1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compilationPolicy.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerEvent.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "compiler/directivesParser.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "jfr/jfrEvents.hpp"
  41 #include "logging/log.hpp"
  42 #include "logging/logStream.hpp"
  43 #include "memory/allocation.inline.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "oops/methodData.hpp"
  47 #include "oops/method.inline.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "prims/whitebox.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.inline.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/os.hpp"
  59 #include "runtime/safepointVerifiers.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/sweeper.hpp"
  62 #include "runtime/timerTrace.hpp"
  63 #include "runtime/vframe.inline.hpp"
  64 #include "utilities/debug.hpp"
  65 #include "utilities/dtrace.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/formatBuffer.hpp"
  68 #include "utilities/macros.hpp"
  69 #ifdef COMPILER1
  70 #include "c1/c1_Compiler.hpp"
  71 #endif
  72 #if INCLUDE_JVMCI
  73 #include "jvmci/jvmciEnv.hpp"
  74 #include "jvmci/jvmciRuntime.hpp"
  75 #endif
  76 #ifdef COMPILER2
  77 #include "opto/c2compiler.hpp"
  78 #endif
  79 
  80 #ifdef DTRACE_ENABLED
  81 
  82 // Only bother with this argument setup if dtrace is available
  83 
  84 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  85   {                                                                      \
  86     Symbol* klass_name = (method)->klass_name();                         \
  87     Symbol* name = (method)->name();                                     \
  88     Symbol* signature = (method)->signature();                           \
  89     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  90       (char *) comp_name, strlen(comp_name),                             \
  91       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  92       (char *) name->bytes(), name->utf8_length(),                       \
  93       (char *) signature->bytes(), signature->utf8_length());            \
  94   }
  95 
  96 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
  97   {                                                                      \
  98     Symbol* klass_name = (method)->klass_name();                         \
  99     Symbol* name = (method)->name();                                     \
 100     Symbol* signature = (method)->signature();                           \
 101     HOTSPOT_METHOD_COMPILE_END(                                          \
 102       (char *) comp_name, strlen(comp_name),                             \
 103       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 104       (char *) name->bytes(), name->utf8_length(),                       \
 105       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 106   }
 107 
 108 #else //  ndef DTRACE_ENABLED
 109 
 110 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 112 
 113 #endif // ndef DTRACE_ENABLED
 114 
 115 bool CompileBroker::_initialized = false;
 116 volatile bool CompileBroker::_should_block = false;
 117 volatile int  CompileBroker::_print_compilation_warning = 0;
 118 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 119 
 120 // The installed compiler(s)
 121 AbstractCompiler* CompileBroker::_compilers[2];
 122 
 123 // The maximum numbers of compiler threads to be determined during startup.
 124 int CompileBroker::_c1_count = 0;
 125 int CompileBroker::_c2_count = 0;
 126 
 127 // An array of compiler names as Java String objects
 128 jobject* CompileBroker::_compiler1_objects = NULL;
 129 jobject* CompileBroker::_compiler2_objects = NULL;
 130 
 131 CompileLog** CompileBroker::_compiler1_logs = NULL;
 132 CompileLog** CompileBroker::_compiler2_logs = NULL;
 133 
 134 // These counters are used to assign an unique ID to each compilation.
 135 volatile jint CompileBroker::_compilation_id     = 0;
 136 volatile jint CompileBroker::_osr_compilation_id = 0;
 137 
 138 // Performance counters
 139 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 140 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 141 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 142 
 143 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 144 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 145 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 146 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 147 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 148 
 149 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 150 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 151 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 152 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 153 
 154 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 155 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 156 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 157 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 158 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 159 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 160 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 161 
 162 // Timers and counters for generating statistics
 163 elapsedTimer CompileBroker::_t_total_compilation;
 164 elapsedTimer CompileBroker::_t_osr_compilation;
 165 elapsedTimer CompileBroker::_t_standard_compilation;
 166 elapsedTimer CompileBroker::_t_invalidated_compilation;
 167 elapsedTimer CompileBroker::_t_bailedout_compilation;
 168 
 169 int CompileBroker::_total_bailout_count            = 0;
 170 int CompileBroker::_total_invalidated_count        = 0;
 171 int CompileBroker::_total_compile_count            = 0;
 172 int CompileBroker::_total_osr_compile_count        = 0;
 173 int CompileBroker::_total_standard_compile_count   = 0;
 174 int CompileBroker::_total_compiler_stopped_count   = 0;
 175 int CompileBroker::_total_compiler_restarted_count = 0;
 176 
 177 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 178 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 179 int CompileBroker::_sum_nmethod_size               = 0;
 180 int CompileBroker::_sum_nmethod_code_size          = 0;
 181 
 182 long CompileBroker::_peak_compilation_time         = 0;
 183 
 184 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 185 
 186 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 187 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 188 
 189 
 190 
 191 class CompilationLog : public StringEventLog {
 192  public:
 193   CompilationLog() : StringEventLog("Compilation events", "jit") {
 194   }
 195 
 196   void log_compile(JavaThread* thread, CompileTask* task) {
 197     StringLogMessage lm;
 198     stringStream sstr(lm.buffer(), lm.size());
 199     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 200     task->print(&sstr, NULL, true, false);
 201     log(thread, "%s", (const char*)lm);
 202   }
 203 
 204   void log_nmethod(JavaThread* thread, nmethod* nm) {
 205     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 206         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 207         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 208   }
 209 
 210   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 211     StringLogMessage lm;
 212     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 213     if (retry_message != NULL) {
 214       lm.append(" (%s)", retry_message);
 215     }
 216     lm.print("\n");
 217     log(thread, "%s", (const char*)lm);
 218   }
 219 
 220   void log_metaspace_failure(const char* reason) {
 221     ResourceMark rm;
 222     StringLogMessage lm;
 223     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 224     lm.print("\n");
 225     log(JavaThread::current(), "%s", (const char*)lm);
 226   }
 227 };
 228 
 229 static CompilationLog* _compilation_log = NULL;
 230 
 231 bool compileBroker_init() {
 232   if (LogEvents) {
 233     _compilation_log = new CompilationLog();
 234   }
 235 
 236   // init directives stack, adding default directive
 237   DirectivesStack::init();
 238 
 239   if (DirectivesParser::has_file()) {
 240     return DirectivesParser::parse_from_flag();
 241   } else if (CompilerDirectivesPrint) {
 242     // Print default directive even when no other was added
 243     DirectivesStack::print(tty);
 244   }
 245 
 246   return true;
 247 }
 248 
 249 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 250   CompilerThread* thread = CompilerThread::current();
 251   thread->set_task(task);
 252 #if INCLUDE_JVMCI
 253   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 254     task->set_jvmci_compiler_thread(thread);
 255   }
 256 #endif
 257   CompileLog*     log  = thread->log();
 258   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 259 }
 260 
 261 CompileTaskWrapper::~CompileTaskWrapper() {
 262   CompilerThread* thread = CompilerThread::current();
 263   CompileTask* task = thread->task();
 264   CompileLog*  log  = thread->log();
 265   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 266   thread->set_task(NULL);
 267   task->set_code_handle(NULL);
 268   thread->set_env(NULL);
 269   if (task->is_blocking()) {
 270     bool free_task = false;
 271     {
 272       MutexLocker notifier(thread, task->lock());
 273       task->mark_complete();
 274 #if INCLUDE_JVMCI
 275       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 276         if (!task->has_waiter()) {
 277           // The waiting thread timed out and thus did not free the task.
 278           free_task = true;
 279         }
 280         task->set_jvmci_compiler_thread(NULL);
 281       }
 282 #endif
 283       if (!free_task) {
 284         // Notify the waiting thread that the compilation has completed
 285         // so that it can free the task.
 286         task->lock()->notify_all();
 287       }
 288     }
 289     if (free_task) {
 290       // The task can only be freed once the task lock is released.
 291       CompileTask::free(task);
 292     }
 293   } else {
 294     task->mark_complete();
 295 
 296     // By convention, the compiling thread is responsible for
 297     // recycling a non-blocking CompileTask.
 298     CompileTask::free(task);
 299   }
 300 }
 301 
 302 /**
 303  * Check if a CompilerThread can be removed and update count if requested.
 304  */
 305 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 306   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 307   if (!ReduceNumberOfCompilerThreads) return false;
 308 
 309   AbstractCompiler *compiler = ct->compiler();
 310   int compiler_count = compiler->num_compiler_threads();
 311   bool c1 = compiler->is_c1();
 312 
 313   // Keep at least 1 compiler thread of each type.
 314   if (compiler_count < 2) return false;
 315 
 316   // Keep thread alive for at least some time.
 317   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 318 
 319 #if INCLUDE_JVMCI
 320   if (compiler->is_jvmci()) {
 321     // Handles for JVMCI thread objects may get released concurrently.
 322     if (do_it) {
 323       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 324     } else {
 325       // Skip check if it's the last thread and let caller check again.
 326       return true;
 327     }
 328   }
 329 #endif
 330 
 331   // We only allow the last compiler thread of each type to get removed.
 332   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 333                              : compiler2_object(compiler_count - 1);
 334   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 335     if (do_it) {
 336       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 337       compiler->set_num_compiler_threads(compiler_count - 1);
 338 #if INCLUDE_JVMCI
 339       if (compiler->is_jvmci()) {
 340         // Old j.l.Thread object can die when no longer referenced elsewhere.
 341         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 342         _compiler2_objects[compiler_count - 1] = NULL;
 343       }
 344 #endif
 345     }
 346     return true;
 347   }
 348   return false;
 349 }
 350 
 351 /**
 352  * Add a CompileTask to a CompileQueue.
 353  */
 354 void CompileQueue::add(CompileTask* task) {
 355   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 356 
 357   task->set_next(NULL);
 358   task->set_prev(NULL);
 359 
 360   if (_last == NULL) {
 361     // The compile queue is empty.
 362     assert(_first == NULL, "queue is empty");
 363     _first = task;
 364     _last = task;
 365   } else {
 366     // Append the task to the queue.
 367     assert(_last->next() == NULL, "not last");
 368     _last->set_next(task);
 369     task->set_prev(_last);
 370     _last = task;
 371   }
 372   ++_size;
 373 
 374   // Mark the method as being in the compile queue.
 375   task->method()->set_queued_for_compilation();
 376 
 377   if (CIPrintCompileQueue) {
 378     print_tty();
 379   }
 380 
 381   if (LogCompilation && xtty != NULL) {
 382     task->log_task_queued();
 383   }
 384 
 385   // Notify CompilerThreads that a task is available.
 386   MethodCompileQueue_lock->notify_all();
 387 }
 388 
 389 /**
 390  * Empties compilation queue by putting all compilation tasks onto
 391  * a freelist. Furthermore, the method wakes up all threads that are
 392  * waiting on a compilation task to finish. This can happen if background
 393  * compilation is disabled.
 394  */
 395 void CompileQueue::free_all() {
 396   MutexLocker mu(MethodCompileQueue_lock);
 397   CompileTask* next = _first;
 398 
 399   // Iterate over all tasks in the compile queue
 400   while (next != NULL) {
 401     CompileTask* current = next;
 402     next = current->next();
 403     {
 404       // Wake up thread that blocks on the compile task.
 405       MutexLocker ct_lock(current->lock());
 406       current->lock()->notify();
 407     }
 408     // Put the task back on the freelist.
 409     CompileTask::free(current);
 410   }
 411   _first = NULL;
 412 
 413   // Wake up all threads that block on the queue.
 414   MethodCompileQueue_lock->notify_all();
 415 }
 416 
 417 /**
 418  * Get the next CompileTask from a CompileQueue
 419  */
 420 CompileTask* CompileQueue::get() {
 421   // save methods from RedefineClasses across safepoint
 422   // across MethodCompileQueue_lock below.
