] = block_pos;
4921     }
4922   }
4923 }
4924 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4925   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4926   if (block_pos != -1) {
4927     set_block_pos(i->assigned_reg(), i, block_pos);
4928     set_block_pos(i->assigned_regHi(), i, block_pos);
4929   }
4930 }
4931 
4932 
4933 void LinearScanWalker::free_exclude_active_fixed() {
4934   Interval* list = active_first(fixedKind);
4935   while (list != Interval::end()) {
4936     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4937     exclude_from_use(list);
4938     list = list->next();
4939   }
4940 }
4941 
4942 void LinearScanWalker::free_exclude_active_any() {
4943   Interval* list = active_first(anyKind);
4944   while (list != Interval::end()) {
4945     exclude_from_use(list);
4946     list = list->next();
4947   }
4948 }
4949 
4950 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4951   Interval* list = inactive_first(fixedKind);
4952   while (list != Interval::end()) {
4953     if (cur->to() <= list->current_from()) {
4954       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4955       set_use_pos(list, list->current_from(), true);
4956     } else {
4957       set_use_pos(list, list->current_intersects_at(cur), true);
4958     }
4959     list = list->next();
4960   }
4961 }
4962 
4963 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4964   Interval* list = inactive_first(anyKind);
4965   while (list != Interval::end()) {
4966     set_use_pos(list, list->current_intersects_at(cur), true);
4967     list = list->next();
4968   }
4969 }
4970 
4971 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4972   Interval* list = unhandled_first(kind);
4973   while (list != Interval::end()) {
4974     set_use_pos(list, list->intersects_at(cur), true);
4975     if (kind == fixedKind && cur->to() <= list->from()) {
4976       set_use_pos(list, list->from(), true);
4977     }
4978     list = list->next();
4979   }
4980 }
4981 
4982 void LinearScanWalker::spill_exclude_active_fixed() {
4983   Interval* list = active_first(fixedKind);
4984   while (list != Interval::end()) {
4985     exclude_from_use(list);
4986     list = list->next();
4987   }
4988 }
4989 
4990 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4991   Interval* list = unhandled_first(fixedKind);
4992   while (list != Interval::end()) {
4993     set_block_pos(list, list->intersects_at(cur));
4994     list = list->next();
4995   }
4996 }
4997 
4998 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4999   Interval* list = inactive_first(fixedKind);
5000   while (list != Interval::end()) {
5001     if (cur->to() > list->current_from()) {
5002       set_block_pos(list, list->current_intersects_at(cur));
5003     } else {
5004       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
5005     }
5006 
5007     list = list->next();
5008   }
5009 }
5010 
5011 void LinearScanWalker::spill_collect_active_any() {
5012   Interval* list = active_first(anyKind);
5013   while (list != Interval::end()) {
5014     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5015     list = list->next();
5016   }
5017 }
5018 
5019 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
5020   Interval* list = inactive_first(anyKind);
5021   while (list != Interval::end()) {
5022     if (list->current_intersects(cur)) {
5023       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5024     }
5025     list = list->next();
5026   }
5027 }
5028 
5029 
5030 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
5031   // output all moves here. When source and target are equal, the move is
5032   // optimized away later in assign_reg_nums
5033 
5034   op_id = (op_id + 1) & ~1;
5035   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
5036   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
5037 
5038   // calculate index of instruction inside instruction list of current block
5039   // the minimal index (for a block with no spill moves) can be calculated because the
5040   // numbering of instructions is known.
5041   // When the block already contains spill moves, the index must be increased until the
5042   // correct index is reached.
5043   LIR_OpList* list = op_block->lir()->instructions_list();
5044   int index = (op_id - list->at(0)->id()) / 2;
5045   assert(list->at(index)->id() <= op_id, "error in calculation");
5046 
5047   while (list->at(index)->id() != op_id) {
5048     index++;
5049     assert(0 <= index && index < list->length(), "index out of bounds");
5050   }
5051   assert(1 <= index && index < list->length(), "index out of bounds");
5052   assert(list->at(index)->id() == op_id, "error in calculation");
5053 
5054   // insert new instruction before instruction at position index
5055   _move_resolver.move_insert_position(op_block->lir(), index - 1);
5056   _move_resolver.add_mapping(src_it, dst_it);
5057 }
5058 
5059 
5060 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5061   int from_block_nr = min_block->linear_scan_number();
5062   int to_block_nr = max_block->linear_scan_number();
5063 
5064   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5065   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5066   assert(from_block_nr < to_block_nr, "must cross block boundary");
5067 
5068   // Try to split at end of max_block. If this would be after
5069   // max_split_pos, then use the begin of max_block
5070   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5071   if (optimal_split_pos > max_split_pos) {
5072     optimal_split_pos = max_block->first_lir_instruction_id();
5073   }
5074 
5075   int min_loop_depth = max_block->loop_depth();
5076   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5077     BlockBegin* cur = block_at(i);
5078 
5079     if (cur->loop_depth() < min_loop_depth) {
5080       // block with lower loop-depth found -> split at the end of this block
5081       min_loop_depth = cur->loop_depth();
5082       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5083     }
5084   }
5085   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5086 
5087   return optimal_split_pos;
5088 }
5089 
5090 
5091 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5092   int optimal_split_pos = -1;
5093   if (min_split_pos == max_split_pos) {
5094     // trivial case, no optimization of split position possible
5095     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5096     optimal_split_pos = min_split_pos;
5097 
5098   } else {
5099     assert(min_split_pos < max_split_pos, "must be true then");
5100     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5101 
5102     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5103     // beginning of a block, then min_split_pos is also a possible split position.
5104     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5105     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5106 
5107     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5108     // when an interval ends at the end of the last block of the method
5109     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5110     // block at this op_id)
5111     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5112 
5113     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5114     if (min_block == max_block) {
5115       // split position cannot be moved to block boundary, so split as late as possible
5116       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5117       optimal_split_pos = max_split_pos;
5118 
5119     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5120       // Do not move split position if the interval has a hole before max_split_pos.
5121       // Intervals resulting from Phi-Functions have more than one definition (marked
5122       // as mustHaveRegister) with a hole before each definition. When the register is needed
5123       // for the second definition, an earlier reloading is unnecessary.
5124       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5125       optimal_split_pos = max_split_pos;
5126 
5127     } else {
5128       // seach optimal block boundary between min_split_pos and max_split_pos
5129       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5130 
5131       if (do_loop_optimization) {
5132         // Loop optimization: if a loop-end marker is found between min- and max-position,
5133         // then split before this loop
5134         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5135         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5136 
5137         assert(loop_end_pos > min_split_pos, "invalid order");
5138         if (loop_end_pos < max_split_pos) {
5139           // loop-end marker found between min- and max-position
5140           // if it is not the end marker for the same loop as the min-position, then move
5141           // the max-position to this loop block.
