diff a/test/micro/org/openjdk/bench/valhalla/corelibs/mapprotos/XHashMap.java b/test/micro/org/openjdk/bench/valhalla/corelibs/mapprotos/XHashMap.java --- /dev/null +++ b/test/micro/org/openjdk/bench/valhalla/corelibs/mapprotos/XHashMap.java @@ -0,0 +1,2368 @@ +/* + * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package org.openjdk.bench.valhalla.corelibs.mapprotos; + +import java.io.IOException; +import java.io.InvalidObjectException; +import java.io.PrintStream; +import java.io.Serializable; +import java.lang.reflect.InvocationTargetException; +import java.lang.reflect.Method; +import java.lang.reflect.ParameterizedType; +import java.lang.reflect.Type; +import java.util.AbstractCollection; +//import java.util.AbstractMap; +import java.util.AbstractSet; +import java.util.Arrays; +import java.util.Collection; +import java.util.Collections; +import java.util.ConcurrentModificationException; +import java.util.Hashtable; +import java.util.Iterator; +import java.util.Map; +import java.util.Objects; +import java.util.Optional; +import java.util.TreeMap; +import java.util.NoSuchElementException; +import java.util.Set; +import java.util.function.BiConsumer; +import java.util.function.BiFunction; +import java.util.function.Consumer; +import java.util.function.Function; + +/** + * Hash map implementation that uses inline class entries in the initial table + * and maintains a link list of separate Node entries for key/value pairs + * that have the same hash value. The handling of the link list is the same + * as the original java.util.HashMap. + * The primary entry array is larger than in HashMap due to the inline storage + * of the entries but since it replaces the separate Node instance for the first + * Node, the overall memory usage is less for a reasonably full table. + * The TreeNode organization is not yet implemented. + *

+ * Hash table based implementation of the {@code Map} interface. This + * implementation provides all of the optional map operations, and permits + * {@code null} values and the {@code null} key. (The {@code HashMap} + * class is roughly equivalent to {@code Hashtable}, except that it is + * unsynchronized and permits nulls.) This class makes no guarantees as to + * the order of the map; in particular, it does not guarantee that the order + * will remain constant over time. + * + *

This implementation provides constant-time performance for the basic + * operations ({@code get} and {@code put}), assuming the hash function + * disperses the elements properly among the buckets. Iteration over + * collection views requires time proportional to the "capacity" of the + * {@code HashMap} instance (the number of buckets) plus its size (the number + * of key-value mappings). Thus, it's very important not to set the initial + * capacity too high (or the load factor too low) if iteration performance is + * important. + * + *

An instance of {@code HashMap} has two parameters that affect its + * performance: initial capacity and load factor. The + * capacity is the number of buckets in the hash table, and the initial + * capacity is simply the capacity at the time the hash table is created. The + * load factor is a measure of how full the hash table is allowed to + * get before its capacity is automatically increased. When the number of + * entries in the hash table exceeds the product of the load factor and the + * current capacity, the hash table is rehashed (that is, internal data + * structures are rebuilt) so that the hash table has approximately twice the + * number of buckets. + * + *

As a general rule, the default load factor (.75) offers a good + * tradeoff between time and space costs. Higher values decrease the + * space overhead but increase the lookup cost (reflected in most of + * the operations of the {@code HashMap} class, including + * {@code get} and {@code put}). The expected number of entries in + * the map and its load factor should be taken into account when + * setting its initial capacity, so as to minimize the number of + * rehash operations. If the initial capacity is greater than the + * maximum number of entries divided by the load factor, no rehash + * operations will ever occur. + * + *

If many mappings are to be stored in a {@code HashMap} + * instance, creating it with a sufficiently large capacity will allow + * the mappings to be stored more efficiently than letting it perform + * automatic rehashing as needed to grow the table. Note that using + * many keys with the same {@code hashCode()} is a sure way to slow + * down performance of any hash table. To ameliorate impact, when keys + * are {@link Comparable}, this class may use comparison order among + * keys to help break ties. + * + *

Note that this implementation is not synchronized. + * If multiple threads access a hash map concurrently, and at least one of + * the threads modifies the map structurally, it must be + * synchronized externally. (A structural modification is any operation + * that adds or deletes one or more mappings; merely changing the value + * associated with a key that an instance already contains is not a + * structural modification.) This is typically accomplished by + * synchronizing on some object that naturally encapsulates the map. + * + * If no such object exists, the map should be "wrapped" using the + * {@link Collections#synchronizedMap Collections.synchronizedMap} + * method. This is best done at creation time, to prevent accidental + * unsynchronized access to the map:

+ *   Map m = Collections.synchronizedMap(new HashMap(...));
+ * + *

The iterators returned by all of this class's "collection view methods" + * are fail-fast: if the map is structurally modified at any time after + * the iterator is created, in any way except through the iterator's own + * {@code remove} method, the iterator will throw a + * {@link ConcurrentModificationException}. Thus, in the face of concurrent + * modification, the iterator fails quickly and cleanly, rather than risking + * arbitrary, non-deterministic behavior at an undetermined time in the + * future. + * + *

Note that the fail-fast behavior of an iterator cannot be guaranteed + * as it is, generally speaking, impossible to make any hard guarantees in the + * presence of unsynchronized concurrent modification. Fail-fast iterators + * throw {@code ConcurrentModificationException} on a best-effort basis. + * Therefore, it would be wrong to write a program that depended on this + * exception for its correctness: the fail-fast behavior of iterators + * should be used only to detect bugs. + * + *

