1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "jvm.h"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "logging/logStream.hpp"
  40 #include "memory/allocation.inline.hpp"
  41 #include "memory/filemap.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "os_share_windows.hpp"
  44 #include "os_windows.inline.hpp"
  45 #include "prims/jniFastGetField.hpp"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 #include "symbolengine.hpp"
  77 #include "windbghelp.hpp"
  78 
  79 
  80 #ifdef _DEBUG
  81 #include <crtdbg.h>
  82 #endif
  83 
  84 
  85 #include <windows.h>
  86 #include <sys/types.h>
  87 #include <sys/stat.h>
  88 #include <sys/timeb.h>
  89 #include <objidl.h>
  90 #include <shlobj.h>
  91 
  92 #include <malloc.h>
  93 #include <signal.h>
  94 #include <direct.h>
  95 #include <errno.h>
  96 #include <fcntl.h>
  97 #include <io.h>
  98 #include <process.h>              // For _beginthreadex(), _endthreadex()
  99 #include <imagehlp.h>             // For os::dll_address_to_function_name
 100 // for enumerating dll libraries
 101 #include <vdmdbg.h>
 102 #include <psapi.h>
 103 #include <mmsystem.h>
 104 #include <winsock2.h>
 105 
 106 // for timer info max values which include all bits
 107 #define ALL_64_BITS CONST64(-1)
 108 
 109 // For DLL loading/load error detection
 110 // Values of PE COFF
 111 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 112 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 113 
 114 static HANDLE main_process;
 115 static HANDLE main_thread;
 116 static int    main_thread_id;
 117 
 118 static FILETIME process_creation_time;
 119 static FILETIME process_exit_time;
 120 static FILETIME process_user_time;
 121 static FILETIME process_kernel_time;
 122 
 123 #ifdef _M_AMD64
 124   #define __CPU__ amd64
 125 #else
 126   #define __CPU__ i486
 127 #endif
 128 
 129 #if INCLUDE_AOT
 130 PVOID  topLevelVectoredExceptionHandler = NULL;
 131 LONG WINAPI topLevelVectoredExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 132 #endif
 133 
 134 // save DLL module handle, used by GetModuleFileName
 135 
 136 HINSTANCE vm_lib_handle;
 137 
 138 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 139   switch (reason) {
 140   case DLL_PROCESS_ATTACH:
 141     vm_lib_handle = hinst;
 142     if (ForceTimeHighResolution) {
 143       timeBeginPeriod(1L);
 144     }
 145     WindowsDbgHelp::pre_initialize();
 146     SymbolEngine::pre_initialize();
 147     break;
 148   case DLL_PROCESS_DETACH:
 149     if (ForceTimeHighResolution) {
 150       timeEndPeriod(1L);
 151     }
 152 #if INCLUDE_AOT
 153     if (topLevelVectoredExceptionHandler != NULL) {
 154       RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 155       topLevelVectoredExceptionHandler = NULL;
 156     }
 157 #endif
 158     break;
 159   default:
 160     break;
 161   }
 162   return true;
 163 }
 164 
 165 static inline double fileTimeAsDouble(FILETIME* time) {
 166   const double high  = (double) ((unsigned int) ~0);
 167   const double split = 10000000.0;
 168   double result = (time->dwLowDateTime / split) +
 169                    time->dwHighDateTime * (high/split);
 170   return result;
 171 }
 172 
 173 // Implementation of os
 174 
 175 bool os::unsetenv(const char* name) {
 176   assert(name != NULL, "Null pointer");
 177   return (SetEnvironmentVariable(name, NULL) == TRUE);
 178 }
 179 
 180 // No setuid programs under Windows.
 181 bool os::have_special_privileges() {
 182   return false;
 183 }
 184 
 185 
 186 // This method is  a periodic task to check for misbehaving JNI applications
 187 // under CheckJNI, we can add any periodic checks here.
 188 // For Windows at the moment does nothing
 189 void os::run_periodic_checks() {
 190   return;
 191 }
 192 
 193 // previous UnhandledExceptionFilter, if there is one
 194 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 195 
 196 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 197 
 198 void os::init_system_properties_values() {
 199   // sysclasspath, java_home, dll_dir
 200   {
 201     char *home_path;
 202     char *dll_path;
 203     char *pslash;
 204     const char *bin = "\\bin";
 205     char home_dir[MAX_PATH + 1];
 206     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 207 
 208     if (alt_home_dir != NULL)  {
 209       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 210       home_dir[MAX_PATH] = '\0';
 211     } else {
 212       os::jvm_path(home_dir, sizeof(home_dir));
 213       // Found the full path to jvm.dll.
 214       // Now cut the path to <java_home>/jre if we can.
 215       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 216       pslash = strrchr(home_dir, '\\');
 217       if (pslash != NULL) {
 218         *pslash = '\0';                   // get rid of \{client|server}
 219         pslash = strrchr(home_dir, '\\');
 220         if (pslash != NULL) {
 221           *pslash = '\0';                 // get rid of \bin
 222         }
 223       }
 224     }
 225 
 226     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 227     if (home_path == NULL) {
 228       return;
 229     }
 230     strcpy(home_path, home_dir);
 231     Arguments::set_java_home(home_path);
 232     FREE_C_HEAP_ARRAY(char, home_path);
 233 
 234     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 235                                 mtInternal);
 236     if (dll_path == NULL) {
 237       return;
 238     }
 239     strcpy(dll_path, home_dir);
 240     strcat(dll_path, bin);
 241     Arguments::set_dll_dir(dll_path);
 242     FREE_C_HEAP_ARRAY(char, dll_path);
 243 
 244     if (!set_boot_path('\\', ';')) {
 245       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 246     }
 247   }
 248 
 249 // library_path
 250 #define EXT_DIR "\\lib\\ext"
 251 #define BIN_DIR "\\bin"
 252 #define PACKAGE_DIR "\\Sun\\Java"
 253   {
 254     // Win32 library search order (See the documentation for LoadLibrary):
 255     //
 256     // 1. The directory from which application is loaded.
 257     // 2. The system wide Java Extensions directory (Java only)
 258     // 3. System directory (GetSystemDirectory)
 259     // 4. Windows directory (GetWindowsDirectory)
 260     // 5. The PATH environment variable
 261     // 6. The current directory
 262 
 263     char *library_path;
 264     char tmp[MAX_PATH];
 265     char *path_str = ::getenv("PATH");
 266 
 267     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 268                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 269 
 270     library_path[0] = '\0';
 271 
 272     GetModuleFileName(NULL, tmp, sizeof(tmp));
 273     *(strrchr(tmp, '\\')) = '\0';
 274     strcat(library_path, tmp);
 275 
 276     GetWindowsDirectory(tmp, sizeof(tmp));
 277     strcat(library_path, ";");
 278     strcat(library_path, tmp);
 279     strcat(library_path, PACKAGE_DIR BIN_DIR);
 280 
 281     GetSystemDirectory(tmp, sizeof(tmp));
 282     strcat(library_path, ";");
 283     strcat(library_path, tmp);
 284 
 285     GetWindowsDirectory(tmp, sizeof(tmp));
 286     strcat(library_path, ";");
 287     strcat(library_path, tmp);
 288 
 289     if (path_str) {
 290       strcat(library_path, ";");
 291       strcat(library_path, path_str);
 292     }
 293 
 294     strcat(library_path, ";.");
 295 
 296     Arguments::set_library_path(library_path);
 297     FREE_C_HEAP_ARRAY(char, library_path);
 298   }
 299 
 300   // Default extensions directory
 301   {
 302     char path[MAX_PATH];
 303     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 304     GetWindowsDirectory(path, MAX_PATH);
 305     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 306             path, PACKAGE_DIR, EXT_DIR);
 307     Arguments::set_ext_dirs(buf);
 308   }
 309   #undef EXT_DIR
 310   #undef BIN_DIR
 311   #undef PACKAGE_DIR
 312 
 313 #ifndef _WIN64
 314   // set our UnhandledExceptionFilter and save any previous one
 315   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 316 #endif
 317 
 318   // Done
 319   return;
 320 }
 321 
 322 void os::breakpoint() {
 323   DebugBreak();
 324 }
 325 
 326 // Invoked from the BREAKPOINT Macro
 327 extern "C" void breakpoint() {
 328   os::breakpoint();
 329 }
 330 
 331 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 332 // So far, this method is only used by Native Memory Tracking, which is
 333 // only supported on Windows XP or later.
 334 //
 335 int os::get_native_stack(address* stack, int frames, int toSkip) {
 336   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 337   for (int index = captured; index < frames; index ++) {
 338     stack[index] = NULL;
 339   }
 340   return captured;
 341 }
 342 
 343 
 344 // os::current_stack_base()
 345 //
 346 //   Returns the base of the stack, which is the stack's
 347 //   starting address.  This function must be called
 348 //   while running on the stack of the thread being queried.
 349 
 350 address os::current_stack_base() {
 351   MEMORY_BASIC_INFORMATION minfo;
 352   address stack_bottom;
 353   size_t stack_size;
 354 
 355   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 356   stack_bottom =  (address)minfo.AllocationBase;
 357   stack_size = minfo.RegionSize;
 358 
 359   // Add up the sizes of all the regions with the same
 360   // AllocationBase.
 361   while (1) {
 362     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 363     if (stack_bottom == (address)minfo.AllocationBase) {
 364       stack_size += minfo.RegionSize;
 365     } else {
 366       break;
 367     }
 368   }
 369   return stack_bottom + stack_size;
 370 }
 371 
 372 size_t os::current_stack_size() {
 373   size_t sz;
 374   MEMORY_BASIC_INFORMATION minfo;
 375   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 376   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 377   return sz;
 378 }
 379 
 380 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
 381   MEMORY_BASIC_INFORMATION minfo;
 382   committed_start = NULL;
 383   committed_size = 0;
 384   address top = start + size;
 385   const address start_addr = start;
 386   while (start < top) {
 387     VirtualQuery(start, &minfo, sizeof(minfo));
 388     if ((minfo.State & MEM_COMMIT) == 0) {  // not committed
 389       if (committed_start != NULL) {
 390         break;
 391       }
 392     } else {  // committed
 393       if (committed_start == NULL) {
 394         committed_start = start;
 395       }
 396       size_t offset = start - (address)minfo.BaseAddress;
 397       committed_size += minfo.RegionSize - offset;
 398     }
 399     start = (address)minfo.BaseAddress + minfo.RegionSize;
 400   }
 401 
 402   if (committed_start == NULL) {
 403     assert(committed_size == 0, "Sanity");
 404     return false;
 405   } else {
 406     assert(committed_start >= start_addr && committed_start < top, "Out of range");
 407     // current region may go beyond the limit, trim to the limit
 408     committed_size = MIN2(committed_size, size_t(top - committed_start));
 409     return true;
 410   }
 411 }
 412 
 413 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 414   const struct tm* time_struct_ptr = localtime(clock);
 415   if (time_struct_ptr != NULL) {
 416     *res = *time_struct_ptr;
 417     return res;
 418   }
 419   return NULL;
 420 }
 421 
 422 struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
 423   const struct tm* time_struct_ptr = gmtime(clock);
 424   if (time_struct_ptr != NULL) {
 425     *res = *time_struct_ptr;
 426     return res;
 427   }
 428   return NULL;
 429 }
 430 
 431 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 432 
 433 // Thread start routine for all newly created threads
 434 static unsigned __stdcall thread_native_entry(Thread* thread) {
 435 
 436   thread->record_stack_base_and_size();
 437 
 438   // Try to randomize the cache line index of hot stack frames.
 439   // This helps when threads of the same stack traces evict each other's
 440   // cache lines. The threads can be either from the same JVM instance, or
 441   // from different JVM instances. The benefit is especially true for
 442   // processors with hyperthreading technology.
 443   static int counter = 0;
 444   int pid = os::current_process_id();
 445   _alloca(((pid ^ counter++) & 7) * 128);
 446 
 447   thread->initialize_thread_current();
 448 
 449   OSThread* osthr = thread->osthread();
 450   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 451 
 452   if (UseNUMA) {
 453     int lgrp_id = os::numa_get_group_id();
 454     if (lgrp_id != -1) {
 455       thread->set_lgrp_id(lgrp_id);
 456     }
 457   }
 458 
 459   // Diagnostic code to investigate JDK-6573254
 460   int res = 30115;  // non-java thread
 461   if (thread->is_Java_thread()) {
 462     res = 20115;    // java thread
 463   }
 464 
 465   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 466 
 467   // Install a win32 structured exception handler around every thread created
 468   // by VM, so VM can generate error dump when an exception occurred in non-
 469   // Java thread (e.g. VM thread).
 470   __try {
 471     thread->call_run();
 472   } __except(topLevelExceptionFilter(
 473                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 474     // Nothing to do.
 475   }
 476 
 477   // Note: at this point the thread object may already have deleted itself.
 478   // Do not dereference it from here on out.
 479 
 480   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 481 
 482   // One less thread is executing
 483   // When the VMThread gets here, the main thread may have already exited
 484   // which frees the CodeHeap containing the Atomic::add code
 485   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 486     Atomic::dec(&os::win32::_os_thread_count);
 487   }
 488 
 489   // Thread must not return from exit_process_or_thread(), but if it does,
 490   // let it proceed to exit normally
 491   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 492 }
 493 
 494 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 495                                   int thread_id) {
 496   // Allocate the OSThread object
 497   OSThread* osthread = new OSThread(NULL, NULL);
 498   if (osthread == NULL) return NULL;
 499 
 500   // Initialize support for Java interrupts
 501   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 502   if (interrupt_event == NULL) {
 503     delete osthread;
 504     return NULL;
 505   }
 506   osthread->set_interrupt_event(interrupt_event);
 507 
 508   // Store info on the Win32 thread into the OSThread
 509   osthread->set_thread_handle(thread_handle);
 510   osthread->set_thread_id(thread_id);
 511 
 512   if (UseNUMA) {
 513     int lgrp_id = os::numa_get_group_id();
 514     if (lgrp_id != -1) {
 515       thread->set_lgrp_id(lgrp_id);
 516     }
 517   }
 518 
 519   // Initial thread state is INITIALIZED, not SUSPENDED
 520   osthread->set_state(INITIALIZED);
 521 
 522   return osthread;
 523 }
 524 
 525 
 526 bool os::create_attached_thread(JavaThread* thread) {
 527 #ifdef ASSERT
 528   thread->verify_not_published();
 529 #endif
 530   HANDLE thread_h;
 531   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 532                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 533     fatal("DuplicateHandle failed\n");
 534   }
 535   OSThread* osthread = create_os_thread(thread, thread_h,
 536                                         (int)current_thread_id());
 537   if (osthread == NULL) {
 538     return false;
 539   }
 540 
 541   // Initial thread state is RUNNABLE
 542   osthread->set_state(RUNNABLE);
 543 
 544   thread->set_osthread(osthread);
 545 
 546   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 547     os::current_thread_id());
 548 
 549   return true;
 550 }
 551 
 552 bool os::create_main_thread(JavaThread* thread) {
 553 #ifdef ASSERT
 554   thread->verify_not_published();
 555 #endif
 556   if (_starting_thread == NULL) {
 557     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 558     if (_starting_thread == NULL) {
 559       return false;
 560     }
 561   }
 562 
 563   // The primordial thread is runnable from the start)
 564   _starting_thread->set_state(RUNNABLE);
 565 
 566   thread->set_osthread(_starting_thread);
 567   return true;
 568 }
 569 
 570 // Helper function to trace _beginthreadex attributes,
 571 //  similar to os::Posix::describe_pthread_attr()
 572 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 573                                                size_t stacksize, unsigned initflag) {
 574   stringStream ss(buf, buflen);
 575   if (stacksize == 0) {
 576     ss.print("stacksize: default, ");
 577   } else {
 578     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 579   }
 580   ss.print("flags: ");
 581   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 582   #define ALL(X) \
 583     X(CREATE_SUSPENDED) \
 584     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 585   ALL(PRINT_FLAG)
 586   #undef ALL
 587   #undef PRINT_FLAG
 588   return buf;
 589 }
 590 
 591 // Allocate and initialize a new OSThread
 592 bool os::create_thread(Thread* thread, ThreadType thr_type,
 593                        size_t stack_size) {
 594   unsigned thread_id;
 595 
 596   // Allocate the OSThread object
 597   OSThread* osthread = new OSThread(NULL, NULL);
 598   if (osthread == NULL) {
 599     return false;
 600   }
 601 
 602   // Initialize support for Java interrupts
 603   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 604   if (interrupt_event == NULL) {
 605     delete osthread;
 606     return false;
 607   }
 608   osthread->set_interrupt_event(interrupt_event);
 609   osthread->set_interrupted(false);
 610 
 611   thread->set_osthread(osthread);
 612 
 613   if (stack_size == 0) {
 614     switch (thr_type) {
 615     case os::java_thread:
 616       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 617       if (JavaThread::stack_size_at_create() > 0) {
 618         stack_size = JavaThread::stack_size_at_create();
 619       }
 620       break;
 621     case os::compiler_thread:
 622       if (CompilerThreadStackSize > 0) {
 623         stack_size = (size_t)(CompilerThreadStackSize * K);
 624         break;
 625       } // else fall through:
 626         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 627     case os::vm_thread:
 628     case os::pgc_thread:
 629     case os::cgc_thread:
 630     case os::watcher_thread:
 631       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 632       break;
 633     }
 634   }
 635 
 636   // Create the Win32 thread
 637   //
 638   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 639   // does not specify stack size. Instead, it specifies the size of
 640   // initially committed space. The stack size is determined by
 641   // PE header in the executable. If the committed "stack_size" is larger
 642   // than default value in the PE header, the stack is rounded up to the
 643   // nearest multiple of 1MB. For example if the launcher has default
 644   // stack size of 320k, specifying any size less than 320k does not
 645   // affect the actual stack size at all, it only affects the initial
 646   // commitment. On the other hand, specifying 'stack_size' larger than
 647   // default value may cause significant increase in memory usage, because
 648   // not only the stack space will be rounded up to MB, but also the
 649   // entire space is committed upfront.
 650   //
 651   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 652   // for CreateThread() that can treat 'stack_size' as stack size. However we
 653   // are not supposed to call CreateThread() directly according to MSDN
 654   // document because JVM uses C runtime library. The good news is that the
 655   // flag appears to work with _beginthredex() as well.
 656 
 657   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 658   HANDLE thread_handle =
 659     (HANDLE)_beginthreadex(NULL,
 660                            (unsigned)stack_size,
 661                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 662                            thread,
 663                            initflag,
 664                            &thread_id);
 665 
 666   char buf[64];
 667   if (thread_handle != NULL) {
 668     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 669       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 670   } else {
 671     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 672       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 673     // Log some OS information which might explain why creating the thread failed.
 674     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 675     LogStream st(Log(os, thread)::info());
 676     os::print_memory_info(&st);
 677   }
 678 
 679   if (thread_handle == NULL) {
 680     // Need to clean up stuff we've allocated so far
 681     CloseHandle(osthread->interrupt_event());
 682     thread->set_osthread(NULL);
 683     delete osthread;
 684     return false;
 685   }
 686 
 687   Atomic::inc(&os::win32::_os_thread_count);
 688 
 689   // Store info on the Win32 thread into the OSThread
 690   osthread->set_thread_handle(thread_handle);
 691   osthread->set_thread_id(thread_id);
 692 
 693   // Initial thread state is INITIALIZED, not SUSPENDED
 694   osthread->set_state(INITIALIZED);
 695 
 696   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 697   return true;
 698 }
 699 
 700 
 701 // Free Win32 resources related to the OSThread
 702 void os::free_thread(OSThread* osthread) {
 703   assert(osthread != NULL, "osthread not set");
 704 
 705   // We are told to free resources of the argument thread,
 706   // but we can only really operate on the current thread.
 707   assert(Thread::current()->osthread() == osthread,
 708          "os::free_thread but not current thread");
 709 
 710   CloseHandle(osthread->thread_handle());
 711   CloseHandle(osthread->interrupt_event());
 712   delete osthread;
 713 }
 714 
 715 static jlong first_filetime;
 716 static jlong initial_performance_count;
 717 static jlong performance_frequency;
 718 
 719 
 720 jlong as_long(LARGE_INTEGER x) {
 721   jlong result = 0; // initialization to avoid warning
 722   set_high(&result, x.HighPart);
 723   set_low(&result, x.LowPart);
 724   return result;
 725 }
 726 
 727 
 728 jlong os::elapsed_counter() {
 729   LARGE_INTEGER count;
 730   QueryPerformanceCounter(&count);
 731   return as_long(count) - initial_performance_count;
 732 }
 733 
 734 
 735 jlong os::elapsed_frequency() {
 736   return performance_frequency;
 737 }
 738 
 739 
 740 julong os::available_memory() {
 741   return win32::available_memory();
 742 }
 743 
 744 julong os::win32::available_memory() {
 745   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 746   // value if total memory is larger than 4GB
 747   MEMORYSTATUSEX ms;
 748   ms.dwLength = sizeof(ms);
 749   GlobalMemoryStatusEx(&ms);
 750 
 751   return (julong)ms.ullAvailPhys;
 752 }
 753 
 754 julong os::physical_memory() {
 755   return win32::physical_memory();
 756 }
 757 
 758 bool os::has_allocatable_memory_limit(julong* limit) {
 759   MEMORYSTATUSEX ms;
 760   ms.dwLength = sizeof(ms);
 761   GlobalMemoryStatusEx(&ms);
 762 #ifdef _LP64
 763   *limit = (julong)ms.ullAvailVirtual;
 764   return true;
 765 #else
 766   // Limit to 1400m because of the 2gb address space wall
 767   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 768   return true;
 769 #endif
 770 }
 771 
 772 int os::active_processor_count() {
 773   // User has overridden the number of active processors
 774   if (ActiveProcessorCount > 0) {
 775     log_trace(os)("active_processor_count: "
 776                   "active processor count set by user : %d",
 777                   ActiveProcessorCount);
 778     return ActiveProcessorCount;
 779   }
 780 
 781   DWORD_PTR lpProcessAffinityMask = 0;
 782   DWORD_PTR lpSystemAffinityMask = 0;
 783   int proc_count = processor_count();
 784   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 785       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 786     // Nof active processors is number of bits in process affinity mask
 787     int bitcount = 0;
 788     while (lpProcessAffinityMask != 0) {
 789       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 790       bitcount++;
 791     }
 792     return bitcount;
 793   } else {
 794     return proc_count;
 795   }
 796 }
 797 
 798 void os::set_native_thread_name(const char *name) {
 799 
 800   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 801   //
 802   // Note that unfortunately this only works if the process
 803   // is already attached to a debugger; debugger must observe
 804   // the exception below to show the correct name.