 423   methodHandle save_method;
 424   methodHandle save_hot_method;
 425 
 426   MonitorLocker locker(MethodCompileQueue_lock);
 427   // If _first is NULL we have no more compile jobs. There are two reasons for
 428   // having no compile jobs: First, we compiled everything we wanted. Second,
 429   // we ran out of code cache so compilation has been disabled. In the latter
 430   // case we perform code cache sweeps to free memory such that we can re-enable
 431   // compilation.
 432   while (_first == NULL) {
 433     // Exit loop if compilation is disabled forever
 434     if (CompileBroker::is_compilation_disabled_forever()) {
 435       return NULL;
 436     }
 437 
 438     // If there are no compilation tasks and we can compile new jobs
 439     // (i.e., there is enough free space in the code cache) there is
 440     // no need to invoke the sweeper. As a result, the hotness of methods
 441     // remains unchanged. This behavior is desired, since we want to keep
 442     // the stable state, i.e., we do not want to evict methods from the
 443     // code cache if it is unnecessary.
 444     // We need a timed wait here, since compiler threads can exit if compilation
 445     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 446     // is not critical and we do not want idle compiler threads to wake up too often.
 447     locker.wait(5*1000);
 448 
 449     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 450       // Still nothing to compile. Give caller a chance to stop this thread.
 451       if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
 452     }
 453   }
 454 
 455   if (CompileBroker::is_compilation_disabled_forever()) {
 456     return NULL;
 457   }
 458 
 459   CompileTask* task;
 460   {
 461     NoSafepointVerifier nsv;
 462     task = CompilationPolicy::policy()->select_task(this);
 463     if (task != NULL) {
 464       task = task->select_for_compilation();
 465     }
 466   }
 467 
 468   if (task != NULL) {
 469     // Save method pointers across unlock safepoint.  The task is removed from
 470     // the compilation queue, which is walked during RedefineClasses.
 471     Thread* thread = Thread::current();
 472     save_method = methodHandle(thread, task->method());
 473     save_hot_method = methodHandle(thread, task->hot_method());
 474 
 475     remove(task);
 476   }
 477   purge_stale_tasks(); // may temporarily release MCQ lock
 478   return task;
 479 }
 480 
 481 // Clean & deallocate stale compile tasks.
 482 // Temporarily releases MethodCompileQueue lock.
 483 void CompileQueue::purge_stale_tasks() {
 484   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 485   if (_first_stale != NULL) {
 486     // Stale tasks are purged when MCQ lock is released,
 487     // but _first_stale updates are protected by MCQ lock.
 488     // Once task processing starts and MCQ lock is released,
 489     // other compiler threads can reuse _first_stale.
 490     CompileTask* head = _first_stale;
 491     _first_stale = NULL;
 492     {
 493       MutexUnlocker ul(MethodCompileQueue_lock);
 494       for (CompileTask* task = head; task != NULL; ) {
 495         CompileTask* next_task = task->next();
 496         CompileTaskWrapper ctw(task); // Frees the task
 497         task->set_failure_reason("stale task");
 498         task = next_task;
 499       }
 500     }
 501   }
 502 }
 503 
 504 void CompileQueue::remove(CompileTask* task) {
 505   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 506   if (task->prev() != NULL) {
 507     task->prev()->set_next(task->next());
 508   } else {
 509     // max is the first element
 510     assert(task == _first, "Sanity");
 511     _first = task->next();
 512   }
 513 
 514   if (task->next() != NULL) {
 515     task->next()->set_prev(task->prev());
 516   } else {
 517     // max is the last element
 518     assert(task == _last, "Sanity");
 519     _last = task->prev();
 520   }
 521   --_size;
 522 }
 523 
 524 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 525   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 526   remove(task);
 527 
 528   // Enqueue the task for reclamation (should be done outside MCQ lock)
 529   task->set_next(_first_stale);
 530   task->set_prev(NULL);
 531   _first_stale = task;
 532 }
 533 
 534 // methods in the compile queue need to be marked as used on the stack
 535 // so that they don't get reclaimed by Redefine Classes
 536 void CompileQueue::mark_on_stack() {
 537   CompileTask* task = _first;
 538   while (task != NULL) {
 539     task->mark_on_stack();
 540     task = task->next();
 541   }
 542 }
 543 
 544 
 545 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 546   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 547   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 548   return NULL;
 549 }
 550 
 551 void CompileBroker::print_compile_queues(outputStream* st) {
 552   st->print_cr("Current compiles: ");
 553 
 554   char buf[2000];
 555   int buflen = sizeof(buf);
 556   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 557 
 558   st->cr();
 559   if (_c1_compile_queue != NULL) {
 560     _c1_compile_queue->print(st);
 561   }
 562   if (_c2_compile_queue != NULL) {
 563     _c2_compile_queue->print(st);
 564   }
 565 }
 566 
 567 void CompileQueue::print(outputStream* st) {
 568   assert_locked_or_safepoint(MethodCompileQueue_lock);
 569   st->print_cr("%s:", name());
 570   CompileTask* task = _first;
 571   if (task == NULL) {
 572     st->print_cr("Empty");
 573   } else {
 574     while (task != NULL) {
 575       task->print(st, NULL, true, true);
 576       task = task->next();
 577     }
 578   }
 579   st->cr();
 580 }
 581 
 582 void CompileQueue::print_tty() {
 583   ResourceMark rm;
 584   stringStream ss;
 585   // Dump the compile queue into a buffer before locking the tty
 586   print(&ss);
 587   {
 588     ttyLocker ttyl;
 589     tty->print("%s", ss.as_string());
 590   }
 591 }
 592 
 593 CompilerCounters::CompilerCounters() {
 594   _current_method[0] = '\0';
 595   _compile_type = CompileBroker::no_compile;
 596 }
 597 
 598 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 599 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 600 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 601 //
 602 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 603 // so if c2 is used, it should be always registered first.
 604 // This function is called during vm initialization.
 605 void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 606   ResourceMark rm;
 607   static bool first_registration = true;
 608   if (compiler_type == compiler_jvmci) {
 609     // register serializer, phases will be added later lazily.
 610     GrowableArray<const char*>* jvmci_phase_names = new GrowableArray<const char*>(1);
 611     jvmci_phase_names->append("NOT_A_PHASE_NAME");
 612     CompilerEvent::PhaseEvent::register_phases(jvmci_phase_names);
 613     first_registration = false;
 614 #ifdef COMPILER2
 615   } else if (compiler_type == compiler_c2) {
 616     assert(first_registration, "invariant"); // c2 must be registered first.
 617     GrowableArray<const char*>* c2_phase_names = new GrowableArray<const char*>(PHASE_NUM_TYPES);
 618     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 619       c2_phase_names->append(CompilerPhaseTypeHelper::to_string((CompilerPhaseType)i));
 620     }
 621     CompilerEvent::PhaseEvent::register_phases(c2_phase_names);
 622     first_registration = false;
 623 #endif // COMPILER2
 624   }
 625 }
 626 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 627 
 628 // ------------------------------------------------------------------
 629 // CompileBroker::compilation_init
 630 //
 631 // Initialize the Compilation object
 632 void CompileBroker::compilation_init_phase1(Thread* THREAD) {
 633   // No need to initialize compilation system if we do not use it.
 634   if (!UseCompiler) {
 635     return;
 636   }
 637   // Set the interface to the current compiler(s).
 638   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 639   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 640 
 641 #if INCLUDE_JVMCI
 642   if (EnableJVMCI) {
 643     // This is creating a JVMCICompiler singleton.
 644     JVMCICompiler* jvmci = new JVMCICompiler();
 645 
 646     if (UseJVMCICompiler) {
 647       _compilers[1] = jvmci;
 648       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 649         if (BootstrapJVMCI) {
 650           // JVMCI will bootstrap so give it more threads
 651           _c2_count = MIN2(32, os::active_processor_count());
 652         }
 653       } else {
 654         _c2_count = JVMCIThreads;
 655       }
 656       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 657       } else {
 658         _c1_count = JVMCIHostThreads;
 659       }
 660     }
 661   }
 662 #endif // INCLUDE_JVMCI
 663 
 664 #ifdef COMPILER1
 665   if (_c1_count > 0) {
 666     _compilers[0] = new Compiler();
 667   }
 668 #endif // COMPILER1
 669 
 670 #ifdef COMPILER2
 671   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 672     if (_c2_count > 0) {
 673       _compilers[1] = new C2Compiler();
 674       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 675       // idToPhase mapping for c2 is in opto/phasetype.hpp
 676       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 677     }
 678   }
 679 #endif // COMPILER2
 680 
 681 #if INCLUDE_JVMCI
 682    // Register after c2 registration.
 683    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 684    if (EnableJVMCI) {
 685      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 686    }
 687 #endif // INCLUDE_JVMCI
 688 
 689   // Start the compiler thread(s) and the sweeper thread
 690   init_compiler_sweeper_threads();
 691   // totalTime performance counter is always created as it is required
 692   // by the implementation of java.lang.management.CompilationMXBean.
 693   {
 694     // Ensure OOM leads to vm_exit_during_initialization.
 695     EXCEPTION_MARK;
 696     _perf_total_compilation =
 697                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 698                                                  PerfData::U_Ticks, CHECK);
 699   }
 700 
 701   if (UsePerfData) {
 702 
 703     EXCEPTION_MARK;
 704 
 705     // create the jvmstat performance counters
 706     _perf_osr_compilation =
 707                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 708                                                  PerfData::U_Ticks, CHECK);
 709 
 710     _perf_standard_compilation =
 711                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 712                                                  PerfData::U_Ticks, CHECK);
 713 
 714     _perf_total_bailout_count =
 715                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 716                                                  PerfData::U_Events, CHECK);
 717 
 718     _perf_total_invalidated_count =
 719                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 720                                                  PerfData::U_Events, CHECK);
 721 
 722     _perf_total_compile_count =
 723                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 724                                                  PerfData::U_Events, CHECK);
 725     _perf_total_osr_compile_count =
 726                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 727                                                  PerfData::U_Events, CHECK);
 728 
 729     _perf_total_standard_compile_count =
 730                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 731                                                  PerfData::U_Events, CHECK);
 732 
 733     _perf_sum_osr_bytes_compiled =
 734                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 735                                                  PerfData::U_Bytes, CHECK);
 736 
 737     _perf_sum_standard_bytes_compiled =
 738                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 739                                                  PerfData::U_Bytes, CHECK);
 740 
 741     _perf_sum_nmethod_size =
 742                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 743                                                  PerfData::U_Bytes, CHECK);
 744 
 745     _perf_sum_nmethod_code_size =
 746                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 747                                                  PerfData::U_Bytes, CHECK);
 748 
 749     _perf_last_method =
 750                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 751                                        CompilerCounters::cmname_buffer_length,
 752                                        "", CHECK);
 753 
 754     _perf_last_failed_method =
 755             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 756                                        CompilerCounters::cmname_buffer_length,
 757                                        "", CHECK);
 758 
 759     _perf_last_invalidated_method =
 760         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 761                                      CompilerCounters::cmname_buffer_length,
 762                                      "", CHECK);
 763 
 764     _perf_last_compile_type =
 765              PerfDataManager::create_variable(SUN_CI, "lastType",
 766                                               PerfData::U_None,
 767                                               (jlong)CompileBroker::no_compile,
 768                                               CHECK);
 769 
 770     _perf_last_compile_size =
 771              PerfDataManager::create_variable(SUN_CI, "lastSize",
 772                                               PerfData::U_Bytes,
 773                                               (jlong)CompileBroker::no_compile,
 774                                               CHECK);
 775 
 776 
 777     _perf_last_failed_type =
 778              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 779                                               PerfData::U_None,
 780                                               (jlong)CompileBroker::no_compile,
 781                                               CHECK);
 782 
 783     _perf_last_invalidated_type =
 784          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 785                                           PerfData::U_None,
 786                                           (jlong)CompileBroker::no_compile,
 787                                           CHECK);
 788   }
 789 }
 790 
 791 // Completes compiler initialization. Compilation requests submitted
 792 // prior to this will be silently ignored.