This class is a member of the + * + * Java Collections Framework. + * + * @param the type of keys maintained by this map + * @param the type of mapped values + * + * @author Doug Lea + * @author Josh Bloch + * @author Arthur van Hoff + * @author Neal Gafter + * @see Object#hashCode() + * @see Collection + * @see Map + * @see TreeMap + * @see Hashtable + * @since 1.2 + */ +public class XHashMap extends XAbstractMap + implements Map, Cloneable, Serializable { + + private static final long serialVersionUID = 362498820763181265L; + + /* + * Implementation notes. + * + * This map usually acts as a binned (bucketed) hash table, but + * when bins get too large, they are transformed into bins of + * TreeNodes, each structured similarly to those in + * java.util.TreeMap. Most methods try to use normal bins, but + * relay to TreeNode methods when applicable (simply by checking + * instanceof a node). Bins of TreeNodes may be traversed and + * used like any others, but additionally support faster lookup + * when overpopulated. However, since the vast majority of bins in + * normal use are not overpopulated, checking for existence of + * tree bins may be delayed in the course of table methods. + * + * Tree bins (i.e., bins whose elements are all TreeNodes) are + * ordered primarily by hashCode, but in the case of ties, if two + * elements are of the same "class C implements Comparable", + * type then their compareTo method is used for ordering. (We + * conservatively check generic types via reflection to validate + * this -- see method comparableClassFor). The added complexity + * of tree bins is worthwhile in providing worst-case O(log n) + * operations when keys either have distinct hashes or are + * orderable, Thus, performance degrades gracefully under + * accidental or malicious usages in which hashCode() methods + * return values that are poorly distributed, as well as those in + * which many keys share a hashCode, so long as they are also + * Comparable. (If neither of these apply, we may waste about a + * factor of two in time and space compared to taking no + * precautions. But the only known cases stem from poor user + * programming practices that are already so slow that this makes + * little difference.) + * + * Because TreeNodes are about twice the size of regular nodes, we + * use them only when bins contain enough nodes to warrant use + * (see TREEIFY_THRESHOLD). And when they become too small (due to + * removal or resizing) they are converted back to plain bins. In + * usages with well-distributed user hashCodes, tree bins are + * rarely used. Ideally, under random hashCodes, the frequency of + * nodes in bins follows a Poisson distribution + * (http://en.wikipedia.org/wiki/Poisson_distribution) with a + * parameter of about 0.5 on average for the default resizing + * threshold of 0.75, although with a large variance because of + * resizing granularity. Ignoring variance, the expected + * occurrences of list size k are (exp(-0.5) * pow(0.5, k) / + * factorial(k)). The first values are: + * + * 0: 0.60653066 + * 1: 0.30326533 + * 2: 0.07581633 + * 3: 0.01263606 + * 4: 0.00157952 + * 5: 0.00015795 + * 6: 0.00001316 + * 7: 0.00000094 + * 8: 0.00000006 + * more: less than 1 in ten million + * + * The root of a tree bin is normally its first node. However, + * sometimes (currently only upon Iterator.remove), the root might + * be elsewhere, but can be recovered following parent links + * (method TreeNode.root()). + * + * All applicable internal methods accept a hash code as an + * argument (as normally supplied from a public method), allowing + * them to call each other without recomputing user hashCodes. + * Most internal methods also accept a "tab" argument, that is + * normally the current table, but may be a new or old one when + * resizing or converting. + * + * When bin lists are treeified, split, or untreeified, we keep + * them in the same relative access/traversal order (i.e., field + * Node.next) to better preserve locality, and to slightly + * simplify handling of splits and traversals that invoke + * iterator.remove. When using comparators on insertion, to keep a + * total ordering (or as close as is required here) across + * rebalancings, we compare classes and identityHashCodes as + * tie-breakers. + * + * The use and transitions among plain vs tree modes is + * complicated by the existence of subclass LinkedHashMap. See + * below for hook methods defined to be invoked upon insertion, + * removal and access that allow LinkedHashMap internals to + * otherwise remain independent of these mechanics. (This also + * requires that a map instance be passed to some utility methods + * that may create new nodes.) + * + * The concurrent-programming-like SSA-based coding style helps + * avoid aliasing errors amid all of the twisty pointer operations. + */ + + /** + * The default initial capacity - MUST be a power of two. + */ + static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 + + /** + * The maximum capacity, used if a higher value is implicitly specified + * by either of the constructors with arguments. + * MUST be a power of two <= 1<<30. + */ + static final int MAXIMUM_CAPACITY = 1 << 30; + + /** + * The load factor used when none specified in constructor. + */ + static final float DEFAULT_LOAD_FACTOR = 0.75f; + + /** + * The bin count threshold for using a tree rather than list for a + * bin. Bins are converted to trees when adding an element to a + * bin with at least this many nodes. The value must be greater + * than 2 and should be at least 8 to mesh with assumptions in + * tree removal about conversion back to plain bins upon + * shrinkage. + */ + static final int TREEIFY_THRESHOLD = 8; + + /** + * The bin count threshold for untreeifying a (split) bin during a + * resize operation. Should be less than TREEIFY_THRESHOLD, and at + * most 6 to mesh with shrinkage detection under removal. + */ + static final int UNTREEIFY_THRESHOLD = 6; + + /** + * The smallest table capacity for which bins may be treeified. + * (Otherwise the table is resized if too many nodes in a bin.) + * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts + * between resizing and treeification thresholds. + */ + static final int MIN_TREEIFY_CAPACITY = 64; + + private XNode emptyXNode() { + return XNode.default; + } + /** + * Basic hash bin node, used for most entries. (See below for + * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) + */ + static inline class XNode implements Map.Entry { + final int hash; + final K key; + V value; + Node? next; + + XNode(int hash, K key, V value, Node? next) { + this.hash = hash; + this.key = key; + this.value = value; + this.next = next; + } + + boolean isEmpty() { + return hash == 0 && key == null && value == null; + } + public final K getKey() { return key; } + public final V getValue() { return value; } + public final String toString() { return key + "=" + value; } + + public final int hashCode() { + return Objects.hashCode(key) ^ Objects.hashCode(value); + } + + public final V setValue(V newValue) { + throw new IllegalStateException("XNode cannot set a value"); +// V oldValue = value; +// value = newValue; +// return oldValue; + } + + public final boolean equals(Object o) { + if (o instanceof Map.Entry) { + Map.Entry e = (Map.Entry)o; + if (Objects.equals(key, e.getKey()) && + Objects.equals(value, e.getValue())) + return true; + } + return false; + } + } + + /** + * Basic hash bin node, used for overflow entries. (See below for + * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) + */ + static class Node implements Map.Entry { + final int hash; + final K key; + V value; + Node next; + + Node(int hash, K key, V value, Node next) { + this.hash = hash; + this.key = key; + this.value = value; + this.next = next; + } + + public final K getKey() { return key; } + public final V getValue() { return value; } + public final String toString() { return key + "=" + value; } + public final int hashCode() { + return Objects.hashCode(key) ^ Objects.hashCode(value); + } + + public final V setValue(V newValue) { + V oldValue = value; + value = newValue; + return oldValue; + } + + public final boolean equals(Object o) { + if (o == this) + return true; + if (o instanceof Map.Entry) { + Map.Entry e = (Map.Entry)o; + if (Objects.equals(key, e.getKey()) && + Objects.equals(value, e.getValue())) + return true; + } + return false; + } + } + + inline class XNodeWrapper implements Map.Entry { + int index; + + XNodeWrapper(int index) { + this.index = index; + } + + public K getKey() { + XNode e = table[index]; + return e.isEmpty() ? null : e.key; + } + + public V getValue() { + XNode e = table[index]; + return e.isEmpty() ? null : e.value; + } + + /** + * Replaces the value corresponding to this entry with the specified + * value (optional operation). (Writes through to the map.) The + * behavior of this call is undefined if the mapping has already been + * removed from the map (by the iterator's {@code remove} operation). + * + * @param value new value to be stored in this entry + * @return old value corresponding to the entry + * @throws UnsupportedOperationException if the {@code put} operation + * is not supported by the backing map + * @throws ClassCastException if the class of the specified value + * prevents it from being stored in the backing map + * @throws NullPointerException if the backing map does not permit + * null values, and the specified value is null + * @throws IllegalArgumentException if some property of this value + * prevents it from being stored in the backing map + * @throws IllegalStateException implementations may, but are not + * required to, throw this exception if the entry has been + * removed from the backing map. + */ + public V setValue(V value) { + XNode e = table[index]; + assert !e.isEmpty(); + table[index] = new XNode(e.hash, e.key, value, e.next); + return e.value; + } + } + /* ---------------- Static utilities -------------- */ + + /** + * Computes key.hashCode() and spreads (XORs) higher bits of hash + * to lower. Because the table uses power-of-two masking, sets of + * hashes that vary only in bits above the current mask will + * always collide. (Among known examples are sets of Float keys + * holding consecutive whole numbers in small tables.) So we + * apply a transform that spreads the impact of higher bits + * downward. There is a tradeoff between speed, utility, and + * quality of bit-spreading. Because many common sets of hashes + * are already reasonably distributed (so don't benefit from + * spreading), and because we use trees to handle large sets of + * collisions in bins, we just XOR some shifted bits in the + * cheapest possible way to reduce systematic lossage, as well as + * to incorporate impact of the highest bits that would otherwise + * never be used in index calculations because of table bounds. + */ + static final int hash(Object key) { + int h; + return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); + } + + /** + * Returns x's Class if it is of the form "class C implements + * Comparable", else null. + */ + static Class comparableClassFor(Object x) { + if (x instanceof Comparable) { + Class c; Type[] ts, as; ParameterizedType p; + if ((c = x.getClass()) == String.class) // bypass checks + return c; + if ((ts = c.getGenericInterfaces()) != null) { + for (Type t : ts) { + if ((t instanceof ParameterizedType) && + ((p = (ParameterizedType) t).getRawType() == + Comparable.class) && + (as = p.getActualTypeArguments()) != null && + as.length == 1 && as[0] == c) // type arg is c + return c; + } + } + } + return null; + } + + /** + * Returns k.compareTo(x) if x matches kc (k's screened comparable + * class), else 0. + */ + @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable + static int compareComparables(Class kc, Object k, Object x) { + return (x == null || x.getClass() != kc ? 0 : + ((Comparable)k).compareTo(x)); + } + + /** + * Returns a power of two size for the given target capacity. + */ + static final int tableSizeFor(int cap) { + int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1); + return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; + } + + /* ---------------- Fields -------------- */ + + /** + * The table, initialized on first use, and resized as + * necessary. When allocated, length is always a power of two. + * (We also tolerate length zero in some operations to allow + * bootstrapping mechanics that are currently not needed.) + */ + transient XNode[] table; + + /** + * Holds cached entrySet(). Note that AbstractMap fields are used + * for keySet() and values(). + */ + transient Set> entrySet; + + /** + * The number of key-value mappings contained in this map. + */ + transient int size; + + /** + * The number of times this HashMap has been structurally modified + * Structural modifications are those that change the number of mappings in + * the HashMap or otherwise modify its internal structure (e.g., + * rehash). This field is used to make iterators on Collection-views of + * the HashMap fail-fast. (See ConcurrentModificationException). + */ + transient int modCount; + + /** + * The next size value at which to resize (capacity * load factor). + * + * @serial + */ + // (The javadoc description is true upon serialization. + // Additionally, if the table array has not been allocated, this + // field holds the initial array capacity, or zero signifying + // DEFAULT_INITIAL_CAPACITY.) + int threshold; + + /** + * The load factor for the hash table. + * + * @serial + */ + final float loadFactor; + + /* ---------------- Public operations -------------- */ + + /** + * Constructs an empty {@code HashMap} with the specified initial + * capacity and load factor. + * + * @param initialCapacity the initial capacity + * @param loadFactor the load factor + * @throws IllegalArgumentException if the initial capacity is negative + * or the load factor is nonpositive + */ + public XHashMap(int initialCapacity, float loadFactor) { + if (initialCapacity < 0) + throw new IllegalArgumentException("Illegal initial capacity: " + + initialCapacity); + if (initialCapacity > MAXIMUM_CAPACITY) + initialCapacity = MAXIMUM_CAPACITY; + if (loadFactor <= 0 || Float.isNaN(loadFactor)) + throw new IllegalArgumentException("Illegal load factor: " + + loadFactor); + this.loadFactor = loadFactor; + this.threshold = tableSizeFor(initialCapacity); + } + + /** + * Constructs an empty {@code HashMap} with the specified initial + * capacity and the default load factor (0.75). + * + * @param initialCapacity the initial capacity. + * @throws IllegalArgumentException if the initial capacity is negative. + */ + public XHashMap(int initialCapacity) { + this(initialCapacity, DEFAULT_LOAD_FACTOR); + } + + /** + * Constructs an empty {@code HashMap} with the default initial capacity + * (16) and the default load factor (0.75). + */ + public XHashMap() { + this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted + } + + /** + * Constructs a new {@code HashMap} with the same mappings as the + * specified {@code Map}. The {@code HashMap} is created with + * default load factor (0.75) and an initial capacity sufficient to + * hold the mappings in the specified {@code Map}. + * + * @param m the map whose mappings are to be placed in this map + * @throws NullPointerException if the specified map is null + */ + public XHashMap(Map m) { + this.loadFactor = DEFAULT_LOAD_FACTOR; + putMapEntries(m, false); + } + + /** + * Implements Map.putAll and Map constructor. + * + * @param m the map + * @param evict false when initially constructing this map, else true. + */ + final void putMapEntries(Map m, boolean evict) { + int s = m.size(); + if (s > 0) { + if (table == null) { // pre-size + float ft = ((float)s / loadFactor) + 1.0F; + int t = ((ft < (float)MAXIMUM_CAPACITY) ? + (int)ft : MAXIMUM_CAPACITY); + if (t > threshold) + threshold = tableSizeFor(t); + } else { + // Because of linked-list bucket constraints, we cannot + // expand all at once, but can reduce total resize + // effort by repeated doubling now vs later + while (s > threshold && table.length < MAXIMUM_CAPACITY) + resize(); + } + + for (Map.Entry e : m.entrySet()) { + K key = e.getKey(); + V value = e.getValue(); + putVal(hash(key), key, value, false, evict); + } + } + } + + /** + * Returns the number of key-value mappings in this map. + * + * @return the number of key-value mappings in this map + */ + public int size() { + return size; + } + + /** + * Returns {@code true} if this map contains no key-value mappings. + * + * @return {@code true} if this map contains no key-value mappings + */ + public boolean isEmpty() { + return size == 0; + } + + /** + * Returns the value to which the specified key is mapped, + * or {@code null} if this map contains no mapping for the key. + * + *