5142           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5143           // of the interval (normally, only mustHaveRegister causes a reloading)
5144           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5145 
5146           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5147           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5148 
5149           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5150           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5151             optimal_split_pos = -1;
5152             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5153           } else {
5154             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5155           }
5156         }
5157       }
5158 
5159       if (optimal_split_pos == -1) {
5160         // not calculated by loop optimization
5161         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5162       }
5163     }
5164   }
5165   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5166 
5167   return optimal_split_pos;
5168 }
5169 
5170 
5171 /*
5172   split an interval at the optimal position between min_split_pos and
5173   max_split_pos in two parts:
5174   1) the left part has already a location assigned
5175   2) the right part is sorted into to the unhandled-list
5176 */
5177 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5178   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5179   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5180 
5181   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5182   assert(current_position() < min_split_pos, "cannot split before current position");
5183   assert(min_split_pos <= max_split_pos,     "invalid order");
5184   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5185 
5186   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5187 
5188   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5189   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5190   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5191 
5192   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5193     // the split position would be just before the end of the interval
5194     // -> no split at all necessary
5195     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5196     return;
5197   }
5198 
5199   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5200   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5201 
5202   if (!allocator()->is_block_begin(optimal_split_pos)) {
5203     // move position before actual instruction (odd op_id)
5204     optimal_split_pos = (optimal_split_pos - 1) | 1;
5205   }
5206 
5207   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5208   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5209   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5210 
5211   Interval* split_part = it->split(optimal_split_pos);
5212 
5213   allocator()->append_interval(split_part);
5214   allocator()->copy_register_flags(it, split_part);
5215   split_part->set_insert_move_when_activated(move_necessary);
5216   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5217 
5218   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5219   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5220   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5221 }
5222 
5223 /*
5224   split an interval at the optimal position between min_split_pos and
5225   max_split_pos in two parts:
5226   1) the left part has already a location assigned
5227   2) the right part is always on the stack and therefore ignored in further processing
5228 */
5229 void LinearScanWalker::split_for_spilling(Interval* it) {
5230   // calculate allowed range of splitting position
5231   int max_split_pos = current_position();
5232   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5233 
5234   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5235   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5236 
5237   assert(it->state() == activeState,     "why spill interval that is not active?");
5238   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5239   assert(min_split_pos <= max_split_pos, "invalid order");
5240   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5241   assert(current_position() < it->to(),  "interval must not end before current position");
5242 
5243   if (min_split_pos == it->from()) {
5244     // the whole interval is never used, so spill it entirely to memory
5245     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5246     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5247 
5248     allocator()->assign_spill_slot(it);
5249     allocator()->change_spill_state(it, min_split_pos);
5250 
5251     // Also kick parent intervals out of register to memory when they have no use
5252     // position. This avoids short interval in register surrounded by intervals in
5253     // memory -> avoid useless moves from memory to register and back
5254     Interval* parent = it;
5255     while (parent != NULL && parent->is_split_child()) {
5256       parent = parent->split_child_before_op_id(parent->from());
5257 
5258       if (parent->assigned_reg() < LinearScan::nof_regs) {
5259         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5260           // parent is never used, so kick it out of its assigned register
5261           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5262           allocator()->assign_spill_slot(parent);
5263         } else {
5264           // do not go further back because the register is actually used by the interval
5265           parent = NULL;
5266         }
5267       }
5268     }
5269 
5270   } else {
5271     // search optimal split pos, split interval and spill only the right hand part
5272     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5273 
5274     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5275     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5276     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5277 
5278     if (!allocator()->is_block_begin(optimal_split_pos)) {
5279       // move position before actual instruction (odd op_id)
5280       optimal_split_pos = (optimal_split_pos - 1) | 1;
5281     }
5282 
5283     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5284     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5285     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5286 
5287     Interval* spilled_part = it->split(optimal_split_pos);
5288     allocator()->append_interval(spilled_part);
5289     allocator()->assign_spill_slot(spilled_part);
5290     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5291 
5292     if (!allocator()->is_block_begin(optimal_split_pos)) {
5293       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5294       insert_move(optimal_split_pos, it, spilled_part);
5295     }
5296 
5297     // the current_split_child is needed later when moves are inserted for reloading
5298     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5299     spilled_part->make_current_split_child();
5300 
5301     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5302     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5303     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5304   }
5305 }
5306 
5307 
5308 void LinearScanWalker::split_stack_interval(Interval* it) {
5309   int min_split_pos = current_position() + 1;
5310   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5311 
5312   split_before_usage(it, min_split_pos, max_split_pos);
5313 }
5314 
5315 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5316   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5317   int max_split_pos = register_available_until;
5318 
5319   split_before_usage(it, min_split_pos, max_split_pos);
5320 }
5321 
5322 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5323   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5324 
5325   int current_pos = current_position();
5326   if (it->state() == inactiveState) {
5327     // the interval is currently inactive, so no spill slot is needed for now.
5328     // when the split part is activated, the interval has a new chance to get a register,
5329     // so in the best case no stack slot is necessary
5330     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5331     split_before_usage(it, current_pos + 1, current_pos + 1);
5332 
5333   } else {
5334     // search the position where the interval must have a register and split
5335     // at the optimal position before.
