1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "utilities/align.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/vmError.hpp"
  51 #if INCLUDE_ZGC
  52 #include "gc/z/c2/zBarrierSetC2.hpp"
  53 #endif
  54 
  55 // Portions of code courtesy of Clifford Click
  56 
  57 // Optimization - Graph Style
  58 
  59 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  60 
  61 //=============================================================================
  62 uint MemNode::size_of() const { return sizeof(*this); }
  63 
  64 const TypePtr *MemNode::adr_type() const {
  65   Node* adr = in(Address);
  66   if (adr == NULL)  return NULL; // node is dead
  67   const TypePtr* cross_check = NULL;
  68   DEBUG_ONLY(cross_check = _adr_type);
  69   return calculate_adr_type(adr->bottom_type(), cross_check);
  70 }
  71 
  72 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  73   if (adr != NULL) {
  74     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  75       return true;
  76     }
  77   }
  78   return false;
  79 }
  80 
  81 #ifndef PRODUCT
  82 void MemNode::dump_spec(outputStream *st) const {
  83   if (in(Address) == NULL)  return; // node is dead
  84 #ifndef ASSERT
  85   // fake the missing field
  86   const TypePtr* _adr_type = NULL;
  87   if (in(Address) != NULL)
  88     _adr_type = in(Address)->bottom_type()->isa_ptr();
  89 #endif
  90   dump_adr_type(this, _adr_type, st);
  91 
  92   Compile* C = Compile::current();
  93   if (C->alias_type(_adr_type)->is_volatile()) {
  94     st->print(" Volatile!");
  95   }
  96   if (_unaligned_access) {
  97     st->print(" unaligned");
  98   }
  99   if (_mismatched_access) {
 100     st->print(" mismatched");
 101   }
 102   if (_unsafe_access) {
 103     st->print(" unsafe");
 104   }
 105 }
 106 
 107 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 108   st->print(" @");
 109   if (adr_type == NULL) {
 110     st->print("NULL");
 111   } else {
 112     adr_type->dump_on(st);
 113     Compile* C = Compile::current();
 114     Compile::AliasType* atp = NULL;
 115     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 116     if (atp == NULL)
 117       st->print(", idx=?\?;");
 118     else if (atp->index() == Compile::AliasIdxBot)
 119       st->print(", idx=Bot;");
 120     else if (atp->index() == Compile::AliasIdxTop)
 121       st->print(", idx=Top;");
 122     else if (atp->index() == Compile::AliasIdxRaw)
 123       st->print(", idx=Raw;");
 124     else {
 125       ciField* field = atp->field();
 126       if (field) {
 127         st->print(", name=");
 128         field->print_name_on(st);
 129       }
 130       st->print(", idx=%d;", atp->index());
 131     }
 132   }
 133 }
 134 
 135 extern void print_alias_types();
 136 
 137 #endif
 138 
 139 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 140   assert((t_oop != NULL), "sanity");
 141   bool is_instance = t_oop->is_known_instance_field();
 142   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 143                              (load != NULL) && load->is_Load() &&
 144                              (phase->is_IterGVN() != NULL);
 145   if (!(is_instance || is_boxed_value_load))
 146     return mchain;  // don't try to optimize non-instance types
 147   uint instance_id = t_oop->instance_id();
 148   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 149   Node *prev = NULL;
 150   Node *result = mchain;
 151   while (prev != result) {
 152     prev = result;
 153     if (result == start_mem)
 154       break;  // hit one of our sentinels
 155     // skip over a call which does not affect this memory slice
 156     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 157       Node *proj_in = result->in(0);
 158       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 159         break;  // hit one of our sentinels
 160       } else if (proj_in->is_Call()) {
 161         // ArrayCopyNodes processed here as well
 162         CallNode *call = proj_in->as_Call();
 163         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 164           result = call->in(TypeFunc::Memory);
 165         }
 166       } else if (proj_in->is_Initialize()) {
 167         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 168         // Stop if this is the initialization for the object instance which
 169         // contains this memory slice, otherwise skip over it.
 170         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 171           break;
 172         }
 173         if (is_instance) {
 174           result = proj_in->in(TypeFunc::Memory);
 175         } else if (is_boxed_value_load) {
 176           Node* klass = alloc->in(AllocateNode::KlassNode);
 177           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 178           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 179             result = proj_in->in(TypeFunc::Memory); // not related allocation
 180           }
 181         }
 182       } else if (proj_in->is_MemBar()) {
 183         ArrayCopyNode* ac = NULL;
 184         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 185           break;
 186         }
 187         result = proj_in->in(TypeFunc::Memory);
 188       } else {
 189         assert(false, "unexpected projection");
 190       }
 191     } else if (result->is_ClearArray()) {
 192       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 193         // Can not bypass initialization of the instance
 194         // we are looking for.
 195         break;
 196       }
 197       // Otherwise skip it (the call updated 'result' value).
 198     } else if (result->is_MergeMem()) {
 199       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 200     }
 201   }
 202   return result;
 203 }
 204 
 205 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 206   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 207   if (t_oop == NULL)
 208     return mchain;  // don't try to optimize non-oop types
 209   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 210   bool is_instance = t_oop->is_known_instance_field();
 211   PhaseIterGVN *igvn = phase->is_IterGVN();
 212   if (is_instance && igvn != NULL  && result->is_Phi()) {
 213     PhiNode *mphi = result->as_Phi();
 214     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 215     const TypePtr *t = mphi->adr_type();
 216     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 217         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 218          t->is_oopptr()->cast_to_exactness(true)
 219            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 220             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 221       // clone the Phi with our address type
 222       result = mphi->split_out_instance(t_adr, igvn);
 223     } else {
 224       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 225     }
 226   }
 227   return result;
 228 }
 229 
 230 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 231   uint alias_idx = phase->C->get_alias_index(tp);
 232   Node *mem = mmem;
 233 #ifdef ASSERT
 234   {
 235     // Check that current type is consistent with the alias index used during graph construction
 236     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 237     bool consistent =  adr_check == NULL || adr_check->empty() ||
 238                        phase->C->must_alias(adr_check, alias_idx );
 239     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 240     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 241                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 242         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 243         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 244           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 245           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 246       // don't assert if it is dead code.
 247       consistent = true;
 248     }
 249     if( !consistent ) {
 250       st->print("alias_idx==%d, adr_check==", alias_idx);
 251       if( adr_check == NULL ) {
 252         st->print("NULL");
 253       } else {
 254         adr_check->dump();
 255       }
 256       st->cr();
 257       print_alias_types();
 258       assert(consistent, "adr_check must match alias idx");
 259     }
 260   }
 261 #endif
 262   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 263   // means an array I have not precisely typed yet.  Do not do any
 264   // alias stuff with it any time soon.
 265   const TypeOopPtr *toop = tp->isa_oopptr();
 266   if( tp->base() != Type::AnyPtr &&
 267       !(toop &&
 268         toop->klass() != NULL &&
 269         toop->klass()->is_java_lang_Object() &&
 270         toop->offset() == Type::OffsetBot) ) {
 271     // compress paths and change unreachable cycles to TOP
 272     // If not, we can update the input infinitely along a MergeMem cycle
 273     // Equivalent code in PhiNode::Ideal
 274     Node* m  = phase->transform(mmem);
 275     // If transformed to a MergeMem, get the desired slice
 276     // Otherwise the returned node represents memory for every slice
 277     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 278     // Update input if it is progress over what we have now
 279   }
 280   return mem;
 281 }
 282 
 283 //--------------------------Ideal_common---------------------------------------
 284 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 285 // Unhook non-raw memories from complete (macro-expanded) initializations.
 286 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 287   // If our control input is a dead region, kill all below the region
 288   Node *ctl = in(MemNode::Control);
 289   if (ctl && remove_dead_region(phase, can_reshape))
 290     return this;
 291   ctl = in(MemNode::Control);
 292   // Don't bother trying to transform a dead node
 293   if (ctl && ctl->is_top())  return NodeSentinel;
 294 
 295   PhaseIterGVN *igvn = phase->is_IterGVN();
 296   // Wait if control on the worklist.
 297   if (ctl && can_reshape && igvn != NULL) {
 298     Node* bol = NULL;
 299     Node* cmp = NULL;
 300     if (ctl->in(0)->is_If()) {
 301       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 302       bol = ctl->in(0)->in(1);
 303       if (bol->is_Bool())
 304         cmp = ctl->in(0)->in(1)->in(1);
 305     }
 306     if (igvn->_worklist.member(ctl) ||
 307         (bol != NULL && igvn->_worklist.member(bol)) ||
 308         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 309       // This control path may be dead.
 310       // Delay this memory node transformation until the control is processed.
 311       phase->is_IterGVN()->_worklist.push(this);
 312       return NodeSentinel; // caller will return NULL
 313     }
 314   }
 315   // Ignore if memory is dead, or self-loop
 316   Node *mem = in(MemNode::Memory);
 317   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 318   assert(mem != this, "dead loop in MemNode::Ideal");
 319 
 320   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 321     // This memory slice may be dead.
 322     // Delay this mem node transformation until the memory is processed.
 323     phase->is_IterGVN()->_worklist.push(this);
 324     return NodeSentinel; // caller will return NULL
 325   }
 326 
 327   Node *address = in(MemNode::Address);
 328   const Type *t_adr = phase->type(address);
 329   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 330 
 331   if (can_reshape && igvn != NULL &&
 332       (igvn->_worklist.member(address) ||
 333        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 334     // The address's base and type may change when the address is processed.
 335     // Delay this mem node transformation until the address is processed.
 336     phase->is_IterGVN()->_worklist.push(this);
 337     return NodeSentinel; // caller will return NULL
 338   }
 339 
 340   // Do NOT remove or optimize the next lines: ensure a new alias index
 341   // is allocated for an oop pointer type before Escape Analysis.
 342   // Note: C++ will not remove it since the call has side effect.
 343   if (t_adr->isa_oopptr()) {
 344     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 345   }
 346 
 347   Node* base = NULL;
 348   if (address->is_AddP()) {
 349     base = address->in(AddPNode::Base);
 350   }
 351   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 352       !t_adr->isa_rawptr()) {
 353     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 354     // Skip this node optimization if its address has TOP base.
 355     return NodeSentinel; // caller will return NULL
 356   }
 357 
 358   // Avoid independent memory operations
 359   Node* old_mem = mem;
 360 
 361   // The code which unhooks non-raw memories from complete (macro-expanded)
 362   // initializations was removed. After macro-expansion all stores catched
 363   // by Initialize node became raw stores and there is no information
 364   // which memory slices they modify. So it is unsafe to move any memory
 365   // operation above these stores. Also in most cases hooked non-raw memories
 366   // were already unhooked by using information from detect_ptr_independence()
 367   // and find_previous_store().
 368 
 369   if (mem->is_MergeMem()) {
 370     MergeMemNode* mmem = mem->as_MergeMem();
 371     const TypePtr *tp = t_adr->is_ptr();
 372 
 373     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 374   }
 375 
 376   if (mem != old_mem) {
 377     set_req(MemNode::Memory, mem);
 378     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 379       igvn->_worklist.push(old_mem);
 380     }
 381     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 382     return this;
 383   }
 384 
 385   // let the subclass continue analyzing...
 386   return NULL;
 387 }
 388 
 389 // Helper function for proving some simple control dominations.
 390 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 391 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 392 // is not a constant (dominated by the method's StartNode).
 393 // Used by MemNode::find_previous_store to prove that the
 394 // control input of a memory operation predates (dominates)
 395 // an allocation it wants to look past.
 396 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 397   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 398     return false; // Conservative answer for dead code
 399 
 400   // Check 'dom'. Skip Proj and CatchProj nodes.
 401   dom = dom->find_exact_control(dom);
 402   if (dom == NULL || dom->is_top())
 403     return false; // Conservative answer for dead code
 404 
 405   if (dom == sub) {
 406     // For the case when, for example, 'sub' is Initialize and the original
 407     // 'dom' is Proj node of the 'sub'.
 408     return false;
 409   }
 410 
 411   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 412     return true;
 413 
 414   // 'dom' dominates 'sub' if its control edge and control edges
 415   // of all its inputs dominate or equal to sub's control edge.
 416 
 417   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 418   // Or Region for the check in LoadNode::Ideal();
 419   // 'sub' should have sub->in(0) != NULL.
 420   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 421          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 422 
 423   // Get control edge of 'sub'.
 424   Node* orig_sub = sub;
 425   sub = sub->find_exact_control(sub->in(0));
 426   if (sub == NULL || sub->is_top())
 427     return false; // Conservative answer for dead code
 428 
 429   assert(sub->is_CFG(), "expecting control");
 430 
 431   if (sub == dom)
 432     return true;
 433 
 434   if (sub->is_Start() || sub->is_Root())
 435     return false;
 436 
 437   {
 438     // Check all control edges of 'dom'.
 439 
 440     ResourceMark rm;
 441     Arena* arena = Thread::current()->resource_area();
 442     Node_List nlist(arena);
 443     Unique_Node_List dom_list(arena);
 444 
 445     dom_list.push(dom);
 446     bool only_dominating_controls = false;
 447 
 448     for (uint next = 0; next < dom_list.size(); next++) {
 449       Node* n = dom_list.at(next);
 450       if (n == orig_sub)
 451         return false; // One of dom's inputs dominated by sub.
 452       if (!n->is_CFG() && n->pinned()) {
 453         // Check only own control edge for pinned non-control nodes.
 454         n = n->find_exact_control(n->in(0));
 455         if (n == NULL || n->is_top())
 456           return false; // Conservative answer for dead code
 457         assert(n->is_CFG(), "expecting control");
 458         dom_list.push(n);
 459       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 460         only_dominating_controls = true;
 461       } else if (n->is_CFG()) {
 462         if (n->dominates(sub, nlist))
 463           only_dominating_controls = true;
 464         else
 465           return false;
 466       } else {
 467         // First, own control edge.
 468         Node* m = n->find_exact_control(n->in(0));
 469         if (m != NULL) {
 470           if (m->is_top())
 471             return false; // Conservative answer for dead code
 472           dom_list.push(m);
 473         }
 474         // Now, the rest of edges.
 475         uint cnt = n->req();
 476         for (uint i = 1; i < cnt; i++) {
 477           m = n->find_exact_control(n->in(i));
 478           if (m == NULL || m->is_top())
 479             continue;
 480           dom_list.push(m);
 481         }
 482       }
 483     }
 484     return only_dominating_controls;
 485   }
 486 }
 487 
 488 //---------------------detect_ptr_independence---------------------------------
 489 // Used by MemNode::find_previous_store to prove that two base
 490 // pointers are never equal.
 491 // The pointers are accompanied by their associated allocations,
 492 // if any, which have been previously discovered by the caller.
 493 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 494                                       Node* p2, AllocateNode* a2,
 495                                       PhaseTransform* phase) {
 496   // Attempt to prove that these two pointers cannot be aliased.
 497   // They may both manifestly be allocations, and they should differ.
 498   // Or, if they are not both allocations, they can be distinct constants.
 499   // Otherwise, one is an allocation and the other a pre-existing value.
 500   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 501     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 502   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 503     return (a1 != a2);
 504   } else if (a1 != NULL) {                  // one allocation a1
 505     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 506     return all_controls_dominate(p2, a1);
 507   } else { //(a2 != NULL)                   // one allocation a2
 508     return all_controls_dominate(p1, a2);
 509   }
 510   return false;
 511 }
 512 
 513 
 514 // Find an arraycopy that must have set (can_see_stored_value=true) or
 515 // could have set (can_see_stored_value=false) the value for this load
 516 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 517   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 518                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 519     Node* mb = mem->in(0);
 520     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 521         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 522       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 523       if (ac->is_clonebasic()) {
 524         intptr_t offset;
 525         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 526         if (alloc != NULL && alloc == ld_alloc) {
 527           return ac;
 528         }
 529       }
 530     }
 531   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 532     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 533 
 534     if (ac->is_arraycopy_validated() ||
 535         ac->is_copyof_validated() ||
 536         ac->is_copyofrange_validated()) {
 537       Node* ld_addp = in(MemNode::Address);
 538       if (ld_addp->is_AddP()) {
 539         Node* ld_base = ld_addp->in(AddPNode::Address);
 540         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 541 
 542         Node* dest = ac->in(ArrayCopyNode::Dest);
 543 
 544         if (dest == ld_base) {
 545           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 546           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 547             return ac;
 548           }
 549           if (!can_see_stored_value) {
 550             mem = ac->in(TypeFunc::Memory);
 551           }
 552         }
 553       }
 554     }
 555   }
 556   return NULL;
 557 }
 558 
 559 // The logic for reordering loads and stores uses four steps:
 560 // (a) Walk carefully past stores and initializations which we
 561 //     can prove are independent of this load.
 562 // (b) Observe that the next memory state makes an exact match
 563 //     with self (load or store), and locate the relevant store.
 564 // (c) Ensure that, if we were to wire self directly to the store,
 565 //     the optimizer would fold it up somehow.
 566 // (d) Do the rewiring, and return, depending on some other part of
 567 //     the optimizer to fold up the load.
 568 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 569 // specific to loads and stores, so they are handled by the callers.
 570 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 571 //
 572 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 573   Node*         ctrl   = in(MemNode::Control);
 574   Node*         adr    = in(MemNode::Address);
 575   intptr_t      offset = 0;
 576   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 577   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 578 
 579   if (offset == Type::OffsetBot)
 580     return NULL;            // cannot unalias unless there are precise offsets
 581 
 582   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 583   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 584 
 585   intptr_t size_in_bytes = memory_size();
 586 
 587   Node* mem = in(MemNode::Memory);   // start searching here...
 588 
 589   int cnt = 50;             // Cycle limiter
 590   for (;;) {                // While we can dance past unrelated stores...
 591     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 592 
 593     Node* prev = mem;
 594     if (mem->is_Store()) {
 595       Node* st_adr = mem->in(MemNode::Address);
 596       intptr_t st_offset = 0;
 597       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 598       if (st_base == NULL)
 599         break;              // inscrutable pointer
 600 
 601       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 602       // We need the bases to be the equal in order for the offset check to make sense.
 603       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 604         break;
 605       }
 606 
 607       if (st_offset != offset && st_offset != Type::OffsetBot) {
 608         const int MAX_STORE = BytesPerLong;
 609         if (st_offset >= offset + size_in_bytes ||
 610             st_offset <= offset - MAX_STORE ||
 611             st_offset <= offset - mem->as_Store()->memory_size()) {
 612           // Success:  The offsets are provably independent.
 613           // (You may ask, why not just test st_offset != offset and be done?
 614           // The answer is that stores of different sizes can co-exist
 615           // in the same sequence of RawMem effects.  We sometimes initialize
 616           // a whole 'tile' of array elements with a single jint or jlong.)
 617           mem = mem->in(MemNode::Memory);
 618           continue;           // (a) advance through independent store memory
 619         }
 620       }
 621       if (st_base != base &&
 622           detect_ptr_independence(base, alloc,
 623                                   st_base,
 624                                   AllocateNode::Ideal_allocation(st_base, phase),
 625                                   phase)) {
 626         // Success:  The bases are provably independent.
 627         mem = mem->in(MemNode::Memory);
 628         continue;           // (a) advance through independent store memory
 629       }
 630 
 631       // (b) At this point, if the bases or offsets do not agree, we lose,
 632       // since we have not managed to prove 'this' and 'mem' independent.
 633       if (st_base == base && st_offset == offset) {
 634         return mem;         // let caller handle steps (c), (d)
 635       }
 636 
 637     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 638       InitializeNode* st_init = mem->in(0)->as_Initialize();
 639       AllocateNode*  st_alloc = st_init->allocation();
 640       if (st_alloc == NULL)
 641         break;              // something degenerated
 642       bool known_identical = false;
 643       bool known_independent = false;
 644       if (alloc == st_alloc)
 645         known_identical = true;
 646       else if (alloc != NULL)
 647         known_independent = true;
 648       else if (all_controls_dominate(this, st_alloc))
 649         known_independent = true;
 650 
 651       if (known_independent) {
 652         // The bases are provably independent: Either they are
 653         // manifestly distinct allocations, or else the control
 654         // of this load dominates the store's allocation.