More formally, if this map contains a mapping from a key + * {@code k} to a value {@code v} such that {@code (key==null ? k==null : + * key.equals(k))}, then this method returns {@code v}; otherwise + * it returns {@code null}. (There can be at most one such mapping.) + * + *

A return value of {@code null} does not necessarily + * indicate that the map contains no mapping for the key; it's also + * possible that the map explicitly maps the key to {@code null}. + * The {@link #containsKey containsKey} operation may be used to + * distinguish these two cases. + * + * @see #put(Object, Object) + */ + public V get(Object key) { + int hash = hash(key); + Node e; + XNode n = getXNode(hash, key); + return (!n.isEmpty()) ? n.value + : (e = getNode(hash, key)) == null ? null : e.value; + } + + /** + * Implements Map.get and related methods. + * + * @param hash hash for key + * @param key the key + * @return the node, or emptyXNode() if not at top level. + */ + final XNode getXNode(int hash, Object key) { + XNode[] tab; + XNode first; + int n; + K k; + if ((tab = table) != null && (n = tab.length) > 0 && + !(first = tab[(n - 1) & hash]).isEmpty()) { + if (first.hash == hash && // always check first node + ((k = first.key) == key || (key != null && key.equals(k)))) + return first; + } + return emptyXNode(); + } + + /** + * Implements Map.get and related methods when the key is not found in the primary entry. + * + * @param hash hash for key + * @param key the key + * @return the node, or null if none + */ + final Node getNode(int hash, Object key) { + XNode[] tab; XNode first; Node e; int n; K k; + if ((tab = table) != null && (n = tab.length) > 0 && + !(first = tab[(n - 1) & hash]).isEmpty()) { + if ((e = first.next) != null) { + if (e instanceof TreeNode) + return ((TreeNode)e).getTreeNode(hash, key); + do { + if (e.hash == hash && + ((k = e.key) == key || (key != null && key.equals(k)))) + return e; + } while ((e = e.next) != null); + } + } + return null; + } + + /** + * Returns {@code true} if this map contains a mapping for the + * specified key. + * + * @param key The key whose presence in this map is to be tested + * @return {@code true} if this map contains a mapping for the specified + * key. + */ + public boolean containsKey(Object key) { + int hash = hash(key); + Node e; + XNode n = getXNode(hash, key); + return !n.isEmpty() || (e = getNode(hash, key)) != null; + } + + /** + * Associates the specified value with the specified key in this map. + * If the map previously contained a mapping for the key, the old + * value is replaced. + * + * @param key key with which the specified value is to be associated + * @param value value to be associated with the specified key + * @return the previous value associated with {@code key}, or + * {@code null} if there was no mapping for {@code key}. + * (A {@code null} return can also indicate that the map + * previously associated {@code null} with {@code key}.) + */ + public V put(K key, V value) { + return putVal(hash(key), key, value, false, true); + } + + /** + * Implements Map.put and related methods. + * + * @param hash hash for key + * @param key the key + * @param value the value to put + * @param onlyIfAbsent if true, don't change existing value + * @param evict if false, the table is in creation mode. + * @return previous value, or null if none + */ + final V putVal(int hash, K key, V value, boolean onlyIfAbsent, + boolean evict) { + XNode[] tab; XNode tp; int n, i; + if ((tab = table) == null || (n = tab.length) == 0) + n = (tab = resize()).length; + if ((tp = tab[i = (n - 1) & hash]).isEmpty()) { + tab[i] = new XNode(hash, key, value, null); + } else { + Node e; K k; + if (tp.hash == hash && + ((k = tp.key) == key || (key != null && key.equals(k)))) { + if (!onlyIfAbsent || tp.value == null) { + tab[i] = new XNode(hash, k, value, tp.next); + } + return tp.value; + } else if ((e = tp.next) == null) { + Node x = newNode(hash, key, value, null); + tab[i] = new XNode(tp.hash, tp.key, tp.value, x); + } else if (e instanceof TreeNode) { + e = ((TreeNode) e).putTreeVal(this, tab, hash, key, value); + } else { + for (int binCount = 0; ; ++binCount) { + if (e.hash == hash && + ((k = e.key) == key || (key != null && key.equals(k)))) + break; + Node p = e; + if ((e = p.next) == null) { + p.next = newNode(hash, key, value, null); + if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st + treeifyBin(tab, hash); + break; + } + } + } + if (e != null) { // existing mapping for key + V oldValue = e.value; + if (!onlyIfAbsent || oldValue == null) + e.value = value; + return oldValue; + } + } + + ++modCount; + if (++size > threshold) + resize(); + return null; + } + + /** + * Initializes or doubles table size. If null, allocates in + * accord with initial capacity target held in field threshold. + * Otherwise, because we are using power-of-two expansion, the + * elements from each bin must either stay at same index, or move + * with a power of two offset in the new table. + * + * @return the table + */ + final XNode[] resize() { + XNode[] oldTab = table; + int oldCap = (oldTab == null) ? 0 : oldTab.length; + int oldThr = threshold; + int newCap, newThr = 0; + if (oldCap > 0) { + if (oldCap >= MAXIMUM_CAPACITY) { + threshold = Integer.MAX_VALUE; + return oldTab; + } + else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && + oldCap >= DEFAULT_INITIAL_CAPACITY) + newThr = oldThr << 1; // double threshold + } + else if (oldThr > 0) // initial capacity was placed in threshold + newCap = oldThr; + else { // zero initial threshold signifies using defaults + newCap = DEFAULT_INITIAL_CAPACITY; + newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); + } + if (newThr == 0) { + float ft = (float)newCap * loadFactor; + newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? + (int)ft : Integer.MAX_VALUE); + } + threshold = newThr; + @SuppressWarnings({"rawtypes","unchecked"}) + XNode[] newTab = (XNode[])new XNode[newCap]; + table = newTab; + if (oldTab != null) { + for (int j = 0; j < oldCap; ++j) { + XNode x; + Node e; + if (!(x = oldTab[j]).isEmpty()) { + oldTab[j] = emptyXNode(); + if ((e = x.next) == null) + newTab[x.hash & (newCap - 1)] = new XNode(x.hash, x.key, x.value, null); + else if (e instanceof TreeNode) + ((TreeNode)e).split(this, newTab, j, oldCap); + else { // preserve order + Node loHead = null, loTail = null; + Node hiHead = null, hiTail = null; + Node next; + do { + next = e.next; + if ((e.hash & oldCap) == 0) { + if (loTail == null) + loHead = e; + else + loTail.next = e; + loTail = e; + } + else { + if (hiTail == null) + hiHead = e; + else + hiTail.next = e; + hiTail = e; + } + } while ((e = next) != null); + if (loTail != null) + loTail.next = null; + if (hiTail != null) + hiTail.next = null; + + newTab[j] = (j == (x.hash & (newCap - 1))) + ? new XNode(x.hash, x.key, x.value, loHead) + : ((loHead != null) + ? new XNode(loHead.hash, loHead.key, loHead.value, loHead.next) : + emptyXNode()); + + newTab[j + oldCap] = ((j + oldCap) == (x.hash & (newCap - 1))) + ? new XNode(x.hash, x.key, x.value, hiHead) + : ((hiHead != null) + ? new XNode(hiHead.hash, hiHead.key, hiHead.value, hiHead.next) : + emptyXNode()); + } + } + } + } + return newTab; + } + + /** + * Replaces all linked nodes in bin at index for given hash unless + * table is too small, in which case resizes instead. + */ + final void treeifyBin(XNode[] tab, int hash) { +// int n, index; Node e; +// if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) +// resize(); +// else if ((e = tab[index = (n - 1) & hash]) != null) { +// TreeNode hd = null, tl = null; +// do { +// TreeNode p = replacementTreeNode(e, null); +// if (tl == null) +// hd = p; +// else { +// p.prev = tl; +// tl.next = p; +// } +// tl = p; +// } while ((e = e.next) != null); +// if ((tab[index] = hd) != null) +// hd.treeify(tab); +// } + } + + /** + * Copies all of the mappings from the specified map to this map. + * These mappings will replace any mappings that this map had for + * any of the keys currently in the specified map. + * + * @param m mappings to be stored in this map + * @throws NullPointerException if the specified map is null + */ + public void putAll(Map m) { + putMapEntries(m, true); + } + + /** + * Removes the mapping for the specified key from this map if present. + * + * @param key key whose mapping is to be removed from the map + * @return the previous value associated with {@code key}, or + * {@code null} if there was no mapping for {@code key}. + * (A {@code null} return can also indicate that the map + * previously associated {@code null} with {@code key}.) + */ + public V remove(Object key) { + Optional o = removeNode(hash(key), key, null, false, true); + return o.orElse(null); + } + + /** + * Implements Map.remove and related methods. + * + * @param hash hash for key + * @param key the key + * @param value the value to match if matchValue, else ignored + * @param matchValue if true only remove if value is equal + * @param movable if false do not move other nodes while removing + * @return the node, or null if none + */ + final Optional removeNode(int hash, Object key, Object value, + boolean matchValue, boolean movable) { + XNode[] tab; XNode te; int n, index; + if ((tab = table) != null && (n = tab.length) > 0 && + !