5336     // The new created part is added to the unhandled list and will get a register
5337     // when it is activated
5338     int min_split_pos = current_pos + 1;
5339     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5340 
5341     split_before_usage(it, min_split_pos, max_split_pos);
5342 
5343     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5344     split_for_spilling(it);
5345   }
5346 }
5347 
5348 
5349 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5350   int min_full_reg = any_reg;
5351   int max_partial_reg = any_reg;
5352 
5353   for (int i = _first_reg; i <= _last_reg; i++) {
5354     if (i == ignore_reg) {
5355       // this register must be ignored
5356 
5357     } else if (_use_pos[i] >= interval_to) {
5358       // this register is free for the full interval
5359       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5360         min_full_reg = i;
5361       }
5362     } else if (_use_pos[i] > reg_needed_until) {
5363       // this register is at least free until reg_needed_until
5364       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5365         max_partial_reg = i;
5366       }
5367     }
5368   }
5369 
5370   if (min_full_reg != any_reg) {
5371     return min_full_reg;
5372   } else if (max_partial_reg != any_reg) {
5373     *need_split = true;
5374     return max_partial_reg;
5375   } else {
5376     return any_reg;
5377   }
5378 }
5379 
5380 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5381   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5382 
5383   int min_full_reg = any_reg;
5384   int max_partial_reg = any_reg;
5385 
5386   for (int i = _first_reg; i < _last_reg; i+=2) {
5387     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5388       // this register is free for the full interval
5389       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5390         min_full_reg = i;
5391       }
5392     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5393       // this register is at least free until reg_needed_until
5394       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5395         max_partial_reg = i;
5396       }
5397     }
5398   }
5399 
5400   if (min_full_reg != any_reg) {
5401     return min_full_reg;
5402   } else if (max_partial_reg != any_reg) {
5403     *need_split = true;
5404     return max_partial_reg;
5405   } else {
5406     return any_reg;
5407   }
5408 }
5409 
5410 
5411 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5412   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5413 
5414   init_use_lists(true);
5415   free_exclude_active_fixed();
5416   free_exclude_active_any();
5417   free_collect_inactive_fixed(cur);
5418   free_collect_inactive_any(cur);
5419 //  free_collect_unhandled(fixedKind, cur);
5420   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5421 
5422   // _use_pos contains the start of the next interval that has this register assigned
5423   // (either as a fixed register or a normal allocated register in the past)
5424   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5425   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5426   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5427 
5428   int hint_reg, hint_regHi;
5429   Interval* register_hint = cur->register_hint();
5430   if (register_hint != NULL) {
5431     hint_reg = register_hint->assigned_reg();
5432     hint_regHi = register_hint->assigned_regHi();
5433 
5434     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5435       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5436       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5437     }
5438     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5439 
5440   } else {
5441     hint_reg = any_reg;
5442     hint_regHi = any_reg;
5443   }
5444   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5445   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5446 
5447   // the register must be free at least until this position
5448   int reg_needed_until = cur->from() + 1;
5449   int interval_to = cur->to();
5450 
5451   bool need_split = false;
5452   int split_pos = -1;
5453   int reg = any_reg;
5454   int regHi = any_reg;
5455 
5456   if (_adjacent_regs) {
5457     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5458     regHi = reg + 1;
5459     if (reg == any_reg) {
5460       return false;
5461     }
5462     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5463 
5464   } else {
5465     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5466     if (reg == any_reg) {
5467       return false;
5468     }
5469     split_pos = _use_pos[reg];
5470 
5471     if (_num_phys_regs == 2) {
5472       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5473 
5474       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5475         // do not split interval if only one register can be assigned until the split pos
5476         // (when one register is found for the whole interval, split&spill is only
5477         // performed for the hi register)
5478         return false;
5479 
5480       } else if (regHi != any_reg) {
5481         split_pos = MIN2(split_pos, _use_pos[regHi]);
5482 
5483         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5484         if (reg > regHi) {
5485           int temp = reg;
5486           reg = regHi;
5487           regHi = temp;
5488         }
5489       }
5490     }
5491   }
5492 
5493   cur->assign_reg(reg, regHi);
5494   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5495 
5496   assert(split_pos > 0, "invalid split_pos");
5497   if (need_split) {
5498     // register not available for full interval, so split it
5499     split_when_partial_register_available(cur, split_pos);
5500   }
5501 
5502   // only return true if interval is completely assigned
5503   return _num_phys_regs == 1 || regHi != any_reg;
5504 }
5505 
5506 
5507 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5508   int max_reg = any_reg;
5509 
5510   for (int i = _first_reg; i <= _last_reg; i++) {
5511     if (i == ignore_reg) {
5512       // this register must be ignored
5513 
5514     } else if (_use_pos[i] > reg_needed_until) {
5515       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5516         max_reg = i;
5517       }
5518     }
5519   }
5520 
5521   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5522     *need_split = true;
5523   }
5524 
5525   return max_reg;
5526 }
5527 
5528 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5529   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5530 
5531   int max_reg = any_reg;
5532 
5533   for (int i = _first_reg; i < _last_reg; i+=2) {
5534     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5535       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5536         max_reg = i;
5537       }
5538     }
5539   }
5540 
5541   if (max_reg != any_reg &&
5542       (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) {
5543     *need_split = true;
5544   }
5545 
5546   return max_reg;
5547 }
5548 
5549 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5550   assert(reg != any_reg, "no register assigned");
5551 
5552   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5553     Interval* it = _spill_intervals[reg]->at(i);
5554     remove_from_list(it);
5555     split_and_spill_interval(it);
5556   }
5557 
5558   if (regHi != any_reg) {
5559     IntervalList* processed = _spill_intervals[reg];
5560     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5561       Interval* it = _spill_intervals[regHi]->at(i);
5562       if (processed->find(it) == -1) {
5563         remove_from_list(it);
5564         split_and_spill_interval(it);
5565       }
5566     }
5567   }
5568 }
5569 
5570 
5571 // Split an Interval and spill it to memory so that cur can be placed in a register
5572 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5573   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5574 
5575   // collect current usage of registers
5576   init_use_lists(false);
5577   spill_exclude_active_fixed();
5578 //  spill_block_unhandled_fixed(cur);
5579   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5580   spill_block_inactive_fixed(cur);
5581   spill_collect_active_any();
5582   spill_collect_inactive_any(cur);
5583 
5584 #ifndef PRODUCT
5585   if (TraceLinearScanLevel >= 4) {
5586     tty->print_cr("      state of registers:");
5587     for (int i = _first_reg; i <= _last_reg; i++) {
5588       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5589       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5590         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5591       }
5592       tty->cr();
5593     }
5594   }
5595 #endif
5596 
5597   // the register must be free at least until this position
5598   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5599   int interval_to = cur->to();
5600   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5601 
5602   int split_pos = 0;
5603   int use_pos = 0;
5604   bool need_split = false;
5605   int reg, regHi;
5606 
5607   if (_adjacent_regs) {
5608     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5609     regHi = reg + 1;
5610 
5611     if (reg != any_reg) {
5612       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5613       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5614     }
5615   } else {
5616     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5617     regHi = any_reg;
5618 
5619     if (reg != any_reg) {
5620       use_pos = _use_pos[reg];
5621       split_pos = _block_pos[reg];
5622 
5623       if (_num_phys_regs == 2) {
5624         if (cur->assigned_reg() != any_reg) {
5625           regHi = reg;
5626           reg = cur->assigned_reg();
5627         } else {
5628           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5629           if (regHi != any_reg) {
5630             use_pos = MIN2(use_pos, _use_pos[regHi]);
5631             split_pos = MIN2(split_pos, _block_pos[regHi]);
5632           }
5633         }
5634 
5635         if (regHi != any_reg && reg > regHi) {
5636           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5637           int temp = reg;
5638           reg = regHi;
5639           regHi = temp;
5640         }
5641       }
5642     }
5643   }
5644 
5645   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5646     // the first use of cur is later than the spilling position -> spill cur
5647     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5648 
5649     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5650       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5651       // assign a reasonable register and do a bailout in product mode to avoid errors
5652       allocator()->assign_spill_slot(cur);
5653       BAILOUT("LinearScan: no register found");
5654     }
5655 
5656     split_and_spill_interval(cur);
5657   } else {
5658     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5659     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5660     assert(split_pos > 0, "invalid split_pos");
5661     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5662 
5663     cur->assign_reg(reg, regHi);
5664     if (need_split) {
5665       // register not available for full interval, so split it
5666       split_when_partial_register_available(cur, split_pos);
5667     }
5668 
5669     // perform splitting and spilling for all affected intervalls
5670     split_and_spill_intersecting_intervals(reg, regHi);
5671   }
5672 }
5673 
5674 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5675 #ifdef X86
5676   // fast calculation of intervals that can never get a register because the
5677   // the next instruction is a call that blocks all registers
5678   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5679 
5680   // check if this interval is the result of a split operation
5681   // (an interval got a register until this position)
5682   int pos = cur->from();
5683   if ((pos & 1) == 1) {
5684     // the current instruction is a call that blocks all registers
5685     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5686       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5687 
5688       // safety check that there is really no register available
5689       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5690       return true;
5691     }
5692 
5693   }
5694 #endif
5695   return false;
5696 }
5697 
5698 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5699   BasicType type = cur->type();
5700   _num_phys_regs = LinearScan::num_physical_regs(type);
5701   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5702 
5703   if (pd_init_regs_for_alloc(cur)) {
5704     // the appropriate register range was selected.