 655         int alias_idx = phase->C->get_alias_index(adr_type());
 656         if (alias_idx == Compile::AliasIdxRaw) {
 657           mem = st_alloc->in(TypeFunc::Memory);
 658         } else {
 659           mem = st_init->memory(alias_idx);
 660         }
 661         continue;           // (a) advance through independent store memory
 662       }
 663 
 664       // (b) at this point, if we are not looking at a store initializing
 665       // the same allocation we are loading from, we lose.
 666       if (known_identical) {
 667         // From caller, can_see_stored_value will consult find_captured_store.
 668         return mem;         // let caller handle steps (c), (d)
 669       }
 670 
 671     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 672       if (prev != mem) {
 673         // Found an arraycopy but it doesn't affect that load
 674         continue;
 675       }
 676       // Found an arraycopy that may affect that load
 677       return mem;
 678     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 679       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 680       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 681         // ArrayCopyNodes processed here as well.
 682         CallNode *call = mem->in(0)->as_Call();
 683         if (!call->may_modify(addr_t, phase)) {
 684           mem = call->in(TypeFunc::Memory);
 685           continue;         // (a) advance through independent call memory
 686         }
 687       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 688         ArrayCopyNode* ac = NULL;
 689         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 690           break;
 691         }
 692         mem = mem->in(0)->in(TypeFunc::Memory);
 693         continue;           // (a) advance through independent MemBar memory
 694       } else if (mem->is_ClearArray()) {
 695         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 696           // (the call updated 'mem' value)
 697           continue;         // (a) advance through independent allocation memory
 698         } else {
 699           // Can not bypass initialization of the instance
 700           // we are looking for.
 701           return mem;
 702         }
 703       } else if (mem->is_MergeMem()) {
 704         int alias_idx = phase->C->get_alias_index(adr_type());
 705         mem = mem->as_MergeMem()->memory_at(alias_idx);
 706         continue;           // (a) advance through independent MergeMem memory
 707       }
 708     }
 709 
 710     // Unless there is an explicit 'continue', we must bail out here,
 711     // because 'mem' is an inscrutable memory state (e.g., a call).
 712     break;
 713   }
 714 
 715   return NULL;              // bail out
 716 }
 717 
 718 //----------------------calculate_adr_type-------------------------------------
 719 // Helper function.  Notices when the given type of address hits top or bottom.
 720 // Also, asserts a cross-check of the type against the expected address type.
 721 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 722   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 723   #ifdef PRODUCT
 724   cross_check = NULL;
 725   #else
 726   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 727   #endif
 728   const TypePtr* tp = t->isa_ptr();
 729   if (tp == NULL) {
 730     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 731     return TypePtr::BOTTOM;           // touches lots of memory
 732   } else {
 733     #ifdef ASSERT
 734     // %%%% [phh] We don't check the alias index if cross_check is
 735     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 736     if (cross_check != NULL &&
 737         cross_check != TypePtr::BOTTOM &&
 738         cross_check != TypeRawPtr::BOTTOM) {
 739       // Recheck the alias index, to see if it has changed (due to a bug).
 740       Compile* C = Compile::current();
 741       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 742              "must stay in the original alias category");
 743       // The type of the address must be contained in the adr_type,
 744       // disregarding "null"-ness.
 745       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 746       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 747       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 748              "real address must not escape from expected memory type");
 749     }
 750     #endif
 751     return tp;
 752   }
 753 }
 754 
 755 //=============================================================================
 756 // Should LoadNode::Ideal() attempt to remove control edges?
 757 bool LoadNode::can_remove_control() const {
 758   return true;
 759 }
 760 uint LoadNode::size_of() const { return sizeof(*this); }
 761 uint LoadNode::cmp( const Node &n ) const
 762 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 763 const Type *LoadNode::bottom_type() const { return _type; }
 764 uint LoadNode::ideal_reg() const {
 765   return _type->ideal_reg();
 766 }
 767 
 768 #ifndef PRODUCT
 769 void LoadNode::dump_spec(outputStream *st) const {
 770   MemNode::dump_spec(st);
 771   if( !Verbose && !WizardMode ) {
 772     // standard dump does this in Verbose and WizardMode
 773     st->print(" #"); _type->dump_on(st);
 774   }
 775   if (!depends_only_on_test()) {
 776     st->print(" (does not depend only on test)");
 777   }
 778 }
 779 #endif
 780 
 781 #ifdef ASSERT
 782 //----------------------------is_immutable_value-------------------------------
 783 // Helper function to allow a raw load without control edge for some cases
 784 bool LoadNode::is_immutable_value(Node* adr) {
 785   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 786           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 787           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 788            in_bytes(JavaThread::osthread_offset())));
 789 }
 790 #endif
 791 
 792 //----------------------------LoadNode::make-----------------------------------
 793 // Polymorphic factory method:
 794 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 795                      ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 796   Compile* C = gvn.C;
 797 
 798   // sanity check the alias category against the created node type
 799   assert(!(adr_type->isa_oopptr() &&
 800            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 801          "use LoadKlassNode instead");
 802   assert(!(adr_type->isa_aryptr() &&
 803            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 804          "use LoadRangeNode instead");
 805   // Check control edge of raw loads
 806   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 807           // oop will be recorded in oop map if load crosses safepoint
 808           rt->isa_oopptr() || is_immutable_value(adr),
 809           "raw memory operations should have control edge");
 810   LoadNode* load = NULL;
 811   switch (bt) {
 812   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 813   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 814   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 815   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 816   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 817   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 818   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 819   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 820   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 821   case T_OBJECT:
 822 #ifdef _LP64
 823     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 824       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 825     } else
 826 #endif
 827     {
 828       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 829       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 830     }
 831     break;
 832   default:
 833     ShouldNotReachHere();
 834     break;
 835   }
 836   assert(load != NULL, "LoadNode should have been created");
 837   if (unaligned) {
 838     load->set_unaligned_access();
 839   }
 840   if (mismatched) {
 841     load->set_mismatched_access();
 842   }
 843   if (unsafe) {
 844     load->set_unsafe_access();
 845   }
 846   if (load->Opcode() == Op_LoadN) {
 847     Node* ld = gvn.transform(load);
 848     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 849   }
 850 
 851   return load;
 852 }
 853 
 854 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 855                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 856   bool require_atomic = true;
 857   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 858   if (unaligned) {
 859     load->set_unaligned_access();
 860   }
 861   if (mismatched) {
 862     load->set_mismatched_access();
 863   }
 864   if (unsafe) {
 865     load->set_unsafe_access();
 866   }
 867   return load;
 868 }
 869 
 870 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 871                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 872   bool require_atomic = true;
 873   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 874   if (unaligned) {
 875     load->set_unaligned_access();
 876   }
 877   if (mismatched) {
 878     load->set_mismatched_access();
 879   }
 880   if (unsafe) {
 881     load->set_unsafe_access();
 882   }
 883   return load;
 884 }
 885 
 886 
 887 
 888 //------------------------------hash-------------------------------------------
 889 uint LoadNode::hash() const {
 890   // unroll addition of interesting fields
 891   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 892 }
 893 
 894 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 895   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 896     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 897     bool is_stable_ary = FoldStableValues &&
 898                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 899                          tp->isa_aryptr()->is_stable();
 900 
 901     return (eliminate_boxing && non_volatile) || is_stable_ary;
 902   }
 903 
 904   return false;
 905 }
 906 
 907 // Is the value loaded previously stored by an arraycopy? If so return
 908 // a load node that reads from the source array so we may be able to
 909 // optimize out the ArrayCopy node later.
 910 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 911 #if INCLUDE_ZGC
 912   if (UseZGC) {
 913     if (bottom_type()->make_oopptr() != NULL) {
 914       return NULL;
 915     }
 916   }
 917 #endif
 918 
 919   Node* ld_adr = in(MemNode::Address);
 920   intptr_t ld_off = 0;
 921   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 922   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 923   if (ac != NULL) {
 924     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 925 
 926     Node* mem = ac->in(TypeFunc::Memory);
 927     Node* ctl = ac->in(0);
 928     Node* src = ac->in(ArrayCopyNode::Src);
 929 
 930     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 931       return NULL;
 932     }
 933 
 934     LoadNode* ld = clone()->as_Load();
 935     Node* addp = in(MemNode::Address)->clone();
 936     if (ac->as_ArrayCopy()->is_clonebasic()) {
 937       assert(ld_alloc != NULL, "need an alloc");
 938       assert(addp->is_AddP(), "address must be addp");
 939       assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address");
 940       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 941       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern");
 942       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern");
 943       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 944       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 945     } else {
 946       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 947              ac->as_ArrayCopy()->is_copyof_validated() ||
 948              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 949       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 950       addp->set_req(AddPNode::Base, src);
 951       addp->set_req(AddPNode::Address, src);
 952 
 953       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 954       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 955       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 956       uint shift  = exact_log2(type2aelembytes(ary_elem));
 957 
 958       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 959 #ifdef _LP64
 960       diff = phase->transform(new ConvI2LNode(diff));
 961 #endif
 962       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 963 
 964       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 965       addp->set_req(AddPNode::Offset, offset);
 966     }
 967     addp = phase->transform(addp);
 968 #ifdef ASSERT
 969     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 970     ld->_adr_type = adr_type;
 971 #endif
 972     ld->set_req(MemNode::Address, addp);
 973     ld->set_req(0, ctl);
 974     ld->set_req(MemNode::Memory, mem);
 975     // load depends on the tests that validate the arraycopy
 976     ld->_control_dependency = Pinned;
 977     return ld;
 978   }
 979   return NULL;
 980 }
 981 
 982 
 983 //---------------------------can_see_stored_value------------------------------
 984 // This routine exists to make sure this set of tests is done the same
 985 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 986 // will change the graph shape in a way which makes memory alive twice at the
 987 // same time (uses the Oracle model of aliasing), then some
 988 // LoadXNode::Identity will fold things back to the equivalence-class model
 989 // of aliasing.
 990 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 991   Node* ld_adr = in(MemNode::Address);
 992   intptr_t ld_off = 0;
 993   Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off);
 994   Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase);
 995   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 996   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 997   // This is more general than load from boxing objects.
 998   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 999     uint alias_idx = atp->index();
1000     bool final = !atp->is_rewritable();
1001     Node* result = NULL;
1002     Node* current = st;
1003     // Skip through chains of MemBarNodes checking the MergeMems for
1004     // new states for the slice of this load.  Stop once any other
1005     // kind of node is encountered.  Loads from final memory can skip
1006     // through any kind of MemBar but normal loads shouldn't skip
1007     // through MemBarAcquire since the could allow them to move out of
1008     // a synchronized region.
1009     while (current->is_Proj()) {
1010       int opc = current->in(0)->Opcode();
1011       if ((final && (opc == Op_MemBarAcquire ||
1012                      opc == Op_MemBarAcquireLock ||
1013                      opc == Op_LoadFence)) ||
1014           opc == Op_MemBarRelease ||
1015           opc == Op_StoreFence ||
1016           opc == Op_MemBarReleaseLock ||
1017           opc == Op_MemBarStoreStore ||
1018           opc == Op_MemBarCPUOrder) {
1019         Node* mem = current->in(0)->in(TypeFunc::Memory);
1020         if (mem->is_MergeMem()) {
1021           MergeMemNode* merge = mem->as_MergeMem();
1022           Node* new_st = merge->memory_at(alias_idx);
1023           if (new_st == merge->base_memory()) {
1024             // Keep searching
1025             current = new_st;
1026             continue;
1027           }
1028           // Save the new memory state for the slice and fall through
1029           // to exit.
1030           result = new_st;
1031         }
1032       }
1033       break;
1034     }
1035     if (result != NULL) {
1036       st = result;
1037     }
1038   }
1039 
1040   // Loop around twice in the case Load -> Initialize -> Store.
1041   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1042   for (int trip = 0; trip <= 1; trip++) {
1043 
1044     if (st->is_Store()) {
1045       Node* st_adr = st->in(MemNode::Address);
1046       if (!phase->eqv(st_adr, ld_adr)) {
1047         // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers).
1048         intptr_t st_off = 0;
1049         Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off);
1050         if (ld_base == NULL)                        return NULL;
1051         if (st_base == NULL)                        return NULL;
1052         if (ld_base->uncast() != st_base->uncast()) return NULL;
1053         if (ld_off != st_off)                       return NULL;
1054         if (ld_off == Type::OffsetBot)              return NULL;
1055         // Same base, same offset.
1056         // Possible improvement for arrays: check index value instead of absolute offset.
1057 
1058         // At this point we have proven something like this setup:
1059         //   B = << base >>
1060         //   L =  LoadQ(AddP(Check/CastPP(B), #Off))
1061         //   S = StoreQ(AddP(             B , #Off), V)
1062         // (Actually, we haven't yet proven the Q's are the same.)
1063         // In other words, we are loading from a casted version of
1064         // the same pointer-and-offset that we stored to.
1065         // Thus, we are able to replace L by V.
1066       }
1067       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1068       if (store_Opcode() != st->Opcode())
1069         return NULL;
1070       return st->in(MemNode::ValueIn);
1071     }
1072 
1073     // A load from a freshly-created object always returns zero.
1074     // (This can happen after LoadNode::Ideal resets the load's memory input
1075     // to find_captured_store, which returned InitializeNode::zero_memory.)
1076     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1077         (st->in(0) == ld_alloc) &&
1078         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1079       // return a zero value for the load's basic type
1080       // (This is one of the few places where a generic PhaseTransform
1081       // can create new nodes.  Think of it as lazily manifesting
1082       // virtually pre-existing constants.)
1083       return phase->zerocon(memory_type());
1084     }
1085 
1086     // A load from an initialization barrier can match a captured store.
1087     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1088       InitializeNode* init = st->in(0)->as_Initialize();
1089       AllocateNode* alloc = init->allocation();
1090       if ((alloc != NULL) && (alloc == ld_alloc)) {
1091         // examine a captured store value
1092         st = init->find_captured_store(ld_off, memory_size(), phase);
1093         if (st != NULL) {
1094           continue;             // take one more trip around
1095         }
1096       }
1097     }
1098 
1099     // Load boxed value from result of valueOf() call is input parameter.
1100     if (this->is_Load() && ld_adr->is_AddP() &&
1101         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1102       intptr_t ignore = 0;
1103       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1104       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1105       base = bs->step_over_gc_barrier(base);
1106       if (base != NULL && base->is_Proj() &&
1107           base->as_Proj()->_con == TypeFunc::Parms &&
1108           base->in(0)->is_CallStaticJava() &&
1109           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1110         return base->in(0)->in(TypeFunc::Parms);
1111       }
1112     }
1113 
1114     break;
1115   }
1116 
1117   return NULL;
1118 }
1119 
1120 //----------------------is_instance_field_load_with_local_phi------------------
1121 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1122   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1123       in(Address)->is_AddP() ) {
1124     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1125     // Only instances and boxed values.
1126     if( t_oop != NULL &&
1127         (t_oop->is_ptr_to_boxed_value() ||
1128          t_oop->is_known_instance_field()) &&
1129         t_oop->offset() != Type::OffsetBot &&
1130         t_oop->offset() != Type::OffsetTop) {
1131       return true;
1132     }
1133   }
1134   return false;
1135 }
1136 
1137 //------------------------------Identity---------------------------------------
1138 // Loads are identity if previous store is to same address
1139 Node* LoadNode::Identity(PhaseGVN* phase) {
1140   // If the previous store-maker is the right kind of Store, and the store is
1141   // to the same address, then we are equal to the value stored.
1142   Node* mem = in(Memory);
1143   Node* value = can_see_stored_value(mem, phase);
1144   if( value ) {
1145     // byte, short & char stores truncate naturally.
1146     // A load has to load the truncated value which requires
1147     // some sort of masking operation and that requires an
1148     // Ideal call instead of an Identity call.
1149     if (memory_size() < BytesPerInt) {
1150       // If the input to the store does not fit with the load's result type,
1151       // it must be truncated via an Ideal call.
1152       if (!phase->type(value)->higher_equal(phase->type(this)))
1153         return this;
1154     }
1155     // (This works even when value is a Con, but LoadNode::Value
1156     // usually runs first, producing the singleton type of the Con.)
1157     return value;
1158   }
1159 
1160   // Search for an existing data phi which was generated before for the same
1161   // instance's field to avoid infinite generation of phis in a loop.
1162   Node *region = mem->in(0);
1163   if (is_instance_field_load_with_local_phi(region)) {
1164     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1165     int this_index  = phase->C->get_alias_index(addr_t);
1166     int this_offset = addr_t->offset();
1167     int this_iid    = addr_t->instance_id();
1168     if (!addr_t->is_known_instance() &&
1169          addr_t->is_ptr_to_boxed_value()) {
1170       // Use _idx of address base (could be Phi node) for boxed values.
1171       intptr_t   ignore = 0;
1172       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1173       if (base == NULL) {
1174         return this;
1175       }
1176       this_iid = base->_idx;
1177     }
1178     const Type* this_type = bottom_type();
1179     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1180       Node* phi = region->fast_out(i);
1181       if (phi->is_Phi() && phi != mem &&
1182           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1183         return phi;
1184       }
1185     }
1186   }
1187 
1188   return this;
1189 }
1190 
1191 // Construct an equivalent unsigned load.
1192 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1193   BasicType bt = T_ILLEGAL;
1194   const Type* rt = NULL;
1195   switch (Opcode()) {
1196     case Op_LoadUB: return this;
1197     case Op_LoadUS: return this;
1198     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1199     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1200     default:
1201       assert(false, "no unsigned variant: %s", Name());
1202       return NULL;
1203   }
1204   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1205                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1206                         is_unaligned_access(), is_mismatched_access());
1207 }
1208 
1209 // Construct an equivalent signed load.
1210 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1211   BasicType bt = T_ILLEGAL;
1212   const Type* rt = NULL;
1213   switch (Opcode()) {
1214     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1215     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1216     case Op_LoadB: // fall through
1217     case Op_LoadS: // fall through
1218     case Op_LoadI: // fall through
1219     case Op_LoadL: return this;
1220     default:
1221       assert(false, "no signed variant: %s", Name());
1222       return NULL;
1223   }
1224   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1225                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1226                         is_unaligned_access(), is_mismatched_access());
1227 }
1228 
1229 // We're loading from an object which has autobox behaviour.
1230 // If this object is result of a valueOf call we'll have a phi
1231 // merging a newly allocated object and a load from the cache.
1232 // We want to replace this load with the original incoming
1233 // argument to the valueOf call.
1234 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1235   assert(phase->C->eliminate_boxing(), "sanity");
1236   intptr_t ignore = 0;
1237   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1238   if ((base == NULL) || base->is_Phi()) {
1239     // Push the loads from the phi that comes from valueOf up
1240     // through it to allow elimination of the loads and the recovery
1241     // of the original value. It is done in split_through_phi().
1242     return NULL;
1243   } else if (base->is_Load() ||
1244              (base->is_DecodeN() && base->in(1)->is_Load())) {
1245     // Eliminate the load of boxed value for integer types from the cache
1246     // array by deriving the value from the index into the array.
1247     // Capture the offset of the load and then reverse the computation.
1248 
1249     // Get LoadN node which loads a boxing object from 'cache' array.
1250     if (base->is_DecodeN()) {
1251       base = base->in(1);
1252     }
1253     if (!base->in(Address)->is_AddP()) {
1254       return NULL; // Complex address
1255     }
1256     AddPNode* address = base->in(Address)->as_AddP();
1257     Node* cache_base = address->in(AddPNode::Base);
1258     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1259       // Get ConP node which is static 'cache' field.
1260       cache_base = cache_base->in(1);
1261     }
1262     if ((cache_base != NULL) && cache_base->is_Con()) {
1263       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1264       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1265         Node* elements[4];
1266         int shift = exact_log2(type2aelembytes(T_OBJECT));
1267         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1268         if (count > 0 && elements[0]->is_Con() &&
1269             (count == 1 ||
1270              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1271                             elements[1]->in(2) == phase->intcon(shift)))) {
1272           ciObjArray* array = base_type->const_oop()->as_obj_array();
1273           // Fetch the box object cache[0] at the base of the array and get its value
1274           ciInstance* box = array->obj_at(0)->as_instance();
1275           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1276           assert(ik->is_box_klass(), "sanity");
1277           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1278           if (ik->nof_nonstatic_fields() == 1) {
1279             // This should be true nonstatic_field_at requires calling
1280             // nof_nonstatic_fields so check it anyway
1281             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1282             BasicType bt = c.basic_type();
1283             // Only integer types have boxing cache.