 805 
 806   // If there is no debugger attached skip raising the exception
 807   if (!IsDebuggerPresent()) {
 808     return;
 809   }
 810 
 811   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 812   struct {
 813     DWORD dwType;     // must be 0x1000
 814     LPCSTR szName;    // pointer to name (in user addr space)
 815     DWORD dwThreadID; // thread ID (-1=caller thread)
 816     DWORD dwFlags;    // reserved for future use, must be zero
 817   } info;
 818 
 819   info.dwType = 0x1000;
 820   info.szName = name;
 821   info.dwThreadID = -1;
 822   info.dwFlags = 0;
 823 
 824   __try {
 825     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 826   } __except(EXCEPTION_EXECUTE_HANDLER) {}
 827 }
 828 
 829 bool os::distribute_processes(uint length, uint* distribution) {
 830   // Not yet implemented.
 831   return false;
 832 }
 833 
 834 bool os::bind_to_processor(uint processor_id) {
 835   // Not yet implemented.
 836   return false;
 837 }
 838 
 839 void os::win32::initialize_performance_counter() {
 840   LARGE_INTEGER count;
 841   QueryPerformanceFrequency(&count);
 842   performance_frequency = as_long(count);
 843   QueryPerformanceCounter(&count);
 844   initial_performance_count = as_long(count);
 845 }
 846 
 847 
 848 double os::elapsedTime() {
 849   return (double) elapsed_counter() / (double) elapsed_frequency();
 850 }
 851 
 852 
 853 // Windows format:
 854 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 855 // Java format:
 856 //   Java standards require the number of milliseconds since 1/1/1970
 857 
 858 // Constant offset - calculated using offset()
 859 static jlong  _offset   = 116444736000000000;
 860 // Fake time counter for reproducible results when debugging
 861 static jlong  fake_time = 0;
 862 
 863 #ifdef ASSERT
 864 // Just to be safe, recalculate the offset in debug mode
 865 static jlong _calculated_offset = 0;
 866 static int   _has_calculated_offset = 0;
 867 
 868 jlong offset() {
 869   if (_has_calculated_offset) return _calculated_offset;
 870   SYSTEMTIME java_origin;
 871   java_origin.wYear          = 1970;
 872   java_origin.wMonth         = 1;
 873   java_origin.wDayOfWeek     = 0; // ignored
 874   java_origin.wDay           = 1;
 875   java_origin.wHour          = 0;
 876   java_origin.wMinute        = 0;
 877   java_origin.wSecond        = 0;
 878   java_origin.wMilliseconds  = 0;
 879   FILETIME jot;
 880   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 881     fatal("Error = %d\nWindows error", GetLastError());
 882   }
 883   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 884   _has_calculated_offset = 1;
 885   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 886   return _calculated_offset;
 887 }
 888 #else
 889 jlong offset() {
 890   return _offset;
 891 }
 892 #endif
 893 
 894 jlong windows_to_java_time(FILETIME wt) {
 895   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 896   return (a - offset()) / 10000;
 897 }
 898 
 899 // Returns time ticks in (10th of micro seconds)
 900 jlong windows_to_time_ticks(FILETIME wt) {
 901   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 902   return (a - offset());
 903 }
 904 
 905 FILETIME java_to_windows_time(jlong l) {
 906   jlong a = (l * 10000) + offset();
 907   FILETIME result;
 908   result.dwHighDateTime = high(a);
 909   result.dwLowDateTime  = low(a);
 910   return result;
 911 }
 912 
 913 bool os::supports_vtime() { return true; }
 914 bool os::enable_vtime() { return false; }
 915 bool os::vtime_enabled() { return false; }
 916 
 917 double os::elapsedVTime() {
 918   FILETIME created;
 919   FILETIME exited;
 920   FILETIME kernel;
 921   FILETIME user;
 922   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 923     // the resolution of windows_to_java_time() should be sufficient (ms)
 924     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 925   } else {
 926     return elapsedTime();
 927   }
 928 }
 929 
 930 jlong os::javaTimeMillis() {
 931   FILETIME wt;
 932   GetSystemTimeAsFileTime(&wt);
 933   return windows_to_java_time(wt);
 934 }
 935 
 936 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 937   FILETIME wt;
 938   GetSystemTimeAsFileTime(&wt);
 939   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 940   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 941   seconds = secs;
 942   nanos = jlong(ticks - (secs*10000000)) * 100;
 943 }
 944 
 945 jlong os::javaTimeNanos() {
 946     LARGE_INTEGER current_count;
 947     QueryPerformanceCounter(&current_count);
 948     double current = as_long(current_count);
 949     double freq = performance_frequency;
 950     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 951     return time;
 952 }
 953 
 954 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 955   jlong freq = performance_frequency;
 956   if (freq < NANOSECS_PER_SEC) {
 957     // the performance counter is 64 bits and we will
 958     // be multiplying it -- so no wrap in 64 bits
 959     info_ptr->max_value = ALL_64_BITS;
 960   } else if (freq > NANOSECS_PER_SEC) {
 961     // use the max value the counter can reach to
 962     // determine the max value which could be returned
 963     julong max_counter = (julong)ALL_64_BITS;
 964     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 965   } else {
 966     // the performance counter is 64 bits and we will
 967     // be using it directly -- so no wrap in 64 bits
 968     info_ptr->max_value = ALL_64_BITS;
 969   }
 970 
 971   // using a counter, so no skipping
 972   info_ptr->may_skip_backward = false;
 973   info_ptr->may_skip_forward = false;
 974 
 975   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 976 }
 977 
 978 char* os::local_time_string(char *buf, size_t buflen) {
 979   SYSTEMTIME st;
 980   GetLocalTime(&st);
 981   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 982                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 983   return buf;
 984 }
 985 
 986 bool os::getTimesSecs(double* process_real_time,
 987                       double* process_user_time,
 988                       double* process_system_time) {
 989   HANDLE h_process = GetCurrentProcess();
 990   FILETIME create_time, exit_time, kernel_time, user_time;
 991   BOOL result = GetProcessTimes(h_process,
 992                                 &create_time,
 993                                 &exit_time,
 994                                 &kernel_time,
 995                                 &user_time);
 996   if (result != 0) {
 997     FILETIME wt;
 998     GetSystemTimeAsFileTime(&wt);
 999     jlong rtc_millis = windows_to_java_time(wt);
1000     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
1001     *process_user_time =
1002       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
1003     *process_system_time =
1004       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
1005     return true;
1006   } else {
1007     return false;
1008   }
1009 }
1010 
1011 void os::shutdown() {
1012   // allow PerfMemory to attempt cleanup of any persistent resources
1013   perfMemory_exit();
1014 
1015   // flush buffered output, finish log files
1016   ostream_abort();
1017 
1018   // Check for abort hook
1019   abort_hook_t abort_hook = Arguments::abort_hook();
1020   if (abort_hook != NULL) {
1021     abort_hook();
1022   }
1023 }
1024 
1025 
1026 static HANDLE dumpFile = NULL;
1027 
1028 // Check if dump file can be created.
1029 void os::check_dump_limit(char* buffer, size_t buffsz) {
1030   bool status = true;
1031   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1032     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1033     status = false;
1034   }
1035 
1036 #ifndef ASSERT
1037   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1038     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1039     status = false;
1040   }
1041 #endif
1042 
1043   if (status) {
1044     const char* cwd = get_current_directory(NULL, 0);
1045     int pid = current_process_id();
1046     if (cwd != NULL) {
1047       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1048     } else {
1049       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1050     }
1051 
1052     if (dumpFile == NULL &&
1053        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1054                  == INVALID_HANDLE_VALUE) {
1055       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1056       status = false;
1057     }
1058   }
1059   VMError::record_coredump_status(buffer, status);
1060 }
1061 
1062 void os::abort(bool dump_core, void* siginfo, const void* context) {
1063   EXCEPTION_POINTERS ep;
1064   MINIDUMP_EXCEPTION_INFORMATION mei;
1065   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1066 
1067   HANDLE hProcess = GetCurrentProcess();
1068   DWORD processId = GetCurrentProcessId();
1069   MINIDUMP_TYPE dumpType;
1070 
1071   shutdown();
1072   if (!dump_core || dumpFile == NULL) {
1073     if (dumpFile != NULL) {
1074       CloseHandle(dumpFile);
1075     }
1076     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1077   }
1078 
1079   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1080     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1081 
1082   if (siginfo != NULL && context != NULL) {
1083     ep.ContextRecord = (PCONTEXT) context;
1084     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1085 
1086     mei.ThreadId = GetCurrentThreadId();
1087     mei.ExceptionPointers = &ep;
1088     pmei = &mei;
1089   } else {
1090     pmei = NULL;
1091   }
1092 
1093   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1094   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1095   if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
1096       !WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
1097     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1098   }
1099   CloseHandle(dumpFile);
1100   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1101 }
1102 
1103 // Die immediately, no exit hook, no abort hook, no cleanup.
1104 void os::die() {
1105   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1106 }
1107 
1108 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1109 //  * dirent_md.c       1.15 00/02/02
1110 //
1111 // The declarations for DIR and struct dirent are in jvm_win32.h.
1112 
1113 // Caller must have already run dirname through JVM_NativePath, which removes
1114 // duplicate slashes and converts all instances of '/' into '\\'.
1115 
1116 DIR * os::opendir(const char *dirname) {
1117   assert(dirname != NULL, "just checking");   // hotspot change
1118   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1119   DWORD fattr;                                // hotspot change
1120   char alt_dirname[4] = { 0, 0, 0, 0 };
1121 
1122   if (dirp == 0) {
1123     errno = ENOMEM;
1124     return 0;
1125   }
1126 
1127   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1128   // as a directory in FindFirstFile().  We detect this case here and
1129   // prepend the current drive name.
1130   //
1131   if (dirname[1] == '\0' && dirname[0] == '\\') {
1132     alt_dirname[0] = _getdrive() + 'A' - 1;
1133     alt_dirname[1] = ':';
1134     alt_dirname[2] = '\\';
1135     alt_dirname[3] = '\0';
1136     dirname = alt_dirname;
1137   }
1138 
1139   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1140   if (dirp->path == 0) {
1141     free(dirp);
1142     errno = ENOMEM;
1143     return 0;
1144   }
1145   strcpy(dirp->path, dirname);
1146 
1147   fattr = GetFileAttributes(dirp->path);
1148   if (fattr == 0xffffffff) {
1149     free(dirp->path);
1150     free(dirp);
1151     errno = ENOENT;
1152     return 0;
1153   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1154     free(dirp->path);
1155     free(dirp);
1156     errno = ENOTDIR;
1157     return 0;
1158   }
1159 
1160   // Append "*.*", or possibly "\\*.*", to path
1161   if (dirp->path[1] == ':' &&
1162       (dirp->path[2] == '\0' ||
1163       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1164     // No '\\' needed for cases like "Z:" or "Z:\"
1165     strcat(dirp->path, "*.*");
1166   } else {
1167     strcat(dirp->path, "\\*.*");
1168   }
1169 
1170   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1171   if (dirp->handle == INVALID_HANDLE_VALUE) {
1172     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1173       free(dirp->path);
1174       free(dirp);
1175       errno = EACCES;
1176       return 0;
1177     }
1178   }
1179   return dirp;
1180 }
1181 
1182 struct dirent * os::readdir(DIR *dirp) {
1183   assert(dirp != NULL, "just checking");      // hotspot change
1184   if (dirp->handle == INVALID_HANDLE_VALUE) {
1185     return NULL;
1186   }
1187 
1188   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1189 
1190   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1191     if (GetLastError() == ERROR_INVALID_HANDLE) {
1192       errno = EBADF;
1193       return NULL;
1194     }
1195     FindClose(dirp->handle);
1196     dirp->handle = INVALID_HANDLE_VALUE;
1197   }
1198 
1199   return &dirp->dirent;
1200 }
1201 
1202 int os::closedir(DIR *dirp) {
1203   assert(dirp != NULL, "just checking");      // hotspot change
1204   if (dirp->handle != INVALID_HANDLE_VALUE) {
1205     if (!FindClose(dirp->handle)) {
1206       errno = EBADF;
1207       return -1;
1208     }
1209     dirp->handle = INVALID_HANDLE_VALUE;
1210   }
1211   free(dirp->path);
1212   free(dirp);
1213   return 0;
1214 }
1215 
1216 // This must be hard coded because it's the system's temporary
1217 // directory not the java application's temp directory, ala java.io.tmpdir.
1218 const char* os::get_temp_directory() {
1219   static char path_buf[MAX_PATH];
1220   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1221     return path_buf;
1222   } else {
1223     path_buf[0] = '\0';
1224     return path_buf;
1225   }
1226 }
1227 
1228 // Needs to be in os specific directory because windows requires another
1229 // header file <direct.h>
1230 const char* os::get_current_directory(char *buf, size_t buflen) {
1231   int n = static_cast<int>(buflen);
1232   if (buflen > INT_MAX)  n = INT_MAX;
1233   return _getcwd(buf, n);
1234 }
1235 
1236 //-----------------------------------------------------------
1237 // Helper functions for fatal error handler
1238 #ifdef _WIN64
1239 // Helper routine which returns true if address in
1240 // within the NTDLL address space.
1241 //
1242 static bool _addr_in_ntdll(address addr) {
1243   HMODULE hmod;
1244   MODULEINFO minfo;
1245 
1246   hmod = GetModuleHandle("NTDLL.DLL");
1247   if (hmod == NULL) return false;
1248   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1249                                           &minfo, sizeof(MODULEINFO))) {
1250     return false;
1251   }
1252 
1253   if ((addr >= minfo.lpBaseOfDll) &&
1254       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1255     return true;
1256   } else {
1257     return false;
1258   }
1259 }
1260 #endif
1261 
1262 struct _modinfo {
1263   address addr;
1264   char*   full_path;   // point to a char buffer
1265   int     buflen;      // size of the buffer
1266   address base_addr;
1267 };
1268 
1269 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1270                                   address top_address, void * param) {
1271   struct _modinfo *pmod = (struct _modinfo *)param;
1272   if (!pmod) return -1;
1273 
1274   if (base_addr   <= pmod->addr &&
1275       top_address > pmod->addr) {
1276     // if a buffer is provided, copy path name to the buffer
1277     if (pmod->full_path) {
1278       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1279     }
1280     pmod->base_addr = base_addr;
1281     return 1;
1282   }
1283   return 0;
1284 }
1285 
1286 bool os::dll_address_to_library_name(address addr, char* buf,
1287                                      int buflen, int* offset) {
1288   // buf is not optional, but offset is optional
1289   assert(buf != NULL, "sanity check");
1290 
1291 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1292 //       return the full path to the DLL file, sometimes it returns path
1293 //       to the corresponding PDB file (debug info); sometimes it only
1294 //       returns partial path, which makes life painful.
1295 
1296   struct _modinfo mi;
1297   mi.addr      = addr;
1298   mi.full_path = buf;
1299   mi.buflen    = buflen;
1300   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1301     // buf already contains path name
1302     if (offset) *offset = addr - mi.base_addr;
1303     return true;
1304   }
1305 
1306   buf[0] = '\0';
1307   if (offset) *offset = -1;
1308   return false;
1309 }
1310 
1311 bool os::dll_address_to_function_name(address addr, char *buf,
1312                                       int buflen, int *offset,
1313                                       bool demangle) {
1314   // buf is not optional, but offset is optional
1315   assert(buf != NULL, "sanity check");
1316 
1317   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1318     return true;
1319   }
1320   if (offset != NULL)  *offset  = -1;
1321   buf[0] = '\0';
1322   return false;
1323 }
1324 
1325 // save the start and end address of jvm.dll into param[0] and param[1]
1326 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1327                            address top_address, void * param) {
1328   if (!param) return -1;
1329 
1330   if (base_addr   <= (address)_locate_jvm_dll &&
1331       top_address > (address)_locate_jvm_dll) {
1332     ((address*)param)[0] = base_addr;
1333     ((address*)param)[1] = top_address;
1334     return 1;
1335   }
1336   return 0;
1337 }
1338 
1339 address vm_lib_location[2];    // start and end address of jvm.dll
1340 
1341 // check if addr is inside jvm.dll
1342 bool os::address_is_in_vm(address addr) {
1343   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1344     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1345       assert(false, "Can't find jvm module.");
1346       return false;
1347     }
1348   }
1349 
1350   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1351 }
1352 
1353 // print module info; param is outputStream*
1354 static int _print_module(const char* fname, address base_address,
1355                          address top_address, void* param) {
1356   if (!param) return -1;
1357 
1358   outputStream* st = (outputStream*)param;
1359 
1360   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1361   return 0;
1362 }
1363 
1364 // Loads .dll/.so and
1365 // in case of error it checks if .dll/.so was built for the
1366 // same architecture as Hotspot is running on
1367 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1368   void * result = LoadLibrary(name);
1369   if (result != NULL) {
1370     Events::log(NULL, "Loaded shared library %s", name);
1371     // Recalculate pdb search path if a DLL was loaded successfully.
1372     SymbolEngine::recalc_search_path();
1373     return result;
1374   }
1375   DWORD errcode = GetLastError();
1376   // Read system error message into ebuf
1377   // It may or may not be overwritten below (in the for loop and just above)
1378   lasterror(ebuf, (size_t) ebuflen);
1379   ebuf[ebuflen - 1] = '\0';
1380   Events::log(NULL, "Loading shared library %s failed, error code %lu", name, errcode);
1381 
1382   if (errcode == ERROR_MOD_NOT_FOUND) {
1383     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1384     ebuf[ebuflen - 1] = '\0';
1385     return NULL;
1386   }
1387 
1388   // Parsing dll below
1389   // If we can read dll-info and find that dll was built
1390   // for an architecture other than Hotspot is running in
1391   // - then print to buffer "DLL was built for a different architecture"
1392   // else call os::lasterror to obtain system error message
1393   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1394   if (fd < 0) {
1395     return NULL;
1396   }
1397 
1398   uint32_t signature_offset;
1399   uint16_t lib_arch = 0;
1400   bool failed_to_get_lib_arch =
1401     ( // Go to position 3c in the dll
1402      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1403      ||
1404      // Read location of signature
1405      (sizeof(signature_offset) !=
1406      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1407      ||
1408      // Go to COFF File Header in dll
1409      // that is located after "signature" (4 bytes long)
1410      (os::seek_to_file_offset(fd,
1411      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1412      ||
1413      // Read field that contains code of architecture
1414      // that dll was built for
1415      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1416     );
1417 
1418   ::close(fd);
1419   if (failed_to_get_lib_arch) {
1420     // file i/o error - report os::lasterror(...) msg
1421     return NULL;
1422   }
1423 
1424   typedef struct {
1425     uint16_t arch_code;
1426     char* arch_name;
1427   } arch_t;
1428 
1429   static const arch_t arch_array[] = {
1430     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1431     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"}
1432   };
1433 #if (defined _M_AMD64)
1434   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1435 #elif (defined _M_IX86)
1436   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1437 #else
1438   #error Method os::dll_load requires that one of following \
1439          is defined :_M_AMD64 or _M_IX86
1440 #endif
1441 
1442 
1443   // Obtain a string for printf operation
1444   // lib_arch_str shall contain string what platform this .dll was built for
1445   // running_arch_str shall string contain what platform Hotspot was built for
1446   char *running_arch_str = NULL, *lib_arch_str = NULL;
1447   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1448     if (lib_arch == arch_array[i].arch_code) {
1449       lib_arch_str = arch_array[i].arch_name;
1450     }
1451     if (running_arch == arch_array[i].arch_code) {
1452       running_arch_str = arch_array[i].arch_name;
1453     }
1454   }
1455 
1456   assert(running_arch_str,
1457          "Didn't find running architecture code in arch_array");
1458 
1459   // If the architecture is right
1460   // but some other error took place - report os::lasterror(...) msg
1461   if (lib_arch == running_arch) {
1462     return NULL;
1463   }
1464 
1465   if (lib_arch_str != NULL) {
1466     ::_snprintf(ebuf, ebuflen - 1,
1467                 "Can't load %s-bit .dll on a %s-bit platform",
1468                 lib_arch_str, running_arch_str);
1469   } else {
1470     // don't know what architecture this dll was build for
1471     ::_snprintf(ebuf, ebuflen - 1,
1472                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1473                 lib_arch, running_arch_str);
1474   }
1475 
1476   return NULL;
1477 }
1478 
1479 void os::print_dll_info(outputStream *st) {
1480   st->print_cr("Dynamic libraries:");
1481   get_loaded_modules_info(_print_module, (void *)st);
1482 }
1483 
1484 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1485   HANDLE   hProcess;
1486 
1487 # define MAX_NUM_MODULES 128
1488   HMODULE     modules[MAX_NUM_MODULES];
1489   static char filename[MAX_PATH];
1490   int         result = 0;
1491 
1492   int pid = os::current_process_id();
1493   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1494                          FALSE, pid);
1495   if (hProcess == NULL) return 0;
1496 
1497   DWORD size_needed;
1498   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1499     CloseHandle(hProcess);
1500     return 0;
1501   }
1502 
1503   // number of modules that are currently loaded
1504   int num_modules = size_needed / sizeof(HMODULE);
1505 
1506   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1507     // Get Full pathname:
1508     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1509       filename[0] = '\0';
1510     }
1511 
1512     MODULEINFO modinfo;
1513     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1514       modinfo.lpBaseOfDll = NULL;
1515       modinfo.SizeOfImage = 0;
1516     }
1517 
1518     // Invoke callback function
1519     result = callback(filename, (address)modinfo.lpBaseOfDll,
1520                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1521     if (result) break;
1522   }
1523 
1524   CloseHandle(hProcess);
1525   return result;
1526 }
1527 
1528 bool os::get_host_name(char* buf, size_t buflen) {
1529   DWORD size = (DWORD)buflen;
1530   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1531 }
1532 
1533 void os::get_summary_os_info(char* buf, size_t buflen) {
1534   stringStream sst(buf, buflen);
1535   os::win32::print_windows_version(&sst);
1536   // chop off newline character
1537   char* nl = strchr(buf, '\n');
1538   if (nl != NULL) *nl = '\0';
1539 }
1540 
1541 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1542 #if _MSC_VER >= 1900
1543   // Starting with Visual Studio 2015, vsnprint is C99 compliant.