 793 void CompileBroker::compilation_init_phase2() {
 794   _initialized = true;
 795 }
 796 
 797 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 798   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
 799   Handle thread_group(THREAD, Universe::system_thread_group());
 800   return JavaCalls::construct_new_instance(
 801                        SystemDictionary::Thread_klass(),
 802                        vmSymbols::threadgroup_string_void_signature(),
 803                        thread_group,
 804                        string,
 805                        CHECK_NH);
 806 }
 807 
 808 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 809 // Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to
 810 // the running java application.  Configured with vm options DeoptimizeObjectsALot*.
 811 class DeoptimizeObjectsALotThread : public JavaThread {
 812 
 813   static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS);
 814   void deoptimize_objects_alot_loop_single();
 815   void deoptimize_objects_alot_loop_all();
 816 
 817 public:
 818   DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { }
 819 
 820   bool is_hidden_from_external_view() const      { return true; }
 821 };
 822 
 823 // Entry for DeoptimizeObjectsALotThread. The threads are started in
 824 // CompileBroker::init_compiler_sweeper_threads() iff DeoptimizeObjectsALot is enabled
 825 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 826     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 827     bool enter_single_loop;
 828     {
 829       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 830       static int single_thread_count = 0;
 831       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 832     }
 833     if (enter_single_loop) {
 834       dt->deoptimize_objects_alot_loop_single();
 835     } else {
 836       dt->deoptimize_objects_alot_loop_all();
 837     }
 838   }
 839 
 840 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 841 // barrier targets a single thread which is selected round robin.
 842 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 843   HandleMark hm(this);
 844   while (!this->is_terminated()) {
 845     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 846       { // Begin new scope for escape barrier
 847         HandleMarkCleaner hmc(this);
 848         ResourceMark rm(this);
 849         EscapeBarrier eb(this, deoptee_thread, true);
 850         eb.deoptimize_objects(100);
 851       }
 852       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 853       sleep(DeoptimizeObjectsALotInterval);
 854     }
 855   }
 856 }
 857 
 858 // Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
 859 // barrier targets all java threads in the vm at once.
 860 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 861   HandleMark hm(this);
 862   while (!is_terminated()) {
 863     { // Begin new scope for escape barrier
 864       HandleMarkCleaner hmc(this);
 865       ResourceMark rm(this);
 866       EscapeBarrier eb(this, true);
 867       eb.deoptimize_objects_all_threads();
 868     }
 869     // Now sleep after the escape barriers destructor resumed the java threads.
 870     sleep(DeoptimizeObjectsALotInterval);
 871   }
 872 }
 873 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 874 
 875 
 876 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, Thread* THREAD) {
 877   JavaThread* new_thread = NULL;
 878   {
 879     MutexLocker mu(THREAD, Threads_lock);
 880     switch (type) {
 881       case compiler_t:
 882         assert(comp != NULL, "Compiler instance missing.");
 883         if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 884           CompilerCounters* counters = new CompilerCounters();
 885           new_thread = new CompilerThread(queue, counters);
 886         }
 887         break;
 888       case sweeper_t:
 889         new_thread = new CodeCacheSweeperThread();
 890         break;
 891 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 892       case deoptimizer_t:
 893         new_thread = new DeoptimizeObjectsALotThread();
 894         break;
 895 #endif // ASSERT
 896       default:
 897         ShouldNotReachHere();
 898     }
 899 
 900     // At this point the new CompilerThread data-races with this startup
 901     // thread (which I believe is the primoridal thread and NOT the VM
 902     // thread).  This means Java bytecodes being executed at startup can
 903     // queue compile jobs which will run at whatever default priority the
 904     // newly created CompilerThread runs at.
 905 
 906 
 907     // At this point it may be possible that no osthread was created for the
 908     // JavaThread due to lack of memory. We would have to throw an exception
 909     // in that case. However, since this must work and we do not allow
 910     // exceptions anyway, check and abort if this fails. But first release the
 911     // lock.
 912 
 913     if (new_thread != NULL && new_thread->osthread() != NULL) {
 914 
 915       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), new_thread);
 916 
 917       // Note that this only sets the JavaThread _priority field, which by
 918       // definition is limited to Java priorities and not OS priorities.
 919       // The os-priority is set in the CompilerThread startup code itself
 920 
 921       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
 922 
 923       // Note that we cannot call os::set_priority because it expects Java
 924       // priorities and we are *explicitly* using OS priorities so that it's
 925       // possible to set the compiler thread priority higher than any Java
 926       // thread.
 927 
 928       int native_prio = CompilerThreadPriority;
 929       if (native_prio == -1) {
 930         if (UseCriticalCompilerThreadPriority) {
 931           native_prio = os::java_to_os_priority[CriticalPriority];
 932         } else {
 933           native_prio = os::java_to_os_priority[NearMaxPriority];
 934         }
 935       }
 936       os::set_native_priority(new_thread, native_prio);
 937 
 938       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
 939 
 940       new_thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
 941       if (type == compiler_t) {
 942         new_thread->as_CompilerThread()->set_compiler(comp);
 943       }
 944       Threads::add(new_thread);
 945       Thread::start(new_thread);
 946     }
 947   }
 948 
 949   // First release lock before aborting VM.
 950   if (new_thread == NULL || new_thread->osthread() == NULL) {
 951     if (UseDynamicNumberOfCompilerThreads && type == compiler_t && comp->num_compiler_threads() > 0) {
 952       if (new_thread != NULL) {
 953         new_thread->smr_delete();
 954       }
 955       return NULL;
 956     }
 957     vm_exit_during_initialization("java.lang.OutOfMemoryError",
 958                                   os::native_thread_creation_failed_msg());
 959   }
 960 
 961   // Let go of Threads_lock before yielding
 962   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 963 
 964   return new_thread;
 965 }
 966 
 967 
 968 void CompileBroker::init_compiler_sweeper_threads() {
 969   NMethodSweeper::set_sweep_threshold_bytes(static_cast<size_t>(SweeperThreshold * ReservedCodeCacheSize / 100.0));
 970   log_info(codecache, sweep)("Sweeper threshold: " SIZE_FORMAT " bytes", NMethodSweeper::sweep_threshold_bytes());
 971 
 972   // Ensure any exceptions lead to vm_exit_during_initialization.
 973   EXCEPTION_MARK;
 974 #if !defined(ZERO)
 975   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 976 #endif // !ZERO
 977   // Initialize the compilation queue
 978   if (_c2_count > 0) {
 979     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 980     _c2_compile_queue  = new CompileQueue(name);
 981     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 982     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 983   }
 984   if (_c1_count > 0) {
 985     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 986     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 987     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 988   }
 989 
 990   char name_buffer[256];
 991 
 992   for (int i = 0; i < _c2_count; i++) {
 993     jobject thread_handle = NULL;
 994     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
 995     // for JVMCI compiler which can create further ones on demand.
 996     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
 997     // Create a name for our thread.
 998     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 999     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1000     thread_handle = JNIHandles::make_global(thread_oop);
1001     JVMCI_ONLY(})
1002     _compiler2_objects[i] = thread_handle;
1003     _compiler2_logs[i] = NULL;
1004 
1005     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1006       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
1007       assert(ct != NULL, "should have been handled for initial thread");
1008       _compilers[1]->set_num_compiler_threads(i + 1);
1009       if (TraceCompilerThreads) {
1010         ResourceMark rm;
1011         MutexLocker mu(Threads_lock);
1012         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
1013       }
1014     }
1015   }
1016 
1017   for (int i = 0; i < _c1_count; i++) {
1018     // Create a name for our thread.
1019     sprintf(name_buffer, "C1 CompilerThread%d", i);
1020     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1021     jobject thread_handle = JNIHandles::make_global(thread_oop);
1022     _compiler1_objects[i] = thread_handle;
1023     _compiler1_logs[i] = NULL;
1024 
1025     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1026       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
1027       assert(ct != NULL, "should have been handled for initial thread");
1028       _compilers[0]->set_num_compiler_threads(i + 1);
1029       if (TraceCompilerThreads) {
1030         ResourceMark rm;
1031         MutexLocker mu(Threads_lock);
1032         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
1033       }
1034     }
1035   }
1036 
1037   if (UsePerfData) {
1038     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
1039   }
1040 
1041   if (MethodFlushing) {
1042     // Initialize the sweeper thread
1043     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
1044     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1045     make_thread(sweeper_t, thread_handle, NULL, NULL, THREAD);
1046   }
1047 
1048 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1049   if (DeoptimizeObjectsALot) {
1050     // Initialize and start the object deoptimizer threads
1051     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1052     for (int count = 0; count < total_count; count++) {
1053       Handle thread_oop = create_thread_oop("Deoptimize objects a lot single mode", CHECK);
1054       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1055       make_thread(deoptimizer_t, thread_handle, NULL, NULL, THREAD);
1056     }
1057   }
1058 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1059 }
1060 
1061 void CompileBroker::possibly_add_compiler_threads(Thread* THREAD) {
1062 
1063   julong available_memory = os::available_memory();
1064   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1065   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1066          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1067 
1068   // Only do attempt to start additional threads if the lock is free.
1069   if (!CompileThread_lock->try_lock()) return;
1070 
1071   if (_c2_compile_queue != NULL) {
1072     int old_c2_count = _compilers[1]->num_compiler_threads();
1073     int new_c2_count = MIN4(_c2_count,
1074         _c2_compile_queue->size() / 2,
1075         (int)(available_memory / (200*M)),
1076         (int)(available_cc_np / (128*K)));
1077 
1078     for (int i = old_c2_count; i < new_c2_count; i++) {
1079 #if INCLUDE_JVMCI
1080       if (UseJVMCICompiler) {
1081         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
1082         // objects as their existence is completely hidden from the rest of
1083         // the VM (and those compiler threads can't call Java code to do the
1084         // creation anyway). For JVMCI we have to create new j.l.Thread objects
1085         // as they are visible and we can see unexpected thread lifecycle
1086         // transitions if we bind them to new JavaThreads.
1087         if (!THREAD->can_call_java()) break;
1088         char name_buffer[256];
1089         sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
1090         Handle thread_oop;
1091         {
1092           // We have to give up the lock temporarily for the Java calls.
1093           MutexUnlocker mu(CompileThread_lock);
1094           thread_oop = create_thread_oop(name_buffer, THREAD);
1095         }
1096         if (HAS_PENDING_EXCEPTION) {
1097           if (TraceCompilerThreads) {
1098             ResourceMark rm;
1099             tty->print_cr("JVMCI compiler thread creation failed:");
1100             PENDING_EXCEPTION->print();
1101           }
1102           CLEAR_PENDING_EXCEPTION;
1103           break;
1104         }
1105         // Check if another thread has beaten us during the Java calls.
