/* * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.openjdk.bench.valhalla.corelibs.mapprotos; import java.io.IOException; import java.io.InvalidObjectException; import java.io.PrintStream; import java.io.Serializable; import java.lang.reflect.Field; import java.lang.reflect.InvocationTargetException; import java.lang.reflect.Method; import java.util.AbstractCollection; //import java.util.AbstractMap; import java.util.AbstractSet; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.ConcurrentModificationException; import java.util.Hashtable; import java.util.Iterator; import java.util.Map; import java.util.Objects; import java.util.Optional; import java.util.TreeMap; import java.util.NoSuchElementException; import java.util.Set; import java.util.Spliterator; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.util.function.Consumer; import java.util.function.Function; /** * HashMap using hashing and "open addressing". * Hash entries are inline class instances. * As described in Introduction to Algorithms, 3rd Edition (The MIT Press), * Section 11 Hash tables and Section 11.4 Open addressing. * * Open addressing is used to locate other entries for keys with the same hash. * If multiple keys have the same hashcode, a rehashing mechanism * is used to place the 2nd and subsequent * key/value pairs at a non-optimal index in the table. Therefore, * finding the entry for a desired key must rehash and examine subsequent * entries until the value is value or it encounters an empty entry. * When an entry is removed, the entry is marked as deleted, (not empty) * to allow the search algorithm to keep looking; otherwise it would terminate * the scan on the deleted entry, when it might be the case for some (other) key * would have that same entry as part of its chain of possible locations for its hash. * The default load factor (.75) should be re-evaluated in light of the open addressing * computations. A higher number would reduce unused (wasted) space at the cost of * increased search times, a lower number would increase unused (wasted) space but * improve search times (assuming even hashcode distributions). * Badly distributed hash values will result in incremental table growth and * linear search performance. *

* During insertion the Robin Hood hash algorithm does a small optimization * to reduce worst case rehash lengths. * Removal of entries, does a compaction of the following entries to fill * in free entries and reduce entry rehashling lengths based on * "On Deletions in Open Addressing Hashing", by Rosa M. Jimenez and Conrado Martinz. * *

* The only allocation that occurs during put operations is for the resizing of the entry table. * *

* Hash table based implementation of the {@code Map} interface. This * implementation provides all of the optional map operations, and permits * {@code null} values and the {@code null} key. (The {@code HashMap} * class is roughly equivalent to {@code Hashtable}, except that it is * unsynchronized and permits nulls.) This class makes no guarantees as to * the order of the map; in particular, it does not guarantee that the order * will remain constant over time. * *

This implementation provides constant-time performance for the basic * operations ({@code get} and {@code put}), assuming the hash function * disperses the elements properly among the buckets. Iteration over * collection views requires time proportional to the "capacity" of the * {@code HashMap} instance (the number of buckets) plus its size (the number * of key-value mappings). Thus, it's very important not to set the initial * capacity too high (or the load factor too low) if iteration performance is * important. * *

An instance of {@code HashMap} has two parameters that affect its * performance: initial capacity and load factor. The * capacity is the number of buckets in the hash table, and the initial * capacity is simply the capacity at the time the hash table is created. The * load factor is a measure of how full the hash table is allowed to * get before its capacity is automatically increased. When the number of * entries in the hash table exceeds the product of the load factor and the * current capacity, the hash table is rehashed (that is, internal data * structures are rebuilt) so that the hash table has approximately twice the * number of buckets. * *

As a general rule, the default load factor (.75) offers a good * tradeoff between time and space costs. Higher values decrease the * space overhead but increase the lookup cost (reflected in most of * the operations of the {@code HashMap} class, including * {@code get} and {@code put}). The expected number of entries in * the map and its load factor should be taken into account when * setting its initial capacity, so as to minimize the number of * rehash operations. If the initial capacity is greater than the * maximum number of entries divided by the load factor, no rehash * operations will ever occur. * *