1544   int result = ::vsnprintf(buf, len, fmt, args);
1545   // If an encoding error occurred (result < 0) then it's not clear
1546   // whether the buffer is NUL terminated, so ensure it is.
1547   if ((result < 0) && (len > 0)) {
1548     buf[len - 1] = '\0';
1549   }
1550   return result;
1551 #else
1552   // Before Visual Studio 2015, vsnprintf is not C99 compliant, so use
1553   // _vsnprintf, whose behavior seems to be *mostly* consistent across
1554   // versions.  However, when len == 0, avoid _vsnprintf too, and just
1555   // go straight to _vscprintf.  The output is going to be truncated in
1556   // that case, except in the unusual case of empty output.  More
1557   // importantly, the documentation for various versions of Visual Studio
1558   // are inconsistent about the behavior of _vsnprintf when len == 0,
1559   // including it possibly being an error.
1560   int result = -1;
1561   if (len > 0) {
1562     result = _vsnprintf(buf, len, fmt, args);
1563     // If output (including NUL terminator) is truncated, the buffer
1564     // won't be NUL terminated.  Add the trailing NUL specified by C99.
1565     if ((result < 0) || ((size_t)result >= len)) {
1566       buf[len - 1] = '\0';
1567     }
1568   }
1569   if (result < 0) {
1570     result = _vscprintf(fmt, args);
1571   }
1572   return result;
1573 #endif // _MSC_VER dispatch
1574 }
1575 
1576 static inline time_t get_mtime(const char* filename) {
1577   struct stat st;
1578   int ret = os::stat(filename, &st);
1579   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1580   return st.st_mtime;
1581 }
1582 
1583 int os::compare_file_modified_times(const char* file1, const char* file2) {
1584   time_t t1 = get_mtime(file1);
1585   time_t t2 = get_mtime(file2);
1586   return t1 - t2;
1587 }
1588 
1589 void os::print_os_info_brief(outputStream* st) {
1590   os::print_os_info(st);
1591 }
1592 
1593 void os::print_os_info(outputStream* st) {
1594 #ifdef ASSERT
1595   char buffer[1024];
1596   st->print("HostName: ");
1597   if (get_host_name(buffer, sizeof(buffer))) {
1598     st->print("%s ", buffer);
1599   } else {
1600     st->print("N/A ");
1601   }
1602 #endif
1603   st->print("OS:");
1604   os::win32::print_windows_version(st);
1605 
1606 #ifdef _LP64
1607   VM_Version::print_platform_virtualization_info(st);
1608 #endif
1609 }
1610 
1611 void os::win32::print_windows_version(outputStream* st) {
1612   OSVERSIONINFOEX osvi;
1613   VS_FIXEDFILEINFO *file_info;
1614   TCHAR kernel32_path[MAX_PATH];
1615   UINT len, ret;
1616 
1617   // Use the GetVersionEx information to see if we're on a server or
1618   // workstation edition of Windows. Starting with Windows 8.1 we can't
1619   // trust the OS version information returned by this API.
1620   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1621   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1622   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1623     st->print_cr("Call to GetVersionEx failed");
1624     return;
1625   }
1626   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1627 
1628   // Get the full path to \Windows\System32\kernel32.dll and use that for
1629   // determining what version of Windows we're running on.
1630   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1631   ret = GetSystemDirectory(kernel32_path, len);
1632   if (ret == 0 || ret > len) {
1633     st->print_cr("Call to GetSystemDirectory failed");
1634     return;
1635   }
1636   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1637 
1638   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1639   if (version_size == 0) {
1640     st->print_cr("Call to GetFileVersionInfoSize failed");
1641     return;
1642   }
1643 
1644   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1645   if (version_info == NULL) {
1646     st->print_cr("Failed to allocate version_info");
1647     return;
1648   }
1649 
1650   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1651     os::free(version_info);
1652     st->print_cr("Call to GetFileVersionInfo failed");
1653     return;
1654   }
1655 
1656   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1657     os::free(version_info);
1658     st->print_cr("Call to VerQueryValue failed");
1659     return;
1660   }
1661 
1662   int major_version = HIWORD(file_info->dwProductVersionMS);
1663   int minor_version = LOWORD(file_info->dwProductVersionMS);
1664   int build_number = HIWORD(file_info->dwProductVersionLS);
1665   int build_minor = LOWORD(file_info->dwProductVersionLS);
1666   int os_vers = major_version * 1000 + minor_version;
1667   os::free(version_info);
1668 
1669   st->print(" Windows ");
1670   switch (os_vers) {
1671 
1672   case 6000:
1673     if (is_workstation) {
1674       st->print("Vista");
1675     } else {
1676       st->print("Server 2008");
1677     }
1678     break;
1679 
1680   case 6001:
1681     if (is_workstation) {
1682       st->print("7");
1683     } else {
1684       st->print("Server 2008 R2");
1685     }
1686     break;
1687 
1688   case 6002:
1689     if (is_workstation) {
1690       st->print("8");
1691     } else {
1692       st->print("Server 2012");
1693     }
1694     break;
1695 
1696   case 6003:
1697     if (is_workstation) {
1698       st->print("8.1");
1699     } else {
1700       st->print("Server 2012 R2");
1701     }
1702     break;
1703 
1704   case 10000:
1705     if (is_workstation) {
1706       st->print("10");
1707     } else {
1708       // distinguish Windows Server 2016 and 2019 by build number
1709       // Windows server 2019 GA 10/2018 build number is 17763
1710       if (build_number > 17762) {
1711         st->print("Server 2019");
1712       } else {
1713         st->print("Server 2016");
1714       }
1715     }
1716     break;
1717 
1718   default:
1719     // Unrecognized windows, print out its major and minor versions
1720     st->print("%d.%d", major_version, minor_version);
1721     break;
1722   }
1723 
1724   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1725   // find out whether we are running on 64 bit processor or not
1726   SYSTEM_INFO si;
1727   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1728   GetNativeSystemInfo(&si);
1729   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1730     st->print(" , 64 bit");
1731   }
1732 
1733   st->print(" Build %d", build_number);
1734   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1735   st->cr();
1736 }
1737 
1738 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1739   // Nothing to do for now.
1740 }
1741 
1742 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1743   HKEY key;
1744   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1745                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1746   if (status == ERROR_SUCCESS) {
1747     DWORD size = (DWORD)buflen;
1748     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1749     if (status != ERROR_SUCCESS) {
1750         strncpy(buf, "## __CPU__", buflen);
1751     }
1752     RegCloseKey(key);
1753   } else {
1754     // Put generic cpu info to return
1755     strncpy(buf, "## __CPU__", buflen);
1756   }
1757 }
1758 
1759 void os::print_memory_info(outputStream* st) {
1760   st->print("Memory:");
1761   st->print(" %dk page", os::vm_page_size()>>10);
1762 
1763   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1764   // value if total memory is larger than 4GB
1765   MEMORYSTATUSEX ms;
1766   ms.dwLength = sizeof(ms);
1767   int r1 = GlobalMemoryStatusEx(&ms);
1768 
1769   if (r1 != 0) {
1770     st->print(", system-wide physical " INT64_FORMAT "M ",
1771              (int64_t) ms.ullTotalPhys >> 20);
1772     st->print("(" INT64_FORMAT "M free)\n", (int64_t) ms.ullAvailPhys >> 20);
1773 
1774     st->print("TotalPageFile size " INT64_FORMAT "M ",
1775              (int64_t) ms.ullTotalPageFile >> 20);
1776     st->print("(AvailPageFile size " INT64_FORMAT "M)",
1777              (int64_t) ms.ullAvailPageFile >> 20);
1778 
1779     // on 32bit Total/AvailVirtual are interesting (show us how close we get to 2-4 GB per process borders)
1780 #if defined(_M_IX86)
1781     st->print(", user-mode portion of virtual address-space " INT64_FORMAT "M ",
1782              (int64_t) ms.ullTotalVirtual >> 20);
1783     st->print("(" INT64_FORMAT "M free)", (int64_t) ms.ullAvailVirtual >> 20);
1784 #endif
1785   } else {
1786     st->print(", GlobalMemoryStatusEx did not succeed so we miss some memory values.");
1787   }
1788 
1789   // extended memory statistics for a process
1790   PROCESS_MEMORY_COUNTERS_EX pmex;
1791   ZeroMemory(&pmex, sizeof(PROCESS_MEMORY_COUNTERS_EX));
1792   pmex.cb = sizeof(pmex);
1793   int r2 = GetProcessMemoryInfo(GetCurrentProcess(), (PROCESS_MEMORY_COUNTERS*) &pmex, sizeof(pmex));
1794 
1795   if (r2 != 0) {
1796     st->print("\ncurrent process WorkingSet (physical memory assigned to process): " INT64_FORMAT "M, ",
1797              (int64_t) pmex.WorkingSetSize >> 20);
1798     st->print("peak: " INT64_FORMAT "M\n", (int64_t) pmex.PeakWorkingSetSize >> 20);
1799 
1800     st->print("current process commit charge (\"private bytes\"): " INT64_FORMAT "M, ",
1801              (int64_t) pmex.PrivateUsage >> 20);
1802     st->print("peak: " INT64_FORMAT "M", (int64_t) pmex.PeakPagefileUsage >> 20);
1803   } else {
1804     st->print("\nGetProcessMemoryInfo did not succeed so we miss some memory values.");
1805   }
1806 
1807   st->cr();
1808 }
1809 
1810 bool os::signal_sent_by_kill(const void* siginfo) {
1811   // TODO: Is this possible?
1812   return false;
1813 }
1814 
1815 void os::print_siginfo(outputStream *st, const void* siginfo) {
1816   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1817   st->print("siginfo:");
1818 
1819   char tmp[64];
1820   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1821     strcpy(tmp, "EXCEPTION_??");
1822   }
1823   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1824 
1825   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1826        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1827        er->NumberParameters >= 2) {
1828     switch (er->ExceptionInformation[0]) {
1829     case 0: st->print(", reading address"); break;
1830     case 1: st->print(", writing address"); break;
1831     case 8: st->print(", data execution prevention violation at address"); break;
1832     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1833                        er->ExceptionInformation[0]);
1834     }
1835     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1836   } else {
1837     int num = er->NumberParameters;
1838     if (num > 0) {
1839       st->print(", ExceptionInformation=");
1840       for (int i = 0; i < num; i++) {
1841         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1842       }
1843     }
1844   }
1845   st->cr();
1846 }
1847 
1848 bool os::signal_thread(Thread* thread, int sig, const char* reason) {
1849   // TODO: Can we kill thread?
1850   return false;
1851 }
1852 
1853 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1854   // do nothing
1855 }
1856 
1857 static char saved_jvm_path[MAX_PATH] = {0};
1858 
1859 // Find the full path to the current module, jvm.dll
1860 void os::jvm_path(char *buf, jint buflen) {
1861   // Error checking.
1862   if (buflen < MAX_PATH) {
1863     assert(false, "must use a large-enough buffer");
1864     buf[0] = '\0';
1865     return;
1866   }
1867   // Lazy resolve the path to current module.
1868   if (saved_jvm_path[0] != 0) {
1869     strcpy(buf, saved_jvm_path);
1870     return;
1871   }
1872 
1873   buf[0] = '\0';
1874   if (Arguments::sun_java_launcher_is_altjvm()) {
1875     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1876     // for a JAVA_HOME environment variable and fix up the path so it
1877     // looks like jvm.dll is installed there (append a fake suffix
1878     // hotspot/jvm.dll).
1879     char* java_home_var = ::getenv("JAVA_HOME");
1880     if (java_home_var != NULL && java_home_var[0] != 0 &&
1881         strlen(java_home_var) < (size_t)buflen) {
1882       strncpy(buf, java_home_var, buflen);
1883 
1884       // determine if this is a legacy image or modules image
1885       // modules image doesn't have "jre" subdirectory
1886       size_t len = strlen(buf);
1887       char* jrebin_p = buf + len;
1888       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1889       if (0 != _access(buf, 0)) {
1890         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1891       }
1892       len = strlen(buf);
1893       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1894     }
1895   }
1896 
1897   if (buf[0] == '\0') {
1898     GetModuleFileName(vm_lib_handle, buf, buflen);
1899   }
1900   strncpy(saved_jvm_path, buf, MAX_PATH);
1901   saved_jvm_path[MAX_PATH - 1] = '\0';
1902 }
1903 
1904 
1905 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1906 #ifndef _WIN64
1907   st->print("_");
1908 #endif
1909 }
1910 
1911 
1912 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1913 #ifndef _WIN64
1914   st->print("@%d", args_size  * sizeof(int));
1915 #endif
1916 }
1917 
1918 // This method is a copy of JDK's sysGetLastErrorString
1919 // from src/windows/hpi/src/system_md.c
1920 
1921 size_t os::lasterror(char* buf, size_t len) {
1922   DWORD errval;
1923 
1924   if ((errval = GetLastError()) != 0) {
1925     // DOS error
1926     size_t n = (size_t)FormatMessage(
1927                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1928                                      NULL,
1929                                      errval,
1930                                      0,
1931                                      buf,
1932                                      (DWORD)len,
1933                                      NULL);
1934     if (n > 3) {
1935       // Drop final '.', CR, LF
1936       if (buf[n - 1] == '\n') n--;
1937       if (buf[n - 1] == '\r') n--;
1938       if (buf[n - 1] == '.') n--;
1939       buf[n] = '\0';
1940     }
1941     return n;
1942   }
1943 
1944   if (errno != 0) {
1945     // C runtime error that has no corresponding DOS error code
1946     const char* s = os::strerror(errno);
1947     size_t n = strlen(s);
1948     if (n >= len) n = len - 1;
1949     strncpy(buf, s, n);
1950     buf[n] = '\0';
1951     return n;
1952   }
1953 
1954   return 0;
1955 }
1956 
1957 int os::get_last_error() {
1958   DWORD error = GetLastError();
1959   if (error == 0) {
1960     error = errno;
1961   }
1962   return (int)error;
1963 }
1964 
1965 // sun.misc.Signal
1966 // NOTE that this is a workaround for an apparent kernel bug where if
1967 // a signal handler for SIGBREAK is installed then that signal handler
1968 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1969 // See bug 4416763.
1970 static void (*sigbreakHandler)(int) = NULL;
1971 
1972 static void UserHandler(int sig, void *siginfo, void *context) {
1973   os::signal_notify(sig);
1974   // We need to reinstate the signal handler each time...
1975   os::signal(sig, (void*)UserHandler);
1976 }
1977 
1978 void* os::user_handler() {
1979   return (void*) UserHandler;
1980 }
1981 
1982 void* os::signal(int signal_number, void* handler) {
1983   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1984     void (*oldHandler)(int) = sigbreakHandler;
1985     sigbreakHandler = (void (*)(int)) handler;
1986     return (void*) oldHandler;
1987   } else {
1988     return (void*)::signal(signal_number, (void (*)(int))handler);
1989   }
1990 }
1991 
1992 void os::signal_raise(int signal_number) {
1993   raise(signal_number);
1994 }
1995 
1996 // The Win32 C runtime library maps all console control events other than ^C
1997 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1998 // logoff, and shutdown events.  We therefore install our own console handler
1999 // that raises SIGTERM for the latter cases.
2000 //
2001 static BOOL WINAPI consoleHandler(DWORD event) {
2002   switch (event) {
2003   case CTRL_C_EVENT:
2004     if (VMError::is_error_reported()) {
2005       // Ctrl-C is pressed during error reporting, likely because the error
2006       // handler fails to abort. Let VM die immediately.
2007       os::die();
2008     }
2009 
2010     os::signal_raise(SIGINT);
2011     return TRUE;
2012     break;
2013   case CTRL_BREAK_EVENT:
2014     if (sigbreakHandler != NULL) {
2015       (*sigbreakHandler)(SIGBREAK);
2016     }
2017     return TRUE;
2018     break;
2019   case CTRL_LOGOFF_EVENT: {
2020     // Don't terminate JVM if it is running in a non-interactive session,
2021     // such as a service process.
2022     USEROBJECTFLAGS flags;
2023     HANDLE handle = GetProcessWindowStation();
2024     if (handle != NULL &&
2025         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2026         sizeof(USEROBJECTFLAGS), NULL)) {
2027       // If it is a non-interactive session, let next handler to deal
2028       // with it.
2029       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2030         return FALSE;
2031       }
2032     }
2033   }
2034   case CTRL_CLOSE_EVENT:
2035   case CTRL_SHUTDOWN_EVENT:
2036     os::signal_raise(SIGTERM);
2037     return TRUE;
2038     break;
2039   default:
2040     break;
2041   }
2042   return FALSE;
2043 }
2044 
2045 // The following code is moved from os.cpp for making this
2046 // code platform specific, which it is by its very nature.
2047 
2048 // Return maximum OS signal used + 1 for internal use only
2049 // Used as exit signal for signal_thread
2050 int os::sigexitnum_pd() {
2051   return NSIG;
2052 }
2053 
2054 // a counter for each possible signal value, including signal_thread exit signal
2055 static volatile jint pending_signals[NSIG+1] = { 0 };
2056 static Semaphore* sig_sem = NULL;
2057 
2058 static void jdk_misc_signal_init() {
2059   // Initialize signal structures
2060   memset((void*)pending_signals, 0, sizeof(pending_signals));
2061 
2062   // Initialize signal semaphore
2063   sig_sem = new Semaphore();
2064 
2065   // Programs embedding the VM do not want it to attempt to receive
2066   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2067   // shutdown hooks mechanism introduced in 1.3.  For example, when
2068   // the VM is run as part of a Windows NT service (i.e., a servlet
2069   // engine in a web server), the correct behavior is for any console
2070   // control handler to return FALSE, not TRUE, because the OS's
2071   // "final" handler for such events allows the process to continue if
2072   // it is a service (while terminating it if it is not a service).
2073   // To make this behavior uniform and the mechanism simpler, we
2074   // completely disable the VM's usage of these console events if -Xrs
2075   // (=ReduceSignalUsage) is specified.  This means, for example, that
2076   // the CTRL-BREAK thread dump mechanism is also disabled in this
2077   // case.  See bugs 4323062, 4345157, and related bugs.
2078 
2079   // Add a CTRL-C handler
2080   SetConsoleCtrlHandler(consoleHandler, TRUE);
2081 }
2082 
2083 void os::signal_notify(int sig) {
2084   if (sig_sem != NULL) {
2085     Atomic::inc(&pending_signals[sig]);
2086     sig_sem->signal();
2087   } else {
2088     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2089     // initialization isn't called.
2090     assert(ReduceSignalUsage, "signal semaphore should be created");
2091   }
2092 }
2093 
2094 static int check_pending_signals() {
2095   while (true) {
2096     for (int i = 0; i < NSIG + 1; i++) {
2097       jint n = pending_signals[i];
2098       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2099         return i;
2100       }
2101     }
2102     JavaThread *thread = JavaThread::current();
2103 
2104     ThreadBlockInVM tbivm(thread);
2105 
2106     bool threadIsSuspended;
2107     do {
2108       thread->set_suspend_equivalent();
2109       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2110       sig_sem->wait();
2111 
2112       // were we externally suspended while we were waiting?
2113       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2114       if (threadIsSuspended) {
2115         // The semaphore has been incremented, but while we were waiting
2116         // another thread suspended us. We don't want to continue running
2117         // while suspended because that would surprise the thread that
2118         // suspended us.
2119         sig_sem->signal();
2120 
2121         thread->java_suspend_self();
2122       }
2123     } while (threadIsSuspended);
2124   }
2125 }
2126 
2127 int os::signal_wait() {
2128   return check_pending_signals();
2129 }
2130 
2131 // Implicit OS exception handling
2132 
2133 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2134                       address handler) {
2135   JavaThread* thread = (JavaThread*) Thread::current_or_null();
2136   // Save pc in thread
2137 #ifdef _M_AMD64
2138   // Do not blow up if no thread info available.
2139   if (thread) {
2140     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2141   }
2142   // Set pc to handler
2143   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2144 #else
2145   // Do not blow up if no thread info available.
2146   if (thread) {
2147     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2148   }
2149   // Set pc to handler
2150   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2151 #endif
2152 
2153   // Continue the execution
2154   return EXCEPTION_CONTINUE_EXECUTION;
2155 }
2156 
2157 
2158 // Used for PostMortemDump
2159 extern "C" void safepoints();
2160 extern "C" void find(int x);
2161 extern "C" void events();
2162 
2163 // According to Windows API documentation, an illegal instruction sequence should generate
2164 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2165 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2166 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2167 
2168 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2169 
2170 // From "Execution Protection in the Windows Operating System" draft 0.35
2171 // Once a system header becomes available, the "real" define should be
2172 // included or copied here.
2173 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2174 
2175 // Windows Vista/2008 heap corruption check
2176 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2177 
2178 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2179 // C++ compiler contain this error code. Because this is a compiler-generated
2180 // error, the code is not listed in the Win32 API header files.
2181 // The code is actually a cryptic mnemonic device, with the initial "E"
2182 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2183 // ASCII values of "msc".
2184 
2185 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2186 
2187 #define def_excpt(val) { #val, (val) }
2188 
2189 static const struct { const char* name; uint number; } exceptlabels[] = {
2190     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2191     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2192     def_excpt(EXCEPTION_BREAKPOINT),
2193     def_excpt(EXCEPTION_SINGLE_STEP),
2194     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2195     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2196     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2197     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2198     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2199     def_excpt(EXCEPTION_FLT_OVERFLOW),
2200     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2201     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2202     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2203     def_excpt(EXCEPTION_INT_OVERFLOW),
2204     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2205     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2206     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2207     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2208     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2209     def_excpt(EXCEPTION_STACK_OVERFLOW),
2210     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2211     def_excpt(EXCEPTION_GUARD_PAGE),
2212     def_excpt(EXCEPTION_INVALID_HANDLE),
2213     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2214     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2215 };
2216 
2217 #undef def_excpt
2218 
2219 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2220   uint code = static_cast<uint>(exception_code);
2221   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2222     if (exceptlabels[i].number == code) {
2223       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2224       return buf;
2225     }
2226   }
2227 
2228   return NULL;
2229 }
2230 
2231 //-----------------------------------------------------------------------------
2232 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2233   // handle exception caused by idiv; should only happen for -MinInt/-1
2234   // (division by zero is handled explicitly)
2235 #ifdef  _M_AMD64
2236   PCONTEXT ctx = exceptionInfo->ContextRecord;
2237   address pc = (address)ctx->Rip;
2238   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2239   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2240   if (pc[0] == 0xF7) {
2241     // set correct result values and continue after idiv instruction
2242     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2243   } else {
2244     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2245   }
2246   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2247   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2248   // idiv opcode (0xF7).