1106         if (_compilers[1]->num_compiler_threads() != i) break;
1107         jobject thread_handle = JNIHandles::make_global(thread_oop);
1108         assert(compiler2_object(i) == NULL, "Old one must be released!");
1109         _compiler2_objects[i] = thread_handle;
1110       }
1111 #endif
1112       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1113       if (ct == NULL) break;
1114       _compilers[1]->set_num_compiler_threads(i + 1);
1115       if (TraceCompilerThreads) {
1116         ResourceMark rm;
1117         MutexLocker mu(Threads_lock);
1118         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
1119                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
1120       }
1121     }
1122   }
1123 
1124   if (_c1_compile_queue != NULL) {
1125     int old_c1_count = _compilers[0]->num_compiler_threads();
1126     int new_c1_count = MIN4(_c1_count,
1127         _c1_compile_queue->size() / 4,
1128         (int)(available_memory / (100*M)),
1129         (int)(available_cc_p / (128*K)));
1130 
1131     for (int i = old_c1_count; i < new_c1_count; i++) {
1132       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1133       if (ct == NULL) break;
1134       _compilers[0]->set_num_compiler_threads(i + 1);
1135       if (TraceCompilerThreads) {
1136         ResourceMark rm;
1137         MutexLocker mu(Threads_lock);
1138         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
1139                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
1140       }
1141     }
1142   }
1143 
1144   CompileThread_lock->unlock();
1145 }
1146 
1147 
1148 /**
1149  * Set the methods on the stack as on_stack so that redefine classes doesn't
1150  * reclaim them. This method is executed at a safepoint.
1151  */
1152 void CompileBroker::mark_on_stack() {
1153   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1154   // Since we are at a safepoint, we do not need a lock to access
1155   // the compile queues.
1156   if (_c2_compile_queue != NULL) {
1157     _c2_compile_queue->mark_on_stack();
1158   }
1159   if (_c1_compile_queue != NULL) {
1160     _c1_compile_queue->mark_on_stack();
1161   }
1162 }
1163 
1164 // ------------------------------------------------------------------
1165 // CompileBroker::compile_method
1166 //
1167 // Request compilation of a method.
1168 void CompileBroker::compile_method_base(const methodHandle& method,
1169                                         int osr_bci,
1170                                         int comp_level,
1171                                         const methodHandle& hot_method,
1172                                         int hot_count,
1173                                         CompileTask::CompileReason compile_reason,
1174                                         bool blocking,
1175                                         Thread* thread) {
1176   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1177   assert(method->method_holder()->is_instance_klass(),
1178          "sanity check");
1179   assert(!method->method_holder()->is_not_initialized(),
1180          "method holder must be initialized");
1181   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1182 
1183   if (CIPrintRequests) {
1184     tty->print("request: ");
1185     method->print_short_name(tty);
1186     if (osr_bci != InvocationEntryBci) {
1187       tty->print(" osr_bci: %d", osr_bci);
1188     }
1189     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1190     if (!hot_method.is_null()) {
1191       tty->print(" hot: ");
1192       if (hot_method() != method()) {
1193           hot_method->print_short_name(tty);
1194       } else {
1195         tty->print("yes");
1196       }
1197     }
1198     tty->cr();
1199   }
1200 
1201   // A request has been made for compilation.  Before we do any
1202   // real work, check to see if the method has been compiled
1203   // in the meantime with a definitive result.
1204   if (compilation_is_complete(method, osr_bci, comp_level)) {
1205     return;
1206   }
1207 
1208 #ifndef PRODUCT
1209   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1210     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1211       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1212       return;
1213     }
1214   }
1215 #endif
1216 
1217   // If this method is already in the compile queue, then
1218   // we do not block the current thread.
1219   if (compilation_is_in_queue(method)) {
1220     // We may want to decay our counter a bit here to prevent
1221     // multiple denied requests for compilation.  This is an
1222     // open compilation policy issue. Note: The other possibility,
1223     // in the case that this is a blocking compile request, is to have
1224     // all subsequent blocking requesters wait for completion of
1225     // ongoing compiles. Note that in this case we'll need a protocol
1226     // for freeing the associated compile tasks. [Or we could have
1227     // a single static monitor on which all these waiters sleep.]
1228     return;
1229   }
1230 
1231   if (TieredCompilation) {
1232     // Tiered policy requires MethodCounters to exist before adding a method to
1233     // the queue. Create if we don't have them yet.
1234     method->get_method_counters(thread);
1235   }
1236 
1237   // Outputs from the following MutexLocker block:
1238   CompileTask* task     = NULL;
1239   CompileQueue* queue  = compile_queue(comp_level);
1240 
1241   // Acquire our lock.
1242   {
1243     MutexLocker locker(thread, MethodCompileQueue_lock);
1244 
1245     // Make sure the method has not slipped into the queues since
1246     // last we checked; note that those checks were "fast bail-outs".
1247     // Here we need to be more careful, see 14012000 below.
1248     if (compilation_is_in_queue(method)) {
1249       return;
1250     }
1251 
1252     // We need to check again to see if the compilation has
1253     // completed.  A previous compilation may have registered
1254     // some result.
1255     if (compilation_is_complete(method, osr_bci, comp_level)) {
1256       return;
1257     }
1258 
1259     // We now know that this compilation is not pending, complete,
1260     // or prohibited.  Assign a compile_id to this compilation
1261     // and check to see if it is in our [Start..Stop) range.
1262     int compile_id = assign_compile_id(method, osr_bci);
1263     if (compile_id == 0) {
1264       // The compilation falls outside the allowed range.
1265       return;
1266     }
1267 
1268 #if INCLUDE_JVMCI
1269     if (UseJVMCICompiler && blocking) {
1270       // Don't allow blocking compiles for requests triggered by JVMCI.
1271       if (thread->is_Compiler_thread()) {
1272         blocking = false;
1273       }
1274 
1275       if (!UseJVMCINativeLibrary) {
1276         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1277         vframeStream vfst((JavaThread*) thread);
1278         for (; !vfst.at_end(); vfst.next()) {
1279           if (vfst.method()->is_static_initializer() ||
1280               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1281                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1282             blocking = false;
1283             break;
1284           }
1285         }
1286       }
1287 
1288       // Don't allow blocking compilation requests to JVMCI
1289       // if JVMCI itself is not yet initialized
1290       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1291         blocking = false;
1292       }
1293 
1294       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1295       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1296       // such as the DestroyJavaVM thread.
1297       if (JVMCI::in_shutdown()) {
1298         blocking = false;
1299       }
1300     }
1301 #endif // INCLUDE_JVMCI
1302 
1303     // We will enter the compilation in the queue.
1304     // 14012000: Note that this sets the queued_for_compile bits in
1305     // the target method. We can now reason that a method cannot be
1306     // queued for compilation more than once, as follows:
1307     // Before a thread queues a task for compilation, it first acquires
1308     // the compile queue lock, then checks if the method's queued bits
1309     // are set or it has already been compiled. Thus there can not be two
1310     // instances of a compilation task for the same method on the
1311     // compilation queue. Consider now the case where the compilation
1312     // thread has already removed a task for that method from the queue
1313     // and is in the midst of compiling it. In this case, the
1314     // queued_for_compile bits must be set in the method (and these
1315     // will be visible to the current thread, since the bits were set
1316     // under protection of the compile queue lock, which we hold now.
1317     // When the compilation completes, the compiler thread first sets
1318     // the compilation result and then clears the queued_for_compile
1319     // bits. Neither of these actions are protected by a barrier (or done
1320     // under the protection of a lock), so the only guarantee we have
1321     // (on machines with TSO (Total Store Order)) is that these values
1322     // will update in that order. As a result, the only combinations of
1323     // these bits that the current thread will see are, in temporal order:
1324     // <RESULT, QUEUE> :
1325     //     <0, 1> : in compile queue, but not yet compiled
1326     //     <1, 1> : compiled but queue bit not cleared
1327     //     <1, 0> : compiled and queue bit cleared
1328     // Because we first check the queue bits then check the result bits,
1329     // we are assured that we cannot introduce a duplicate task.
1330     // Note that if we did the tests in the reverse order (i.e. check
1331     // result then check queued bit), we could get the result bit before
1332     // the compilation completed, and the queue bit after the compilation
1333     // completed, and end up introducing a "duplicate" (redundant) task.
1334     // In that case, the compiler thread should first check if a method
1335     // has already been compiled before trying to compile it.
1336     // NOTE: in the event that there are multiple compiler threads and
1337     // there is de-optimization/recompilation, things will get hairy,
1338     // and in that case it's best to protect both the testing (here) of
1339     // these bits, and their updating (here and elsewhere) under a
1340     // common lock.
1341     task = create_compile_task(queue,
1342                                compile_id, method,
1343                                osr_bci, comp_level,
1344                                hot_method, hot_count, compile_reason,
1345                                blocking);
1346   }
1347 
1348   if (blocking) {
1349     wait_for_completion(task);
1350   }
1351 }
1352 
1353 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1354                                        int comp_level,
1355                                        const methodHandle& hot_method, int hot_count,
1356                                        CompileTask::CompileReason compile_reason,
1357                                        Thread* THREAD) {
1358   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1359   if (!_initialized || comp_level == CompLevel_none) {
1360     return NULL;
1361   }
1362 
1363   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1364   assert(comp != NULL, "Ensure we have a compiler");
1365 
1366   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1367   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1368   DirectivesStack::release(directive);
1369   return nm;
1370 }
1371 
1372 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1373                                          int comp_level,
1374                                          const methodHandle& hot_method, int hot_count,
1375                                          CompileTask::CompileReason compile_reason,
1376                                          DirectiveSet* directive,
1377                                          Thread* THREAD) {
1378 
1379   // make sure arguments make sense
1380   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1381   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1382   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1383   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1384   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1385   // allow any levels for WhiteBox
1386   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1387   // return quickly if possible
1388 
1389   // lock, make sure that the compilation
1390   // isn't prohibited in a straightforward way.
1391   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1392   if (comp == NULL || !comp->can_compile_method(method) ||
1393       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1394     return NULL;
1395   }
1396 
1397 #if INCLUDE_JVMCI
1398   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1399     return NULL;
1400   }
1401 #endif
1402 
1403   if (osr_bci == InvocationEntryBci) {
1404     // standard compilation
1405     CompiledMethod* method_code = method->code();
1406     if (method_code != NULL && method_code->is_nmethod()) {
1407       if (compilation_is_complete(method, osr_bci, comp_level)) {
1408         return (nmethod*) method_code;
1409       }
1410     }
1411     if (method->is_not_compilable(comp_level)) {
1412       return NULL;
1413     }
1414   } else {
1415     // osr compilation
1416 #ifndef TIERED
1417     // seems like an assert of dubious value
1418     assert(comp_level == CompLevel_highest_tier,
1419            "all OSR compiles are assumed to be at a single compilation level");
1420 #endif // TIERED
1421     // We accept a higher level osr method
1422     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1423     if (nm != NULL) return nm;
1424     if (method->is_not_osr_compilable(comp_level)) return NULL;
1425   }
1426 
1427   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1428   // some prerequisites that are compiler specific
1429   if (comp->is_c2()) {
1430     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1431     // Resolve all classes seen in the signature of the method
1432     // we are compiling.
1433     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1434   }
1435 
1436   // If the method is native, do the lookup in the thread requesting
1437   // the compilation. Native lookups can load code, which is not
1438   // permitted during compilation.
1439   //
1440   // Note: A native method implies non-osr compilation which is
1441   //       checked with an assertion at the entry of this method.
1442   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1443     bool in_base_library;
1444     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1445     if (HAS_PENDING_EXCEPTION) {
1446       // In case of an exception looking up the method, we just forget
1447       // about it. The interpreter will kick-in and throw the exception.
1448       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1449       CLEAR_PENDING_EXCEPTION;
1450       return NULL;
1451     }
1452     assert(method->has_native_function(), "must have native code by now");
1453   }
1454 
1455   // RedefineClasses() has replaced this method; just return
1456   if (method->is_old()) {
1457     return NULL;
1458   }
1459 
1460   // JVMTI -- post_compile_event requires jmethod_id() that may require
1461   // a lock the compiling thread can not acquire. Prefetch it here.