If many mappings are to be stored in a {@code HashMap} * instance, creating it with a sufficiently large capacity will allow * the mappings to be stored more efficiently than letting it perform * automatic rehashing as needed to grow the table. Note that using * many keys with the same {@code hashCode()} is a sure way to slow * down performance of any hash table. * TBD: To ameliorate impact, when keys * are {@link Comparable}, this class may use comparison order among * keys to help break ties. * *

Note that this implementation is not synchronized. * If multiple threads access a hash map concurrently, and at least one of * the threads modifies the map structurally, it must be * synchronized externally. (A structural modification is any operation * that adds or deletes one or more mappings; merely changing the value * associated with a key that an instance already contains is not a * structural modification.) This is typically accomplished by * synchronizing on some object that naturally encapsulates the map. * * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedMap Collections.synchronizedMap} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the map:

 *   Map m = Collections.synchronizedMap(new HashMap(...));
* *

The iterators returned by all of this class's "collection view methods" * are fail-fast: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * {@code remove} method, the iterator will throw a * {@link ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class is a member of the * * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Doug Lea * @author Josh Bloch * @author Arthur van Hoff * @author Neal Gafter * @see Object#hashCode() * @see Collection * @see Map * @see TreeMap * @see Hashtable * @since 1.2 */ public class YHashMap extends XAbstractMap implements Map, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; /* * Implementation notes. * * This map usually acts as a binned (bucketed) hash table. * The concurrent-programming-like SSA-based coding style helps * avoid aliasing errors amid all of the twisty pointer operations. */ /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * Basic hash bin node, used for most entries. */ static inline class YNode implements Map.Entry { final int hash; final short probes; // maybe only a byte final K key; final V value; YNode() { this.hash = 0; this.probes = 0; this.key = null; this.value = null; } YNode(int hash, K key, V value, int probes) { this.hash = hash; this.key = key; this.value = value; if (probes > 128) throw new IllegalStateException("YNode probes overflow: " + probes); this.probes = (short)probes; } boolean isEmpty() { return probes == 0; } boolean isValue() { return probes > 0; } boolean isDeleted() { return probes < 0; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value + ", probes: " + probes; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { throw new IllegalStateException("YNode cannot set a value"); } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry e = (Map.Entry)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } inline class YNodeWrapper implements Map.Entry { int index; YNodeWrapper(int index) { this.index = index; } public K getKey() { YNode e = table[index]; return e.isEmpty() ? null : e.key; } public V getValue() { YNode e = table[index]; return e.isEmpty() ? null : e.value; } /** * Replaces the value corresponding to this entry with the specified * value (optional operation). (Writes through to the map.) The * behavior of this call is undefined if the mapping has already been * removed from the map (by the iterator's {@code remove} operation). * * @param value new value to be stored in this entry * @return old value corresponding to the entry * @throws UnsupportedOperationException if the {@code put} operation * is not supported by the backing map * @throws ClassCastException if the class of the specified value * prevents it from being stored in the backing map * @throws NullPointerException if the backing map does not permit * null values, and the specified value is null * @throws IllegalArgumentException if some property of this value * prevents it from being stored in the backing map * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ public V setValue(V value) { YNode e = table[index]; assert e.isValue(); table[index] = new YNode(e.hash, e.key, value, 0); return e.value; } } /* ---------------- Static utilities -------------- */ /** * Computes key.hashCode() and spreads (XORs) higher bits of hash * to