2249   ctx->Rdx = (DWORD)0;             // remainder
2250   // Continue the execution
2251 #else
2252   PCONTEXT ctx = exceptionInfo->ContextRecord;
2253   address pc = (address)ctx->Eip;
2254   assert(pc[0] == 0xF7, "not an idiv opcode");
2255   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2256   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2257   // set correct result values and continue after idiv instruction
2258   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2259   ctx->Eax = (DWORD)min_jint;      // result
2260   ctx->Edx = (DWORD)0;             // remainder
2261   // Continue the execution
2262 #endif
2263   return EXCEPTION_CONTINUE_EXECUTION;
2264 }
2265 
2266 //-----------------------------------------------------------------------------
2267 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2268   PCONTEXT ctx = exceptionInfo->ContextRecord;
2269 #ifndef  _WIN64
2270   // handle exception caused by native method modifying control word
2271   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2272 
2273   switch (exception_code) {
2274   case EXCEPTION_FLT_DENORMAL_OPERAND:
2275   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2276   case EXCEPTION_FLT_INEXACT_RESULT:
2277   case EXCEPTION_FLT_INVALID_OPERATION:
2278   case EXCEPTION_FLT_OVERFLOW:
2279   case EXCEPTION_FLT_STACK_CHECK:
2280   case EXCEPTION_FLT_UNDERFLOW:
2281     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2282     if (fp_control_word != ctx->FloatSave.ControlWord) {
2283       // Restore FPCW and mask out FLT exceptions
2284       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2285       // Mask out pending FLT exceptions
2286       ctx->FloatSave.StatusWord &=  0xffffff00;
2287       return EXCEPTION_CONTINUE_EXECUTION;
2288     }
2289   }
2290 
2291   if (prev_uef_handler != NULL) {
2292     // We didn't handle this exception so pass it to the previous
2293     // UnhandledExceptionFilter.
2294     return (prev_uef_handler)(exceptionInfo);
2295   }
2296 #else // !_WIN64
2297   // On Windows, the mxcsr control bits are non-volatile across calls
2298   // See also CR 6192333
2299   //
2300   jint MxCsr = INITIAL_MXCSR;
2301   // we can't use StubRoutines::addr_mxcsr_std()
2302   // because in Win64 mxcsr is not saved there
2303   if (MxCsr != ctx->MxCsr) {
2304     ctx->MxCsr = MxCsr;
2305     return EXCEPTION_CONTINUE_EXECUTION;
2306   }
2307 #endif // !_WIN64
2308 
2309   return EXCEPTION_CONTINUE_SEARCH;
2310 }
2311 
2312 static inline void report_error(Thread* t, DWORD exception_code,
2313                                 address addr, void* siginfo, void* context) {
2314   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2315 
2316   // If UseOsErrorReporting, this will return here and save the error file
2317   // somewhere where we can find it in the minidump.
2318 }
2319 
2320 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2321         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2322   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2323   address addr = (address) exceptionRecord->ExceptionInformation[1];
2324   if (Interpreter::contains(pc)) {
2325     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2326     if (!fr->is_first_java_frame()) {
2327       // get_frame_at_stack_banging_point() is only called when we
2328       // have well defined stacks so java_sender() calls do not need
2329       // to assert safe_for_sender() first.
2330       *fr = fr->java_sender();
2331     }
2332   } else {
2333     // more complex code with compiled code
2334     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2335     CodeBlob* cb = CodeCache::find_blob(pc);
2336     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2337       // Not sure where the pc points to, fallback to default
2338       // stack overflow handling
2339       return false;
2340     } else {
2341       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2342       // in compiled code, the stack banging is performed just after the return pc
2343       // has been pushed on the stack
2344       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2345       if (!fr->is_java_frame()) {
2346         // See java_sender() comment above.
2347         *fr = fr->java_sender();
2348       }
2349     }
2350   }
2351   assert(fr->is_java_frame(), "Safety check");
2352   return true;
2353 }
2354 
2355 #if INCLUDE_AOT
2356 LONG WINAPI topLevelVectoredExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2357   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2358   address addr = (address) exceptionRecord->ExceptionInformation[1];
2359   address pc = (address) exceptionInfo->ContextRecord->Rip;
2360 
2361   // Handle the case where we get an implicit exception in AOT generated
2362   // code.  AOT DLL's loaded are not registered for structured exceptions.
2363   // If the exception occurred in the codeCache or AOT code, pass control
2364   // to our normal exception handler.
2365   CodeBlob* cb = CodeCache::find_blob(pc);
2366   if (cb != NULL) {
2367     return topLevelExceptionFilter(exceptionInfo);
2368   }
2369 
2370   return EXCEPTION_CONTINUE_SEARCH;
2371 }
2372 #endif
2373 
2374 //-----------------------------------------------------------------------------
2375 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2376   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2377   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2378 #ifdef _M_AMD64
2379   address pc = (address) exceptionInfo->ContextRecord->Rip;
2380 #else
2381   address pc = (address) exceptionInfo->ContextRecord->Eip;
2382 #endif
2383   Thread* t = Thread::current_or_null_safe();
2384 
2385   // Handle SafeFetch32 and SafeFetchN exceptions.
2386   if (StubRoutines::is_safefetch_fault(pc)) {
2387     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2388   }
2389 
2390 #ifndef _WIN64
2391   // Execution protection violation - win32 running on AMD64 only
2392   // Handled first to avoid misdiagnosis as a "normal" access violation;
2393   // This is safe to do because we have a new/unique ExceptionInformation
2394   // code for this condition.
2395   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2396     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2397     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2398     address addr = (address) exceptionRecord->ExceptionInformation[1];
2399 
2400     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2401       int page_size = os::vm_page_size();
2402 
2403       // Make sure the pc and the faulting address are sane.
2404       //
2405       // If an instruction spans a page boundary, and the page containing
2406       // the beginning of the instruction is executable but the following
2407       // page is not, the pc and the faulting address might be slightly
2408       // different - we still want to unguard the 2nd page in this case.
2409       //
2410       // 15 bytes seems to be a (very) safe value for max instruction size.
2411       bool pc_is_near_addr =
2412         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2413       bool instr_spans_page_boundary =
2414         (align_down((intptr_t) pc ^ (intptr_t) addr,
2415                          (intptr_t) page_size) > 0);
2416 
2417       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2418         static volatile address last_addr =
2419           (address) os::non_memory_address_word();
2420 
2421         // In conservative mode, don't unguard unless the address is in the VM
2422         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2423             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2424 
2425           // Set memory to RWX and retry
2426           address page_start = align_down(addr, page_size);
2427           bool res = os::protect_memory((char*) page_start, page_size,
2428                                         os::MEM_PROT_RWX);
2429 
2430           log_debug(os)("Execution protection violation "
2431                         "at " INTPTR_FORMAT
2432                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2433                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2434 
2435           // Set last_addr so if we fault again at the same address, we don't
2436           // end up in an endless loop.
2437           //
2438           // There are two potential complications here.  Two threads trapping
2439           // at the same address at the same time could cause one of the
2440           // threads to think it already unguarded, and abort the VM.  Likely
2441           // very rare.
2442           //
2443           // The other race involves two threads alternately trapping at
2444           // different addresses and failing to unguard the page, resulting in
2445           // an endless loop.  This condition is probably even more unlikely
2446           // than the first.
2447           //
2448           // Although both cases could be avoided by using locks or thread
2449           // local last_addr, these solutions are unnecessary complication:
2450           // this handler is a best-effort safety net, not a complete solution.
2451           // It is disabled by default and should only be used as a workaround
2452           // in case we missed any no-execute-unsafe VM code.
2453 
2454           last_addr = addr;
2455 
2456           return EXCEPTION_CONTINUE_EXECUTION;
2457         }
2458       }
2459 
2460       // Last unguard failed or not unguarding
2461       tty->print_raw_cr("Execution protection violation");
2462       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2463                    exceptionInfo->ContextRecord);
2464       return EXCEPTION_CONTINUE_SEARCH;
2465     }
2466   }
2467 #endif // _WIN64
2468 
2469   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2470       VM_Version::is_cpuinfo_segv_addr(pc)) {
2471     // Verify that OS save/restore AVX registers.
2472     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2473   }
2474 
2475   if (t != NULL && t->is_Java_thread()) {
2476     JavaThread* thread = (JavaThread*) t;
2477     bool in_java = thread->thread_state() == _thread_in_Java;
2478 
2479     // Handle potential stack overflows up front.
2480     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2481       if (thread->stack_guards_enabled()) {
2482         if (in_java) {
2483           frame fr;
2484           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2485           address addr = (address) exceptionRecord->ExceptionInformation[1];
2486           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2487             assert(fr.is_java_frame(), "Must be a Java frame");
2488             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2489           }
2490         }
2491         // Yellow zone violation.  The o/s has unprotected the first yellow
2492         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2493         // update the enabled status, even if the zone contains only one page.
2494         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2495         thread->disable_stack_yellow_reserved_zone();
2496         // If not in java code, return and hope for the best.
2497         return in_java
2498             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2499             :  EXCEPTION_CONTINUE_EXECUTION;
2500       } else {
2501         // Fatal red zone violation.
2502         thread->disable_stack_red_zone();
2503         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2504         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2505                       exceptionInfo->ContextRecord);
2506         return EXCEPTION_CONTINUE_SEARCH;
2507       }
2508     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2509       // Either stack overflow or null pointer exception.
2510       if (in_java) {
2511         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2512         address addr = (address) exceptionRecord->ExceptionInformation[1];
2513         address stack_end = thread->stack_end();
2514         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2515           // Stack overflow.
2516           assert(!os::uses_stack_guard_pages(),
2517                  "should be caught by red zone code above.");
2518           return Handle_Exception(exceptionInfo,
2519                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2520         }
2521         // Check for safepoint polling and implicit null
2522         // We only expect null pointers in the stubs (vtable)
2523         // the rest are checked explicitly now.
2524         CodeBlob* cb = CodeCache::find_blob(pc);
2525         if (cb != NULL) {
2526           if (os::is_poll_address(addr)) {
2527             address stub = SharedRuntime::get_poll_stub(pc);
2528             return Handle_Exception(exceptionInfo, stub);
2529           }
2530         }
2531         {
2532 #ifdef _WIN64
2533           // If it's a legal stack address map the entire region in
2534           //
2535           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2536           address addr = (address) exceptionRecord->ExceptionInformation[1];
2537           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2538             addr = (address)((uintptr_t)addr &
2539                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2540             os::commit_memory((char *)addr, thread->stack_base() - addr,
2541                               !ExecMem);
2542             return EXCEPTION_CONTINUE_EXECUTION;
2543           } else
2544 #endif
2545           {
2546             // Null pointer exception.
2547             if (MacroAssembler::uses_implicit_null_check((void*)addr)) {
2548               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2549               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2550             }
2551             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2552                          exceptionInfo->ContextRecord);
2553             return EXCEPTION_CONTINUE_SEARCH;
2554           }
2555         }
2556       }
2557 
2558 #ifdef _WIN64
2559       // Special care for fast JNI field accessors.
2560       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2561       // in and the heap gets shrunk before the field access.
2562       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2563         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2564         if (addr != (address)-1) {
2565           return Handle_Exception(exceptionInfo, addr);
2566         }
2567       }
2568 #endif
2569 
2570       // Stack overflow or null pointer exception in native code.
2571       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2572                    exceptionInfo->ContextRecord);
2573       return EXCEPTION_CONTINUE_SEARCH;
2574     } // /EXCEPTION_ACCESS_VIOLATION
2575     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2576 
2577     if (exception_code == EXCEPTION_IN_PAGE_ERROR) {
2578       CompiledMethod* nm = NULL;
2579       JavaThread* thread = (JavaThread*)t;
2580       if (in_java) {
2581         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
2582         nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
2583       }
2584 
2585       bool is_unsafe_arraycopy = (thread->thread_state() == _thread_in_native || in_java) && UnsafeCopyMemory::contains_pc(pc);
2586       if (((thread->thread_state() == _thread_in_vm ||
2587            thread->thread_state() == _thread_in_native ||
2588            is_unsafe_arraycopy) &&
2589           thread->doing_unsafe_access()) ||
2590           (nm != NULL && nm->has_unsafe_access())) {
2591         address next_pc =  Assembler::locate_next_instruction(pc);
2592         if (is_unsafe_arraycopy) {
2593           next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
2594         }
2595         return Handle_Exception(exceptionInfo, SharedRuntime::handle_unsafe_access(thread, next_pc));
2596       }
2597     }
2598 
2599     if (in_java) {
2600       switch (exception_code) {
2601       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2602         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2603 
2604       case EXCEPTION_INT_OVERFLOW:
2605         return Handle_IDiv_Exception(exceptionInfo);
2606 
2607       } // switch
2608     }
2609     if (((thread->thread_state() == _thread_in_Java) ||
2610          (thread->thread_state() == _thread_in_native)) &&
2611          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2612       LONG result=Handle_FLT_Exception(exceptionInfo);
2613       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2614     }
2615   }
2616 
2617   if (exception_code != EXCEPTION_BREAKPOINT) {
2618     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2619                  exceptionInfo->ContextRecord);
2620   }
2621   return EXCEPTION_CONTINUE_SEARCH;
2622 }
2623 
2624 #ifndef _WIN64
2625 // Special care for fast JNI accessors.
2626 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2627 // the heap gets shrunk before the field access.
2628 // Need to install our own structured exception handler since native code may
2629 // install its own.
2630 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2631   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2632   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2633     address pc = (address) exceptionInfo->ContextRecord->Eip;
2634     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2635     if (addr != (address)-1) {
2636       return Handle_Exception(exceptionInfo, addr);
2637     }
2638   }
2639   return EXCEPTION_CONTINUE_SEARCH;
2640 }
2641 
2642 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2643   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2644                                                      jobject obj,           \
2645                                                      jfieldID fieldID) {    \
2646     __try {                                                                 \
2647       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2648                                                                  obj,       \
2649                                                                  fieldID);  \
2650     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2651                                               _exception_info())) {         \
2652     }                                                                       \
2653     return 0;                                                               \
2654   }
2655 
2656 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2657 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2658 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2659 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2660 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2661 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2662 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2663 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2664 
2665 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2666   switch (type) {
2667   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2668   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2669   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2670   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2671   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2672   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2673   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2674   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2675   default:        ShouldNotReachHere();
2676   }
2677   return (address)-1;
2678 }
2679 #endif
2680 
2681 // Virtual Memory
2682 
2683 int os::vm_page_size() { return os::win32::vm_page_size(); }
2684 int os::vm_allocation_granularity() {
2685   return os::win32::vm_allocation_granularity();
2686 }
2687 
2688 // Windows large page support is available on Windows 2003. In order to use
2689 // large page memory, the administrator must first assign additional privilege
2690 // to the user:
2691 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2692 //   + select Local Policies -> User Rights Assignment
2693 //   + double click "Lock pages in memory", add users and/or groups
2694 //   + reboot
2695 // Note the above steps are needed for administrator as well, as administrators
2696 // by default do not have the privilege to lock pages in memory.
2697 //
2698 // Note about Windows 2003: although the API supports committing large page
2699 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2700 // scenario, I found through experiment it only uses large page if the entire
2701 // memory region is reserved and committed in a single VirtualAlloc() call.
2702 // This makes Windows large page support more or less like Solaris ISM, in
2703 // that the entire heap must be committed upfront. This probably will change
2704 // in the future, if so the code below needs to be revisited.
2705 
2706 #ifndef MEM_LARGE_PAGES
2707   #define MEM_LARGE_PAGES 0x20000000
2708 #endif
2709 
2710 static HANDLE    _hProcess;
2711 static HANDLE    _hToken;
2712 
2713 // Container for NUMA node list info
2714 class NUMANodeListHolder {
2715  private:
2716   int *_numa_used_node_list;  // allocated below
2717   int _numa_used_node_count;
2718 
2719   void free_node_list() {
2720     if (_numa_used_node_list != NULL) {
2721       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2722     }
2723   }
2724 
2725  public:
2726   NUMANodeListHolder() {
2727     _numa_used_node_count = 0;
2728     _numa_used_node_list = NULL;
2729     // do rest of initialization in build routine (after function pointers are set up)
2730   }
2731 
2732   ~NUMANodeListHolder() {
2733     free_node_list();
2734   }
2735 
2736   bool build() {
2737     DWORD_PTR proc_aff_mask;
2738     DWORD_PTR sys_aff_mask;
2739     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2740     ULONG highest_node_number;
2741     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2742     free_node_list();
2743     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2744     for (unsigned int i = 0; i <= highest_node_number; i++) {
2745       ULONGLONG proc_mask_numa_node;
2746       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2747       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2748         _numa_used_node_list[_numa_used_node_count++] = i;
2749       }
2750     }
2751     return (_numa_used_node_count > 1);
2752   }
2753 
2754   int get_count() { return _numa_used_node_count; }
2755   int get_node_list_entry(int n) {
2756     // for indexes out of range, returns -1
2757     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2758   }
2759 
2760 } numa_node_list_holder;
2761 
2762 
2763 
2764 static size_t _large_page_size = 0;
2765 
2766 static bool request_lock_memory_privilege() {
2767   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2768                           os::current_process_id());
2769 
2770   LUID luid;
2771   if (_hProcess != NULL &&
2772       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2773       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2774 
2775     TOKEN_PRIVILEGES tp;
2776     tp.PrivilegeCount = 1;
2777     tp.Privileges[0].Luid = luid;
2778     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2779 
2780     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2781     // privilege. Check GetLastError() too. See MSDN document.
2782     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2783         (GetLastError() == ERROR_SUCCESS)) {
2784       return true;
2785     }
2786   }
2787 
2788   return false;
2789 }
2790 
2791 static void cleanup_after_large_page_init() {
2792   if (_hProcess) CloseHandle(_hProcess);
2793   _hProcess = NULL;
2794   if (_hToken) CloseHandle(_hToken);
2795   _hToken = NULL;
2796 }
2797 
2798 static bool numa_interleaving_init() {
2799   bool success = false;
2800   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2801 
2802   // print a warning if UseNUMAInterleaving flag is specified on command line
2803   bool warn_on_failure = use_numa_interleaving_specified;
2804 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2805 
2806   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2807   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2808   NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
2809 
2810   if (numa_node_list_holder.build()) {
2811     if (log_is_enabled(Debug, os, cpu)) {
2812       Log(os, cpu) log;
2813       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2814       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2815         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2816       }
2817     }
2818     success = true;
2819   } else {
2820     WARN("Process does not cover multiple NUMA nodes.");
2821   }
2822   if (!success) {
2823     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2824   }
2825   return success;
2826 #undef WARN
2827 }
2828 
2829 // this routine is used whenever we need to reserve a contiguous VA range
2830 // but we need to make separate VirtualAlloc calls for each piece of the range
2831 // Reasons for doing this:
2832 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2833 //  * UseNUMAInterleaving requires a separate node for each piece
2834 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2835                                          DWORD prot,
2836                                          bool should_inject_error = false) {
2837   char * p_buf;
2838   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2839   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2840   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2841 
2842   // first reserve enough address space in advance since we want to be
2843   // able to break a single contiguous virtual address range into multiple
2844   // large page commits but WS2003 does not allow reserving large page space
2845   // so we just use 4K pages for reserve, this gives us a legal contiguous
2846   // address space. then we will deallocate that reservation, and re alloc
2847   // using large pages
2848   const size_t size_of_reserve = bytes + chunk_size;
2849   if (bytes > size_of_reserve) {
2850     // Overflowed.
2851     return NULL;
2852   }
2853   p_buf = (char *) VirtualAlloc(addr,
2854                                 size_of_reserve,  // size of Reserve
2855                                 MEM_RESERVE,
2856                                 PAGE_READWRITE);
2857   // If reservation failed, return NULL
2858   if (p_buf == NULL) return NULL;
2859   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2860   os::release_memory(p_buf, bytes + chunk_size);
2861 
2862   // we still need to round up to a page boundary (in case we are using large pages)
2863   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2864   // instead we handle this in the bytes_to_rq computation below
2865   p_buf = align_up(p_buf, page_size);
2866 
2867   // now go through and allocate one chunk at a time until all bytes are
2868   // allocated
2869   size_t  bytes_remaining = bytes;
2870   // An overflow of align_up() would have been caught above
2871   // in the calculation of size_of_reserve.
2872   char * next_alloc_addr = p_buf;
2873   HANDLE hProc = GetCurrentProcess();
2874 
2875 #ifdef ASSERT
2876   // Variable for the failure injection
2877   int ran_num = os::random();
2878   size_t fail_after = ran_num % bytes;
2879 #endif
2880 
2881   int count=0;
2882   while (bytes_remaining) {
2883     // select bytes_to_rq to get to the next chunk_size boundary
2884 
2885     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2886     // Note allocate and commit
2887     char * p_new;
2888 
2889 #ifdef ASSERT
2890     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2891 #else
2892     const bool inject_error_now = false;
2893 #endif
2894 
2895     if (inject_error_now) {
2896       p_new = NULL;
2897     } else {
2898       if (!UseNUMAInterleaving) {
2899         p_new = (char *) VirtualAlloc(next_alloc_addr,
2900                                       bytes_to_rq,
2901                                       flags,
2902                                       prot);
2903       } else {
2904         // get the next node to use from the used_node_list
2905         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2906         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2907         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2908       }
2909     }
2910 
2911     if (p_new == NULL) {
2912       // Free any allocated pages
2913       if (next_alloc_addr > p_buf) {
2914         // Some memory was committed so release it.
2915         size_t bytes_to_release = bytes - bytes_remaining;
2916         // NMT has yet to record any individual blocks, so it
2917         // need to create a dummy 'reserve' record to match
2918         // the release.