5705   } else if (type == T_FLOAT || type == T_DOUBLE) {
5706     _first_reg = pd_first_fpu_reg;
5707     _last_reg = pd_last_fpu_reg;
5708   } else {
5709     _first_reg = pd_first_cpu_reg;
5710     _last_reg = FrameMap::last_cpu_reg();
5711   }
5712 
5713   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5714   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5715 }
5716 
5717 
5718 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5719   if (op->code() != lir_move) {
5720     return false;
5721   }
5722   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5723 
5724   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5725   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5726   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5727 }
5728 
5729 // optimization (especially for phi functions of nested loops):
5730 // assign same spill slot to non-intersecting intervals
5731 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5732   if (cur->is_split_child()) {
5733     // optimization is only suitable for split parents
5734     return;
5735   }
5736 
5737   Interval* register_hint = cur->register_hint(false);
5738   if (register_hint == NULL) {
5739     // cur is not the target of a move, otherwise register_hint would be set
5740     return;
5741   }
5742   assert(register_hint->is_split_parent(), "register hint must be split parent");
5743 
5744   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5745     // combining the stack slots for intervals where spill move optimization is applied
5746     // is not benefitial and would cause problems
5747     return;
5748   }
5749 
5750   int begin_pos = cur->from();
5751   int end_pos = cur->to();
5752   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5753     // safety check that lir_op_with_id is allowed
5754     return;
5755   }
5756 
5757   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5758     // cur and register_hint are not connected with two moves
5759     return;
5760   }
5761 
5762   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5763   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5764   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5765     // register_hint must be split, otherwise the re-writing of use positions does not work
5766     return;
5767   }
5768 
5769   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5770   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5771   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5772   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5773 
5774   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5775     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5776     return;
5777   }
5778   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5779 
5780   // modify intervals such that cur gets the same stack slot as register_hint
5781   // delete use positions to prevent the intervals to get a register at beginning
5782   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5783   cur->remove_first_use_pos();
5784   end_hint->remove_first_use_pos();
5785 }
5786 
5787 
5788 // allocate a physical register or memory location to an interval
5789 bool LinearScanWalker::activate_current() {
5790   Interval* cur = current();
5791   bool result = true;
5792 
5793   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5794   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5795 
5796   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5797     // activating an interval that has a stack slot assigned -> split it at first use position
5798     // used for method parameters
5799     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5800 
5801     split_stack_interval(cur);
5802     result = false;
5803 
5804   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5805     // activating an interval that must start in a stack slot, but may get a register later
5806     // used for lir_roundfp: rounding is done by store to stack and reload later
5807     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5808     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5809 
5810     allocator()->assign_spill_slot(cur);
5811     split_stack_interval(cur);
5812     result = false;
5813 
5814   } else if (cur->assigned_reg() == any_reg) {
5815     // interval has not assigned register -> normal allocation
5816     // (this is the normal case for most intervals)
5817     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5818 
5819     // assign same spill slot to non-intersecting intervals
5820     combine_spilled_intervals(cur);
5821 
5822     init_vars_for_alloc(cur);
5823     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5824       // no empty register available.
5825       // split and spill another interval so that this interval gets a register
5826       alloc_locked_reg(cur);
5827     }
5828 
5829     // spilled intervals need not be move to active-list
5830     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5831       result = false;
5832     }
5833   }
5834 
5835   // load spilled values that become active from stack slot to register
5836   if (cur->insert_move_when_activated()) {
5837     assert(cur->is_split_child(), "must be");
5838     assert(cur->current_split_child() != NULL, "must be");
5839     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5840     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5841 
5842     insert_move(cur->from(), cur->current_split_child(), cur);
5843   }
5844   cur->make_current_split_child();
5845 
5846   return result; // true = interval is moved to active list
5847 }
5848 
5849 
5850 // Implementation of EdgeMoveOptimizer
5851 
5852 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5853   _edge_instructions(4),
5854   _edge_instructions_idx(4)
5855 {
5856 }
5857 
5858 void EdgeMoveOptimizer::optimize(BlockList* code) {
5859   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5860 
5861   // ignore the first block in the list (index 0 is not processed)
5862   for (int i = code->length() - 1; i >= 1; i--) {
5863     BlockBegin* block = code->at(i);
5864 
5865     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5866       optimizer.optimize_moves_at_block_end(block);
5867     }
5868     if (block->number_of_sux() == 2) {
5869       optimizer.optimize_moves_at_block_begin(block);
5870     }
5871   }
5872 }
5873 
5874 
5875 // clear all internal data structures
5876 void EdgeMoveOptimizer::init_instructions() {
5877   _edge_instructions.clear();
5878   _edge_instructions_idx.clear();
5879 }
5880 
5881 // append a lir-instruction-list and the index of the current operation in to the list
5882 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5883   _edge_instructions.append(instructions);
5884   _edge_instructions_idx.append(instructions_idx);
5885 }
5886 
5887 // return the current operation of the given edge (predecessor or successor)
5888 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5889   LIR_OpList* instructions = _edge_instructions.at(edge);
5890   int idx = _edge_instructions_idx.at(edge);
5891 
5892   if (idx < instructions->length()) {
5893     return instructions->at(idx);
5894   } else {
5895     return NULL;
5896   }
5897 }
5898 
5899 // removes the current operation of the given edge (predecessor or successor)
5900 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5901   LIR_OpList* instructions = _edge_instructions.at(edge);
5902   int idx = _edge_instructions_idx.at(edge);
5903   instructions->remove_at(idx);
5904 
5905   if (decrement_index) {
5906     _edge_instructions_idx.at_put(edge, idx - 1);
5907   }
5908 }
5909 
5910 
5911 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5912   if (op1 == NULL || op2 == NULL) {
5913     // at least one block is already empty -> no optimization possible
5914     return true;
5915   }
5916 
5917   if (op1->code() == lir_move && op2->code() == lir_move) {
5918     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5919     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5920     LIR_Op1* move1 = (LIR_Op1*)op1;
5921     LIR_Op1* move2 = (LIR_Op1*)op2;
5922     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5923       // these moves are exactly equal and can be optimized
5924       return false;
5925     }
5926 
5927   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5928     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5929     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5930     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5931     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5932     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5933       // equal FPU stack operations can be optimized
5934       return false;
5935     }
5936 
5937   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5938     // equal FPU stack operations can be optimized
5939     return false;
5940   }
5941 
5942   // no optimization possible
5943   return true;
5944 }
5945 
5946 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5947   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5948 
5949   if (block->is_predecessor(block)) {
5950     // currently we can't handle this correctly.