lower. Because the table uses power-of-two masking, sets of * hashes that vary only in bits above the current mask will * always collide. (Among known examples are sets of Float keys * holding consecutive whole numbers in small tables.) So we * apply a transform that spreads the impact of higher bits * downward. There is a tradeoff between speed, utility, and * quality of bit-spreading. Because many common sets of hashes * are already reasonably distributed (so don't benefit from * spreading), and because we use trees to handle large sets of * collisions in bins, we just XOR some shifted bits in the * cheapest possible way to reduce systematic lossage, as well as * to incorporate impact of the highest bits that would otherwise * never be used in index calculations because of table bounds. */ static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } /** * Returns a power of two size for the given target capacity. */ static final int tableSizeFor(int cap) { int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1); return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /* ---------------- Fields -------------- */ /** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) */ transient YNode[] table; /** * Holds cached entrySet(). Note that AbstractMap fields are used * for keySet() and values(). */ transient Set> entrySet; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * * @serial */ // (The javadoc description is true upon serialization. // Additionally, if the table array has not been allocated, this // field holds the initial array capacity, or zero signifying // DEFAULT_INITIAL_CAPACITY.) int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; /* ---------------- Public operations -------------- */ /** * Constructs an empty {@code HashMap} with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public YHashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } /** * Constructs an empty {@code HashMap} with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public YHashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty {@code HashMap} with the default initial capacity * (16) and the default load factor (0.75). */ public YHashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } /** * Constructs a new {@code HashMap} with the same mappings as the * specified {@code Map}. The {@code HashMap} is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified {@code Map}. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public YHashMap(Map m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } /** * Implements Map.putAll and Map constructor. * * @param m the map * @param evict false when initially constructing this map, else true. */ final void putMapEntries(Map m, boolean evict) { int s = m.size(); if (s > 0) { if (table == null) { // pre-size float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); if (t > threshold) threshold = tableSizeFor(t); } else { // Because of linked-list bucket constraints, we cannot // expand all at once, but can reduce total resize // effort by repeated doubling now vs later while (s > threshold && table.length < MAXIMUM_CAPACITY) resize(); } for (Map.Entry e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false); } } } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map */ public int size() { return size; } /** * Returns {@code true} if this map contains no key-value mappings. * * @return {@code true} if this map contains no key-value mappings */ public boolean isEmpty() { return size == 0; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ public V get(Object key) { int hash = hash(key); int i = getNode(hash, key); if (i >= 0) { return table[i].value; } return null; // not found no value } /** * XImplements Map.get and related methods. * * @param hash hash for key * @param key the key * @return the index of a matching node or -1 */ private final int getNode(final int hash, Object key) { YNode[] tab; final YNode first; int n; K k; if ((tab = table) != null && (n = tab.length) > 0) { if ((first = tab[(n - 1) & hash]).isValue() && first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k)))) { return (n - 1) & hash; } if (first.isEmpty()) return -1; // non-empty table and not first entry final int rehash_hash = getRehash(hash); int h = hash + rehash_hash; // start with next entry for (int probes = 1; probes < tab.length; probes++, h += rehash_hash) { final YNode entry; final int index; if (((entry = tab[(index = ((n - 1) & h))]).isValue()) && entry.hash == hash && ((k = entry.key) == key || (key != null && key.equals(k)))) return index; if (entry.isEmpty()) return -1; // search ended without finding the key } throw new RuntimeException("NYI: search exhausted"); // exhausted looking in