diff a/test/micro/org/openjdk/bench/valhalla/corelibs/mapprotos/YHashMap.java b/test/micro/org/openjdk/bench/valhalla/corelibs/mapprotos/YHashMap.java --- /dev/null +++ b/test/micro/org/openjdk/bench/valhalla/corelibs/mapprotos/YHashMap.java @@ -0,0 +1,1616 @@ +/* + * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package org.openjdk.bench.valhalla.corelibs.mapprotos; + +import java.io.IOException; +import java.io.InvalidObjectException; +import java.io.PrintStream; +import java.io.Serializable; +import java.lang.reflect.Field; +import java.lang.reflect.InvocationTargetException; +import java.lang.reflect.Method; +import java.util.AbstractCollection; +//import java.util.AbstractMap; +import java.util.AbstractSet; +import java.util.Arrays; +import java.util.Collection; +import java.util.Collections; +import java.util.ConcurrentModificationException; +import java.util.Hashtable; +import java.util.Iterator; +import java.util.Map; +import java.util.Objects; +import java.util.Optional; +import java.util.TreeMap; +import java.util.NoSuchElementException; +import java.util.Set; +import java.util.Spliterator; +import java.util.function.BiConsumer; +import java.util.function.BiFunction; +import java.util.function.Consumer; +import java.util.function.Function; + +/** + * HashMap using hashing and "open addressing". + * Hash entries are inline class instances. + * As described in Introduction to Algorithms, 3rd Edition (The MIT Press), + * Section 11 Hash tables and Section 11.4 Open addressing. + * + * Open addressing is used to locate other entries for keys with the same hash. + * If multiple keys have the same hashcode, a rehashing mechanism + * is used to place the 2nd and subsequent + * key/value pairs at a non-optimal index in the table. Therefore, + * finding the entry for a desired key must rehash and examine subsequent + * entries until the value is value or it encounters an empty entry. + * When an entry is removed, the entry is marked as deleted, (not empty) + * to allow the search algorithm to keep looking; otherwise it would terminate + * the scan on the deleted entry, when it might be the case for some (other) key + * would have that same entry as part of its chain of possible locations for its hash. + * The default load factor (.75) should be re-evaluated in light of the open addressing + * computations. A higher number would reduce unused (wasted) space at the cost of + * increased search times, a lower number would increase unused (wasted) space but + * improve search times (assuming even hashcode distributions). + * Badly distributed hash values will result in incremental table growth and + * linear search performance. + *

+ * During insertion the Robin Hood hash algorithm does a small optimization + * to reduce worst case rehash lengths. + * Removal of entries, does a compaction of the following entries to fill + * in free entries and reduce entry rehashling lengths based on + * "On Deletions in Open Addressing Hashing", by Rosa M. Jimenez and Conrado Martinz. + * + *

+ * The only allocation that occurs during put operations is for the resizing of the entry table. + * + *

+ * Hash table based implementation of the {@code Map} interface. This + * implementation provides all of the optional map operations, and permits + * {@code null} values and the {@code null} key. (The {@code HashMap} + * class is roughly equivalent to {@code Hashtable}, except that it is + * unsynchronized and permits nulls.) This class makes no guarantees as to + * the order of the map; in particular, it does not guarantee that the order + * will remain constant over time. + * + *

This implementation provides constant-time performance for the basic + * operations ({@code get} and {@code put}), assuming the hash function + * disperses the elements properly among the buckets. Iteration over + * collection views requires time proportional to the "capacity" of the + * {@code HashMap} instance (the number of buckets) plus its size (the number + * of key-value mappings). Thus, it's very important not to set the initial + * capacity too high (or the load factor too low) if iteration performance is + * important. + * + *

An instance of {@code HashMap} has two parameters that affect its + * performance: initial capacity and load factor. The + * capacity is the number of buckets in the hash table, and the initial + * capacity is simply the capacity at the time the hash table is created. The + * load factor is a measure of how full the hash table is allowed to + * get before its capacity is automatically increased. When the number of + * entries in the hash table exceeds the product of the load factor and the + * current capacity, the hash table is rehashed (that is, internal data + * structures are rebuilt) so that the hash table has approximately twice the + * number of buckets. + * + *

As a general rule, the default load factor (.75) offers a good + * tradeoff between time and space costs. Higher values decrease the + * space overhead but increase the lookup cost (reflected in most of + * the operations of the {@code HashMap} class, including + * {@code get} and {@code put}). The expected number of entries in + * the map and its load factor should be taken into account when + * setting its initial capacity, so as to minimize the number of + * rehash operations. If the initial capacity is greater than the + * maximum number of entries divided by the load factor, no rehash + * operations will ever occur. + * + *

If many mappings are to be stored in a {@code HashMap} + * instance, creating it with a sufficiently large capacity will allow + * the mappings to be stored more efficiently than letting it perform + * automatic rehashing as needed to grow the table. Note that using + * many keys with the same {@code hashCode()} is a sure way to slow + * down performance of any hash table. + * TBD: To ameliorate impact, when keys + * are {@link Comparable}, this class may use comparison order among + * keys to help break ties. + * + *

Note that this implementation is not synchronized. + * If multiple threads access a hash map concurrently, and at least one of + * the threads modifies the map structurally, it must be + * synchronized externally. (A structural modification is any operation + * that adds or deletes one or more mappings; merely changing the value + * associated with a key that an instance already contains is not a + * structural modification.) This is typically accomplished by + * synchronizing on some object that naturally encapsulates the map. + * + * If no such object exists, the map should be "wrapped" using the + * {@link Collections#synchronizedMap Collections.synchronizedMap} + * method. This is best done at creation time, to prevent accidental + * unsynchronized access to the map:

+ *   Map m = Collections.synchronizedMap(new HashMap(...));
+ * + *

The iterators returned by all of this class's "collection view methods" + * are fail-fast: if the map is structurally modified at any time after + * the iterator is created, in any way except through the iterator's own + * {@code remove} method, the iterator will throw a + * {@link ConcurrentModificationException}. Thus, in the face of concurrent + * modification, the iterator fails quickly and cleanly, rather than risking + * arbitrary, non-deterministic behavior at an undetermined time in the + * future. + * + *

Note that the fail-fast behavior of an iterator cannot be guaranteed + * as it is, generally speaking, impossible to make any hard guarantees in the + * presence of unsynchronized concurrent modification. Fail-fast iterators + * throw {@code ConcurrentModificationException} on a best-effort basis. + * Therefore, it would be wrong to write a program that depended on this + * exception for its correctness: the fail-fast behavior of iterators + * should be used only to detect bugs. + * + *

This class is a member of the + * + * Java Collections Framework. + * + * @param the type of keys maintained by this map + * @param the type of mapped values + * + * @author Doug Lea + * @author Josh Bloch + * @author Arthur van Hoff + * @author Neal Gafter + * @see Object#hashCode() + * @see Collection + * @see Map + * @see TreeMap + * @see Hashtable + * @since 1.2 + */ +public class YHashMap extends XAbstractMap + implements Map, Cloneable, Serializable { + + private static final long serialVersionUID = 362498820763181265L; + + /* + * Implementation notes. + * + * This map usually acts as a binned (bucketed) hash table. + * The concurrent-programming-like SSA-based coding style helps + * avoid aliasing errors amid all of the twisty pointer operations. + */ + + /** + * The default initial capacity - MUST be a power of two. + */ + static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 + + /** + * The maximum capacity, used if a higher value is implicitly specified + * by either of the constructors with arguments. + * MUST be a power of two <= 1<<30. + */ + static final int MAXIMUM_CAPACITY = 1 << 30; + + /** + * The load factor used when none specified in constructor. + */ + static final float DEFAULT_LOAD_FACTOR = 0.75f; + + + /** + * Basic hash bin node, used for most entries. + */ + static inline class YNode implements Map.Entry { + final int hash; + final short probes; // maybe only a byte + final K key; + final V value; + + YNode() { + this.hash = 0; + this.probes = 0; + this.key = null; + this.value = null; + } + + YNode(int hash, K key, V value, int probes) { + this.hash = hash; + this.key = key; + this.value = value; + if (probes > 128) + throw new IllegalStateException("YNode probes overflow: " + probes); + this.probes = (short)probes; + } + + boolean isEmpty() { + return probes == 0; + } + + boolean isValue() { + return probes > 0; + } + + boolean isDeleted() { + return probes < 0; + } + + public final K getKey() { return key; } + public final V getValue() { return value; } + public final String toString() { return key + "=" + value + ", probes: " + probes; } + public final int hashCode() { + return Objects.hashCode(key) ^ Objects.hashCode(value); + } + + public final V setValue(V newValue) { + throw new IllegalStateException("YNode cannot set a value"); + } + + public final boolean equals(Object o) { + if (o == this) + return true; + if (o instanceof Map.Entry) { + Map.Entry e = (Map.Entry)o; + if (Objects.equals(key, e.getKey()) && + Objects.equals(value, e.getValue())) + return true; + } + return false; + } + } + + inline class YNodeWrapper implements Map.Entry { + int index; + + YNodeWrapper(int index) { + this.index = index; + } + + public K getKey() { + YNode e = table[index]; + return e.isEmpty() ? null : e.key; + } + + public V getValue() { + YNode e = table[index]; + return e.isEmpty() ? null : e.value; + } + + /** + * Replaces the value corresponding to this entry with the specified + * value (optional operation). (Writes through to the map.) The + * behavior of this call is undefined if the mapping has already been + * removed from the map (by the iterator's {@code remove} operation). + * + * @param value new value to be stored in this entry + * @return old value corresponding to the entry + * @throws UnsupportedOperationException if the {@code put} operation + * is not supported by the backing map + * @throws ClassCastException if the class of the specified value + * prevents it from being stored in the backing map + * @throws NullPointerException if the backing map does not permit + * null values, and the specified value is null + * @throws IllegalArgumentException if some property of this value + * prevents it from being stored in the backing map + * @throws IllegalStateException implementations may, but are not + * required to, throw this exception if the entry has been + * removed from the backing map. + */ + public V setValue(V value) { + YNode e = table[index]; + assert e.isValue(); + table[index] = new YNode(e.hash, e.key, value, 0); + return e.value; + } + } + /* ---------------- Static utilities -------------- */ + + /** + * Computes key.hashCode() and spreads (XORs) higher bits of hash + * to lower. Because the table uses power-of-two masking, sets of + * hashes that vary only in bits above the current mask will + * always collide. (Among known examples are sets of Float keys + * holding consecutive whole numbers in small tables.) So we + * apply a transform that spreads the impact of higher bits + * downward. There is a tradeoff between speed, utility, and + * quality of bit-spreading. Because many common sets of hashes + * are already reasonably distributed (so don't benefit from + * spreading), and because we use trees to handle large sets of + * collisions in bins, we just XOR some shifted bits in the + * cheapest possible way to reduce systematic lossage, as well as + * to incorporate impact of the highest bits that would otherwise + * never be used in index calculations because of table bounds. + */ + static final int hash(Object key) { + int h; + return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); + } + + /** + * Returns a power of two size for the given target capacity. + */ + static final int tableSizeFor(int cap) { + int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1); + return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; + } + + /* ---------------- Fields -------------- */ + + /** + * The table, initialized on first use, and resized as + * necessary. When allocated, length is always a power of two. + * (We also tolerate length zero in some operations to allow + * bootstrapping mechanics that are currently not needed.) + */ + transient YNode[] table; + + /** + * Holds cached entrySet(). Note that AbstractMap fields are used + * for keySet() and values(). + */ + transient Set> entrySet; + + /** + * The number of key-value mappings contained in this map. + */ + transient int size; + + /** + * The number of times this HashMap has been structurally modified + * Structural modifications are those that change the number of mappings in + * the HashMap or otherwise modify its internal structure (e.g., + * rehash). This field is used to make iterators on Collection-views of + * the HashMap fail-fast. (See ConcurrentModificationException). + */ + transient int modCount; + + /** + * The next size value at which to resize (capacity * load factor). + * + * @serial + */ + // (The javadoc description is true upon serialization. + // Additionally, if the table array has not been allocated, this + // field holds the initial array capacity, or zero signifying + // DEFAULT_INITIAL_CAPACITY.) + int threshold; + + /** + * The load factor for the hash table. + * + * @serial + */ + final float loadFactor; + + /* ---------------- Public operations -------------- */ + + /** + * Constructs an empty {@code HashMap} with the specified initial + * capacity and load factor. + * + * @param initialCapacity the initial capacity + * @param loadFactor the load factor + * @throws IllegalArgumentException if the initial capacity is negative + * or the load factor is nonpositive + */ + public YHashMap(int initialCapacity, float loadFactor) { + if (initialCapacity < 0) + throw new IllegalArgumentException("Illegal initial capacity: " + + initialCapacity); + if (initialCapacity > MAXIMUM_CAPACITY) + initialCapacity = MAXIMUM_CAPACITY; + if (loadFactor <= 0 || Float.isNaN(loadFactor)) + throw new IllegalArgumentException("Illegal load factor: " + + loadFactor); + this.loadFactor = loadFactor; + this.threshold = tableSizeFor(initialCapacity); + } + + /** + * Constructs an empty {@code HashMap} with the specified initial + * capacity and the default load factor (0.75). + * + * @param initialCapacity the initial capacity. + * @throws IllegalArgumentException if the initial capacity is negative. + */ + public YHashMap(int initialCapacity) { + this(initialCapacity, DEFAULT_LOAD_FACTOR); + } + + /** + * Constructs an empty {@code HashMap} with the default initial capacity + * (16) and the default load factor (0.75). + */ + public YHashMap() { + this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted + } + + /** + * Constructs a new {@code HashMap} with the same mappings as the + * specified {@code Map}. The {@code HashMap} is created with + * default load factor (0.75) and an initial capacity sufficient to + * hold the mappings in the specified {@code Map}. + * + * @param m the map whose mappings are to be placed in this map + * @throws NullPointerException if the specified map is null + */ + public YHashMap(Map m) { + this.loadFactor = DEFAULT_LOAD_FACTOR; + putMapEntries(m, false); + } + + /** + * Implements Map.putAll and Map constructor. + * + * @param m the map + * @param evict false when initially constructing this map, else true. + */ + final void putMapEntries(Map m, boolean evict) { + int s = m.size(); + if (s > 0) { + if (table == null) { // pre-size + float ft = ((float)s / loadFactor) + 1.0F; + int t = ((ft < (float)MAXIMUM_CAPACITY) ? + (int)ft : MAXIMUM_CAPACITY); + if (t > threshold) + threshold = tableSizeFor(t); + } else { + // Because of linked-list bucket constraints, we cannot + // expand all at once, but can reduce total resize + // effort by repeated doubling now vs later + while (s > threshold && table.length < MAXIMUM_CAPACITY) + resize(); + } + + for (Map.Entry e : m.entrySet()) { + K key = e.getKey(); + V value = e.getValue(); + putVal(hash(key), key, value, false); + } + } + } + + /** + * Returns the number of key-value mappings in this map. + * + * @return the number of key-value mappings in this map + */ + public int size() { + return size; + } + + /** + * Returns {@code true} if this map contains no key-value mappings. + * + * @return {@code true} if this map contains no key-value mappings + */ + public boolean isEmpty() { + return size == 0; + } + + /** + * Returns the value to which the specified key is mapped, + * or {@code null} if this map contains no mapping for the key. + * + *