(te = tab[index = (n - 1) & hash]).isEmpty()) { + Node node = null, e; K k; V v = null; + if (te.hash == hash && + ((k = te.key) == key || (key != null && key.equals(k)))) { + if ((!matchValue || (v = te.value) == value || + (value != null && value.equals(v)))) { + tab[index] = ((e = te.next) == null) + ? emptyXNode() + : new XNode(hash, e.key, e.value, e.next); + ++modCount; + --size; + return Optional.ofNullable(v); + } + } else if ((e = te.next) != null) { + Node p = null; + if (e instanceof TreeNode) + node = ((TreeNode)e).getTreeNode(hash, key); + else { + do { + if (e.hash == hash && + ((k = e.key) == key || + (key != null && key.equals(k)))) { + node = e; + break; + } + p = e; + } while ((e = e.next) != null); + } + + if (node != null && (!matchValue || (v = node.value) == value || + (value != null && value.equals(v)))) { + if (node instanceof TreeNode) + ((TreeNode)node).removeTreeNode(this, tab, movable); + else if (p == null) + tab[index] = new XNode(hash, node.key, node.value, node.next); + else + p.next = node.next; + ++modCount; + --size; + return Optional.of(node.value); + } + } + } + return Optional.empty(); + } + + /** + * Removes all of the mappings from this map. + * The map will be empty after this call returns. + */ + public void clear() { + modCount++; + if (table != null && size > 0) { + size = 0; + table = null; + threshold = 0; + } + } + + /** + * Returns {@code true} if this map maps one or more keys to the + * specified value. + * + * @param value value whose presence in this map is to be tested + * @return {@code true} if this map maps one or more keys to the + * specified value + */ + public boolean containsValue(Object value) { + XNode[] tab; V v; + if ((tab = table) != null && size > 0) { + for (XNode te : tab) { + if (!te.isEmpty()) { + if ((v = te.value) == value || + (value != null && value.equals(v))) + return true; + for (Node e = te.next; e != null; e = e.next) { + if ((v = e.value) == value || + (value != null && value.equals(v))) + return true; + } + } + } + } + return false; + } + + /** + * Returns a {@link Set} view of the keys contained in this map. + * The set is backed by the map, so changes to the map are + * reflected in the set, and vice-versa. If the map is modified + * while an iteration over the set is in progress (except through + * the iterator's own {@code remove} operation), the results of + * the iteration are undefined. The set supports element removal, + * which removes the corresponding mapping from the map, via the + * {@code Iterator.remove}, {@code Set.remove}, + * {@code removeAll}, {@code retainAll}, and {@code clear} + * operations. It does not support the {@code add} or {@code addAll} + * operations. + * + * @return a set view of the keys contained in this map + */ + public Set keySet() { + Set ks = keySet; + if (ks == null) { + ks = new KeySet(); + keySet = ks; + } + return ks; + } + + /** + * Prepares the array for {@link Collection#toArray(Object[])} implementation. + * If supplied array is smaller than this map size, a new array is allocated. + * If supplied array is bigger than this map size, a null is written at size index. + * + * @param a an original array passed to {@code toArray()} method + * @param type of array elements + * @return an array ready to be filled and returned from {@code toArray()} method. + */ + @SuppressWarnings("unchecked") + final T[] prepareArray(T[] a) { + int size = this.size; + if (a.length < size) { + return (T[]) java.lang.reflect.Array + .newInstance(a.getClass().getComponentType(), size); + } + if (a.length > size) { + a[size] = null; + } + return a; + } + + /** + * Fills an array with this map keys and returns it. This method assumes + * that input array is big enough to fit all the keys. Use + * {@link #prepareArray(Object[])} to ensure this. + * + * @param a an array to fill + * @param type of array elements + * @return supplied array + */ + T[] keysToArray(T[] a) { + Object[] r = a; + XNode[] tab; + int idx = 0; + int i = 0; + if (size > 0 && (tab = table) != null) { + for (XNode te : tab) { + if (!te.isEmpty()) { + r[idx++] = te.key; + for (Node e = te.next; e != null; e = e.next) { + r[idx++] = e.key; + } + } + } + } + return a; + } + + /** + * Fills an array with this map values and returns it. This method assumes + * that input array is big enough to fit all the values. Use + * {@link #prepareArray(Object[])} to ensure this. + * + * @param a an array to fill + * @param type of array elements + * @return supplied array + */ + T[] valuesToArray(T[] a) { + Object[] r = a; + XNode[] tab; + int idx = 0; + if (size > 0 && (tab = table) != null) { + for (XNode te : tab) { + if (!te.isEmpty()) { + r[idx++] = te.value; + for (Node e = te.next; e != null; e = e.next) { + r[idx++] = e.value; + } + } + } + } + return a; + } + + final class KeySet extends AbstractSet { + public final int size() { return size; } + public final void clear() { XHashMap.this.clear(); } + public final Iterator iterator() { return new KeyIterator(); } + public final boolean contains(Object o) { return containsKey(o); } + public final boolean remove(Object key) { + return removeNode(hash(key), key, null, false, true).isPresent(); + } + + public Object[] toArray() { + return keysToArray(new Object[size]); + } + + public T[] toArray(T[] a) { + return keysToArray(prepareArray(a)); + } + + public final void forEach(Consumer action) { + XNode[] tab; + if (action == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (XNode te : tab) { + if (!te.isEmpty()) { + action.accept(te.key); + for (Node e = te.next; e != null; e = e.next) + action.accept(e.key); + } + } + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + } + + /** + * Returns a {@link Collection} view of the values contained in this map. + * The collection is backed by the map, so changes to the map are + * reflected in the collection, and vice-versa. If the map is + * modified while an iteration over the collection is in progress + * (except through the iterator's own {@code remove} operation), + * the results of the iteration are undefined. The collection + * supports element removal, which removes the corresponding + * mapping from the map, via the {@code Iterator.remove}, + * {@code Collection.remove}, {@code removeAll}, + * {@code retainAll} and {@code clear} operations. It does not + * support the {@code add} or {@code addAll} operations. + * + * @return a view of the values contained in this map + */ + public Collection values() { + Collection vs = values; + if (vs == null) { + vs = new Values(); + values = vs; + } + return vs; + } + + final class Values extends AbstractCollection { + public final int size() { return size; } + public final void clear() { XHashMap.this.clear(); } + public final Iterator iterator() { return new ValueIterator(); } + public final boolean contains(Object o) { return containsValue(o); } + + public Object[] toArray() { + return valuesToArray(new Object[size]); + } + + public T[] toArray(T[] a) { + return valuesToArray(prepareArray(a)); + } + + public final void forEach(Consumer action) { + XNode[] tab; + if (action == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (XNode te : tab) { + if (!te.isEmpty()) { + action.accept(te.value); + for (Node e = te.next; e != null; e = e.next) + action.accept(e.value); + } + } + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + } + + /** + * Returns a {@link Set} view of the mappings contained in this map. + * The set is backed by the map, so changes to the map are + * reflected in the set, and vice-versa. If the map is modified + * while an iteration over the set is in progress (except through + * the iterator's own {@code remove} operation, or through the + * {@code setValue} operation on a map entry returned by the + * iterator) the results of the iteration are undefined. The set + * supports element removal, which removes the corresponding + * mapping from the map, via the {@code Iterator.remove}, + * {@code Set.remove}, {@code removeAll}, {@code retainAll} and + * {@code clear} operations. It does not support the + * {@code add} or {@code addAll} operations. + * + * @return a set view of the mappings contained in this map + */ + public Set> entrySet() { + Set> es; + return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; + } + + final class EntrySet extends AbstractSet> { + public final int size() { return size; } + public final void clear() { XHashMap.this.clear(); } + public final Iterator> iterator() { + return new EntryIterator(); + } + public final boolean contains(Object o) { + if (!(o instanceof Map.Entry)) + return false; + Map.Entry e = (Map.Entry) o; + Object key = e.getKey(); + Node candidate = getNode(hash(key), key); + return candidate != null && candidate.equals(e); + } + public final boolean remove(Object o) { + if (o instanceof Map.Entry) { + Map.Entry e = (Map.Entry) o; + Object key = e.getKey(); + Object value = e.getValue(); + return removeNode(hash(key), key, value, true, true).isPresent(); + } + return false; + } + public final void forEach(Consumer> action) { + XNode[] tab; + if (action == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (XNode te : tab) { + if (!te.isEmpty()) { + action.accept(new XNodeWrapper(te.hash & (tab.length - 1))); + for (Node e = te.next; e != null; e = e.next) + action.accept(e); + } + } + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + } + + // Overrides of JDK8 Map extension methods + + @Override + public V getOrDefault(Object key, V defaultValue) { + Node e; + return (e = getNode(hash(key), key)) == null ? defaultValue : e.value; + } + + @Override + public V putIfAbsent(K key, V value) { + return putVal(hash(key), key, value, true, true); + } + + @Override + public boolean remove(Object key, Object value) { + return removeNode(hash(key), key, value, true, true).isPresent(); + } + + @Override + public boolean replace(K key, V oldValue, V newValue) { + Node e; V v; + if ((e = getNode(hash(key), key)) != null && + ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) { + e.value = newValue; + return true; + } + return false; + } + + @Override + public V replace(K key, V value) { + Node e; + if ((e = getNode(hash(key), key)) != null) { + V oldValue = e.value; + e.value = value; + return oldValue; + } + return null; + } + + /** + * {@inheritDoc} + * + *