1284             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1285                    bt == T_BYTE    || bt == T_SHORT ||
1286                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1287             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1288             if (cache_low != (int)cache_low) {
1289               return NULL; // should not happen since cache is array indexed by value
1290             }
1291             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1292             if (offset != (int)offset) {
1293               return NULL; // should not happen since cache is array indexed by value
1294             }
1295            // Add up all the offsets making of the address of the load
1296             Node* result = elements[0];
1297             for (int i = 1; i < count; i++) {
1298               result = phase->transform(new AddXNode(result, elements[i]));
1299             }
1300             // Remove the constant offset from the address and then
1301             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1302             // remove the scaling of the offset to recover the original index.
1303             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1304               // Peel the shift off directly but wrap it in a dummy node
1305               // since Ideal can't return existing nodes
1306               result = new RShiftXNode(result->in(1), phase->intcon(0));
1307             } else if (result->is_Add() && result->in(2)->is_Con() &&
1308                        result->in(1)->Opcode() == Op_LShiftX &&
1309                        result->in(1)->in(2) == phase->intcon(shift)) {
1310               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1311               // but for boxing cache access we know that X<<Z will not overflow
1312               // (there is range check) so we do this optimizatrion by hand here.
1313               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1314               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1315             } else {
1316               result = new RShiftXNode(result, phase->intcon(shift));
1317             }
1318 #ifdef _LP64
1319             if (bt != T_LONG) {
1320               result = new ConvL2INode(phase->transform(result));
1321             }
1322 #else
1323             if (bt == T_LONG) {
1324               result = new ConvI2LNode(phase->transform(result));
1325             }
1326 #endif
1327             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1328             // Need to preserve unboxing load type if it is unsigned.
1329             switch(this->Opcode()) {
1330               case Op_LoadUB:
1331                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1332                 break;
1333               case Op_LoadUS:
1334                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1335                 break;
1336             }
1337             return result;
1338           }
1339         }
1340       }
1341     }
1342   }
1343   return NULL;
1344 }
1345 
1346 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1347   Node* region = phi->in(0);
1348   if (region == NULL) {
1349     return false; // Wait stable graph
1350   }
1351   uint cnt = phi->req();
1352   for (uint i = 1; i < cnt; i++) {
1353     Node* rc = region->in(i);
1354     if (rc == NULL || phase->type(rc) == Type::TOP)
1355       return false; // Wait stable graph
1356     Node* in = phi->in(i);
1357     if (in == NULL || phase->type(in) == Type::TOP)
1358       return false; // Wait stable graph
1359   }
1360   return true;
1361 }
1362 //------------------------------split_through_phi------------------------------
1363 // Split instance or boxed field load through Phi.
1364 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1365   Node* mem     = in(Memory);
1366   Node* address = in(Address);
1367   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1368 
1369   assert((t_oop != NULL) &&
1370          (t_oop->is_known_instance_field() ||
1371           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1372 
1373   Compile* C = phase->C;
1374   intptr_t ignore = 0;
1375   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1376   bool base_is_phi = (base != NULL) && base->is_Phi();
1377   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1378                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1379                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1380 
1381   if (!((mem->is_Phi() || base_is_phi) &&
1382         (load_boxed_values || t_oop->is_known_instance_field()))) {
1383     return NULL; // memory is not Phi
1384   }
1385 
1386   if (mem->is_Phi()) {
1387     if (!stable_phi(mem->as_Phi(), phase)) {
1388       return NULL; // Wait stable graph
1389     }
1390     uint cnt = mem->req();
1391     // Check for loop invariant memory.
1392     if (cnt == 3) {
1393       for (uint i = 1; i < cnt; i++) {
1394         Node* in = mem->in(i);
1395         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1396         if (m == mem) {
1397           set_req(Memory, mem->in(cnt - i));
1398           return this; // made change
1399         }
1400       }
1401     }
1402   }
1403   if (base_is_phi) {
1404     if (!stable_phi(base->as_Phi(), phase)) {
1405       return NULL; // Wait stable graph
1406     }
1407     uint cnt = base->req();
1408     // Check for loop invariant memory.
1409     if (cnt == 3) {
1410       for (uint i = 1; i < cnt; i++) {
1411         if (base->in(i) == base) {
1412           return NULL; // Wait stable graph
1413         }
1414       }
1415     }
1416   }
1417 
1418   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1419 
1420   // Split through Phi (see original code in loopopts.cpp).
1421   assert(C->have_alias_type(t_oop), "instance should have alias type");
1422 
1423   // Do nothing here if Identity will find a value
1424   // (to avoid infinite chain of value phis generation).
1425   if (!phase->eqv(this, phase->apply_identity(this)))
1426     return NULL;
1427 
1428   // Select Region to split through.
1429   Node* region;
1430   if (!base_is_phi) {
1431     assert(mem->is_Phi(), "sanity");
1432     region = mem->in(0);
1433     // Skip if the region dominates some control edge of the address.
1434     if (!MemNode::all_controls_dominate(address, region))
1435       return NULL;
1436   } else if (!mem->is_Phi()) {
1437     assert(base_is_phi, "sanity");
1438     region = base->in(0);
1439     // Skip if the region dominates some control edge of the memory.
1440     if (!MemNode::all_controls_dominate(mem, region))
1441       return NULL;
1442   } else if (base->in(0) != mem->in(0)) {
1443     assert(base_is_phi && mem->is_Phi(), "sanity");
1444     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1445       region = base->in(0);
1446     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1447       region = mem->in(0);
1448     } else {
1449       return NULL; // complex graph
1450     }
1451   } else {
1452     assert(base->in(0) == mem->in(0), "sanity");
1453     region = mem->in(0);
1454   }
1455 
1456   const Type* this_type = this->bottom_type();
1457   int this_index  = C->get_alias_index(t_oop);
1458   int this_offset = t_oop->offset();
1459   int this_iid    = t_oop->instance_id();
1460   if (!t_oop->is_known_instance() && load_boxed_values) {
1461     // Use _idx of address base for boxed values.
1462     this_iid = base->_idx;
1463   }
1464   PhaseIterGVN* igvn = phase->is_IterGVN();
1465   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1466   for (uint i = 1; i < region->req(); i++) {
1467     Node* x;
1468     Node* the_clone = NULL;
1469     if (region->in(i) == C->top()) {
1470       x = C->top();      // Dead path?  Use a dead data op
1471     } else {
1472       x = this->clone();        // Else clone up the data op
1473       the_clone = x;            // Remember for possible deletion.
1474       // Alter data node to use pre-phi inputs
1475       if (this->in(0) == region) {
1476         x->set_req(0, region->in(i));
1477       } else {
1478         x->set_req(0, NULL);
1479       }
1480       if (mem->is_Phi() && (mem->in(0) == region)) {
1481         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1482       }
1483       if (address->is_Phi() && address->in(0) == region) {
1484         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1485       }
1486       if (base_is_phi && (base->in(0) == region)) {
1487         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1488         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1489         x->set_req(Address, adr_x);
1490       }
1491     }
1492     // Check for a 'win' on some paths
1493     const Type *t = x->Value(igvn);
1494 
1495     bool singleton = t->singleton();
1496 
1497     // See comments in PhaseIdealLoop::split_thru_phi().
1498     if (singleton && t == Type::TOP) {
1499       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1500     }
1501 
1502     if (singleton) {
1503       x = igvn->makecon(t);
1504     } else {
1505       // We now call Identity to try to simplify the cloned node.
1506       // Note that some Identity methods call phase->type(this).
1507       // Make sure that the type array is big enough for
1508       // our new node, even though we may throw the node away.
1509       // (This tweaking with igvn only works because x is a new node.)
1510       igvn->set_type(x, t);
1511       // If x is a TypeNode, capture any more-precise type permanently into Node
1512       // otherwise it will be not updated during igvn->transform since
1513       // igvn->type(x) is set to x->Value() already.
1514       x->raise_bottom_type(t);
1515       Node *y = igvn->apply_identity(x);
1516       if (y != x) {
1517         x = y;
1518       } else {
1519         y = igvn->hash_find_insert(x);
1520         if (y) {
1521           x = y;
1522         } else {
1523           // Else x is a new node we are keeping
1524           // We do not need register_new_node_with_optimizer
1525           // because set_type has already been called.
1526           igvn->_worklist.push(x);
1527         }
1528       }
1529     }
1530     if (x != the_clone && the_clone != NULL) {
1531       igvn->remove_dead_node(the_clone);
1532     }
1533     phi->set_req(i, x);
1534   }
1535   // Record Phi
1536   igvn->register_new_node_with_optimizer(phi);
1537   return phi;
1538 }
1539 
1540 //------------------------------Ideal------------------------------------------
1541 // If the load is from Field memory and the pointer is non-null, it might be possible to
1542 // zero out the control input.
1543 // If the offset is constant and the base is an object allocation,
1544 // try to hook me up to the exact initializing store.
1545 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1546   Node* p = MemNode::Ideal_common(phase, can_reshape);
1547   if (p)  return (p == NodeSentinel) ? NULL : p;
1548 
1549   Node* ctrl    = in(MemNode::Control);
1550   Node* address = in(MemNode::Address);
1551   bool progress = false;
1552 
1553   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1554          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1555 
1556   // Skip up past a SafePoint control.  Cannot do this for Stores because
1557   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1558   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1559       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1560       !addr_mark ) {
1561     ctrl = ctrl->in(0);
1562     set_req(MemNode::Control,ctrl);
1563     progress = true;
1564   }
1565 
1566   intptr_t ignore = 0;
1567   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1568   if (base != NULL
1569       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1570     // Check for useless control edge in some common special cases
1571     if (in(MemNode::Control) != NULL
1572         && can_remove_control()
1573         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1574         && all_controls_dominate(base, phase->C->start())) {
1575       // A method-invariant, non-null address (constant or 'this' argument).
1576       set_req(MemNode::Control, NULL);
1577       progress = true;
1578     }
1579   }
1580 
1581   Node* mem = in(MemNode::Memory);
1582   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1583 
1584   if (can_reshape && (addr_t != NULL)) {
1585     // try to optimize our memory input
1586     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1587     if (opt_mem != mem) {
1588       set_req(MemNode::Memory, opt_mem);
1589       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1590       return this;
1591     }
1592     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1593     if ((t_oop != NULL) &&
1594         (t_oop->is_known_instance_field() ||
1595          t_oop->is_ptr_to_boxed_value())) {
1596       PhaseIterGVN *igvn = phase->is_IterGVN();
1597       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1598         // Delay this transformation until memory Phi is processed.
1599         phase->is_IterGVN()->_worklist.push(this);
1600         return NULL;
1601       }
1602       // Split instance field load through Phi.
1603       Node* result = split_through_phi(phase);
1604       if (result != NULL) return result;
1605 
1606       if (t_oop->is_ptr_to_boxed_value()) {
1607         Node* result = eliminate_autobox(phase);
1608         if (result != NULL) return result;
1609       }
1610     }
1611   }
1612 
1613   // Is there a dominating load that loads the same value?  Leave
1614   // anything that is not a load of a field/array element (like
1615   // barriers etc.) alone
1616   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1617     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1618       Node *use = mem->fast_out(i);
1619       if (use != this &&
1620           use->Opcode() == Opcode() &&
1621           use->in(0) != NULL &&
1622           use->in(0) != in(0) &&
1623           use->in(Address) == in(Address)) {
1624         Node* ctl = in(0);
1625         for (int i = 0; i < 10 && ctl != NULL; i++) {
1626           ctl = IfNode::up_one_dom(ctl);
1627           if (ctl == use->in(0)) {
1628             set_req(0, use->in(0));
1629             return this;
1630           }
1631         }
1632       }
1633     }
1634   }
1635 
1636   // Check for prior store with a different base or offset; make Load
1637   // independent.  Skip through any number of them.  Bail out if the stores
1638   // are in an endless dead cycle and report no progress.  This is a key
1639   // transform for Reflection.  However, if after skipping through the Stores
1640   // we can't then fold up against a prior store do NOT do the transform as
1641   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1642   // array memory alive twice: once for the hoisted Load and again after the
1643   // bypassed Store.  This situation only works if EVERYBODY who does
1644   // anti-dependence work knows how to bypass.  I.e. we need all
1645   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1646   // the alias index stuff.  So instead, peek through Stores and IFF we can
1647   // fold up, do so.
1648   Node* prev_mem = find_previous_store(phase);
1649   if (prev_mem != NULL) {
1650     Node* value = can_see_arraycopy_value(prev_mem, phase);
1651     if (value != NULL) {
1652       return value;
1653     }
1654   }
1655   // Steps (a), (b):  Walk past independent stores to find an exact match.
1656   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1657     // (c) See if we can fold up on the spot, but don't fold up here.
1658     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1659     // just return a prior value, which is done by Identity calls.
1660     if (can_see_stored_value(prev_mem, phase)) {
1661       // Make ready for step (d):
1662       set_req(MemNode::Memory, prev_mem);
1663       return this;
1664     }
1665   }
1666 
1667   return progress ? this : NULL;
1668 }
1669 
1670 // Helper to recognize certain Klass fields which are invariant across
1671 // some group of array types (e.g., int[] or all T[] where T < Object).
1672 const Type*
1673 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1674                                  ciKlass* klass) const {
1675   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1676     // The field is Klass::_modifier_flags.  Return its (constant) value.
1677     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1678     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1679     return TypeInt::make(klass->modifier_flags());
1680   }
1681   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1682     // The field is Klass::_access_flags.  Return its (constant) value.
1683     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1684     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1685     return TypeInt::make(klass->access_flags());
1686   }
1687   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1688     // The field is Klass::_layout_helper.  Return its constant value if known.
1689     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1690     return TypeInt::make(klass->layout_helper());
1691   }
1692 
1693   // No match.
1694   return NULL;
1695 }
1696 
1697 //------------------------------Value-----------------------------------------
1698 const Type* LoadNode::Value(PhaseGVN* phase) const {
1699   // Either input is TOP ==> the result is TOP
1700   Node* mem = in(MemNode::Memory);
1701   const Type *t1 = phase->type(mem);
1702   if (t1 == Type::TOP)  return Type::TOP;
1703   Node* adr = in(MemNode::Address);
1704   const TypePtr* tp = phase->type(adr)->isa_ptr();
1705   if (tp == NULL || tp->empty())  return Type::TOP;
1706   int off = tp->offset();
1707   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1708   Compile* C = phase->C;
1709 
1710   // Try to guess loaded type from pointer type
1711   if (tp->isa_aryptr()) {
1712     const TypeAryPtr* ary = tp->is_aryptr();
1713     const Type* t = ary->elem();
1714 
1715     // Determine whether the reference is beyond the header or not, by comparing
1716     // the offset against the offset of the start of the array's data.
1717     // Different array types begin at slightly different offsets (12 vs. 16).
1718     // We choose T_BYTE as an example base type that is least restrictive
1719     // as to alignment, which will therefore produce the smallest
1720     // possible base offset.
1721     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1722     const bool off_beyond_header = (off >= min_base_off);
1723 
1724     // Try to constant-fold a stable array element.
1725     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1726       // Make sure the reference is not into the header and the offset is constant
1727       ciObject* aobj = ary->const_oop();
1728       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1729         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1730         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1731                                                                       stable_dimension,
1732                                                                       memory_type(), is_unsigned());
1733         if (con_type != NULL) {
1734           return con_type;
1735         }
1736       }
1737     }
1738 
1739     // Don't do this for integer types. There is only potential profit if
1740     // the element type t is lower than _type; that is, for int types, if _type is
1741     // more restrictive than t.  This only happens here if one is short and the other
1742     // char (both 16 bits), and in those cases we've made an intentional decision
1743     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1744     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1745     //
1746     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1747     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1748     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1749     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1750     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1751     // In fact, that could have been the original type of p1, and p1 could have
1752     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1753     // expression (LShiftL quux 3) independently optimized to the constant 8.
1754     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1755         && (_type->isa_vect() == NULL)
1756         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1757       // t might actually be lower than _type, if _type is a unique
1758       // concrete subclass of abstract class t.
1759       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1760         const Type* jt = t->join_speculative(_type);
1761         // In any case, do not allow the join, per se, to empty out the type.
1762         if (jt->empty() && !t->empty()) {
1763           // This can happen if a interface-typed array narrows to a class type.
1764           jt = _type;
1765         }
1766 #ifdef ASSERT
1767         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1768           // The pointers in the autobox arrays are always non-null
1769           Node* base = adr->in(AddPNode::Base);
1770           if ((base != NULL) && base->is_DecodeN()) {
1771             // Get LoadN node which loads IntegerCache.cache field
1772             base = base->in(1);
1773           }
1774           if ((base != NULL) && base->is_Con()) {
1775             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1776             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1777               // It could be narrow oop
1778               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1779             }
1780           }
1781         }
1782 #endif
1783         return jt;
1784       }
1785     }
1786   } else if (tp->base() == Type::InstPtr) {
1787     assert( off != Type::OffsetBot ||
1788             // arrays can be cast to Objects
1789             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1790             // unsafe field access may not have a constant offset
1791             C->has_unsafe_access(),
1792             "Field accesses must be precise" );
1793     // For oop loads, we expect the _type to be precise.
1794 
1795     // Optimize loads from constant fields.
1796     const TypeInstPtr* tinst = tp->is_instptr();
1797     ciObject* const_oop = tinst->const_oop();
1798     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1799       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1800       if (con_type != NULL) {
1801         return con_type;
1802       }
1803     }
1804   } else if (tp->base() == Type::KlassPtr) {
1805     assert( off != Type::OffsetBot ||
1806             // arrays can be cast to Objects
1807             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1808             // also allow array-loading from the primary supertype
1809             // array during subtype checks
1810             Opcode() == Op_LoadKlass,
1811             "Field accesses must be precise" );
1812     // For klass/static loads, we expect the _type to be precise
1813   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
1814     /* With mirrors being an indirect in the Klass*
1815      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1816      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1817      *
1818      * So check the type and klass of the node before the LoadP.
1819      */
1820     Node* adr2 = adr->in(MemNode::Address);
1821     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1822     if (tkls != NULL && !StressReflectiveCode) {
1823       ciKlass* klass = tkls->klass();
1824       if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1825         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1826         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1827         return TypeInstPtr::make(klass->java_mirror());
1828       }
1829     }
1830   }
1831 
1832   const TypeKlassPtr *tkls = tp->isa_klassptr();
1833   if (tkls != NULL && !StressReflectiveCode) {
1834     ciKlass* klass = tkls->klass();
1835     if (klass->is_loaded() && tkls->klass_is_exact()) {
1836       // We are loading a field from a Klass metaobject whose identity
1837       // is known at compile time (the type is "exact" or "precise").
1838       // Check for fields we know are maintained as constants by the VM.
1839       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1840         // The field is Klass::_super_check_offset.  Return its (constant) value.
1841         // (Folds up type checking code.)
1842         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1843         return TypeInt::make(klass->super_check_offset());
1844       }
1845       // Compute index into primary_supers array
1846       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1847       // Check for overflowing; use unsigned compare to handle the negative case.
1848       if( depth < ciKlass::primary_super_limit() ) {
1849         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1850         // (Folds up type checking code.)
1851         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1852         ciKlass *ss = klass->super_of_depth(depth);
1853         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1854       }
1855       const Type* aift = load_array_final_field(tkls, klass);
1856       if (aift != NULL)  return aift;
1857     }
1858 
1859     // We can still check if we are loading from the primary_supers array at a
1860     // shallow enough depth.  Even though the klass is not exact, entries less
1861     // than or equal to its super depth are correct.
1862     if (klass->is_loaded() ) {
1863       ciType *inner = klass;
1864       while( inner->is_obj_array_klass() )
1865         inner = inner->as_obj_array_klass()->base_element_type();
1866       if( inner->is_instance_klass() &&
1867           !inner->as_instance_klass()->flags().is_interface() ) {
1868         // Compute index into primary_supers array
1869         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1870         // Check for overflowing; use unsigned compare to handle the negative case.
1871         if( depth < ciKlass::primary_super_limit() &&
1872             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1873           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1874           // (Folds up type checking code.)