5951     return;
5952   }
5953 
5954   init_instructions();
5955   int num_preds = block->number_of_preds();
5956   assert(num_preds > 1, "do not call otherwise");
5957   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5958 
5959   // setup a list with the lir-instructions of all predecessors
5960   int i;
5961   for (i = 0; i < num_preds; i++) {
5962     BlockBegin* pred = block->pred_at(i);
5963     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5964 
5965     if (pred->number_of_sux() != 1) {
5966       // this can happen with switch-statements where multiple edges are between
5967       // the same blocks.
5968       return;
5969     }
5970 
5971     assert(pred->number_of_sux() == 1, "can handle only one successor");
5972     assert(pred->sux_at(0) == block, "invalid control flow");
5973     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5974     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5975     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5976 
5977     if (pred_instructions->last()->info() != NULL) {
5978       // can not optimize instructions when debug info is needed
5979       return;
5980     }
5981 
5982     // ignore the unconditional branch at the end of the block
5983     append_instructions(pred_instructions, pred_instructions->length() - 2);
5984   }
5985 
5986 
5987   // process lir-instructions while all predecessors end with the same instruction
5988   while (true) {
5989     LIR_Op* op = instruction_at(0);
5990     for (i = 1; i < num_preds; i++) {
5991       if (operations_different(op, instruction_at(i))) {
5992         // these instructions are different and cannot be optimized ->
5993         // no further optimization possible
5994         return;
5995       }
5996     }
5997 
5998     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5999 
6000     // insert the instruction at the beginning of the current block
6001     block->lir()->insert_before(1, op);
6002 
6003     // delete the instruction at the end of all predecessors
6004     for (i = 0; i < num_preds; i++) {
6005       remove_cur_instruction(i, true);
6006     }
6007   }
6008 }
6009 
6010 
6011 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
6012   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
6013 
6014   init_instructions();
6015   int num_sux = block->number_of_sux();
6016 
6017   LIR_OpList* cur_instructions = block->lir()->instructions_list();
6018 
6019   assert(num_sux == 2, "method should not be called otherwise");
6020   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
6021   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6022   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
6023 
6024   if (cur_instructions->last()->info() != NULL) {
6025     // can no optimize instructions when debug info is needed
6026     return;
6027   }
6028 
6029   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
6030   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
6031     // not a valid case for optimization
6032     // currently, only blocks that end with two branches (conditional branch followed
6033     // by unconditional branch) are optimized
6034     return;
6035   }
6036 
6037   // now it is guaranteed that the block ends with two branch instructions.
6038   // the instructions are inserted at the end of the block before these two branches
6039   int insert_idx = cur_instructions->length() - 2;
6040 
6041   int i;
6042 #ifdef ASSERT
6043   for (i = insert_idx - 1; i >= 0; i--) {
6044     LIR_Op* op = cur_instructions->at(i);
6045     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
6046       assert(false, "block with two successors can have only two branch instructions");
6047     }
6048   }
6049 #endif
6050 
6051   // setup a list with the lir-instructions of all successors
6052   for (i = 0; i < num_sux; i++) {
6053     BlockBegin* sux = block->sux_at(i);
6054     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6055 
6056     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6057 
6058     if (sux->number_of_preds() != 1) {
6059       // this can happen with switch-statements where multiple edges are between
6060       // the same blocks.
6061       return;
6062     }
6063     assert(sux->pred_at(0) == block, "invalid control flow");
6064     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6065 
6066     // ignore the label at the beginning of the block
6067     append_instructions(sux_instructions, 1);
6068   }
6069 
6070   // process lir-instructions while all successors begin with the same instruction
6071   while (true) {
6072     LIR_Op* op = instruction_at(0);
6073     for (i = 1; i < num_sux; i++) {
6074       if (operations_different(op, instruction_at(i))) {
6075         // these instructions are different and cannot be optimized ->
6076         // no further optimization possible
6077         return;
6078       }
6079     }
6080 
6081     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6082 
6083     // insert instruction at end of current block
6084     block->lir()->insert_before(insert_idx, op);
6085     insert_idx++;
6086 
6087     // delete the instructions at the beginning of all successors
6088     for (i = 0; i < num_sux; i++) {
6089       remove_cur_instruction(i, false);
6090     }
6091   }
6092 }
6093 
6094 
6095 // Implementation of ControlFlowOptimizer
6096 
6097 ControlFlowOptimizer::ControlFlowOptimizer() :
6098   _original_preds(4)
6099 {
6100 }
6101 
6102 void ControlFlowOptimizer::optimize(BlockList* code) {
6103   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6104 
6105   // push the OSR entry block to the end so that we're not jumping over it.
6106   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6107   if (osr_entry) {
6108     int index = osr_entry->linear_scan_number();
6109     assert(code->at(index) == osr_entry, "wrong index");
6110     code->remove_at(index);
6111     code->append(osr_entry);
6112   }
6113 
6114   optimizer.reorder_short_loops(code);
6115   optimizer.delete_empty_blocks(code);
6116   optimizer.delete_unnecessary_jumps(code);
6117   optimizer.delete_jumps_to_return(code);
6118 }
6119 
6120 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6121   int i = header_idx + 1;
6122   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6123   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6124     i++;
6125   }
6126 
6127   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6128     int end_idx = i - 1;
6129     BlockBegin* end_block = code->at(end_idx);
6130 
6131     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6132       // short loop from header_idx to end_idx found -> reorder blocks such that
6133       // the header_block is the last block instead of the first block of the loop
6134       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6135                                          end_idx - header_idx + 1,
6136                                          header_block->block_id(), end_block->block_id()));
6137 
6138       for (int j = header_idx; j < end_idx; j++) {
6139         code->at_put(j, code->at(j + 1));
6140       }
6141       code->at_put(end_idx, header_block);
6142 
6143       // correct the flags so that any loop alignment occurs in the right place.