This method will, on a best-effort basis, throw a + * {@link ConcurrentModificationException} if it is detected that the + * mapping function modifies this map during computation. + * + * @throws ConcurrentModificationException if it is detected that the + * mapping function modified this map + */ + @Override + public V computeIfAbsent(K key, + Function mappingFunction) { + if (mappingFunction == null) + throw new NullPointerException(); + int hash = hash(key); + XNode[] tab; XNode first; int n, i; + int binCount = 0; + TreeNode t = null; + Node old = null; + if (size > threshold || (tab = table) == null || + (n = tab.length) == 0) + n = (tab = resize()).length; + if (!(first = tab[i = (n - 1) & hash]).isEmpty()) { + K k; + if (first.hash == hash && + ((k = first.key) == key || (key != null && key.equals(k)))) { + return first.value; + } + Node e = first.next; + if (e instanceof TreeNode) + old = (t = (TreeNode)e).getTreeNode(hash, key); + else { + do { + if (e.hash == hash && + ((k = e.key) == key || (key != null && key.equals(k)))) { + old = e; + break; + } + ++binCount; + } while ((e = e.next) != null); + } + + V oldValue; + if (old != null && (oldValue = old.value) != null) { + return oldValue; + } + } + int mc = modCount; + V v = mappingFunction.apply(key); + if (mc != modCount) { throw new ConcurrentModificationException(); } + if (v == null) { + return null; + } else if (old != null) { + old.value = v; + return v; + } + else if (t != null) + t.putTreeVal(this, tab, hash, key, v); + else { + Node x = (tab[i].isEmpty()) ? null : newNode(hash, key, v, null); + tab[i] = new XNode(hash, key, v, x); + if (binCount >= TREEIFY_THRESHOLD - 1) + treeifyBin(tab, hash); + } + modCount = mc + 1; + ++size; + return v; + } + + /** + * {@inheritDoc} + * + *

This method will, on a best-effort basis, throw a + * {@link ConcurrentModificationException} if it is detected that the + * remapping function modifies this map during computation. + * + * @throws ConcurrentModificationException if it is detected that the + * remapping function modified this map + */ + @Override + public V computeIfPresent(K key, + BiFunction remappingFunction) { + if (remappingFunction == null) + throw new NullPointerException(); + Node e; V oldValue; + int hash = hash(key); + if ((e = getNode(hash, key)) != null && + (oldValue = e.value) != null) { + int mc = modCount; + V v = remappingFunction.apply(key, oldValue); + if (mc != modCount) { throw new ConcurrentModificationException(); } + if (v != null) { + e.value = v; + return v; + } + else + removeNode(hash, key, null, false, true); + } + return null; + } + + /** + * {@inheritDoc} + * + *