1462   if (JvmtiExport::should_post_compiled_method_load()) {
1463     method->jmethod_id();
1464   }
1465 
1466   // do the compilation
1467   if (method->is_native()) {
1468     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1469 #if defined(X86) && !defined(ZERO)
1470       // The following native methods:
1471       //
1472       // java.lang.Float.intBitsToFloat
1473       // java.lang.Float.floatToRawIntBits
1474       // java.lang.Double.longBitsToDouble
1475       // java.lang.Double.doubleToRawLongBits
1476       //
1477       // are called through the interpreter even if interpreter native stubs
1478       // are not preferred (i.e., calling through adapter handlers is preferred).
1479       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1480       // if the version of the methods from the native libraries is called.
1481       // As the interpreter and the C2-intrinsified version of the methods preserves
1482       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1483       if ((UseSSE >= 1 &&
1484           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1485            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1486           (UseSSE >= 2 &&
1487            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1488             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1489         return NULL;
1490       }
1491 #endif // X86 && !ZERO
1492 
1493       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1494       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1495       //
1496       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1497       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1498       AdapterHandlerLibrary::create_native_wrapper(method);
1499     } else {
1500       return NULL;
1501     }
1502   } else {
1503     // If the compiler is shut off due to code cache getting full
1504     // fail out now so blocking compiles dont hang the java thread
1505     if (!should_compile_new_jobs()) {
1506       CompilationPolicy::policy()->delay_compilation(method());
1507       return NULL;
1508     }
1509     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1510     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1511   }
1512 
1513   // return requested nmethod
1514   // We accept a higher level osr method
1515   if (osr_bci == InvocationEntryBci) {
1516     CompiledMethod* code = method->code();
1517     if (code == NULL) {
1518       return (nmethod*) code;
1519     } else {
1520       return code->as_nmethod_or_null();
1521     }
1522   }
1523   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1524 }
1525 
1526 
1527 // ------------------------------------------------------------------
1528 // CompileBroker::compilation_is_complete
1529 //
1530 // See if compilation of this method is already complete.
1531 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1532                                             int                 osr_bci,
1533                                             int                 comp_level) {
1534   bool is_osr = (osr_bci != standard_entry_bci);
1535   if (is_osr) {
1536     if (method->is_not_osr_compilable(comp_level)) {
1537       return true;
1538     } else {
1539       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1540       return (result != NULL);
1541     }
1542   } else {
1543     if (method->is_not_compilable(comp_level)) {
1544       return true;
1545     } else {
1546       CompiledMethod* result = method->code();
1547       if (result == NULL) return false;
1548       return comp_level == result->comp_level();
1549     }
1550   }
1551 }
1552 
1553 
1554 /**
1555  * See if this compilation is already requested.
1556  *
1557  * Implementation note: there is only a single "is in queue" bit
1558  * for each method.  This means that the check below is overly
1559  * conservative in the sense that an osr compilation in the queue
1560  * will block a normal compilation from entering the queue (and vice
1561  * versa).  This can be remedied by a full queue search to disambiguate
1562  * cases.  If it is deemed profitable, this may be done.
1563  */
1564 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1565   return method->queued_for_compilation();
1566 }
1567 
1568 // ------------------------------------------------------------------
1569 // CompileBroker::compilation_is_prohibited
1570 //
1571 // See if this compilation is not allowed.
1572 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1573   bool is_native = method->is_native();
1574   // Some compilers may not support the compilation of natives.
1575   AbstractCompiler *comp = compiler(comp_level);
1576   if (is_native &&
1577       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1578     method->set_not_compilable_quietly("native methods not supported", comp_level);
1579     return true;
1580   }
1581 
1582   bool is_osr = (osr_bci != standard_entry_bci);
1583   // Some compilers may not support on stack replacement.
1584   if (is_osr &&
1585       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1586     method->set_not_osr_compilable("OSR not supported", comp_level);
1587     return true;
1588   }
1589 
1590   // The method may be explicitly excluded by the user.
1591   double scale;
1592   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1593     bool quietly = CompilerOracle::should_exclude_quietly();
1594     if (PrintCompilation && !quietly) {
1595       // This does not happen quietly...
1596       ResourceMark rm;
1597       tty->print("### Excluding %s:%s",
1598                  method->is_native() ? "generation of native wrapper" : "compile",
1599                  (method->is_static() ? " static" : ""));
1600       method->print_short_name(tty);
1601       tty->cr();
1602     }
1603     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1604   }
1605 
1606   return false;
1607 }
1608 
1609 /**
1610  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1611  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1612  * The function also allows to generate separate compilation IDs for OSR compilations.
1613  */
1614 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1615 #ifdef ASSERT
1616   bool is_osr = (osr_bci != standard_entry_bci);
1617   int id;
1618   if (method->is_native()) {
1619     assert(!is_osr, "can't be osr");
1620     // Adapters, native wrappers and method handle intrinsics
1621     // should be generated always.
1622     return Atomic::add(&_compilation_id, 1);
1623   } else if (CICountOSR && is_osr) {
1624     id = Atomic::add(&_osr_compilation_id, 1);
1625     if (CIStartOSR <= id && id < CIStopOSR) {
1626       return id;
1627     }
1628   } else {
1629     id = Atomic::add(&_compilation_id, 1);
1630     if (CIStart <= id && id < CIStop) {
1631       return id;
1632     }
1633   }
1634 
1635   // Method was not in the appropriate compilation range.
1636   method->set_not_compilable_quietly("Not in requested compile id range");
1637   return 0;
1638 #else
1639   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1640   // only _compilation_id is incremented.
1641   return Atomic::add(&_compilation_id, 1);
1642 #endif
1643 }
1644 
1645 // ------------------------------------------------------------------
1646 // CompileBroker::assign_compile_id_unlocked
1647 //
1648 // Public wrapper for assign_compile_id that acquires the needed locks
1649 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1650   MutexLocker locker(thread, MethodCompileQueue_lock);
1651   return assign_compile_id(method, osr_bci);
1652 }
1653 
1654 // ------------------------------------------------------------------
1655 // CompileBroker::create_compile_task
1656 //
1657 // Create a CompileTask object representing the current request for
1658 // compilation.  Add this task to the queue.
1659 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1660                                                 int                 compile_id,
1661                                                 const methodHandle& method,
1662                                                 int                 osr_bci,
1663                                                 int                 comp_level,
1664                                                 const methodHandle& hot_method,
1665                                                 int                 hot_count,
1666                                                 CompileTask::CompileReason compile_reason,
1667                                                 bool                blocking) {
1668   CompileTask* new_task = CompileTask::allocate();
1669   new_task->initialize(compile_id, method, osr_bci, comp_level,
1670                        hot_method, hot_count, compile_reason,
1671                        blocking);
1672   queue->add(new_task);
1673   return new_task;
1674 }
1675 
1676 #if INCLUDE_JVMCI
1677 // The number of milliseconds to wait before checking if
1678 // JVMCI compilation has made progress.
1679 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1680 
1681 // The number of JVMCI compilation progress checks that must fail
1682 // before unblocking a thread waiting for a blocking compilation.
1683 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1684 
1685 /**
1686  * Waits for a JVMCI compiler to complete a given task. This thread
1687  * waits until either the task completes or it sees no JVMCI compilation
1688  * progress for N consecutive milliseconds where N is
1689  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1690  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1691  *
1692  * @return true if this thread needs to free/recycle the task
1693  */
1694 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1695   assert(UseJVMCICompiler, "sanity");
1696   MonitorLocker ml(thread, task->lock());
1697   int progress_wait_attempts = 0;
1698   int methods_compiled = jvmci->methods_compiled();
1699   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1700          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1701     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1702 
1703     bool progress;
1704     if (jvmci_compiler_thread != NULL) {
1705       // If the JVMCI compiler thread is not blocked or suspended, we deem it to be making progress.
1706       progress = jvmci_compiler_thread->thread_state() != _thread_blocked &&
1707         !jvmci_compiler_thread->is_external_suspend();
1708     } else {
1709       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1710       // that all JVMCI compiler threads are blocked on. We use the counter for
1711       // successful JVMCI compilations to determine whether JVMCI compilation
1712       // is still making progress through the JVMCI compiler queue.
1713       progress = jvmci->methods_compiled() != methods_compiled;
1714     }
1715 
1716     if (!progress) {
1717       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1718         if (PrintCompilation) {
1719           task->print(tty, "wait for blocking compilation timed out");
1720         }
1721         break;
1722       }
1723     } else {
1724       progress_wait_attempts = 0;
1725       if (jvmci_compiler_thread == NULL) {
1726         methods_compiled = jvmci->methods_compiled();
1727       }
1728     }
1729   }
1730   task->clear_waiter();
1731   return task->is_complete();
1732 }
1733 #endif
1734 
1735 /**
1736  *  Wait for the compilation task to complete.
1737  */
1738 void CompileBroker::wait_for_completion(CompileTask* task) {
1739   if (CIPrintCompileQueue) {
1740     ttyLocker ttyl;
1741     tty->print_cr("BLOCKING FOR COMPILE");
1742   }
1743 
1744   assert(task->is_blocking(), "can only wait on blocking task");
1745 
1746   JavaThread* thread = JavaThread::current();
1747 
1748   methodHandle method(thread, task->method());
1749   bool free_task;
1750 #if INCLUDE_JVMCI
1751   AbstractCompiler* comp = compiler(task->comp_level());
1752   if (comp->is_jvmci() && !task->should_wait_for_compilation()) {
1753     // It may return before compilation is completed.
1754     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1755   } else
1756 #endif
1757   {
1758     MonitorLocker ml(thread, task->lock());
1759     free_task = true;
1760     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1761       ml.wait();
1762     }
1763   }
1764 
1765   if (free_task) {
1766     if (is_compilation_disabled_forever()) {
1767       CompileTask::free(task);
1768       return;
1769     }
1770 
1771     // It is harmless to check this status without the lock, because
1772     // completion is a stable property (until the task object is recycled).
1773     assert(task->is_complete(), "Compilation should have completed");
1774     assert(task->code_handle() == NULL, "must be reset");
1775 
1776     // By convention, the waiter is responsible for recycling a
1777     // blocking CompileTask. Since there is only one waiter ever
1778     // waiting on a CompileTask, we know that no one else will
1779     // be using this CompileTask; we can free it.
1780     CompileTask::free(task);
1781   }
1782 }
1783 
1784 /**
1785  * Initialize compiler thread(s) + compiler object(s). The postcondition
1786  * of this function is that the compiler runtimes are initialized and that
1787  * compiler threads can start compiling.
1788  */
1789 bool CompileBroker::init_compiler_runtime() {
1790   CompilerThread* thread = CompilerThread::current();
1791   AbstractCompiler* comp = thread->compiler();
1792   // Final sanity check - the compiler object must exist
1793   guarantee(comp != NULL, "Compiler object must exist");
1794 
1795   {
1796     // Must switch to native to allocate ci_env
1797     ThreadToNativeFromVM ttn(thread);
1798     ciEnv ci_env((CompileTask*)NULL);
1799     // Cache Jvmti state
1800     ci_env.cache_jvmti_state();
1801     // Cache DTrace flags
1802     ci_env.cache_dtrace_flags();
1803 
1804     // Switch back to VM state to do compiler initialization
1805     ThreadInVMfromNative tv(thread);
1806     ResetNoHandleMark rnhm;
1807 
1808     // Perform per-thread and global initializations
1809     comp->initialize();
1810   }
1811 
1812   if (comp->is_failed()) {
1813     disable_compilation_forever();
1814     // If compiler initialization failed, no compiler thread that is specific to a
1815     // particular compiler runtime will ever start to compile methods.
1816     shutdown_compiler_runtime(comp, thread);
1817     return false;
1818   }
1819 
1820   // C1 specific check
1821   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1822     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1823     return false;
1824   }
1825 
1826   return true;
1827 }
1828 
1829 /**
1830  * If C1 and/or C2 initialization failed, we shut down all compilation.