More formally, if this map contains a mapping from a key + * {@code k} to a value {@code v} such that {@code (key==null ? k==null : + * key.equals(k))}, then this method returns {@code v}; otherwise + * it returns {@code null}. (There can be at most one such mapping.) + * + *

A return value of {@code null} does not necessarily + * indicate that the map contains no mapping for the key; it's also + * possible that the map explicitly maps the key to {@code null}. + * The {@link #containsKey containsKey} operation may be used to + * distinguish these two cases. + * + * @see #put(Object, Object) + */ + public V get(Object key) { + int hash = hash(key); + int i = getNode(hash, key); + if (i >= 0) { + return table[i].value; + } + return null; // not found no value + + } + + /** + * XImplements Map.get and related methods. + * + * @param hash hash for key + * @param key the key + * @return the index of a matching node or -1 + */ + private final int getNode(final int hash, Object key) { + YNode[] tab; + final YNode first; + int n; + K k; + if ((tab = table) != null && (n = tab.length) > 0) { + if ((first = tab[(n - 1) & hash]).isValue() && + first.hash == hash && + ((k = first.key) == key || (key != null && key.equals(k)))) { + return (n - 1) & hash; + } + if (first.isEmpty()) + return -1; + // non-empty table and not first entry + final int rehash_hash = getRehash(hash); + int h = hash + rehash_hash; // start with next entry + for (int probes = 1; probes < tab.length; probes++, h += rehash_hash) { + final YNode entry; + final int index; + if (((entry = tab[(index = ((n - 1) & h))]).isValue()) && + entry.hash == hash && + ((k = entry.key) == key || (key != null && key.equals(k)))) + return index; + if (entry.isEmpty()) + return -1; // search ended without finding the key + } + throw new RuntimeException("NYI: search exhausted"); // exhausted looking in the table + } + return -1; // not found; empty table + } + + /** + * Returns {@code true} if this map contains a mapping for the + * specified key. + * + * @param key The key whose presence in this map is to be tested + * @return {@code true} if this map contains a mapping for the specified + * key. + */ + public boolean containsKey(Object key) { + return getNode(hash(key), key) >= 0; + } + + /** + * Associates the specified value with the specified key in this map. + * If the map previously contained a mapping for the key, the old + * value is replaced. + * + * @param key key with which the specified value is to be associated + * @param value value to be associated with the specified key + * @return the previous value associated with {@code key}, or + * {@code null} if there was no mapping for {@code key}. + * (A {@code null} return can also indicate that the map + * previously associated {@code null} with {@code key}.) + */ + public V put(K key, V value) { + return putVal(hash(key), key, value, false); + } + + /** + * Implements Map.put and related methods. + * + * @param hash hash for key + * @param key the key + * @param value the value to put + * @param onlyIfAbsent if true, don't change existing value + * @param evict if false, the table is in creation mode. + * @return previous value, or null if none + */ + private final V putVal(int hash, K key, V value, boolean onlyIfAbsent) { + YNode[] tab; + YNode tp; + int n, i; + if ((tab = table) == null || (n = tab.length) == 0) + n = (tab = resize()).length; +// System.out.printf("putVal: h: %8x, k: %s, tab.len: %d%n", hash, key, n); + final int rehash_hash = getRehash(hash); + int h = hash; + int index = 0; + for (int probes = 1; probes <= tab.length; probes++, h += rehash_hash) { + YNode entry; + + entry = tab[(index = ((n - 1) & h))]; +// System.out.printf("index: %d, probe: %d, e: %s%n", index, probes, entry); + if (entry.isEmpty()) { + // Absent; insert in the first place it could be added + tab[index] = new YNode(hash, key, value, probes); + break; // break to update modCount and size + } + + if (entry.isValue() && entry.hash == hash && + ((key = entry.key) == key || (key != null && key.equals(key)))) { + if (!onlyIfAbsent || entry.value == null) + tab[index] = new YNode(hash, key, value, entry.probes); + return entry.value; + } + + // Robin Hood entry swap if.. + if (probes > entry.probes) { + // The new entry is more needy than the current one + tab[index] = new YNode(hash, key, value, probes); + hash = entry.hash; + key = entry.key; + value = entry.value; + probes = entry.probes; + } + + if (probes >= tab.length) { + dumpTable(table, "MAX: key:" + key); + throw new IllegalStateException("NYI: putVal table has no free entries"); + } + } + // System.out.printf("inserted at %d: k: %s%n", index, tab[index]); + ++modCount; + if (++size > threshold) + resize(); + return null; + } + + /** + * Initializes or doubles table size. If null, allocates in + * accord with initial capacity target held in field threshold. + * Otherwise, because we are using power-of-two expansion, the + * elements from each bin must either stay at same index, or move + * with a power of two offset in the new table. + * + * @return the table + */ + final YNode[] resize() { + YNode[] oldTab = table; + int oldCap = (oldTab == null) ? 0 : oldTab.length; + int oldThr = threshold; + int newCap, newThr = 0; + if (oldCap > 0) { + if (oldCap >= MAXIMUM_CAPACITY) { + threshold = Integer.MAX_VALUE; + return oldTab; + } + else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && + oldCap >= DEFAULT_INITIAL_CAPACITY) + newThr = oldThr << 1; // double threshold + } + else if (oldThr > 0) // initial capacity was placed in threshold + newCap = oldThr; + else { // zero initial threshold signifies using defaults + newCap = DEFAULT_INITIAL_CAPACITY; + newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); + } + if (newThr == 0) { + float ft = (float)newCap * loadFactor; + newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? + (int)ft : Integer.MAX_VALUE); + } + threshold = newThr; + @SuppressWarnings({"rawtypes","unchecked"}) + YNode[] newTab = (YNode[])new YNode[newCap]; + table = newTab; + if (oldTab != null) { + for (int i = 0; i < oldCap; ++i) { + YNode e; + if ((e = oldTab[i]).isValue()) { + final int ii; + if (newTab[ii = (newCap - 1) & e.hash].isEmpty()) { + newTab[ii] = new YNode(e.hash, e.key, e.value, 