This method will, on a best-effort basis, throw a + * {@link ConcurrentModificationException} if it is detected that the + * remapping function modifies this map during computation. + * + * @throws ConcurrentModificationException if it is detected that the + * remapping function modified this map + */ + @Override + public V compute(K key, + BiFunction remappingFunction) { + if (remappingFunction == null) + throw new NullPointerException(); + int hash = hash(key); + XNode[] tab; XNode first; int n, i; + int binCount = 0; + TreeNode t = null; + Node old = null; + if (size > threshold || (tab = table) == null || + (n = tab.length) == 0) + n = (tab = resize()).length; + if (!(first = tab[i = (n - 1) & hash]).isEmpty()) { + Node e = first.next;K k; + if (first.hash == hash && + ((k = first.key) == key || (key != null && key.equals(k)))) { + V v = remappingFunction.apply(k, first.value); + tab[i] = new XNode(hash, k, v, e); + return v; + } + if (e instanceof TreeNode) + old = (t = (TreeNode)e).getTreeNode(hash, key); + else { + do { + if (e.hash == hash && + ((k = e.key) == key || (key != null && key.equals(k)))) { + old = e; + break; + } + ++binCount; + } while ((e = e.next) != null); + } + } + V oldValue = (old == null) ? null : old.value; + int mc = modCount; + V v = remappingFunction.apply(key, oldValue); + if (mc != modCount) { throw new ConcurrentModificationException(); } + if (old != null) { + if (v != null) { + old.value = v; + } + else + removeNode(hash, key, null, false, true); + } + else if (v != null) { + if (t != null) + t.putTreeVal(this, tab, hash, key, v); + else { + Node x = (tab[i].isEmpty()) ? null : newNode(hash, key, v, null); + tab[i] = new XNode(hash, key, v, x); + if (binCount >= TREEIFY_THRESHOLD - 1) + treeifyBin(tab, hash); + } + modCount = mc + 1; + ++size; + } + return v; + } + + /** + * {@inheritDoc} + * + *