1831  * We do this to keep things simple. This can be changed if it ever turns
1832  * out to be a problem.
1833  */
1834 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1835   // Free buffer blob, if allocated
1836   if (thread->get_buffer_blob() != NULL) {
1837     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1838     CodeCache::free(thread->get_buffer_blob());
1839   }
1840 
1841   if (comp->should_perform_shutdown()) {
1842     // There are two reasons for shutting down the compiler
1843     // 1) compiler runtime initialization failed
1844     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1845     warning("%s initialization failed. Shutting down all compilers", comp->name());
1846 
1847     // Only one thread per compiler runtime object enters here
1848     // Set state to shut down
1849     comp->set_shut_down();
1850 
1851     // Delete all queued compilation tasks to make compiler threads exit faster.
1852     if (_c1_compile_queue != NULL) {
1853       _c1_compile_queue->free_all();
1854     }
1855 
1856     if (_c2_compile_queue != NULL) {
1857       _c2_compile_queue->free_all();
1858     }
1859 
1860     // Set flags so that we continue execution with using interpreter only.
1861     UseCompiler    = false;
1862     UseInterpreter = true;
1863 
1864     // We could delete compiler runtimes also. However, there are references to
1865     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1866     // fail. This can be done later if necessary.
1867   }
1868 }
1869 
1870 /**
1871  * Helper function to create new or reuse old CompileLog.
1872  */
1873 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1874   if (!LogCompilation) return NULL;
1875 
1876   AbstractCompiler *compiler = ct->compiler();
1877   bool c1 = compiler->is_c1();
1878   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1879   assert(compiler_objects != NULL, "must be initialized at this point");
1880   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1881   assert(logs != NULL, "must be initialized at this point");
1882   int count = c1 ? _c1_count : _c2_count;
1883 
1884   // Find Compiler number by its threadObj.
1885   oop compiler_obj = ct->threadObj();
1886   int compiler_number = 0;
1887   bool found = false;
1888   for (; compiler_number < count; compiler_number++) {
1889     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1890       found = true;
1891       break;
1892     }
1893   }
1894   assert(found, "Compiler must exist at this point");
1895 
1896   // Determine pointer for this thread's log.
1897   CompileLog** log_ptr = &logs[compiler_number];
1898 
1899   // Return old one if it exists.
1900   CompileLog* log = *log_ptr;
1901   if (log != NULL) {
1902     ct->init_log(log);
1903     return log;
1904   }
1905 
1906   // Create a new one and remember it.
1907   init_compiler_thread_log();
1908   log = ct->log();
1909   *log_ptr = log;
1910   return log;
1911 }
1912 
1913 // ------------------------------------------------------------------
1914 // CompileBroker::compiler_thread_loop
1915 //
1916 // The main loop run by a CompilerThread.
1917 void CompileBroker::compiler_thread_loop() {
1918   CompilerThread* thread = CompilerThread::current();
1919   CompileQueue* queue = thread->queue();
1920   // For the thread that initializes the ciObjectFactory
1921   // this resource mark holds all the shared objects
1922   ResourceMark rm;
1923 
1924   // First thread to get here will initialize the compiler interface
1925 
1926   {
1927     ASSERT_IN_VM;
1928     MutexLocker only_one (thread, CompileThread_lock);
1929     if (!ciObjectFactory::is_initialized()) {
1930       ciObjectFactory::initialize();
1931     }
1932   }
1933 
1934   // Open a log.
1935   CompileLog* log = get_log(thread);
1936   if (log != NULL) {
1937     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1938                     thread->name(),
1939                     os::current_thread_id(),
1940                     os::current_process_id());
1941     log->stamp();
1942     log->end_elem();
1943   }
1944 
1945   // If compiler thread/runtime initialization fails, exit the compiler thread
1946   if (!init_compiler_runtime()) {
1947     return;
1948   }
1949 
1950   thread->start_idle_timer();
1951 
1952   // Poll for new compilation tasks as long as the JVM runs. Compilation
1953   // should only be disabled if something went wrong while initializing the
1954   // compiler runtimes. This, in turn, should not happen. The only known case
1955   // when compiler runtime initialization fails is if there is not enough free
1956   // space in the code cache to generate the necessary stubs, etc.
1957   while (!is_compilation_disabled_forever()) {
1958     // We need this HandleMark to avoid leaking VM handles.
1959     HandleMark hm(thread);
1960 
1961     CompileTask* task = queue->get();
1962     if (task == NULL) {
1963       if (UseDynamicNumberOfCompilerThreads) {
1964         // Access compiler_count under lock to enforce consistency.
1965         MutexLocker only_one(CompileThread_lock);
1966         if (can_remove(thread, true)) {
1967           if (TraceCompilerThreads) {
1968             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1969                           thread->name(), thread->idle_time_millis());
1970           }
1971           // Free buffer blob, if allocated
1972           if (thread->get_buffer_blob() != NULL) {
1973             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1974             CodeCache::free(thread->get_buffer_blob());
1975           }
1976           return; // Stop this thread.
1977         }
1978       }
1979     } else {
1980       // Assign the task to the current thread.  Mark this compilation
1981       // thread as active for the profiler.
1982       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1983       // occurs after fetching the compile task off the queue.
1984       CompileTaskWrapper ctw(task);
1985       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1986       task->set_code_handle(&result_handle);
1987       methodHandle method(thread, task->method());
1988 
1989       // Never compile a method if breakpoints are present in it
1990       if (method()->number_of_breakpoints() == 0) {
1991         // Compile the method.
1992         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1993           invoke_compiler_on_method(task);
1994           thread->start_idle_timer();
1995         } else {
1996           // After compilation is disabled, remove remaining methods from queue
1997           method->clear_queued_for_compilation();
1998           task->set_failure_reason("compilation is disabled");
1999         }
2000       }
2001 
2002       if (UseDynamicNumberOfCompilerThreads) {
2003         possibly_add_compiler_threads(thread);
2004         assert(!thread->has_pending_exception(), "should have been handled");
2005       }
2006     }
2007   }
2008 
2009   // Shut down compiler runtime
2010   shutdown_compiler_runtime(thread->compiler(), thread);
2011 }
2012 
2013 // ------------------------------------------------------------------
2014 // CompileBroker::init_compiler_thread_log
2015 //
2016 // Set up state required by +LogCompilation.
2017 void CompileBroker::init_compiler_thread_log() {
2018     CompilerThread* thread = CompilerThread::current();
2019     char  file_name[4*K];
2020     FILE* fp = NULL;
2021     intx thread_id = os::current_thread_id();
2022     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
2023       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
2024       if (dir == NULL) {
2025         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
2026                      thread_id, os::current_process_id());
2027       } else {
2028         jio_snprintf(file_name, sizeof(file_name),
2029                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
2030                      os::file_separator(), thread_id, os::current_process_id());
2031       }
2032 
2033       fp = fopen(file_name, "wt");
2034       if (fp != NULL) {
2035         if (LogCompilation && Verbose) {
2036           tty->print_cr("Opening compilation log %s", file_name);
2037         }
2038         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
2039         if (log == NULL) {
2040           fclose(fp);
2041           return;
2042         }
2043         thread->init_log(log);
2044 
2045         if (xtty != NULL) {
2046           ttyLocker ttyl;
2047           // Record any per thread log files
2048           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
2049         }
2050         return;
2051       }
2052     }
2053     warning("Cannot open log file: %s", file_name);
2054 }
2055 
2056 void CompileBroker::log_metaspace_failure() {
2057   const char* message = "some methods may not be compiled because metaspace "
2058                         "is out of memory";
2059   if (_compilation_log != NULL) {
2060     _compilation_log->log_metaspace_failure(message);
2061   }
2062   if (PrintCompilation) {
2063     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2064   }
2065 }
2066 
2067 
2068 // ------------------------------------------------------------------
2069 // CompileBroker::set_should_block
2070 //
2071 // Set _should_block.
2072 // Call this from the VM, with Threads_lock held and a safepoint requested.
2073 void CompileBroker::set_should_block() {
2074   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2075   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2076 #ifndef PRODUCT
2077   if (PrintCompilation && (Verbose || WizardMode))
2078     tty->print_cr("notifying compiler thread pool to block");
2079 #endif
2080   _should_block = true;
2081 }
2082 
2083 // ------------------------------------------------------------------
2084 // CompileBroker::maybe_block
2085 //
2086 // Call this from the compiler at convenient points, to poll for _should_block.
2087 void CompileBroker::maybe_block() {
2088   if (_should_block) {
2089 #ifndef PRODUCT
2090     if (PrintCompilation && (Verbose || WizardMode))
2091       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2092 #endif
2093     ThreadInVMfromNative tivfn(JavaThread::current());
2094   }
2095 }
2096 
2097 // wrapper for CodeCache::print_summary()
2098 static void codecache_print(bool detailed)
2099 {
2100   ResourceMark rm;
2101   stringStream s;
2102   // Dump code cache  into a buffer before locking the tty,
2103   {
2104     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2105     CodeCache::print_summary(&s, detailed);
2106   }
2107   ttyLocker ttyl;
2108   tty->print("%s", s.as_string());
2109 }
2110 
2111 // wrapper for CodeCache::print_summary() using outputStream
2112 static void codecache_print(outputStream* out, bool detailed) {
2113   ResourceMark rm;
2114   stringStream s;
2115 
2116   // Dump code cache into a buffer
2117   {
2118     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2119     CodeCache::print_summary(&s, detailed);
2120   }
2121 
2122   char* remaining_log = s.as_string();
2123   while (*remaining_log != '\0') {
2124     char* eol = strchr(remaining_log, '\n');
2125     if (eol == NULL) {
2126       out->print_cr("%s", remaining_log);
2127       remaining_log = remaining_log + strlen(remaining_log);
2128     } else {
2129       *eol = '\0';
2130       out->print_cr("%s", remaining_log);
2131       remaining_log = eol + 1;
2132     }
2133   }
2134 }
2135 
2136 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
2137                                  int compilable, const char* failure_reason) {
2138   if (success) {
2139     task->mark_success();
2140     if (ci_env != NULL) {
2141       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
2142     }
2143     if (_compilation_log != NULL) {
2144       nmethod* code = task->code();
2145       if (code != NULL) {
2146         _compilation_log->log_nmethod(thread, code);
2147       }
2148     }
2149   } else if (AbortVMOnCompilationFailure) {
2150     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2151       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2152     }
2153     if (compilable == ciEnv::MethodCompilable_never) {
2154       fatal("Never compilable: %s", failure_reason);
2155     }
2156   }
2157   // simulate crash during compilation
2158   assert(task->compile_id() != CICrashAt, "just as planned");
2159 }
2160 
2161 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2162   assert(task != NULL, "invariant");
2163   CompilerEvent::CompilationEvent::post(event,
2164                                         task->compile_id(),
2165                                         task->compiler()->type(),
2166                                         task->method(),
2167                                         task->comp_level(),
2168                                         task->is_success(),
2169                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2170                                         (task->code() == NULL) ? 0 : task->code()->total_size(),
2171                                         task->num_inlined_bytecodes());
2172 }
2173 
2174 int DirectivesStack::_depth = 0;
2175 CompilerDirectives* DirectivesStack::_top = NULL;
2176 CompilerDirectives* DirectivesStack::_bottom = NULL;
2177 
2178 // ------------------------------------------------------------------
2179 // CompileBroker::invoke_compiler_on_method
2180 //
2181 // Compile a method.