the table } return -1; // not found; empty table } /** * Returns {@code true} if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return {@code true} if this map contains a mapping for the specified * key. */ public boolean containsKey(Object key) { return getNode(hash(key), key) >= 0; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key}. * (A {@code null} return can also indicate that the map * previously associated {@code null} with {@code key}.) */ public V put(K key, V value) { return putVal(hash(key), key, value, false); } /** * Implements Map.put and related methods. * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ private final V putVal(int hash, K key, V value, boolean onlyIfAbsent) { YNode[] tab; YNode tp; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // System.out.printf("putVal: h: %8x, k: %s, tab.len: %d%n", hash, key, n); final int rehash_hash = getRehash(hash); int h = hash; int index = 0; for (int probes = 1; probes <= tab.length; probes++, h += rehash_hash) { YNode entry; entry = tab[(index = ((n - 1) & h))]; // System.out.printf("index: %d, probe: %d, e: %s%n", index, probes, entry); if (entry.isEmpty()) { // Absent; insert in the first place it could be added tab[index] = new YNode(hash, key, value, probes); break; // break to update modCount and size } if (entry.isValue() && entry.hash == hash && ((key = entry.key) == key || (key != null && key.equals(key)))) { if (!onlyIfAbsent || entry.value == null) tab[index] = new YNode(hash, key, value, entry.probes); return entry.value; } // Robin Hood entry swap if.. if (probes > entry.probes) { // The new entry is more needy than the current one tab[index] = new YNode(hash, key, value, probes); hash = entry.hash; key = entry.key; value = entry.value; probes = entry.probes; } if (probes >= tab.length) { dumpTable(table, "MAX: key:" + key); throw new IllegalStateException("NYI: putVal table has no free entries"); } } // System.out.printf("inserted at %d: k: %s%n", index, tab[index]); ++modCount; if (++size > threshold) resize(); return null; } /** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final YNode[] resize() { YNode[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) YNode[] newTab = (YNode[])new YNode[newCap]; table = newTab; if (oldTab != null) { for (int i = 0; i < oldCap; ++i) { YNode e; if ((e = oldTab[i]).isValue()) { final int ii; if (newTab[ii = (newCap - 1) & e.hash].isEmpty()) { newTab[ii] = new YNode(e.hash, e.key, e.value, 1); } else { final int rehash_hash = getRehash(e.hash); int h = e.hash + rehash_hash; for (int probes = 2; ; probes++, h += rehash_hash) { final int index; if (newTab[(index = ((newCap - 1) & h))].isEmpty()) { newTab[index] = new YNode(e.hash, e.key, e.value, probes); break; } if (probes > newTab.length) throw new IllegalStateException("NYI resize: no support for overflow"); } } } } } assert isTableOk() : "Table not ok after resize"; return newTab; } private void dumpTable(YNode[] table, String msg) { System.out.println(msg); for (int i = 0; i < table.length; ++i) { System.out.printf("%3d: %s%n", i, table[i]); } } /** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * * @param m mappings to be stored in this map * @throws NullPointerException if the specified map is null */ public void putAll(Map m) { putMapEntries(m, true); } /** * Removes the mapping for the specified key from this map if present. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key}. * (A {@code null} return can also indicate that the map * previously associated {@code null} with {@code key}.) */ public V remove(Object key) { Optional o = removeNode(hash(key), key, null, false, true); return o.orElse(null); } /** * Implements Map.remove and related methods. * * @param hash hash for key * @param key the key * @param value the value to match if matchValue, else ignored * @param matchValue if true only remove if value is equal * @param movable if false do not move other nodes while removing * @return the node, or null if none */ private final Optional removeNode(final int hash, Object key, Object value, boolean matchValue, boolean movable) { YNode[] tab; YNode entry; V v = null; int curr; int n; if ((tab = table) != null && (n = tab.length) > 0 && (curr = getNode(hash, key)) >= 0 && (entry = tab[curr]).isValue() && ((!matchValue || (v = entry.value) == value || (value != null && value.equals(v))))) { // found entry; free and compress // System.out.printf("remove index: %d, e: %s%n", curr, entry); ++modCount; --size; final int rehash_hash = getRehash(hash); int h = hash + rehash_hash; for (int probes = 1; probes <= tab.length; probes++, h += rehash_hash) { YNode alt; int index; alt = tab[(index = ((n - 1) & h))]; if (alt.probes > probes) { // move alt