1875           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1876           ciKlass *ss = klass->super_of_depth(depth);
1877           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1878         }
1879       }
1880     }
1881 
1882     // If the type is enough to determine that the thing is not an array,
1883     // we can give the layout_helper a positive interval type.
1884     // This will help short-circuit some reflective code.
1885     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1886         && !klass->is_array_klass() // not directly typed as an array
1887         && !klass->is_interface()  // specifically not Serializable & Cloneable
1888         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1889         ) {
1890       // Note:  When interfaces are reliable, we can narrow the interface
1891       // test to (klass != Serializable && klass != Cloneable).
1892       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1893       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1894       // The key property of this type is that it folds up tests
1895       // for array-ness, since it proves that the layout_helper is positive.
1896       // Thus, a generic value like the basic object layout helper works fine.
1897       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1898     }
1899   }
1900 
1901   // If we are loading from a freshly-allocated object, produce a zero,
1902   // if the load is provably beyond the header of the object.
1903   // (Also allow a variable load from a fresh array to produce zero.)
1904   const TypeOopPtr *tinst = tp->isa_oopptr();
1905   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1906   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1907   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1908     Node* value = can_see_stored_value(mem,phase);
1909     if (value != NULL && value->is_Con()) {
1910       assert(value->bottom_type()->higher_equal(_type),"sanity");
1911       return value->bottom_type();
1912     }
1913   }
1914 
1915   if (is_instance) {
1916     // If we have an instance type and our memory input is the
1917     // programs's initial memory state, there is no matching store,
1918     // so just return a zero of the appropriate type
1919     Node *mem = in(MemNode::Memory);
1920     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1921       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1922       return Type::get_zero_type(_type->basic_type());
1923     }
1924   }
1925   return _type;
1926 }
1927 
1928 //------------------------------match_edge-------------------------------------
1929 // Do we Match on this edge index or not?  Match only the address.
1930 uint LoadNode::match_edge(uint idx) const {
1931   return idx == MemNode::Address;
1932 }
1933 
1934 //--------------------------LoadBNode::Ideal--------------------------------------
1935 //
1936 //  If the previous store is to the same address as this load,
1937 //  and the value stored was larger than a byte, replace this load
1938 //  with the value stored truncated to a byte.  If no truncation is
1939 //  needed, the replacement is done in LoadNode::Identity().
1940 //
1941 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1942   Node* mem = in(MemNode::Memory);
1943   Node* value = can_see_stored_value(mem,phase);
1944   if( value && !phase->type(value)->higher_equal( _type ) ) {
1945     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1946     return new RShiftINode(result, phase->intcon(24));
1947   }
1948   // Identity call will handle the case where truncation is not needed.
1949   return LoadNode::Ideal(phase, can_reshape);
1950 }
1951 
1952 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1953   Node* mem = in(MemNode::Memory);
1954   Node* value = can_see_stored_value(mem,phase);
1955   if (value != NULL && value->is_Con() &&
1956       !value->bottom_type()->higher_equal(_type)) {
1957     // If the input to the store does not fit with the load's result type,
1958     // it must be truncated. We can't delay until Ideal call since
1959     // a singleton Value is needed for split_thru_phi optimization.
1960     int con = value->get_int();
1961     return TypeInt::make((con << 24) >> 24);
1962   }
1963   return LoadNode::Value(phase);
1964 }
1965 
1966 //--------------------------LoadUBNode::Ideal-------------------------------------
1967 //
1968 //  If the previous store is to the same address as this load,
1969 //  and the value stored was larger than a byte, replace this load
1970 //  with the value stored truncated to a byte.  If no truncation is
1971 //  needed, the replacement is done in LoadNode::Identity().
1972 //
1973 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1974   Node* mem = in(MemNode::Memory);
1975   Node* value = can_see_stored_value(mem, phase);
1976   if (value && !phase->type(value)->higher_equal(_type))
1977     return new AndINode(value, phase->intcon(0xFF));
1978   // Identity call will handle the case where truncation is not needed.
1979   return LoadNode::Ideal(phase, can_reshape);
1980 }
1981 
1982 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1983   Node* mem = in(MemNode::Memory);
1984   Node* value = can_see_stored_value(mem,phase);
1985   if (value != NULL && value->is_Con() &&
1986       !value->bottom_type()->higher_equal(_type)) {
1987     // If the input to the store does not fit with the load's result type,
1988     // it must be truncated. We can't delay until Ideal call since
1989     // a singleton Value is needed for split_thru_phi optimization.
1990     int con = value->get_int();
1991     return TypeInt::make(con & 0xFF);
1992   }
1993   return LoadNode::Value(phase);
1994 }
1995 
1996 //--------------------------LoadUSNode::Ideal-------------------------------------
1997 //
1998 //  If the previous store is to the same address as this load,
1999 //  and the value stored was larger than a char, replace this load
2000 //  with the value stored truncated to a char.  If no truncation is
2001 //  needed, the replacement is done in LoadNode::Identity().
2002 //
2003 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2004   Node* mem = in(MemNode::Memory);
2005   Node* value = can_see_stored_value(mem,phase);
2006   if( value && !phase->type(value)->higher_equal( _type ) )
2007     return new AndINode(value,phase->intcon(0xFFFF));
2008   // Identity call will handle the case where truncation is not needed.
2009   return LoadNode::Ideal(phase, can_reshape);
2010 }
2011 
2012 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2013   Node* mem = in(MemNode::Memory);
2014   Node* value = can_see_stored_value(mem,phase);
2015   if (value != NULL && value->is_Con() &&
2016       !value->bottom_type()->higher_equal(_type)) {
2017     // If the input to the store does not fit with the load's result type,
2018     // it must be truncated. We can't delay until Ideal call since
2019     // a singleton Value is needed for split_thru_phi optimization.
2020     int con = value->get_int();
2021     return TypeInt::make(con & 0xFFFF);
2022   }
2023   return LoadNode::Value(phase);
2024 }
2025 
2026 //--------------------------LoadSNode::Ideal--------------------------------------
2027 //
2028 //  If the previous store is to the same address as this load,
2029 //  and the value stored was larger than a short, replace this load
2030 //  with the value stored truncated to a short.  If no truncation is
2031 //  needed, the replacement is done in LoadNode::Identity().
2032 //
2033 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2034   Node* mem = in(MemNode::Memory);
2035   Node* value = can_see_stored_value(mem,phase);
2036   if( value && !phase->type(value)->higher_equal( _type ) ) {
2037     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2038     return new RShiftINode(result, phase->intcon(16));
2039   }
2040   // Identity call will handle the case where truncation is not needed.
2041   return LoadNode::Ideal(phase, can_reshape);
2042 }
2043 
2044 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2045   Node* mem = in(MemNode::Memory);
2046   Node* value = can_see_stored_value(mem,phase);
2047   if (value != NULL && value->is_Con() &&
2048       !value->bottom_type()->higher_equal(_type)) {
2049     // If the input to the store does not fit with the load's result type,
2050     // it must be truncated. We can't delay until Ideal call since
2051     // a singleton Value is needed for split_thru_phi optimization.
2052     int con = value->get_int();
2053     return TypeInt::make((con << 16) >> 16);
2054   }
2055   return LoadNode::Value(phase);
2056 }
2057 
2058 //=============================================================================
2059 //----------------------------LoadKlassNode::make------------------------------
2060 // Polymorphic factory method:
2061 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2062   // sanity check the alias category against the created node type
2063   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2064   assert(adr_type != NULL, "expecting TypeKlassPtr");
2065 #ifdef _LP64
2066   if (adr_type->is_ptr_to_narrowklass()) {
2067     assert(UseCompressedClassPointers, "no compressed klasses");
2068     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2069     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2070   }
2071 #endif
2072   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2073   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2074 }
2075 
2076 //------------------------------Value------------------------------------------
2077 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2078   return klass_value_common(phase);
2079 }
2080 
2081 // In most cases, LoadKlassNode does not have the control input set. If the control
2082 // input is set, it must not be removed (by LoadNode::Ideal()).
2083 bool LoadKlassNode::can_remove_control() const {
2084   return false;
2085 }
2086 
2087 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2088   // Either input is TOP ==> the result is TOP
2089   const Type *t1 = phase->type( in(MemNode::Memory) );
2090   if (t1 == Type::TOP)  return Type::TOP;
2091   Node *adr = in(MemNode::Address);
2092   const Type *t2 = phase->type( adr );
2093   if (t2 == Type::TOP)  return Type::TOP;
2094   const TypePtr *tp = t2->is_ptr();
2095   if (TypePtr::above_centerline(tp->ptr()) ||
2096       tp->ptr() == TypePtr::Null)  return Type::TOP;
2097 
2098   // Return a more precise klass, if possible
2099   const TypeInstPtr *tinst = tp->isa_instptr();
2100   if (tinst != NULL) {
2101     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2102     int offset = tinst->offset();
2103     if (ik == phase->C->env()->Class_klass()
2104         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2105             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2106       // We are loading a special hidden field from a Class mirror object,
2107       // the field which points to the VM's Klass metaobject.
2108       ciType* t = tinst->java_mirror_type();
2109       // java_mirror_type returns non-null for compile-time Class constants.
2110       if (t != NULL) {
2111         // constant oop => constant klass
2112         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2113           if (t->is_void()) {
2114             // We cannot create a void array.  Since void is a primitive type return null
2115             // klass.  Users of this result need to do a null check on the returned klass.
2116             return TypePtr::NULL_PTR;
2117           }
2118           return TypeKlassPtr::make(ciArrayKlass::make(t));
2119         }
2120         if (!t->is_klass()) {
2121           // a primitive Class (e.g., int.class) has NULL for a klass field
2122           return TypePtr::NULL_PTR;
2123         }
2124         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2125         return TypeKlassPtr::make(t->as_klass());
2126       }
2127       // non-constant mirror, so we can't tell what's going on
2128     }
2129     if( !ik->is_loaded() )
2130       return _type;             // Bail out if not loaded
2131     if (offset == oopDesc::klass_offset_in_bytes()) {
2132       if (tinst->klass_is_exact()) {
2133         return TypeKlassPtr::make(ik);
2134       }
2135       // See if we can become precise: no subklasses and no interface
2136       // (Note:  We need to support verified interfaces.)
2137       if (!ik->is_interface() && !ik->has_subklass()) {
2138         //assert(!UseExactTypes, "this code should be useless with exact types");
2139         // Add a dependence; if any subclass added we need to recompile
2140         if (!ik->is_final()) {
2141           // %%% should use stronger assert_unique_concrete_subtype instead
2142           phase->C->dependencies()->assert_leaf_type(ik);
2143         }
2144         // Return precise klass
2145         return TypeKlassPtr::make(ik);
2146       }
2147 
2148       // Return root of possible klass
2149       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2150     }
2151   }
2152 
2153   // Check for loading klass from an array
2154   const TypeAryPtr *tary = tp->isa_aryptr();
2155   if( tary != NULL ) {
2156     ciKlass *tary_klass = tary->klass();
2157     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2158         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2159       if (tary->klass_is_exact()) {
2160         return TypeKlassPtr::make(tary_klass);
2161       }
2162       ciArrayKlass *ak = tary->klass()->as_array_klass();
2163       // If the klass is an object array, we defer the question to the
2164       // array component klass.
2165       if( ak->is_obj_array_klass() ) {
2166         assert( ak->is_loaded(), "" );
2167         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2168         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2169           ciInstanceKlass* ik = base_k->as_instance_klass();
2170           // See if we can become precise: no subklasses and no interface
2171           if (!ik->is_interface() && !ik->has_subklass()) {
2172             //assert(!UseExactTypes, "this code should be useless with exact types");
2173             // Add a dependence; if any subclass added we need to recompile
2174             if (!ik->is_final()) {
2175               phase->C->dependencies()->assert_leaf_type(ik);
2176             }
2177             // Return precise array klass
2178             return TypeKlassPtr::make(ak);
2179           }
2180         }
2181         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2182       } else {                  // Found a type-array?
2183         //assert(!UseExactTypes, "this code should be useless with exact types");
2184         assert( ak->is_type_array_klass(), "" );
2185         return TypeKlassPtr::make(ak); // These are always precise
2186       }
2187     }
2188   }
2189 
2190   // Check for loading klass from an array klass
2191   const TypeKlassPtr *tkls = tp->isa_klassptr();
2192   if (tkls != NULL && !StressReflectiveCode) {
2193     ciKlass* klass = tkls->klass();
2194     if( !klass->is_loaded() )
2195       return _type;             // Bail out if not loaded
2196     if( klass->is_obj_array_klass() &&
2197         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2198       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2199       // // Always returning precise element type is incorrect,
2200       // // e.g., element type could be object and array may contain strings
2201       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2202 
2203       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2204       // according to the element type's subclassing.
2205       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2206     }
2207     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2208         tkls->offset() == in_bytes(Klass::super_offset())) {
2209       ciKlass* sup = klass->as_instance_klass()->super();
2210       // The field is Klass::_super.  Return its (constant) value.
2211       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2212       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2213     }
2214   }
2215 
2216   // Bailout case
2217   return LoadNode::Value(phase);
2218 }
2219 
2220 //------------------------------Identity---------------------------------------
2221 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2222 // Also feed through the klass in Allocate(...klass...)._klass.
2223 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2224   return klass_identity_common(phase);
2225 }
2226 
2227 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2228   Node* x = LoadNode::Identity(phase);
2229   if (x != this)  return x;
2230 
2231   // Take apart the address into an oop and and offset.
2232   // Return 'this' if we cannot.
2233   Node*    adr    = in(MemNode::Address);
2234   intptr_t offset = 0;
2235   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2236   if (base == NULL)     return this;
2237   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2238   if (toop == NULL)     return this;
2239 
2240   // Step over potential GC barrier for OopHandle resolve
2241   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2242   if (bs->is_gc_barrier_node(base)) {
2243     base = bs->step_over_gc_barrier(base);
2244   }
2245 
2246   // We can fetch the klass directly through an AllocateNode.
2247   // This works even if the klass is not constant (clone or newArray).
2248   if (offset == oopDesc::klass_offset_in_bytes()) {
2249     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2250     if (allocated_klass != NULL) {
2251       return allocated_klass;
2252     }
2253   }
2254 
2255   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2256   // See inline_native_Class_query for occurrences of these patterns.
2257   // Java Example:  x.getClass().isAssignableFrom(y)
2258   //
2259   // This improves reflective code, often making the Class
2260   // mirror go completely dead.  (Current exception:  Class
2261   // mirrors may appear in debug info, but we could clean them out by
2262   // introducing a new debug info operator for Klass.java_mirror).
2263 
2264   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2265       && offset == java_lang_Class::klass_offset_in_bytes()) {
2266     if (base->is_Load()) {
2267       Node* base2 = base->in(MemNode::Address);
2268       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2269         Node* adr2 = base2->in(MemNode::Address);
2270         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2271         if (tkls != NULL && !tkls->empty()
2272             && (tkls->klass()->is_instance_klass() ||
2273               tkls->klass()->is_array_klass())
2274             && adr2->is_AddP()
2275            ) {
2276           int mirror_field = in_bytes(Klass::java_mirror_offset());
2277           if (tkls->offset() == mirror_field) {
2278             return adr2->in(AddPNode::Base);
2279           }
2280         }
2281       }
2282     }
2283   }
2284 
2285   return this;
2286 }
2287 
2288 
2289 //------------------------------Value------------------------------------------
2290 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2291   const Type *t = klass_value_common(phase);
2292   if (t == Type::TOP)
2293     return t;
2294 
2295   return t->make_narrowklass();
2296 }
2297 
2298 //------------------------------Identity---------------------------------------
2299 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2300 // Also feed through the klass in Allocate(...klass...)._klass.
2301 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2302   Node *x = klass_identity_common(phase);
2303 
2304   const Type *t = phase->type( x );
2305   if( t == Type::TOP ) return x;
2306   if( t->isa_narrowklass()) return x;
2307   assert (!t->isa_narrowoop(), "no narrow oop here");
2308 
2309   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2310 }
2311 
2312 //------------------------------Value-----------------------------------------
2313 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2314   // Either input is TOP ==> the result is TOP
2315   const Type *t1 = phase->type( in(MemNode::Memory) );
2316   if( t1 == Type::TOP ) return Type::TOP;
2317   Node *adr = in(MemNode::Address);
2318   const Type *t2 = phase->type( adr );
2319   if( t2 == Type::TOP ) return Type::TOP;
2320   const TypePtr *tp = t2->is_ptr();
2321   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2322   const TypeAryPtr *tap = tp->isa_aryptr();
2323   if( !tap ) return _type;
2324   return tap->size();
2325 }
2326 
2327 //-------------------------------Ideal---------------------------------------
2328 // Feed through the length in AllocateArray(...length...)._length.
2329 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2330   Node* p = MemNode::Ideal_common(phase, can_reshape);
2331   if (p)  return (p == NodeSentinel) ? NULL : p;
2332 
2333   // Take apart the address into an oop and and offset.
2334   // Return 'this' if we cannot.
2335   Node*    adr    = in(MemNode::Address);
2336   intptr_t offset = 0;
2337   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2338   if (base == NULL)     return NULL;
2339   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2340   if (tary == NULL)     return NULL;
2341 
2342   // We can fetch the length directly through an AllocateArrayNode.
2343   // This works even if the length is not constant (clone or newArray).
2344   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2345     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2346     if (alloc != NULL) {
2347       Node* allocated_length = alloc->Ideal_length();
2348       Node* len = alloc->make_ideal_length(tary, phase);
2349       if (allocated_length != len) {
2350         // New CastII improves on this.
2351         return len;
2352       }
2353     }
2354   }
2355 
2356   return NULL;
2357 }
2358 
2359 //------------------------------Identity---------------------------------------
2360 // Feed through the length in AllocateArray(...length...)._length.
2361 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2362   Node* x = LoadINode::Identity(phase);
2363   if (x != this)  return x;
2364 
2365   // Take apart the address into an oop and and offset.
2366   // Return 'this' if we cannot.
2367   Node*    adr    = in(MemNode::Address);
2368   intptr_t offset = 0;
2369   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2370   if (base == NULL)     return this;
2371   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2372   if (tary == NULL)     return this;
2373 
2374   // We can fetch the length directly through an AllocateArrayNode.
2375   // This works even if the length is not constant (clone or newArray).
2376   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2377     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2378     if (alloc != NULL) {
2379       Node* allocated_length = alloc->Ideal_length();
2380       // Do not allow make_ideal_length to allocate a CastII node.
2381       Node* len = alloc->make_ideal_length(tary, phase, false);
2382       if (allocated_length == len) {
2383         // Return allocated_length only if it would not be improved by a CastII.
2384         return allocated_length;
2385       }
2386     }
2387   }
2388 
2389   return this;
2390 
2391 }
2392 
2393 //=============================================================================
2394 //---------------------------StoreNode::make-----------------------------------
2395 // Polymorphic factory method:
2396 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2397   assert((mo == unordered || mo == release), "unexpected");
2398   Compile* C = gvn.C;
2399   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2400          ctl != NULL, "raw memory operations should have control edge");
2401 
2402   switch (bt) {
2403   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2404   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2405   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2406   case T_CHAR:
2407   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2408   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2409   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2410   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2411   case T_METADATA:
2412   case T_ADDRESS:
2413   case T_OBJECT:
2414 #ifdef _LP64
2415     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2416       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2417       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2418     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2419                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2420                 adr->bottom_type()->isa_rawptr())) {
2421       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2422       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2423     }
2424 #endif
2425     {
2426       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2427     }
2428   default:
2429     ShouldNotReachHere();
2430     return (StoreNode*)NULL;
2431   }
2432 }
2433 
2434 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2435   bool require_atomic = true;
2436   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2437 }
2438 
2439 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2440   bool require_atomic = true;
2441   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2442 }
2443 
2444 
2445 //--------------------------bottom_type----------------------------------------
2446 const Type *StoreNode::bottom_type() const {
2447   return Type::MEMORY;
2448 }
2449 
2450 //------------------------------hash-------------------------------------------
2451 uint StoreNode::hash() const {
2452   // unroll addition of interesting fields
2453   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2454 
2455   // Since they are not commoned, do not hash them:
2456   return NO_HASH;
2457 }
2458 
2459 //------------------------------Ideal------------------------------------------
2460 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2461 // When a store immediately follows a relevant allocation/initialization,
2462 // try to capture it into the initialization, or hoist it above.