This method will, on a best-effort basis, throw a + * {@link ConcurrentModificationException} if it is detected that the + * remapping function modifies this map during computation. + * + * @throws ConcurrentModificationException if it is detected that the + * remapping function modified this map + */ + @Override + public V merge(K key, V value, + BiFunction remappingFunction) { + if (value == null || remappingFunction == null) + throw new NullPointerException(); + int hash = hash(key); + XNode[] tab; XNode first; int n, i; + int binCount = 0; + TreeNode t = null; + Node old = null; + if (size > threshold || (tab = table) == null || + (n = tab.length) == 0) + n = (tab = resize()).length; + if (!(first = tab[i = (n - 1) & hash]).isEmpty()) { + Node e = first.next;K k; + if (first.hash == hash && + ((k = first.key) == key || (key != null && key.equals(k)))) { + V v = remappingFunction.apply(first.value, value); + tab[i] = new XNode(hash, k, v, e); + return v; + } + if (e instanceof TreeNode) + old = (t = (TreeNode)e).getTreeNode(hash, key); + else { + do { + if (e.hash == hash && + ((k = e.key) == key || (key != null && key.equals(k)))) { + old = e; + break; + } + ++binCount; + } while ((e = e.next) != null); + } + } + if (old != null) { + V v; + if (old.value != null) { + int mc = modCount; + v = remappingFunction.apply(old.value, value); + if (mc != modCount) { + throw new ConcurrentModificationException(); + } + } else { + v = value; + } + if (v != null) { + old.value = v; + } + else + removeNode(hash, key, null, false, true); + return v; + } else { + if (t != null) + t.putTreeVal(this, tab, hash, key, value); + else { + Node x = (tab[i].isEmpty()) ? null + : newNode(hash, tab[i].key, tab[i].value, null); + tab[i] = new XNode(hash, key, value, x); + if (binCount >= TREEIFY_THRESHOLD - 1) + treeifyBin(tab, hash); + } + ++modCount; + ++size; + return value; + } + } + + @Override + public void forEach(BiConsumer action) { + XNode[] tab; + if (action == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (XNode te : tab) { + if (!te.isEmpty()) { + action.accept(te.key, te.value); + for (Node e = te.next; e != null; e = e.next) + action.accept(e.key, e.value); + } + } + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + + @Override + public void replaceAll(BiFunction function) { + XNode[] tab; + if (function == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (XNode te : tab) { + if (!te.isEmpty()) { + V v = function.apply(te.key, te.value); + tab[te.hash & (tab.length -1)] = new XNode(te.hash, te.key, v, te.next); + for (Node e = te.next; e != null; e = e.next) + e.value = function.apply(e.key, e.value); + } + } + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + + /* ------------------------------------------------------------ */ + // Cloning and serialization + + /** + * Returns a shallow copy of this {@code HashMap} instance: the keys and + * values themselves are not cloned. + * + * @return a shallow copy of this map + */ + @SuppressWarnings("unchecked") + @Override + public Object clone() { + XHashMap result; + try { + result = (XHashMap)super.clone(); + } catch (CloneNotSupportedException e) { + // this shouldn't happen, since we are Cloneable + throw new InternalError(e); + } + result.reinitialize(); + result.putMapEntries(this, false); + return result; + } + + // These methods are also used when serializing HashSets + final float loadFactor() { return loadFactor; } + final int capacity() { + return (table != null) ? table.length : + (threshold > 0) ? threshold : + DEFAULT_INITIAL_CAPACITY; + } + + /** + * Saves this map to a stream (that is, serializes it). + * + * @param s the stream + * @throws IOException if an I/O error occurs + * @serialData The capacity of the HashMap (the length of the + * bucket array) is emitted (int), followed by the + * size (an int, the number of key-value + * mappings), followed by the key (Object) and value (Object) + * for each key-value mapping. The key-value mappings are + * emitted in no particular order. + */ + private void writeObject(java.io.ObjectOutputStream s) + throws IOException { + int buckets = capacity(); + // Write out the threshold, loadfactor, and any hidden stuff + s.defaultWriteObject(); + s.writeInt(buckets); + s.writeInt(size); + internalWriteEntries(s); + } + + /** + * Reconstitutes this map from a stream (that is, deserializes it). + * @param s the stream + * @throws ClassNotFoundException if the class of a serialized object + * could not be found + * @throws IOException if an I/O error occurs + */ + private void readObject(java.io.ObjectInputStream s) + throws IOException, ClassNotFoundException { + // Read in the threshold (ignored), loadfactor, and any hidden stuff + s.defaultReadObject(); + reinitialize(); + if (loadFactor <= 0 || Float.isNaN(loadFactor)) + throw new InvalidObjectException("Illegal load factor: " + + loadFactor); + s.readInt(); // Read and ignore number of buckets + int mappings = s.readInt(); // Read number of mappings (size) + if (mappings < 0) + throw new InvalidObjectException("Illegal mappings count: " + + mappings); + else if (mappings > 0) { // (if zero, use defaults) + // Size the table using given load factor only if within + // range of 0.25...4.0 + float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f); + float fc = (float)mappings / lf + 1.0f; + int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ? + DEFAULT_INITIAL_CAPACITY : + (fc >= MAXIMUM_CAPACITY) ? + MAXIMUM_CAPACITY : + tableSizeFor((int)fc)); + float ft = (float)cap * lf; + threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ? + (int)ft : Integer.MAX_VALUE); + + // Check Map.Entry[].class since it's the nearest public type to + // what we're actually creating. + @SuppressWarnings({"rawtypes","unchecked"}) + XNode[] tab = (XNode[])new XNode[cap]; + table = tab; + + // Read the keys and values, and put the mappings in the HashMap + for (int i = 0; i < mappings; i++) { + @SuppressWarnings("unchecked") + K key = (K) s.readObject(); + @SuppressWarnings("unchecked") + V value = (V) s.readObject(); + putVal(hash(key), key, value, false, false); + } + } + } + + /* ------------------------------------------------------------ */ + // iterators + + static final Node START_INDEX = new Node(0, null, null, null); + + abstract class HashIterator { + Node next; // next entry to return + Node current; // current entry + int expectedModCount; // for fast-fail + int index; // current slot + + + HashIterator() { + expectedModCount = modCount; + XNode[] t = table; + current = next = null; + index = 0; + if (t != null && size > 0) { // advance to first entry + XNode n = emptyXNode(); + for (; index < t.length && (n = t[index]).isEmpty(); index++) { + } + next = (Node)START_INDEX; + } + } + + public final boolean hasNext() { + return next != null; + } + + final Entry nextNode() { + XNode[] t; + Node e = next; + if (modCount != expectedModCount) + throw new ConcurrentModificationException(); + if (e == null) + throw new NoSuchElementException(); + if ((next = (current = e).next) == null && (t = table) != null) { + var ret = (e == START_INDEX) ? new XNodeWrapper(index++) : e; + for (; index < t.length && (t[index]).isEmpty(); index++) { } + next = (index < t.length) ? (Node) START_INDEX : null; + return ret; + } + return e; + } + + public final void remove() { + Node p = current; + if (p == null) + throw new IllegalStateException(); + if (modCount != expectedModCount) + throw new ConcurrentModificationException(); + current = null; + removeNode(p.hash, p.key, null, false, false); + expectedModCount = modCount; + } + } + + final class KeyIterator extends HashIterator + implements Iterator { + public final K next() { return nextNode().getKey(); } + } + + final class ValueIterator extends HashIterator + implements Iterator { + public final V next() { return nextNode().getValue(); } + } + + final class EntryIterator extends HashIterator + implements Iterator> { + public final Map.Entry next() { return nextNode(); } + } + + /* + * The following package-protected methods are designed to be + * overridden by LinkedHashMap, but not by any other subclass. + * Nearly all other internal methods are also package-protected + * but are declared final, so can be used by LinkedHashMap, view + * classes, and HashSet. + */ + + // Create a regular (non-tree) node + Node newNode(int hash, K key, V value, Node next) { + return new Node<>(hash, key, value, next); + } + + // For conversion from TreeNodes to plain nodes + Node replacementNode(Node p, Node next) { + return new Node<>(p.hash, p.key, p.value, next); + } + + // Create a tree bin node + TreeNode newTreeNode(int hash, K key, V value, Node next) { + return new TreeNode<>(hash, key, value, next); + } + + // For treeifyBin + TreeNode replacementTreeNode(Node p, Node next) { + return new TreeNode<>(p.hash, p.key, p.value, next); + } + + /** + * Reset to initial default state. Called by clone and readObject. + */ + void reinitialize() { + table = null; + entrySet = null; + keySet = null; + values = null; + modCount = 0; + threshold = 0; + size = 0; + } + + // Called only from writeObject, to ensure compatible ordering. + void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException { + XNode[] tab; + if (size > 0 && (tab = table) != null) { + for (XNode te : tab) { + if (!te.isEmpty()) { + s.writeObject(te.key); + s.writeObject(te.value); + + for (Node e = te.next; e != null; e = e.next) { + s.writeObject(e.key); + s.writeObject(e.value); + } + } + } + } + } + + /* ------------------------------------------------------------ */ + // Tree bins + + /** + * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn + * extends Node) so can be used as extension of either regular or + * linked node. + */ + static final class TreeNode extends Node { + TreeNode parent; // red-black tree links + TreeNode left; + TreeNode right; + TreeNode prev; // needed to unlink next upon deletion + boolean red; + TreeNode(int hash, K key, V val, Node next) { + super(hash, key, val, next); + } + + /** + * Returns root of tree containing this node. + */ + final TreeNode root() { + for (TreeNode r = this, p;;) { + if ((p = r.parent) == null) + return r; + r = p; + } + } + + /** + * Ensures that the given root is the first node of its bin. + */ + static void moveRootToFront(Node[] tab, TreeNode root) { + int n; + if (root != null && tab != null && (n = tab.length) > 0) { + int index = (n - 1) & root.hash; + TreeNode first = (TreeNode)tab[index]; + if (root != first) { + Node rn; + tab[index] = root; + TreeNode rp = root.prev; + if ((rn = root.next) != null) + ((TreeNode)rn).prev = rp; + if (rp != null) + rp.next = rn; + if (first != null) + first.prev = root; + root.next = first; + root.prev = null; + } + assert checkInvariants(root); + } + } + + /** + * Finds the node starting at root p with the given hash and key. + * The kc argument caches