to curr tab[curr] = new YNode(alt.hash, alt.key, alt.value, alt.probes - probes); tab[index] = new YNode(); curr = index; probes = 0; } else { return Optional.ofNullable(v); } } throw new IllegalStateException("NYI: removeNode no support for overflow"); } return Optional.empty(); } // Rehash delta based on original hash and always odd. // Does not use current hash to have a consistent stride. private static int getRehash(int hash) { return 3; } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ public void clear() { YNode[] tab; modCount++; if ((tab = table) != null && size > 0) { size = 0; for (int i = 0; i < tab.length; i++) tab[i] = YNode.default; } } /** * Returns {@code true} if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return {@code true} if this map maps one or more keys to the * specified value */ public boolean containsValue(Object value) { YNode[] tab; V v; if ((tab = table) != null && size > 0) { for (YNode te : tab) { if (te.isValue()) { if ((v = te.value) == value || (value != null && value.equals(v))) return true; } } } return false; } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or {@code addAll} * operations. * * @return a set view of the keys contained in this map */ public Set keySet() { Set ks = keySet; if (ks == null) { ks = new KeySet(); keySet = ks; } return ks; } /** * Prepares the array for {@link Collection#toArray(Object[])} implementation. * If supplied array is smaller than this map size, a new array is allocated. * If supplied array is bigger than this map size, a null is written at size index. * * @param a an original array passed to {@code toArray()} method * @param type of array elements * @return an array ready to be filled and returned from {@code toArray()} method. */ @SuppressWarnings("unchecked") final T[] prepareArray(T[] a) { int size = this.size; if (a.length < size) { return (T[]) java.lang.reflect.Array .newInstance(a.getClass().getComponentType(), size); } if (a.length > size) { a[size] = null; } return a; } /** * Fills an array with this map keys and returns it. This method assumes * that input array is big enough to fit all the keys. Use * {@link #prepareArray(Object[])} to ensure this. * * @param a an array to fill * @param type of array elements * @return supplied array */ T[] keysToArray(T[] a) { Object[] r = a; YNode[] tab; int idx = 0; int i = 0; if (size > 0 && (tab = table) != null) { for (YNode te : tab) { if (te.isValue()) { r[idx++] = te.key; } } } return a; } /** * Fills an array with this map values and returns it. This method assumes * that input array is big enough to fit all the values. Use * {@link #prepareArray(Object[])} to ensure this. * * @param a an array to fill * @param type of array elements * @return supplied array */ T[] valuesToArray(T[] a) { Object[] r = a; YNode[] tab; int idx = 0; if (size > 0 && (tab = table) != null) { for (YNode te : tab) { if (te.isValue()) { r[idx++] = te.value; } } } return a; } final class KeySet extends AbstractSet { public final int size() { return size; } public final void clear() { YHashMap.this.clear(); } public final Iterator iterator() { return new KeyIterator(); } public final boolean contains(Object o) { return containsKey(o); } public final boolean remove(Object key) { return removeNode(hash(key), key, null, false, true).isPresent(); } public final Spliterator spliterator() { throw new RuntimeException("KeySet.spliterator"); // new KeySpliterator<>(XHashMap.this, 0, -1, 0, 0); } public Object[] toArray() { return keysToArray(new Object[size]); } public T[] toArray(T[] a) { return keysToArray(prepareArray(a)); } public final void forEach(Consumer action) { YNode[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (YNode te : tab) { if (te.isValue()) { action.accept(te.key); } } if (modCount != mc) throw new ConcurrentModificationException(); } } } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own {@code remove} operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll} and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. * * @return a view of the values contained in this map */ public Collection values() { Collection vs = values; if (vs == null) { vs = new Values(); values = vs; } return vs; } final class Values extends AbstractCollection { public final int size() { return size; } public final void clear() { YHashMap.this.clear(); } public final Iterator iterator() { return new ValueIterator(); } public final boolean contains(Object o) { return containsValue(o); } public final Spliterator spliterator() { throw new RuntimeException("Values.spliterator"); //new ValueSpliterator<>(XHashMap.this, 0, -1, 0, 0); } public Object[] toArray() { return valuesToArray(new Object[size]); } public T[] toArray(T[] a) { return