2463 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2464   Node* p = MemNode::Ideal_common(phase, can_reshape);
2465   if (p)  return (p == NodeSentinel) ? NULL : p;
2466 
2467   Node* mem     = in(MemNode::Memory);
2468   Node* address = in(MemNode::Address);
2469   // Back-to-back stores to same address?  Fold em up.  Generally
2470   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2471   // since they must follow each StoreP operation.  Redundant StoreCMs
2472   // are eliminated just before matching in final_graph_reshape.
2473   {
2474     Node* st = mem;
2475     // If Store 'st' has more than one use, we cannot fold 'st' away.
2476     // For example, 'st' might be the final state at a conditional
2477     // return.  Or, 'st' might be used by some node which is live at
2478     // the same time 'st' is live, which might be unschedulable.  So,
2479     // require exactly ONE user until such time as we clone 'mem' for
2480     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2481     // true).
2482     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2483       // Looking at a dead closed cycle of memory?
2484       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2485       assert(Opcode() == st->Opcode() ||
2486              st->Opcode() == Op_StoreVector ||
2487              Opcode() == Op_StoreVector ||
2488              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2489              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2490              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2491              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2492              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2493 
2494       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2495           st->as_Store()->memory_size() <= this->memory_size()) {
2496         Node* use = st->raw_out(0);
2497         phase->igvn_rehash_node_delayed(use);
2498         if (can_reshape) {
2499           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2500         } else {
2501           // It's OK to do this in the parser, since DU info is always accurate,
2502           // and the parser always refers to nodes via SafePointNode maps.
2503           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2504         }
2505         return this;
2506       }
2507       st = st->in(MemNode::Memory);
2508     }
2509   }
2510 
2511 
2512   // Capture an unaliased, unconditional, simple store into an initializer.
2513   // Or, if it is independent of the allocation, hoist it above the allocation.
2514   if (ReduceFieldZeroing && /*can_reshape &&*/
2515       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2516     InitializeNode* init = mem->in(0)->as_Initialize();
2517     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2518     if (offset > 0) {
2519       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2520       // If the InitializeNode captured me, it made a raw copy of me,
2521       // and I need to disappear.
2522       if (moved != NULL) {
2523         // %%% hack to ensure that Ideal returns a new node:
2524         mem = MergeMemNode::make(mem);
2525         return mem;             // fold me away
2526       }
2527     }
2528   }
2529 
2530   return NULL;                  // No further progress
2531 }
2532 
2533 //------------------------------Value-----------------------------------------
2534 const Type* StoreNode::Value(PhaseGVN* phase) const {
2535   // Either input is TOP ==> the result is TOP
2536   const Type *t1 = phase->type( in(MemNode::Memory) );
2537   if( t1 == Type::TOP ) return Type::TOP;
2538   const Type *t2 = phase->type( in(MemNode::Address) );
2539   if( t2 == Type::TOP ) return Type::TOP;
2540   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2541   if( t3 == Type::TOP ) return Type::TOP;
2542   return Type::MEMORY;
2543 }
2544 
2545 //------------------------------Identity---------------------------------------
2546 // Remove redundant stores:
2547 //   Store(m, p, Load(m, p)) changes to m.
2548 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2549 Node* StoreNode::Identity(PhaseGVN* phase) {
2550   Node* mem = in(MemNode::Memory);
2551   Node* adr = in(MemNode::Address);
2552   Node* val = in(MemNode::ValueIn);
2553 
2554   Node* result = this;
2555 
2556   // Load then Store?  Then the Store is useless
2557   if (val->is_Load() &&
2558       val->in(MemNode::Address)->eqv_uncast(adr) &&
2559       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2560       val->as_Load()->store_Opcode() == Opcode()) {
2561     result = mem;
2562   }
2563 
2564   // Two stores in a row of the same value?
2565   if (result == this &&
2566       mem->is_Store() &&
2567       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2568       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2569       mem->Opcode() == Opcode()) {
2570     result = mem;
2571   }
2572 
2573   // Store of zero anywhere into a freshly-allocated object?
2574   // Then the store is useless.
2575   // (It must already have been captured by the InitializeNode.)
2576   if (result == this &&
2577       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2578     // a newly allocated object is already all-zeroes everywhere
2579     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2580       result = mem;
2581     }
2582 
2583     if (result == this) {
2584       // the store may also apply to zero-bits in an earlier object
2585       Node* prev_mem = find_previous_store(phase);
2586       // Steps (a), (b):  Walk past independent stores to find an exact match.
2587       if (prev_mem != NULL) {
2588         Node* prev_val = can_see_stored_value(prev_mem, phase);
2589         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2590           // prev_val and val might differ by a cast; it would be good
2591           // to keep the more informative of the two.
2592           result = mem;
2593         }
2594       }
2595     }
2596   }
2597 
2598   if (result != this && phase->is_IterGVN() != NULL) {
2599     MemBarNode* trailing = trailing_membar();
2600     if (trailing != NULL) {
2601 #ifdef ASSERT
2602       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2603       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2604 #endif
2605       PhaseIterGVN* igvn = phase->is_IterGVN();
2606       trailing->remove(igvn);
2607     }
2608   }
2609 
2610   return result;
2611 }
2612 
2613 //------------------------------match_edge-------------------------------------
2614 // Do we Match on this edge index or not?  Match only memory & value
2615 uint StoreNode::match_edge(uint idx) const {
2616   return idx == MemNode::Address || idx == MemNode::ValueIn;
2617 }
2618 
2619 //------------------------------cmp--------------------------------------------
2620 // Do not common stores up together.  They generally have to be split
2621 // back up anyways, so do not bother.
2622 uint StoreNode::cmp( const Node &n ) const {
2623   return (&n == this);          // Always fail except on self
2624 }
2625 
2626 //------------------------------Ideal_masked_input-----------------------------
2627 // Check for a useless mask before a partial-word store
2628 // (StoreB ... (AndI valIn conIa) )
2629 // If (conIa & mask == mask) this simplifies to
2630 // (StoreB ... (valIn) )
2631 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2632   Node *val = in(MemNode::ValueIn);
2633   if( val->Opcode() == Op_AndI ) {
2634     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2635     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2636       set_req(MemNode::ValueIn, val->in(1));
2637       return this;
2638     }
2639   }
2640   return NULL;
2641 }
2642 
2643 
2644 //------------------------------Ideal_sign_extended_input----------------------
2645 // Check for useless sign-extension before a partial-word store
2646 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2647 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2648 // (StoreB ... (valIn) )
2649 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2650   Node *val = in(MemNode::ValueIn);
2651   if( val->Opcode() == Op_RShiftI ) {
2652     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2653     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2654       Node *shl = val->in(1);
2655       if( shl->Opcode() == Op_LShiftI ) {
2656         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2657         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2658           set_req(MemNode::ValueIn, shl->in(1));
2659           return this;
2660         }
2661       }
2662     }
2663   }
2664   return NULL;
2665 }
2666 
2667 //------------------------------value_never_loaded-----------------------------------
2668 // Determine whether there are any possible loads of the value stored.
2669 // For simplicity, we actually check if there are any loads from the
2670 // address stored to, not just for loads of the value stored by this node.
2671 //
2672 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2673   Node *adr = in(Address);
2674   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2675   if (adr_oop == NULL)
2676     return false;
2677   if (!adr_oop->is_known_instance_field())
2678     return false; // if not a distinct instance, there may be aliases of the address
2679   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2680     Node *use = adr->fast_out(i);
2681     if (use->is_Load() || use->is_LoadStore()) {
2682       return false;
2683     }
2684   }
2685   return true;
2686 }
2687 
2688 MemBarNode* StoreNode::trailing_membar() const {
2689   if (is_release()) {
2690     MemBarNode* trailing_mb = NULL;
2691     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2692       Node* u = fast_out(i);
2693       if (u->is_MemBar()) {
2694         if (u->as_MemBar()->trailing_store()) {
2695           assert(u->Opcode() == Op_MemBarVolatile, "");
2696           assert(trailing_mb == NULL, "only one");
2697           trailing_mb = u->as_MemBar();
2698 #ifdef ASSERT
2699           Node* leading = u->as_MemBar()->leading_membar();
2700           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2701           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2702           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2703 #endif
2704         } else {
2705           assert(u->as_MemBar()->standalone(), "");
2706         }
2707       }
2708     }
2709     return trailing_mb;
2710   }
2711   return NULL;
2712 }
2713 
2714 
2715 //=============================================================================
2716 //------------------------------Ideal------------------------------------------
2717 // If the store is from an AND mask that leaves the low bits untouched, then
2718 // we can skip the AND operation.  If the store is from a sign-extension
2719 // (a left shift, then right shift) we can skip both.
2720 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2721   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2722   if( progress != NULL ) return progress;
2723 
2724   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2725   if( progress != NULL ) return progress;
2726 
2727   // Finally check the default case
2728   return StoreNode::Ideal(phase, can_reshape);
2729 }
2730 
2731 //=============================================================================
2732 //------------------------------Ideal------------------------------------------
2733 // If the store is from an AND mask that leaves the low bits untouched, then
2734 // we can skip the AND operation
2735 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2736   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2737   if( progress != NULL ) return progress;
2738 
2739   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2740   if( progress != NULL ) return progress;
2741 
2742   // Finally check the default case
2743   return StoreNode::Ideal(phase, can_reshape);
2744 }
2745 
2746 //=============================================================================
2747 //------------------------------Identity---------------------------------------
2748 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2749   // No need to card mark when storing a null ptr
2750   Node* my_store = in(MemNode::OopStore);
2751   if (my_store->is_Store()) {
2752     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2753     if( t1 == TypePtr::NULL_PTR ) {
2754       return in(MemNode::Memory);
2755     }
2756   }
2757   return this;
2758 }
2759 
2760 //=============================================================================
2761 //------------------------------Ideal---------------------------------------
2762 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2763   Node* progress = StoreNode::Ideal(phase, can_reshape);
2764   if (progress != NULL) return progress;
2765 
2766   Node* my_store = in(MemNode::OopStore);
2767   if (my_store->is_MergeMem()) {
2768     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2769     set_req(MemNode::OopStore, mem);
2770     return this;
2771   }
2772 
2773   return NULL;
2774 }
2775 
2776 //------------------------------Value-----------------------------------------
2777 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2778   // Either input is TOP ==> the result is TOP
2779   const Type *t = phase->type( in(MemNode::Memory) );
2780   if( t == Type::TOP ) return Type::TOP;
2781   t = phase->type( in(MemNode::Address) );
2782   if( t == Type::TOP ) return Type::TOP;
2783   t = phase->type( in(MemNode::ValueIn) );
2784   if( t == Type::TOP ) return Type::TOP;
2785   // If extra input is TOP ==> the result is TOP
2786   t = phase->type( in(MemNode::OopStore) );
2787   if( t == Type::TOP ) return Type::TOP;
2788 
2789   return StoreNode::Value( phase );
2790 }
2791 
2792 
2793 //=============================================================================
2794 //----------------------------------SCMemProjNode------------------------------
2795 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2796 {
2797   return bottom_type();
2798 }
2799 
2800 //=============================================================================
2801 //----------------------------------LoadStoreNode------------------------------
2802 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2803   : Node(required),
2804     _type(rt),
2805     _adr_type(at)
2806 {
2807   init_req(MemNode::Control, c  );
2808   init_req(MemNode::Memory , mem);
2809   init_req(MemNode::Address, adr);
2810   init_req(MemNode::ValueIn, val);
2811   init_class_id(Class_LoadStore);
2812 }
2813 
2814 uint LoadStoreNode::ideal_reg() const {
2815   return _type->ideal_reg();
2816 }
2817 
2818 bool LoadStoreNode::result_not_used() const {
2819   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2820     Node *x = fast_out(i);
2821     if (x->Opcode() == Op_SCMemProj) continue;
2822     return false;
2823   }
2824   return true;
2825 }
2826 
2827 MemBarNode* LoadStoreNode::trailing_membar() const {
2828   MemBarNode* trailing = NULL;
2829   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2830     Node* u = fast_out(i);
2831     if (u->is_MemBar()) {
2832       if (u->as_MemBar()->trailing_load_store()) {
2833         assert(u->Opcode() == Op_MemBarAcquire, "");
2834         assert(trailing == NULL, "only one");
2835         trailing = u->as_MemBar();
2836 #ifdef ASSERT
2837         Node* leading = trailing->leading_membar();
2838         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2839         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2840         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2841 #endif
2842       } else {
2843         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2844       }
2845     }
2846   }
2847 
2848   return trailing;
2849 }
2850 
2851 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2852 
2853 //=============================================================================
2854 //----------------------------------LoadStoreConditionalNode--------------------
2855 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2856   init_req(ExpectedIn, ex );
2857 }
2858 
2859 //=============================================================================
2860 //-------------------------------adr_type--------------------------------------
2861 const TypePtr* ClearArrayNode::adr_type() const {
2862   Node *adr = in(3);
2863   if (adr == NULL)  return NULL; // node is dead
2864   return MemNode::calculate_adr_type(adr->bottom_type());
2865 }
2866 
2867 //------------------------------match_edge-------------------------------------
2868 // Do we Match on this edge index or not?  Do not match memory
2869 uint ClearArrayNode::match_edge(uint idx) const {
2870   return idx > 1;
2871 }
2872 
2873 //------------------------------Identity---------------------------------------
2874 // Clearing a zero length array does nothing
2875 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2876   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2877 }
2878 
2879 //------------------------------Idealize---------------------------------------
2880 // Clearing a short array is faster with stores
2881 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2882   // Already know this is a large node, do not try to ideal it
2883   if (!IdealizeClearArrayNode || _is_large) return NULL;
2884 
2885   const int unit = BytesPerLong;
2886   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2887   if (!t)  return NULL;
2888   if (!t->is_con())  return NULL;
2889   intptr_t raw_count = t->get_con();
2890   intptr_t size = raw_count;
2891   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2892   // Clearing nothing uses the Identity call.
2893   // Negative clears are possible on dead ClearArrays
2894   // (see jck test stmt114.stmt11402.val).
2895   if (size <= 0 || size % unit != 0)  return NULL;
2896   intptr_t count = size / unit;
2897   // Length too long; communicate this to matchers and assemblers.
2898   // Assemblers are responsible to produce fast hardware clears for it.
2899   if (size > InitArrayShortSize) {
2900     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2901   }
2902   Node *mem = in(1);
2903   if( phase->type(mem)==Type::TOP ) return NULL;
2904   Node *adr = in(3);
2905   const Type* at = phase->type(adr);
2906   if( at==Type::TOP ) return NULL;
2907   const TypePtr* atp = at->isa_ptr();
2908   // adjust atp to be the correct array element address type
2909   if (atp == NULL)  atp = TypePtr::BOTTOM;
2910   else              atp = atp->add_offset(Type::OffsetBot);
2911   // Get base for derived pointer purposes
2912   if( adr->Opcode() != Op_AddP ) Unimplemented();
2913   Node *base = adr->in(1);
2914 
2915   Node *zero = phase->makecon(TypeLong::ZERO);
2916   Node *off  = phase->MakeConX(BytesPerLong);
2917   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2918   count--;
2919   while( count-- ) {
2920     mem = phase->transform(mem);
2921     adr = phase->transform(new AddPNode(base,adr,off));
2922     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2923   }
2924   return mem;
2925 }
2926 
2927 //----------------------------step_through----------------------------------
2928 // Return allocation input memory edge if it is different instance
2929 // or itself if it is the one we are looking for.
2930 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2931   Node* n = *np;
2932   assert(n->is_ClearArray(), "sanity");
2933   intptr_t offset;
2934   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2935   // This method is called only before Allocate nodes are expanded
2936   // during macro nodes expansion. Before that ClearArray nodes are
2937   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2938   // Allocate nodes are expanded) which follows allocations.
2939   assert(alloc != NULL, "should have allocation");
2940   if (alloc->_idx == instance_id) {
2941     // Can not bypass initialization of the instance we are looking for.
2942     return false;
2943   }
2944   // Otherwise skip it.
2945   InitializeNode* init = alloc->initialization();
2946   if (init != NULL)
2947     *np = init->in(TypeFunc::Memory);
2948   else
2949     *np = alloc->in(TypeFunc::Memory);
2950   return true;
2951 }
2952 
2953 //----------------------------clear_memory-------------------------------------
2954 // Generate code to initialize object storage to zero.
2955 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2956                                    intptr_t start_offset,
2957                                    Node* end_offset,
2958                                    PhaseGVN* phase) {
2959   intptr_t offset = start_offset;
2960 
2961   int unit = BytesPerLong;
2962   if ((offset % unit) != 0) {
2963     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2964     adr = phase->transform(adr);
2965     const TypePtr* atp = TypeRawPtr::BOTTOM;
2966     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2967     mem = phase->transform(mem);
2968     offset += BytesPerInt;
2969   }
2970   assert((offset % unit) == 0, "");
2971 
2972   // Initialize the remaining stuff, if any, with a ClearArray.
2973   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2974 }
2975 
2976 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2977                                    Node* start_offset,
2978                                    Node* end_offset,
2979                                    PhaseGVN* phase) {
2980   if (start_offset == end_offset) {
2981     // nothing to do
2982     return mem;
2983   }
2984 
2985   int unit = BytesPerLong;
2986   Node* zbase = start_offset;
2987   Node* zend  = end_offset;
2988 
2989   // Scale to the unit required by the CPU:
2990   if (!Matcher::init_array_count_is_in_bytes) {
2991     Node* shift = phase->intcon(exact_log2(unit));
2992     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2993     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2994   }
2995 
2996   // Bulk clear double-words
2997   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2998   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2999   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
3000   return phase->transform(mem);
3001 }
3002 
3003 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
3004                                    intptr_t start_offset,
3005                                    intptr_t end_offset,
3006                                    PhaseGVN* phase) {
3007   if (start_offset == end_offset) {
3008     // nothing to do
3009     return mem;
3010   }
3011 
3012   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3013   intptr_t done_offset = end_offset;
3014   if ((done_offset % BytesPerLong) != 0) {
3015     done_offset -= BytesPerInt;
3016   }
3017   if (done_offset > start_offset) {
3018     mem = clear_memory(ctl, mem, dest,
3019                        start_offset, phase->MakeConX(done_offset), phase);
3020   }
3021   if (done_offset < end_offset) { // emit the final 32-bit store
3022     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3023     adr = phase->transform(adr);
3024     const TypePtr* atp = TypeRawPtr::BOTTOM;
3025     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3026     mem = phase->transform(mem);
3027     done_offset += BytesPerInt;
3028   }
3029   assert(done_offset == end_offset, "");
3030   return mem;
3031 }
3032 
3033 //=============================================================================
3034 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3035   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3036     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3037 #ifdef ASSERT
3038   , _pair_idx(0)
3039 #endif
3040 {
3041   init_class_id(Class_MemBar);
3042   Node* top = C->top();
3043   init_req(TypeFunc::I_O,top);
3044   init_req(TypeFunc::FramePtr,top);
3045   init_req(TypeFunc::ReturnAdr,top);
3046   if (precedent != NULL)
3047     init_req(TypeFunc::Parms, precedent);
3048 }
3049 
3050 //------------------------------cmp--------------------------------------------
3051 uint MemBarNode::hash() const { return NO_HASH; }
3052 uint MemBarNode::cmp( const Node &n ) const {
3053   return (&n == this);          // Always fail except on self
3054 }
3055 
3056 //------------------------------make-------------------------------------------
3057 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3058   switch (opcode) {
3059   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3060   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3061   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3062   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3063   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3064   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3065   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3066   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3067   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3068   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3069   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3070   default: ShouldNotReachHere(); return NULL;
3071   }
3072 }
3073 
3074 void MemBarNode::remove(PhaseIterGVN *igvn) {
3075   if (outcnt() != 2) {
3076     return;
3077   }
3078   if (trailing_store() || trailing_load_store()) {
3079     MemBarNode* leading = leading_membar();
3080     if (leading != NULL) {
3081       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3082       leading->remove(igvn);
3083     }
3084   }
3085   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3086   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3087 }
3088 
3089 //------------------------------Ideal------------------------------------------
3090 // Return a node which is more "ideal" than the current node.  Strip out
3091 // control copies
3092 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3093   if (remove_dead_region(phase, can_reshape)) return this;
3094   // Don't bother trying to transform a dead node
3095   if (in(0) && in(0)->is_top()) {
3096     return NULL;
3097   }
3098 
3099 #if INCLUDE_ZGC
3100   if (UseZGC) {
3101     if (req() == (Precedent+1) && in(MemBarNode::Precedent)->in(0) != NULL && in(MemBarNode::Precedent)->in(0)->is_LoadBarrier()) {
3102       Node* load_node = in(MemBarNode::Precedent)->in(0)->in(LoadBarrierNode::Oop);
3103       set_req(MemBarNode::Precedent, load_node);
3104       return this;
3105     }
3106   }
3107 #endif
3108 
3109   bool progress = false;
3110   // Eliminate volatile MemBars for scalar replaced objects.