1); + } else { + final int rehash_hash = getRehash(e.hash); + int h = e.hash + rehash_hash; + for (int probes = 2; ; probes++, h += rehash_hash) { + final int index; + if (newTab[(index = ((newCap - 1) & h))].isEmpty()) { + newTab[index] = new YNode(e.hash, e.key, e.value, probes); + break; + } + if (probes > newTab.length) + throw new IllegalStateException("NYI resize: no support for overflow"); + } + } + } + } + } + assert isTableOk() : "Table not ok after resize"; + return newTab; + } + + private void dumpTable(YNode[] table, String msg) { + System.out.println(msg); + for (int i = 0; i < table.length; ++i) { + System.out.printf("%3d: %s%n", i, table[i]); + } + } + + /** + * Copies all of the mappings from the specified map to this map. + * These mappings will replace any mappings that this map had for + * any of the keys currently in the specified map. + * + * @param m mappings to be stored in this map + * @throws NullPointerException if the specified map is null + */ + public void putAll(Map m) { + putMapEntries(m, true); + } + + /** + * Removes the mapping for the specified key from this map if present. + * + * @param key key whose mapping is to be removed from the map + * @return the previous value associated with {@code key}, or + * {@code null} if there was no mapping for {@code key}. + * (A {@code null} return can also indicate that the map + * previously associated {@code null} with {@code key}.) + */ + public V remove(Object key) { + Optional o = removeNode(hash(key), key, null, false, true); + return o.orElse(null); + } + + /** + * Implements Map.remove and related methods. + * + * @param hash hash for key + * @param key the key + * @param value the value to match if matchValue, else ignored + * @param matchValue if true only remove if value is equal + * @param movable if false do not move other nodes while removing + * @return the node, or null if none + */ + private final Optional removeNode(final int hash, Object key, Object value, + boolean matchValue, boolean movable) { + YNode[] tab; + YNode entry; + V v = null; + int curr; + int n; + if ((tab = table) != null && (n = tab.length) > 0 && + (curr = getNode(hash, key)) >= 0 && + (entry = tab[curr]).isValue() && + ((!matchValue || (v = entry.value) == value || + (value != null && value.equals(v))))) { + // found entry; free and compress + // System.out.printf("remove index: %d, e: %s%n", curr, entry); + ++modCount; + --size; + final int rehash_hash = getRehash(hash); + int h = hash + rehash_hash; + for (int probes = 1; probes <= tab.length; probes++, h += rehash_hash) { + YNode alt; + int index; + alt = tab[(index = ((n - 1) & h))]; + if (alt.probes > probes) { + // move alt to curr + tab[curr] = new YNode(alt.hash, alt.key, alt.value, alt.probes - probes); + tab[index] = new YNode(); + curr = index; + probes = 0; + } else { + return Optional.ofNullable(v); + } + } + throw new IllegalStateException("NYI: removeNode no support for overflow"); + } + return Optional.empty(); + } + + // Rehash delta based on original hash and always odd. + // Does not use current hash to have a consistent stride. + private static int getRehash(int hash) { + return 3; + } + + /** + * Removes all of the mappings from this map. + * The map will be empty after this call returns. + */ + public void clear() { + YNode[] tab; + modCount++; + if ((tab = table) != null && size > 0) { + size = 0; + for (int i = 0; i < tab.length; i++) + tab[i] = YNode.default; + } + } + + /** + * Returns {@code true} if this map maps one or more keys to the + * specified value. + * + * @param value value whose presence in this map is to be tested + * @return {@code true} if this map maps one or more keys to the + * specified value + */ + public boolean containsValue(Object value) { + YNode[] tab; V v; + if ((tab = table) != null && size > 0) { + for (YNode te : tab) { + if (te.isValue()) { + if ((v = te.value) == value || + (value != null && value.equals(v))) + return true; + } + } + } + return false; + } + + /** + * Returns a {@link Set} view of the keys contained in this map. + * The set is backed by the map, so changes to the map are + * reflected in the set, and vice-versa. If the map is modified + * while an iteration over the set is in progress (except through + * the iterator's own {@code remove} operation), the results of + * the iteration are undefined. The set supports element removal, + * which removes the corresponding mapping from the map, via the + * {@code Iterator.remove}, {@code Set.remove}, + * {@code removeAll}, {@code retainAll}, and {@code clear} + * operations. It does not support the {@code add} or {@code addAll} + * operations. + * + * @return a set view of the keys contained in this map + */ + public Set keySet() { + Set ks = keySet; + if (ks == null) { + ks = new KeySet(); + keySet = ks; + } + return ks; + } + + /** + * Prepares the array for {@link Collection#toArray(Object[])} implementation. + * If supplied array is smaller than this map size, a new array is allocated. + * If supplied array is bigger than this map size, a null is written at size index. + * + * @param a an original array passed to {@code toArray()} method + * @param type of array elements + * @return an array ready to be filled and returned from {@code toArray()} method. + */ + @SuppressWarnings("unchecked") + final T[] prepareArray(T[] a) { + int size = this.size; + if (a.length < size) { + return (T[]) java.lang.reflect.Array + .newInstance(a.getClass().getComponentType(), size); + } + if (a.length > size) { + a[size] = null; + } + return a; + } + + /** + * Fills an array with this map keys and returns it. This method assumes + * that input array is big enough to fit all the keys. Use + * {@link #prepareArray(Object[])} to ensure this. + * + * @param a an array to fill + * @param type of array elements + * @return supplied array + */ + T[] keysToArray(T[] a) { + Object[] r = a; + YNode[] tab; + int idx = 0; + int i = 0; + if (size > 0 && (tab = table) != null) { + for (YNode te : tab) { + if (te.isValue()) { + r[idx++] = te.key; + } + } + } + return a; + } + + /** + * Fills an array with this map values and returns it. This method assumes + * that input array is big enough to fit all the values. Use + * {@link #prepareArray(Object[])} to ensure