6144       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6145       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6146       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6147     }
6148   }
6149 }
6150 
6151 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6152   for (int i = code->length() - 1; i >= 0; i--) {
6153     BlockBegin* block = code->at(i);
6154 
6155     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6156       reorder_short_loop(code, block, i);
6157     }
6158   }
6159 
6160   DEBUG_ONLY(verify(code));
6161 }
6162 
6163 // only blocks with exactly one successor can be deleted. Such blocks
6164 // must always end with an unconditional branch to this successor
6165 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6166   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6167     return false;
6168   }
6169 
6170   LIR_OpList* instructions = block->lir()->instructions_list();
6171 
6172   assert(instructions->length() >= 2, "block must have label and branch");
6173   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6174   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6175   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6176   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6177 
6178   // block must have exactly one successor
6179 
6180   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6181     return true;
6182   }
6183   return false;
6184 }
6185 
6186 // substitute branch targets in all branch-instructions of this blocks
6187 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6188   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6189 
6190   LIR_OpList* instructions = block->lir()->instructions_list();
6191 
6192   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6193   for (int i = instructions->length() - 1; i >= 1; i--) {
6194     LIR_Op* op = instructions->at(i);
6195 
6196     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6197       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6198       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6199 
6200       if (branch->block() == target_from) {
6201         branch->change_block(target_to);
6202       }
6203       if (branch->ublock() == target_from) {
6204         branch->change_ublock(target_to);
6205       }
6206     }
6207   }
6208 }
6209 
6210 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6211   int old_pos = 0;
6212   int new_pos = 0;
6213   int num_blocks = code->length();
6214 
6215   while (old_pos < num_blocks) {
6216     BlockBegin* block = code->at(old_pos);
6217 
6218     if (can_delete_block(block)) {
6219       BlockBegin* new_target = block->sux_at(0);
6220 
6221       // propagate backward branch target flag for correct code alignment
6222       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6223         new_target->set(BlockBegin::backward_branch_target_flag);
6224       }
6225 
6226       // collect a list with all predecessors that contains each predecessor only once
6227       // the predecessors of cur are changed during the substitution, so a copy of the
6228       // predecessor list is necessary
6229       int j;
6230       _original_preds.clear();
6231       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6232         BlockBegin* pred = block->pred_at(j);
6233         if (_original_preds.find(pred) == -1) {
6234           _original_preds.append(pred);
6235         }
6236       }
6237 
6238       for (j = _original_preds.length() - 1; j >= 0; j--) {
6239         BlockBegin* pred = _original_preds.at(j);
6240         substitute_branch_target(pred, block, new_target);
6241         pred->substitute_sux(block, new_target);
6242       }
6243     } else {
6244       // adjust position of this block in the block list if blocks before
6245       // have been deleted
6246       if (new_pos != old_pos) {
6247         code->at_put(new_pos, code->at(old_pos));
6248       }
6249       new_pos++;
6250     }
6251     old_pos++;
6252   }
6253   code->trunc_to(new_pos);
6254 
6255   DEBUG_ONLY(verify(code));
6256 }
6257 
6258 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6259   // skip the last block because there a branch is always necessary
6260   for (int i = code->length() - 2; i >= 0; i--) {
6261     BlockBegin* block = code->at(i);
6262     LIR_OpList* instructions = block->lir()->instructions_list();
6263 
6264     LIR_Op* last_op = instructions->last();
6265     if (last_op->code() == lir_branch) {
6266       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6267       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6268 
6269       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6270       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6271 
6272       if (last_branch->info() == NULL) {
6273         if (last_branch->block() == code->at(i + 1)) {
6274 
6275           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6276 
6277           // delete last branch instruction
6278           instructions->trunc_to(instructions->length() - 1);
6279 
6280         } else {
6281           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6282           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6283             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6284             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6285 
6286             if (prev_branch->stub() == NULL) {
6287 
6288               LIR_Op2* prev_cmp = NULL;
6289               // There might be a cmove inserted for profiling which depends on the same
6290               // compare. If we change the condition of the respective compare, we have
6291               // to take care of this cmove as well.
6292               LIR_Op2* prev_cmove = NULL;
6293 
6294               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6295                 prev_op = instructions->at(j);
6296                 // check for the cmove
6297                 if (prev_op->code() == lir_cmove) {
6298                   assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2");
6299                   prev_cmove = (LIR_Op2*)prev_op;
6300                   assert(prev_branch->cond() == prev_cmove->condition(), "should be the same");
6301                 }
6302                 if (prev_op->code() == lir_cmp) {
6303                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6304                   prev_cmp = (LIR_Op2*)prev_op;
6305                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6306                 }
6307               }
6308               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6309               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6310 
6311                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6312 
6313                 // eliminate a conditional branch to the immediate successor
6314                 prev_branch->change_block(last_branch->block());
6315                 prev_branch->negate_cond();
6316                 prev_cmp->set_condition(prev_branch->cond());
6317                 instructions->trunc_to(instructions->length() - 1);
6318                 // if we do change the condition, we have to change the cmove as well
6319                 if (prev_cmove != NULL) {
6320                   prev_cmove->set_condition(prev_branch->cond());
6321                   LIR_Opr t = prev_cmove->in_opr1();
6322                   prev_cmove->set_in_opr1(prev_cmove->in_opr2());
6323                   prev_cmove->set_in_opr2(t);
6324                 }
6325               }
6326             }
6327           }
6328         }
6329       }
6330     }
6331   }
6332 
6333   DEBUG_ONLY(verify(code));
6334 }
6335 
6336 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6337 #ifdef ASSERT
6338   ResourceBitMap return_converted(BlockBegin::number_of_blocks());
6339 #endif
6340 
6341   for (int i = code->length() - 1; i >= 0; i--) {
6342     BlockBegin* block = code->at(i);
6343     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6344     LIR_Op*     cur_last_op = cur_instructions->last();
6345 
6346     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6347     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6348       // the block contains only a label and a return
6349       // if a predecessor ends with an unconditional jump to this block, then the jump
6350       // can be replaced with a return instruction
6351       //
6352       // Note: the original block with only a return statement cannot be deleted completely
6353       //       because the predecessors might have other (conditional) jumps to this block