2919         MemTracker::record_virtual_memory_reserve((address)p_buf,
2920                                                   bytes_to_release, CALLER_PC);
2921         os::release_memory(p_buf, bytes_to_release);
2922       }
2923 #ifdef ASSERT
2924       if (should_inject_error) {
2925         log_develop_debug(pagesize)("Reserving pages individually failed.");
2926       }
2927 #endif
2928       return NULL;
2929     }
2930 
2931     bytes_remaining -= bytes_to_rq;
2932     next_alloc_addr += bytes_to_rq;
2933     count++;
2934   }
2935   // Although the memory is allocated individually, it is returned as one.
2936   // NMT records it as one block.
2937   if ((flags & MEM_COMMIT) != 0) {
2938     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2939   } else {
2940     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2941   }
2942 
2943   // made it this far, success
2944   return p_buf;
2945 }
2946 
2947 
2948 
2949 void os::large_page_init() {
2950   if (!UseLargePages) return;
2951 
2952   // print a warning if any large page related flag is specified on command line
2953   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2954                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2955   bool success = false;
2956 
2957 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2958   if (request_lock_memory_privilege()) {
2959     size_t s = GetLargePageMinimum();
2960     if (s) {
2961 #if defined(IA32) || defined(AMD64)
2962       if (s > 4*M || LargePageSizeInBytes > 4*M) {
2963         WARN("JVM cannot use large pages bigger than 4mb.");
2964       } else {
2965 #endif
2966         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2967           _large_page_size = LargePageSizeInBytes;
2968         } else {
2969           _large_page_size = s;
2970         }
2971         success = true;
2972 #if defined(IA32) || defined(AMD64)
2973       }
2974 #endif
2975     } else {
2976       WARN("Large page is not supported by the processor.");
2977     }
2978   } else {
2979     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2980   }
2981 #undef WARN
2982 
2983   const size_t default_page_size = (size_t) vm_page_size();
2984   if (success && _large_page_size > default_page_size) {
2985     _page_sizes[0] = _large_page_size;
2986     _page_sizes[1] = default_page_size;
2987     _page_sizes[2] = 0;
2988   }
2989 
2990   cleanup_after_large_page_init();
2991   UseLargePages = success;
2992 }
2993 
2994 int os::create_file_for_heap(const char* dir) {
2995 
2996   const char name_template[] = "/jvmheap.XXXXXX";
2997 
2998   size_t fullname_len = strlen(dir) + strlen(name_template);
2999   char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
3000   if (fullname == NULL) {
3001     vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
3002     return -1;
3003   }
3004   int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
3005   assert((size_t)n == fullname_len, "Unexpected number of characters in string");
3006 
3007   os::native_path(fullname);
3008 
3009   char *path = _mktemp(fullname);
3010   if (path == NULL) {
3011     warning("_mktemp could not create file name from template %s (%s)", fullname, os::strerror(errno));
3012     os::free(fullname);
3013     return -1;
3014   }
3015 
3016   int fd = _open(path, O_RDWR | O_CREAT | O_TEMPORARY | O_EXCL, S_IWRITE | S_IREAD);
3017 
3018   os::free(fullname);
3019   if (fd < 0) {
3020     warning("Problem opening file for heap (%s)", os::strerror(errno));
3021     return -1;
3022   }
3023   return fd;
3024 }
3025 
3026 // If 'base' is not NULL, function will return NULL if it cannot get 'base'
3027 char* os::map_memory_to_file(char* base, size_t size, int fd) {
3028   assert(fd != -1, "File descriptor is not valid");
3029 
3030   HANDLE fh = (HANDLE)_get_osfhandle(fd);
3031 #ifdef _LP64
3032   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3033     (DWORD)(size >> 32), (DWORD)(size & 0xFFFFFFFF), NULL);
3034 #else
3035   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3036     0, (DWORD)size, NULL);
3037 #endif
3038   if (fileMapping == NULL) {
3039     if (GetLastError() == ERROR_DISK_FULL) {
3040       vm_exit_during_initialization(err_msg("Could not allocate sufficient disk space for Java heap"));
3041     }
3042     else {
3043       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3044     }
3045 
3046     return NULL;
3047   }
3048 
3049   LPVOID addr = MapViewOfFileEx(fileMapping, FILE_MAP_WRITE, 0, 0, size, base);
3050 
3051   CloseHandle(fileMapping);
3052 
3053   return (char*)addr;
3054 }
3055 
3056 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
3057   assert(fd != -1, "File descriptor is not valid");
3058   assert(base != NULL, "Base address cannot be NULL");
3059 
3060   release_memory(base, size);
3061   return map_memory_to_file(base, size, fd);
3062 }
3063 
3064 // On win32, one cannot release just a part of reserved memory, it's an
3065 // all or nothing deal.  When we split a reservation, we must break the
3066 // reservation into two reservations.
3067 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3068                                   bool realloc) {
3069   if (size > 0) {
3070     release_memory(base, size);
3071     if (realloc) {
3072       reserve_memory(split, base);
3073     }
3074     if (size != split) {
3075       reserve_memory(size - split, base + split);
3076     }
3077   }
3078 }
3079 
3080 // Multiple threads can race in this code but it's not possible to unmap small sections of
3081 // virtual space to get requested alignment, like posix-like os's.
3082 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3083 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
3084   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3085          "Alignment must be a multiple of allocation granularity (page size)");
3086   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3087 
3088   size_t extra_size = size + alignment;
3089   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3090 
3091   char* aligned_base = NULL;
3092 
3093   do {
3094     char* extra_base = os::reserve_memory(extra_size, NULL, alignment, file_desc);
3095     if (extra_base == NULL) {
3096       return NULL;
3097     }
3098     // Do manual alignment
3099     aligned_base = align_up(extra_base, alignment);
3100 
3101     if (file_desc != -1) {
3102       os::unmap_memory(extra_base, extra_size);
3103     } else {
3104       os::release_memory(extra_base, extra_size);
3105     }
3106 
3107     aligned_base = os::reserve_memory(size, aligned_base, 0, file_desc);
3108 
3109   } while (aligned_base == NULL);
3110 
3111   return aligned_base;
3112 }
3113 
3114 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3115   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3116          "reserve alignment");
3117   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3118   char* res;
3119   // note that if UseLargePages is on, all the areas that require interleaving
3120   // will go thru reserve_memory_special rather than thru here.
3121   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3122   if (!use_individual) {
3123     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3124   } else {
3125     elapsedTimer reserveTimer;
3126     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3127     // in numa interleaving, we have to allocate pages individually
3128     // (well really chunks of NUMAInterleaveGranularity size)
3129     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3130     if (res == NULL) {
3131       warning("NUMA page allocation failed");
3132     }
3133     if (Verbose && PrintMiscellaneous) {
3134       reserveTimer.stop();
3135       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3136                     reserveTimer.milliseconds(), reserveTimer.ticks());
3137     }
3138   }
3139   assert(res == NULL || addr == NULL || addr == res,
3140          "Unexpected address from reserve.");
3141 
3142   return res;
3143 }
3144 
3145 // Reserve memory at an arbitrary address, only if that area is
3146 // available (and not reserved for something else).
3147 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3148   // Windows os::reserve_memory() fails of the requested address range is
3149   // not avilable.
3150   return reserve_memory(bytes, requested_addr);
3151 }
3152 
3153 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3154   assert(file_desc >= 0, "file_desc is not valid");
3155   return map_memory_to_file(requested_addr, bytes, file_desc);
3156 }
3157 
3158 size_t os::large_page_size() {
3159   return _large_page_size;
3160 }
3161 
3162 bool os::can_commit_large_page_memory() {
3163   // Windows only uses large page memory when the entire region is reserved
3164   // and committed in a single VirtualAlloc() call. This may change in the
3165   // future, but with Windows 2003 it's not possible to commit on demand.
3166   return false;
3167 }
3168 
3169 bool os::can_execute_large_page_memory() {
3170   return true;
3171 }
3172 
3173 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3174                                  bool exec) {
3175   assert(UseLargePages, "only for large pages");
3176 
3177   if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3178     return NULL; // Fallback to small pages.
3179   }
3180 
3181   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3182   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3183 
3184   // with large pages, there are two cases where we need to use Individual Allocation
3185   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3186   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3187   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3188     log_debug(pagesize)("Reserving large pages individually.");
3189 
3190     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3191     if (p_buf == NULL) {
3192       // give an appropriate warning message
3193       if (UseNUMAInterleaving) {
3194         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3195       }
3196       if (UseLargePagesIndividualAllocation) {
3197         warning("Individually allocated large pages failed, "
3198                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3199       }
3200       return NULL;
3201     }
3202 
3203     return p_buf;
3204 
3205   } else {
3206     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3207 
3208     // normal policy just allocate it all at once
3209     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3210     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3211     if (res != NULL) {
3212       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3213     }
3214 
3215     return res;
3216   }
3217 }
3218 
3219 bool os::release_memory_special(char* base, size_t bytes) {
3220   assert(base != NULL, "Sanity check");
3221   return release_memory(base, bytes);
3222 }
3223 
3224 void os::print_statistics() {
3225 }
3226 
3227 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3228   int err = os::get_last_error();
3229   char buf[256];
3230   size_t buf_len = os::lasterror(buf, sizeof(buf));
3231   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3232           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3233           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3234 }
3235 
3236 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3237   if (bytes == 0) {
3238     // Don't bother the OS with noops.
3239     return true;
3240   }
3241   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3242   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3243   // Don't attempt to print anything if the OS call fails. We're
3244   // probably low on resources, so the print itself may cause crashes.
3245 
3246   // unless we have NUMAInterleaving enabled, the range of a commit
3247   // is always within a reserve covered by a single VirtualAlloc
3248   // in that case we can just do a single commit for the requested size
3249   if (!UseNUMAInterleaving) {
3250     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3251       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3252       return false;
3253     }
3254     if (exec) {
3255       DWORD oldprot;
3256       // Windows doc says to use VirtualProtect to get execute permissions
3257       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3258         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3259         return false;
3260       }
3261     }
3262     return true;
3263   } else {
3264 
3265     // when NUMAInterleaving is enabled, the commit might cover a range that
3266     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3267     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3268     // returns represents the number of bytes that can be committed in one step.
3269     size_t bytes_remaining = bytes;
3270     char * next_alloc_addr = addr;
3271     while (bytes_remaining > 0) {
3272       MEMORY_BASIC_INFORMATION alloc_info;
3273       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3274       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3275       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3276                        PAGE_READWRITE) == NULL) {
3277         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3278                                             exec);)
3279         return false;
3280       }
3281       if (exec) {
3282         DWORD oldprot;
3283         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3284                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3285           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3286                                               exec);)
3287           return false;
3288         }
3289       }
3290       bytes_remaining -= bytes_to_rq;
3291       next_alloc_addr += bytes_to_rq;
3292     }
3293   }
3294   // if we made it this far, return true
3295   return true;
3296 }
3297 
3298 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3299                           bool exec) {
3300   // alignment_hint is ignored on this OS
3301   return pd_commit_memory(addr, size, exec);
3302 }
3303 
3304 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3305                                   const char* mesg) {
3306   assert(mesg != NULL, "mesg must be specified");
3307   if (!pd_commit_memory(addr, size, exec)) {
3308     warn_fail_commit_memory(addr, size, exec);
3309     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3310   }
3311 }
3312 
3313 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3314                                   size_t alignment_hint, bool exec,
3315                                   const char* mesg) {
3316   // alignment_hint is ignored on this OS
3317   pd_commit_memory_or_exit(addr, size, exec, mesg);
3318 }
3319 
3320 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3321   if (bytes == 0) {
3322     // Don't bother the OS with noops.
3323     return true;
3324   }
3325   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3326   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3327   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3328 }
3329 
3330 bool os::pd_release_memory(char* addr, size_t bytes) {
3331   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3332 }
3333 
3334 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3335   return os::commit_memory(addr, size, !ExecMem);
3336 }
3337 
3338 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3339   return os::uncommit_memory(addr, size);
3340 }
3341 
3342 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3343   uint count = 0;
3344   bool ret = false;
3345   size_t bytes_remaining = bytes;
3346   char * next_protect_addr = addr;
3347 
3348   // Use VirtualQuery() to get the chunk size.
3349   while (bytes_remaining) {
3350     MEMORY_BASIC_INFORMATION alloc_info;
3351     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3352       return false;
3353     }
3354 
3355     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3356     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3357     // but we don't distinguish here as both cases are protected by same API.
3358     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3359     warning("Failed protecting pages individually for chunk #%u", count);
3360     if (!ret) {
3361       return false;
3362     }
3363 
3364     bytes_remaining -= bytes_to_protect;
3365     next_protect_addr += bytes_to_protect;
3366     count++;
3367   }
3368   return ret;
3369 }
3370 
3371 // Set protections specified
3372 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3373                         bool is_committed) {
3374   unsigned int p = 0;
3375   switch (prot) {
3376   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3377   case MEM_PROT_READ: p = PAGE_READONLY; break;
3378   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3379   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3380   default:
3381     ShouldNotReachHere();
3382   }
3383 
3384   DWORD old_status;
3385 
3386   // Strange enough, but on Win32 one can change protection only for committed
3387   // memory, not a big deal anyway, as bytes less or equal than 64K
3388   if (!is_committed) {
3389     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3390                           "cannot commit protection page");
3391   }
3392   // One cannot use os::guard_memory() here, as on Win32 guard page
3393   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3394   //
3395   // Pages in the region become guard pages. Any attempt to access a guard page
3396   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3397   // the guard page status. Guard pages thus act as a one-time access alarm.
3398   bool ret;
3399   if (UseNUMAInterleaving) {
3400     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3401     // so we must protect the chunks individually.
3402     ret = protect_pages_individually(addr, bytes, p, &old_status);
3403   } else {
3404     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3405   }
3406 #ifdef ASSERT
3407   if (!ret) {
3408     int err = os::get_last_error();
3409     char buf[256];
3410     size_t buf_len = os::lasterror(buf, sizeof(buf));
3411     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3412           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3413           buf_len != 0 ? buf : "<no_error_string>", err);
3414   }
3415 #endif
3416   return ret;
3417 }
3418 
3419 bool os::guard_memory(char* addr, size_t bytes) {
3420   DWORD old_status;
3421   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3422 }
3423 
3424 bool os::unguard_memory(char* addr, size_t bytes) {
3425   DWORD old_status;
3426   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3427 }
3428 
3429 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3430 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3431 void os::numa_make_global(char *addr, size_t bytes)    { }
3432 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3433 bool os::numa_topology_changed()                       { return false; }
3434 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3435 int os::numa_get_group_id()                            { return 0; }
3436 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3437   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3438     // Provide an answer for UMA systems
3439     ids[0] = 0;
3440     return 1;
3441   } else {
3442     // check for size bigger than actual groups_num
3443     size = MIN2(size, numa_get_groups_num());
3444     for (int i = 0; i < (int)size; i++) {
3445       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3446     }
3447     return size;
3448   }
3449 }
3450 
3451 bool os::get_page_info(char *start, page_info* info) {
3452   return false;
3453 }
3454 
3455 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3456                      page_info* page_found) {
3457   return end;
3458 }
3459 
3460 char* os::non_memory_address_word() {
3461   // Must never look like an address returned by reserve_memory,
3462   // even in its subfields (as defined by the CPU immediate fields,
3463   // if the CPU splits constants across multiple instructions).
3464   return (char*)-1;
3465 }
3466 
3467 #define MAX_ERROR_COUNT 100
3468 #define SYS_THREAD_ERROR 0xffffffffUL
3469 
3470 void os::pd_start_thread(Thread* thread) {
3471   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3472   // Returns previous suspend state:
3473   // 0:  Thread was not suspended
3474   // 1:  Thread is running now
3475   // >1: Thread is still suspended.
3476   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3477 }
3478 
3479 class HighResolutionInterval : public CHeapObj<mtThread> {
3480   // The default timer resolution seems to be 10 milliseconds.
3481   // (Where is this written down?)
3482   // If someone wants to sleep for only a fraction of the default,
3483   // then we set the timer resolution down to 1 millisecond for
3484   // the duration of their interval.
3485   // We carefully set the resolution back, since otherwise we
3486   // seem to incur an overhead (3%?) that we don't need.
3487   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3488   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3489   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3490   // timeBeginPeriod() if the relative error exceeded some threshold.
3491   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3492   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3493   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3494   // resolution timers running.
3495  private:
3496   jlong resolution;
3497  public:
3498   HighResolutionInterval(jlong ms) {
3499     resolution = ms % 10L;
3500     if (resolution != 0) {
3501       MMRESULT result = timeBeginPeriod(1L);
3502     }
3503   }
3504   ~HighResolutionInterval() {
3505     if (resolution != 0) {
3506       MMRESULT result = timeEndPeriod(1L);
3507     }
3508     resolution = 0L;
3509   }
3510 };
3511 
3512 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3513   jlong limit = (jlong) MAXDWORD;
3514 
3515   while (ms > limit) {
3516     int res;
3517     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3518       return res;
3519     }
3520     ms -= limit;
3521   }
3522 
3523   assert(thread == Thread::current(), "thread consistency check");
3524   OSThread* osthread = thread->osthread();
3525   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3526   int result;
3527   if (interruptable) {
3528     assert(thread->is_Java_thread(), "must be java thread");
3529     JavaThread *jt = (JavaThread *) thread;
3530     ThreadBlockInVM tbivm(jt);
3531 
3532     jt->set_suspend_equivalent();
3533     // cleared by handle_special_suspend_equivalent_condition() or
3534     // java_suspend_self() via check_and_wait_while_suspended()
3535 
3536     HANDLE events[1];
3537     events[0] = osthread->interrupt_event();
3538     HighResolutionInterval *phri=NULL;
3539     if (!ForceTimeHighResolution) {
3540       phri = new HighResolutionInterval(ms);
3541     }
3542     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3543       result = OS_TIMEOUT;
3544     } else {
3545       ResetEvent(osthread->interrupt_event());
3546       osthread->set_interrupted(false);
3547       result = OS_INTRPT;
3548     }
3549     delete phri; //if it is NULL, harmless
3550 
3551     // were we externally suspended while we were waiting?
3552     jt->check_and_wait_while_suspended();
3553   } else {
3554     assert(!thread->is_Java_thread(), "must not be java thread");
3555     Sleep((long) ms);
3556     result = OS_TIMEOUT;
3557   }
3558   return result;
3559 }
3560 
3561 // Short sleep, direct OS call.
3562 //
3563 // ms = 0, means allow others (if any) to run.
3564 //
3565 void os::naked_short_sleep(jlong ms) {
3566   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3567   Sleep(ms);
3568 }
3569 
3570 // Windows does not provide sleep functionality with nanosecond resolution, so we
3571 // try to approximate this with spinning combined with yielding if another thread
3572 // is ready to run on the current processor.
3573 void os::naked_short_nanosleep(jlong ns) {
3574   assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
3575 
3576   int64_t start = os::javaTimeNanos();
3577   do {
3578     if (SwitchToThread() == 0) {
3579       // Nothing else is ready to run on this cpu, spin a little
3580       SpinPause();
3581     }
3582   } while (os::javaTimeNanos() - start < ns);
3583 }
3584 
3585 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3586 void os::infinite_sleep() {
3587   while (true) {    // sleep forever ...
3588     Sleep(100000);  // ... 100 seconds at a time
3589   }
3590 }
3591 
3592 typedef BOOL (WINAPI * STTSignature)(void);
3593 
3594 void os::naked_yield() {
3595   // Consider passing back the return value from SwitchToThread().
3596   SwitchToThread();
3597 }
3598 
3599 // Win32 only gives you access to seven real priorities at a time,
3600 // so we compress Java's ten down to seven.  It would be better
3601 // if we dynamically adjusted relative priorities.
3602 
3603 int os::java_to_os_priority[CriticalPriority + 1] = {
3604   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3605   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3606   THREAD_PRIORITY_LOWEST,                       // 2
3607   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3608   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3609   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3610   THREAD_PRIORITY_NORMAL,                       // 6
3611   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3612   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3613   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3614   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3615   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3616 };
3617 
3618 int prio_policy1[CriticalPriority + 1] = {
3619   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3620   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3621   THREAD_PRIORITY_LOWEST,                       // 2
3622   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3623   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3624   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3625   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3626   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3627   THREAD_PRIORITY_HIGHEST,                      // 8
3628   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3629   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3630   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3631 };
3632 
3633 static int prio_init() {
3634   // If ThreadPriorityPolicy is 1, switch tables
3635   if (ThreadPriorityPolicy == 1) {
3636     int i;
3637     for (i = 0; i < CriticalPriority + 1; i++) {
3638       os::java_to_os_priority[i] = prio_policy1[i];
3639     }
3640   }
3641   if (UseCriticalJavaThreadPriority) {
3642     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3643   }
3644   return 0;
3645 }
3646 
3647 OSReturn os::set_native_priority(Thread* thread, int priority) {
3648   if (!UseThreadPriorities) return OS_OK;
3649   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3650   return ret ? OS_OK : OS_ERR;
3651 }
3652 
3653 OSReturn os::get_native_priority(const Thread* const thread,
3654                                  int* priority_ptr) {
3655   if (!UseThreadPriorities) {
3656     *priority_ptr = java_to_os_priority[NormPriority];
3657     return OS_OK;
3658   }
3659   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3660   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3661     assert(false, "GetThreadPriority failed");
3662     return OS_ERR;
3663   }
3664   *priority_ptr = os_prio;
3665   return OS_OK;
3666 }
3667 
3668 void os::interrupt(Thread* thread) {
3669   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3670 
3671   OSThread* osthread = thread->osthread();
3672   osthread->set_interrupted(true);
3673   // More than one thread can get here with the same value of osthread,
3674   // resulting in multiple notifications.  We do, however, want the store
3675   // to interrupted() to be visible to other threads before we post
3676   // the interrupt event.
3677   OrderAccess::release();
3678   SetEvent(osthread->interrupt_event());
3679   // For JSR166:  unpark after setting status
3680   if (thread->is_Java_thread()) {
3681     ((JavaThread*)thread)->parker()->unpark();
3682   }
3683 
3684   ParkEvent * ev = thread->_ParkEvent;
3685   if (ev != NULL) ev->unpark();
3686 }
3687 
3688 
3689 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3690   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3691 
3692   OSThread* osthread = thread->osthread();
3693   // There is no synchronization between the setting of the interrupt
3694   // and it being cleared here. It is critical - see 6535709 - that
3695   // we only clear the interrupt state, and reset the interrupt event,
3696   // if we are going to report that we were indeed interrupted - else
3697   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3698   // depending on the timing. By checking thread interrupt event to see
3699   // if the thread gets real interrupt thus prevent spurious wakeup.