3111   if (can_reshape && req() == (Precedent+1)) {
3112     bool eliminate = false;
3113     int opc = Opcode();
3114     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3115       // Volatile field loads and stores.
3116       Node* my_mem = in(MemBarNode::Precedent);
3117       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3118       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3119         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3120         // replace this Precedent (decodeN) with the Load instead.
3121         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3122           Node* load_node = my_mem->in(1);
3123           set_req(MemBarNode::Precedent, load_node);
3124           phase->is_IterGVN()->_worklist.push(my_mem);
3125           my_mem = load_node;
3126         } else {
3127           assert(my_mem->unique_out() == this, "sanity");
3128           del_req(Precedent);
3129           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3130           my_mem = NULL;
3131         }
3132         progress = true;
3133       }
3134       if (my_mem != NULL && my_mem->is_Mem()) {
3135         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3136         // Check for scalar replaced object reference.
3137         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3138             t_oop->offset() != Type::OffsetBot &&
3139             t_oop->offset() != Type::OffsetTop) {
3140           eliminate = true;
3141         }
3142       }
3143     } else if (opc == Op_MemBarRelease) {
3144       // Final field stores.
3145       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3146       if ((alloc != NULL) && alloc->is_Allocate() &&
3147           alloc->as_Allocate()->does_not_escape_thread()) {
3148         // The allocated object does not escape.
3149         eliminate = true;
3150       }
3151     }
3152     if (eliminate) {
3153       // Replace MemBar projections by its inputs.
3154       PhaseIterGVN* igvn = phase->is_IterGVN();
3155       remove(igvn);
3156       // Must return either the original node (now dead) or a new node
3157       // (Do not return a top here, since that would break the uniqueness of top.)
3158       return new ConINode(TypeInt::ZERO);
3159     }
3160   }
3161   return progress ? this : NULL;
3162 }
3163 
3164 //------------------------------Value------------------------------------------
3165 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3166   if( !in(0) ) return Type::TOP;
3167   if( phase->type(in(0)) == Type::TOP )
3168     return Type::TOP;
3169   return TypeTuple::MEMBAR;
3170 }
3171 
3172 //------------------------------match------------------------------------------
3173 // Construct projections for memory.
3174 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3175   switch (proj->_con) {
3176   case TypeFunc::Control:
3177   case TypeFunc::Memory:
3178     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3179   }
3180   ShouldNotReachHere();
3181   return NULL;
3182 }
3183 
3184 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3185   trailing->_kind = TrailingStore;
3186   leading->_kind = LeadingStore;
3187 #ifdef ASSERT
3188   trailing->_pair_idx = leading->_idx;
3189   leading->_pair_idx = leading->_idx;
3190 #endif
3191 }
3192 
3193 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3194   trailing->_kind = TrailingLoadStore;
3195   leading->_kind = LeadingLoadStore;
3196 #ifdef ASSERT
3197   trailing->_pair_idx = leading->_idx;
3198   leading->_pair_idx = leading->_idx;
3199 #endif
3200 }
3201 
3202 MemBarNode* MemBarNode::trailing_membar() const {
3203   ResourceMark rm;
3204   Node* trailing = (Node*)this;
3205   VectorSet seen(Thread::current()->resource_area());
3206   Node_Stack multis(0);
3207   do {
3208     Node* c = trailing;
3209     uint i = 0;
3210     do {
3211       trailing = NULL;
3212       for (; i < c->outcnt(); i++) {
3213         Node* next = c->raw_out(i);
3214         if (next != c && next->is_CFG()) {
3215           if (c->is_MultiBranch()) {
3216             if (multis.node() == c) {
3217               multis.set_index(i+1);
3218             } else {
3219               multis.push(c, i+1);
3220             }
3221           }
3222           trailing = next;
3223           break;
3224         }
3225       }
3226       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3227         break;
3228       }
3229       while (multis.size() > 0) {
3230         c = multis.node();
3231         i = multis.index();
3232         if (i < c->req()) {
3233           break;
3234         }
3235         multis.pop();
3236       }
3237     } while (multis.size() > 0);
3238   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3239 
3240   MemBarNode* mb = trailing->as_MemBar();
3241   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3242          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3243   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3244   return mb;
3245 }
3246 
3247 MemBarNode* MemBarNode::leading_membar() const {
3248   ResourceMark rm;
3249   VectorSet seen(Thread::current()->resource_area());
3250   Node_Stack regions(0);
3251   Node* leading = in(0);
3252   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3253     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3254       leading = NULL;
3255       while (regions.size() > 0 && leading == NULL) {
3256         Node* r = regions.node();
3257         uint i = regions.index();
3258         if (i < r->req()) {
3259           leading = r->in(i);
3260           regions.set_index(i+1);
3261         } else {
3262           regions.pop();
3263         }
3264       }
3265       if (leading == NULL) {
3266         assert(regions.size() == 0, "all paths should have been tried");
3267         return NULL;
3268       }
3269     }
3270     if (leading->is_Region()) {
3271       regions.push(leading, 2);
3272       leading = leading->in(1);
3273     } else {
3274       leading = leading->in(0);
3275     }
3276   }
3277 #ifdef ASSERT
3278   Unique_Node_List wq;
3279   wq.push((Node*)this);
3280   uint found = 0;
3281   for (uint i = 0; i < wq.size(); i++) {
3282     Node* n = wq.at(i);
3283     if (n->is_Region()) {
3284       for (uint j = 1; j < n->req(); j++) {
3285         Node* in = n->in(j);
3286         if (in != NULL && !in->is_top()) {
3287           wq.push(in);
3288         }
3289       }
3290     } else {
3291       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3292         assert(n == leading, "consistency check failed");
3293         found++;
3294       } else {
3295         Node* in = n->in(0);
3296         if (in != NULL && !in->is_top()) {
3297           wq.push(in);
3298         }
3299       }
3300     }
3301   }
3302   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3303 #endif
3304   if (leading == NULL) {
3305     return NULL;
3306   }
3307   MemBarNode* mb = leading->as_MemBar();
3308   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3309          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3310   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3311   return mb;
3312 }
3313 
3314 //===========================InitializeNode====================================
3315 // SUMMARY:
3316 // This node acts as a memory barrier on raw memory, after some raw stores.
3317 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3318 // The Initialize can 'capture' suitably constrained stores as raw inits.
3319 // It can coalesce related raw stores into larger units (called 'tiles').
3320 // It can avoid zeroing new storage for memory units which have raw inits.
3321 // At macro-expansion, it is marked 'complete', and does not optimize further.
3322 //
3323 // EXAMPLE:
3324 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3325 //   ctl = incoming control; mem* = incoming memory
3326 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3327 // First allocate uninitialized memory and fill in the header:
3328 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3329 //   ctl := alloc.Control; mem* := alloc.Memory*
3330 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3331 // Then initialize to zero the non-header parts of the raw memory block:
3332 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3333 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3334 // After the initialize node executes, the object is ready for service:
3335 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3336 // Suppose its body is immediately initialized as {1,2}:
3337 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3338 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3339 //   mem.SLICE(#short[*]) := store2
3340 //
3341 // DETAILS:
3342 // An InitializeNode collects and isolates object initialization after
3343 // an AllocateNode and before the next possible safepoint.  As a
3344 // memory barrier (MemBarNode), it keeps critical stores from drifting
3345 // down past any safepoint or any publication of the allocation.
3346 // Before this barrier, a newly-allocated object may have uninitialized bits.
3347 // After this barrier, it may be treated as a real oop, and GC is allowed.
3348 //
3349 // The semantics of the InitializeNode include an implicit zeroing of
3350 // the new object from object header to the end of the object.
3351 // (The object header and end are determined by the AllocateNode.)
3352 //
3353 // Certain stores may be added as direct inputs to the InitializeNode.
3354 // These stores must update raw memory, and they must be to addresses
3355 // derived from the raw address produced by AllocateNode, and with
3356 // a constant offset.  They must be ordered by increasing offset.
3357 // The first one is at in(RawStores), the last at in(req()-1).
3358 // Unlike most memory operations, they are not linked in a chain,
3359 // but are displayed in parallel as users of the rawmem output of
3360 // the allocation.
3361 //
3362 // (See comments in InitializeNode::capture_store, which continue
3363 // the example given above.)
3364 //
3365 // When the associated Allocate is macro-expanded, the InitializeNode
3366 // may be rewritten to optimize collected stores.  A ClearArrayNode
3367 // may also be created at that point to represent any required zeroing.
3368 // The InitializeNode is then marked 'complete', prohibiting further
3369 // capturing of nearby memory operations.
3370 //
3371 // During macro-expansion, all captured initializations which store
3372 // constant values of 32 bits or smaller are coalesced (if advantageous)
3373 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3374 // initialized in fewer memory operations.  Memory words which are
3375 // covered by neither tiles nor non-constant stores are pre-zeroed
3376 // by explicit stores of zero.  (The code shape happens to do all
3377 // zeroing first, then all other stores, with both sequences occurring
3378 // in order of ascending offsets.)
3379 //
3380 // Alternatively, code may be inserted between an AllocateNode and its
3381 // InitializeNode, to perform arbitrary initialization of the new object.
3382 // E.g., the object copying intrinsics insert complex data transfers here.
3383 // The initialization must then be marked as 'complete' disable the
3384 // built-in zeroing semantics and the collection of initializing stores.
3385 //
3386 // While an InitializeNode is incomplete, reads from the memory state
3387 // produced by it are optimizable if they match the control edge and
3388 // new oop address associated with the allocation/initialization.
3389 // They return a stored value (if the offset matches) or else zero.
3390 // A write to the memory state, if it matches control and address,
3391 // and if it is to a constant offset, may be 'captured' by the
3392 // InitializeNode.  It is cloned as a raw memory operation and rewired
3393 // inside the initialization, to the raw oop produced by the allocation.
3394 // Operations on addresses which are provably distinct (e.g., to
3395 // other AllocateNodes) are allowed to bypass the initialization.
3396 //
3397 // The effect of all this is to consolidate object initialization
3398 // (both arrays and non-arrays, both piecewise and bulk) into a
3399 // single location, where it can be optimized as a unit.
3400 //
3401 // Only stores with an offset less than TrackedInitializationLimit words
3402 // will be considered for capture by an InitializeNode.  This puts a
3403 // reasonable limit on the complexity of optimized initializations.
3404 
3405 //---------------------------InitializeNode------------------------------------
3406 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3407   : MemBarNode(C, adr_type, rawoop),
3408     _is_complete(Incomplete), _does_not_escape(false)
3409 {
3410   init_class_id(Class_Initialize);
3411 
3412   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3413   assert(in(RawAddress) == rawoop, "proper init");
3414   // Note:  allocation() can be NULL, for secondary initialization barriers
3415 }
3416 
3417 // Since this node is not matched, it will be processed by the
3418 // register allocator.  Declare that there are no constraints
3419 // on the allocation of the RawAddress edge.
3420 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3421   // This edge should be set to top, by the set_complete.  But be conservative.
3422   if (idx == InitializeNode::RawAddress)
3423     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3424   return RegMask::Empty;
3425 }
3426 
3427 Node* InitializeNode::memory(uint alias_idx) {
3428   Node* mem = in(Memory);
3429   if (mem->is_MergeMem()) {
3430     return mem->as_MergeMem()->memory_at(alias_idx);
3431   } else {
3432     // incoming raw memory is not split
3433     return mem;
3434   }
3435 }
3436 
3437 bool InitializeNode::is_non_zero() {
3438   if (is_complete())  return false;
3439   remove_extra_zeroes();
3440   return (req() > RawStores);
3441 }
3442 
3443 void InitializeNode::set_complete(PhaseGVN* phase) {
3444   assert(!is_complete(), "caller responsibility");
3445   _is_complete = Complete;
3446 
3447   // After this node is complete, it contains a bunch of
3448   // raw-memory initializations.  There is no need for
3449   // it to have anything to do with non-raw memory effects.
3450   // Therefore, tell all non-raw users to re-optimize themselves,
3451   // after skipping the memory effects of this initialization.
3452   PhaseIterGVN* igvn = phase->is_IterGVN();
3453   if (igvn)  igvn->add_users_to_worklist(this);
3454 }
3455 
3456 // convenience function
3457 // return false if the init contains any stores already
3458 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3459   InitializeNode* init = initialization();
3460   if (init == NULL || init->is_complete())  return false;
3461   init->remove_extra_zeroes();
3462   // for now, if this allocation has already collected any inits, bail:
3463   if (init->is_non_zero())  return false;
3464   init->set_complete(phase);
3465   return true;
3466 }
3467 
3468 void InitializeNode::remove_extra_zeroes() {
3469   if (req() == RawStores)  return;
3470   Node* zmem = zero_memory();
3471   uint fill = RawStores;
3472   for (uint i = fill; i < req(); i++) {
3473     Node* n = in(i);
3474     if (n->is_top() || n == zmem)  continue;  // skip
3475     if (fill < i)  set_req(fill, n);          // compact
3476     ++fill;
3477   }
3478   // delete any empty spaces created:
3479   while (fill < req()) {
3480     del_req(fill);
3481   }
3482 }
3483 
3484 // Helper for remembering which stores go with which offsets.
3485 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3486   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3487   intptr_t offset = -1;
3488   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3489                                                phase, offset);
3490   if (base == NULL)     return -1;  // something is dead,
3491   if (offset < 0)       return -1;  //        dead, dead
3492   return offset;
3493 }
3494 
3495 // Helper for proving that an initialization expression is
3496 // "simple enough" to be folded into an object initialization.
3497 // Attempts to prove that a store's initial value 'n' can be captured
3498 // within the initialization without creating a vicious cycle, such as:
3499 //     { Foo p = new Foo(); p.next = p; }
3500 // True for constants and parameters and small combinations thereof.
3501 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3502   if (n == NULL)      return true;   // (can this really happen?)
3503   if (n->is_Proj())   n = n->in(0);
3504   if (n == this)      return false;  // found a cycle
3505   if (n->is_Con())    return true;
3506   if (n->is_Start())  return true;   // params, etc., are OK
3507   if (n->is_Root())   return true;   // even better
3508 
3509   Node* ctl = n->in(0);
3510   if (ctl != NULL && !ctl->is_top()) {
3511     if (ctl->is_Proj())  ctl = ctl->in(0);
3512     if (ctl == this)  return false;
3513 
3514     // If we already know that the enclosing memory op is pinned right after
3515     // the init, then any control flow that the store has picked up
3516     // must have preceded the init, or else be equal to the init.
3517     // Even after loop optimizations (which might change control edges)
3518     // a store is never pinned *before* the availability of its inputs.
3519     if (!MemNode::all_controls_dominate(n, this))
3520       return false;                  // failed to prove a good control
3521   }
3522 
3523   // Check data edges for possible dependencies on 'this'.
3524   if ((count += 1) > 20)  return false;  // complexity limit
3525   for (uint i = 1; i < n->req(); i++) {
3526     Node* m = n->in(i);
3527     if (m == NULL || m == n || m->is_top())  continue;
3528     uint first_i = n->find_edge(m);
3529     if (i != first_i)  continue;  // process duplicate edge just once
3530     if (!detect_init_independence(m, count)) {
3531       return false;
3532     }
3533   }
3534 
3535   return true;
3536 }
3537 
3538 // Here are all the checks a Store must pass before it can be moved into
3539 // an initialization.  Returns zero if a check fails.
3540 // On success, returns the (constant) offset to which the store applies,
3541 // within the initialized memory.
3542 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3543   const int FAIL = 0;
3544   if (st->is_unaligned_access() || ((get_store_offset(st, phase) % BytesPerInt) != 0)) {
3545     return FAIL;
3546   }
3547   if (st->req() != MemNode::ValueIn + 1)
3548     return FAIL;                // an inscrutable StoreNode (card mark?)
3549   Node* ctl = st->in(MemNode::Control);
3550   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3551     return FAIL;                // must be unconditional after the initialization
3552   Node* mem = st->in(MemNode::Memory);
3553   if (!(mem->is_Proj() && mem->in(0) == this))
3554     return FAIL;                // must not be preceded by other stores
3555   Node* adr = st->in(MemNode::Address);
3556   intptr_t offset;
3557   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3558   if (alloc == NULL)
3559     return FAIL;                // inscrutable address
3560   if (alloc != allocation())
3561     return FAIL;                // wrong allocation!  (store needs to float up)
3562   Node* val = st->in(MemNode::ValueIn);
3563   int complexity_count = 0;
3564   if (!detect_init_independence(val, complexity_count))
3565     return FAIL;                // stored value must be 'simple enough'
3566 
3567   // The Store can be captured only if nothing after the allocation
3568   // and before the Store is using the memory location that the store
3569   // overwrites.
3570   bool failed = false;
3571   // If is_complete_with_arraycopy() is true the shape of the graph is
3572   // well defined and is safe so no need for extra checks.
3573   if (!is_complete_with_arraycopy()) {
3574     // We are going to look at each use of the memory state following
3575     // the allocation to make sure nothing reads the memory that the
3576     // Store writes.
3577     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3578     int alias_idx = phase->C->get_alias_index(t_adr);
3579     ResourceMark rm;
3580     Unique_Node_List mems;
3581     mems.push(mem);
3582     Node* unique_merge = NULL;
3583     for (uint next = 0; next < mems.size(); ++next) {
3584       Node *m  = mems.at(next);
3585       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3586         Node *n = m->fast_out(j);
3587         if (n->outcnt() == 0) {
3588           continue;
3589         }
3590         if (n == st) {
3591           continue;
3592         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3593           // If the control of this use is different from the control
3594           // of the Store which is right after the InitializeNode then
3595           // this node cannot be between the InitializeNode and the
3596           // Store.
3597           continue;
3598         } else if (n->is_MergeMem()) {
3599           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3600             // We can hit a MergeMemNode (that will likely go away
3601             // later) that is a direct use of the memory state
3602             // following the InitializeNode on the same slice as the
3603             // store node that we'd like to capture. We need to check
3604             // the uses of the MergeMemNode.
3605             mems.push(n);
3606           }
3607         } else if (n->is_Mem()) {
3608           Node* other_adr = n->in(MemNode::Address);
3609           if (other_adr == adr) {
3610             failed = true;
3611             break;
3612           } else {
3613             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3614             if (other_t_adr != NULL) {
3615               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3616               if (other_alias_idx == alias_idx) {
3617                 // A load from the same memory slice as the store right
3618                 // after the InitializeNode. We check the control of the
3619                 // object/array that is loaded from. If it's the same as
3620                 // the store control then we cannot capture the store.
3621                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3622                 Node* base = other_adr;
3623                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3624                 base = base->in(AddPNode::Base);
3625                 if (base != NULL) {
3626                   base = base->uncast();
3627                   if (base->is_Proj() && base->in(0) == alloc) {
3628                     failed = true;
3629                     break;
3630                   }
3631                 }
3632               }
3633             }
3634           }
3635         } else {
3636           failed = true;
3637           break;
3638         }
3639       }
3640     }
3641   }
3642   if (failed) {
3643     if (!can_reshape) {
3644       // We decided we couldn't capture the store during parsing. We
3645       // should try again during the next IGVN once the graph is
3646       // cleaner.
3647       phase->C->record_for_igvn(st);
3648     }
3649     return FAIL;
3650   }
3651 
3652   return offset;                // success
3653 }
3654 
3655 // Find the captured store in(i) which corresponds to the range
3656 // [start..start+size) in the initialized object.
3657 // If there is one, return its index i.  If there isn't, return the
3658 // negative of the index where it should be inserted.
3659 // Return 0 if the queried range overlaps an initialization boundary
3660 // or if dead code is encountered.