this. + * + * @param a an array to fill + * @param type of array elements + * @return supplied array + */ + T[] valuesToArray(T[] a) { + Object[] r = a; + YNode[] tab; + int idx = 0; + if (size > 0 && (tab = table) != null) { + for (YNode te : tab) { + if (te.isValue()) { + r[idx++] = te.value; + } + } + } + return a; + } + + final class KeySet extends AbstractSet { + public final int size() { return size; } + public final void clear() { YHashMap.this.clear(); } + public final Iterator iterator() { return new KeyIterator(); } + public final boolean contains(Object o) { return containsKey(o); } + public final boolean remove(Object key) { + return removeNode(hash(key), key, null, false, true).isPresent(); + } + public final Spliterator spliterator() { + throw new RuntimeException("KeySet.spliterator"); +// new KeySpliterator<>(XHashMap.this, 0, -1, 0, 0); + } + + public Object[] toArray() { + return keysToArray(new Object[size]); + } + + public T[] toArray(T[] a) { + return keysToArray(prepareArray(a)); + } + + public final void forEach(Consumer action) { + YNode[] tab; + if (action == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (YNode te : tab) { + if (te.isValue()) { + action.accept(te.key); + } + } + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + } + + /** + * Returns a {@link Collection} view of the values contained in this map. + * The collection is backed by the map, so changes to the map are + * reflected in the collection, and vice-versa. If the map is + * modified while an iteration over the collection is in progress + * (except through the iterator's own {@code remove} operation), + * the results of the iteration are undefined. The collection + * supports element removal, which removes the corresponding + * mapping from the map, via the {@code Iterator.remove}, + * {@code Collection.remove}, {@code removeAll}, + * {@code retainAll} and {@code clear} operations. It does not + * support the {@code add} or {@code addAll} operations. + * + * @return a view of the values contained in this map + */ + public Collection values() { + Collection vs = values; + if (vs == null) { + vs = new Values(); + values = vs; + } + return vs; + } + + final class Values extends AbstractCollection { + public final int size() { return size; } + public final void clear() { YHashMap.this.clear(); } + public final Iterator iterator() { return new ValueIterator(); } + public final boolean contains(Object o) { return containsValue(o); } + public final Spliterator spliterator() { + throw new RuntimeException("Values.spliterator"); + //new ValueSpliterator<>(XHashMap.this, 0, -1, 0, 0); + + } + + public Object[] toArray() { + return valuesToArray(new Object[size]); + } + + public T[] toArray(T[] a) { + return valuesToArray(prepareArray(a)); + } + + public final void forEach(Consumer action) { + YNode[] tab; + if (action == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (YNode te : tab) { + if (!te.isValue()) { + action.accept(te.value); + } + } + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + } + + /** + * Returns a {@link Set} view of the mappings contained in this map. + * The set is backed by the map, so changes to the map are + * reflected in the set, and vice-versa. If the map is modified + * while an iteration over the set is in progress (except through + * the iterator's own {@code remove} operation, or through the + * {@code setValue} operation on a map entry returned by the + * iterator) the results of the iteration are undefined. The set + * supports element removal, which removes the corresponding + * mapping from the map, via the {@code Iterator.remove}, + * {@code Set.remove}, {@code removeAll}, {@code retainAll} and + * {@code clear} operations. It does not support the + * {@code add} or {@code addAll} operations. + * + * @return a set view of the mappings contained in this map + */ + public Set> entrySet() { + Set> es; + return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; + } + + final class EntrySet extends AbstractSet> { + public final int size() { return size; } + public final void clear() { YHashMap.this.clear(); } + public final Iterator> iterator() { + return new EntryIterator(); + } + public final boolean contains(Object o) { + if (!(o instanceof Map.Entry)) + return false; + Map.Entry e = (Map.Entry) o; + Object key = e.getKey(); + int index = getNode(hash(key), key); + return index >= 0 && table[index].equals(e); + } + public final boolean remove(Object o) { + if (o instanceof Map.Entry) { + Map.Entry e = (Map.Entry) o; + Object key = e.getKey(); + Object value = e.getValue(); + return removeNode(hash(key), key, value, true, true).isPresent(); + } + return false; + } + public final Spliterator> spliterator() { + throw new RuntimeException("EntrySet.spliterator"); +// return new EntrySpliterator<>(XHashMap.this, 0, -1, 0, 0); + } + public final void forEach(Consumer> action) { + YNode[] tab; + if (action == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (YNode te : tab) { + if (te.isValue()) { + action.accept(new YNodeWrapper(te.hash & (tab.length - 1))); + } + } + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + } + + // Overrides of JDK8 Map extension methods + + @Override + public V getOrDefault(Object key, V defaultValue) { + final int index; + return (index = getNode(hash(key), key)) < 0 ? defaultValue : table[index].value; + } + + @Override + public V putIfAbsent(K key, V value) { + return putVal(hash(key), key, value, true); + } + + @Override + public boolean remove(Object key, Object value) { + return removeNode(hash(key), key, value, true, true).isPresent(); + } + + @Override + public boolean replace(K key, V oldValue, V newValue) { + int hash, index; + V v; + if ((index = getNode((hash = hash(key)), key)) >= 0 && + ((v = table[index].value) == oldValue || (v != null && v.equals(oldValue)))) { + table[index] = new YNode<>(hash, key, newValue, table[index].probes); + return true; + } + return false; + } + + @Override + public V replace(K key, V value) { + int hash, index; + V v; + if ((index = getNode((hash = hash(key)), key)) >= 0) { + V oldValue = table[index].value; + table[index] = new YNode<>(hash, key, value, table[index].probes); + return oldValue; + } + return null; + } + + /** + * {@inheritDoc} + * + *