2182 //
2183 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2184   task->print_ul();
2185   if (PrintCompilation) {
2186     ResourceMark rm;
2187     task->print_tty();
2188   }
2189   elapsedTimer time;
2190 
2191   CompilerThread* thread = CompilerThread::current();
2192   ResourceMark rm(thread);
2193 
2194   if (LogEvents) {
2195     _compilation_log->log_compile(thread, task);
2196   }
2197 
2198   // Common flags.
2199   uint compile_id = task->compile_id();
2200   int osr_bci = task->osr_bci();
2201   bool is_osr = (osr_bci != standard_entry_bci);
2202   bool should_log = (thread->log() != NULL);
2203   bool should_break = false;
2204   const int task_level = task->comp_level();
2205   AbstractCompiler* comp = task->compiler();
2206 
2207   DirectiveSet* directive;
2208   {
2209     // create the handle inside it's own block so it can't
2210     // accidentally be referenced once the thread transitions to
2211     // native.  The NoHandleMark before the transition should catch
2212     // any cases where this occurs in the future.
2213     methodHandle method(thread, task->method());
2214     assert(!method->is_native(), "no longer compile natives");
2215 
2216     // Look up matching directives
2217     directive = DirectivesStack::getMatchingDirective(method, comp);
2218 
2219     // Update compile information when using perfdata.
2220     if (UsePerfData) {
2221       update_compile_perf_data(thread, method, is_osr);
2222     }
2223 
2224     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2225   }
2226 
2227   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2228   if (should_log && !directive->LogOption) {
2229     should_log = false;
2230   }
2231 
2232   // Allocate a new set of JNI handles.
2233   push_jni_handle_block();
2234   Method* target_handle = task->method();
2235   int compilable = ciEnv::MethodCompilable;
2236   const char* failure_reason = NULL;
2237   bool failure_reason_on_C_heap = false;
2238   const char* retry_message = NULL;
2239 
2240 #if INCLUDE_JVMCI
2241   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2242     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2243 
2244     TraceTime t1("compilation", &time);
2245     EventCompilation event;
2246     JVMCICompileState compile_state(task);
2247     JVMCIRuntime *runtime = NULL;
2248 
2249     if (JVMCI::in_shutdown()) {
2250       failure_reason = "in JVMCI shutdown";
2251       retry_message = "not retryable";
2252       compilable = ciEnv::MethodCompilable_never;
2253     } else if (compile_state.target_method_is_old()) {
2254       // Skip redefined methods
2255       failure_reason = "redefined method";
2256       retry_message = "not retryable";
2257       compilable = ciEnv::MethodCompilable_never;
2258     } else {
2259       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2260       methodHandle method(thread, target_handle);
2261       runtime = env.runtime();
2262       runtime->compile_method(&env, jvmci, method, osr_bci);
2263 
2264       failure_reason = compile_state.failure_reason();
2265       failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2266       if (!compile_state.retryable()) {
2267         retry_message = "not retryable";
2268         compilable = ciEnv::MethodCompilable_not_at_tier;
2269       }
2270       if (task->code() == NULL) {
2271         assert(failure_reason != NULL, "must specify failure_reason");
2272       }
2273     }
2274     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2275     if (event.should_commit()) {
2276       post_compilation_event(event, task);
2277     }
2278 
2279   } else
2280 #endif // INCLUDE_JVMCI
2281   {
2282     NoHandleMark  nhm;
2283     ThreadToNativeFromVM ttn(thread);
2284 
2285     ciEnv ci_env(task);
2286     if (should_break) {
2287       ci_env.set_break_at_compile(true);
2288     }
2289     if (should_log) {
2290       ci_env.set_log(thread->log());
2291     }
2292     assert(thread->env() == &ci_env, "set by ci_env");
2293     // The thread-env() field is cleared in ~CompileTaskWrapper.
2294 
2295     // Cache Jvmti state
2296     bool method_is_old = ci_env.cache_jvmti_state();
2297 
2298     // Skip redefined methods
2299     if (method_is_old) {
2300       ci_env.record_method_not_compilable("redefined method", true);
2301     }
2302 
2303     // Cache DTrace flags
2304     ci_env.cache_dtrace_flags();
2305 
2306     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2307 
2308     TraceTime t1("compilation", &time);
2309     EventCompilation event;
2310 
2311     if (comp == NULL) {
2312       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2313     } else if (!ci_env.failing()) {
2314       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2315         MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2316         while (WhiteBox::compilation_locked) {
2317           locker.wait();
2318         }
2319       }
2320       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2321 
2322       /* Repeat compilation without installing code for profiling purposes */
2323       int repeat_compilation_count = directive->RepeatCompilationOption;
2324       while (repeat_compilation_count > 0) {
2325         task->print_ul("NO CODE INSTALLED");
2326         comp->compile_method(&ci_env, target, osr_bci, false , directive);
2327         repeat_compilation_count--;
2328       }
2329     }
2330 
2331     if (!ci_env.failing() && task->code() == NULL) {
2332       //assert(false, "compiler should always document failure");
2333       // The compiler elected, without comment, not to register a result.
2334       // Do not attempt further compilations of this method.
2335       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2336     }
2337 
2338     // Copy this bit to the enclosing block:
2339     compilable = ci_env.compilable();
2340 
2341     if (ci_env.failing()) {
2342       failure_reason = ci_env.failure_reason();
2343       retry_message = ci_env.retry_message();
2344       ci_env.report_failure(failure_reason);
2345     }
2346 
2347     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2348     if (event.should_commit()) {
2349       post_compilation_event(event, task);
2350     }
2351   }
2352   // Remove the JNI handle block after the ciEnv destructor has run in
2353   // the previous block.
2354   pop_jni_handle_block();
2355 
2356   if (failure_reason != NULL) {
2357     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2358     if (_compilation_log != NULL) {
2359       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2360     }
2361     if (PrintCompilation) {
2362       FormatBufferResource msg = retry_message != NULL ?
2363         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2364         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2365       task->print(tty, msg);
2366     }
2367   }
2368 
2369   methodHandle method(thread, task->method());
2370 
2371   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2372 
2373   collect_statistics(thread, time, task);
2374 
2375   nmethod* nm = task->code();
2376   if (nm != NULL) {
2377     nm->maybe_print_nmethod(directive);
2378   }
2379   DirectivesStack::release(directive);
2380 
2381   if (PrintCompilation && PrintCompilation2) {
2382     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2383     tty->print("%4d ", compile_id);    // print compilation number
2384     tty->print("%s ", (is_osr ? "%" : " "));
2385     if (task->code() != NULL) {
2386       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2387     }
2388     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2389   }
2390 
2391   Log(compilation, codecache) log;
2392   if (log.is_debug()) {
2393     LogStream ls(log.debug());
2394     codecache_print(&ls, /* detailed= */ false);
2395   }
2396   if (PrintCodeCacheOnCompilation) {
2397     codecache_print(/* detailed= */ false);
2398   }
2399   // Disable compilation, if required.
2400   switch (compilable) {
2401   case ciEnv::MethodCompilable_never:
2402     if (is_osr)
2403       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2404     else
2405       method->set_not_compilable_quietly("MethodCompilable_never");
2406     break;
2407   case ciEnv::MethodCompilable_not_at_tier:
2408     if (is_osr)
2409       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2410     else
2411       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2412     break;
2413   }
2414 
2415   // Note that the queued_for_compilation bits are cleared without
2416   // protection of a mutex. [They were set by the requester thread,
2417   // when adding the task to the compile queue -- at which time the
2418   // compile queue lock was held. Subsequently, we acquired the compile
2419   // queue lock to get this task off the compile queue; thus (to belabour
2420   // the point somewhat) our clearing of the bits must be occurring
2421   // only after the setting of the bits. See also 14012000 above.
2422   method->clear_queued_for_compilation();
2423 }
2424 
2425 /**
2426  * The CodeCache is full. Print warning and disable compilation.
2427  * Schedule code cache cleaning so compilation can continue later.
2428  * This function needs to be called only from CodeCache::allocate(),
2429  * since we currently handle a full code cache uniformly.
2430  */
2431 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2432   UseInterpreter = true;
2433   if (UseCompiler || AlwaysCompileLoopMethods ) {
2434     if (xtty != NULL) {
2435       ResourceMark rm;
2436       stringStream s;
2437       // Dump code cache state into a buffer before locking the tty,
2438       // because log_state() will use locks causing lock conflicts.
2439       CodeCache::log_state(&s);
2440       // Lock to prevent tearing
2441       ttyLocker ttyl;
2442       xtty->begin_elem("code_cache_full");
2443       xtty->print("%s", s.as_string());
2444       xtty->stamp();
2445       xtty->end_elem();
2446     }
2447 
2448 #ifndef PRODUCT
2449     if (ExitOnFullCodeCache) {
2450       codecache_print(/* detailed= */ true);
2451       before_exit(JavaThread::current());
2452       exit_globals(); // will delete tty
2453       vm_direct_exit(1);
2454     }
2455 #endif
2456     if (UseCodeCacheFlushing) {
2457       // Since code cache is full, immediately stop new compiles
2458       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2459         NMethodSweeper::log_sweep("disable_compiler");
2460       }
2461     } else {
2462       disable_compilation_forever();
2463     }
2464 
2465     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2466   }
2467 }
2468 
2469 // ------------------------------------------------------------------
2470 // CompileBroker::update_compile_perf_data
2471 //
2472 // Record this compilation for debugging purposes.
2473 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2474   ResourceMark rm;
2475   char* method_name = method->name()->as_C_string();
2476   char current_method[CompilerCounters::cmname_buffer_length];
2477   size_t maxLen = CompilerCounters::cmname_buffer_length;
2478 
2479   const char* class_name = method->method_holder()->name()->as_C_string();
2480 
2481   size_t s1len = strlen(class_name);
2482   size_t s2len = strlen(method_name);
2483 
2484   // check if we need to truncate the string
2485   if (s1len + s2len + 2 > maxLen) {
2486 
2487     // the strategy is to lop off the leading characters of the
2488     // class name and the trailing characters of the method name.
2489 
2490     if (s2len + 2 > maxLen) {
2491       // lop of the entire class name string, let snprintf handle
2492       // truncation of the method name.
2493       class_name += s1len; // null string
2494     }
2495     else {
2496       // lop off the extra characters from the front of the class name
2497       class_name += ((s1len + s2len + 2) - maxLen);
2498     }
2499   }
2500 
2501   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2502 
2503   int last_compile_type = normal_compile;
2504   if (CICountOSR && is_osr) {
2505     last_compile_type = osr_compile;
2506   }
2507 
2508   CompilerCounters* counters = thread->counters();
2509   counters->set_current_method(current_method);
2510   counters->set_compile_type((jlong) last_compile_type);
2511 }
2512 
2513 // ------------------------------------------------------------------
2514 // CompileBroker::push_jni_handle_block
2515 //
2516 // Push on a new block of JNI handles.
2517 void CompileBroker::push_jni_handle_block() {
2518   JavaThread* thread = JavaThread::current();
2519 
2520   // Allocate a new block for JNI handles.
2521   // Inlined code from jni_PushLocalFrame()
2522   JNIHandleBlock* java_handles = thread->active_handles();
2523   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2524   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2525   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2526   thread->set_active_handles(compile_handles);
2527 }
2528 
2529 
2530 // ------------------------------------------------------------------
2531 // CompileBroker::pop_jni_handle_block
2532 //
2533 // Pop off the current block of JNI handles.
2534 void CompileBroker::pop_jni_handle_block() {
2535   JavaThread* thread = JavaThread::current();
2536 
2537   // Release our JNI handle block
2538   JNIHandleBlock* compile_handles = thread->active_handles();
2539   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2540   thread->set_active_handles(java_handles);
2541   compile_handles->set_pop_frame_link(NULL);
2542   JNIHandleBlock::release_block(compile_handles, thread); // may block
2543 }
2544 
2545 // ------------------------------------------------------------------
2546 // CompileBroker::collect_statistics
2547 //
2548 // Collect statistics about the compilation.