3700   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3701   if (interrupted && clear_interrupted) {
3702     osthread->set_interrupted(false);
3703     ResetEvent(osthread->interrupt_event());
3704   } // Otherwise leave the interrupted state alone
3705 
3706   return interrupted;
3707 }
3708 
3709 // GetCurrentThreadId() returns DWORD
3710 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3711 
3712 static int _initial_pid = 0;
3713 
3714 int os::current_process_id() {
3715   return (_initial_pid ? _initial_pid : _getpid());
3716 }
3717 
3718 int    os::win32::_vm_page_size              = 0;
3719 int    os::win32::_vm_allocation_granularity = 0;
3720 int    os::win32::_processor_type            = 0;
3721 // Processor level is not available on non-NT systems, use vm_version instead
3722 int    os::win32::_processor_level           = 0;
3723 julong os::win32::_physical_memory           = 0;
3724 size_t os::win32::_default_stack_size        = 0;
3725 
3726 intx          os::win32::_os_thread_limit    = 0;
3727 volatile intx os::win32::_os_thread_count    = 0;
3728 
3729 bool   os::win32::_is_windows_server         = false;
3730 
3731 // 6573254
3732 // Currently, the bug is observed across all the supported Windows releases,
3733 // including the latest one (as of this writing - Windows Server 2012 R2)
3734 bool   os::win32::_has_exit_bug              = true;
3735 
3736 void os::win32::initialize_system_info() {
3737   SYSTEM_INFO si;
3738   GetSystemInfo(&si);
3739   _vm_page_size    = si.dwPageSize;
3740   _vm_allocation_granularity = si.dwAllocationGranularity;
3741   _processor_type  = si.dwProcessorType;
3742   _processor_level = si.wProcessorLevel;
3743   set_processor_count(si.dwNumberOfProcessors);
3744 
3745   MEMORYSTATUSEX ms;
3746   ms.dwLength = sizeof(ms);
3747 
3748   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3749   // dwMemoryLoad (% of memory in use)
3750   GlobalMemoryStatusEx(&ms);
3751   _physical_memory = ms.ullTotalPhys;
3752 
3753   if (FLAG_IS_DEFAULT(MaxRAM)) {
3754     // Adjust MaxRAM according to the maximum virtual address space available.
3755     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3756   }
3757 
3758   OSVERSIONINFOEX oi;
3759   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3760   GetVersionEx((OSVERSIONINFO*)&oi);
3761   switch (oi.dwPlatformId) {
3762   case VER_PLATFORM_WIN32_NT:
3763     {
3764       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3765       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3766           oi.wProductType == VER_NT_SERVER) {
3767         _is_windows_server = true;
3768       }
3769     }
3770     break;
3771   default: fatal("Unknown platform");
3772   }
3773 
3774   _default_stack_size = os::current_stack_size();
3775   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3776   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3777          "stack size not a multiple of page size");
3778 
3779   initialize_performance_counter();
3780 }
3781 
3782 
3783 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3784                                       int ebuflen) {
3785   char path[MAX_PATH];
3786   DWORD size;
3787   DWORD pathLen = (DWORD)sizeof(path);
3788   HINSTANCE result = NULL;
3789 
3790   // only allow library name without path component
3791   assert(strchr(name, '\\') == NULL, "path not allowed");
3792   assert(strchr(name, ':') == NULL, "path not allowed");
3793   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3794     jio_snprintf(ebuf, ebuflen,
3795                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3796     return NULL;
3797   }
3798 
3799   // search system directory
3800   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3801     if (size >= pathLen) {
3802       return NULL; // truncated
3803     }
3804     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3805       return NULL; // truncated
3806     }
3807     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3808       return result;
3809     }
3810   }
3811 
3812   // try Windows directory
3813   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3814     if (size >= pathLen) {
3815       return NULL; // truncated
3816     }
3817     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3818       return NULL; // truncated
3819     }
3820     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3821       return result;
3822     }
3823   }
3824 
3825   jio_snprintf(ebuf, ebuflen,
3826                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3827   return NULL;
3828 }
3829 
3830 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3831 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3832 
3833 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3834   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3835   return TRUE;
3836 }
3837 
3838 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3839   // Basic approach:
3840   //  - Each exiting thread registers its intent to exit and then does so.
3841   //  - A thread trying to terminate the process must wait for all
3842   //    threads currently exiting to complete their exit.
3843 
3844   if (os::win32::has_exit_bug()) {
3845     // The array holds handles of the threads that have started exiting by calling
3846     // _endthreadex().
3847     // Should be large enough to avoid blocking the exiting thread due to lack of
3848     // a free slot.
3849     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3850     static int handle_count = 0;
3851 
3852     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3853     static CRITICAL_SECTION crit_sect;
3854     static volatile DWORD process_exiting = 0;
3855     int i, j;
3856     DWORD res;
3857     HANDLE hproc, hthr;
3858 
3859     // We only attempt to register threads until a process exiting
3860     // thread manages to set the process_exiting flag. Any threads
3861     // that come through here after the process_exiting flag is set
3862     // are unregistered and will be caught in the SuspendThread()
3863     // infinite loop below.
3864     bool registered = false;
3865 
3866     // The first thread that reached this point, initializes the critical section.
3867     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3868       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3869     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3870       if (what != EPT_THREAD) {
3871         // Atomically set process_exiting before the critical section
3872         // to increase the visibility between racing threads.
3873         Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
3874       }
3875       EnterCriticalSection(&crit_sect);
3876 
3877       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3878         // Remove from the array those handles of the threads that have completed exiting.
3879         for (i = 0, j = 0; i < handle_count; ++i) {
3880           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3881           if (res == WAIT_TIMEOUT) {
3882             handles[j++] = handles[i];
3883           } else {
3884             if (res == WAIT_FAILED) {
3885               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3886                       GetLastError(), __FILE__, __LINE__);
3887             }
3888             // Don't keep the handle, if we failed waiting for it.
3889             CloseHandle(handles[i]);
3890           }
3891         }
3892 
3893         // If there's no free slot in the array of the kept handles, we'll have to
3894         // wait until at least one thread completes exiting.
3895         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3896           // Raise the priority of the oldest exiting thread to increase its chances
3897           // to complete sooner.
3898           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3899           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3900           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3901             i = (res - WAIT_OBJECT_0);
3902             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3903             for (; i < handle_count; ++i) {
3904               handles[i] = handles[i + 1];
3905             }
3906           } else {
3907             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3908                     (res == WAIT_FAILED ? "failed" : "timed out"),
3909                     GetLastError(), __FILE__, __LINE__);
3910             // Don't keep handles, if we failed waiting for them.
3911             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3912               CloseHandle(handles[i]);
3913             }
3914             handle_count = 0;
3915           }
3916         }
3917 
3918         // Store a duplicate of the current thread handle in the array of handles.
3919         hproc = GetCurrentProcess();
3920         hthr = GetCurrentThread();
3921         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3922                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3923           warning("DuplicateHandle failed (%u) in %s: %d\n",
3924                   GetLastError(), __FILE__, __LINE__);
3925 
3926           // We can't register this thread (no more handles) so this thread
3927           // may be racing with a thread that is calling exit(). If the thread
3928           // that is calling exit() has managed to set the process_exiting
3929           // flag, then this thread will be caught in the SuspendThread()
3930           // infinite loop below which closes that race. A small timing
3931           // window remains before the process_exiting flag is set, but it
3932           // is only exposed when we are out of handles.
3933         } else {
3934           ++handle_count;
3935           registered = true;
3936 
3937           // The current exiting thread has stored its handle in the array, and now
3938           // should leave the critical section before calling _endthreadex().
3939         }
3940 
3941       } else if (what != EPT_THREAD && handle_count > 0) {
3942         jlong start_time, finish_time, timeout_left;
3943         // Before ending the process, make sure all the threads that had called
3944         // _endthreadex() completed.
3945 
3946         // Set the priority level of the current thread to the same value as
3947         // the priority level of exiting threads.
3948         // This is to ensure it will be given a fair chance to execute if
3949         // the timeout expires.
3950         hthr = GetCurrentThread();
3951         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3952         start_time = os::javaTimeNanos();
3953         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3954         for (i = 0; ; ) {
3955           int portion_count = handle_count - i;
3956           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3957             portion_count = MAXIMUM_WAIT_OBJECTS;
3958           }
3959           for (j = 0; j < portion_count; ++j) {
3960             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3961           }
3962           timeout_left = (finish_time - start_time) / 1000000L;
3963           if (timeout_left < 0) {
3964             timeout_left = 0;
3965           }
3966           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3967           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3968             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3969                     (res == WAIT_FAILED ? "failed" : "timed out"),
3970                     GetLastError(), __FILE__, __LINE__);
3971             // Reset portion_count so we close the remaining
3972             // handles due to this error.
3973             portion_count = handle_count - i;
3974           }
3975           for (j = 0; j < portion_count; ++j) {
3976             CloseHandle(handles[i + j]);
3977           }
3978           if ((i += portion_count) >= handle_count) {
3979             break;
3980           }
3981           start_time = os::javaTimeNanos();
3982         }
3983         handle_count = 0;
3984       }
3985 
3986       LeaveCriticalSection(&crit_sect);
3987     }
3988 
3989     if (!registered &&
3990         OrderAccess::load_acquire(&process_exiting) != 0 &&
3991         process_exiting != GetCurrentThreadId()) {
3992       // Some other thread is about to call exit(), so we don't let
3993       // the current unregistered thread proceed to exit() or _endthreadex()
3994       while (true) {
3995         SuspendThread(GetCurrentThread());
3996         // Avoid busy-wait loop, if SuspendThread() failed.
3997         Sleep(EXIT_TIMEOUT);
3998       }
3999     }
4000   }
4001 
4002   // We are here if either
4003   // - there's no 'race at exit' bug on this OS release;
4004   // - initialization of the critical section failed (unlikely);
4005   // - the current thread has registered itself and left the critical section;
4006   // - the process-exiting thread has raised the flag and left the critical section.
4007   if (what == EPT_THREAD) {
4008     _endthreadex((unsigned)exit_code);
4009   } else if (what == EPT_PROCESS) {
4010     ::exit(exit_code);
4011   } else {
4012     _exit(exit_code);
4013   }
4014 
4015   // Should not reach here
4016   return exit_code;
4017 }
4018 
4019 #undef EXIT_TIMEOUT
4020 
4021 void os::win32::setmode_streams() {
4022   _setmode(_fileno(stdin), _O_BINARY);
4023   _setmode(_fileno(stdout), _O_BINARY);
4024   _setmode(_fileno(stderr), _O_BINARY);
4025 }
4026 
4027 
4028 bool os::is_debugger_attached() {
4029   return IsDebuggerPresent() ? true : false;
4030 }
4031 
4032 
4033 void os::wait_for_keypress_at_exit(void) {
4034   if (PauseAtExit) {
4035     fprintf(stderr, "Press any key to continue...\n");
4036     fgetc(stdin);
4037   }
4038 }
4039 
4040 
4041 bool os::message_box(const char* title, const char* message) {
4042   int result = MessageBox(NULL, message, title,
4043                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4044   return result == IDYES;
4045 }
4046 
4047 #ifndef PRODUCT
4048 #ifndef _WIN64
4049 // Helpers to check whether NX protection is enabled
4050 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4051   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4052       pex->ExceptionRecord->NumberParameters > 0 &&
4053       pex->ExceptionRecord->ExceptionInformation[0] ==
4054       EXCEPTION_INFO_EXEC_VIOLATION) {
4055     return EXCEPTION_EXECUTE_HANDLER;
4056   }
4057   return EXCEPTION_CONTINUE_SEARCH;
4058 }
4059 
4060 void nx_check_protection() {
4061   // If NX is enabled we'll get an exception calling into code on the stack
4062   char code[] = { (char)0xC3 }; // ret
4063   void *code_ptr = (void *)code;
4064   __try {
4065     __asm call code_ptr
4066   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4067     tty->print_raw_cr("NX protection detected.");
4068   }
4069 }
4070 #endif // _WIN64
4071 #endif // PRODUCT
4072 
4073 // This is called _before_ the global arguments have been parsed
4074 void os::init(void) {
4075   _initial_pid = _getpid();
4076 
4077   init_random(1234567);
4078 
4079   win32::initialize_system_info();
4080   win32::setmode_streams();
4081   init_page_sizes((size_t) win32::vm_page_size());
4082 
4083   // This may be overridden later when argument processing is done.
4084   FLAG_SET_ERGO(UseLargePagesIndividualAllocation, false);
4085 
4086   // Initialize main_process and main_thread
4087   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4088   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4089                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4090     fatal("DuplicateHandle failed\n");
4091   }
4092   main_thread_id = (int) GetCurrentThreadId();
4093 
4094   // initialize fast thread access - only used for 32-bit
4095   win32::initialize_thread_ptr_offset();
4096 }
4097 
4098 // To install functions for atexit processing
4099 extern "C" {
4100   static void perfMemory_exit_helper() {
4101     perfMemory_exit();
4102   }
4103 }
4104 
4105 static jint initSock();
4106 
4107 // this is called _after_ the global arguments have been parsed
4108 jint os::init_2(void) {
4109 
4110   // This could be set any time but all platforms
4111   // have to set it the same so we have to mirror Solaris.
4112   DEBUG_ONLY(os::set_mutex_init_done();)
4113 
4114   // Setup Windows Exceptions
4115 
4116 #if INCLUDE_AOT
4117   // If AOT is enabled we need to install a vectored exception handler
4118   // in order to forward implicit exceptions from code in AOT
4119   // generated DLLs.  This is necessary since these DLLs are not
4120   // registered for structured exceptions like codecache methods are.
4121   if (UseAOT) {
4122     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelVectoredExceptionFilter);
4123   }
4124 #endif
4125 
4126   // for debugging float code generation bugs
4127   if (ForceFloatExceptions) {
4128 #ifndef  _WIN64
4129     static long fp_control_word = 0;
4130     __asm { fstcw fp_control_word }
4131     // see Intel PPro Manual, Vol. 2, p 7-16
4132     const long precision = 0x20;
4133     const long underflow = 0x10;
4134     const long overflow  = 0x08;
4135     const long zero_div  = 0x04;
4136     const long denorm    = 0x02;
4137     const long invalid   = 0x01;
4138     fp_control_word |= invalid;
4139     __asm { fldcw fp_control_word }
4140 #endif
4141   }
4142 
4143   // If stack_commit_size is 0, windows will reserve the default size,
4144   // but only commit a small portion of it.
4145   size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
4146   size_t default_reserve_size = os::win32::default_stack_size();
4147   size_t actual_reserve_size = stack_commit_size;
4148   if (stack_commit_size < default_reserve_size) {
4149     // If stack_commit_size == 0, we want this too
4150     actual_reserve_size = default_reserve_size;
4151   }
4152 
4153   // Check minimum allowable stack size for thread creation and to initialize
4154   // the java system classes, including StackOverflowError - depends on page
4155   // size.  Add two 4K pages for compiler2 recursion in main thread.
4156   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4157   // class initialization depending on 32 or 64 bit VM.
4158   size_t min_stack_allowed =
4159             (size_t)(JavaThread::stack_guard_zone_size() +
4160                      JavaThread::stack_shadow_zone_size() +
4161                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4162 
4163   min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
4164 
4165   if (actual_reserve_size < min_stack_allowed) {
4166     tty->print_cr("\nThe Java thread stack size specified is too small. "
4167                   "Specify at least %dk",
4168                   min_stack_allowed / K);
4169     return JNI_ERR;
4170   }
4171 
4172   JavaThread::set_stack_size_at_create(stack_commit_size);
4173 
4174   // Calculate theoretical max. size of Threads to guard gainst artifical
4175   // out-of-memory situations, where all available address-space has been
4176   // reserved by thread stacks.
4177   assert(actual_reserve_size != 0, "Must have a stack");
4178 
4179   // Calculate the thread limit when we should start doing Virtual Memory
4180   // banging. Currently when the threads will have used all but 200Mb of space.
4181   //
4182   // TODO: consider performing a similar calculation for commit size instead
4183   // as reserve size, since on a 64-bit platform we'll run into that more
4184   // often than running out of virtual memory space.  We can use the
4185   // lower value of the two calculations as the os_thread_limit.
4186   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4187   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4188 
4189   // at exit methods are called in the reverse order of their registration.
4190   // there is no limit to the number of functions registered. atexit does
4191   // not set errno.
4192 
4193   if (PerfAllowAtExitRegistration) {
4194     // only register atexit functions if PerfAllowAtExitRegistration is set.
4195     // atexit functions can be delayed until process exit time, which
4196     // can be problematic for embedded VM situations. Embedded VMs should
4197     // call DestroyJavaVM() to assure that VM resources are released.
4198 
4199     // note: perfMemory_exit_helper atexit function may be removed in
4200     // the future if the appropriate cleanup code can be added to the
4201     // VM_Exit VMOperation's doit method.
4202     if (atexit(perfMemory_exit_helper) != 0) {
4203       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4204     }
4205   }
4206 
4207 #ifndef _WIN64
4208   // Print something if NX is enabled (win32 on AMD64)
4209   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4210 #endif
4211 
4212   // initialize thread priority policy
4213   prio_init();
4214 
4215   if (UseNUMA && !ForceNUMA) {
4216     UseNUMA = false; // We don't fully support this yet
4217   }
4218 
4219   if (UseNUMAInterleaving) {
4220     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4221     bool success = numa_interleaving_init();
4222     if (!success) UseNUMAInterleaving = false;
4223   }
4224 
4225   if (initSock() != JNI_OK) {
4226     return JNI_ERR;
4227   }
4228 
4229   SymbolEngine::recalc_search_path();
4230 
4231   // Initialize data for jdk.internal.misc.Signal
4232   if (!ReduceSignalUsage) {
4233     jdk_misc_signal_init();
4234   }
4235 
4236   return JNI_OK;
4237 }
4238 
4239 // Mark the polling page as unreadable
4240 void os::make_polling_page_unreadable(void) {
4241   DWORD old_status;
4242   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4243                       PAGE_NOACCESS, &old_status)) {
4244     fatal("Could not disable polling page");
4245   }
4246 }
4247 
4248 // Mark the polling page as readable
4249 void os::make_polling_page_readable(void) {
4250   DWORD old_status;
4251   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4252                       PAGE_READONLY, &old_status)) {
4253     fatal("Could not enable polling page");
4254   }
4255 }
4256 
4257 // combine the high and low DWORD into a ULONGLONG
4258 static ULONGLONG make_double_word(DWORD high_word, DWORD low_word) {
4259   ULONGLONG value = high_word;
4260   value <<= sizeof(high_word) * 8;
4261   value |= low_word;
4262   return value;
4263 }
4264 
4265 // Transfers data from WIN32_FILE_ATTRIBUTE_DATA structure to struct stat
4266 static void file_attribute_data_to_stat(struct stat* sbuf, WIN32_FILE_ATTRIBUTE_DATA file_data) {
4267   ::memset((void*)sbuf, 0, sizeof(struct stat));
4268   sbuf->st_size = (_off_t)make_double_word(file_data.nFileSizeHigh, file_data.nFileSizeLow);
4269   sbuf->st_mtime = make_double_word(file_data.ftLastWriteTime.dwHighDateTime,
4270                                   file_data.ftLastWriteTime.dwLowDateTime);
4271   sbuf->st_ctime = make_double_word(file_data.ftCreationTime.dwHighDateTime,
4272                                   file_data.ftCreationTime.dwLowDateTime);
4273   sbuf->st_atime = make_double_word(file_data.ftLastAccessTime.dwHighDateTime,
4274                                   file_data.ftLastAccessTime.dwLowDateTime);
4275   if ((file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0) {
4276     sbuf->st_mode |= S_IFDIR;
4277   } else {
4278     sbuf->st_mode |= S_IFREG;
4279   }
4280 }
4281 
4282 // Returns the given path as an absolute wide path in unc format. The returned path is NULL
4283 // on error (with err being set accordingly) and should be freed via os::free() otherwise.
4284 // additional_space is the number of additionally allocated wchars after the terminating L'\0'.
4285 // This is based on pathToNTPath() in io_util_md.cpp, but omits the optimizations for
4286 // short paths.
4287 static wchar_t* wide_abs_unc_path(char const* path, errno_t & err, int additional_space = 0) {
4288   if (path == NULL) {
4289     err = ENOENT;
4290     return NULL;
4291   }
4292 
4293   size_t path_len = strlen(path);
4294   // Need to allocate at least room for 3 characters, since os::native_path transforms C: to C:.