This method will, on a best-effort basis, throw a + * {@link ConcurrentModificationException} if it is detected that the + * mapping function modifies this map during computation. + * + * @throws ConcurrentModificationException if it is detected that the + * mapping function modified this map + */ + @Override + public V computeIfAbsent(K key, + Function mappingFunction) { + if (mappingFunction == null) + throw new NullPointerException(); + int hash = hash(key); + YNode[] tab; YNode first; int n, i; + int index; + + index = getNode(hash, key); + if (index >= 0 && table[index].value != null) + return table[index].value; + + int mc = modCount; + V v = mappingFunction.apply(key); + if (mc != modCount) { throw new ConcurrentModificationException(); } + if (v == null) { + return null; + } else if (index >= 0) { + table[index] = new YNode<>(hash, key, v, 1); + return v; + } + putVal(hash, key, v, false); + // TBD: Watch the double counting + modCount = mc + 1; + ++size; + return v; + } + + /** + * {@inheritDoc} + * + *

This method will, on a best-effort basis, throw a + * {@link ConcurrentModificationException} if it is detected that the + * remapping function modifies this map during computation. + * + * @throws ConcurrentModificationException if it is detected that the + * remapping function modified this map + */ + @Override + public V computeIfPresent(K key, + BiFunction remappingFunction) { + if (remappingFunction == null) + throw new NullPointerException(); + V oldValue; + int hash = hash(key); + int index = getNode(hash, key); + if (index >= 0 && (oldValue = table[index].value) != null) { + int mc = modCount; + V v = remappingFunction.apply(key, oldValue); + if (mc != modCount) { throw new ConcurrentModificationException(); } + if (v != null) { + table[index] = new YNode(hash, key, v, table[index].probes); + return v; + } + else + removeNode(hash, key, null, false, true); + } + return null; + } + + /** + * {@inheritDoc} + * + *