2549 
2550 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2551   bool success = task->is_success();
2552   methodHandle method (thread, task->method());
2553   uint compile_id = task->compile_id();
2554   bool is_osr = (task->osr_bci() != standard_entry_bci);
2555   const int comp_level = task->comp_level();
2556   nmethod* code = task->code();
2557   CompilerCounters* counters = thread->counters();
2558 
2559   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2560   MutexLocker locker(CompileStatistics_lock);
2561 
2562   // _perf variables are production performance counters which are
2563   // updated regardless of the setting of the CITime and CITimeEach flags
2564   //
2565 
2566   // account all time, including bailouts and failures in this counter;
2567   // C1 and C2 counters are counting both successful and unsuccessful compiles
2568   _t_total_compilation.add(time);
2569 
2570   if (!success) {
2571     _total_bailout_count++;
2572     if (UsePerfData) {
2573       _perf_last_failed_method->set_value(counters->current_method());
2574       _perf_last_failed_type->set_value(counters->compile_type());
2575       _perf_total_bailout_count->inc();
2576     }
2577     _t_bailedout_compilation.add(time);
2578   } else if (code == NULL) {
2579     if (UsePerfData) {
2580       _perf_last_invalidated_method->set_value(counters->current_method());
2581       _perf_last_invalidated_type->set_value(counters->compile_type());
2582       _perf_total_invalidated_count->inc();
2583     }
2584     _total_invalidated_count++;
2585     _t_invalidated_compilation.add(time);
2586   } else {
2587     // Compilation succeeded
2588 
2589     // update compilation ticks - used by the implementation of
2590     // java.lang.management.CompilationMXBean
2591     _perf_total_compilation->inc(time.ticks());
2592     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2593 
2594     if (CITime) {
2595       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2596       if (is_osr) {
2597         _t_osr_compilation.add(time);
2598         _sum_osr_bytes_compiled += bytes_compiled;
2599       } else {
2600         _t_standard_compilation.add(time);
2601         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2602       }
2603 
2604       // Collect statistic per compilation level
2605       if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2606         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2607         if (is_osr) {
2608           stats->_osr.update(time, bytes_compiled);
2609         } else {
2610           stats->_standard.update(time, bytes_compiled);
2611         }
2612         stats->_nmethods_size += code->total_size();
2613         stats->_nmethods_code_size += code->insts_size();
2614       } else {
2615         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2616       }
2617 
2618       // Collect statistic per compiler
2619       AbstractCompiler* comp = compiler(comp_level);
2620       if (comp) {
2621         CompilerStatistics* stats = comp->stats();
2622         if (is_osr) {
2623           stats->_osr.update(time, bytes_compiled);
2624         } else {
2625           stats->_standard.update(time, bytes_compiled);
2626         }
2627         stats->_nmethods_size += code->total_size();
2628         stats->_nmethods_code_size += code->insts_size();
2629       } else { // if (!comp)
2630         assert(false, "Compiler object must exist");
2631       }
2632     }
2633 
2634     if (UsePerfData) {
2635       // save the name of the last method compiled
2636       _perf_last_method->set_value(counters->current_method());
2637       _perf_last_compile_type->set_value(counters->compile_type());
2638       _perf_last_compile_size->set_value(method->code_size() +
2639                                          task->num_inlined_bytecodes());
2640       if (is_osr) {
2641         _perf_osr_compilation->inc(time.ticks());
2642         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2643       } else {
2644         _perf_standard_compilation->inc(time.ticks());
2645         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2646       }
2647     }
2648 
2649     if (CITimeEach) {
2650       double compile_time = time.seconds();
2651       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2652       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2653                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2654     }
2655 
2656     // Collect counts of successful compilations
2657     _sum_nmethod_size      += code->total_size();
2658     _sum_nmethod_code_size += code->insts_size();
2659     _total_compile_count++;
2660 
2661     if (UsePerfData) {
2662       _perf_sum_nmethod_size->inc(     code->total_size());
2663       _perf_sum_nmethod_code_size->inc(code->insts_size());
2664       _perf_total_compile_count->inc();
2665     }
2666 
2667     if (is_osr) {
2668       if (UsePerfData) _perf_total_osr_compile_count->inc();
2669       _total_osr_compile_count++;
2670     } else {
2671       if (UsePerfData) _perf_total_standard_compile_count->inc();
2672       _total_standard_compile_count++;
2673     }
2674   }
2675   // set the current method for the thread to null
2676   if (UsePerfData) counters->set_current_method("");
2677 }
2678 
2679 const char* CompileBroker::compiler_name(int comp_level) {
2680   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2681   if (comp == NULL) {
2682     return "no compiler";
2683   } else {
2684     return (comp->name());
2685   }
2686 }
2687 
2688 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2689   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2690                 name, stats->bytes_per_second(),
2691                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2692                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2693                 stats->_nmethods_size, stats->_nmethods_code_size);
2694 }
2695 
2696 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2697   if (per_compiler) {
2698     if (aggregate) {
2699       tty->cr();
2700       tty->print_cr("Individual compiler times (for compiled methods only)");
2701       tty->print_cr("------------------------------------------------");
2702       tty->cr();
2703     }
2704     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2705       AbstractCompiler* comp = _compilers[i];
2706       if (comp != NULL) {
2707         print_times(comp->name(), comp->stats());
2708       }
2709     }
2710     if (aggregate) {
2711       tty->cr();
2712       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
2713       tty->print_cr("------------------------------------------------");
2714       tty->cr();
2715     }
2716     char tier_name[256];
2717     for (int tier = CompLevel_simple; tier <= CompLevel_highest_tier; tier++) {
2718       CompilerStatistics* stats = &_stats_per_level[tier-1];
2719       sprintf(tier_name, "Tier%d", tier);
2720       print_times(tier_name, stats);
2721     }
2722   }
2723 
2724 #if INCLUDE_JVMCI
2725   // In hosted mode, print the JVMCI compiler specific counters manually.
2726   if (EnableJVMCI && !UseJVMCICompiler) {
2727     JVMCICompiler::print_compilation_timers();
2728   }
2729 #endif
2730 
2731   if (!aggregate) {
2732     return;
2733   }
2734 
2735   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2736   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2737   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2738 
2739   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2740   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2741 
2742   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2743   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2744   int total_compile_count = CompileBroker::_total_compile_count;
2745   int total_bailout_count = CompileBroker::_total_bailout_count;
2746   int total_invalidated_count = CompileBroker::_total_invalidated_count;
2747 
2748   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2749   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2750 
2751   tty->cr();
2752   tty->print_cr("Accumulated compiler times");
2753   tty->print_cr("----------------------------------------------------------");
2754                //0000000000111111111122222222223333333333444444444455555555556666666666
2755                //0123456789012345678901234567890123456789012345678901234567890123456789
2756   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2757   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2758                 standard_compilation.seconds(),
2759                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
2760   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2761                 CompileBroker::_t_bailedout_compilation.seconds(),
2762                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
2763   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2764                 osr_compilation.seconds(),
2765                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
2766   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2767                 CompileBroker::_t_invalidated_compilation.seconds(),
2768                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
2769 
2770   AbstractCompiler *comp = compiler(CompLevel_simple);
2771   if (comp != NULL) {
2772     tty->cr();
2773     comp->print_timers();
2774   }
2775   comp = compiler(CompLevel_full_optimization);
2776   if (comp != NULL) {
2777     tty->cr();
2778     comp->print_timers();
2779   }
2780   tty->cr();
2781   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2782   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2783   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2784   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2785   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2786   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2787   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2788   double tcs = total_compilation.seconds();
2789   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2790   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2791   tty->cr();
2792   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2793   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2794 }
2795 
2796 // Print general/accumulated JIT information.
2797 void CompileBroker::print_info(outputStream *out) {
2798   if (out == NULL) out = tty;
2799   out->cr();
2800   out->print_cr("======================");
2801   out->print_cr("   General JIT info   ");
2802   out->print_cr("======================");
2803   out->cr();
2804   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2805   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2806   out->cr();
2807   out->print_cr("CodeCache overview");
2808   out->print_cr("--------------------------------------------------------");
2809   out->cr();
2810   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2811   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2812   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2813   out->cr();
2814 
2815   out->cr();
2816   out->print_cr("CodeCache cleaning overview");
2817   out->print_cr("--------------------------------------------------------");
2818   out->cr();
2819   NMethodSweeper::print(out);
2820   out->print_cr("--------------------------------------------------------");
2821   out->cr();
2822 }
2823 
2824 // Note: tty_lock must not be held upon entry to this function.
2825 //       Print functions called from herein do "micro-locking" on tty_lock.
2826 //       That's a tradeoff which keeps together important blocks of output.
2827 //       At the same time, continuous tty_lock hold time is kept in check,
2828 //       preventing concurrently printing threads from stalling a long time.
2829 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2830   TimeStamp ts_total;
2831   TimeStamp ts_global;
2832   TimeStamp ts;
2833 
2834   bool allFun = !strcmp(function, "all");
2835   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2836   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2837   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2838   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2839   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2840   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2841   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2842   bool discard = !strcmp(function, "discard") || allFun;
2843 
2844   if (out == NULL) {
2845     out = tty;
2846   }
2847 
2848   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2849     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2850     out->cr();
2851     return;
2852   }
2853 
2854   ts_total.update(); // record starting point
2855 
2856   if (aggregate) {
2857     print_info(out);
2858   }
2859 
2860   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2861   // That prevents another thread from destroying our view on the CodeHeap.
2862   // When we request individual parts of the analysis via the jcmd interface, it is possible
2863   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2864   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2865   // across user interaction.
2866   // Acquire this lock before acquiring the CodeCache_lock.
2867   // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2868   // leading to an unnecessarily long hold time of the CodeCache_lock.
2869   ts.update(); // record starting point
2870   MutexLocker mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2871   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2872 
2873   // If we serve an "allFun" call, it is beneficial to hold the CodeCache_lock
2874   // for the entire duration of aggregation and printing. That makes sure
2875   // we see a consistent picture and do not run into issues caused by
2876   // the CodeHeap being altered concurrently.
2877   Mutex* global_lock   = allFun ? CodeCache_lock : NULL;
2878   Mutex* function_lock = allFun ? NULL : CodeCache_lock;
2879   ts_global.update(); // record starting point
2880   MutexLocker mu2(global_lock, Mutex::_no_safepoint_check_flag);
2881   if (global_lock != NULL) {
2882     out->print_cr("\n__ CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2883     ts_global.update(); // record starting point
2884   }
2885 
2886   if (aggregate) {
2887     ts.update(); // record starting point
2888     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2889     if (function_lock != NULL) {
2890       out->print_cr("\n__ CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2891     }
2892 
2893     ts.update(); // record starting point
2894     CodeCache::aggregate(out, granularity);
2895     if (function_lock != NULL) {
2896       out->print_cr("\n__ CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2897     }
2898   }
2899 
2900   if (usedSpace) CodeCache::print_usedSpace(out);
2901   if (freeSpace) CodeCache::print_freeSpace(out);
2902   if (methodCount) CodeCache::print_count(out);
2903   if (methodSpace) CodeCache::print_space(out);
2904   if (methodAge) CodeCache::print_age(out);
2905   if (methodNames) {
2906     // print_names() has shown to be sensitive to concurrent CodeHeap modifications.
2907     // Therefore, request  the CodeCache_lock before calling...
2908     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2909     CodeCache::print_names(out);
2910   }
2911   if (discard) CodeCache::discard(out);
2912 
2913   if (global_lock != NULL) {
2914     out->print_cr("\n__ CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2915   }
2916   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2917 }