4295   char* buf = (char*) os::malloc(1 + MAX2((size_t) 3, path_len), mtInternal);
4296   wchar_t* result = NULL;
4297 
4298   if (buf == NULL) {
4299     err = ENOMEM;
4300   } else {
4301     memcpy(buf, path, path_len + 1);
4302     os::native_path(buf);
4303 
4304     wchar_t* prefix;
4305     int prefix_off = 0;
4306     bool is_abs = true;
4307     bool needs_fullpath = true;
4308 
4309     if (::isalpha(buf[0]) && !::IsDBCSLeadByte(buf[0]) && buf[1] == ':' && buf[2] == '\\') {
4310       prefix = L"\\\\?\\";
4311     } else if (buf[0] == '\\' && buf[1] == '\\') {
4312       assert(buf[2] != '\\');
4313 
4314       if (buf[2] == '?' && buf[3] == '\\') {
4315         prefix = L"";
4316         needs_fullpath = false;
4317       } else {
4318         prefix = L"\\\\?\\UNC";
4319         prefix_off = 1; // Overwrite the first char with the prefix, so \\share\path becomes \\?\UNC\share\path
4320       }
4321     } else {
4322       is_abs = false;
4323       prefix = L"\\\\?\\";
4324     }
4325 
4326     size_t buf_len = strlen(buf);
4327     size_t prefix_len = wcslen(prefix);
4328     size_t full_path_size = is_abs ? 1 + buf_len : JVM_MAXPATHLEN;
4329     size_t result_size = prefix_len + full_path_size - prefix_off;
4330     result = (wchar_t*) os::malloc(sizeof(wchar_t) * (additional_space + result_size), mtInternal);
4331 
4332     if (result == NULL) {
4333       err = ENOMEM;
4334     } else {
4335       size_t converted_chars;
4336       wchar_t* path_start = result + prefix_len - prefix_off;
4337       err = ::mbstowcs_s(&converted_chars, path_start, buf_len + 1, buf, buf_len);
4338 
4339       if ((err == ERROR_SUCCESS) && needs_fullpath) {
4340         wchar_t* tmp = (wchar_t*) os::malloc(sizeof(wchar_t) * full_path_size, mtInternal);
4341 
4342         if (tmp == NULL) {
4343           err = ENOMEM;
4344         } else {
4345           if (!_wfullpath(tmp, path_start, full_path_size)) {
4346             err = ENOENT;
4347           } else {
4348             ::memcpy(path_start, tmp, (1 + wcslen(tmp)) * sizeof(wchar_t));
4349           }
4350 
4351           os::free(tmp);
4352         }
4353       }
4354 
4355       memcpy(result, prefix, sizeof(wchar_t) * prefix_len);
4356 
4357       // Remove trailing pathsep (not for \\?\<DRIVE>:\, since it would make it relative)
4358       size_t result_len = wcslen(result);
4359 
4360       if (result[result_len - 1] == L'\\') {
4361         if (!(::iswalpha(result[4]) && result[5] == L':' && result_len == 7)) {
4362           result[result_len - 1] = L'\0';
4363         }
4364       }
4365     }
4366   }
4367 
4368   os::free(buf);
4369 
4370   if (err != ERROR_SUCCESS) {
4371     os::free(result);
4372     result = NULL;
4373   }
4374 
4375   return result;
4376 }
4377 
4378 int os::stat(const char *path, struct stat *sbuf) {
4379   errno_t err;
4380   wchar_t* wide_path = wide_abs_unc_path(path, err);
4381 
4382   if (wide_path == NULL) {
4383     errno = err;
4384     return -1;
4385   }
4386 
4387   WIN32_FILE_ATTRIBUTE_DATA file_data;;
4388   BOOL bret = ::GetFileAttributesExW(wide_path, GetFileExInfoStandard, &file_data);
4389   os::free(wide_path);
4390 
4391   if (!bret) {
4392     errno = ::GetLastError();
4393     return -1;
4394   }
4395 
4396   file_attribute_data_to_stat(sbuf, file_data);
4397   return 0;
4398 }
4399 
4400 static HANDLE create_read_only_file_handle(const char* file) {
4401   errno_t err;
4402   wchar_t* wide_path = wide_abs_unc_path(file, err);
4403 
4404   if (wide_path == NULL) {
4405     errno = err;
4406     return INVALID_HANDLE_VALUE;
4407   }
4408 
4409   HANDLE handle = ::CreateFileW(wide_path, 0, FILE_SHARE_READ,
4410                                 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4411   os::free(wide_path);
4412 
4413   return handle;
4414 }
4415 
4416 bool os::same_files(const char* file1, const char* file2) {
4417 
4418   if (file1 == NULL && file2 == NULL) {
4419     return true;
4420   }
4421 
4422   if (file1 == NULL || file2 == NULL) {
4423     return false;
4424   }
4425 
4426   if (strcmp(file1, file2) == 0) {
4427     return true;
4428   }
4429 
4430   HANDLE handle1 = create_read_only_file_handle(file1);
4431   HANDLE handle2 = create_read_only_file_handle(file2);
4432   bool result = false;
4433 
4434   // if we could open both paths...
4435   if (handle1 != INVALID_HANDLE_VALUE && handle2 != INVALID_HANDLE_VALUE) {
4436     BY_HANDLE_FILE_INFORMATION fileInfo1;
4437     BY_HANDLE_FILE_INFORMATION fileInfo2;
4438     if (::GetFileInformationByHandle(handle1, &fileInfo1) &&
4439       ::GetFileInformationByHandle(handle2, &fileInfo2)) {
4440       // the paths are the same if they refer to the same file (fileindex) on the same volume (volume serial number)
4441       if (fileInfo1.dwVolumeSerialNumber == fileInfo2.dwVolumeSerialNumber &&
4442         fileInfo1.nFileIndexHigh == fileInfo2.nFileIndexHigh &&
4443         fileInfo1.nFileIndexLow == fileInfo2.nFileIndexLow) {
4444         result = true;
4445       }
4446     }
4447   }
4448 
4449   //free the handles
4450   if (handle1 != INVALID_HANDLE_VALUE) {
4451     ::CloseHandle(handle1);
4452   }
4453 
4454   if (handle2 != INVALID_HANDLE_VALUE) {
4455     ::CloseHandle(handle2);
4456   }
4457 
4458   return result;
4459 }
4460 
4461 #define FT2INT64(ft) \
4462   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4463 
4464 
4465 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4466 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4467 // of a thread.
4468 //
4469 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4470 // the fast estimate available on the platform.
4471 
4472 // current_thread_cpu_time() is not optimized for Windows yet
4473 jlong os::current_thread_cpu_time() {
4474   // return user + sys since the cost is the same
4475   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4476 }
4477 
4478 jlong os::thread_cpu_time(Thread* thread) {
4479   // consistent with what current_thread_cpu_time() returns.
4480   return os::thread_cpu_time(thread, true /* user+sys */);
4481 }
4482 
4483 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4484   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4485 }
4486 
4487 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4488   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4489   // If this function changes, os::is_thread_cpu_time_supported() should too
4490   FILETIME CreationTime;
4491   FILETIME ExitTime;
4492   FILETIME KernelTime;
4493   FILETIME UserTime;
4494 
4495   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4496                       &ExitTime, &KernelTime, &UserTime) == 0) {
4497     return -1;
4498   } else if (user_sys_cpu_time) {
4499     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4500   } else {
4501     return FT2INT64(UserTime) * 100;
4502   }
4503 }
4504 
4505 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4506   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4507   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4508   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4509   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4510 }
4511 
4512 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4513   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4514   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4515   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4516   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4517 }
4518 
4519 bool os::is_thread_cpu_time_supported() {
4520   // see os::thread_cpu_time
4521   FILETIME CreationTime;
4522   FILETIME ExitTime;
4523   FILETIME KernelTime;
4524   FILETIME UserTime;
4525 
4526   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4527                       &KernelTime, &UserTime) == 0) {
4528     return false;
4529   } else {
4530     return true;
4531   }
4532 }
4533 
4534 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4535 // It does have primitives (PDH API) to get CPU usage and run queue length.
4536 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4537 // If we wanted to implement loadavg on Windows, we have a few options:
4538 //
4539 // a) Query CPU usage and run queue length and "fake" an answer by
4540 //    returning the CPU usage if it's under 100%, and the run queue
4541 //    length otherwise.  It turns out that querying is pretty slow
4542 //    on Windows, on the order of 200 microseconds on a fast machine.
4543 //    Note that on the Windows the CPU usage value is the % usage
4544 //    since the last time the API was called (and the first call
4545 //    returns 100%), so we'd have to deal with that as well.
4546 //
4547 // b) Sample the "fake" answer using a sampling thread and store
4548 //    the answer in a global variable.  The call to loadavg would
4549 //    just return the value of the global, avoiding the slow query.
4550 //
4551 // c) Sample a better answer using exponential decay to smooth the
4552 //    value.  This is basically the algorithm used by UNIX kernels.
4553 //
4554 // Note that sampling thread starvation could affect both (b) and (c).
4555 int os::loadavg(double loadavg[], int nelem) {
4556   return -1;
4557 }
4558 
4559 
4560 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4561 bool os::dont_yield() {
4562   return DontYieldALot;
4563 }
4564 
4565 int os::open(const char *path, int oflag, int mode) {
4566   errno_t err;
4567   wchar_t* wide_path = wide_abs_unc_path(path, err);
4568 
4569   if (wide_path == NULL) {
4570     errno = err;
4571     return -1;
4572   }
4573   int fd = ::_wopen(wide_path, oflag | O_BINARY | O_NOINHERIT, mode);
4574   os::free(wide_path);
4575 
4576   if (fd == -1) {
4577     errno = ::GetLastError();
4578   }
4579 
4580   return fd;
4581 }
4582 
4583 FILE* os::open(int fd, const char* mode) {
4584   return ::_fdopen(fd, mode);
4585 }
4586 
4587 // Is a (classpath) directory empty?
4588 bool os::dir_is_empty(const char* path) {
4589   errno_t err;
4590   wchar_t* wide_path = wide_abs_unc_path(path, err, 2);
4591 
4592   if (wide_path == NULL) {
4593     errno = err;
4594     return false;
4595   }
4596 
4597   // Make sure we end with "\\*"
4598   if (wide_path[wcslen(wide_path) - 1] == L'\\') {
4599     wcscat(wide_path, L"*");
4600   } else {
4601     wcscat(wide_path, L"\\*");
4602   }
4603 
4604   WIN32_FIND_DATAW fd;
4605   HANDLE f = ::FindFirstFileW(wide_path, &fd);
4606   os::free(wide_path);
4607   bool is_empty = true;
4608 
4609   if (f != INVALID_HANDLE_VALUE) {
4610     while (is_empty && ::FindNextFileW(f, &fd)) {
4611       // An empty directory contains only the current directory file
4612       // and the previous directory file.
4613       if ((wcscmp(fd.cFileName, L".") != 0) &&
4614           (wcscmp(fd.cFileName, L"..") != 0)) {
4615         is_empty = false;
4616       }
4617     }
4618     FindClose(f);
4619   } else {
4620     errno = ::GetLastError();
4621   }
4622 
4623   return is_empty;
4624 }
4625 
4626 // create binary file, rewriting existing file if required
4627 int os::create_binary_file(const char* path, bool rewrite_existing) {
4628   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4629   if (!rewrite_existing) {
4630     oflags |= _O_EXCL;
4631   }
4632   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4633 }
4634 
4635 // return current position of file pointer
4636 jlong os::current_file_offset(int fd) {
4637   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4638 }
4639 
4640 // move file pointer to the specified offset
4641 jlong os::seek_to_file_offset(int fd, jlong offset) {
4642   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4643 }
4644 
4645 
4646 jlong os::lseek(int fd, jlong offset, int whence) {
4647   return (jlong) ::_lseeki64(fd, offset, whence);
4648 }
4649 
4650 ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4651   OVERLAPPED ov;
4652   DWORD nread;
4653   BOOL result;
4654 
4655   ZeroMemory(&ov, sizeof(ov));
4656   ov.Offset = (DWORD)offset;
4657   ov.OffsetHigh = (DWORD)(offset >> 32);
4658 
4659   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4660 
4661   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4662 
4663   return result ? nread : 0;
4664 }
4665 
4666 
4667 // This method is a slightly reworked copy of JDK's sysNativePath
4668 // from src/windows/hpi/src/path_md.c
4669 
4670 // Convert a pathname to native format.  On win32, this involves forcing all
4671 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4672 // sometimes rejects '/') and removing redundant separators.  The input path is
4673 // assumed to have been converted into the character encoding used by the local
4674 // system.  Because this might be a double-byte encoding, care is taken to
4675 // treat double-byte lead characters correctly.
4676 //
4677 // This procedure modifies the given path in place, as the result is never
4678 // longer than the original.  There is no error return; this operation always
4679 // succeeds.
4680 char * os::native_path(char *path) {
4681   char *src = path, *dst = path, *end = path;
4682   char *colon = NULL;  // If a drive specifier is found, this will
4683                        // point to the colon following the drive letter
4684 
4685   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4686   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4687           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4688 
4689   // Check for leading separators
4690 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4691   while (isfilesep(*src)) {
4692     src++;
4693   }
4694 
4695   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4696     // Remove leading separators if followed by drive specifier.  This
4697     // hack is necessary to support file URLs containing drive
4698     // specifiers (e.g., "file://c:/path").  As a side effect,
4699     // "/c:/path" can be used as an alternative to "c:/path".
4700     *dst++ = *src++;
4701     colon = dst;
4702     *dst++ = ':';
4703     src++;
4704   } else {
4705     src = path;
4706     if (isfilesep(src[0]) && isfilesep(src[1])) {
4707       // UNC pathname: Retain first separator; leave src pointed at
4708       // second separator so that further separators will be collapsed
4709       // into the second separator.  The result will be a pathname
4710       // beginning with "\\\\" followed (most likely) by a host name.
4711       src = dst = path + 1;
4712       path[0] = '\\';     // Force first separator to '\\'
4713     }
4714   }
4715 
4716   end = dst;
4717 
4718   // Remove redundant separators from remainder of path, forcing all
4719   // separators to be '\\' rather than '/'. Also, single byte space
4720   // characters are removed from the end of the path because those
4721   // are not legal ending characters on this operating system.
4722   //
4723   while (*src != '\0') {
4724     if (isfilesep(*src)) {
4725       *dst++ = '\\'; src++;
4726       while (isfilesep(*src)) src++;
4727       if (*src == '\0') {
4728         // Check for trailing separator
4729         end = dst;
4730         if (colon == dst - 2) break;  // "z:\\"
4731         if (dst == path + 1) break;   // "\\"
4732         if (dst == path + 2 && isfilesep(path[0])) {
4733           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4734           // beginning of a UNC pathname.  Even though it is not, by
4735           // itself, a valid UNC pathname, we leave it as is in order
4736           // to be consistent with the path canonicalizer as well
4737           // as the win32 APIs, which treat this case as an invalid
4738           // UNC pathname rather than as an alias for the root
4739           // directory of the current drive.
4740           break;
4741         }
4742         end = --dst;  // Path does not denote a root directory, so
4743                       // remove trailing separator
4744         break;
4745       }
4746       end = dst;
4747     } else {
4748       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4749         *dst++ = *src++;
4750         if (*src) *dst++ = *src++;
4751         end = dst;
4752       } else {  // Copy a single-byte character
4753         char c = *src++;
4754         *dst++ = c;
4755         // Space is not a legal ending character
4756         if (c != ' ') end = dst;
4757       }
4758     }
4759   }
4760 
4761   *end = '\0';
4762 
4763   // For "z:", add "." to work around a bug in the C runtime library
4764   if (colon == dst - 1) {
4765     path[2] = '.';
4766     path[3] = '\0';
4767   }
4768 
4769   return path;
4770 }
4771 
4772 // This code is a copy of JDK's sysSetLength
4773 // from src/windows/hpi/src/sys_api_md.c
4774 
4775 int os::ftruncate(int fd, jlong length) {
4776   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4777   long high = (long)(length >> 32);
4778   DWORD ret;
4779 
4780   if (h == (HANDLE)(-1)) {
4781     return -1;
4782   }
4783 
4784   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4785   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4786     return -1;
4787   }
4788 
4789   if (::SetEndOfFile(h) == FALSE) {
4790     return -1;
4791   }
4792 
4793   return 0;
4794 }
4795 
4796 int os::get_fileno(FILE* fp) {
4797   return _fileno(fp);
4798 }
4799 
4800 // This code is a copy of JDK's sysSync
4801 // from src/windows/hpi/src/sys_api_md.c
4802 // except for the legacy workaround for a bug in Win 98
4803 
4804 int os::fsync(int fd) {
4805   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4806 
4807   if ((!::FlushFileBuffers(handle)) &&
4808       (GetLastError() != ERROR_ACCESS_DENIED)) {
4809     // from winerror.h
4810     return -1;
4811   }
4812   return 0;
4813 }
4814 
4815 static int nonSeekAvailable(int, long *);
4816 static int stdinAvailable(int, long *);
4817 
4818 // This code is a copy of JDK's sysAvailable
4819 // from src/windows/hpi/src/sys_api_md.c
4820 
4821 int os::available(int fd, jlong *bytes) {
4822   jlong cur, end;
4823   struct _stati64 stbuf64;
4824 
4825   if (::_fstati64(fd, &stbuf64) >= 0) {
4826     int mode = stbuf64.st_mode;
4827     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4828       int ret;
4829       long lpbytes;
4830       if (fd == 0) {
4831         ret = stdinAvailable(fd, &lpbytes);
4832       } else {
4833         ret = nonSeekAvailable(fd, &lpbytes);
4834       }
4835       (*bytes) = (jlong)(lpbytes);
4836       return ret;
4837     }
4838     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4839       return FALSE;
4840     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4841       return FALSE;
4842     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4843       return FALSE;
4844     }
4845     *bytes = end - cur;
4846     return TRUE;
4847   } else {
4848     return FALSE;
4849   }
4850 }
4851 
4852 void os::flockfile(FILE* fp) {
4853   _lock_file(fp);
4854 }
4855 
4856 void os::funlockfile(FILE* fp) {
4857   _unlock_file(fp);
4858 }
4859 
4860 // This code is a copy of JDK's nonSeekAvailable
4861 // from src/windows/hpi/src/sys_api_md.c
4862 
4863 static int nonSeekAvailable(int fd, long *pbytes) {
4864   // This is used for available on non-seekable devices
4865   // (like both named and anonymous pipes, such as pipes
4866   //  connected to an exec'd process).
4867   // Standard Input is a special case.
4868   HANDLE han;
4869 
4870   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4871     return FALSE;
4872   }
4873 
4874   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4875     // PeekNamedPipe fails when at EOF.  In that case we
4876     // simply make *pbytes = 0 which is consistent with the
4877     // behavior we get on Solaris when an fd is at EOF.
4878     // The only alternative is to raise an Exception,
4879     // which isn't really warranted.
4880     //
4881     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4882       return FALSE;
4883     }
4884     *pbytes = 0;
4885   }
4886   return TRUE;
4887 }
4888 
4889 #define MAX_INPUT_EVENTS 2000
4890 
4891 // This code is a copy of JDK's stdinAvailable
4892 // from src/windows/hpi/src/sys_api_md.c
4893 
4894 static int stdinAvailable(int fd, long *pbytes) {
4895   HANDLE han;
4896   DWORD numEventsRead = 0;  // Number of events read from buffer
4897   DWORD numEvents = 0;      // Number of events in buffer
4898   DWORD i = 0;              // Loop index
4899   DWORD curLength = 0;      // Position marker
4900   DWORD actualLength = 0;   // Number of bytes readable
4901   BOOL error = FALSE;       // Error holder
4902   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4903 
4904   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4905     return FALSE;
4906   }
4907 
4908   // Construct an array of input records in the console buffer
4909   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4910   if (error == 0) {
4911     return nonSeekAvailable(fd, pbytes);
4912   }
4913 
4914   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4915   if (numEvents > MAX_INPUT_EVENTS) {
4916     numEvents = MAX_INPUT_EVENTS;
4917   }
4918 
4919   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4920   if (lpBuffer == NULL) {
4921     return FALSE;
4922   }
4923 
4924   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4925   if (error == 0) {
4926     os::free(lpBuffer);
4927     return FALSE;
4928   }
4929 
4930   // Examine input records for the number of bytes available
4931   for (i=0; i<numEvents; i++) {
4932     if (lpBuffer[i].EventType == KEY_EVENT) {
4933 
4934       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4935                                       &(lpBuffer[i].Event);
4936       if (keyRecord->bKeyDown == TRUE) {
4937         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4938         curLength++;
4939         if (*keyPressed == '\r') {
4940           actualLength = curLength;
4941         }
4942       }
4943     }
4944   }
4945 
4946   if (lpBuffer != NULL) {
4947     os::free(lpBuffer);
4948   }
4949 
4950   *pbytes = (long) actualLength;
4951   return TRUE;
4952 }
4953 
4954 // Map a block of memory.
4955 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4956                         char *addr, size_t bytes, bool read_only,
4957                         bool allow_exec) {
4958   HANDLE hFile;
4959   char* base;
4960 
4961   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4962                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4963   if (hFile == NULL) {
4964     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4965     return NULL;
4966   }
4967 
4968   if (allow_exec) {
4969     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4970     // unless it comes from a PE image (which the shared archive is not.)
4971     // Even VirtualProtect refuses to give execute access to mapped memory
4972     // that was not previously executable.
4973     //
4974     // Instead, stick the executable region in anonymous memory.  Yuck.
4975     // Penalty is that ~4 pages will not be shareable - in the future
4976     // we might consider DLLizing the shared archive with a proper PE
4977     // header so that mapping executable + sharing is possible.
4978 
4979     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4980                                 PAGE_READWRITE);
4981     if (base == NULL) {
4982       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4983       CloseHandle(hFile);
4984       return NULL;
4985     }
4986 
4987     // Record virtual memory allocation
4988     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4989 
4990     DWORD bytes_read;
4991     OVERLAPPED overlapped;
4992     overlapped.Offset = (DWORD)file_offset;
4993     overlapped.OffsetHigh = 0;
4994     overlapped.hEvent = NULL;
4995     // ReadFile guarantees that if the return value is true, the requested
4996     // number of bytes were read before returning.
4997     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4998     if (!res) {
4999       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
5000       release_memory(base, bytes);
5001       CloseHandle(hFile);
5002       return NULL;
5003     }
5004   } else {
5005     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
5006                                     NULL /* file_name */);
5007     if (hMap == NULL) {
5008       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
5009       CloseHandle(hFile);
5010       return NULL;
5011     }
5012 
5013     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
5014     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
5015                                   (DWORD)bytes, addr);
5016     if (base == NULL) {
5017       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
5018       CloseHandle(hMap);
5019       CloseHandle(hFile);
5020       return NULL;
5021     }
5022 
5023     if (CloseHandle(hMap) == 0) {
5024       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
5025       CloseHandle(hFile);
5026       return base;
5027     }
5028   }
5029 
5030   if (allow_exec) {
5031     DWORD old_protect;
5032     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
5033     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
5034 
5035     if (!res) {
5036       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
5037       // Don't consider this a hard error, on IA32 even if the
5038       // VirtualProtect fails, we should still be able to execute
5039       CloseHandle(hFile);
5040       return base;
5041     }
5042   }
5043 
5044   if (CloseHandle(hFile) == 0) {
5045     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
5046     return base;
5047   }
5048 
5049   return base;
5050 }
5051 
5052 
5053 // Remap a block of memory.
5054 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5055                           char *addr, size_t bytes, bool read_only,
5056                           bool allow_exec) {
5057   // This OS does not allow existing memory maps to be remapped so we
5058   // would have to unmap the memory before we remap it.
5059 
5060   // Because there is a small window between unmapping memory and mapping
5061   // it in again with different protections, CDS archives are mapped RW
5062   // on windows, so this function isn't called.
5063   ShouldNotReachHere();
5064   return NULL;
5065 }
5066 
5067 
5068 // Unmap a block of memory.