6354       //       -> this may lead to unnecesary return instructions in the final code
6355 
6356       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6357       assert(block->number_of_sux() == 0 ||
6358              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6359              "blocks that end with return must not have successors");
6360 
6361       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6362       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6363 
6364       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6365         BlockBegin* pred = block->pred_at(j);
6366         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6367         LIR_Op*     pred_last_op = pred_instructions->last();
6368 
6369         if (pred_last_op->code() == lir_branch) {
6370           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6371           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6372 
6373           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6374             // replace the jump to a return with a direct return
6375             // Note: currently the edge between the blocks is not deleted
6376             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6377 #ifdef ASSERT
6378             return_converted.set_bit(pred->block_id());
6379 #endif
6380           }
6381         }
6382       }
6383     }
6384   }
6385 }
6386 
6387 
6388 #ifdef ASSERT
6389 void ControlFlowOptimizer::verify(BlockList* code) {
6390   for (int i = 0; i < code->length(); i++) {
6391     BlockBegin* block = code->at(i);
6392     LIR_OpList* instructions = block->lir()->instructions_list();
6393 
6394     int j;
6395     for (j = 0; j < instructions->length(); j++) {
6396       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6397 
6398       if (op_branch != NULL) {
6399         assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid");
6400         assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid");
6401       }
6402     }
6403 
6404     for (j = 0; j < block->number_of_sux() - 1; j++) {
6405       BlockBegin* sux = block->sux_at(j);
6406       assert(code->find(sux) != -1, "successor not valid");
6407     }
6408 
6409     for (j = 0; j < block->number_of_preds() - 1; j++) {
6410       BlockBegin* pred = block->pred_at(j);
6411       assert(code->find(pred) != -1, "successor not valid");
6412     }
6413   }
6414 }
6415 #endif
6416 
6417 
6418 #ifndef PRODUCT
6419 
6420 // Implementation of LinearStatistic
6421 
6422 const char* LinearScanStatistic::counter_name(int counter_idx) {
6423   switch (counter_idx) {
6424     case counter_method:          return "compiled methods";
6425     case counter_fpu_method:      return "methods using fpu";
6426     case counter_loop_method:     return "methods with loops";
6427     case counter_exception_method:return "methods with xhandler";
6428 
6429     case counter_loop:            return "loops";
6430     case counter_block:           return "blocks";
6431     case counter_loop_block:      return "blocks inside loop";
6432     case counter_exception_block: return "exception handler entries";
6433     case counter_interval:        return "intervals";
6434     case counter_fixed_interval:  return "fixed intervals";
6435     case counter_range:           return "ranges";
6436     case counter_fixed_range:     return "fixed ranges";
6437     case counter_use_pos:         return "use positions";
6438     case counter_fixed_use_pos:   return "fixed use positions";
6439     case counter_spill_slots:     return "spill slots";
6440 
6441     // counter for classes of lir instructions
6442     case counter_instruction:     return "total instructions";
6443     case counter_label:           return "labels";
6444     case counter_entry:           return "method entries";
6445     case counter_return:          return "method returns";
6446     case counter_call:            return "method calls";
6447     case counter_move:            return "moves";
6448     case counter_cmp:             return "compare";
6449     case counter_cond_branch:     return "conditional branches";
6450     case counter_uncond_branch:   return "unconditional branches";
6451     case counter_stub_branch:     return "branches to stub";
6452     case counter_alu:             return "artithmetic + logic";
6453     case counter_alloc:           return "allocations";
6454     case counter_sync:            return "synchronisation";
6455     case counter_throw:           return "throw";
6456     case counter_unwind:          return "unwind";
6457     case counter_typecheck:       return "type+null-checks";
6458     case counter_fpu_stack:       return "fpu-stack";
6459     case counter_misc_inst:       return "other instructions";
6460     case counter_other_inst:      return "misc. instructions";
6461 
6462     // counter for different types of moves
6463     case counter_move_total:      return "total moves";
6464     case counter_move_reg_reg:    return "register->register";
6465     case counter_move_reg_stack:  return "register->stack";
6466     case counter_move_stack_reg:  return "stack->register";
6467     case counter_move_stack_stack:return "stack->stack";
6468     case counter_move_reg_mem:    return "register->memory";
6469     case counter_move_mem_reg:    return "memory->register";
6470     case counter_move_const_any:  return "constant->any";
6471 
6472     case blank_line_1:            return "";
6473     case blank_line_2:            return "";
6474 
6475     default: ShouldNotReachHere(); return "";
6476   }
6477 }
6478 
6479 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6480   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6481     return counter_method;
6482   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6483     return counter_block;
6484   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6485     return counter_instruction;
6486   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6487     return counter_move_total;
6488   }
6489   return invalid_counter;
6490 }
6491 
6492 LinearScanStatistic::LinearScanStatistic() {
6493   for (int i = 0; i < number_of_counters; i++) {
6494     _counters_sum[i] = 0;
6495     _counters_max[i] = -1;
6496   }
6497 
6498 }
6499 
6500 // add the method-local numbers to the total sum
6501 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6502   for (int i = 0; i < number_of_counters; i++) {
6503     _counters_sum[i] += method_statistic._counters_sum[i];
6504     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6505   }
6506 }
6507 
6508 void LinearScanStatistic::print(const char* title) {
6509   if (CountLinearScan || TraceLinearScanLevel > 0) {
6510     tty->cr();
6511     tty->print_cr("***** LinearScan statistic - %s *****", title);
6512 
6513     for (int i = 0; i < number_of_counters; i++) {
6514       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6515         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6516 
6517         LinearScanStatistic::Counter cntr = base_counter(i);
6518         if (cntr != invalid_counter) {
6519           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[cntr]);
6520         } else {
6521           tty->print("           ");
6522         }
6523 
6524         if (_counters_max[i] >= 0) {
6525           tty->print("%8d", _counters_max[i]);
6526         }
6527       }
6528       tty->cr();
6529     }
6530   }
6531 }
6532 
6533 void LinearScanStatistic::collect(LinearScan* allocator) {
6534   inc_counter(counter_method);
6535   if (allocator->has_fpu_registers()) {
6536     inc_counter(counter_fpu_method);
6537   }
6538   if (allocator->num_loops() > 0) {
6539     inc_counter(counter_loop_method);
6540   }
6541   inc_counter(counter_loop, allocator->num_loops());
6542   inc_counter(counter_spill_slots, allocator->max_spills());
6543 
6544   int i;
6545   for (i = 0; i < allocator->interval_count(); i++) {
6546     Interval* cur = allocator->interval_at(i);
6547 
6548     if (cur != NULL) {
6549       inc_counter(counter_interval);
6550       inc_counter(counter_use_pos, cur->num_use_positions());
6551       if (LinearScan::is_precolored_interval(cur)) {
6552         inc_counter(counter_fixed_interval);
6553         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6554       }
6555 
6556       Range* range = cur->first();
6557       while (range != Range::end()) {
6558         inc_counter(counter_range);
6559         if (LinearScan::is_precolored_interval(cur)) {
6560           inc_counter(counter_fixed_range);