valuesToArray(prepareArray(a)); } public final void forEach(Consumer action) { YNode[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (YNode te : tab) { if (!te.isValue()) { action.accept(te.value); } } if (modCount != mc) throw new ConcurrentModificationException(); } } } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation, or through the * {@code setValue} operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Set.remove}, {@code removeAll}, {@code retainAll} and * {@code clear} operations. It does not support the * {@code add} or {@code addAll} operations. * * @return a set view of the mappings contained in this map */ public Set> entrySet() { Set> es; return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; } final class EntrySet extends AbstractSet> { public final int size() { return size; } public final void clear() { YHashMap.this.clear(); } public final Iterator> iterator() { return new EntryIterator(); } public final boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry) o; Object key = e.getKey(); int index = getNode(hash(key), key); return index >= 0 && table[index].equals(e); } public final boolean remove(Object o) { if (o instanceof Map.Entry) { Map.Entry e = (Map.Entry) o; Object key = e.getKey(); Object value = e.getValue(); return removeNode(hash(key), key, value, true, true).isPresent(); } return false; } public final Spliterator> spliterator() { throw new RuntimeException("EntrySet.spliterator"); // return new EntrySpliterator<>(XHashMap.this, 0, -1, 0, 0); } public final void forEach(Consumer> action) { YNode[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (YNode te : tab) { if (te.isValue()) { action.accept(new YNodeWrapper(te.hash & (tab.length - 1))); } } if (modCount != mc) throw new ConcurrentModificationException(); } } } // Overrides of JDK8 Map extension methods @Override public V getOrDefault(Object key, V defaultValue) { final int index; return (index = getNode(hash(key), key)) < 0 ? defaultValue : table[index].value; } @Override public V putIfAbsent(K key, V value) { return putVal(hash(key), key, value, true); } @Override public boolean remove(Object key, Object value) { return removeNode(hash(key), key, value, true, true).isPresent(); } @Override public boolean replace(K key, V oldValue, V newValue) { int hash, index; V v; if ((index = getNode((hash = hash(key)), key)) >= 0 && ((v = table[index].value) == oldValue || (v != null && v.equals(oldValue)))) { table[index] = new YNode<>(hash, key, newValue, table[index].probes); return true; } return false; } @Override public V replace(K key, V value) { int hash, index; V v; if ((index = getNode((hash = hash(key)), key)) >= 0) { V oldValue = table[index].value; table[index] = new YNode<>(hash, key, value, table[index].probes); return oldValue; } return null; } /** * {@inheritDoc} * *

This method will, on a best-effort basis, throw a * {@link ConcurrentModificationException} if it is detected that the * mapping function modifies this map during computation. * * @throws ConcurrentModificationException if it is detected that the * mapping function modified this map */ @Override public V computeIfAbsent(K key, Function mappingFunction) { if (mappingFunction == null) throw new NullPointerException(); int hash = hash(key); YNode[] tab; YNode first; int n, i; int index; index = getNode(hash, key); if (index >= 0 && table[index].value != null) return table[index].value; int mc = modCount; V v = mappingFunction.apply(key); if (mc != modCount) { throw new ConcurrentModificationException(); } if (v == null) { return null; } else if (index >= 0) { table[index] = new YNode<>(hash, key, v, 1); return v; } putVal(hash, key, v, false); // TBD: Watch the double counting modCount = mc + 1; ++size; return v; } /** * {@inheritDoc} * *

This method will, on a best-effort basis, throw a * {@link ConcurrentModificationException} if it is detected that the * remapping function modifies this map during computation. * * @throws ConcurrentModificationException if it is detected that the * remapping function modified this map */ @Override public V computeIfPresent(K key, BiFunction remappingFunction) { if (remappingFunction == null) throw new NullPointerException(); V oldValue; int hash = hash(key); int index = getNode(hash, key); if (index >= 0 && (oldValue = table[index].value) != null) { int mc = modCount; V v = remappingFunction.apply(key, oldValue); if (mc != modCount) { throw new ConcurrentModificationException(); } if (v != null) { table[index] = new YNode(hash, key, v, table[index].probes); return v; } else removeNode(hash, key, null, false, true); } return null; } /** * {@inheritDoc} * *