3661 // If size_in_bytes is zero, do not bother with overlap checks.
3662 int InitializeNode::captured_store_insertion_point(intptr_t start,
3663                                                    int size_in_bytes,
3664                                                    PhaseTransform* phase) {
3665   const int FAIL = 0, MAX_STORE = BytesPerLong;
3666 
3667   if (is_complete())
3668     return FAIL;                // arraycopy got here first; punt
3669 
3670   assert(allocation() != NULL, "must be present");
3671 
3672   // no negatives, no header fields:
3673   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3674 
3675   // after a certain size, we bail out on tracking all the stores:
3676   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3677   if (start >= ti_limit)  return FAIL;
3678 
3679   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3680     if (i >= limit)  return -(int)i; // not found; here is where to put it
3681 
3682     Node*    st     = in(i);
3683     intptr_t st_off = get_store_offset(st, phase);
3684     if (st_off < 0) {
3685       if (st != zero_memory()) {
3686         return FAIL;            // bail out if there is dead garbage
3687       }
3688     } else if (st_off > start) {
3689       // ...we are done, since stores are ordered
3690       if (st_off < start + size_in_bytes) {
3691         return FAIL;            // the next store overlaps
3692       }
3693       return -(int)i;           // not found; here is where to put it
3694     } else if (st_off < start) {
3695       if (size_in_bytes != 0 &&
3696           start < st_off + MAX_STORE &&
3697           start < st_off + st->as_Store()->memory_size()) {
3698         return FAIL;            // the previous store overlaps
3699       }
3700     } else {
3701       if (size_in_bytes != 0 &&
3702           st->as_Store()->memory_size() != size_in_bytes) {
3703         return FAIL;            // mismatched store size
3704       }
3705       return i;
3706     }
3707 
3708     ++i;
3709   }
3710 }
3711 
3712 // Look for a captured store which initializes at the offset 'start'
3713 // with the given size.  If there is no such store, and no other
3714 // initialization interferes, then return zero_memory (the memory
3715 // projection of the AllocateNode).
3716 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3717                                           PhaseTransform* phase) {
3718   assert(stores_are_sane(phase), "");
3719   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3720   if (i == 0) {
3721     return NULL;                // something is dead
3722   } else if (i < 0) {
3723     return zero_memory();       // just primordial zero bits here
3724   } else {
3725     Node* st = in(i);           // here is the store at this position
3726     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3727     return st;
3728   }
3729 }
3730 
3731 // Create, as a raw pointer, an address within my new object at 'offset'.
3732 Node* InitializeNode::make_raw_address(intptr_t offset,
3733                                        PhaseTransform* phase) {
3734   Node* addr = in(RawAddress);
3735   if (offset != 0) {
3736     Compile* C = phase->C;
3737     addr = phase->transform( new AddPNode(C->top(), addr,
3738                                                  phase->MakeConX(offset)) );
3739   }
3740   return addr;
3741 }
3742 
3743 // Clone the given store, converting it into a raw store
3744 // initializing a field or element of my new object.
3745 // Caller is responsible for retiring the original store,
3746 // with subsume_node or the like.
3747 //
3748 // From the example above InitializeNode::InitializeNode,
3749 // here are the old stores to be captured:
3750 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3751 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3752 //
3753 // Here is the changed code; note the extra edges on init:
3754 //   alloc = (Allocate ...)
3755 //   rawoop = alloc.RawAddress
3756 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3757 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3758 //   init = (Initialize alloc.Control alloc.Memory rawoop
3759 //                      rawstore1 rawstore2)
3760 //
3761 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3762                                     PhaseTransform* phase, bool can_reshape) {
3763   assert(stores_are_sane(phase), "");
3764 
3765   if (start < 0)  return NULL;
3766   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3767 
3768   Compile* C = phase->C;
3769   int size_in_bytes = st->memory_size();
3770   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3771   if (i == 0)  return NULL;     // bail out
3772   Node* prev_mem = NULL;        // raw memory for the captured store
3773   if (i > 0) {
3774     prev_mem = in(i);           // there is a pre-existing store under this one
3775     set_req(i, C->top());       // temporarily disconnect it
3776     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3777   } else {
3778     i = -i;                     // no pre-existing store
3779     prev_mem = zero_memory();   // a slice of the newly allocated object
3780     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3781       set_req(--i, C->top());   // reuse this edge; it has been folded away
3782     else
3783       ins_req(i, C->top());     // build a new edge
3784   }
3785   Node* new_st = st->clone();
3786   new_st->set_req(MemNode::Control, in(Control));
3787   new_st->set_req(MemNode::Memory,  prev_mem);
3788   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3789   new_st = phase->transform(new_st);
3790 
3791   // At this point, new_st might have swallowed a pre-existing store
3792   // at the same offset, or perhaps new_st might have disappeared,
3793   // if it redundantly stored the same value (or zero to fresh memory).
3794 
3795   // In any case, wire it in:
3796   phase->igvn_rehash_node_delayed(this);
3797   set_req(i, new_st);
3798 
3799   // The caller may now kill the old guy.
3800   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3801   assert(check_st == new_st || check_st == NULL, "must be findable");
3802   assert(!is_complete(), "");
3803   return new_st;
3804 }
3805 
3806 static bool store_constant(jlong* tiles, int num_tiles,
3807                            intptr_t st_off, int st_size,
3808                            jlong con) {
3809   if ((st_off & (st_size-1)) != 0)
3810     return false;               // strange store offset (assume size==2**N)
3811   address addr = (address)tiles + st_off;
3812   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3813   switch (st_size) {
3814   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3815   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3816   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3817   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3818   default: return false;        // strange store size (detect size!=2**N here)
3819   }
3820   return true;                  // return success to caller
3821 }
3822 
3823 // Coalesce subword constants into int constants and possibly
3824 // into long constants.  The goal, if the CPU permits,
3825 // is to initialize the object with a small number of 64-bit tiles.
3826 // Also, convert floating-point constants to bit patterns.
3827 // Non-constants are not relevant to this pass.
3828 //
3829 // In terms of the running example on InitializeNode::InitializeNode
3830 // and InitializeNode::capture_store, here is the transformation
3831 // of rawstore1 and rawstore2 into rawstore12:
3832 //   alloc = (Allocate ...)
3833 //   rawoop = alloc.RawAddress
3834 //   tile12 = 0x00010002
3835 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3836 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3837 //
3838 void
3839 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3840                                         Node* size_in_bytes,
3841                                         PhaseGVN* phase) {
3842   Compile* C = phase->C;
3843 
3844   assert(stores_are_sane(phase), "");
3845   // Note:  After this pass, they are not completely sane,
3846   // since there may be some overlaps.
3847 
3848   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3849 
3850   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3851   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3852   size_limit = MIN2(size_limit, ti_limit);
3853   size_limit = align_up(size_limit, BytesPerLong);
3854   int num_tiles = size_limit / BytesPerLong;
3855 
3856   // allocate space for the tile map:
3857   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3858   jlong  tiles_buf[small_len];
3859   Node*  nodes_buf[small_len];
3860   jlong  inits_buf[small_len];
3861   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3862                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3863   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3864                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3865   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3866                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3867   // tiles: exact bitwise model of all primitive constants
3868   // nodes: last constant-storing node subsumed into the tiles model
3869   // inits: which bytes (in each tile) are touched by any initializations
3870 
3871   //// Pass A: Fill in the tile model with any relevant stores.
3872 
3873   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3874   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3875   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3876   Node* zmem = zero_memory(); // initially zero memory state
3877   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3878     Node* st = in(i);
3879     intptr_t st_off = get_store_offset(st, phase);
3880 
3881     // Figure out the store's offset and constant value:
3882     if (st_off < header_size)             continue; //skip (ignore header)
3883     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3884     int st_size = st->as_Store()->memory_size();
3885     if (st_off + st_size > size_limit)    break;
3886 
3887     // Record which bytes are touched, whether by constant or not.
3888     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3889       continue;                 // skip (strange store size)
3890 
3891     const Type* val = phase->type(st->in(MemNode::ValueIn));
3892     if (!val->singleton())                continue; //skip (non-con store)
3893     BasicType type = val->basic_type();
3894 
3895     jlong con = 0;
3896     switch (type) {
3897     case T_INT:    con = val->is_int()->get_con();  break;
3898     case T_LONG:   con = val->is_long()->get_con(); break;
3899     case T_FLOAT:  con = jint_cast(val->getf());    break;
3900     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3901     default:                              continue; //skip (odd store type)
3902     }
3903 
3904     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3905         st->Opcode() == Op_StoreL) {
3906       continue;                 // This StoreL is already optimal.
3907     }
3908 
3909     // Store down the constant.
3910     store_constant(tiles, num_tiles, st_off, st_size, con);
3911 
3912     intptr_t j = st_off >> LogBytesPerLong;
3913 
3914     if (type == T_INT && st_size == BytesPerInt
3915         && (st_off & BytesPerInt) == BytesPerInt) {
3916       jlong lcon = tiles[j];
3917       if (!Matcher::isSimpleConstant64(lcon) &&
3918           st->Opcode() == Op_StoreI) {
3919         // This StoreI is already optimal by itself.
3920         jint* intcon = (jint*) &tiles[j];
3921         intcon[1] = 0;  // undo the store_constant()
3922 
3923         // If the previous store is also optimal by itself, back up and
3924         // undo the action of the previous loop iteration... if we can.
3925         // But if we can't, just let the previous half take care of itself.
3926         st = nodes[j];
3927         st_off -= BytesPerInt;
3928         con = intcon[0];
3929         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3930           assert(st_off >= header_size, "still ignoring header");
3931           assert(get_store_offset(st, phase) == st_off, "must be");
3932           assert(in(i-1) == zmem, "must be");
3933           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3934           assert(con == tcon->is_int()->get_con(), "must be");
3935           // Undo the effects of the previous loop trip, which swallowed st:
3936           intcon[0] = 0;        // undo store_constant()
3937           set_req(i-1, st);     // undo set_req(i, zmem)
3938           nodes[j] = NULL;      // undo nodes[j] = st
3939           --old_subword;        // undo ++old_subword
3940         }
3941         continue;               // This StoreI is already optimal.
3942       }
3943     }
3944 
3945     // This store is not needed.
3946     set_req(i, zmem);
3947     nodes[j] = st;              // record for the moment
3948     if (st_size < BytesPerLong) // something has changed
3949           ++old_subword;        // includes int/float, but who's counting...
3950     else  ++old_long;
3951   }
3952 
3953   if ((old_subword + old_long) == 0)
3954     return;                     // nothing more to do
3955 
3956   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3957   // Be sure to insert them before overlapping non-constant stores.
3958   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3959   for (int j = 0; j < num_tiles; j++) {
3960     jlong con  = tiles[j];
3961     jlong init = inits[j];
3962     if (con == 0)  continue;
3963     jint con0,  con1;           // split the constant, address-wise
3964     jint init0, init1;          // split the init map, address-wise
3965     { union { jlong con; jint intcon[2]; } u;
3966       u.con = con;
3967       con0  = u.intcon[0];
3968       con1  = u.intcon[1];
3969       u.con = init;
3970       init0 = u.intcon[0];
3971       init1 = u.intcon[1];
3972     }
3973 
3974     Node* old = nodes[j];
3975     assert(old != NULL, "need the prior store");
3976     intptr_t offset = (j * BytesPerLong);
3977 
3978     bool split = !Matcher::isSimpleConstant64(con);
3979 
3980     if (offset < header_size) {
3981       assert(offset + BytesPerInt >= header_size, "second int counts");
3982       assert(*(jint*)&tiles[j] == 0, "junk in header");
3983       split = true;             // only the second word counts
3984       // Example:  int a[] = { 42 ... }
3985     } else if (con0 == 0 && init0 == -1) {
3986       split = true;             // first word is covered by full inits
3987       // Example:  int a[] = { ... foo(), 42 ... }
3988     } else if (con1 == 0 && init1 == -1) {
3989       split = true;             // second word is covered by full inits
3990       // Example:  int a[] = { ... 42, foo() ... }
3991     }
3992 
3993     // Here's a case where init0 is neither 0 nor -1:
3994     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3995     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3996     // In this case the tile is not split; it is (jlong)42.
3997     // The big tile is stored down, and then the foo() value is inserted.
3998     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3999 
4000     Node* ctl = old->in(MemNode::Control);
4001     Node* adr = make_raw_address(offset, phase);
4002     const TypePtr* atp = TypeRawPtr::BOTTOM;
4003 
4004     // One or two coalesced stores to plop down.
4005     Node*    st[2];
4006     intptr_t off[2];
4007     int  nst = 0;
4008     if (!split) {
4009       ++new_long;
4010       off[nst] = offset;
4011       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4012                                   phase->longcon(con), T_LONG, MemNode::unordered);
4013     } else {
4014       // Omit either if it is a zero.
4015       if (con0 != 0) {
4016         ++new_int;
4017         off[nst]  = offset;
4018         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4019                                     phase->intcon(con0), T_INT, MemNode::unordered);
4020       }
4021       if (con1 != 0) {
4022         ++new_int;
4023         offset += BytesPerInt;
4024         adr = make_raw_address(offset, phase);
4025         off[nst]  = offset;
4026         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4027                                     phase->intcon(con1), T_INT, MemNode::unordered);
4028       }
4029     }
4030 
4031     // Insert second store first, then the first before the second.
4032     // Insert each one just before any overlapping non-constant stores.
4033     while (nst > 0) {
4034       Node* st1 = st[--nst];
4035       C->copy_node_notes_to(st1, old);
4036       st1 = phase->transform(st1);
4037       offset = off[nst];
4038       assert(offset >= header_size, "do not smash header");
4039       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4040       guarantee(ins_idx != 0, "must re-insert constant store");
4041       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4042       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4043         set_req(--ins_idx, st1);
4044       else
4045         ins_req(ins_idx, st1);
4046     }
4047   }
4048 
4049   if (PrintCompilation && WizardMode)
4050     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4051                   old_subword, old_long, new_int, new_long);
4052   if (C->log() != NULL)
4053     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4054                    old_subword, old_long, new_int, new_long);
4055 
4056   // Clean up any remaining occurrences of zmem:
4057   remove_extra_zeroes();
4058 }
4059 
4060 // Explore forward from in(start) to find the first fully initialized
4061 // word, and return its offset.  Skip groups of subword stores which
4062 // together initialize full words.  If in(start) is itself part of a
4063 // fully initialized word, return the offset of in(start).  If there
4064 // are no following full-word stores, or if something is fishy, return
4065 // a negative value.
4066 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4067   int       int_map = 0;
4068   intptr_t  int_map_off = 0;
4069   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4070 
4071   for (uint i = start, limit = req(); i < limit; i++) {
4072     Node* st = in(i);
4073 
4074     intptr_t st_off = get_store_offset(st, phase);
4075     if (st_off < 0)  break;  // return conservative answer
4076 
4077     int st_size = st->as_Store()->memory_size();
4078     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4079       return st_off;            // we found a complete word init
4080     }
4081 
4082     // update the map:
4083 
4084     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4085     if (this_int_off != int_map_off) {
4086       // reset the map:
4087       int_map = 0;
4088       int_map_off = this_int_off;
4089     }
4090 
4091     int subword_off = st_off - this_int_off;
4092     int_map |= right_n_bits(st_size) << subword_off;
4093     if ((int_map & FULL_MAP) == FULL_MAP) {
4094       return this_int_off;      // we found a complete word init
4095     }
4096 
4097     // Did this store hit or cross the word boundary?
4098     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4099     if (next_int_off == this_int_off + BytesPerInt) {
4100       // We passed the current int, without fully initializing it.
4101       int_map_off = next_int_off;
4102       int_map >>= BytesPerInt;
4103     } else if (next_int_off > this_int_off + BytesPerInt) {
4104       // We passed the current and next int.
4105       return this_int_off + BytesPerInt;
4106     }
4107   }
4108 
4109   return -1;
4110 }
4111 
4112 
4113 // Called when the associated AllocateNode is expanded into CFG.
4114 // At this point, we may perform additional optimizations.
4115 // Linearize the stores by ascending offset, to make memory
4116 // activity as coherent as possible.
4117 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4118                                       intptr_t header_size,
4119                                       Node* size_in_bytes,
4120                                       PhaseGVN* phase) {
4121   assert(!is_complete(), "not already complete");
4122   assert(stores_are_sane(phase), "");
4123   assert(allocation() != NULL, "must be present");
4124 
4125   remove_extra_zeroes();
4126 
4127   if (ReduceFieldZeroing || ReduceBulkZeroing)
4128     // reduce instruction count for common initialization patterns
4129     coalesce_subword_stores(header_size, size_in_bytes, phase);
4130 
4131   Node* zmem = zero_memory();   // initially zero memory state
4132   Node* inits = zmem;           // accumulating a linearized chain of inits
4133   #ifdef ASSERT
4134   intptr_t first_offset = allocation()->minimum_header_size();
4135   intptr_t last_init_off = first_offset;  // previous init offset
4136   intptr_t last_init_end = first_offset;  // previous init offset+size
4137   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4138   #endif
4139   intptr_t zeroes_done = header_size;
4140 
4141   bool do_zeroing = true;       // we might give up if inits are very sparse
4142   int  big_init_gaps = 0;       // how many large gaps have we seen?
4143 
4144   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4145   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4146 
4147   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4148     Node* st = in(i);
4149     intptr_t st_off = get_store_offset(st, phase);
4150     if (st_off < 0)
4151       break;                    // unknown junk in the inits
4152     if (st->in(MemNode::Memory) != zmem)
4153       break;                    // complicated store chains somehow in list
4154 
4155     int st_size = st->as_Store()->memory_size();
4156     intptr_t next_init_off = st_off + st_size;
4157 
4158     if (do_zeroing && zeroes_done < next_init_off) {
4159       // See if this store needs a zero before it or under it.
4160       intptr_t zeroes_needed = st_off;
4161 
4162       if (st_size < BytesPerInt) {
4163         // Look for subword stores which only partially initialize words.
4164         // If we find some, we must lay down some word-level zeroes first,
4165         // underneath the subword stores.
4166         //
4167         // Examples:
4168         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4169         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4170         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4171         //
4172         // Note:  coalesce_subword_stores may have already done this,
4173         // if it was prompted by constant non-zero subword initializers.
4174         // But this case can still arise with non-constant stores.
4175 
4176         intptr_t next_full_store = find_next_fullword_store(i, phase);
4177 
4178         // In the examples above:
4179         //   in(i)          p   q   r   s     x   y     z
4180         //   st_off        12  13  14  15    12  13    14
4181         //   st_size        1   1   1   1     1   1     1
4182         //   next_full_s.  12  16  16  16    16  16    16
4183         //   z's_done      12  16  16  16    12  16    12
4184         //   z's_needed    12  16  16  16    16  16    16
4185         //   zsize          0   0   0   0     4   0     4
4186         if (next_full_store < 0) {
4187           // Conservative tack:  Zero to end of current word.
4188           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4189         } else {
4190           // Zero to beginning of next fully initialized word.
4191           // Or, don't zero at all, if we are already in that word.
4192           assert(next_full_store >= zeroes_needed, "must go forward");
4193           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4194           zeroes_needed = next_full_store;
4195         }
4196       }
4197 
4198       if (zeroes_needed > zeroes_done) {
4199         intptr_t zsize = zeroes_needed - zeroes_done;
4200         // Do some incremental zeroing on rawmem, in parallel with inits.
4201         zeroes_done = align_down(zeroes_done, BytesPerInt);
4202         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4203                                               zeroes_done, zeroes_needed,
4204                                               phase);
4205         zeroes_done = zeroes_needed;
4206         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4207           do_zeroing = false;   // leave the hole, next time
4208       }
4209     }
4210 
4211     // Collect the store and move on:
4212     st->set_req(MemNode::Memory, inits);
4213     inits = st;                 // put it on the linearized chain
4214     set_req(i, zmem);           // unhook from previous position
4215 
4216     if (zeroes_done == st_off)
4217       zeroes_done = next_init_off;
4218 
4219     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4220 
4221     #ifdef ASSERT
4222     // Various order invariants.  Weaker than stores_are_sane because
4223     // a large constant tile can be filled in by smaller non-constant stores.