6561         }
6562         range = range->next();
6563       }
6564     }
6565   }
6566 
6567   bool has_xhandlers = false;
6568   // Note: only count blocks that are in code-emit order
6569   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6570     BlockBegin* cur = allocator->ir()->code()->at(i);
6571 
6572     inc_counter(counter_block);
6573     if (cur->loop_depth() > 0) {
6574       inc_counter(counter_loop_block);
6575     }
6576     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6577       inc_counter(counter_exception_block);
6578       has_xhandlers = true;
6579     }
6580 
6581     LIR_OpList* instructions = cur->lir()->instructions_list();
6582     for (int j = 0; j < instructions->length(); j++) {
6583       LIR_Op* op = instructions->at(j);
6584 
6585       inc_counter(counter_instruction);
6586 
6587       switch (op->code()) {
6588         case lir_label:           inc_counter(counter_label); break;
6589         case lir_std_entry:
6590         case lir_osr_entry:       inc_counter(counter_entry); break;
6591         case lir_return:          inc_counter(counter_return); break;
6592 
6593         case lir_rtcall:
6594         case lir_static_call:
6595         case lir_optvirtual_call:
6596         case lir_virtual_call:    inc_counter(counter_call); break;
6597 
6598         case lir_move: {
6599           inc_counter(counter_move);
6600           inc_counter(counter_move_total);
6601 
6602           LIR_Opr in = op->as_Op1()->in_opr();
6603           LIR_Opr res = op->as_Op1()->result_opr();
6604           if (in->is_register()) {
6605             if (res->is_register()) {
6606               inc_counter(counter_move_reg_reg);
6607             } else if (res->is_stack()) {
6608               inc_counter(counter_move_reg_stack);
6609             } else if (res->is_address()) {
6610               inc_counter(counter_move_reg_mem);
6611             } else {
6612               ShouldNotReachHere();
6613             }
6614           } else if (in->is_stack()) {
6615             if (res->is_register()) {
6616               inc_counter(counter_move_stack_reg);
6617             } else {
6618               inc_counter(counter_move_stack_stack);
6619             }
6620           } else if (in->is_address()) {
6621             assert(res->is_register(), "must be");
6622             inc_counter(counter_move_mem_reg);
6623           } else if (in->is_constant()) {
6624             inc_counter(counter_move_const_any);
6625           } else {
6626             ShouldNotReachHere();
6627           }
6628           break;
6629         }
6630 
6631         case lir_cmp:             inc_counter(counter_cmp); break;
6632 
6633         case lir_branch:
6634         case lir_cond_float_branch: {
6635           LIR_OpBranch* branch = op->as_OpBranch();
6636           if (branch->block() == NULL) {
6637             inc_counter(counter_stub_branch);
6638           } else if (branch->cond() == lir_cond_always) {
6639             inc_counter(counter_uncond_branch);
6640           } else {
6641             inc_counter(counter_cond_branch);
6642           }
6643           break;
6644         }
6645 
6646         case lir_neg:
6647         case lir_add:
6648         case lir_sub:
6649         case lir_mul:
6650         case lir_mul_strictfp:
6651         case lir_div:
6652         case lir_div_strictfp:
6653         case lir_rem:
6654         case lir_sqrt:
6655         case lir_abs:
6656         case lir_log10:
6657         case lir_logic_and:
6658         case lir_logic_or:
6659         case lir_logic_xor:
6660         case lir_shl:
6661         case lir_shr:
6662         case lir_ushr:            inc_counter(counter_alu); break;
6663 
6664         case lir_alloc_object:
6665         case lir_alloc_array:     inc_counter(counter_alloc); break;
6666 
6667         case lir_monaddr:
6668         case lir_lock:
6669         case lir_unlock:          inc_counter(counter_sync); break;
6670 
6671         case lir_throw:           inc_counter(counter_throw); break;
6672 
6673         case lir_unwind:          inc_counter(counter_unwind); break;
6674 
6675         case lir_null_check:
6676         case lir_leal:
6677         case lir_instanceof:
6678         case lir_checkcast:
6679         case lir_store_check:     inc_counter(counter_typecheck); break;
6680 
6681         case lir_fpop_raw:
6682         case lir_fxch:
6683         case lir_fld:             inc_counter(counter_fpu_stack); break;
6684 
6685         case lir_nop:
6686         case lir_push:
6687         case lir_pop:
6688         case lir_convert:
6689         case lir_roundfp:
6690         case lir_cmove:           inc_counter(counter_misc_inst); break;
6691 
6692         default:                  inc_counter(counter_other_inst); break;
6693       }
6694     }
6695   }
6696 
6697   if (has_xhandlers) {
6698     inc_counter(counter_exception_method);
6699   }
6700 }
6701 
6702 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6703   if (CountLinearScan || TraceLinearScanLevel > 0) {
6704 
6705     LinearScanStatistic local_statistic = LinearScanStatistic();
6706 
6707     local_statistic.collect(allocator);
6708     global_statistic.sum_up(local_statistic);
6709 
6710     if (TraceLinearScanLevel > 2) {
6711       local_statistic.print("current local statistic");
6712     }
6713   }
6714 }
6715 
6716 
6717 // Implementation of LinearTimers
6718 
6719 LinearScanTimers::LinearScanTimers() {
6720   for (int i = 0; i < number_of_timers; i++) {
6721     timer(i)->reset();
6722   }
6723 }
6724 
6725 const char* LinearScanTimers::timer_name(int idx) {
6726   switch (idx) {
6727     case timer_do_nothing:               return "Nothing (Time Check)";
6728     case timer_number_instructions:      return "Number Instructions";
6729     case timer_compute_local_live_sets:  return "Local Live Sets";
6730     case timer_compute_global_live_sets: return "Global Live Sets";
6731     case timer_build_intervals:          return "Build Intervals";
6732     case timer_sort_intervals_before:    return "Sort Intervals Before";
6733     case timer_allocate_registers:       return "Allocate Registers";
6734     case timer_resolve_data_flow:        return "Resolve Data Flow";
6735     case timer_sort_intervals_after:     return "Sort Intervals After";
6736     case timer_eliminate_spill_moves:    return "Spill optimization";
6737     case timer_assign_reg_num:           return "Assign Reg Num";
6738     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6739     case timer_optimize_lir:             return "Optimize LIR";
6740     default: ShouldNotReachHere();       return "";
6741   }
6742 }
6743 
6744 void LinearScanTimers::begin_method() {
6745   if (TimeEachLinearScan) {
6746     // reset all timers to measure only current method
6747     for (int i = 0; i < number_of_timers; i++) {
6748       timer(i)->reset();
6749     }
6750   }
6751 }
6752 
6753 void LinearScanTimers::end_method(LinearScan* allocator) {
6754   if (TimeEachLinearScan) {
6755 
6756     double c = timer(timer_do_nothing)->seconds();
6757     double total = 0;
6758     for (int i = 1; i < number_of_timers; i++) {
6759       total += timer(i)->seconds() - c;
6760     }
6761 
6762     if (total >= 0.0005) {
6763       // print all information in one line for automatic processing
6764       tty->print("@"); allocator->compilation()->method()->print_name();
6765 
6766       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6767       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6768       tty->print("@ %d ", allocator->block_count());
6769       tty->print("@ %d ", allocator->num_virtual_regs());
6770       tty->print("@ %d ", allocator->interval_count());
6771       tty->print("@ %d ", allocator->_num_calls);
6772       tty->print("@ %d ", allocator->num_loops());
6773 
6774       tty->print("@ %6.6f ", total);
6775       for (int i = 1; i < number_of_timers; i++) {
6776         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6777       }
6778       tty->cr();
6779     }
6780   }
6781 }
6782 
6783 void LinearScanTimers::print(double total_time) {
6784   if (TimeLinearScan) {
6785     // correction value: sum of dummy-timer that only measures the time that
6786     // is necesary to start and stop itself
6787     double c = timer(timer_do_nothing)->seconds();
6788 
6789     for (int i = 0; i < number_of_timers; i++) {
6790       double t = timer(i)->seconds();
6791       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6792     }
6793   }
6794 }
6795 
6796 #endif // #ifndef PRODUCT