This method will, on a best-effort basis, throw a * {@link ConcurrentModificationException} if it is detected that the * remapping function modifies this map during computation. * * @throws ConcurrentModificationException if it is detected that the * remapping function modified this map */ @Override public V compute(K key, BiFunction remappingFunction) { if (remappingFunction == null) throw new NullPointerException(); return super.compute(key, remappingFunction); } /** * {@inheritDoc} * *

This method will, on a best-effort basis, throw a * {@link ConcurrentModificationException} if it is detected that the * remapping function modifies this map during computation. * * @throws ConcurrentModificationException if it is detected that the * remapping function modified this map */ @Override public V merge(K key, V value, BiFunction remappingFunction) { return super.merge(key, value, remappingFunction); } @Override public void forEach(BiConsumer action) { YNode[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (YNode te : tab) { if (te.isValue()) { action.accept(te.key, te.value); } } // TBD: iterate over overflow if (modCount != mc) throw new ConcurrentModificationException(); } } @Override public void replaceAll(BiFunction function) { super.replaceAll(function); } /* ------------------------------------------------------------ */ // Cloning and serialization /** * Returns a shallow copy of this {@code HashMap} instance: the keys and * values themselves are not cloned. * * @return a shallow copy of this map */ @SuppressWarnings("unchecked") @Override public Object clone() { YHashMap result; try { result = (YHashMap)super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } result.reinitialize(); result.putMapEntries(this, false); return result; } // These methods are also used when serializing HashSets final float loadFactor() { return loadFactor; } final int capacity() { return (table != null) ? table.length : (threshold > 0) ? threshold : DEFAULT_INITIAL_CAPACITY; } /** * Saves this map to a stream (that is, serializes it). * * @param s the stream * @throws IOException if an I/O error occurs * @serialData The capacity of the HashMap (the length of the * bucket array) is emitted (int), followed by the * size (an int, the number of key-value * mappings), followed by the key (Object) and value (Object) * for each key-value mapping. The key-value mappings are * emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { int buckets = capacity(); // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); s.writeInt(buckets); s.writeInt(size); internalWriteEntries(s); } /** * Reconstitutes this map from a stream (that is, deserializes it). * @param s the stream * @throws ClassNotFoundException if the class of a serialized object * could not be found * @throws IOException if an I/O error occurs */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold (ignored), loadfactor, and any hidden stuff s.defaultReadObject(); reinitialize(); if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new InvalidObjectException("Illegal load factor: " + loadFactor); s.readInt(); // Read and ignore number of buckets int mappings = s.readInt(); // Read number of mappings (size) if (mappings < 0) throw new InvalidObjectException("Illegal mappings count: " + mappings); else if (mappings > 0) { // (if zero, use defaults) // Size the table using given load factor only if within // range of 0.25...4.0 float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f); float fc = (float)mappings / lf + 1.0f; int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ? DEFAULT_INITIAL_CAPACITY : (fc >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)fc)); float ft = (float)cap * lf; threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ? (int)ft : Integer.MAX_VALUE); // Check Map.Entry[].class since it's the nearest public type to // what we're actually creating. // SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, cap); @SuppressWarnings({"rawtypes","unchecked"}) YNode[] tab = (YNode[])new YNode[cap]; table = tab; // Read the keys and values, and put the mappings in the HashMap for (int i = 0; i < mappings; i++) { @SuppressWarnings("unchecked") K key = (K) s.readObject(); @SuppressWarnings("unchecked") V value = (V) s.readObject(); putVal(hash(key), key, value, false); } } } /* ------------------------------------------------------------ */ // iterators abstract class HashIterator { int next; // next entry to return int current; // current entry int expectedModCount; // for fast-fail HashIterator() { expectedModCount = modCount; YNode[] t = table; current = -1; next = 0; if (t != null && size > 0) { // advance to first entry for (; next < t.length && !t[next].isValue(); next++) { } } } public final boolean hasNext() { return table != null && next < table.length; } final Entry nextNode() { if (modCount != expectedModCount) throw new ConcurrentModificationException("ex: " + expectedModCount + " != " + modCount); if (!hasNext()) throw new NoSuchElementException(); current = next; assert current >= 0 && current < table.length; YNode[] t = table; for (++next; next < t.length && !t[next].isValue(); next++) { } return new YNodeWrapper(current); } public final void remove() { if (current < 0 || current > table.length) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); YNode p = table[current]; removeNode(p.hash, p.key, null, false, false); current = -1; expectedModCount = modCount; } } final class KeyIterator extends HashIterator implements Iterator { public final K next() { return nextNode().getKey(); } } final class ValueIterator extends HashIterator implements Iterator { public final V next() { return nextNode().getValue(); } } final class EntryIterator extends HashIterator implements Iterator> { public final Map.Entry next() { return nextNode(); } } /** * Reset to initial default state. Called by clone and readObject. */ void reinitialize() { table = null; entrySet = null; keySet = null; values = null; modCount = 0; threshold = 0; size = 0; } // Called only from writeObject, to ensure compatible ordering. void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException { YNode[] tab; if (size > 0 && (tab = table) != null) { for (YNode te : tab) { if (te.isValue()) { s.writeObject(te.key); s.writeObject(te.value); } } } } /** * Check each entry in the table. * - FindNode will find it from the key. * - the probes value is correct. */ boolean isTableOk() { boolean ok = true; int n; final YNode[] tab; if ((tab = table) == null || (n = tab.length) == 0) return ok; for (YNode te : tab) { if (te.isValue()) { int hash = hash(te.key); int origIndex = (n - 1) & hash; int index = getNode(hash, te.key); if (index < 0) { ok = false; System.out.printf("ERROR: getNode at index: %d did not find " + "the entry: %s%n", origIndex, te); } else { int th; if ((th = hash(te.key)) != te.hash) { ok = false; System.out.printf("ERROR: computed hash not equal stored hash: " + "expected: %8x, actual: %8x, te: %s%n", te.hash, th, te); } final int rehash_hash = getRehash(hash); int h = hash; for (int probes = 1; probes < tab.length; probes++, h += rehash_hash) { int i = (n - 1) & h; if (i == index) { if (probes != te.probes) { ok = false; System.out.printf("ERROR: computed probes %d not equal recorded probes: " + "%d for entry: %s%n", probes, te.probes, te); } break; } if (probes == 50) { System.out.printf("probes > 50: te: %s%n"); } } } } } return ok; } public void dumpStats(PrintStream out) { out.printf("%s instance: size: %d%n", this.getClass().getName(), this.size()); long size = heapSize(); long bytesPer = size / this.size(); out.printf(" heap size: %d(bytes), avg bytes per entry: %d, table len: %d%n", size, bytesPer, table.length); long[] types = entryTypes(); out.printf(" values: %d, empty: %d%n", types[0], types[1]); int[] rehashes = entryRehashes(); out.printf(" hash collision histogram: max: %d, %s%n", rehashes.length - 1, Arrays.toString(rehashes)); if (!isTableOk()) { dumpTable(table, "Table:"); } } private long[] entryTypes() { long[] counts = new long[2]; for (YNode te : table) { if (te.isEmpty()) counts[1]++; else counts[0]++; } return counts; } // Returns a histogram array of the number of rehashs needed to find each key. private int[] entryRehashes() { int[] counts = new int[table.length + 1]; YNode[] tab = table; int n = tab.length; K key; for (YNode te : tab) { if (!te.isValue()) continue; final int rehash_hash = getRehash(te.hash); // arbitrary but at least odd int h = te.hash; int count; for (count = 0; count < tab.length; count++, h += rehash_hash) { final YNode entry; final int index; if ((entry = tab[(index = ((n - 1) & h))]).isValue() && entry.hash == te.hash && ((key = entry.key) == key || (key != null && key.equals(key)))) { break; } } counts[count]++; } int i; for (i = counts.length - 1; i >= 0 && counts[i] == 0; i--) { } counts = Arrays.copyOf(counts, i + 1); return counts; } private long heapSize() { long acc = objectSizeMaybe(this); return acc + objectSizeMaybe(table); } private long objectSizeMaybe(Object o) { try { return (mObjectSize != null) ? (long)mObjectSize.invoke(null, o) : 0L; } catch (IllegalAccessException | InvocationTargetException e) { return 0L; } } private static boolean hasObjectSize = false; private static Method mObjectSize = getObjectSizeMethod(); private static Method getObjectSizeMethod() { try { Method m = Objects.class.getDeclaredMethod("getObjectSize", Object.class); hasObjectSize = true; return m; } catch (NoSuchMethodException nsme) { return null; } } }