comparableClassFor(key) upon first use + * comparing keys. + */ + final TreeNode find(int h, Object k, Class kc) { + TreeNode p = this; + do { + int ph, dir; K pk; + TreeNode pl = p.left, pr = p.right, q; + if ((ph = p.hash) > h) + p = pl; + else if (ph < h) + p = pr; + else if ((pk = p.key) == k || (k != null && k.equals(pk))) + return p; + else if (pl == null) + p = pr; + else if (pr == null) + p = pl; + else if ((kc != null || + (kc = comparableClassFor(k)) != null) && + (dir = compareComparables(kc, k, pk)) != 0) + p = (dir < 0) ? pl : pr; + else if ((q = pr.find(h, k, kc)) != null) + return q; + else + p = pl; + } while (p != null); + return null; + } + + /** + * Calls find for root node. + */ + final TreeNode getTreeNode(int h, Object k) { + return ((parent != null) ? root() : this).find(h, k, null); + } + + /** + * Tie-breaking utility for ordering insertions when equal + * hashCodes and non-comparable. We don't require a total + * order, just a consistent insertion rule to maintain + * equivalence across rebalancings. Tie-breaking further than + * necessary simplifies testing a bit. + */ + static int tieBreakOrder(Object a, Object b) { + int d; + if (a == null || b == null || + (d = a.getClass().getName(). + compareTo(b.getClass().getName())) == 0) + d = (System.identityHashCode(a) <= System.identityHashCode(b) ? + -1 : 1); + return d; + } + + /** + * Forms tree of the nodes linked from this node. + */ + final void treeify(XNode[] tab) { +// TreeNode root = null; +// for (TreeNode x = this, next; x != null; x = next) { +// next = (TreeNode)x.next; +// x.left = x.right = null; +// if (root == null) { +// x.parent = null; +// x.red = false; +// root = x; +// } +// else { +// K k = x.key; +// int h = x.hash; +// Class kc = null; +// for (TreeNode p = root;;) { +// int dir, ph; +// K pk = p.key; +// if ((ph = p.hash) > h) +// dir = -1; +// else if (ph < h) +// dir = 1; +// else if ((kc == null && +// (kc = comparableClassFor(k)) == null) || +// (dir = compareComparables(kc, k, pk)) == 0) +// dir = tieBreakOrder(k, pk); +// +// TreeNode xp = p; +// if ((p = (dir <= 0) ? p.left : p.right) == null) { +// x.parent = xp; +// if (dir <= 0) +// xp.left = x; +// else +// xp.right = x; +// root = balanceInsertion(root, x); +// break; +// } +// } +// } +// } +// moveRootToFront(tab, root); + } + + /** + * Returns a list of non-TreeNodes replacing those linked from + * this node. + */ + final Node untreeify(XHashMap map) { + Node hd = null, tl = null; + for (Node q = this; q != null; q = q.next) { + Node p = map.replacementNode(q, null); + if (tl == null) + hd = p; + else + tl.next = p; + tl = p; + } + return hd; + } + + /** + * Tree version of putVal. + */ + final TreeNode putTreeVal(XHashMap map, XNode[] tab, + int h, K k, V v) { +// Class kc = null; +// boolean searched = false; +// TreeNode root = (parent != null) ? root() : this; +// for (TreeNode p = root;;) { +// int dir, ph; K pk; +// if ((ph = p.hash) > h) +// dir = -1; +// else if (ph < h) +// dir = 1; +// else if ((pk = p.key) == k || (k != null && k.equals(pk))) +// return p; +// else if ((kc == null && +// (kc = comparableClassFor(k)) == null) || +// (dir = compareComparables(kc, k, pk)) == 0) { +// if (!searched) { +// TreeNode q, ch; +// searched = true; +// if (((ch = p.left) != null && +// (q = ch.find(h, k, kc)) != null) || +// ((ch = p.right) != null && +// (q = ch.find(h, k, kc)) != null)) +// return q; +// } +// dir = tieBreakOrder(k, pk); +// } +// +// TreeNode xp = p; +// if ((p = (dir <= 0) ? p.left : p.right) == null) { +// Node xpn = xp.next; +// TreeNode x = map.newTreeNode(h, k, v, xpn); +// if (dir <= 0) +// xp.left = x; +// else +// xp.right = x; +// xp.next = x; +// x.parent = x.prev = xp; +// if (xpn != null) +// ((TreeNode)xpn).prev = x; +// moveRootToFront(tab, balanceInsertion(root, x)); +// return null; +// } +// } + return null; + } + + /** + * Removes the given node, that must be present before this call. + * This is messier than typical red-black deletion code because we + * cannot swap the contents of an interior node with a leaf + * successor that is pinned by "next" pointers that are accessible + * independently during traversal. So instead we swap the tree + * linkages. If the current tree appears to have too few nodes, + * the bin is converted back to a plain bin. (The test triggers + * somewhere between 2 and 6 nodes, depending on tree structure). + */ + final void removeTreeNode(XHashMap map, XNode[] tab, + boolean movable) { +// int n; +// if (tab == null || (n = tab.length) == 0) +// return; +// int index = (n - 1) & hash; +// TreeNode first = (TreeNode)tab[index], root = first, rl; +// TreeNode succ = (TreeNode)next, pred = prev; +// if (pred == null) +// tab[index] = first = succ; +// else +// pred.next = succ; +// if (succ != null) +// succ.prev = pred; +// if (first == null) +// return; +// if (root.parent != null) +// root = root.root(); +// if (root == null +// || (movable +// && (root.right == null +// || (rl = root.left) == null +// || rl.left == null))) { +// tab[index] = first.untreeify(map); // too small +// return; +// } +// TreeNode p = this, pl = left, pr = right, replacement; +// if (pl != null && pr != null) { +// TreeNode s = pr, sl; +// while ((sl = s.left) != null) // find successor +// s = sl; +// boolean c = s.red; s.red = p.red; p.red = c; // swap colors +// TreeNode sr = s.right; +// TreeNode pp = p.parent; +// if (s == pr) { // p was s's direct parent +// p.parent = s; +// s.right = p; +// } +// else { +// TreeNode sp = s.parent; +// if ((p.parent = sp) != null) { +// if (s == sp.left) +// sp.left = p; +// else +// sp.right = p; +// } +// if ((s.right = pr) != null) +// pr.parent = s; +// } +// p.left = null; +// if ((p.right = sr) != null) +// sr.parent = p; +// if ((s.left = pl) != null) +// pl.parent = s; +// if ((s.parent = pp) == null) +// root = s; +// else if (p == pp.left) +// pp.left = s; +// else +// pp.right = s; +// if (sr != null) +// replacement = sr; +// else +// replacement = p; +// } +// else if (pl != null) +// replacement = pl; +// else if (pr != null) +// replacement = pr; +// else +// replacement = p; +// if (replacement != p) { +// TreeNode pp = replacement.parent = p.parent; +// if (pp == null) +// (root = replacement).red = false; +// else if (p == pp.left) +// pp.left = replacement; +// else +// pp.right = replacement; +// p.left = p.right = p.parent = null; +// } +// +// TreeNode r = p.red ? root : balanceDeletion(root, replacement); +// +// if (replacement == p) { // detach +// TreeNode pp = p.parent; +// p.parent = null; +// if (pp != null) { +// if (p == pp.left) +// pp.left = null; +// else if (p == pp.right) +// pp.right = null; +// } +// } +// if (movable) +// moveRootToFront(tab, r); + } + + /** + * Splits nodes in a tree bin into lower and upper tree bins, + * or untreeifies if now too small. Called only from resize; + * see above discussion about split bits and indices. + * + * @param map the map + * @param tab the table for recording bin heads + * @param index the index of the table being split + * @param bit the bit of hash to split on + */ + final void split(XHashMap map, XNode[] tab, int index, int bit) { +// TreeNode b = this; +// // Relink into lo and hi lists, preserving order +// TreeNode loHead = null, loTail = null; +// TreeNode hiHead = null, hiTail = null; +// int lc = 0, hc = 0; +// for (TreeNode e = b, next; e != null; e = next) { +// next = (TreeNode)e.next; +// e.next = null; +// if ((e.hash & bit) == 0) { +// if ((e.prev = loTail) == null) +// loHead = e; +// else +// loTail.next = e; +// loTail = e; +// ++lc; +// } +// else { +// if ((e.prev = hiTail) == null) +// hiHead = e; +// else +// hiTail.next = e; +// hiTail = e; +// ++hc; +// } +// } +// +// if (loHead != null) { +// if (lc <= UNTREEIFY_THRESHOLD) +// tab[index] = loHead.untreeify(map); +// else { +// tab[index] = loHead; +// if (hiHead != null) // (else is already treeified) +// loHead.treeify(tab); +// } +// } +// if (hiHead != null) { +// if (hc <= UNTREEIFY_THRESHOLD) +// tab[index + bit] = hiHead.untreeify(map); +// else { +// tab[index + bit] = hiHead; +// if (loHead != null) +// hiHead.treeify(tab); +// } +// } + } + + /** + * Recursive invariant check + */ + static boolean checkInvariants(TreeNode t) { + TreeNode tp = t.parent, tl = t.left, tr = t.right, + tb = t.prev, tn = (TreeNode)t.next; + if (tb != null && tb.next != t) + return false; + if (tn != null && tn.prev != t) + return false; + if (tp != null && t != tp.left && t != tp.right) + return false; + if (tl != null && (tl.parent != t || tl.hash > t.hash)) + return false; + if (tr != null && (tr.parent != t || tr.hash < t.hash)) + return false; + if (t.red && tl != null && tl.red && tr != null && tr.red) + return false; + if (tl != null && !checkInvariants(tl)) + return false; + if (tr != null && !checkInvariants(tr)) + return false; + return true; + } + } + + + public void dumpStats(PrintStream out) { + out.printf("%s instance: size: %d%n", this.getClass().getName(), this.size()); + long size = heapSize(); + long bytesPer = size / this.size(); + out.printf(" heap size: %d(bytes), avg bytes per entry: %d, table len: %d%n", + size, bytesPer, table.length); + long[] types = entryTypes(); + out.printf(" values: %d, empty: %d%n", types[0], types[1]); + int[] rehashes = entryRehashes(); + out.printf(" hash collision histogram: max: %d, %s%n", + rehashes.length - 1, Arrays.toString(rehashes)); + } + + private long[] entryTypes() { + long[] counts = new long[3]; + for (XNode te : table) { + counts[te.isEmpty() ? 1 : 0]++; + } + return counts; + } + + // Returns a histogram array of the number of rehashs needed to find each key. + private int[] entryRehashes() { + int[] counts = new int[table.length + 1]; + XNode[] tab = table; + for (XNode te : tab) { + if (!te.isEmpty()) { + int count = 0; + for (Node e = te.next; e != null; e = e.next) + count++; + counts[count]++; + } + } + + int i; + for (i = counts.length - 1; i >= 0 && counts[i] == 0; i--) { + } + counts = Arrays.copyOf(counts, i + 1); + return counts; + } + + private long heapSize() { + long acc = objectSizeMaybe(this); + acc += objectSizeMaybe(table); + + XNode[] tab = table; + for (XNode te : tab) { + if (!te.isEmpty()) { + for (Node e = te.next; e != null; e = e.next) + acc += objectSizeMaybe(e); + } + } + return acc; + } + + private long objectSizeMaybe(Object o) { + try { + return (mObjectSize != null) + ? (long)mObjectSize.invoke(null, o) + : 0L; + } catch (IllegalAccessException | InvocationTargetException e) { + return 0L; + } + } + + private static boolean hasObjectSize = false; + private static Method mObjectSize = getObjectSizeMethod(); + + private static Method getObjectSizeMethod() { + try { + Method m = Objects.class.getDeclaredMethod("getObjectSize", Object.class); + hasObjectSize = true; + return m; + } catch (NoSuchMethodException nsme) { + return null; + } + } + +}