This method will, on a best-effort basis, throw a + * {@link ConcurrentModificationException} if it is detected that the + * remapping function modifies this map during computation. + * + * @throws ConcurrentModificationException if it is detected that the + * remapping function modified this map + */ + @Override + public V compute(K key, + BiFunction remappingFunction) { + if (remappingFunction == null) + throw new NullPointerException(); + return super.compute(key, remappingFunction); + } + + /** + * {@inheritDoc} + * + *

This method will, on a best-effort basis, throw a + * {@link ConcurrentModificationException} if it is detected that the + * remapping function modifies this map during computation. + * + * @throws ConcurrentModificationException if it is detected that the + * remapping function modified this map + */ + @Override + public V merge(K key, V value, + BiFunction remappingFunction) { + return super.merge(key, value, remappingFunction); + } + + @Override + public void forEach(BiConsumer action) { + YNode[] tab; + if (action == null) + throw new NullPointerException(); + if (size > 0 && (tab = table) != null) { + int mc = modCount; + for (YNode te : tab) { + if (te.isValue()) { + action.accept(te.key, te.value); + } + } + // TBD: iterate over overflow + + if (modCount != mc) + throw new ConcurrentModificationException(); + } + } + + @Override + public void replaceAll(BiFunction function) { + super.replaceAll(function); + } + + /* ------------------------------------------------------------ */ + // Cloning and serialization + + /** + * Returns a shallow copy of this {@code HashMap} instance: the keys and + * values themselves are not cloned. + * + * @return a shallow copy of this map + */ + @SuppressWarnings("unchecked") + @Override + public Object clone() { + YHashMap result; + try { + result = (YHashMap)super.clone(); + } catch (CloneNotSupportedException e) { + // this shouldn't happen, since we are Cloneable + throw new InternalError(e); + } + result.reinitialize(); + result.putMapEntries(this, false); + return result; + } + + // These methods are also used when serializing HashSets + final float loadFactor() { return loadFactor; } + final int capacity() { + return (table != null) ? table.length : + (threshold > 0) ? threshold : + DEFAULT_INITIAL_CAPACITY; + } + + /** + * Saves this map to a stream (that is, serializes it). + * + * @param s the stream + * @throws IOException if an I/O error occurs + * @serialData The capacity of the HashMap (the length of the + * bucket array) is emitted (int), followed by the + * size (an int, the number of key-value + * mappings), followed by the key (Object) and value (Object) + * for each key-value mapping. The key-value mappings are + * emitted in no particular order. + */ + private void writeObject(java.io.ObjectOutputStream s) + throws IOException { + int buckets = capacity(); + // Write out the threshold, loadfactor, and any hidden stuff + s.defaultWriteObject(); + s.writeInt(buckets); + s.writeInt(size); + internalWriteEntries(s); + } + + /** + * Reconstitutes this map from a stream (that is, deserializes it). + * @param s the stream + * @throws ClassNotFoundException if the class of a serialized object + * could not be found + * @throws IOException if an I/O error occurs + */ + private void readObject(java.io.ObjectInputStream s) + throws IOException, ClassNotFoundException { + // Read in the threshold (ignored), loadfactor, and any hidden stuff + s.defaultReadObject(); + reinitialize(); + if (loadFactor <= 0 || Float.isNaN(loadFactor)) + throw new InvalidObjectException("Illegal load factor: " + + loadFactor); + s.readInt(); // Read and ignore number of buckets + int mappings = s.readInt(); // Read number of mappings (size) + if (mappings < 0) + throw new InvalidObjectException("Illegal mappings count: " + + mappings); + else if (mappings > 0) { // (if zero, use defaults) + // Size the table using given load factor only if within + // range of 0.25...4.0 + float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f); + float fc = (float)mappings / lf + 1.0f; + int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ? + DEFAULT_INITIAL_CAPACITY : + (fc >= MAXIMUM_CAPACITY) ? + MAXIMUM_CAPACITY : + tableSizeFor((int)fc)); + float ft = (float)cap * lf; + threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ? + (int)ft : Integer.MAX_VALUE); + + // Check Map.Entry[].class since it's the nearest public type to + // what we're actually creating. +// SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, cap); + @SuppressWarnings({"rawtypes","unchecked"}) + YNode[] tab = (YNode[])new YNode[cap]; + table = tab; + + // Read the keys and values, and put the mappings in the HashMap + for (int i = 0; i < mappings; i++) { + @SuppressWarnings("unchecked") + K key = (K) s.readObject(); + @SuppressWarnings("unchecked") + V value = (V) s.readObject(); + putVal(hash(key), key, value, false); + } + } + } + + /* ------------------------------------------------------------ */ + // iterators + + abstract class HashIterator { + int next; // next entry to return + int current; // current entry + int expectedModCount; // for fast-fail + + HashIterator() { + expectedModCount = modCount; + YNode[] t = table; + current = -1; + next = 0; + if (t != null && size > 0) { // advance to first entry + for (; next < t.length && !t[next].isValue(); next++) { + } + } + } + + public final boolean hasNext() { + return table != null && next < table.length; + } + + final Entry nextNode() { + if (modCount != expectedModCount) + throw new ConcurrentModificationException("ex: " + expectedModCount + " != " + modCount); + if (!hasNext()) + throw new NoSuchElementException(); + current = next; + assert current >= 0 && current < table.length; + + YNode[] t = table; + for (++next; next < t.length && !t[next].isValue(); next++) { + + } + + return new YNodeWrapper(current); + } + + public final void remove() { + if (current < 0 || current > table.length) + throw new IllegalStateException(); + if (modCount != expectedModCount) + throw new ConcurrentModificationException(); + YNode p = table[current]; + removeNode(p.hash, p.key, null, false, false); + current = -1; + expectedModCount = modCount; + } + } + + final class KeyIterator extends HashIterator + implements Iterator { + public final K next() { return nextNode().getKey(); } + } + + final class ValueIterator extends HashIterator + implements Iterator { + public final V next() { return nextNode().getValue(); } + } + + final class EntryIterator extends HashIterator + implements Iterator> { + public final Map.Entry next() { return nextNode(); } + } + + /** + * Reset to initial default state. Called by clone and readObject. + */ + void reinitialize() { + table = null; + entrySet = null; + keySet = null; + values = null; + modCount = 0; + threshold = 0; + size = 0; + } + + // Called only from writeObject, to ensure compatible ordering. + void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException { + YNode[] tab; + if (size > 0 && (tab = table) != null) { + for (YNode te : tab) { + if (te.isValue()) { + s.writeObject(te.key); + s.writeObject(te.value); + } + } + } + } + + + /** + * Check each entry in the table. + * - FindNode will find it from the key. + * - the probes value is correct. + */ + boolean isTableOk() { + boolean ok = true; + int n; + final YNode[] tab; + if ((tab = table) == null || (n = tab.length) == 0) + return ok; + for (YNode te : tab) { + if (te.isValue()) { + int hash = hash(te.key); + int origIndex = (n - 1) & hash; + int index = getNode(hash, te.key); + if (index < 0) { + ok = false; + System.out.printf("ERROR: getNode at index: %d did not find " + + "the entry: %s%n", origIndex, te); + } else { + int th; + if ((th = hash(te.key)) != te.hash) { + ok = false; + System.out.printf("ERROR: computed hash not equal stored hash: " + + "expected: %8x, actual: %8x, te: %s%n", te.hash, th, te); + } + final int rehash_hash = getRehash(hash); + int h = hash; + for (int probes = 1; probes < tab.length; probes++, h += rehash_hash) { + int i = (n - 1) & h; + if (i == index) { + if (probes != te.probes) { + ok = false; + System.out.printf("ERROR: computed probes %d not equal recorded probes: " + + "%d for entry: %s%n", + probes, te.probes, te); + } + break; + } + if (probes == 50) { + System.out.printf("probes > 50: te: %s%n"); + } + } + + } + } + } + return ok; + } + + public void dumpStats(PrintStream out) { + out.printf("%s instance: size: %d%n", this.getClass().getName(), this.size()); + long size = heapSize(); + long bytesPer = size / this.size(); + out.printf(" heap size: %d(bytes), avg bytes per entry: %d, table len: %d%n", + size, bytesPer, table.length); + long[] types = entryTypes(); + out.printf(" values: %d, empty: %d%n", + types[0], types[1]); + int[] rehashes = entryRehashes(); + out.printf(" hash collision histogram: max: %d, %s%n", + rehashes.length - 1, Arrays.toString(rehashes)); + if (!isTableOk()) { + dumpTable(table, "Table:"); + } + } + + private long[] entryTypes() { + long[] counts = new long[2]; + for (YNode te : table) { + if (te.isEmpty()) + counts[1]++; + else + counts[0]++; + } + return counts; + } + + // Returns a histogram array of the number of rehashs needed to find each key. + private int[] entryRehashes() { + int[] counts = new int[table.length + 1]; + YNode[] tab = table; + int n = tab.length; + K key; + for (YNode te : tab) { + + if (!te.isValue()) + continue; + final int rehash_hash = getRehash(te.hash); // arbitrary but at least odd + int h = te.hash; + int count; + for (count = 0; count < tab.length; count++, h += rehash_hash) { + final YNode entry; + final int index; + if ((entry = tab[(index = ((n - 1) & h))]).isValue() && + entry.hash == te.hash && + ((key = entry.key) == key || (key != null && key.equals(key)))) { + break; + } + } + + counts[count]++; + } + + int i; + for (i = counts.length - 1; i >= 0 && counts[i] == 0; i--) { + } + counts = Arrays.copyOf(counts, i + 1); + return counts; + } + + private long heapSize() { + long acc = objectSizeMaybe(this); + return acc + objectSizeMaybe(table); + } + + private long objectSizeMaybe(Object o) { + try { + return (mObjectSize != null) + ? (long)mObjectSize.invoke(null, o) + : 0L; + } catch (IllegalAccessException | InvocationTargetException e) { + return 0L; + } + } + + private static boolean hasObjectSize = false; + private static Method mObjectSize = getObjectSizeMethod(); + + private static Method getObjectSizeMethod() { + try { + Method m = Objects.class.getDeclaredMethod("getObjectSize", Object.class); + hasObjectSize = true; + return m; + } catch (NoSuchMethodException nsme) { + return null; + } + } + +} +