5069 // Returns true=success, otherwise false.
5070 
5071 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5072   MEMORY_BASIC_INFORMATION mem_info;
5073   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
5074     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
5075     return false;
5076   }
5077 
5078   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
5079   // Instead, executable region was allocated using VirtualAlloc(). See
5080   // pd_map_memory() above.
5081   //
5082   // The following flags should match the 'exec_access' flages used for
5083   // VirtualProtect() in pd_map_memory().
5084   if (mem_info.Protect == PAGE_EXECUTE_READ ||
5085       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
5086     return pd_release_memory(addr, bytes);
5087   }
5088 
5089   BOOL result = UnmapViewOfFile(addr);
5090   if (result == 0) {
5091     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
5092     return false;
5093   }
5094   return true;
5095 }
5096 
5097 void os::pause() {
5098   char filename[MAX_PATH];
5099   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5100     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5101   } else {
5102     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5103   }
5104 
5105   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5106   if (fd != -1) {
5107     struct stat buf;
5108     ::close(fd);
5109     while (::stat(filename, &buf) == 0) {
5110       Sleep(100);
5111     }
5112   } else {
5113     jio_fprintf(stderr,
5114                 "Could not open pause file '%s', continuing immediately.\n", filename);
5115   }
5116 }
5117 
5118 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
5119 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
5120 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
5121 
5122 os::ThreadCrashProtection::ThreadCrashProtection() {
5123 }
5124 
5125 // See the caveats for this class in os_windows.hpp
5126 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
5127 // into this method and returns false. If no OS EXCEPTION was raised, returns
5128 // true.
5129 // The callback is supposed to provide the method that should be protected.
5130 //
5131 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
5132 
5133   Thread::muxAcquire(&_crash_mux, "CrashProtection");
5134 
5135   _protected_thread = Thread::current_or_null();
5136   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
5137 
5138   bool success = true;
5139   __try {
5140     _crash_protection = this;
5141     cb.call();
5142   } __except(EXCEPTION_EXECUTE_HANDLER) {
5143     // only for protection, nothing to do
5144     success = false;
5145   }
5146   _crash_protection = NULL;
5147   _protected_thread = NULL;
5148   Thread::muxRelease(&_crash_mux);
5149   return success;
5150 }
5151 
5152 // An Event wraps a win32 "CreateEvent" kernel handle.
5153 //
5154 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5155 //
5156 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5157 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5158 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5159 //     In addition, an unpark() operation might fetch the handle field, but the
5160 //     event could recycle between the fetch and the SetEvent() operation.
5161 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5162 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5163 //     on an stale but recycled handle would be harmless, but in practice this might
5164 //     confuse other non-Sun code, so it's not a viable approach.
5165 //
5166 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5167 //     with the Event.  The event handle is never closed.  This could be construed
5168 //     as handle leakage, but only up to the maximum # of threads that have been extant
5169 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5170 //     permit a process to have hundreds of thousands of open handles.
5171 //
5172 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5173 //     and release unused handles.
5174 //
5175 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5176 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5177 //
5178 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5179 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5180 //
5181 // We use (2).
5182 //
5183 // TODO-FIXME:
5184 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5185 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5186 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5187 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5188 //     into a single win32 CreateEvent() handle.
5189 //
5190 // Assumption:
5191 //    Only one parker can exist on an event, which is why we allocate
5192 //    them per-thread. Multiple unparkers can coexist.
5193 //
5194 // _Event transitions in park()
5195 //   -1 => -1 : illegal
5196 //    1 =>  0 : pass - return immediately
5197 //    0 => -1 : block; then set _Event to 0 before returning
5198 //
5199 // _Event transitions in unpark()
5200 //    0 => 1 : just return
5201 //    1 => 1 : just return
5202 //   -1 => either 0 or 1; must signal target thread
5203 //         That is, we can safely transition _Event from -1 to either
5204 //         0 or 1.
5205 //
5206 // _Event serves as a restricted-range semaphore.
5207 //   -1 : thread is blocked, i.e. there is a waiter
5208 //    0 : neutral: thread is running or ready,
5209 //        could have been signaled after a wait started
5210 //    1 : signaled - thread is running or ready
5211 //
5212 // Another possible encoding of _Event would be with
5213 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5214 //
5215 
5216 int os::PlatformEvent::park(jlong Millis) {
5217   // Transitions for _Event:
5218   //   -1 => -1 : illegal
5219   //    1 =>  0 : pass - return immediately
5220   //    0 => -1 : block; then set _Event to 0 before returning
5221 
5222   guarantee(_ParkHandle != NULL , "Invariant");
5223   guarantee(Millis > 0          , "Invariant");
5224 
5225   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5226   // the initial park() operation.
5227   // Consider: use atomic decrement instead of CAS-loop
5228 
5229   int v;
5230   for (;;) {
5231     v = _Event;
5232     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5233   }
5234   guarantee((v == 0) || (v == 1), "invariant");
5235   if (v != 0) return OS_OK;
5236 
5237   // Do this the hard way by blocking ...
5238   // TODO: consider a brief spin here, gated on the success of recent
5239   // spin attempts by this thread.
5240   //
5241   // We decompose long timeouts into series of shorter timed waits.
5242   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5243   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5244   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5245   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5246   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5247   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5248   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5249   // for the already waited time.  This policy does not admit any new outcomes.
5250   // In the future, however, we might want to track the accumulated wait time and
5251   // adjust Millis accordingly if we encounter a spurious wakeup.
5252 
5253   const int MAXTIMEOUT = 0x10000000;
5254   DWORD rv = WAIT_TIMEOUT;
5255   while (_Event < 0 && Millis > 0) {
5256     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5257     if (Millis > MAXTIMEOUT) {
5258       prd = MAXTIMEOUT;
5259     }
5260     rv = ::WaitForSingleObject(_ParkHandle, prd);
5261     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5262     if (rv == WAIT_TIMEOUT) {
5263       Millis -= prd;
5264     }
5265   }
5266   v = _Event;
5267   _Event = 0;
5268   // see comment at end of os::PlatformEvent::park() below:
5269   OrderAccess::fence();
5270   // If we encounter a nearly simultanous timeout expiry and unpark()
5271   // we return OS_OK indicating we awoke via unpark().
5272   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5273   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5274 }
5275 
5276 void os::PlatformEvent::park() {
5277   // Transitions for _Event:
5278   //   -1 => -1 : illegal
5279   //    1 =>  0 : pass - return immediately
5280   //    0 => -1 : block; then set _Event to 0 before returning
5281 
5282   guarantee(_ParkHandle != NULL, "Invariant");
5283   // Invariant: Only the thread associated with the Event/PlatformEvent
5284   // may call park().
5285   // Consider: use atomic decrement instead of CAS-loop
5286   int v;
5287   for (;;) {
5288     v = _Event;
5289     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5290   }
5291   guarantee((v == 0) || (v == 1), "invariant");
5292   if (v != 0) return;
5293 
5294   // Do this the hard way by blocking ...
5295   // TODO: consider a brief spin here, gated on the success of recent
5296   // spin attempts by this thread.
5297   while (_Event < 0) {
5298     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5299     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5300   }
5301 
5302   // Usually we'll find _Event == 0 at this point, but as
5303   // an optional optimization we clear it, just in case can
5304   // multiple unpark() operations drove _Event up to 1.
5305   _Event = 0;
5306   OrderAccess::fence();
5307   guarantee(_Event >= 0, "invariant");
5308 }
5309 
5310 void os::PlatformEvent::unpark() {
5311   guarantee(_ParkHandle != NULL, "Invariant");
5312 
5313   // Transitions for _Event:
5314   //    0 => 1 : just return
5315   //    1 => 1 : just return
5316   //   -1 => either 0 or 1; must signal target thread
5317   //         That is, we can safely transition _Event from -1 to either
5318   //         0 or 1.
5319   // See also: "Semaphores in Plan 9" by Mullender & Cox
5320   //
5321   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5322   // that it will take two back-to-back park() calls for the owning
5323   // thread to block. This has the benefit of forcing a spurious return
5324   // from the first park() call after an unpark() call which will help
5325   // shake out uses of park() and unpark() without condition variables.
5326 
5327   if (Atomic::xchg(1, &_Event) >= 0) return;
5328 
5329   ::SetEvent(_ParkHandle);
5330 }
5331 
5332 
5333 // JSR166
5334 // -------------------------------------------------------
5335 
5336 // The Windows implementation of Park is very straightforward: Basic
5337 // operations on Win32 Events turn out to have the right semantics to
5338 // use them directly. We opportunistically resuse the event inherited
5339 // from Monitor.
5340 
5341 void Parker::park(bool isAbsolute, jlong time) {
5342   guarantee(_ParkEvent != NULL, "invariant");
5343   // First, demultiplex/decode time arguments
5344   if (time < 0) { // don't wait
5345     return;
5346   } else if (time == 0 && !isAbsolute) {
5347     time = INFINITE;
5348   } else if (isAbsolute) {
5349     time -= os::javaTimeMillis(); // convert to relative time
5350     if (time <= 0) {  // already elapsed
5351       return;
5352     }
5353   } else { // relative
5354     time /= 1000000;  // Must coarsen from nanos to millis
5355     if (time == 0) {  // Wait for the minimal time unit if zero
5356       time = 1;
5357     }
5358   }
5359 
5360   JavaThread* thread = JavaThread::current();
5361 
5362   // Don't wait if interrupted or already triggered
5363   if (Thread::is_interrupted(thread, false) ||
5364       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5365     ResetEvent(_ParkEvent);
5366     return;
5367   } else {
5368     ThreadBlockInVM tbivm(thread);
5369     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5370     thread->set_suspend_equivalent();
5371 
5372     WaitForSingleObject(_ParkEvent, time);
5373     ResetEvent(_ParkEvent);
5374 
5375     // If externally suspended while waiting, re-suspend
5376     if (thread->handle_special_suspend_equivalent_condition()) {
5377       thread->java_suspend_self();
5378     }
5379   }
5380 }
5381 
5382 void Parker::unpark() {
5383   guarantee(_ParkEvent != NULL, "invariant");
5384   SetEvent(_ParkEvent);
5385 }
5386 
5387 // Platform Monitor implementation
5388 
5389 // Must already be locked
5390 int os::PlatformMonitor::wait(jlong millis) {
5391   assert(millis >= 0, "negative timeout");
5392   int ret = OS_TIMEOUT;
5393   int status = SleepConditionVariableCS(&_cond, &_mutex,
5394                                         millis == 0 ? INFINITE : millis);
5395   if (status != 0) {
5396     ret = OS_OK;
5397   }
5398   #ifndef PRODUCT
5399   else {
5400     DWORD err = GetLastError();
5401     assert(err == ERROR_TIMEOUT, "SleepConditionVariableCS: %ld:", err);
5402   }
5403   #endif
5404   return ret;
5405 }
5406 
5407 // Run the specified command in a separate process. Return its exit value,
5408 // or -1 on failure (e.g. can't create a new process).
5409 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5410   STARTUPINFO si;
5411   PROCESS_INFORMATION pi;
5412   DWORD exit_code;
5413 
5414   char * cmd_string;
5415   const char * cmd_prefix = "cmd /C ";
5416   size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
5417   cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
5418   if (cmd_string == NULL) {
5419     return -1;
5420   }
5421   cmd_string[0] = '\0';
5422   strcat(cmd_string, cmd_prefix);
5423   strcat(cmd_string, cmd);
5424 
5425   // now replace all '\n' with '&'
5426   char * substring = cmd_string;
5427   while ((substring = strchr(substring, '\n')) != NULL) {
5428     substring[0] = '&';
5429     substring++;
5430   }
5431   memset(&si, 0, sizeof(si));
5432   si.cb = sizeof(si);
5433   memset(&pi, 0, sizeof(pi));
5434   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5435                             cmd_string,    // command line
5436                             NULL,   // process security attribute
5437                             NULL,   // thread security attribute
5438                             TRUE,   // inherits system handles
5439                             0,      // no creation flags
5440                             NULL,   // use parent's environment block
5441                             NULL,   // use parent's starting directory
5442                             &si,    // (in) startup information
5443                             &pi);   // (out) process information
5444 
5445   if (rslt) {
5446     // Wait until child process exits.
5447     WaitForSingleObject(pi.hProcess, INFINITE);
5448 
5449     GetExitCodeProcess(pi.hProcess, &exit_code);
5450 
5451     // Close process and thread handles.
5452     CloseHandle(pi.hProcess);
5453     CloseHandle(pi.hThread);
5454   } else {
5455     exit_code = -1;
5456   }
5457 
5458   FREE_C_HEAP_ARRAY(char, cmd_string);
5459   return (int)exit_code;
5460 }
5461 
5462 bool os::find(address addr, outputStream* st) {
5463   int offset = -1;
5464   bool result = false;
5465   char buf[256];
5466   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5467     st->print(PTR_FORMAT " ", addr);
5468     if (strlen(buf) < sizeof(buf) - 1) {
5469       char* p = strrchr(buf, '\\');
5470       if (p) {
5471         st->print("%s", p + 1);
5472       } else {
5473         st->print("%s", buf);
5474       }
5475     } else {
5476         // The library name is probably truncated. Let's omit the library name.
5477         // See also JDK-8147512.
5478     }
5479     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5480       st->print("::%s + 0x%x", buf, offset);
5481     }
5482     st->cr();
5483     result = true;
5484   }
5485   return result;
5486 }
5487 
5488 static jint initSock() {
5489   WSADATA wsadata;
5490 
5491   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5492     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5493                 ::GetLastError());
5494     return JNI_ERR;
5495   }
5496   return JNI_OK;
5497 }
5498 
5499 struct hostent* os::get_host_by_name(char* name) {
5500   return (struct hostent*)gethostbyname(name);
5501 }
5502 
5503 int os::socket_close(int fd) {
5504   return ::closesocket(fd);
5505 }
5506 
5507 int os::socket(int domain, int type, int protocol) {
5508   return ::socket(domain, type, protocol);
5509 }
5510 
5511 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5512   return ::connect(fd, him, len);
5513 }
5514 
5515 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5516   return ::recv(fd, buf, (int)nBytes, flags);
5517 }
5518 
5519 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5520   return ::send(fd, buf, (int)nBytes, flags);
5521 }
5522 
5523 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5524   return ::send(fd, buf, (int)nBytes, flags);
5525 }
5526 
5527 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5528 #if defined(IA32)
5529   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5530 #elif defined (AMD64)
5531   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5532 #endif
5533 
5534 // returns true if thread could be suspended,
5535 // false otherwise
5536 static bool do_suspend(HANDLE* h) {
5537   if (h != NULL) {
5538     if (SuspendThread(*h) != ~0) {
5539       return true;
5540     }
5541   }
5542   return false;
5543 }
5544 
5545 // resume the thread
5546 // calling resume on an active thread is a no-op
5547 static void do_resume(HANDLE* h) {
5548   if (h != NULL) {
5549     ResumeThread(*h);
5550   }
5551 }
5552 
5553 // retrieve a suspend/resume context capable handle
5554 // from the tid. Caller validates handle return value.
5555 void get_thread_handle_for_extended_context(HANDLE* h,
5556                                             OSThread::thread_id_t tid) {
5557   if (h != NULL) {
5558     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5559   }
5560 }
5561 
5562 // Thread sampling implementation
5563 //
5564 void os::SuspendedThreadTask::internal_do_task() {
5565   CONTEXT    ctxt;
5566   HANDLE     h = NULL;
5567 
5568   // get context capable handle for thread
5569   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5570 
5571   // sanity
5572   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5573     return;
5574   }
5575 
5576   // suspend the thread
5577   if (do_suspend(&h)) {
5578     ctxt.ContextFlags = sampling_context_flags;
5579     // get thread context
5580     GetThreadContext(h, &ctxt);
5581     SuspendedThreadTaskContext context(_thread, &ctxt);
5582     // pass context to Thread Sampling impl
5583     do_task(context);
5584     // resume thread
5585     do_resume(&h);
5586   }
5587 
5588   // close handle
5589   CloseHandle(h);
5590 }
5591 
5592 bool os::start_debugging(char *buf, int buflen) {
5593   int len = (int)strlen(buf);
5594   char *p = &buf[len];
5595 
5596   jio_snprintf(p, buflen-len,
5597              "\n\n"
5598              "Do you want to debug the problem?\n\n"
5599              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5600              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5601              "Otherwise, select 'No' to abort...",
5602              os::current_process_id(), os::current_thread_id());
5603 
5604   bool yes = os::message_box("Unexpected Error", buf);
5605 
5606   if (yes) {
5607     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5608     // exception. If VM is running inside a debugger, the debugger will
5609     // catch the exception. Otherwise, the breakpoint exception will reach
5610     // the default windows exception handler, which can spawn a debugger and
5611     // automatically attach to the dying VM.
5612     os::breakpoint();
5613     yes = false;
5614   }
5615   return yes;
5616 }
5617 
5618 void* os::get_default_process_handle() {
5619   return (void*)GetModuleHandle(NULL);
5620 }
5621 
5622 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5623 // which is used to find statically linked in agents.
5624 // Additionally for windows, takes into account __stdcall names.
5625 // Parameters:
5626 //            sym_name: Symbol in library we are looking for
5627 //            lib_name: Name of library to look in, NULL for shared libs.
5628 //            is_absolute_path == true if lib_name is absolute path to agent
5629 //                                     such as "C:/a/b/L.dll"
5630 //            == false if only the base name of the library is passed in
5631 //               such as "L"
5632 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5633                                     bool is_absolute_path) {
5634   char *agent_entry_name;
5635   size_t len;
5636   size_t name_len;
5637   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5638   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5639   const char *start;
5640 
5641   if (lib_name != NULL) {
5642     len = name_len = strlen(lib_name);
5643     if (is_absolute_path) {
5644       // Need to strip path, prefix and suffix
5645       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5646         lib_name = ++start;
5647       } else {
5648         // Need to check for drive prefix
5649         if ((start = strchr(lib_name, ':')) != NULL) {
5650           lib_name = ++start;
5651         }
5652       }
5653       if (len <= (prefix_len + suffix_len)) {
5654         return NULL;
5655       }
5656       lib_name += prefix_len;
5657       name_len = strlen(lib_name) - suffix_len;
5658     }
5659   }
5660   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5661   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5662   if (agent_entry_name == NULL) {
5663     return NULL;
5664   }
5665   if (lib_name != NULL) {
5666     const char *p = strrchr(sym_name, '@');
5667     if (p != NULL && p != sym_name) {
5668       // sym_name == _Agent_OnLoad@XX
5669       strncpy(agent_entry_name, sym_name, (p - sym_name));
5670       agent_entry_name[(p-sym_name)] = '\0';
5671       // agent_entry_name == _Agent_OnLoad
5672       strcat(agent_entry_name, "_");
5673       strncat(agent_entry_name, lib_name, name_len);
5674       strcat(agent_entry_name, p);
5675       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5676     } else {
5677       strcpy(agent_entry_name, sym_name);
5678       strcat(agent_entry_name, "_");
5679       strncat(agent_entry_name, lib_name, name_len);
5680     }
5681   } else {
5682     strcpy(agent_entry_name, sym_name);
5683   }
5684   return agent_entry_name;
5685 }
5686 
5687 #ifndef PRODUCT
5688 
5689 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5690 // contiguous memory block at a particular address.
5691 // The test first tries to find a good approximate address to allocate at by using the same
5692 // method to allocate some memory at any address. The test then tries to allocate memory in
5693 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5694 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5695 // the previously allocated memory is available for allocation. The only actual failure
5696 // that is reported is when the test tries to allocate at a particular location but gets a
5697 // different valid one. A NULL return value at this point is not considered an error but may
5698 // be legitimate.
5699 void TestReserveMemorySpecial_test() {
5700   if (!UseLargePages) {
5701     return;
5702   }
5703   // save current value of globals
5704   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5705   bool old_use_numa_interleaving = UseNUMAInterleaving;
5706 
5707   // set globals to make sure we hit the correct code path
5708   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5709 
5710   // do an allocation at an address selected by the OS to get a good one.
5711   const size_t large_allocation_size = os::large_page_size() * 4;
5712   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5713   if (result == NULL) {
5714   } else {
5715     os::release_memory_special(result, large_allocation_size);
5716 
5717     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5718     // we managed to get it once.
5719     const size_t expected_allocation_size = os::large_page_size();
5720     char* expected_location = result + os::large_page_size();
5721     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5722     if (actual_location == NULL) {
5723     } else {
5724       // release memory
5725       os::release_memory_special(actual_location, expected_allocation_size);
5726       // only now check, after releasing any memory to avoid any leaks.
5727       assert(actual_location == expected_location,
5728              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5729              expected_location, expected_allocation_size, actual_location);
5730     }
5731   }
5732 
5733   // restore globals
5734   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5735   UseNUMAInterleaving = old_use_numa_interleaving;
5736 }
5737 #endif // PRODUCT
5738 
5739 /*
5740   All the defined signal names for Windows.
5741 
5742   NOTE that not all of these names are accepted by FindSignal!
5743 
5744   For various reasons some of these may be rejected at runtime.
5745 
5746   Here are the names currently accepted by a user of sun.misc.Signal with
5747   1.4.1 (ignoring potential interaction with use of chaining, etc):
5748 
5749      (LIST TBD)
5750 
5751 */
5752 int os::get_signal_number(const char* name) {
5753   static const struct {
5754     const char* name;
5755     int         number;
5756   } siglabels [] =
5757     // derived from version 6.0 VC98/include/signal.h
5758   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5759   "FPE",        SIGFPE,         // floating point exception
5760   "SEGV",       SIGSEGV,        // segment violation
5761   "INT",        SIGINT,         // interrupt
5762   "TERM",       SIGTERM,        // software term signal from kill
5763   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5764   "ILL",        SIGILL};        // illegal instruction
5765   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5766     if (strcmp(name, siglabels[i].name) == 0) {
5767       return siglabels[i].number;
5768     }
5769   }
5770   return -1;
5771 }
5772 
5773 // Fast current thread access
5774 
5775 int os::win32::_thread_ptr_offset = 0;
5776 
5777 static void call_wrapper_dummy() {}
5778 
5779 // We need to call the os_exception_wrapper once so that it sets
5780 // up the offset from FS of the thread pointer.
5781 void os::win32::initialize_thread_ptr_offset() {
5782   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5783                            NULL, NULL, NULL, NULL);
5784 }