4224     assert(st_off >= last_init_off, "inits do not reverse");
4225     last_init_off = st_off;
4226     const Type* val = NULL;
4227     if (st_size >= BytesPerInt &&
4228         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4229         (int)val->basic_type() < (int)T_OBJECT) {
4230       assert(st_off >= last_tile_end, "tiles do not overlap");
4231       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4232       last_tile_end = MAX2(last_tile_end, next_init_off);
4233     } else {
4234       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4235       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4236       assert(st_off      >= last_init_end, "inits do not overlap");
4237       last_init_end = next_init_off;  // it's a non-tile
4238     }
4239     #endif //ASSERT
4240   }
4241 
4242   remove_extra_zeroes();        // clear out all the zmems left over
4243   add_req(inits);
4244 
4245   if (!(UseTLAB && ZeroTLAB)) {
4246     // If anything remains to be zeroed, zero it all now.
4247     zeroes_done = align_down(zeroes_done, BytesPerInt);
4248     // if it is the last unused 4 bytes of an instance, forget about it
4249     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4250     if (zeroes_done + BytesPerLong >= size_limit) {
4251       AllocateNode* alloc = allocation();
4252       assert(alloc != NULL, "must be present");
4253       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4254         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4255         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4256         if (zeroes_done == k->layout_helper())
4257           zeroes_done = size_limit;
4258       }
4259     }
4260     if (zeroes_done < size_limit) {
4261       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4262                                             zeroes_done, size_in_bytes, phase);
4263     }
4264   }
4265 
4266   set_complete(phase);
4267   return rawmem;
4268 }
4269 
4270 
4271 #ifdef ASSERT
4272 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4273   if (is_complete())
4274     return true;                // stores could be anything at this point
4275   assert(allocation() != NULL, "must be present");
4276   intptr_t last_off = allocation()->minimum_header_size();
4277   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4278     Node* st = in(i);
4279     intptr_t st_off = get_store_offset(st, phase);
4280     if (st_off < 0)  continue;  // ignore dead garbage
4281     if (last_off > st_off) {
4282       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4283       this->dump(2);
4284       assert(false, "ascending store offsets");
4285       return false;
4286     }
4287     last_off = st_off + st->as_Store()->memory_size();
4288   }
4289   return true;
4290 }
4291 #endif //ASSERT
4292 
4293 
4294 
4295 
4296 //============================MergeMemNode=====================================
4297 //
4298 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4299 // contributing store or call operations.  Each contributor provides the memory
4300 // state for a particular "alias type" (see Compile::alias_type).  For example,
4301 // if a MergeMem has an input X for alias category #6, then any memory reference
4302 // to alias category #6 may use X as its memory state input, as an exact equivalent
4303 // to using the MergeMem as a whole.
4304 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4305 //
4306 // (Here, the <N> notation gives the index of the relevant adr_type.)
4307 //
4308 // In one special case (and more cases in the future), alias categories overlap.
4309 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4310 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4311 // it is exactly equivalent to that state W:
4312 //   MergeMem(<Bot>: W) <==> W
4313 //
4314 // Usually, the merge has more than one input.  In that case, where inputs
4315 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4316 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4317 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4318 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4319 //
4320 // A merge can take a "wide" memory state as one of its narrow inputs.
4321 // This simply means that the merge observes out only the relevant parts of
4322 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4323 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4324 //
4325 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4326 // and that memory slices "leak through":
4327 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4328 //
4329 // But, in such a cascade, repeated memory slices can "block the leak":
4330 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4331 //
4332 // In the last example, Y is not part of the combined memory state of the
4333 // outermost MergeMem.  The system must, of course, prevent unschedulable
4334 // memory states from arising, so you can be sure that the state Y is somehow
4335 // a precursor to state Y'.
4336 //
4337 //
4338 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4339 // of each MergeMemNode array are exactly the numerical alias indexes, including
4340 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4341 // Compile::alias_type (and kin) produce and manage these indexes.
4342 //
4343 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4344 // (Note that this provides quick access to the top node inside MergeMem methods,
4345 // without the need to reach out via TLS to Compile::current.)
4346 //
4347 // As a consequence of what was just described, a MergeMem that represents a full
4348 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4349 // containing all alias categories.
4350 //
4351 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4352 //
4353 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4354 // a memory state for the alias type <N>, or else the top node, meaning that
4355 // there is no particular input for that alias type.  Note that the length of
4356 // a MergeMem is variable, and may be extended at any time to accommodate new
4357 // memory states at larger alias indexes.  When merges grow, they are of course
4358 // filled with "top" in the unused in() positions.
4359 //
4360 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4361 // (Top was chosen because it works smoothly with passes like GCM.)
4362 //
4363 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4364 // the type of random VM bits like TLS references.)  Since it is always the
4365 // first non-Bot memory slice, some low-level loops use it to initialize an
4366 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4367 //
4368 //
4369 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4370 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4371 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4372 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4373 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4374 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4375 //
4376 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4377 // really that different from the other memory inputs.  An abbreviation called
4378 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4379 //
4380 //
4381 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4382 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4383 // that "emerges though" the base memory will be marked as excluding the alias types
4384 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4385 //
4386 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4387 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4388 //
4389 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4390 // (It is currently unimplemented.)  As you can see, the resulting merge is
4391 // actually a disjoint union of memory states, rather than an overlay.
4392 //
4393 
4394 //------------------------------MergeMemNode-----------------------------------
4395 Node* MergeMemNode::make_empty_memory() {
4396   Node* empty_memory = (Node*) Compile::current()->top();
4397   assert(empty_memory->is_top(), "correct sentinel identity");
4398   return empty_memory;
4399 }
4400 
4401 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4402   init_class_id(Class_MergeMem);
4403   // all inputs are nullified in Node::Node(int)
4404   // set_input(0, NULL);  // no control input
4405 
4406   // Initialize the edges uniformly to top, for starters.
4407   Node* empty_mem = make_empty_memory();
4408   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4409     init_req(i,empty_mem);
4410   }
4411   assert(empty_memory() == empty_mem, "");
4412 
4413   if( new_base != NULL && new_base->is_MergeMem() ) {
4414     MergeMemNode* mdef = new_base->as_MergeMem();
4415     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4416     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4417       mms.set_memory(mms.memory2());
4418     }
4419     assert(base_memory() == mdef->base_memory(), "");
4420   } else {
4421     set_base_memory(new_base);
4422   }
4423 }
4424 
4425 // Make a new, untransformed MergeMem with the same base as 'mem'.
4426 // If mem is itself a MergeMem, populate the result with the same edges.
4427 MergeMemNode* MergeMemNode::make(Node* mem) {
4428   return new MergeMemNode(mem);
4429 }
4430 
4431 //------------------------------cmp--------------------------------------------
4432 uint MergeMemNode::hash() const { return NO_HASH; }
4433 uint MergeMemNode::cmp( const Node &n ) const {
4434   return (&n == this);          // Always fail except on self
4435 }
4436 
4437 //------------------------------Identity---------------------------------------
4438 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4439   // Identity if this merge point does not record any interesting memory
4440   // disambiguations.
4441   Node* base_mem = base_memory();
4442   Node* empty_mem = empty_memory();
4443   if (base_mem != empty_mem) {  // Memory path is not dead?
4444     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4445       Node* mem = in(i);
4446       if (mem != empty_mem && mem != base_mem) {
4447         return this;            // Many memory splits; no change
4448       }
4449     }
4450   }
4451   return base_mem;              // No memory splits; ID on the one true input
4452 }
4453 
4454 //------------------------------Ideal------------------------------------------
4455 // This method is invoked recursively on chains of MergeMem nodes
4456 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4457   // Remove chain'd MergeMems
4458   //
4459   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4460   // relative to the "in(Bot)".  Since we are patching both at the same time,
4461   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4462   // but rewrite each "in(i)" relative to the new "in(Bot)".
4463   Node *progress = NULL;
4464 
4465 
4466   Node* old_base = base_memory();
4467   Node* empty_mem = empty_memory();
4468   if (old_base == empty_mem)
4469     return NULL; // Dead memory path.
4470 
4471   MergeMemNode* old_mbase;
4472   if (old_base != NULL && old_base->is_MergeMem())
4473     old_mbase = old_base->as_MergeMem();
4474   else
4475     old_mbase = NULL;
4476   Node* new_base = old_base;
4477 
4478   // simplify stacked MergeMems in base memory
4479   if (old_mbase)  new_base = old_mbase->base_memory();
4480 
4481   // the base memory might contribute new slices beyond my req()
4482   if (old_mbase)  grow_to_match(old_mbase);
4483 
4484   // Look carefully at the base node if it is a phi.
4485   PhiNode* phi_base;
4486   if (new_base != NULL && new_base->is_Phi())
4487     phi_base = new_base->as_Phi();
4488   else
4489     phi_base = NULL;
4490 
4491   Node*    phi_reg = NULL;
4492   uint     phi_len = (uint)-1;
4493   if (phi_base != NULL && !phi_base->is_copy()) {
4494     // do not examine phi if degraded to a copy
4495     phi_reg = phi_base->region();
4496     phi_len = phi_base->req();
4497     // see if the phi is unfinished
4498     for (uint i = 1; i < phi_len; i++) {
4499       if (phi_base->in(i) == NULL) {
4500         // incomplete phi; do not look at it yet!
4501         phi_reg = NULL;
4502         phi_len = (uint)-1;
4503         break;
4504       }
4505     }
4506   }
4507 
4508   // Note:  We do not call verify_sparse on entry, because inputs
4509   // can normalize to the base_memory via subsume_node or similar
4510   // mechanisms.  This method repairs that damage.
4511 
4512   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4513 
4514   // Look at each slice.
4515   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4516     Node* old_in = in(i);
4517     // calculate the old memory value
4518     Node* old_mem = old_in;
4519     if (old_mem == empty_mem)  old_mem = old_base;
4520     assert(old_mem == memory_at(i), "");
4521 
4522     // maybe update (reslice) the old memory value
4523 
4524     // simplify stacked MergeMems
4525     Node* new_mem = old_mem;
4526     MergeMemNode* old_mmem;
4527     if (old_mem != NULL && old_mem->is_MergeMem())
4528       old_mmem = old_mem->as_MergeMem();
4529     else
4530       old_mmem = NULL;
4531     if (old_mmem == this) {
4532       // This can happen if loops break up and safepoints disappear.
4533       // A merge of BotPtr (default) with a RawPtr memory derived from a
4534       // safepoint can be rewritten to a merge of the same BotPtr with
4535       // the BotPtr phi coming into the loop.  If that phi disappears
4536       // also, we can end up with a self-loop of the mergemem.
4537       // In general, if loops degenerate and memory effects disappear,
4538       // a mergemem can be left looking at itself.  This simply means
4539       // that the mergemem's default should be used, since there is
4540       // no longer any apparent effect on this slice.
4541       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4542       //       from start.  Update the input to TOP.
4543       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4544     }
4545     else if (old_mmem != NULL) {
4546       new_mem = old_mmem->memory_at(i);
4547     }
4548     // else preceding memory was not a MergeMem
4549 
4550     // replace equivalent phis (unfortunately, they do not GVN together)
4551     if (new_mem != NULL && new_mem != new_base &&
4552         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4553       if (new_mem->is_Phi()) {
4554         PhiNode* phi_mem = new_mem->as_Phi();
4555         for (uint i = 1; i < phi_len; i++) {
4556           if (phi_base->in(i) != phi_mem->in(i)) {
4557             phi_mem = NULL;
4558             break;
4559           }
4560         }
4561         if (phi_mem != NULL) {
4562           // equivalent phi nodes; revert to the def
4563           new_mem = new_base;
4564         }
4565       }
4566     }
4567 
4568     // maybe store down a new value
4569     Node* new_in = new_mem;
4570     if (new_in == new_base)  new_in = empty_mem;
4571 
4572     if (new_in != old_in) {
4573       // Warning:  Do not combine this "if" with the previous "if"
4574       // A memory slice might have be be rewritten even if it is semantically
4575       // unchanged, if the base_memory value has changed.
4576       set_req(i, new_in);
4577       progress = this;          // Report progress
4578     }
4579   }
4580 
4581   if (new_base != old_base) {
4582     set_req(Compile::AliasIdxBot, new_base);
4583     // Don't use set_base_memory(new_base), because we need to update du.
4584     assert(base_memory() == new_base, "");
4585     progress = this;
4586   }
4587 
4588   if( base_memory() == this ) {
4589     // a self cycle indicates this memory path is dead
4590     set_req(Compile::AliasIdxBot, empty_mem);
4591   }
4592 
4593   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4594   // Recursion must occur after the self cycle check above
4595   if( base_memory()->is_MergeMem() ) {
4596     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4597     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4598     if( m != NULL &&
4599         (m->is_top() ||
4600          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4601       // propagate rollup of dead cycle to self
4602       set_req(Compile::AliasIdxBot, empty_mem);
4603     }
4604   }
4605 
4606   if( base_memory() == empty_mem ) {
4607     progress = this;
4608     // Cut inputs during Parse phase only.
4609     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4610     if( !can_reshape ) {
4611       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4612         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4613       }
4614     }
4615   }
4616 
4617   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4618     // Check if PhiNode::Ideal's "Split phis through memory merges"
4619     // transform should be attempted. Look for this->phi->this cycle.
4620     uint merge_width = req();
4621     if (merge_width > Compile::AliasIdxRaw) {
4622       PhiNode* phi = base_memory()->as_Phi();
4623       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4624         if (phi->in(i) == this) {
4625           phase->is_IterGVN()->_worklist.push(phi);
4626           break;
4627         }
4628       }
4629     }
4630   }
4631 
4632   assert(progress || verify_sparse(), "please, no dups of base");
4633   return progress;
4634 }
4635 
4636 //-------------------------set_base_memory-------------------------------------
4637 void MergeMemNode::set_base_memory(Node *new_base) {
4638   Node* empty_mem = empty_memory();
4639   set_req(Compile::AliasIdxBot, new_base);
4640   assert(memory_at(req()) == new_base, "must set default memory");
4641   // Clear out other occurrences of new_base:
4642   if (new_base != empty_mem) {
4643     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4644       if (in(i) == new_base)  set_req(i, empty_mem);
4645     }
4646   }
4647 }
4648 
4649 //------------------------------out_RegMask------------------------------------
4650 const RegMask &MergeMemNode::out_RegMask() const {
4651   return RegMask::Empty;
4652 }
4653 
4654 //------------------------------dump_spec--------------------------------------
4655 #ifndef PRODUCT
4656 void MergeMemNode::dump_spec(outputStream *st) const {
4657   st->print(" {");
4658   Node* base_mem = base_memory();
4659   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4660     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4661     if (mem == base_mem) { st->print(" -"); continue; }
4662     st->print( " N%d:", mem->_idx );
4663     Compile::current()->get_adr_type(i)->dump_on(st);
4664   }
4665   st->print(" }");
4666 }
4667 #endif // !PRODUCT
4668 
4669 
4670 #ifdef ASSERT
4671 static bool might_be_same(Node* a, Node* b) {
4672   if (a == b)  return true;
4673   if (!(a->is_Phi() || b->is_Phi()))  return false;
4674   // phis shift around during optimization
4675   return true;  // pretty stupid...
4676 }
4677 
4678 // verify a narrow slice (either incoming or outgoing)
4679 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4680   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4681   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4682   if (Node::in_dump())               return;  // muzzle asserts when printing
4683   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4684   assert(n != NULL, "");
4685   // Elide intervening MergeMem's
4686   while (n->is_MergeMem()) {
4687     n = n->as_MergeMem()->memory_at(alias_idx);
4688   }
4689   Compile* C = Compile::current();
4690   const TypePtr* n_adr_type = n->adr_type();
4691   if (n == m->empty_memory()) {
4692     // Implicit copy of base_memory()
4693   } else if (n_adr_type != TypePtr::BOTTOM) {
4694     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4695     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4696   } else {
4697     // A few places like make_runtime_call "know" that VM calls are narrow,
4698     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4699     bool expected_wide_mem = false;
4700     if (n == m->base_memory()) {
4701       expected_wide_mem = true;
4702     } else if (alias_idx == Compile::AliasIdxRaw ||
4703                n == m->memory_at(Compile::AliasIdxRaw)) {
4704       expected_wide_mem = true;
4705     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4706       // memory can "leak through" calls on channels that
4707       // are write-once.  Allow this also.
4708       expected_wide_mem = true;
4709     }
4710     assert(expected_wide_mem, "expected narrow slice replacement");
4711   }
4712 }
4713 #else // !ASSERT
4714 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4715 #endif
4716 
4717 
4718 //-----------------------------memory_at---------------------------------------
4719 Node* MergeMemNode::memory_at(uint alias_idx) const {
4720   assert(alias_idx >= Compile::AliasIdxRaw ||
4721          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4722          "must avoid base_memory and AliasIdxTop");
4723 
4724   // Otherwise, it is a narrow slice.
4725   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4726   Compile *C = Compile::current();
4727   if (is_empty_memory(n)) {
4728     // the array is sparse; empty slots are the "top" node
4729     n = base_memory();
4730     assert(Node::in_dump()
4731            || n == NULL || n->bottom_type() == Type::TOP
4732            || n->adr_type() == NULL // address is TOP
4733            || n->adr_type() == TypePtr::BOTTOM
4734            || n->adr_type() == TypeRawPtr::BOTTOM
4735            || Compile::current()->AliasLevel() == 0,
4736            "must be a wide memory");
4737     // AliasLevel == 0 if we are organizing the memory states manually.
4738     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4739   } else {
4740     // make sure the stored slice is sane
4741     #ifdef ASSERT
4742     if (VMError::is_error_reported() || Node::in_dump()) {
4743     } else if (might_be_same(n, base_memory())) {
4744       // Give it a pass:  It is a mostly harmless repetition of the base.
4745       // This can arise normally from node subsumption during optimization.
4746     } else {
4747       verify_memory_slice(this, alias_idx, n);
4748     }
4749     #endif
4750   }
4751   return n;
4752 }
4753 
4754 //---------------------------set_memory_at-------------------------------------
4755 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4756   verify_memory_slice(this, alias_idx, n);
4757   Node* empty_mem = empty_memory();
4758   if (n == base_memory())  n = empty_mem;  // collapse default
4759   uint need_req = alias_idx+1;
4760   if (req() < need_req) {
4761     if (n == empty_mem)  return;  // already the default, so do not grow me
4762     // grow the sparse array
4763     do {
4764       add_req(empty_mem);
4765     } while (req() < need_req);
4766   }
4767   set_req( alias_idx, n );
4768 }
4769 
4770 
4771 
4772 //--------------------------iteration_setup------------------------------------
4773 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4774   if (other != NULL) {
4775     grow_to_match(other);
4776     // invariant:  the finite support of mm2 is within mm->req()
4777     #ifdef ASSERT
4778     for (uint i = req(); i < other->req(); i++) {
4779       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4780     }
4781     #endif
4782   }
4783   // Replace spurious copies of base_memory by top.
4784   Node* base_mem = base_memory();
4785   if (base_mem != NULL && !base_mem->is_top()) {
4786     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4787       if (in(i) == base_mem)
4788         set_req(i, empty_memory());
4789     }
4790   }
4791 }
4792 
4793 //---------------------------grow_to_match-------------------------------------
4794 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4795   Node* empty_mem = empty_memory();
4796   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4797   // look for the finite support of the other memory
4798   for (uint i = other->req(); --i >= req(); ) {
4799     if (other->in(i) != empty_mem) {
4800       uint new_len = i+1;
4801       while (req() < new_len)  add_req(empty_mem);
4802       break;
4803     }
4804   }
4805 }
4806 
4807 //---------------------------verify_sparse-------------------------------------
4808 #ifndef PRODUCT
4809 bool MergeMemNode::verify_sparse() const {
4810   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4811   Node* base_mem = base_memory();
4812   // The following can happen in degenerate cases, since empty==top.
4813   if (is_empty_memory(base_mem))  return true;
4814   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4815     assert(in(i) != NULL, "sane slice");
4816     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4817   }
4818   return true;
4819 }
4820 
4821 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4822   Node* n;
4823   n = mm->in(idx);
4824   if (mem == n)  return true;  // might be empty_memory()
4825   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4826   if (mem == n)  return true;
4827   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4828     if (mem == n)  return true;
4829     if (n == NULL)  break;
4830   }
4831   return false;
4832 }
4833 #endif // !PRODUCT